WO2022000575A1 - 一种用于广角飞行时间光学测距的红外发射模块及其模组 - Google Patents

一种用于广角飞行时间光学测距的红外发射模块及其模组 Download PDF

Info

Publication number
WO2022000575A1
WO2022000575A1 PCT/CN2020/102181 CN2020102181W WO2022000575A1 WO 2022000575 A1 WO2022000575 A1 WO 2022000575A1 CN 2020102181 W CN2020102181 W CN 2020102181W WO 2022000575 A1 WO2022000575 A1 WO 2022000575A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
angle
wide
concave
concave surface
Prior art date
Application number
PCT/CN2020/102181
Other languages
English (en)
French (fr)
Inventor
郎欢标
Original Assignee
东莞市美光达光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市美光达光学科技有限公司 filed Critical 东莞市美光达光学科技有限公司
Publication of WO2022000575A1 publication Critical patent/WO2022000575A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the invention relates to the technical field of time-of-flight TOF sensing, in particular to an infrared emission module and a module thereof for wide-angle time-of-flight optical ranging.
  • Time of flight sensing technology (English name: Time of Fly, abbreviated as: TOF,) is an important image sensing technology at present. It continuously sends light pulses to the target, and then uses the sensor to receive the light returned from the object. The round-trip time of the transmitted and received light pulses is used to obtain the target distance.
  • TOF sensing technology has driven the adoption of 3D cameras in next-generation mobile devices and will drive the rapid growth of the 3D image sensing application market in the coming years.
  • Time-of-flight sensing technology uses an infrared light source to directly measure the depth and amplitude information in each pixel, emit modulated infrared light to the entire scene, and capture the reflected light of the object through the TOF imager. By calculating the measured difference between the emitted light pulse and the received light pulse, or the phase difference and amplitude value of the optical signal, highly reliable distance information and a 3D image of the complete scene can be obtained.
  • Time-of-flight sensing technology has a wide range of applications in many fields, such as proximity sensors for smartphones, face recognition, gesture recognition, vehicle approach warning sensors, Lidar Lidar, ground proximity radar for drones, and indoor drones. Ceiling proximity radar, AI depth sensor for robots, wall cleaning and obstacle avoidance sensors for robot vacuum cleaners, smart shelves, etc.
  • TOF sensors are basically single light source, and the light source is an infrared laser diode with a wavelength of 940nm or 850nm.
  • the disadvantage is that the power is relatively low, and the detection angle is usually relatively small, generally twenty or thirty degrees.
  • the illumination light source of the TOF sensor has gradually evolved into a VCSEL array light source, the detection distance is further increased, and the detection angle is further expanded.
  • the TOF technology of the patent number US20150229912A1 published by Microsoft Corporation of the United States in 2015.
  • the emitting component in this patent uses a diffuser (diffuser 421) for uniform illumination and beam expansion, which diffuses the infrared laser with a small angle emitted by the VCSEL vertical cavity surface emitting laser array to form a relatively uniform and relatively high angle. A large emitted light strikes the object to be measured. However, since the emitted light of the infrared light after passing through the diffuser is disordered, the loss is relatively large, and the transmittance is generally relatively low, generally only reaching 60%-70%, resulting in a relatively low radiance to the measured object.
  • the receiver assembly of the patent detects the 3D depth information of the measured object through a convex lens 424, a band pass filter BPF, and a depth image sensor. Since the field of view of a single convex lens is generally relatively small, a relatively clear 3D image can only be formed within forty degrees. Therefore, the sensor module of this type described in patent US20150229912A1 has the problems of small field of view and low optical efficiency.
  • the existing and future generation of smartphones generally use three or more cameras, one of which is the TOF 3D camera, which is used in conjunction with the other two visible light cameras. Since a development trend of smartphone cameras is wide-angle and fish-eye lenses, the field of view of the camera exceeds 90°, and some fish-eye cameras even have a field of view of more than 140°. For this development trend of smartphones, existing The TOF 3D camera with a smaller field of view cannot meet the demand because it does not match the shooting range of other wide-angle visible light cameras. It is imminent to develop a TOF 3D camera with a larger field of view.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide an infrared emission module for wide-angle time-of-flight optical ranging, which has a simple structure, realizes uniform light distribution at a large angle, and expands the beam angle to 60° to Between 150°, the optical efficiency is greatly improved.
  • the present invention also provides an infrared emitting module for wide-angle time-of-flight optical ranging, and a 3D image with a large field of view can be obtained through the wide-angle receiver assembly.
  • the present invention provides an infrared emission module for wide-angle time-of-flight optical ranging, including a base, the base is provided with a substrate, and a vertical cavity surface emitting laser VCSEL chip mounted on the substrate is provided.
  • a wide-angle beam expander lens system installed inside the base and expanding the beam angle emitted by the vertical cavity surface emitting laser VCSEL chip
  • the wide-angle beam expander lens system is composed of at least one mirror
  • the wide-angle beam expander lens system At least one mirror is a concave lens with a concave center, and one of the curved surfaces of the concave lens is concave in the center and gradually extends to the outside in an arc-shaped slope, and is located on the other side of the corresponding surface of the light-emitting surface of the vertical cavity surface emitting laser VCSEL chip, so
  • the beam expansion full angle of the wide-angle beam expander lens system is between 60° and 150°.
  • the maximum light expansion angle at the edge of the concave lens is more than 1.25 times the angle of the light beam incident on the lens.
  • the vertical cavity surface emitting laser VCSEL chip is a multi-chip VCSEL array laser emitting tube or a single-chip laser emitting tube, and the wavelength of light emitted by the vertical cavity surface emitting laser VCSEL chip is between 700nm and 5000nm. interval or visible light range.
  • the bottom surface conductive electrode of the vertical cavity surface emitting laser VCSEL chip is connected to the conductive electrode on the substrate through conductive glue, and the surface conductive electrode of the vertical cavity surface emitting laser VCSEL chip is connected to the substrate through conductive wires.
  • the other conductive electrode of the VCSEL is welded and turned on, and the VCSEL chip of the vertical cavity surface emitting laser is powered through the two conductive electrodes on the substrate when it works and lights up.
  • the lens of the wide-angle beam expander lens system is an optically transparent resin material component, an optically transparent silicone material component, a glass material component or a photosensitive shadowless glue material component;
  • the optical refractive index of the lens material of the wide-angle beam expander lens system is between 1.30-1.75 in the 940 nm wavelength band.
  • the base is a polyphthalamide PPA material member or a polyimide resin PI material member
  • one of the lenses and the base of the wide-angle beam expander lens system is a double-material integral molding or wide-angle beam expander
  • the lens of the lens system and the base are fixedly connected by adhesive glue.
  • one of the lenses of the wide-angle beam expander lens system and the base are an integral structure of the same material
  • the lens material is transparent liquid silica gel or a high temperature resistant transparent resin
  • the glass transition temperature of the high temperature resistant transparent resin is between At 200-300°C
  • the optical refractive index is between 1.30-1.75 in the 940nm band.
  • the surface of the lens of the wide-angle beam expander lens system is coated with an optical anti-reflection film or a band-pass filter optical film that transmits near-infrared wavelengths, or the lens material is doped with a dyeing material that transmits infrared wavelengths.
  • the vertical cavity surface emitting laser VCSEL chip is composed of a plurality of point-shaped surface emitting vertical cavity lasers arranged in a staggered arrangement, a hexagonal arrangement, a quadrilateral arrangement or a random scattered arrangement.
  • the full angle of the emission angle of the vertical cavity surface emitting laser VCSEL chip is between 15° and 90°.
  • the wide-angle beam expander lens system is a first wide-angle beam expander lens system composed of two concave lenses
  • the first wide-angle beam expander lens system includes a first lens
  • a first lens is installed above the first lens.
  • the first lens has the first concave surface of the first lens and the second concave surface of the first lens
  • the second lens has the first concave surface of the second lens and the second concave surface of the second lens
  • the second lens has the second concave surface
  • the concave surface is a curved surface that is concave in the middle and gradually extends in an arc-shaped slope to the outside.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded for the first time through the first lens, and the maximum beam angle full angle after the first expansion is 2 ⁇ max, and the 30° ⁇ 2 ⁇ max ⁇ 75 °, the second beam expansion is performed through the second lens, and the full beam angle of the output beam after the second beam expansion is 2 ⁇ max, and the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the first concave surface of the first lens is a spherical surface
  • the vertical cavity surface emitting laser VCSEL chip is at any emission point
  • the angle between the light CC II and the optical axis OZ is ⁇
  • the light CC II passes through the first lens first After the concave surface, the angle between the refracted ray C II C III and the optical axis OZ remains unchanged, which is ⁇ .
  • the light distribution angle of the emergent ray C III C IV is ⁇
  • the light distribution angle of the outgoing light ray E III E IV is the maximum light distribution angle ⁇ max of the first lens
  • the maximum light distribution angle of the first lens. ⁇ max is 15°
  • the second concave surface of the first lens meets the light distribution conditions:
  • the angle between the outgoing light ray and the optical axis OZ is ⁇ max , and other arbitrary light rays C IV C V pass through the second concave surface of the first concave lens.
  • the angle between the outgoing light and OZ is ⁇ , and the second concave surface of the second lens satisfies the light distribution conditions:
  • the wide-angle beam expander lens system is a second wide-angle beam expander lens system composed of two concave lenses and a Fresnel lens on one side.
  • the second wide-angle beam expander lens system is connected to the vertical cavity surface emitting laser.
  • a second silica gel is installed between the VCSEL chips, the second wide-angle beam expander lens system includes a third lens, a fourth lens installed above the third lens, and the third lens has a first concave surface of the third lens and a The second concave surface of the third lens, the fourth lens has the first concave surface of the fourth lens and the second concave surface of the fourth lens, the second concave surface of the fourth lens is segmented and the slope of each small segment is tiled to the same On the plane, a serrated Fresnel surface is formed, and the second concave surface of the third lens is a curved surface that is concave in the middle and gradually extends outward in an arc-shaped slope.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded for the first time through the third lens, and the maximum beam angle full angle after the first expansion is 2 ⁇ max, and the 30° ⁇ 2 ⁇ max ⁇ 75 °, the second beam expansion is performed through the fourth lens, and the full beam angle of the output beam after the second beam expansion is 2 ⁇ max, and the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the wide-angle beam expander lens system is a third wide-angle beam expander lens system composed of a concave lens and a free-form curved concave lens.
