WO2022000592A1 - 一种介质波导滤波器 - Google Patents

一种介质波导滤波器 Download PDF

Info

Publication number
WO2022000592A1
WO2022000592A1 PCT/CN2020/102984 CN2020102984W WO2022000592A1 WO 2022000592 A1 WO2022000592 A1 WO 2022000592A1 CN 2020102984 W CN2020102984 W CN 2020102984W WO 2022000592 A1 WO2022000592 A1 WO 2022000592A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind
coupling
resonance
hole
group
Prior art date
Application number
PCT/CN2020/102984
Other languages
English (en)
French (fr)
Inventor
李陆龙
姜华
韩莉
岳月华
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000592A1 publication Critical patent/WO2022000592A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • the present invention relates to the technical field of filters, and in particular, to a dielectric waveguide filter.
  • the dielectric waveguide filter has the above advantages, most of the current dielectric waveguide filters are formed by dry pressing, so the actual structure of the dielectric waveguide filter is relatively high, and some structures that can be easily realized in the metal cavity, It is difficult to achieve in dielectric waveguide filters.
  • the purpose of the present invention is to provide a dielectric waveguide filter, so as to effectively improve the out-of-band suppression performance of the filter, and at the same time reduce the complexity of the filter mold.
  • a dielectric waveguide filter comprising: a dielectric body, the dielectric body includes a first surface and a second surface arranged opposite to the first surface, the first surface is provided with several groups of resonance parts, each group of The resonance part includes two symmetrically arranged resonance blind holes, wherein a first coupling blind hole is set between the two resonance blind holes of a group of the resonance parts; a second coupling blind hole is set on the second surface
  • the center axis of the first coupling blind hole coincides with the center axis of the second coupling hole, and the first coupling blind hole and the second coupling blind hole form a capacitive coupling structure.
  • the sum of the depths of the first blind coupling hole and the second blind coupling hole is greater than half the thickness of the dielectric body.
  • the resonating part includes a first group of resonating parts, a second group of resonating parts and a third group of resonating parts arranged in sequence, and a cross shape is arranged between the first group of resonating parts and the second group of resonating parts.
  • a coupling slot, a strip-shaped coupling slot is arranged between the second group of resonance parts and the third group of resonance parts.
  • the first coupling blind hole is arranged between the two resonance blind holes of the third group of resonance parts, and the center axis of symmetry of the first coupling blind hole is the center of the strip coupling slot.
  • the axes of symmetry coincide.
  • a third blind coupling hole is disposed between the two blind resonance holes of any other group of the resonance parts, and the third blind coupling hole and the cross-shaped coupling slot form an inductive coupling structure.
  • the third blind coupling hole is disposed between the two blind resonance holes of the first group of resonance parts, and the center axis of symmetry of the third blind coupling hole is the center of the cross-shaped coupling slot.
  • the axes of symmetry coincide.
  • the second surface is provided with input blind holes and output blind holes.
  • the input blind hole and the output blind hole are symmetrically arranged on both sides of the cross-shaped coupling slot.
  • the beneficial effect of the present invention is that: a first blind coupling hole is arranged between the two blind resonance holes of one group of resonance parts, and a second blind blind hole is arranged on the second surface, and the center axis of the second blind blind hole is the same as that of the second blind hole.
  • the central axis of the first blind coupling hole is coincident, and the first blind coupling hole and the second blind coupling hole form a capacitive coupling structure.
  • the first coupling blind hole and the second coupling blind hole which are symmetrical up and down generate a pair of zero points, which can improve the out-of-band suppression performance; on the other hand, the depth of the first coupling blind hole is reduced, so that the It is basically the same as the hole depth of the resonant blind hole, so that the number of stamping can be reduced and the complexity of the filter mold can be reduced.
  • FIG. 1 is a schematic structural diagram of a dielectric waveguide filter from a first perspective of the present invention
  • Fig. 2 is the top view of Fig. 1;
  • FIG. 3 is a schematic structural diagram of a second viewing angle of a dielectric waveguide filter according to the present invention.
  • Fig. 4 is the top view of Fig. 3;
  • FIG. 5 is a performance simulation comparison diagram of a dielectric waveguide filter of the present invention.
  • FIG. 6 is a waveform diagram of far-end suppression of a dielectric waveguide filter according to the present invention.
  • a dielectric waveguide filter includes: a dielectric body 10, the dielectric body 10 includes a first surface 11 and a second surface 12 disposed opposite to the first surface 11, the first surface 11 is provided with a plurality of A set of resonance parts, each set of resonance parts includes two symmetrically arranged resonance blind holes, wherein a first coupling blind hole 31 is set between the two resonance blind holes of a set of resonance parts; a second coupling hole is set on the second surface 12
  • the blind hole 32 the central axis of the first blind coupling hole 31 and the central axis of the second blind coupling hole 32 are coincident, and the first blind coupling hole 31 and the second blind coupling hole 32 form a capacitive coupling structure.
  • the medium body 10 is a ceramic medium body 10, and the ceramic medium body 10 is integrally press-molded.
  • the ceramic dielectric body 10 is made of high dielectric constant material and is used for transmitting electromagnetic waves.
  • Ceramic dielectric material is a hard dielectric material with high dielectric constant and low dielectric loss, and can effectively provide structural support.
