WO2022000696A1 - Oled显示面板及其制作方法 - Google Patents

Oled显示面板及其制作方法 Download PDF

Info

Publication number
WO2022000696A1
WO2022000696A1 PCT/CN2020/106738 CN2020106738W WO2022000696A1 WO 2022000696 A1 WO2022000696 A1 WO 2022000696A1 CN 2020106738 W CN2020106738 W CN 2020106738W WO 2022000696 A1 WO2022000696 A1 WO 2022000696A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
coupling layer
light coupling
display panel
Prior art date
Application number
PCT/CN2020/106738
Other languages
English (en)
French (fr)
Inventor
黄辉
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/055,585 priority Critical patent/US12029093B2/en
Publication of WO2022000696A1 publication Critical patent/WO2022000696A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present application relates to the field of display technology, and in particular, to an OLED display panel and a manufacturing method thereof.
  • OLED Organic Light-Emitting Diode
  • WOLED White Organic Light-Emitting Diode
  • WOLED White Light Organic Light Emitting Diode
  • the disadvantage of this method is that it can only be prepared by evaporation, and when a color filter is used as a cover plate, the light emitted from the glass substrate will be filtered by the color filter to further emit light, which will make the light The effect of the coupling layer is reduced.
  • the existing OLED display panel technology there is still a total reflection of the OLED display panel when it emits light, resulting in a large amount of light loss, which increases the difficulty of implementing the light-emitting device, and the light-coupling layer in the light-emitting layer can only be arranged by using a vaporizer. It is prepared by plating, and the problem that the optical coupling effect will be reduced after passing through the color filter is in urgent need of improvement.
  • the present application relates to an OLED display panel and a manufacturing method thereof, which are used to solve the problem in the prior art that the OLED display panel will have total reflection when emitting light, resulting in a lot of light loss, and it is difficult to increase the implementation of the light-emitting device.
  • the light coupling layer can only be prepared by evaporation, and after passing through the color filter, the light coupling effect will be reduced.
  • the application provides an OLED display panel, the OLED display panel includes: a filter layer and a light-emitting layer stacked along a first direction;
  • the filter layer is sequentially stacked and disposed along the first direction: a base substrate, a first light coupling layer and a color filter;
  • the light-emitting layer is sequentially stacked and disposed along the first direction: a second light coupling layer, a first electrode, a light-emitting functional layer, a hole transport layer and a second electrode;
  • the thickness of the hole transport layer is: 24-200 nm.
  • the refractive index of the first light coupling layer and the second light coupling layer are the same, and the refractive index of the first light coupling layer is smaller than the refractive index of the color filter , and is greater than the refractive index of the base substrate.
  • the refractive indices of the first light coupling layer and the second light coupling layer decrease gradually.
  • the thicknesses of the first optical coupling layer and the second optical coupling layer along the first direction are the same, and the first optical coupling layer and the second optical coupling layer have the same thickness. All have a certain preset thickness along the first direction.
  • the preset thicknesses of the first optical coupling layer and the second optical coupling layer along the first direction are: 15-200 nm.
  • the thickness of the first optical coupling layer is inversely proportional to the refractive index of the first optical coupling layer
  • the thickness of the second optical coupling layer is inversely proportional to the thickness of the second optical coupling layer is inversely proportional to the refractive index
  • the materials of the first light coupling layer and the second light coupling layer are organic materials containing triphenylamine.
  • the first electrode is a cathode layer
  • the second electrode is an anode layer
  • the material of the cathode layer is one or a combination of ytterbium (Yb), calcium (Ca), magnesium (Mg), and silver (Ag), and the holes
  • the material of the transmission layer 24 is one or a combination of 2TNATA, NPB, and TAPC.
  • the light-emitting functional layer includes: a red light-emitting unit, a green light-emitting unit, a blue light-emitting unit, and a white light-emitting unit.
  • the light-emitting functional layer has a predetermined thickness along the first direction, and the predetermined thickness of the light-emitting functional layer is 10-80 nm.
  • the present application also provides an OLED display panel, the OLED display panel includes: a filter layer and a light-emitting layer stacked along a first direction;
  • the filter layer is sequentially stacked and disposed along the first direction: a base substrate, a first light coupling layer and a color filter;
  • the light-emitting layer is sequentially stacked and disposed along the first direction: a second light coupling layer, a first electrode, a light-emitting functional layer, a hole transport layer and a second electrode.
  • the refractive index of the first light coupling layer and the second light coupling layer are the same, and the refractive index of the first light coupling layer is smaller than the refractive index of the color filter , and is greater than the refractive index of the base substrate.
  • the refractive indices of the first light coupling layer and the second light coupling layer decrease gradually.
  • the thicknesses of the first optical coupling layer and the second optical coupling layer along the first direction are the same, and the first optical coupling layer and the second optical coupling layer have the same thickness. All have a certain preset thickness along the first direction.
  • the preset thicknesses of the first optical coupling layer and the second optical coupling layer along the first direction are: 15-200 nm.