  • the third wide-angle beam expander lens system includes a fifth lens, which is installed on the fifth lens.
  • the sixth lens above the fifth lens has the first concave surface of the fifth lens and the second concave surface of the fifth lens, the sixth lens has the first concave surface of the sixth lens and the second concave surface of the sixth lens, and the sixth lens has the first concave surface of the sixth lens and the second concave surface of the sixth lens.
  • the second concave surface of the lens is a free-form surface light distribution lens with asymmetric distribution in the X-axis transverse direction and the Y-axis longitudinal direction.
  • the angle is relatively small and the thickness is relatively thin
  • the second concave surface of the fifth lens is a curved surface that is concave in the middle and gradually extends outward in an arc-shaped slope.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded for the first time through the fifth lens, and the maximum beam angle full angle after the first expansion is 2 ⁇ max, and the 30° ⁇ 2 ⁇ max ⁇ 75 °, through the sixth lens for the second beam expansion, the full angle of the beam output along the X-axis direction after the second beam expansion is 2 ⁇ max, the 60° ⁇ 2 ⁇ max ⁇ 150°, the full angle of the beam output along the Y-axis direction is 2 ⁇ 'max, the 60° ⁇ 2 ⁇ 'max ⁇ 150°.
  • the wide-angle beam expander lens system is a fourth wide-angle beam expander lens system composed of two concave lenses, at least one mirror surface of which is set to be partially frosted or a whole-surface frosted surface
  • the fourth wide-angle beam expander lens system includes: A seventh lens, an eighth lens mounted above the seventh lens, the seventh lens having a first concave surface of the seventh lens and a second concave surface of the seventh lens, the eighth lens having a first concave surface of the eighth lens and a second concave surface of the seventh lens
  • the second concave surface of the eight lenses, at least one of the mirror surfaces of the seventh lens and the eighth lens is set as a partially frosted surface or a whole surface frosted surface
  • the second concave surface of the eighth lens is concave in the middle and gradually extends to the outside in an arc-shaped slope. surface.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded for the first time through the seventh lens, and the maximum beam angle full angle after the first expansion is 2 ⁇ max, and the 30° ⁇ 2 ⁇ max ⁇ 75 °, the second beam expansion is performed through the eighth lens, and the full angle of the beam angle of the output beam after the second beam expansion is 2 ⁇ max, and the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the wide-angle beam expander lens system is a fifth wide-angle beam expander lens system composed of three lenses
  • the fifth wide-angle beam expander lens system includes a ninth lens, and a third Ten lenses, an eleventh lens installed above the tenth lens
  • the ninth lens is a double-sided concave lens with negative refractive power
  • the tenth lens is a meniscus lens
  • the tenth lens has a tenth lens first
  • the concave surface and the second convex surface of the tenth lens have a diopter
  • the eleventh lens is a concave lens
  • the eleventh lens has a first concave surface of the eleventh lens and a second concave surface of the eleventh lens, and has a negative diopter.
  • the second concave surface of the eleventh lens is a curved surface that is concave in the middle and gradually extends outward in an arc-shaped slope.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded by the fifth wide-angle beam expander lens system.
  • the full beam angle of the output beam is 2 ⁇ max, the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the wide-angle beam expander lens system is a sixth wide-angle beam expander lens system composed of four lenses
  • the sixth wide-angle beam expander lens system includes a twelfth lens and is installed above the twelfth lens
  • the thirteenth lens, the fourteenth lens installed above the thirteenth lens, the fifteenth lens installed above the fourteenth lens, the twelfth lens is a double concave lens, with negative refractive power, so
  • the thirteenth lens is a meniscus lens
  • the thirteenth lens has a first concave surface of the thirteenth lens and a second convex surface of the thirteenth lens, and has a diopter
  • the fourteenth lens is a meniscus lens
  • the fourteenth lens The lens has a first concave surface of a fourteenth lens and a second convex surface of the fourteenth lens, and has a diopter
  • the fifteenth lens is a concave lens
  • the fifteenth lens has a first concave surface of the fifteenth lens and a first concave
  • the second concave surface of the fifteenth lens is a curved surface that is concave in the middle and gradually extends in an arc-shaped slope to the outside, and the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded by the sixth wide-angle beam
  • the lens system performs beam expansion, and the beam angle full angle of the output beam after beam expansion is 2 ⁇ max, and the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the wide-angle beam expander lens system is a seventh wide-angle beam expander lens system composed of one lens
  • the seventh wide-angle beam expander lens system includes a sixteenth lens
  • the sixteenth lens is double-sided A concave lens with negative refractive power
  • the sixteenth lens has a first concave surface of the sixteenth lens and a second concave surface of the sixteenth lens
  • the second concave surface of the sixteenth lens is concave in the middle and gradually forms an arc-shaped slope to the outside
  • the extended curved surface, the beam emitted by the vertical cavity surface emitting laser VCSEL chip is expanded by the seventh wide-angle beam expander lens system, the beam angle of the expanded output beam is 2 ⁇ max, and the 60° ⁇ 2 ⁇ max ⁇ 150° .
  • the lens surface of the wide-angle beam expander lens system is a mirror surface or a scaly surface or a microstructure textured surface with light mixing effect.
  • the invention also provides an infrared transmitting module for wide-angle time-of-flight optical ranging, including an infrared transmitting module for wide-angle time-of-flight optical ranging, and a wide-angle receiver assembly is installed on one side of the base , the wide-angle receiver assembly includes an optical imaging system, a time-of-flight imager installed under the optical imaging system to receive optical signals, and the time-of-flight imager outputs image information after processing.
  • the time-of-flight imager is mounted on the substrate or mounted on another separate substrate.
  • the optical imaging system is a first optical imaging system composed of two optical lenses, and the first optical imaging system includes a first wide-angle concave lens and a first spacer arranged in sequence from the object side to the image side. , a first aperture stop, a second spacer and a first convex lens, the first wide-angle concave lens is a low refractive index, high dispersion coefficient material, its refractive index nd ⁇ 1.58, Abbe coefficient vd>50, the first The convex lens is a material with high refractive index and low dispersion coefficient, and its refractive index nd>1.6, Abbe coefficient vd ⁇ 30, and the receiving angle of the first optical imaging system is 2 ⁇ max.
  • the optical imaging system is a second optical imaging system composed of three optical lenses, and the second optical imaging system includes a second wide-angle concave lens and a third spacer arranged in sequence from the object side to the image side.
  • the second optical imaging system includes a second wide-angle concave lens and a third spacer arranged in sequence from the object side to the image side.
  • the second aperture stop, a second convex lens and a semi-meniscus lens is a high refractive index, low dispersion coefficient material, its refractive index nd>1.6, Abbe coefficient vd ⁇ 30
  • the second The convex lens is a material with low refractive index and high dispersion coefficient, its refractive index nd ⁇ 1.58, and the Abbe coefficient vd>50
  • the semi-meniscus lens is a high refractive index, low dispersion coefficient material, its refractive index nd>1.6, Abbe coefficient
  • the coefficient vd ⁇ 30, the receiving angle of the second optical imaging system is 2 ⁇ max.
  • one of the surfaces of one of the lenses of the first optical imaging system and the second optical imaging system is coated with an infrared band-pass filter film that passes infrared and blocks visible light, or uses a single flat lens as infrared pass filter. , visible light blocking infrared bandpass filter, or coating the module protective glass with infrared pass, visible light blocking infrared bandpass filter film.
  • the present invention is provided with a base, the base is provided with a substrate, and the vertical cavity surface emitting laser VCSEL chip mounted on the substrate is installed inside the base to measure the beam angle emitted by the vertical cavity surface emitting laser VCSEL chip.
  • An enlarged wide-angle beam expander lens system the wide-angle beam expander lens system is composed of at least one lens, at least one lens in the wide-angle beam expander lens system is a concave lens with a concave middle, and one of the curved contours of the concave lens is a middle concave downward and gradually to the outside to make an arc-shaped slope extending and be located on the other side of the corresponding surface of the light-emitting surface of the vertical cavity surface emitting laser VCSEL chip, the beam expansion full angle of the wide-angle beam expander lens system is between 60° to 150°, the present invention Provides an infrared emitting module for wide-angle time-of-flight optical ranging, which has a simple structure, realizes large-angle uniform light
  • FIG. 2 is a cross-sectional view of an infrared transmitter module for wide-angle time-of-flight optical ranging according to an embodiment provided by the present invention
  • FIG. 3 is a schematic diagram of a transmission and reception structure of a wide-angle time-of-flight sensor module according to an embodiment of the present invention
  • FIG. 4 is an arrangement diagram of a vertical cavity surface emitting laser VCSEL chip of an infrared emission module for wide-angle time-of-flight optical ranging according to an embodiment provided by the present invention
  • FIG. 5 is a schematic diagram of an optical path of a first wide-angle beam expander lens system of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • FIG. 6 is a diagram showing the relationship between the light distribution angle and the emission angle of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment provided by the present invention
  • FIG. 7 is a simulation diagram of a vertical cavity surface emitting laser VCSEL chip at a distance of 0.6 meters of an infrared emission module for wide-angle time-of-flight optical ranging according to an embodiment provided by the present invention
  • FIG. 8 is a computer simulation diagram of a first wide-angle beam expander lens system of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • FIG. 9 is a radiance distribution diagram at a distance of 0.6 meters of a first wide-angle beam expander lens system of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • FIG. 10 is a far-field angle distribution diagram of light intensity of a first wide-angle beam expander lens system of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • FIG. 11 is an optical path diagram of a first optical imaging system of a wide-angle receiver assembly of an infrared emission module used for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • MTF modulation transfer function
  • FIG. 13 is a dot diagram of a first optical imaging system of a wide-angle receiver assembly of an infrared transmitter module for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • FIG. 14 is a field curvature and distortion of a first optical imaging system of a wide-angle receiver assembly of an infrared emission module for wide-angle time-of-flight optical ranging according to an embodiment of the present invention
  • 15 is a cross-sectional view of an infrared transmitter module for wide-angle time-of-flight optical ranging according to the second embodiment of the present invention.