  • RF devices such as dielectric waveguide filters designed with this dielectric material have the advantages of miniaturization. , high stability, low loss, light weight and low cost, etc., can well meet the requirements of future filter miniaturization and high performance.
  • the dielectric body 10 is designed as a rectangular solid structure, the first surface 11 and the second surface 12 of the dielectric body 10 are coated with a conductive material, and the conductive material is a metal plating layer, that is, the surface of the dielectric body 10 passes through the metal Chemical treatment to form a metal shielding layer.
  • a first blind coupling hole 31 is arranged between two blind resonance holes of one group of resonance parts, and a second blind coupling hole 32 is arranged on the second surface 12, and the center of the second blind coupling hole 32 is The axis coincides with the central axis of the first blind coupling hole 31 , and the first blind coupling hole 31 and the second blind coupling hole 32 form a capacitive coupling structure.
  • the upper and lower symmetrical first coupling blind holes 31 and the second coupling blind holes 32 generate a pair of zeros, which can improve the out-of-band suppression performance, thereby reducing the impact on other communication frequency bands;
  • the depth of the first coupling blind hole 31 is reduced to be substantially the same as the hole depth of the resonance blind hole, thereby reducing the number of press punches and reducing the complexity of the filter mold.
  • the sum of the depths of the first blind coupling hole 31 and the second blind coupling hole 32 is greater than half the thickness of the dielectric body 10 .
  • the sum of the depths of the first coupling blind hole 31 and the second coupling blind hole 32 is set, so that the first coupling blind hole 31 and the second coupling blind hole 32 form a special capacitive coupling structure; by changing the first coupling hole
  • the depth of the blind hole 31 and the second coupling blind hole 32 can change the coupling amount of the capacitive coupling structure.
  • the resonance part includes a first group of resonance parts 21 , a second group of resonance parts 22 and a third group of resonance parts 23 arranged in sequence, and the first group of resonance parts 21 and the second group of resonance parts 22 are arranged between There is a cross-shaped coupling slot 41 , and a strip-shaped coupling slot 42 is provided between the second group of resonance parts 22 and the third group of resonance parts 23 .
  • the first group of resonance parts 21 includes a first resonance blind hole 211 and a second resonance blind hole 212 symmetrically arranged with the central axis of the dielectric body 10 as the axis of symmetry, and the second group of resonance parts 22 includes the central axis of the dielectric body 10 as the symmetry axis.
  • the third resonant blind hole 221 and the fourth resonant blind hole 222 are axially symmetrical, and the third group of resonance parts 23 includes the fifth resonant blind hole 231 and the sixth resonant blind hole 231 and the sixth resonant blind hole symmetrically arranged with the central axis of the dielectric body 10 as the axis of symmetry 232.
  • Six resonant cavities are separated by the cross-shaped coupling slot 41 and the strip-shaped coupling slot 42 , and the two resonant blind holes in the three groups of resonance parts correspond to the six resonant cavities one-to-one, namely the first blind resonant hole 211 and the second resonator
  • the blind holes 212 , the third blind resonance holes 221 , the fourth blind resonance holes 222 , the fifth blind resonance holes 231 , and the sixth blind resonance holes 232 correspond to the six resonance cavities one-to-one.
  • the first blind coupling hole 31 is arranged between the two blind resonance holes of the third group of resonance parts 23 , that is, the blind blind hole 31 is arranged between the fifth blind resonance hole 231 and the sixth blind resonance hole 232 . ; and the central axis of symmetry of the first blind coupling hole 31 coincides with the central axis of symmetry of the strip coupling slot 42 .
  • the third group of resonators 23 is located on the side of the strip coupling slot 42 away from the cross-shaped coupling slot 41 , that is, the first blind coupling hole 31 is disposed on the side of the strip-shaped coupling slot 42 away from the cross-shaped coupling slot 41 .
  • a third blind coupling hole 33 is disposed between the two blind resonance holes of any other group of resonance parts, and the third blind coupling hole 33 and the cross-shaped coupling slot 41 form an inductive coupling structure.
  • the third blind coupling hole 33 is arranged between the two blind resonance holes of the first group of resonance parts 21 , and the third blind blind hole 33 is arranged between the first blind resonance hole 211 and the second blind resonance hole 212 ; and the central axis of symmetry of the third blind coupling hole 33 coincides with the central axis of symmetry of the cross-shaped coupling slot 41 .
  • the position of the third blind coupling hole 33 is further restricted to improve out-of-band suppression, thereby reducing the impact on other communication frequency bands.
  • the second surface 12 is provided with an input blind hole 51 and an output blind hole 52 , the input blind hole 51 is used for installing the input probe, and the output blind hole 52 is used for installing the output probe. And the input blind hole 51 and the output blind hole 52 are symmetrically arranged on both sides of the cross-shaped coupling slot 41 .
  • FIG. 5 is a performance simulation comparison diagram of the dielectric waveguide filter
  • FIG. 6 is a waveform diagram of the far-end suppression of the dielectric waveguide filter. The use of this technical solution can effectively improve the out-of-band suppression.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及滤波器的技术领域,提供了一种介质波导滤波器,包括:介质本体,所述介质本体包括第一表面和第二表面,所述第一表面上设置有若干组谐振部,每组所述谐振部包括两个对称设置的谐振盲孔,其中一组所述谐振部的两个所述谐振盲孔之间设置有第一耦合盲孔;所述第二表面上设置有第二耦合盲孔,所述第一耦合盲孔的中心轴线与所述第二耦合的中心轴线重合,且所述第一耦合盲孔与所述第二耦合盲孔形成容性耦合结构。运用本技术方案,上下对称的第一耦合盲孔和第二耦合盲孔产生一对零点,可以改善带外抑制性能;同时减小了第一耦合盲孔深度,使其基本与谐振盲孔的孔深一致,从而可以减少压冲的数量,降低滤波器模具的复杂度。