  • the thickness of the first optical coupling layer is inversely proportional to the refractive index of the first optical coupling layer
  • the thickness of the second optical coupling layer is inversely proportional to the thickness of the second optical coupling layer is inversely proportional to the refractive index
  • the materials of the first light coupling layer and the second light coupling layer are organic materials containing triphenylamine.
  • the first electrode is a cathode layer
  • the second electrode is an anode layer
  • the present application provides a manufacturing method of an OLED display panel, using the above-mentioned OLED display panel, and the method includes the following steps:
  • the first optical coupling layer and the second optical coupling layer are prepared by means of evaporation, coating or printing.
  • the OLED display panel comprises: a filter layer and a light-emitting layer stacked along a first direction; the filter layer is stacked along the first direction in sequence: a base substrate , a first light-coupling layer and a color filter; the light-emitting layer is sequentially stacked along the first direction with: a second light-coupling layer, a first electrode, a light-emitting functional layer, a hole transport layer and a second electrode;
  • the first light coupling layer is arranged in the filter layer, and the second light coupling layer is arranged in the light emitting layer, so that the light loss inside the OLED display panel is reduced, and the OLED display panel is improved. light output;
  • the preparation is not limited to a single evaporation method, and coating or printing methods can also be used.
  • the preparation is carried out, and the preparation methods are diversified, which is beneficial to the subsequent commercial production.
  • FIG. 1 is a schematic structural diagram of an OLED display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of light entering a filter layer according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for fabricating an OLED display panel according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the present application provides an OLED display panel and a manufacturing method thereof, please refer to FIG. 1 to FIG. 3 for details.
  • the current OLED display panel will have total reflection during the light-emitting process. Most of the light cannot be effectively extracted due to internal refraction or reflection, resulting in a lot of light loss. Many light extraction methods are to improve the inside of the device and the inside of the glass substrate, or directly add a corresponding light-extracting device outside, but this method is more difficult to implement. There are also some methods to prepare a light-coupling layer on the cathode of the light-emitting layer to change the refractive index between the light-emitting layer and the glass substrate, so that the effect of total reflection is reduced, so that more light can be emitted into the air.
  • the disadvantage of this method is that it can only be prepared by evaporation, and when a color filter is used as a cover plate, the light emitted from the glass substrate will be filtered by the color filter to further emit light, which will make the light The effect of the coupling layer is reduced. Therefore, the present application provides an OLED display panel and a manufacturing method thereof to solve the above problems.
  • FIG. 1 it is a schematic structural diagram of an OLED display panel provided by the present application.
  • An OLED display panel provided by the present application includes: a filter layer 1 and a light-emitting layer 2 arranged in layers along a first direction Y; the filter layers 1 are arranged in layers along the first direction Y in sequence There are: a base substrate 11, a first light coupling layer 12 and a color filter 13; the light emitting layer 2 is sequentially stacked along the first direction Y with: a second light coupling layer 21, a first electrode 22, a light emitting layer
  • the functional layer 23 , the hole transport layer 24 and the second electrode 25 that is, the first light coupling layer 12 is provided in the filter layer 1 , and the second light coupling layer 21 is provided in the light emitting layer 2 , the first light coupling layer 12 and the second light coupling layer 21 are disposed opposite to each other, which can reduce the total reflection in the OLED display panel and reduce the light loss in the OLED display panel.
  • the refractive index of the first light coupling layer 12 and the second light coupling layer 21 are the same; the refractive index of the first light coupling layer 12 is smaller than that of the color filter 13 , and is greater than the refractive index of the base substrate 11 .
  • the first light is an electromagnetic wave, that is, when the electromagnetic field propagates in space, the electromagnetic field of the light will force the electrons to vibrate with the electric field when passing through the material, and the electrons will also vibrate when they vibrate. Electromagnetic waves are emitted, and these lights have a certain phase delay relative to the original light, in other words, the propagation speed is generally slower, and rarely faster.
  • the addition of a high-refractive-index light coupling layer can improve the reflectivity of the first electrode 22 to light, that is, after the light enters the first electrode 22, it is reflected to the microcavity (the microcavity is displayed by an organic light-emitting display).
  • a plurality of film layers of the panel are formed.
  • the microcavity includes: the base substrate 11, the first light coupling layer 12 and the color filter layer 13, which utilize light to refract effects such as reflection, total reflection, interference, diffraction, or scattering at the interface with discontinuous rate, which confine light to a small wavelength region), the increase in light.
  • the light totally reflected by the base substrate 11 into the microcavity, the light semi-reflected by the first electrode 22 into the microcavity, and the light emitted and reflected at different angles and positions will all have relevant interference effects in the microcavity , by setting a microcavity with a certain cavity length, the light in a certain wavelength range can be selectively enhanced, and the light in the remaining wavelength range can be weakened at the same time, so as to achieve the effect of improving the optical coupling.
  • the effect of light interference enhancement in the microcavity is good, and the OLED display device emits light due to interference enhancement.
  • the better the effect is, the external quantum efficiency of the OLED device is greatly improved, the working brightness of the OLED display is improved, the driving current and power loss of the OLED display are reduced, and the life of the OLED display is significantly improved.