  • 16 is a schematic view of the transmitting and receiving structure of an infrared transmitting module for wide-angle time-of-flight optical ranging according to the second embodiment of the present invention
  • FIG. 17 is a three view of the second concave surface of the sixth lens of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 3 of the present invention.
  • FIG. 19 is a longitudinal cross-sectional view of an infrared transmitter module for wide-angle time-of-flight optical ranging according to Embodiment 3 of the present invention.
  • Fig. 20 is a kind of lateral emission and reception structure schematic diagram of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 3 provided by the present invention
  • 21 is a schematic diagram of the longitudinal emission and reception structure of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 3 of the present invention.
  • FIG. 22 is a cross-sectional view of an infrared transmitter module for wide-angle time-of-flight optical ranging according to Embodiment 4 of the present invention.
  • FIG. 23 is a schematic view of the transmitting and receiving structure of an infrared transmitter module for wide-angle time-of-flight optical ranging according to Embodiment 4 of the present invention.
  • FIG. 24 is an optical path diagram of a second optical imaging system of a wide-angle receiver assembly of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 4 of the present invention
  • MTF modulation transfer function
  • 26 is a dot diagram of a second optical imaging system of a wide-angle receiver assembly of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 4 of the present invention
  • 27 is the field curvature and distortion of the second optical imaging system of the wide-angle receiver assembly of the infrared emission module for wide-angle time-of-flight optical ranging according to the fourth embodiment of the present invention
  • FIG. 29 is a cross-sectional view of an infrared transmitter module for wide-angle time-of-flight optical ranging according to Embodiment 6 of the present invention.
  • FIG. 30 is a schematic diagram of the optical path of a seventh wide-angle beam expander lens system of an infrared emission module for wide-angle time-of-flight optical ranging according to Embodiment 6 of the present invention
  • 31 is a diagram showing the relationship between the light distribution angle and the emission angle of the seventh wide-angle beam expander lens system of the infrared emission module for wide-angle time-of-flight optical ranging according to the sixth embodiment of the present invention.
  • the first embodiment provides an infrared emitting module for wide-angle time-of-flight optical ranging, including a base 10 , the base 10 is provided with a substrate 1 , and a vertical The cavity surface emitting laser VCSEL chip 2 is installed inside the base 10 and a wide-angle beam expander lens system 6 for expanding the beam angle emitted by the vertical cavity surface emitting laser VCSEL chip 2, the wide-angle beam expander lens system 6 consists of at least one The lens is formed, at least one lens in the wide-angle beam expander lens system 6 is a concave lens with a concave center, and one of the curved contours of the concave lens is concave in the center and gradually extends to the outside in an arc-shaped slope and is located in the vertical cavity surface emitting laser.
  • the beam expansion full angle of the wide-angle beam expander lens system 6 is between 60° and 150°, and the maximum light expansion angle at the edge of the concave lens is greater than the incident angle to the lens. More than 1.25 times the beam angle.
  • the bottom surface conductive electrode of the vertical cavity surface emitting laser VCSEL chip 2 is connected to the conductive electrode on the substrate 1 through conductive glue, and the surface conductive electrode of the vertical cavity surface emitting laser VCSEL chip 2 is conductive
  • the lead 9 is welded and connected to another conductive electrode on the substrate 1 , and the vertical cavity surface emitting laser VCSEL chip 2 is powered through the two conductive electrodes on the substrate 1 when it works and lights up.
  • the lens of the wide-angle beam expander lens system 6 is an optically transparent resin material component, an optically transparent silicone material component, a glass material component or a photosensitive shadowless glue material component;
  • the optical refractive index of the lens material of the wide-angle beam expander lens system 6 is between 1.30-1.75 in the 940nm wavelength band.
  • the base 10 is a polyphthalamide PPA material member or a polyimide resin PI material member, and one lens of the wide-angle beam expander lens system 6 and the base 10 are integrally formed with two materials Alternatively, the lens of the wide-angle beam expander lens system 6 and the base 10 are fixedly connected by adhesive.
  • one of the lenses in the wide-angle beam expander lens system 6 is an integral structure with the same material as the base 10 , the lens material is transparent liquid silica gel or high temperature resistant transparent resin, the high temperature resistant transparent resin glass The melting temperature is between 200-300°C, and the optical refractive index is between 1.30-1.75 in the 940nm band.
  • the lens surface of the wide-angle beam expander lens system 6 is coated with an optical antireflection film or a bandpass filter optical film that transmits near-infrared wavelengths, or the lens material is doped with dyeing materials that transmit infrared wavelengths.
  • the lens surface of the wide-angle beam expander lens system 6 is a mirror surface or a scaly surface or a microstructure textured surface with light mixing effect.
  • the vertical cavity surface emitting laser VCSEL chip 2 is a multi-chip VCSEL array laser emitting tube or a single-chip laser emitting tube, and the wavelength of light emitted by the vertical cavity surface emitting laser VCSEL chip 2 is 700 nm -5000nm or visible light band.
  • the vertical cavity surface emitting laser VCSEL chip 2 is composed of a plurality of point-shaped surface emitting vertical cavity lasers arranged in a staggered arrangement, a hexagonal arrangement, a quadrilateral arrangement or a random random arrangement.
  • the vertical cavity surface emitting laser VCSEL array 5 has a length L: 972 ⁇ m, a width W: 680 ⁇ m, an effective emitting surface length A: 479 ⁇ m, an effective emitting surface width B: 575 ⁇ m, the lateral spacing of the emission points Px: 52 ⁇ m, the emission
  • Table 1 Parameters of Vertical Cavity Surface Emitting Laser VCSEL Array 5
  • VCSEL length L 972 ⁇ m VCSEL width: W 680 ⁇ m Effective emission surface length A: 479 ⁇ m Effective emission surface width B: 575 ⁇ m
  • the horizontal spacing Px of the launch point 52 ⁇ m Longitudinal spacing of emission points Py: 30.5 ⁇ m Diameter of launch point: ⁇ 11 ⁇ m Number of launch points: 361 Full angle launch angle: 24° ⁇ 18°
  • the wide-angle beam expander lens system 6 is a first wide-angle beam expander lens system 61 composed of two concave lenses.
  • the first wide-angle beam expander lens system 61 includes a first lens 611 installed on the A second lens 612 above a lens 611 having a first concave surface 6111 of a first lens and a second concave surface 6112 of a first lens, the second lens 612 having a first concave surface 6121 of a second lens and a second concave surface 6112
  • the second concave surface 6122 of the lens, the second concave surface 6122 of the second lens is a curved surface that is concave in the middle and gradually extends to the outside as an arc-shaped slope.
  • the second concave surface 6112 of the first lens is also concave in the middle.
  • a curved surface extending in an arc-like slope shape is gradually formed to the outside.
  • the first wide-angle beam expander lens system 61 has two above-mentioned curved surfaces.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is expanded for the first time through the first lens 611 , and the maximum beam angle after the first expansion is 2 ⁇ max.
  • the first concave surface 6111 of the first lens is a spherical surface
  • the vertical cavity surface emitting laser VCSEL chip 2 has an arbitrary emission point
  • the angle between the light CC II and the optical axis OZ is ⁇
  • the light CC II passes through the first After the first concave surface 6111 of the lens, the angle between the refracted ray C II C III and the optical axis OZ remains unchanged, which is ⁇ .
  • the outgoing ray C III C IV The light distribution angle is ⁇ , and after the edge light ray E II E III is refracted by the second concave surface 6112 of the first lens, the light distribution angle of the emergent light ray E III E IV is the maximum light distribution angle ⁇ max of the first lens 611.
  • the maximum light distribution angle ⁇ max of a lens 611 is 15°, and the second concave surface 6112 of the first lens satisfies the light distribution conditions:
  • O is the center point of the vertical cavity surface emitting laser VCSEL chip 2
  • E is an emission point located at the edge of the vertical cavity surface emitting laser VCSEL chip 2
  • its maximum emission angle is the same as the optical axis OZ.
  • the included angle is ⁇ max.
  • the maximum emission angle of the emission point (the included angle between the emitted light EE II and the optical axis OZ) ⁇ max is 9°, which is the half angle of the divergence angle in the short axis direction of the light beam.
  • the edge ray EE II is reversely extended, and intersects below the optical axis OZ at point O', which is set as the equivalent light-emitting point of the first wide-angle beam expander lens system 61 .
  • the first concave surface 6111 of the first lens is a spherical surface, and its curvature radius R takes the point O' as the center of the circle, then the light EE II passes through the After the first concave surface 6111 of a lens, the angle between the refracted ray E II E III and the optical axis OZ remains unchanged, which is ⁇ max.
  • the light distribution method of the second concave surface 6112 of the first lens is to perform light distribution according to the following tangent conditions. Assuming that C is any emission point in the effective area of the vertical cavity surface emitting laser VCSEL chip 2, the angle between the light CC II and the optical axis OZ is ⁇ , after the light CC II passes through the first concave surface 6111 of the first lens, the refracted light C II The angle between C III and the optical axis OZ remains unchanged, which is ⁇ . After the light is refracted again by the second concave surface 6112 of the first lens, the light distribution angle of the emitted light C III C IV is ⁇ .
  • the light distribution angle of the outgoing light ray E III E IV is the maximum light distribution angle ⁇ max of the first lens 611 , and the maximum light distribution angle of the first lens 611 .
  • the light angle ⁇ max was 15°.
  • the light distribution angle ⁇ of any one of the outgoing light rays satisfies the following tangent conditions:
  • the surface profile of the first lens 611 and the second concave surface 6112 of the first lens is calculated point by point by the numerical calculation method according to the above formula 2.
  • the second lens 612, the first concave surface 6121 of the second lens in a specific implementation of this embodiment, preferably, the tangent of each point position is perpendicular to the direction of the incident light at the point position, then it is refracted through the first concave surface 6121 of the second lens Afterwards, all its refracted rays advance along the original direction, that is , the propagation directions of E IV E V and E III E IV are the same, and the angle between them and the optical axis OZ is ⁇ max, and the directions of C IV C V and C III C IV are Consistently, the angle between it and the optical axis OZ is ⁇ .