Description

一种介质波导滤波器 技术领域
本发明涉及滤波器的技术领域,尤其涉及一种介质波导滤波器。
背景技术
5G时代,受限于Massive MIMO(大规模天线技术)对大规模天线集成化的要求,滤波器需要更加小型化、集成化和轻量化。在限定尺寸的情况下,由于自身材料损耗的原因,传统的金属腔体滤波器和介质谐振腔体滤波器无法取得很高的Q值(Q值代表的是损耗/输入功率),导致各项性能指标都受到了限制。而陶瓷介质波导滤波器由于电磁波谐振发生在介质材料内部,没有金属腔体,且其本身材料介电常数一般在20~50,因此体积会更小。同时陶瓷介质波导滤波器具有Q值高、选频特性好、工作频率稳定性好、插入损耗小等优点。
虽然介质波导滤波器具有上述的优点,但是目前大部分介质波导滤波器都是一体干压成型,因此对于介质波导滤波器的实际结构要求较高,一些在金属腔体中可以轻易实现的结构,在介质波导滤波器中却难以实现。
因此,有必要提供一种介质波导滤波器。
技术问题
本发明的目的在于提供一种介质波导滤波器,以有效改善滤波器带外抑制性能,同时降低滤波器模具的复杂度。
技术解决方案
本发明的技术方案如下:
一种介质波导滤波器,包括:介质本体,所述介质本体包括第一表面和与所述第一表面相对设置的第二表面,所述第一表面上设置有若干组谐振部,每组所述谐振部包括两个对称设置的谐振盲孔,其中一组所述谐振部的两个所述谐振盲孔之间设置有第一耦合盲孔;所述第二表面上设置有第二耦合盲孔,所述第一耦合盲孔的中心轴线与所述第二耦合的中心轴线重合,且所述第一耦合盲孔与所述第二耦合盲孔形成容性耦合结构。
进一步地,所述第一耦合盲孔与所述第二耦合盲孔的深度之和大于所述介质本体的二分之一厚度。
进一步地,所述谐振部包括依次排列的第一组谐振部、第二组谐振部以及第三组谐振部,所述第一组谐振部与所述第二组谐振部之间设置有十字形耦合槽,所述第二组谐振部与所述第三组谐振部之间设置有条形耦合槽。
进一步地,所述第一耦合盲孔设置在所述第三组谐振部的两个所述谐振盲孔之间,所述第一耦合盲孔的中心对称轴与所述条形耦合槽的中心对称轴重合。
进一步地,任意另一组所述谐振部的两个所述谐振盲孔之间设置有第三耦合盲孔,所述第三耦合盲孔与所述十字形耦合槽形成感性耦合结构。
进一步地,所述第三耦合盲孔设置在所述第一组谐振部的两个所述谐振盲孔之间,所述第三耦合盲孔的中心对称轴与所述十字形耦合槽的中心对称轴重合。
进一步地,所述第二表面上设置有输入盲孔和输出盲孔。
进一步地,所述输入盲孔和所述输出盲孔对称设置在所述十字形耦合槽的两侧。
有益效果
本发明的有益效果在于:在其中一组谐振部的两个谐振盲孔之间设置第一耦合盲孔,并在第二表面上设置第二耦合盲孔,第二耦合盲孔的中心轴线与第一耦合盲孔的中心轴线重合,并使第一耦合盲孔与第二耦合盲孔形成容性耦合结构。运用本技术方案,一方面,上下对称的第一耦合盲孔和第二耦合盲孔产生一对零点,可以改善带外抑制性能;另一方面,减小了第一耦合盲孔深度,使其基本与谐振盲孔的孔深一致,从而可以减少压冲的数量,降低滤波器模具的复杂度。
附图说明
图1为本发明一种介质波导滤波器第一视角的结构示意图;
图2为图1的俯视图;
图3为本发明一种介质波导滤波器第二视角的结构示意图;
图4为图3的俯视图;
图5为本发明一种介质波导滤波器的性能仿真对比图;