  • the preparation of the second light coupling layer 21 is not limited to the general evaporation method, and can also use It is prepared by coating or printing, which makes the preparation process more diverse and facilitates commercial production.
  • n1 such as the base substrate
  • n2 such as the first optical coupling layer or the color filter
  • the base substrate has a refractive index smaller than that of the first light coupling layer
  • the refractive index of the first light coupling layer is smaller than the refractive index of the color filter
  • total reflection will not occur;
  • the incident angle of light ⁇ arcsin(n2/n1), ⁇ arcsin(n1/n2 *sin ⁇ )
  • the larger the refractive index n2 of the second medium the smaller the exit angle ⁇ , the stronger the light-gathering ability, and the better the light-exiting effect.
  • the angle between the incident light and the normal AA' (all normals are parallel to the first direction Y) is the incident angle ⁇ ;
  • the angle between the light and the normal line AA' is the first refraction angle r1.
  • the angle between the light and the normal line BB' is the first refraction angle r1.
  • the included angle is the second refraction angle r2; after the light enters the color filter 13, the included angle between the light and the normal CC' is the third refraction angle r3; the angle between the light and the normal DD'
  • the angle is the exit angle ⁇ .
  • the refractive index of the light coupling layer is smaller than the refractive index of the color filter layer and larger than the refractive index of the base substrate, when the light L1 passes through the
  • the second refraction angle r2 of the base substrate entering the first light coupling layer is smaller than the refraction angle r2' of the light L1 entering the color filter from the base substrate, so that it enters the color filter
  • the light angle of the OLED is smaller, so that the output angle ⁇ is smaller, more light can be emitted from the side of the color filter, and the light output rate of the OLED display panel is improved.
  • the thicknesses of the first light coupling layer 12 and the second light coupling layer 21 along the first direction Y are the same, and the first light coupling layer 12 and the second light coupling layer 12 have the same thickness along the first direction Y.
  • the two optical coupling layers 21 are both nano-structured, which is a form of film formation.
  • the first light coupling layer 12 and the second light coupling layer 21 both have a predetermined thickness along the first direction Y.
  • the preset thicknesses of the first light coupling layer 12 and the second light coupling layer 21 along the first direction Y are: 15-200 nm.
  • the first light coupling layer 12 and the second light coupling layer 21 are prepared in the same way.
  • the second light coupling layer 21 under the first electrode 22 (ie the second light coupling layer in the filter layer 2 Layer 21), the main function is to improve the efficiency of light extraction, and at the same time, to change the directionality of the electrons in the first electrode 22, so that the electrons coupled with the light-emitting photons are changed, thereby reducing the coupling probability.
  • the thickness of the first light coupling layer 12 or the second light coupling layer 21 is: ⁇ /4n, where ⁇ is the wavelength of light emitted by the light-emitting functional layer 23 , n is the refractive index of the light coupling layer. Therefore, the thickness of the first light coupling layer 12 is inversely proportional to the refractive index of the first light coupling layer 12 , and the thickness of the second light coupling layer 21 is proportional to the refractive index of the second light coupling layer 21 inversely proportional.
  • the materials of the first light coupling layer 12 and the second light coupling layer 21 are organic materials containing triphenylamine.
  • the materials of the first light coupling layer 12 and the hole transport layer 24 may be the same or different, mainly the first light coupling layer 12 and the second light coupling layer
  • the material of 21 needs to contain triphenylamine.
  • the structure of benzene has a certain degree of influence on the thickness of the material. The effect is adjusted by the thickness, and the function is to improve the light extraction efficiency.
  • the first electrode 22 is a cathode layer
  • the second electrode 25 is an anode layer.
  • the cathode layer is a semi-reflective and semi-transmissive cathode
  • the material of the cathode layer is one or a combination of ytterbium (Yb), calcium (Ca), magnesium (Mg), and silver (Ag).
  • Yb ytterbium
  • Ca calcium
  • Mg magnesium
  • silver silver
  • the side of the layer away from the electron injection layer is the light-emitting side.
  • the anode layer is a semi-transparent electrode material, which also has a semi-reflection effect on light.
  • the semi-reflecting second electrode layer 25 and the fully reflecting substrate A micro-cavity structure is formed between the substrates 11, and the interference of light in the micro-cavity is strengthened.
  • the micro-cavity is an optical micro-cavity, which refers to an optical micro-cavity whose size in at least one direction is as small as that of a resonant light wave. resonant cavity.
  • the hole transport layer 24 is a material with high hole mobility, high thermal stability and good electron and exciton blocking ability.
  • the material of the hole transport layer 24 is one or more of 2TNATA, NPB, and TAPC, and the thickness of the hole transport layer 24 is 24-200 nm. Vapor deposition is deposited under the second electrode 25 .
  • the light-emitting functional layer 23 includes: a red light-emitting unit, a green light-emitting unit, a blue light-emitting unit, and a white light-emitting unit, among the four color light-emitting units, the red light-emitting unit emits the red light with the longest wavelength.
  • the wavelength of red light emitted by the blue light-emitting unit is the shortest, and the wavelength of the red light emitted by the green light-emitting unit and the white light-emitting unit is between the red light-emitting unit and the blue light-emitting unit.