  • the first concave surface 6121 of the second lens can be calculated according to the connection of the tangential directions of each incident light ray C III C IV.
  • the light distribution method of the second concave surface 6122 of the second lens is to perform light distribution according to the following tangent condition. After the edge ray E IV E V is refracted by the second concave surface 6122 of the second lens, the angle between the outgoing ray E IV E V and the optical axis OZ is ⁇ max . After the other arbitrary light rays C IV C V are refracted by the second concave surface 6122 of the second lens, the angle between the emergent light rays and OZ is ⁇ .
  • a specific implementation of this embodiment is preferably that after the light emitted by the vertical cavity surface emitting laser VCSEL chip 2 passes through the second beam expansion of the second lens 612, the light distribution angle ⁇ of any one of the outgoing light rays satisfies the following tangent conditions:
  • the surface profile of the second concave surface 6122 of the second lens is calculated point by point by the numerical calculation method according to the above formula 3.
  • the light distribution angle ⁇ of the first light distribution through the first lens 611 and the light distribution angle ⁇ of the second light distribution through the second lens 612 are the difference between the emission angle ⁇ of the vertical cavity surface emitting laser VCSEL chip 2 , respectively.
  • the relationship is shown in Table 2, and its relationship diagram is shown in Figure 6.
  • the light emitted from the vertical cavity surface emitting laser VCSEL chip 2 passes through the first light distribution of the first lens 611 , and its maximum light distribution angle is 30° ⁇ 2 ⁇ max ⁇ 75°, and then passes through the second lens 612 for the second time.
  • Light distribution, the maximum light distribution full angle of the final output beam is 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the light emitted from the vertical cavity surface emitting laser VCSEL chip 2 is outputted after the first light distribution by the first lens 611
  • the beam angle of , and the beam angle of the output beam after passing through the second lens 612 for the second light distribution are in the relationship of increasing twice.
  • the light distribution angle ⁇ of the first light distribution through the first lens 611 and the light distribution angle ⁇ of the second light distribution through the second lens 612 are respectively the difference between the emission angle ⁇ of the vertical cavity surface emitting laser VCSEL chip 2 relationship between:
  • the vertical cavity surface emitting laser VCSEL chip 2 the simulation diagram of the light spot 0.6 meters away is shown in Figure 7, which is For an elliptical spot, the beam angle in the X direction is 24°, and the beam angle in the Y direction is 18°.
  • FIG. 8 A computer simulation of an infrared transmitting module for wide-angle time-of-flight optical ranging according to the first embodiment is shown in FIG. 8 . Its radiance distribution at a distance of 0.6 meters is shown in Figure 9. Since the vertical cavity surface emitting laser VCSEL chip 2, the laser emitted by itself is an elliptical Gaussian beam, and after the beam is expanded twice by the first lens 611 and the second lens 612, its irradiation spot at a distance of 0.6 meters is close to a square spot, Coverage is close to 2 meters. The far-field angular distribution (light distribution curve) of its light intensity is shown in Figure 10. The simulation results show that the beam angular width at the half position of the peak light intensity is 154.1553505207763000° ⁇ 146.1346931901400100°, and the illumination angle can meet the requirements of the wide-angle receiver assembly 4. detection range.
  • the present invention also provides an infrared transmitting module for wide-angle time-of-flight optical ranging, including the above-mentioned infrared transmitting module for wide-angle time-of-flight optical ranging.
  • a wide-angle receiver assembly 4 is installed on one side of the seat 10, the wide-angle receiver assembly 4 includes an optical imaging system 7, and a time-of-flight imager 8 installed under the optical imaging system 7 for receiving optical signals, the time-of-flight imaging The device 8 outputs image information after processing.
  • the time-of-flight imager 8 is mounted on the substrate 1 or mounted on another separate substrate.
  • the wide-angle receiving assembly 4 includes an imaging optical system 7, and the optical imaging system 7 is a first optical imaging system 71 composed of two optical lenses.
  • the first optical imaging system 71 includes from A first wide-angle concave lens 711, a first spacer 712, a first aperture stop 713, a second spacer 714, and a first convex lens 715 are arranged in sequence from the object side to the image side.
  • the first wide-angle concave lens 711 is a low-refractive index, High dispersion coefficient material, its refractive index nd ⁇ 1.58, Abbe coefficient vd>50
  • the first convex lens 715 is a high refractive index, low dispersion coefficient material, its refractive index nd>1.6, Abbe coefficient vd ⁇ 30
  • the receiving angle of the first optical imaging system 71 is 2 ⁇ max
  • the receiving angle of the first optical imaging system (71) is 2 ⁇ max ⁇ 90°
  • the optical path diagram is shown in FIG. 11 .
  • the field of view angle is greater than 90°
  • the full field of view angle of the first optical imaging system 71 is preferably 120°.
  • the modulation transfer function (MTF) curve of the first optical imaging system 71 of the wide-angle receiving assembly 4 described in the first embodiment is shown in FIG. 12 , and its The resolution of the field of view can also reach more than 0.5.
  • the spot diagram of the first optical imaging system 71 of the wide-angle receiving assembly 4 described in the first embodiment is shown in FIG. 13 , and the root mean square value of the spot diagram of each field of view is about 2-3 ⁇ m.
  • the field curvature and distortion diagram of the first optical imaging system 71 of the wide-angle receiving assembly 4 described in the first embodiment is shown in FIG. 14 , and the distortion of the full field of view is controlled within 2%.
  • the optical parameters of the first optical imaging system 71 of the wide-angle receiving assembly 4 described in the first embodiment are shown in Table 3.
  • the first wide-angle concave lens 711 is a concave lens, which is a material with a low refractive index and a high dispersion coefficient.
  • the first convex lens 715 is a convex lens, which is a material with high refractive index and low dispersion coefficient, the refractive index nd>1.6, and the Abbe coefficient vd ⁇ 30.
  • the first wide-angle concave lens 711 and the first convex lens 715 are both aspherical, and their aspherical coefficients are shown in Table 4.
  • One of the surfaces of one of the lenses of the first optical imaging system 71 is coated with an infrared bandpass filter film that passes infrared and blocks visible light, or uses a single flat lens as an infrared bandpass filter that passes infrared and blocks visible light. , or coat the module protective glass with an infrared bandpass filter film that passes infrared and blocks visible light.
  • the difference between the second embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed, the function and effect are the same as those of the first embodiment, and other structural features remain unchanged.
  • the wide-angle beam expander lens system 6 is a second wide-angle beam expander lens system 62 composed of two concave lenses and a Fresnel lens on one side.
  • the second wide-angle beam expander lens system 62 includes a second wide-angle beam expander lens system 62 Three lenses 621, a fourth lens 622 installed above the third lens 621, the third lens 621 has a first concave surface 6211 of the third lens and a second concave surface 6212 of the third lens, the fourth lens 622 has a fourth lens 621
  • the first concave surface 6221 of the lens and the second concave surface 6222 of the fourth lens, the second concave surface 6222 of the fourth lens is segmented and the inclined surfaces of each small segment are tiled on the same plane to form a jagged Fresnel surface
  • the second concave surface 6212 of the third lens is a curved surface that is concave in the middle and gradually extends outward in an arc-like slope.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is subjected to the first beam expansion through the third lens 621 , and the maximum beam angle after the first beam expansion is 2 ⁇ max.
  • the difference between the third embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed, and the functions and effects are the same as those of the first embodiment, and other structural features remain unchanged.
  • the wide-angle beam expander lens system 6 is a third wide-angle beam expander lens system 63 composed of a concave lens and a free-form curved concave lens
  • the third wide-angle beam expander lens system 63 includes a fifth lens 631
  • the sixth lens 632 is installed above the fifth lens 631
  • the fifth lens 631 has the fifth lens first concave surface 6311 and the fifth lens second concave surface 6312
  • the sixth lens 632 has the sixth lens first
  • the second concave surface 6322 of the sixth lens is a free-form surface light distribution lens with asymmetric distribution in the X-axis transverse and Y-axis longitudinal directions
  • the free-form surface light distribution lens is laterally along the X-axis
  • the light distribution angle is large, the thickness is relatively thick, the longitudinal light distribution angle along the Y axis is small, and the thickness is relatively thin.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is subjected to the first beam expansion through the fifth lens 631, and the maximum beam angle after the first beam expansion is 2 ⁇ max, and the 30° ⁇ 2 ⁇ max ⁇ 75°, through the sixth lens 632 for the second beam expansion, the full angle of the output beam along the X-axis direction after the second beam expansion is 2 ⁇ max, the 60° ⁇ 2 ⁇ max ⁇ 150°, output along the Y-axis direction
  • the full angle of the beam angle is 2 ⁇ 'max, the 60° ⁇ 2 ⁇ 'max ⁇ 150°.
  • the fifth lens 631 has a first concave surface 6311 of the fifth lens and a second concave surface 6312 of the fifth lens, and the fifth lens 631 expands the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 for the first time.
  • the maximum beam angle after beam expansion is 30° ⁇ 2 ⁇ max ⁇ 75°.
  • the sixth lens 632 has a first concave surface 6321 of the sixth lens and a second concave surface 6322 of the sixth lens, the first concave surface 6321 of the sixth lens is a symmetrical aspheric surface, and the second concave surface 6322 of the sixth lens is in the XY direction Asymmetric free-form surface, the sixth lens 632 expands the beam incident from the fifth lens 631 for the second time, and the beam after the beam expansion finally takes the full angle of the beam in the lateral direction of X 60° ⁇ 2 ⁇ max ⁇ 150°, Y
  • the full angle of the beam in the longitudinal direction is 60° ⁇ 2 ⁇ ′max ⁇ 150°, and when irradiating the measured object, the full angle of the beam in the X transverse direction and the Y longitudinal direction can reach 160°.
  • an infrared transmitter module for wide-angle time-of-flight optical ranging is transmitted and received along the X lateral direction as shown in FIG. 20 .
  • the full angle of the emission angle of the third wide-angle beam expander lens system 63 is 2 ⁇ max
  • the receiving angle of the wide-angle receiving component 4 is 2 ⁇ max.
  • an infrared transmitter module for wide-angle time-of-flight optical ranging which transmits and receives along the Y longitudinal direction is shown in FIG. 21 .