图6为本发明一种介质波导滤波器的远端抑制波形图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面结合附图和实施方式对本实用新型作进一步说明。参见图1-图6,一种介质波导滤波器,包括:介质本体10,介质本体10包括第一表面11和与第一表面11相对设置的第二表面12,第一表面11上设置有若干组谐振部,每组谐振部包括两个对称设置的谐振盲孔,其中一组谐振部的两个谐振盲孔之间设置有第一耦合盲孔31;第二表面12上设置有第二耦合盲孔32,第一耦合盲孔31的中心轴线与第二耦合盲孔32的中心轴线重合,且第一耦合盲孔31与第二耦合盲孔32形成容性耦合结构。
介质本体10为陶瓷介质本体10,陶瓷介质本体10一体压制成型。陶瓷介质本体10为高介电常数材料而成,用于传递电磁波。陶瓷介质材料是一种硬介介质材料,具有很高的介电常数和很低的介质损耗,同时能够有效提供结构支撑,通过这种介质材料设计出的介质波导滤波器等射频器件具有小型化、高稳定性、低损耗重量轻和成本低等多种优点,能够很好满足未来滤波器小型化和高性能的要求。其中,在本实施例中,介质本体10设计为矩形实心结构,介质本体10的第一表面11和第二表面12涂覆有导电材料,导电材料为金属镀层,即介质本体10的表面通过金属化处理形成金属屏蔽层。
本技术方案中,在其中一组谐振部的两个谐振盲孔之间设置第一耦合盲孔31,并在第二表面12上设置第二耦合盲孔32,第二耦合盲孔32的中心轴线与第一耦合盲孔31的中心轴线重合,并使第一耦合盲孔31与第二耦合盲孔32形成容性耦合结构。运用本技术方案,一方面,上下对称的第一耦合盲孔31和第二耦合盲孔32产生一对零点,可以改善带外抑制性能,从而降低对其他通信频段的影响;另一方面,减小了第一耦合盲孔31深度,使其基本与谐振盲孔的孔深一致,从而可以减少压冲的数量,降低滤波器模具的复杂度。
优选地,第一耦合盲孔31与第二耦合盲孔32的深度之和大于介质本体10的二分之一厚度。对第一耦合盲孔31和第二耦合盲孔32的深度之和进行设置,使第一耦合盲孔31和第二耦合盲孔32形成一种特殊的容性耦合结构;通过改变第一耦合盲孔31和第二耦合盲孔32的深度,可改变该容性耦合结构的耦合量。
参见图1及图2,谐振部包括依次排列的第一组谐振部21、第二组谐振部22以及第三组谐振部23,第一组谐振部21与第二组谐振部22之间设置有十字形耦合槽41,第二组谐振部22与第三组谐振部23之间设置有条形耦合槽42。第一组谐振部21包括以介质本体10的中心轴线为对称轴对称设置的第一谐振盲孔211和第二谐振盲孔212,第二组谐振部22包括以介质本体10的中心轴线为对称轴对称设置的第三谐振盲孔221和第四谐振盲孔222,第三组谐振部23包括以介质本体10的中心轴线为对称轴对称设置的第五谐振盲孔231和第六谐振盲孔232。通过十字形耦合槽41和条形耦合槽42分隔出六个谐振腔体,三组谐振部中两个谐振盲孔一一对应六个谐振腔体,即第一谐振盲孔211、第二谐振盲孔212、第三谐振盲孔221、第四谐振盲孔222、第五谐振盲孔231和第六谐振盲孔232与六个谐振腔体一一对应。
优选地,第一耦合盲孔31设置在第三组谐振部23的两个谐振盲孔之间,即第一耦合盲孔31设置在第五谐振盲孔231与第六谐振盲孔232之间;且第一耦合盲孔31的中心对称轴与条形耦合槽42的中心对称轴重合。第三组谐振部23位于条形耦合槽42远离十字形耦合槽41的一侧,即将第一耦合盲孔31设置条形耦合槽42远离十字形耦合槽41的一侧。