  • the light-emitting functional layer 23 has a predetermined thickness along the first direction Y, and the predetermined thickness of the light-emitting functional layer 23 is 10-80 nm.
  • the present application provides a schematic flowchart of a method for manufacturing an OLED display panel. Using the above-mentioned OLED display panel, the method includes the following steps:
  • the base substrate 11 can be a glass substrate or a resin substrate;
  • the first optical coupling layer 12 and the second optical coupling layer 21 are prepared by means of evaporation, coating or printing, which is not limited to the general evaporation process, and the production process is more Diversification for commercial production.
  • the beneficial effects of an OLED display panel and a manufacturing method thereof provided by the present application are as follows: first, the OLED display panel provided by the present application includes: A filter layer 1 and a light-emitting layer 2; the filter layer 1 is sequentially stacked along the first direction Y with: a base substrate 11, a first light coupling layer 12 and a color filter 13; the light-emitting layer 2 Along the first direction Y, the second light coupling layer 21 , the first electrode 22 , the light emitting function layer 23 , the hole transport layer 24 and the second electrode 25 are sequentially stacked and arranged; The first light coupling layer 12 and the second light coupling layer 21 are arranged in the light emitting layer 2 to reduce the light loss inside the OLED display panel and improve the light extraction rate of the OLED display panel; then, this
  • the first light coupling layer 12 and the second light coupling layer 21 are not limited to be prepared by a single evaporation method, and can

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板及其制作方法,OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;滤光层沿第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极;有益效果为:减所述OLED显示面板内部的光损失,提高出光率。

Description

OLED显示面板及其制作方法 技术领域
本申请涉及显示技术领域,尤其涉及一种OLED显示面板及其制作方法。
背景技术
目前OLED(Organic Light-Emitting Diode,有机发光二极管)器件的发光效率较低,且在制备WOLED(White Organic Light-Emitting Diode,白光有机发光二极管)器件的时候,需要经过彩色滤光片进行滤光,以得到更好的发光色度。
同时,由于界面折射率的关系,在发光过程中会发生全反射,大部分的光由于在内部进行折射或反射,而无法有效的提取出来,导致光损失较多,而目前使用较多的光提取的方法,是在器件内部及玻璃基板内部进行改进,或者直接在外部增加相应的出光装置,但是这种方法实施起来比较有难度。也有一些方法会采用在发光层的阴极上制备一层光耦合层(Capping Layer,CPL),用于改变发光层与玻璃基板之间的折射率,使全反射的效应降低,使得更多的光可以出射到空气中。但是这种方法的缺点是只能采用蒸镀的方式进行制备,且当使用彩色滤光片作为盖板的时候,从玻璃基板发射的光会通过彩色滤光片进行过滤进一步出光,会使得光耦合层的作用降低。
因此,现有的OLED显示面板技术中,还存在着OLED显示面板在发光时会发生全反射,光损失较多,增加出光装置实施有难度,而在发光层中设置光耦合层只能采用蒸镀的方式制备,且经过彩色滤光片之后会使得光耦合作用降低的问题,急需改进。
技术问题
本申请涉及一种OLED显示面板及其制作方法,用于解决现有技术中存在着OLED显示面板在发光时会发生全反射,光损失较多,增加出光装置实施有难度,而在发光层中设置光耦合层只能采用蒸镀的方式制备,且经过彩色滤光片之后会使得光耦合作用降低的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供的一种OLED显示面板,所述OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;