  • the full angle of the emission angle of the third wide-angle beam expander lens system 63 is 2 ⁇ ′max
  • the receiving angle of the wide-angle receiving component 4 is 2 ⁇ ′max.
  • free-form surface lenses with different light distribution angles can be designed according to the actual field angles in the X lateral and Y longitudinal directions.
  • the light distribution angle of the sixth lens 632 in the X lateral direction is 150°
  • the light distribution angle in the Y longitudinal direction is 150°.
  • the difference between the fourth embodiment and the first embodiment is that the structure of the optical imaging system 7 is changed, the structure, function and effect of the wide-angle beam expander lens system 6 are the same as those of the first embodiment.
  • the optical imaging system 7 has better receiving effect, and other structural features remain unchanged.
  • the optical imaging system 7 is a second optical imaging system 72 composed of three optical lenses, and its optical path structure is as follows: it combines the first convex lens behind the first aperture stop 713 in the specific implementation of the first embodiment.
  • the 715 is split into two, a positive lens and a negative lens, which can better correct spherical and off-axis aberrations.
  • the second optical imaging system 72 includes a second wide-angle concave lens 721 , a third spacer 722 , a second aperture stop 723 , a second convex lens 724 and a semi-concave lens 721 , which are sequentially arranged from the object side to the image side.
  • the second wide-angle concave lens 721 is a high refractive index, low dispersion coefficient material, its refractive index nd>1.6, Abbe coefficient vd ⁇ 30
  • the second convex lens 724 is low refractive index, high dispersion coefficient material, its refractive index nd ⁇ 1.58, Abbe coefficient vd>50
  • the semi-meniscus lens 725 is a high refractive index, low dispersion coefficient material, its refractive index nd>1.6, Abbe coefficient vd ⁇ 30
  • the first The receiving angle of the two optical imaging systems 72 is 2 ⁇ max.
  • One of the surfaces of one of the lenses of the second optical imaging system 72 is coated with an infrared bandpass filter film that passes infrared and blocks visible light, or uses a single flat lens as an infrared bandpass filter that passes infrared and blocks visible light. , or coat the module protective glass with an infrared bandpass filter film that passes infrared and blocks visible light.
  • the optical imaging system 7 is a second optical imaging system 72 composed of three optical lenses, and its optical path diagram is shown in FIG. 24 .
  • the angle of view of the optical imaging system 7 is greater than 90°, and in the specific implementation of the fourth embodiment, the full angle of view of the second optical imaging system 72 is preferably 120°.
  • the modulation transfer function (MTF) curve of the second optical imaging system 72 of the wide-angle receiving assembly 4 according to the specific implementation of the fourth embodiment is shown in FIG. 25 , and its full resolution in the center field of view of 80 lines can reach 0.82 above. Because one more lens is used, its modulation transfer function is much higher than that of the first optical imaging system 71 of the wide-angle receiving assembly 4 described in the first embodiment.
  • the spot diagram of the second optical imaging system 72 of the wide-angle receiving assembly 4 according to the specific implementation of the fourth embodiment is shown in FIG. 26 , and the root mean square value of the spot diagram of each field of view is basically distributed at 2 ⁇ m The rms value of the dot plot at the best location is less than 1 ⁇ m.
  • the field curvature and distortion diagram of the second optical imaging system 72 of the wide-angle receiving assembly 4 according to the specific implementation of the fourth embodiment is shown in FIG. 27 , and the distortion of the full field of view is controlled within 1%.
  • the optical parameters of the second optical imaging system 72 of the wide-angle receiving assembly 4 include surface type, curvature radius, thickness, refractive index, Abbe coefficient, clear aperture, and conic coefficient as shown in Table 5.
  • the second wide-angle concave lens 721 is a concave lens, which is a material with high refractive index and low dispersion coefficient, the refractive index nd>1.6, and the Abbe coefficient vd ⁇ 30.
  • the second convex lens 724 is a convex lens, which is a material with low refractive index and high dispersion coefficient, and whose refractive index nd ⁇ 1.58 and Abbe coefficient vd>50.
  • the semi-meniscus lens 725 is a semi-meniscus lens, which is a material with high refractive index and low dispersion coefficient, the refractive index nd>1.6, and the Abbe coefficient vd ⁇ 30.
  • the second wide-angle concave lens 721 , the second convex lens 724 and the semi-meniscus lens 725 are all aspherical, and their aspherical coefficients are shown in the table 6 shown.
  • the difference between the fifth embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed.
  • the wide-angle beam expander lens system 6 is composed of two concave lenses, at least one mirror surface of which is set to be partially frosted or whole surface frosted
  • the fourth optical beam expander system 64 formed by the surface combination, the optical imaging system 7 of the wide-angle receiving assembly 4 is the same as that of the first embodiment, and other structural features remain unchanged.
  • the wide-angle beam expander lens system 6 is a fourth wide-angle beam expander lens system 64 composed of two concave lenses, at least one mirror surface of which is set to be partially frosted or a whole-surface frosted surface.
  • the fourth wide-angle beam expander The lens system 64 includes a seventh lens 641 and an eighth lens 642 arranged above the seventh lens 641, the seventh lens 641 has a seventh lens first concave surface 6411 and a seventh lens second concave surface 6412, the eighth lens
  • the lens 642 has a first concave surface 6421 of the eighth lens and a second concave surface 6422 of the eighth lens.
  • At least one of the mirror surfaces of the seventh lens 641 and the eighth lens 642 is set as a partially frosted or whole-surface frosted surface.
  • the two concave surfaces 6422 are curved surfaces that are concave in the middle and gradually extend outward in an arc-like slope.
  • the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is subjected to the first beam expansion through the seventh lens 641 , and the maximum beam angle after the first beam expansion is 2 ⁇ max.
  • the output beam is not necessarily a single-mode laser beam, but a multi-mode laser beam, and the output beam spot has a Bessel-shaped annular distribution, There is a bright spot in the middle of the light spot, and there are many apertures around it.
  • the use of two completely transparent concave lenses for light distribution cannot make the illumination spot evenly distributed.
  • one surface of the two concave lenses needs to be frosted and atomized to eliminate the middle bright spot of the irradiation spot.
  • the seventh lens 641 has a first concave surface 6411 of the seventh lens and a second concave surface 6412 of the seventh lens, and the fourth wide-angle beam expander lens system 64 emits a large amount of light emitted by the vertical cavity surface emitting laser VCSEL chip 2 .
  • the mode laser beam is expanded for the first time, and the maximum beam angle after expansion is greater than 30°.
  • the middle part of the first concave surface 6411 of the seventh lens of the seventh lens 641 is frosted and atomized, which is used to eliminate the middle bright spot that will illuminate the light spot.
  • the eighth lens 642 has a first concave surface 6421 of the eighth lens and a second concave surface 6422 of the eighth lens, which expands the light incident from the seventh lens 641 for the second time, and the expanded light Finally, output with a beam angle greater than 60° to illuminate the object under test, and the maximum beam full angle can reach 150°.
  • the difference between the sixth embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed.
  • the wide-angle beam expander lens system 6 is a seventh wide-angle beam expander lens system 67 composed of one lens.
  • the optical imaging system 7 of the receiving assembly 4 is the same as that of the first embodiment.
  • the difference between the seventh wide-angle beam expander lens system 67 and the first wide-angle beam expander lens system 61 is that the sixteenth lens 671 of the seventh wide-angle beam expander lens system 67 undertakes the first lens 611 and the second lens 612 , that is, the focal length of the sixteenth lens 671 is equivalent to the combined focal length of the first lens 611 and the second lens 612 , and the surfaces of the two mirror surfaces of the sixteenth lens are more concave.
  • the wide-angle beam expander lens system 6 is a seventh wide-angle beam expander lens system 67 composed of one lens
  • the seventh wide-angle beam expander lens system 67 includes a sixteenth lens 671 .
  • the lens 671 is a double concave lens with negative refractive power
  • the sixteenth lens 671 has a first concave surface 6711 of the sixteenth lens and a second concave surface 6712 of the sixteenth lens
  • the second concave surface 6712 of the sixteenth lens is in the middle
  • the curved surface that is concave and gradually extended to the outside as an arc-shaped slope, the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is expanded by the seventh wide-angle beam expander lens system 67, and the beam angle of the expanded output beam is full angle. is 2 ⁇ max, the 60° ⁇ 2 ⁇ max ⁇ 150°.
  • the light beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is subjected to the first beam expansion through the first concave surface 6711 of the sixteenth lens. After the first beam expansion The maximum beam angle full angle is 2 ⁇ max, the 2 ⁇ max ⁇ 30°, the second beam expansion is performed through the second concave surface 6712 of the sixteenth lens, and the beam angle full angle of the output beam after the second beam expansion is 2 ⁇ max, the said 2 ⁇ max ⁇ 60°, the maximum beam full angle can reach 150°.
  • the first concave surface 6711 of the sixteenth lens is aspherical, the vertical cavity surface emitting laser VCSEL chip 2 has any emission point, the angle between the light CC II and the optical axis OZ is ⁇ , and the light CC II passes through
  • the light distribution angle of the refracted ray C II C III is ⁇
  • the edge ray EE II is refracted by the first concave surface 6711 of the sixteenth lens
  • the light distribution of the refracted light ray E II E III The angle is the maximum light distribution angle ⁇ max of the first concave surface 6711 of the sixteenth lens
  • the maximum light distribution angle ⁇ max of the first concave surface 6711 of the sixteenth lens is ⁇ 15°
  • O is the center point of the vertical cavity surface emitting laser VCSEL chip 2
  • E is an emission point located at the edge of the vertical cavity surface emitting laser VCSEL chip 2
  • its maximum emission angle is the same as the optical axis OZ.
  • the included angle is ⁇ max.
  • the maximum emission angle of the emission point (the included angle between the emitted light EE II and the optical axis OZ) ⁇ max is 9°, which is the half angle of the divergence angle in the short axis direction of the light beam.
  • the edge ray EE II is reversely extended, and intersects below the optical axis OZ at the point O', and the point O' is set as the equivalent light-emitting point of the seventh wide-angle beam expander lens system 67 .
  • the far-field angle distribution diagram of the light intensity of the seventh wide-angle beam expander lens system 67 is shown.