进一步地,任意另一组谐振部的两个谐振盲孔之间设置有第三耦合盲孔33,第三耦合盲孔33与十字形耦合槽41形成感性耦合结构。通过在两个谐振盲孔之间设置第三耦合盲孔33,使之与十字形耦合槽41形成感性耦合结构,进一步提高介质波导滤波器的带外抑制性能。
优选地,第三耦合盲孔33设置在第一组谐振部21的两个谐振盲孔之间,及第三耦合盲孔33设置在第一谐振盲孔211与第二谐振盲孔212之间;且第三耦合盲孔33的中心对称轴与十字形耦合槽41的中心对称轴重合。对第三耦合盲孔33的位置做进一步限制,提高带外抑制,从而降低对其他通信频段的影响。
参见图4,第二表面12上设置有输入盲孔51和输出盲孔52,输入盲孔51用于安装输入探头,输出盲孔52用于安装输出探头。且输入盲孔51和输出盲孔52对称设置在十字形耦合槽41的两侧。
参见图5及图6,图5为介质波导滤波器的性能仿真对比图,图6为介质波导滤波器的远端抑制波形图,采用本技术方案可以有效提高带外抑制。
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种介质波导滤波器,包括:介质本体,所述介质本体包括第一表面和与所述第一表面相对设置的第二表面,其特征在于,所述第一表面上设置有若干组谐振部,每组所述谐振部包括两个对称设置的谐振盲孔,其中一组所述谐振部的两个所述谐振盲孔之间设置有第一耦合盲孔;所述第二表面上设置有第二耦合盲孔,所述第一耦合盲孔的中心轴线与所述第二耦合盲孔的中心轴线重合,且所述第一耦合盲孔与所述第二耦合盲孔形成容性耦合结构。
  2. 根据权利要求1所述的介质波导滤波器,其特征在于,所述第一耦合盲孔与所述第二耦合盲孔的深度之和大于所述介质本体的二分之一厚度。
  3. 根据权利要求2所述的介质波导滤波器,其特征在于,所述谐振部包括依次排列的第一组谐振部、第二组谐振部以及第三组谐振部,所述第一组谐振部与所述第二组谐振部之间设置有十字形耦合槽,所述第二组谐振部与所述第三组谐振部之间设置有条形耦合槽。
  4. 根据权利要求3所述的介质波导滤波器,其特征在于,所述第一耦合盲孔设置在所述第三组谐振部的两个所述谐振盲孔之间,所述第一耦合盲孔的中心对称轴与所述条形耦合槽的中心对称轴重合。
  5. 根据权利要求4所述的介质波导滤波器,其特征在于,任意另一组所述谐振部的两个所述谐振盲孔之间设置有第三耦合盲孔,所述第三耦合盲孔与所述十字形耦合槽形成感性耦合结构。
  6. 根据权利要求5所述的介质波导滤波器,其特征在于,所述第三耦合盲孔设置在所述第一组谐振部的两个所述谐振盲孔之间,所述第三耦合盲孔的中心对称轴与所述十字形耦合槽的中心对称轴重合。
  7. 根据权利要求3-6中任一项所述的介质波导滤波器,其特征在于,所述第二表面上设置有输入盲孔和输出盲孔。
  8. 根据权利要求7所述的介质波导滤波器,其特征在于,所述输入盲孔和所述输出盲孔对称设置在所述十字形耦合槽的两侧。
PCT/CN2020/102984 2020-06-30 2020-07-20 一种介质波导滤波器 WO2022000592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010615982.0A CN111613858A (zh) 2020-06-30 2020-06-30 一种介质波导滤波器
CN202010615982.0 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000592A1 true WO2022000592A1 (zh) 2022-01-06