所述滤光层沿所述第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;
所述发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极;
所述空穴传输层的厚度为:24-200nm。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层的折射率相同,所述第一光耦合层的折射率小于所述彩色滤光片的折射率,且大于所述衬底基板的折射率。
根据本申请提供的一种实施例,沿所述第一方向的出光方向,所述第一光耦合层与所述第二光耦合层的折射率递减。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层沿所述第一方向的厚度相同,所述第一光耦合层与所述第二光耦合层沿所述第一方向均具有一定的预设厚度。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层沿所述第一方向的预设厚度为:15-200nm。
根据本申请提供的一种实施例,所述第一光耦合层的厚度与所述第一光耦合层的折射率成反比,所述第二光耦合层的厚度与所述第二光耦合层的折射率成反比。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层的材料为含有三苯胺的有机材料。
根据本申请提供的一种实施例,所述第一电极为阴极层,所述第二电极为阳极层。
根据本申请提供的一种实施例,所述阴极层的材料为镱(Yb)、钙(Ca)、镁(Mg)、银(Ag)中的一种或几种的组合,所述空穴传输层24的材料为2TNATA、NPB、TAPC中的一种或几种的组合。
根据本申请提供的一种实施例,所述发光功能层包括:红色发光单元、绿色发光单元、蓝色发光单元以及白色发光单元。
根据本申请提供的一种实施例,所述发光功能层沿所述第一方向具有一定的预设厚度,所述发光功能层的预设厚度为10-80nm。
本申请还提供的一种OLED显示面板,所述OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;
所述滤光层沿所述第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;
所述发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层的折射率相同,所述第一光耦合层的折射率小于所述彩色滤光片的折射率,且大于所述衬底基板的折射率。
根据本申请提供的一种实施例,沿所述第一方向的出光方向,所述第一光耦合层与所述第二光耦合层的折射率递减。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层沿所述第一方向的厚度相同,所述第一光耦合层与所述第二光耦合层沿所述第一方向均具有一定的预设厚度。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层沿所述第一方向的预设厚度为:15-200nm。
根据本申请提供的一种实施例,所述第一光耦合层的厚度与所述第一光耦合层的折射率成反比,所述第二光耦合层的厚度与所述第二光耦合层的折射率成反比。
根据本申请提供的一种实施例,所述第一光耦合层与所述第二光耦合层的材料为含有三苯胺的有机材料。
根据本申请提供的一种实施例,所述第一电极为阴极层,所述第二电极为阳极层。
本申请提供一种OLED显示面板的制作方法,采用上述所述的OLED显示面板,该方法包括以下步骤:
S10,提供衬底基板;
S20,在所述衬底基板一侧依次沉积第一光耦合层、彩色滤光片、第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极,使得所述第一光耦合层与所述第二光耦合层的厚度相同。
根据本申请提供的一种实施例,采用蒸镀、涂布或是打印的方式制备所述第一光耦合层与所述第二光耦合层。
有益效果
与现有技术相比,本申请提供的一种OLED显示面板及其制作方法的有益效果为:
1.本申请提供的OLED显示面板,所述OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;所述滤光层沿所述第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;所述发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极;在所述滤光层中设置所述第一光耦合层,所述发光层中设置所述第二光耦合层,减小所述OLED显示面板内部的光损失,提高了所述OLED显示面板的出光率;
2.本申请提供的OLED显示面板的制作方法,对于所述第一光耦合层与所述第二光耦合层,不限于单一的蒸镀方式进行制备,还可以采用涂布或是打印的方式进行制备,制备方式多样化,有利于后续的商业化生产。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的OLED显示面板的结构示意图。
图2为本申请实施例提供的光线射入滤光层的结构示意图。
图3为本申请实施例提供的OLED显示面板制作方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请提供一种OLED显示面板及其制作方法,具体参阅图1-图3。
现阶段的OLED显示面板由于界面折射率的关系,在发光过程中会发生全反射,大部分的光由于在内部进行折射或反射,而无法有效的提取出来,导致光损失较多,而目前使用较多的光提取的方法,是在器件内部及玻璃基板内部进行改进,或者直接在外部增加相应的出光装置,但是这种方法实施起来比较有难度。也有一些方法会采用在发光层的阴极上制备一层光耦合层,用于改变发光层与玻璃基板之间的折射率,使全反射的效应降低,使得更多的光可以出射到空气中。但是这种方法的缺点是只能采用蒸镀的方式进行制备,且当使用彩色滤光片作为盖板的时候,从玻璃基板发射的光会通过彩色滤光片进行过滤进一步出光,会使得光耦合层的作用降低。因此,本申请提供一种OLED显示面板及其制作方法用以解决上述问题。
参阅图1,为本申请提供的OLED显示面板的结构示意图。本申请提供的一种OLED显示面板,所述OLED显示面板包括:沿第一方向Y层叠设置的滤光层1与发光层2;所述滤光层1沿所述第一方向Y依次层叠设置有:衬底基板11、第一光耦合层12以及彩色滤光片13;所述发光层2沿所述第一方向Y依次层叠设置有:第二光耦合层21、第一电极22、发光功能层23、空穴传输层24以及第二电极25,即在所述滤光层1中设置所述第一光耦合层12,在所述发光层2中设置所述第二光耦合层21,所述第一光耦合层12与所述第二光耦合层21相对设置,可以降低所述OLED显示面板内的全反射,减小所述OLED显示面板内部的光损失。