  • the effect of using a single lens to achieve large-angle light distribution described in this embodiment has the advantages of lower mold manufacturing cost and lens production cost.
  • the requirements are higher, the surface error and assembly error are more sensitive, and it is easy to produce stray light and zero-order diffraction bright spots in the center of the spot.
  • the difference between the seventh embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed.
  • the wide-angle beam expander lens system 6 is a fifth wide-angle beam expander lens system 65 composed of three lenses.
  • the optical imaging system 7 of the wide-angle receiving assembly 4 is the same as that of the first embodiment.
  • the wide-angle beam expander lens system 6 is a fifth wide-angle beam expander lens system 65 composed of three lenses.
  • the fifth wide-angle beam expander lens system 65 includes a ninth lens 651 installed on the The tenth lens 652 above the nine lenses 651, the eleventh lens 653 installed above the tenth lens 652, the ninth lens 651 is a double concave lens with negative refractive power, the tenth lens 652 is a meniscus lens,
  • the tenth lens 652 has a first concave surface 6521 of the tenth lens and a second convex surface 6522 of the tenth lens, with diopter, the eleventh lens 653 is a concave lens, and the eleventh lens 653 has a first The concave surface 6531 and the second concave surface 6532 of the eleventh lens have negative refractive power.
  • the second concave surface 6532 of the eleventh lens is a curved surface that is concave in the middle and gradually extends outward in an arc-shaped slope.
  • the vertical cavity surface emitting laser VCSEL The beam emitted by the chip 2 is expanded by the fifth wide-angle beam expander lens system 65.
  • the beam angle of the expanded output beam is 2 ⁇ max, the 2 ⁇ max ⁇ 60°, and the maximum beam angle can reach 170°.
  • the function of the combination of the three lenses is that in addition to sharing the diopter of the two lenses described in the first embodiment, adding one more lens can increase the diopter, so that the full angle of the beam angle of the beam expander can be increased.
  • each lens can be distributed with a more even diopter, so that a smoother surface can be used to achieve a large-angle light distribution effect. As the surface shape becomes smoother, there is less chance of stray light and bright spots in the center area, and the light intensity distribution in the center and edge areas is more uniform.
  • the difference between the eighth embodiment and the first embodiment is that the structure of the wide-angle beam expander lens system 6 is changed, and the wide-angle beam expander lens system 6 is a sixth wide-angle beam expander lens system 66 composed of four lenses.
  • the optical imaging system 7 of the wide-angle receiving assembly 4 is the same as that of the first embodiment.
  • the wide-angle beam expander lens system 6 is a sixth wide-angle beam expander lens system 66 composed of four lenses.
  • the sixth wide-angle beam expander lens system 66 includes a twelfth lens 661 , which is installed on the The thirteenth lens 662 above the twelfth lens 661, the fourteenth lens 663 installed above the thirteenth lens 662, the fifteenth lens 664 installed above the fourteenth lens 663, the twelfth lens 664
  • the lens 661 is a double concave lens with negative refractive power
  • the thirteenth lens 662 is a meniscus lens
  • the thirteenth lens 662 has a first concave surface 6621 of the thirteenth lens and a second convex surface 6622 of the thirteenth lens, with a refractive power
  • the fourteenth lens 663 is a meniscus lens
  • the fourteenth lens 663 has a first concave surface 6631 of the fourteenth lens and a second convex surface 6632 of the fourteenth lens
  • the curved surface extending in an arc-shaped slope shape, the beam emitted by the vertical cavity surface emitting laser VCSEL chip 2 is expanded by the sixth wide-angle beam expander lens system 66, and the beam angle of the expanded output beam is 2 ⁇ max, and the 2 ⁇ max ⁇ 60°, the maximum beam full angle can reach 170°.
  • the function of the combination of the four lenses is that, in addition to sharing the diopter of the two lenses described in the first embodiment, adding two more lenses can increase the diopter, so that the full angle of the beam angle of the beam expander can be increased.
  • the advantage is that each lens can be distributed with a more even diopter, so that a flatter surface can be used to achieve a large-angle light distribution effect. As the surface shape becomes smoother, there is less chance of stray light and bright spots in the center area, and the light intensity distribution in the center and edge areas is more uniform.
  • the present invention is provided with a base 10, the base 10 is provided with a substrate 1, and a vertical cavity surface emitting laser VCSEL chip 2 mounted on the substrate 1 is mounted above the vertical cavity surface emitting laser VCSEL chip 2 and is connected with the base.
  • the seat 10 is fixedly connected to a wide-angle beam expander lens system 6 for expanding the beam angle emitted by the vertical cavity surface emitting laser VCSEL chip 2 to 60°, and the wide-angle beam expander lens system 6 is composed of at least one lens.
  • At least one mirror in the lens system 6 is a concave lens with a concave center, and one of the curved surfaces of the concave lens is concave in the center and gradually extends to the outside in an arc-shaped slope, and is located at the corresponding surface of the light-emitting surface of the vertical cavity surface emitting laser VCSEL chip 2.
  • the present invention provides an infrared emitting module for wide-angle time-of-flight optical ranging, which has a simple structure, realizes a large-angle uniform light distribution, and a single concave lens can realistically expand the beam angle to between 60° and 150°.
  • the present invention also provides a An infrared emitting module for wide-angle time-of-flight optical ranging, and a 3D image with a large field of view can be obtained through a wide-angle receiver assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Lenses (AREA)