Family

ID=72197252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102984 WO2022000592A1 (zh) 2020-06-30 2020-07-20 一种介质波导滤波器

Country Status (2)

Country Link
CN (1) CN111613858A (zh)
WO (1) WO2022000592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909457B (zh) * 2021-01-28 2021-10-29 南通大学 一种基于双模介质波导谐振器的带通滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231064A1 (en) * 2006-08-04 2009-09-17 Dielectric Laboratories, Inc. Wideband dielectric waveguide filter
CN208622916U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种陶瓷介质波导滤波器
CN209487675U (zh) * 2018-11-14 2019-10-11 苏州波发特电子科技有限公司 一种用于介质滤波器的电容耦合结构
CN110797613A (zh) * 2019-11-15 2020-02-14 中国电子科技集团公司第二十六研究所 一种十阶六陷波的介质波导滤波器
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器
CN111342181A (zh) * 2019-12-23 2020-06-26 瑞声科技(新加坡)有限公司 介质波导滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3007267B1 (en) * 2013-05-31 2017-09-06 Huawei Technologies Co., Ltd. Dielectric filter, transceiver and base station
CN210468051U (zh) * 2019-09-29 2020-05-05 江西一创新材料有限公司 一种用于调节传输零点对称性的交叉耦合结构
CN210866431U (zh) * 2019-12-31 2020-06-26 浙江嘉康电子股份有限公司 具有通孔电容的介质波导滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231064A1 (en) * 2006-08-04 2009-09-17 Dielectric Laboratories, Inc. Wideband dielectric waveguide filter
CN208622916U (zh) * 2018-09-25 2019-03-19 苏州艾福电子通讯有限公司 一种陶瓷介质波导滤波器
CN209487675U (zh) * 2018-11-14 2019-10-11 苏州波发特电子科技有限公司 一种用于介质滤波器的电容耦合结构
CN110797613A (zh) * 2019-11-15 2020-02-14 中国电子科技集团公司第二十六研究所 一种十阶六陷波的介质波导滤波器
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器
CN111342181A (zh) * 2019-12-23 2020-06-26 瑞声科技(新加坡)有限公司 介质波导滤波器

Also Published As

Publication number Publication date
CN111613858A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN110265753B (zh) 一种介质波导滤波器
WO2020211287A1 (zh) 介质滤波器及5g通信设备
CN206532857U (zh) 一种陶瓷波导滤波器
CN103326093A (zh) 新型交叉耦合基片集成波导带通滤波器
Zhang et al. Low-cost dielectric-resonator filters with improved spurious performance
WO2019104901A1 (zh) 一种介质波导滤波器负零点耦合结构
CN206225509U (zh) 一种新型三模介质带通滤波器
WO2022000592A1 (zh) 一种介质波导滤波器
CN209592274U (zh) 介质滤波器及5g通信设备
CN103647123B (zh) 半模基片集成波导横向对称滤波器
CN106785253A (zh) 一种新型三模介质带通滤波器
WO2022000590A1 (zh) 容性、感性交叉耦合结构及介质波导滤波器
CN209282363U (zh) 一种滤波器
CN112928411A (zh) 双模介质滤波器及其零点调节方法
CN1964131A (zh) 直接耦合三角形基片集成波导腔体滤波器
CN212230588U (zh) 一种介质波导滤波器
CN207149673U (zh) 一种基于tm010介质谐振腔的立方体4g基站滤波器
CN114156618B (zh) 一种单腔三模陶瓷波导谐振器及滤波器
Zhu et al. Double-layer SIW filters with higher-order mode suppression
CN109546275A (zh) 一种高性能异构腔体太赫兹双工器
CN109616726A (zh) 一种滤波器及其制作方法
CN105428767B (zh) 一种x频段超大功率吸收式谐波滤波器
CN114335968A (zh) 一种双模介质谐振器及滤波器
CN108493539B (zh) 三角形基片集成波导谐振腔双腔双模带通滤波器
CN201000914Y (zh) 直接耦合三角形基片集成波导腔体滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943608

Country of ref document: EP

Kind code of ref document: A1