在本申请的一些实施例中,所述第一光耦合层12与所述第二光耦合层21的折射率相同;所述第一光耦合层12的折射率小于所述彩色滤光片13的折射率,且大于所述衬底基板11的折射率。
进一步地,沿所述第一方向Y的出光方向(即为所述第一光耦合层12或是所述第二光耦合层21背离所述衬底基板11一侧),所述第一光耦合层12与所述第二光耦合层21的折射率递减。光在两种(各向同性)媒质中速度的比值叫做折射率,由于光是电磁波,即电磁场在空间中传播时,光的电磁场经过物质时会迫使电子随着电场振动,电子振动时也会发出电磁波,这些光相对于原来的光有一定的相位延迟,换言之,传播速度一般会变慢,极少情况下变快。高折射率的光耦合层的增加可以提高所述第一电极22对光线的反射率,即光线射入到所述第一电极22后被反射到微腔(所述微腔是由有机发光显示面板的多个膜层形成,在本实施例中,所述微腔包括:所述衬底基板11、所述第一光耦合层12以及所述彩色滤光片层13组成,利用光在折射率不连续的界面上的反射、全反射、干涉、衍射或散射等效应,将光限制在一个很小的波长区域内)中的光线增多。这样,所述衬底基板11全反射到微腔中的光线和第一电极22半反射到微腔中的光线,以及不同角度和位置发射和反射的光线,都会在微腔中发生相关干涉作用,通过设置一定腔长的微腔,便可以有选择性的增强一定波长范围的光线,同时削弱其余波长范围的光线,从而达到提高光耦合的效果。由于光线在微腔内发生干涉,因而光耦合层折射率越大,与第一电极22共同作用对光线的反射率越大,微腔内光线干涉增强的效果好,OLED显示器件出光因干涉增强的效果越好,大大提高了OLED器件的外量子效率,提高了OLED显示器的工作亮度,降低了OLED显示器的驱动电流和功率损耗,显著提高了OLED显示器的寿命。又由于所述第二光耦合层21设置在所述第一电极22沿所述第一方向Y的下方,使得所述第二光耦合层21的制备不限于一般的蒸镀方式,还可以采用涂布或是打印的方式进行制备,使得制备的工艺变得更多样化,便于商业生产。
根据斯涅耳定律,由折射率为n1的第一介质(如所述衬底基板)X1,折射率为n2的第二介质(如所述第一光耦合层或是所述彩色滤光片)X2,n1>n2,满足n1/n2=sinβ/sinθ,其中,θ为入射角,β为出射角,光能够发生折射的临界情况为β等于90度,也即,光能够发生折射的临界角为θ=arcsin(n2/n1),当光的入射角θ大于arcsin(n2/n1)时,将会发生全反射,由于全反射指的是光密介质(即光在此介质中的折射率大的)射到第二介质(即光在此介质中折射率小的)的界面时,全部被反射回原介质内的现象。因此,当光线从所述衬底基板射入到所述第一光耦合层再射入所述彩色滤光片(所述衬底基板的折射率小于所述第一光耦合层的折射率,所述第一光耦合层的折射率小于所述彩色滤光片的折射率)时,不会产生全反射;当光的入射角θ<arcsin(n2/n1),β=arcsin(n1/n2*sinθ)时,第二介质的折射率n2越大,出射角β越小,聚光能力越强,光的出光效果越好。
参阅图2,当光线从外界空气中射入所述衬底基板11时,入射光线与法线AA’(所有的法线均平行于所述第一方向Y)的夹角为入射角θ;当光线进入所述衬底基板11内后,光线与法线AA’之间的夹角为第一折射角r1,光线进入所述第一光耦合层12后,光线与法线BB’之间的夹角为第二折射角r2;当光线进入所述彩色滤光片13之后,光线与法线CC’之间的夹角为第三折射角r3;光线与法线DD’之间的夹角为出射角β。由于增加了一层所述第一光耦合层,且所述光耦合层的折射率小于所述彩色滤光层的折射率,大于所述衬底基板的折射率,因此,当光线L1从所述衬底基板进入所述第一光耦合层的所述第二折射角r2小于光线L1从所述衬底基板进入所述彩色滤光片的折射角r2’,使得进入所述彩色滤光片的光线角度更小,进而使得出射角β更小,更多的光线可以从所述彩色滤光片一侧射出,提高了所述OLED显示面板出光率。
在本申请的一些实施例中,所述第一光耦合层12与所述第二光耦合层21沿所述第一方向Y的厚度相同,且所述第一光耦合层12与所述第二光耦合层21均为纳米结构,一种成膜形态。所述第一光耦合层12与所述第二光耦合层21沿所述第一方向Y均具有一定的预设厚度。进一步地,所述第一光耦合层12与所述第二光耦合层21沿所述第一方向Y的预设厚度为:15-200nm。所述第一光耦合层12与所述第二光耦合层21的制备方法相同,第一电极22下方的所述第二光耦合层21(即滤光层2中的所述第二光耦合层21),主要作用是为了提高出光的效率,同时,改变第一电极22中电子的方向性,使与发光光子耦合的电子得到改变,以此减少耦合概率。
在本申请的一些实施例中,由于所述第一光耦合层12或是所述第二光耦合层21的厚度为:λ/4n,其中,λ为发光功能层23发出光的波长,n为光耦合层的折射率。因此,所述第一光耦合层12的厚度与所述第一光耦合层12的折射率成反比,所述第二光耦合层21的厚度与所述第二光耦合层21的折射率成反比。
在本申请的一些实施例中,所述第一光耦合层12与所述第二光耦合层21的材料为含有三苯胺的有机材料。其实,所述第一光耦合层12与所述空穴传输层24的材料可以是一样的,也可以是不一样的,主要是所述第一光耦合层12与所述第二光耦合层21的材料中需要含有三苯胺,苯的结构对材料的厚度具有一定程度的影响,靠厚度来调整效果,作用是为了提高出光效率。
在本申请的一些实施例中,所述第一电极22为阴极层,所述第二电极25为阳极层。所述阴极层为半反射半透射阴极,所述阴极层的材料为镱(Yb)、钙(Ca)、镁(Mg)、银(Ag)中的一种或几种的组合,所述阴极层远离所述电子注入层的一侧为出光侧,所述阳极层为半透明的电极材料,对光线同样具有半反射作用,该半反射的第二电极层25与全反射的所述衬底基板11之间形成了微腔结构,光线在微腔内发生干涉加强,所述微腔是一种光学微腔,是指至少在一个方向上腔的尺寸小至与谐振光波相比拟的光学微型谐振腔。
进一步地,所述空穴传输层24为具备高的空穴迁移率、高的热稳定性和良好的电子和激子阻挡能力的材料。在本申请的一种实施例中,所述空穴传输层24的材料为2TNATA、NPB、TAPC中的一种或几种,所述空穴传输层24的厚度为24-200nm,通过真空热蒸镀沉积在所述第二电极25的下方。
进一步地,所述发光功能层23包括:红色发光单元、绿色发光单元、蓝色发光单元以及白色发光单元,在这四种颜色的发光单元中,所述红色发光单元所发出的红光波长最长,所述蓝色发光单元所发出的红光波长最短,所述绿色发光单元与所述白色发光单元所发出的红光波长介于所述红色发光单元和所述蓝色发光单元之间。进一步地,所述发光功能层23沿所述第一方向Y具有一定的预设厚度,所述发光功能层23的预设厚度为10-80nm。