Abstract

一种用于广角飞行时间光学测距的红外发射模块,包括基座(10)、基板(1)、垂直腔面发射激光器VCSEL芯片(2)和广角扩束透镜系统(6),广角扩束透镜系统(6)由至少一片镜片构成,广角扩束透镜系统(6)中至少一个镜片为中间凹下的凹透镜,凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片(2)发光表面对应面的另一侧,广角扩束透镜系统(6)将光束角度扩大到60°至150°之间,结构简单,实现了大角度的均匀配光,大大提高了光学效率。用于广角飞行时间光学测距的红外发射模组,通过广角接收器组件(4)能获得大视场角的3D图像。

Description

一种用于广角飞行时间光学测距的红外发射模块及其模组 技术领域
本发明涉及飞行时间TOF传感技术领域,特别涉及一种用于广角飞行时间光学测距的红外发射模块及其模组。
背景技术
飞行时间传感技术(英文名:Time of Fly,简称:TOF,)是当前重要的图像传感技术,它是通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测这些发射和接收光脉冲的飞行往返时间来得到目标物距离。TOF传感技术推动了3D摄像头在新一代移动设备中的应用,并将在未来几年推动3D图像传感应用市场的快速增长。飞行时间传感技术采用红外光源就直接测量每个像素中的深度和幅度信息,发射调制红外光到整个场景,通过TOF成像器捕获物体的反射光。通过计算发射光脉冲和接收光脉冲之间测量到之间差,或光学信号的相位差以及幅度值可以得到高度可靠的距离信息以及完整场景的3D图像。
飞行时间传感技术在许多领域有广泛的应用,如智能手机的接近传感器、人脸识别、手势识别、车载趋近警告传感器、激光雷达Lidar、无人机的地面迫近雷达、室内无人机的天花接近雷达、机器人通用的AI深度传感器、机器人真空吸尘器的墙壁边清扫和避障传感器、智能货架等。
早期的TOF传感器基本上是单光源的,其光源为红外激光二极管,波长为940nm或者850nm。其缺点为功率比较低,通常探测角度比较小,一般为二三十度。近年来,随着VCSEL垂直腔表面发射激光器阵列技术的成熟,以及发射功率的进一步提升,TOF传感器的照射光源渐渐演变成VCSEL阵列光源,探测距离进一步增加,探测角度也进一步扩大。如美国微软公司在2015年公布的专利号US20150229912A1的TOF技术。
该专利中的发射组件采用了一片扩散片(diffuser 421)来进行均匀照 明和扩束,其将VCSEL垂直腔表面发射激光器阵列发射的角度较小的红外激光,经过扩散之后形成相对均匀、角度较大的发射光,照射到被测物体上。但由于红外光线经过扩散片之后的出射光是杂乱无章的,损耗比较大,透过率一般都比较低,一般只能达到60%-70%,导致照射到被测物的辐射度比较低。
另外该专利的接收器组件则通过一个凸透镜424、带通滤波器BPF、以及深度图像传感器来探测被测物体的3D深度信息。由于单个凸透镜的视场角一般比较小,一般只能在四十度以内才能成相对清晰的3D图像。因此专利US20150229912A1所述的这种类型的该传感器模组,都存在视场角较小,光学效率较低的问题。
现有及未来新一代的智能手机,一般是采用三摄或多摄的,其中一个摄像头就是TOF 3D摄像头,其与其它两个可见光摄像头一起搭配使用。由于智能手机摄像头的一个发展趋势为广角及鱼眼镜头,摄像头的视场角超过90°,有的鱼眼摄像头拍摄的视场角甚至高达140°以上,对于智能手机这种发展趋势,现有较小视场角的TOF 3D摄像头,由于与其他广角可见光摄像头的拍摄范围不匹配,已经满足不了需求。开发更大视场角度的TOF 3D摄像头,迫在眉睫。
发明内容
本发明的目的在于克服现有技术中的上述缺陷,提供一种用于广角飞行时间光学测距的红外发射模块,其结构简单,实现大角度的均匀配光,将光束角度扩大到60°至150°之间,大大提高了光学效率,另外本发明还提供了一种用于广角飞行时间光学测距的红外发射模组,通过广角接收器组件能获得大视场角的3D图像。
为实现上述目的,本发明提供了一种用于广角飞行时间光学测距的红外发射模块,包括基座,所述基座装设有基板,装设在基板上的垂直腔面发射激光器VCSEL芯片,装设在基座内部并将垂直腔面发射激光器VCSEL芯片发 射的光束角度进行扩大的广角扩束透镜系统,所述广角扩束透镜系统由至少一片镜片构成,所述广角扩束透镜系统中至少一个镜片为中间凹下的凹透镜,所述凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片发光表面对应面的另一侧,所述广角扩束透镜系统的光束扩大全角在60°至150°之间。
作为优选的,所述凹透镜的边缘处最大的光扩展角度大于入射到该透镜的光束角度的1.25倍以上。
作为优选的,所述垂直腔面发射激光器VCSEL芯片为一种多芯片的VCSEL阵列激光发射管或者单芯片的激光发射管,所述垂直腔面发射激光器VCSEL芯片发射光的波长为700nm-5000nm之间或者可见光波段。
作为优选的,所述垂直腔面发射激光器VCSEL芯片的底面导电极通过导电胶与基板上的导电极贴合导通,所述垂直腔面发射激光器VCSEL芯片的表面导电极通过导电引线与基板上的另一个导电极焊接导通,所述垂直腔面发射激光器VCSEL芯片工作点亮时通过基板上的两个导电极供电。
作为优选的,所述广角扩束透镜系统的镜片为光学透明树脂材料构件、光学透明硅胶材料构件、玻璃材料构件或者光敏无影胶材料构件;
所述广角扩束透镜系统的镜片材料的光学折射率在940nm波段介于1.30-1.75之间。
作为优选的,所述基座为聚邻苯二甲酰胺PPA材料构件或者聚酰亚胺树脂PI材料构件,所述广角扩束透镜系统其中的一个镜片与基座为双料一体成型或者广角扩束透镜系统的镜片与基座通过粘接胶固定连接。
作为优选的,所述广角扩束透镜系统其中的一个镜片与基座为材料相同的一体结构,所述镜片材料为透明液态硅胶或者耐高温透明树脂,所述耐高温透明树脂的玻璃化温度介于200-300℃之间,光学折射率在940nm波段介于1.30-1.75之间。
作为优选的,所述广角扩束透镜系统的镜片表面镀有光学增透膜或者透近红外波段的带通滤波光学膜或者在镜片材料中掺杂透红外波段的染色材料。
作为优选的,所述垂直腔面发射激光器VCSEL芯片由多颗点状的表面发射垂直腔激光器排列而成,排列方式为交错排列、6边形排列、4边形排列或者随机散乱排列。
作为优选的,所述垂直腔面发射激光器VCSEL芯片的发射角全角在15°至90°之间。
作为优选的,所述广角扩束透镜系统为由两片凹透镜组合成的第一广角扩束透镜系统,所述第一广角扩束透镜系统包括第一透镜,装设在第一透镜上方的第二透镜,所述第一透镜具有第一透镜第一凹面和第一透镜第二凹面,所述第二透镜具有第二透镜第一凹面和第二透镜第二凹面,所述第二透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
作为优选的,所述垂直腔面发射激光器VCSEL芯片发射的光束经第一透镜进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第二透镜进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
作为优选的,所述第一透镜第一凹面为球面,所述垂直腔面发射激光器VCSEL芯片任意发射点,光线CC II与光轴OZ的夹角为γ,光线CC II经过第一透镜第一凹面后,其折射光线C IIC III与光轴OZ的夹角保持不变,其为γ,该光线经过第一透镜第二凹面再次折射之后,其出射光线C IIIC IV的配光角度为β,边缘光线E IIE III经过第一透镜第二凹面折射之后,其出射光线E IIIE IV的配光角度为第一透镜的最大配光角度βmax,所述第一透镜的最大配光角度βmax为15°,所述第一透镜第二凹面满足配光条件:
Figure PCTCN2020102181-appb-000001
作为优选的,所述第二透镜第二凹面边缘光线E IVE V经过第凹透镜第二凹面折射之后,其出射光线与光轴OZ的夹角为θ max,其它任意光线C IVC V经过第二透镜第二凹面折射之后,其出射光线与OZ的夹角为θ,所述第二透镜第二凹面满足配光条件:
Figure PCTCN2020102181-appb-000002
作为优选的,所述广角扩束透镜系统为由两片凹透镜和其中一面为菲涅尔透镜组合成的第二广角扩束透镜系统,所述第二广角扩束透镜系统与垂直腔面发射激光器VCSEL芯片之间装设有第二硅胶,所述第二广角扩束透镜系统包括第三透镜,装设在第三透镜上方的第四透镜,所述第三透镜具有第三透镜第一凹面和第三透镜第二凹面,所述第四透镜具有第四透镜第一凹面和第四透镜第二凹面,所述第四透镜第二凹面进行分段并将每一小段的斜面平铺到同一个平面上,形成锯齿状的菲涅尔面,所述第三透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
作为优选的,所述垂直腔面发射激光器VCSEL芯片发射的光束经第三透镜进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第四透镜进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
作为优选的,所述广角扩束透镜系统为由一片凹透镜和自由曲面凹透镜组合成的第三广角扩束透镜系统,所述第三广角扩束透镜系统包括第五透镜,装设在第五透镜上方的第六透镜,所述第五透镜具有第五透镜第一凹面和第五透镜第二凹面,所述第六透镜具有第六透镜第一凹面和第六透镜第二凹面,所述第六透镜第二凹面为X轴横向及Y轴纵向方向非对称分布的自由曲面配光透镜,所述自由曲面配光透镜沿X轴横向配光角度较大,厚度比较厚,沿Y轴纵向配光角度较小,厚度比较薄,所述第五透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
作为优选的,所述垂直腔面发射激光器VCSEL芯片发射的光束经第五透镜进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第六透镜进行第二次扩束,第二次扩束后沿X轴方向输出的光束角全角为2θmax,所述60°≤2θmax≤150°,沿Y轴方向输出的光束角全角为2θ’max,所述60°≤2θ’max≤150°。
作为优选的,所述广角扩束透镜系统为由两片凹透镜其中至少一个镜面设置为局部磨砂或者整面磨砂面组合成的第四广角扩束透镜系统,所述第四广角扩束透镜系统包括第七透镜,装设在第七透镜上方的第八透镜,所述第七透镜具有第七透镜第一凹面和第七透镜第二凹面,所述第八透镜具有第八透镜第一凹面和第八透镜第二凹面,所述第七透镜和第八透镜其中至少一个镜面设置为局部磨砂或者整面磨砂面,所述第八透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
作为优选的,所述垂直腔面发射激光器VCSEL芯片发射的光束经第七透镜进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第八透镜进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
作为优选的,所述广角扩束透镜系统为由三片透镜组合成的第五广角扩束透镜系统,所述第五广角扩束透镜系统包括第九透镜,装设在第九透镜上方的第十透镜,装设在第十透镜上方的第十一透镜,所述第九透镜为双面凹透镜,具有负屈光度,所述第十透镜为凹凸透镜,所述第十透镜具有第十透镜第一凹面和第十透镜第二凸面,具有屈光度,所述第十一透镜为凹透镜,所述第十一透镜具有第十一透镜第一凹面和第十一透镜第二凹面,具有负屈光度,所述第十一透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片发射的光束经第五广角扩束透镜系统进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax ≤150°。
作为优选的,所述广角扩束透镜系统为由四片透镜组合成的第六广角扩束透镜系统,所述第六广角扩束透镜系统包括第十二透镜,装设在第十二透镜上方的第十三透镜,装设在第十三透镜上方的第十四透镜,装设在第十四透镜上方的第十五透镜,所述第十二透镜为双面凹透镜,具有负屈光度,所述第十三透镜为凹凸透镜,所述第十三透镜具有第十三透镜第一凹面和第十三透镜第二凸面,具有屈光度,所述第十四透镜为凹凸透镜,所述第十四透镜具有第十四透镜第一凹面和第十四透镜第二凸面,具有屈光度,所述第十五透镜为凹透镜,所述第十五透镜具有第十五透镜第一凹面和第十五透镜第二凹面,具有负屈光度,所述第十五透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片发射的光束经第六广角扩束透镜系统进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
作为优选的,所述广角扩束透镜系统为由一片透镜组成的第七广角扩束透镜系统,所述第七广角扩束透镜系统包括第十六透镜,所述第十六透镜,为双面凹透镜,具有负屈光度,所述第十六透镜具有第十六透镜第一凹面和第十六透镜第二凹面,所述第十六透镜第二凹面为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片发射的光束经第七广角扩束透镜系统进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
作为优选的,所述广角扩束透镜系统的镜片表面为镜面或者具有混光作用的鳞片面或者微结构纹理面。
本发明还提供了一种用于广角飞行时间光学测距的红外发射模组,包括一种用于广角飞行时间光学测距的红外发射模块,所述基座一侧装设有广角接收器组件,所述广角接收器组件包括光学成像系统,装设在光学成像系统 下方的接收光信号的飞行时间成像器,所述飞行时间成像器经过处理后输出图像信息。
作为优选的,所述飞行时间成像器装设在基板上或者装设在单独的另一块基板上。