参阅图3,为本申请提供一种OLED显示面板的制作方法的流程示意图,采用上述所述的OLED显示面板,该方法包括以下步骤:
S10,提供衬底基板11,所述衬底基板11可以采用玻璃基板或是树脂基板;
S20,在所述衬底基板11一侧依次沉积第一光耦合层12、彩色滤光片13、第二光耦合层21、第一电极22、发光功能层23、空穴传输层24以及第二电极25,使得所述第一光耦合层12与所述第二光耦合层21的厚度相同。
在本申请的一些实施例中,采用蒸镀、涂布或是打印的方式制备所述第一光耦合层12与所述第二光耦合层21,不限于一般的蒸镀工艺,生产工艺更多样化,有利于商业生产。
与现有技术相比,本申请提供的一种OLED显示面板及其制作方法的有益效果为:首先,本申请提供的OLED显示面板,所述OLED显示面板包括:沿第一方向Y层叠设置的滤光层1与发光层2;所述滤光层1沿所述第一方向Y依次层叠设置有:衬底基板11、第一光耦合层12以及彩色滤光片13;所述发光层2沿所述第一方向Y依次层叠设置有:第二光耦合层21、第一电极22、发光功能层23、空穴传输层24以及第二电极25;在所述滤光层1中设置所述第一光耦合层12,所述发光层2中设置所述第二光耦合层21,减小所述OLED显示面板内部的光损失,提高了所述OLED显示面板的出光率;然后,本申请提供的OLED显示面板的制作方法,对于所述第一光耦合层12与所述第二光耦合层21,不限于单一的蒸镀方式进行制备,还可以采用涂布或是打印的方式进行制备,制备方式多样化,有利于后续的商业化生产。
以上对本申请实施例所提供的一种OLED显示面板及其制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种OLED显示面板,所述OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;
    所述滤光层沿所述第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;
    所述发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极;
    所述空穴传输层的厚度为:24-200nm。
  2. 根据权利要求1所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层的折射率相同,所述第一光耦合层的折射率小于所述彩色滤光片的折射率,且大于所述衬底基板的折射率。
  3. 根据权利要求1所述的OLED显示面板,其中,沿所述第一方向的出光方向,所述第一光耦合层与所述第二光耦合层的折射率递减。
  4. 根据权利要求1所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层沿所述第一方向的厚度相同,所述第一光耦合层与所述第二光耦合层沿所述第一方向均具有一定的预设厚度。
  5. 根据权利要求4所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层沿所述第一方向的预设厚度为:15-200nm。
  6. 根据权利要求4所述的OLED显示面板,其中,所述第一光耦合层的厚度与所述第一光耦合层的折射率成反比,所述第二光耦合层的厚度与所述第二光耦合层的折射率成反比。
  7. 根据权利要求1所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层的材料为含有三苯胺的有机材料。
  8. 根据权利要求1所述的OLED显示面板,其中,所述第一电极为阴极层,所述第二电极为阳极层。
  9. 根据权利要求1所述的OLED显示面板,其中,所述阴极层的材料为镱(Yb)、钙(Ca)、镁(Mg)、银(Ag)中的一种或几种的组合,所述空穴传输层24的材料为2TNATA、NPB、TAPC中的一种或几种的组合。
  10. 根据权利要求1所述的OLED显示面板,其中,所述发光功能层包括:红色发光单元、绿色发光单元、蓝色发光单元以及白色发光单元。
  11. 根据权利要求1所述的OLED显示面板,其中,所述发光功能层沿所述第一方向具有一定的预设厚度,所述发光功能层的预设厚度为10-80nm。
  12. 一种OLED显示面板,所述OLED显示面板包括:沿第一方向层叠设置的滤光层与发光层;
    所述滤光层沿所述第一方向依次层叠设置有:衬底基板、第一光耦合层以及彩色滤光片;
    所述发光层沿所述第一方向依次层叠设置有:第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极。
  13. 根据权利要求12所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层的折射率相同,所述第一光耦合层的折射率小于所述彩色滤光片的折射率,且大于所述衬底基板的折射率。
  14. 根据权利要求12所述的OLED显示面板,其中,沿所述第一方向的出光方向,所述第一光耦合层与所述第二光耦合层的折射率递减。
  15. 根据权利要求12所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层沿所述第一方向的厚度相同,所述第一光耦合层与所述第二光耦合层沿所述第一方向均具有一定的预设厚度。
  16. 根据权利要求15所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层沿所述第一方向的预设厚度为:15-200nm。
  17. 根据权利要求15所述的OLED显示面板,其中,所述第一光耦合层的厚度与所述第一光耦合层的折射率成反比,所述第二光耦合层的厚度与所述第二光耦合层的折射率成反比。
  18. 根据权利要求12所述的OLED显示面板,其中,所述第一光耦合层与所述第二光耦合层的材料为含有三苯胺的有机材料。
  19. 一种OLED显示面板的制作方法,其中,采用上述权利要求1所述的OLED显示面板,该方法包括以下步骤:
    S10,提供衬底基板;
    S20,在所述衬底基板一侧依次沉积第一光耦合层、所述彩色滤光片、第二光耦合层、第一电极、发光功能层、空穴传输层以及第二电极,使得所述第一光耦合层与所述第二光耦合层的厚度相同。
  20. 根据权利要求19所述的OLED显示面板的制作方法,其中,采用蒸镀、涂布或是打印的方式制备所述第一光耦合层与所述第二光耦合层。
PCT/CN2020/106738 2020-07-02 2020-08-04 Oled显示面板及其制作方法 WO2022000696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/055,585 US12029093B2 (en) 2020-07-02 2020-08-04 OLED display panel with diverse manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010626632.4A CN111710710B (zh) 2020-07-02 2020-07-02 Oled显示面板及其制作方法
CN202010626632.4 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022000696A1 true WO2022000696A1 (zh) 2022-01-06

Family

ID=72545646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106738 WO2022000696A1 (zh) 2020-07-02 2020-08-04 Oled显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN111710710B (zh)
WO (1) WO2022000696A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639883A (zh) * 2002-03-06 2005-07-13 皇家飞利浦电子股份有限公司 电子显示装置
CN106104841A (zh) * 2014-03-19 2016-11-09 3M创新有限公司 用于白光成色oled装置的纳米结构
US20190131350A1 (en) * 2017-11-02 2019-05-02 Samsung Electronics Co., Ltd. Display apparatus
CN110047889A (zh) * 2019-04-15 2019-07-23 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置
US20190229153A1 (en) * 2018-01-23 2019-07-25 Samsung Display Co., Ltd. Semiconductor nanoparticles, and display device and oled display device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639883A (zh) * 2002-03-06 2005-07-13 皇家飞利浦电子股份有限公司 电子显示装置
CN106104841A (zh) * 2014-03-19 2016-11-09 3M创新有限公司 用于白光成色oled装置的纳米结构
US20190131350A1 (en) * 2017-11-02 2019-05-02 Samsung Electronics Co., Ltd. Display apparatus
US20190229153A1 (en) * 2018-01-23 2019-07-25 Samsung Display Co., Ltd. Semiconductor nanoparticles, and display device and oled display device comprising the same
CN110047889A (zh) * 2019-04-15 2019-07-23 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN111710710A (zh) 2020-09-25
CN111710710B (zh) 2021-11-23
US20220199689A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP4779171B2 (ja) 複数波長発光素子および電子機器
TWI284492B (en) Organic EL device
CN105191501B (zh) 显示设备、制造该显示设备的方法以及电子设备
TWI557897B (zh) 顯示裝置及製造顯示裝置之方法
JP5037344B2 (ja) 有機発光ダイオードに基づいたディスプレイおよびその製造方法
KR102664401B1 (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
CN109817832B (zh) 一种oled显示基板及其制备方法、显示装置
JP5131717B2 (ja) 光学共振効果を利用した有機電界発光素子
WO2017121351A1 (zh) Oled阵列基板及其制造方法、oled显示面板和oled显示装置
US10446798B2 (en) Top-emitting WOLED display device
WO2019000904A1 (zh) Oled显示基板及其制作方法、显示装置
JP2008135373A (ja) 有機発光装置及びその製造方法
JP6089338B2 (ja) 有機el素子及びその製造方法
US20210288290A1 (en) Light emitting device and display apparatus including the same
JP2007273231A (ja) 多色有機elディスプレイ
WO2018205600A1 (en) Display panel, manufacturing method thereof, and display apparatus
JPWO2012172858A1 (ja) 光学素子、光源装置及び投射型表示装置
US20200321560A1 (en) Organic light-emitting device and display device
JP2008251217A (ja) 有機エレクトロルミネセンス素子
JP2012252984A (ja) 表示装置
JP2003317931A (ja) El素子、およびその素子を用いた表示装置
JP2013016464A (ja) 表示装置
CN111710800B (zh) 显示面板及显示面板的制备方法
US20230369546A1 (en) Light source device and manufacturing method of light source device
WO2022000696A1 (zh) Oled显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943419

Country of ref document: EP

Kind code of ref document: A1