作为优选的,所述光学成像系统为由两片光学镜片组合成的第一光学成像系统,所述第一光学成像系统包括从物侧到像侧依次设置的第一广角凹透镜、第一隔圈、第一孔径光阑、第二隔圈和第一凸透镜,所述第一广角凹透镜为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述第一凸透镜为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第一光学成像系统的接收角度为2ψmax。
作为优选的,所述光学成像系统为由三片光学镜片组合成的第二光学成像系统,所述第二光学成像系统包括从物侧到像侧依次设置的第二广角凹透镜、第三隔圈、第二孔径光阑、第二凸透镜和半弯月透镜,所述第二广角凹透镜为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二凸透镜为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述半弯月透镜为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二光学成像系统的接收角度为2ψmax。
作为优选的,所述第一光学成像系统和第二光学成像系统其中一片镜片的其中一个面,其镀有红外通过、可见光阻挡的红外带通滤波膜,或者采用单独的一个平面镜片作为红外通过、可见光阻挡的红外带通滤波片,或者在模组保护玻璃上镀红外通过、可见光阻挡的红外带通滤波膜。
与现有技术相比,本发明的有益效果在于:
本发明设有基座,所述基座装设有基板,装设在基板上的垂直腔面发射激光器VCSEL芯片,装设在基座内部并将垂直腔面发射激光器VCSEL芯片发射的光束角度进行扩大的广角扩束透镜系统,所述广角扩束透镜系统由至少 一片镜片构成,所述广角扩束透镜系统中至少一个镜片为中间凹下的凹透镜,所述凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片发光表面对应面的另一侧,所述广角扩束透镜系统的光束扩大全角在60°至150°之间,本发明提供一种用于广角飞行时间光学测距的红外发射模块,其结构简单,实现大角度的均匀配光,将光束角度扩大到60°至150°之间,大大提高了光学效率,另外本发明还提供了一种用于广角飞行时间光学测距的红外发射模组,通过广角接收器组件能获得大视场角的3D图像。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是专利US20150229912A1的TOF传感器技术的方案示意图;
图2是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的剖面图;
图3是本发明提供的实施例一一种广角的飞行时间传感器模组的发射与接收结构示意图;
图4是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的垂直腔面发射激光器VCSEL芯片的排列图;
图5是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的第一广角扩束透镜系统的光路示意图;
图6是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的配光角度与发射角的关系图;
图7是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发 射模块的垂直腔面发射激光器VCSEL芯片在0.6米远处的模拟图;
图8是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的第一广角扩束透镜系统的计算机模拟图;
图9是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的第一广角扩束透镜系统在0.6米远处的辐射度分布图;
图10是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模块的第一广角扩束透镜系统的光强的远场角度分布图;
图11是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第一光学成像系统的光路图;
图12是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第一光学成像系统的调制传递函数(MTF)曲线;
图13是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第一光学成像系统的点列图;
图14是本发明提供的实施例一一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第一光学成像系统的场曲与畸变;
图15是本发明提供的实施例二一种用于广角飞行时间光学测距的红外发射模块的剖面图;
图16是本发明提供的实施例二一种用于广角飞行时间光学测距的红外发射模组的发射与接收结构示意图;
图17是本发明提供的实施例三一种用于广角飞行时间光学测距的红外发射模块的第六透镜第二凹面的三视图;
图18是本发明提供的实施例三一种用于广角飞行时间光学测距的红外发射模块的横向剖面图;
图19是本发明提供的实施例三一种用于广角飞行时间光学测距的红外发射模块的纵向剖面图;
图20是本发明提供的实施例三一种用于广角飞行时间光学测距的红外发 射模组的横向发射与接收结构示意图;
图21是本发明提供的实施例三一种用于广角飞行时间光学测距的红外发射模组的纵向发射与接收结构示意图;
图22是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模块的剖面图;
图23是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模组的发射与接收结构示意图;
图24是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第二光学成像系统的光路图;
图25是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第二光学成像系统的调制传递函数(MTF)曲线;
图26是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第二光学成像系统的点列图;
图27是本发明提供的实施例四一种用于广角飞行时间光学测距的红外发射模组的广角接收器组件的第二光学成像系统的场曲与畸变;
图28是本发明提供的实施例五一种用于广角飞行时间光学测距的红外发射模块的剖面图;
图29是本发明提供的实施例六一种用于广角飞行时间光学测距的红外发射模块的剖面图;
图30是本发明提供的实施例六一种用于广角飞行时间光学测距的红外发射模块的第七广角扩束透镜系统的光路示意图;
图31是本发明提供的实施例六一种用于广角飞行时间光学测距的红外发射模块的第七广角扩束透镜系统的配光角度与发射角的关系图;
图32是本发明提供的实施例六一种用于广角飞行时间光学测距的红外发射模块的第七广角扩束透镜系统的光强的远场角度分布图;
图33是本发明提供的实施例七一种用于广角飞行时间光学测距的红外发 射模块的剖面图;
图34是本发明提供的实施例八一种用于广角飞行时间光学测距的红外发射模块的剖面图。
在图中包括有:
10-基座、1-基板、2-垂直腔面发射激光器VCSEL芯片、6-广角扩束透镜系统、9-导电引线、61-第一广角扩束透镜系统、611-第一透镜、612-第二透镜、6111-第一透镜第一凹面、6112-第一透镜第二凹面、6121-第二透镜第一凹面、6122-第二透镜第二凹面、62-第二广角扩束透镜系统、621-第三透镜、622-第四透镜、6211-第三透镜第一凹面、6212-第三透镜第二凹面、6221-第四透镜第一凹面、6222-第四透镜第二凹面、63-第三广角扩束透镜系统、631-第五透镜、632-第六透镜、6311-第五透镜第一凹面、6312-第五透镜第二凹面、6321-第六透镜第一凹面、6322-第六透镜第二凹面、64-第四广角扩束透镜系统、641-第七透镜、642-第八透镜、6411-第七透镜第一凹面、6412-第七透镜第二凹面、6421-第八透镜第一凹面、6422-第八透镜第二凹面、65-第五广角扩束透镜系统、651-第九透镜、652-第十透镜、653-第十一透镜、6521-第十透镜第一凹面、6522-第十透镜第二凸面、6531-第十一透镜第一凹面、6532-第十一透镜第二凹面、66-第六广角扩束透镜系统、661-第十二透镜、662-第十三透镜、663-第十四透镜、664-第十五透镜、6621-第十三透镜第一凹面、6622-第十三透镜第二凸面、6631-第十四透镜第一凹面、6632-第十四透镜第二凸面、6641-第十五透镜第一凹面、6642-第十五透镜第二凹面、67-第七广角扩束透镜系统、671-第十六透镜、6711-第十六透镜第一凹面、6712-第十六透镜第二凹面、4-广角接收器组件、7-光学成像系统、8-飞行时间成像器、71-第一光学成像系统、711-第一广角凹透镜、712-第一隔圈、713-第一孔径光阑、714-第二隔圈、715-第一凸透镜、72-第二光学成像系统、721-第二广角凹透镜、722-第三隔圈、723-第二孔径光阑、724-第二凸透镜、725- 半弯月透镜。
具体实施方式
下面将结合本发明本实施方式中的附图,对本发明本实施方式中的技术方案进行清楚、完整地描述,显然,所描述的本实施方式是本发明的一种实施方式,而不是全部的本实施方式。基于本发明中的本实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他本实施方式,都属于本发明保扩的范围。
实施例一
请参考图2,本实施例一提供了一种用于广角飞行时间光学测距的红外发射模块,包括基座10,所述基座10装设有基板1,装设在基板1上的垂直腔面发射激光器VCSEL芯片2,装设在基座10内部并将垂直腔面发射激光器VCSEL芯片2发射的光束角度进行扩大的广角扩束透镜系统6,所述广角扩束透镜系统6由至少一片镜片构成,所述广角扩束透镜系统6中至少一个镜片为中间凹下的凹透镜,所述凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片2发光表面对应面的另一侧,所述广角扩束透镜系统6的光束扩大全角在60°至150°之间,所述凹透镜的边缘处最大的光扩展角度大于入射到该透镜的光束角度的1.25倍以上。
请参考图3,所述垂直腔面发射激光器VCSEL芯片2的底面导电极通过导电胶与基板1上的导电极贴合导通,所述垂直腔面发射激光器VCSEL芯片2的表面导电极通过导电引线9与基板1上的另一个导电极焊接导通,所述垂直腔面发射激光器VCSEL芯片2工作点亮时通过基板1上的两个导电极供电。
请参考图3,所述广角扩束透镜系统6的镜片为光学透明树脂材料构件、光学透明硅胶材料构件、玻璃材料构件或者光敏无影胶材料构件;
所述广角扩束透镜系统6的镜片材料的光学折射率在940nm波段介于 1.30-1.75之间。
请参考图3,所述基座10为聚邻苯二甲酰胺PPA材料构件或者聚酰亚胺树脂PI材料构件,所述广角扩束透镜系统6其中的一个镜片与基座10为双料一体成型或者广角扩束透镜系统6的镜片与基座10通过粘接胶固定连接。
请参考图3,所述广角扩束透镜系统6其中的一个镜片与基座10为材料相同的一体结构,所述镜片材料为透明液态硅胶或者耐高温透明树脂,所述耐高温透明树脂的玻璃化温度介于200-300℃之间,光学折射率在940nm波段介于1.30-1.75之间。
请参考图3,所述广角扩束透镜系统6的镜片表面镀有光学增透膜或者透近红外波段的带通滤波光学膜或者在镜片材料中掺杂透红外波段的染色材料。
请参考图3,所述广角扩束透镜系统6的镜片表面为镜面或者具有混光作用的鳞片面或者微结构纹理面。
请参考图4,所述垂直腔面发射激光器VCSEL芯片2为一种多芯片的VCSEL阵列激光发射管或者单芯片的激光发射管,所述垂直腔面发射激光器VCSEL芯片2发射光的波长为700nm-5000nm之间或者可见光波段。
请参考图4,所述垂直腔面发射激光器VCSEL芯片2由多颗点状的表面发射垂直腔激光器排列而成,排列方式为交错排列、6边形排列、4边形排列或者随机散乱排列。
请参考表一,所述垂直腔面发射激光器VCSEL阵列5长L:972μm,宽W:680μm,有效发射面长A:479μm,有效发射面宽B:575μm,发射点横向间隔Px:52μm,发射点纵向间隔Py:30.5μm,发射点直径φ:11μm,发射点数量:361个,发射角全角:24°×18°。
表一:垂直腔面发射激光器VCSEL阵列5的参数
VCSEL长:L 972μm
VCSEL宽:W 680μm
有效发射面长A: 479μm
有效发射面宽B: 575μm
发射点横向间隔Px: 52μm
发射点纵向间隔Py: 30.5μm
发射点直径:φ 11μm
发射点数量: 361
发射角全角: 24°×18°
请参考图2,所述广角扩束透镜系统6为由两片凹透镜组合成的第一广角扩束透镜系统61,所述第一广角扩束透镜系统61包括第一透镜611,装设在第一透镜611上方的第二透镜612,所述第一透镜611具有第一透镜第一凹面6111和第一透镜第二凹面6112,所述第二透镜612具有第二透镜第一凹面6121和第二透镜第二凹面6122,所述第二透镜第二凹面6122为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,在本实施例中所述第一透镜第二凹面6112也为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,本实施例中第一广角扩束透镜系统61拥有两个上述曲面。
请参考图3,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第一透镜611进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第二透镜612进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
请参考图5,所述第一透镜第一凹面6111为球面,所述垂直腔面发射激光器VCSEL芯片2任意发射点,光线CC II与光轴OZ的夹角为γ,光线CC II经过第一透镜第一凹面6111后,其折射光线C IIC III与光轴OZ的夹角保持不变,其为γ,该光线经过第一透镜第二凹面6112再次折射之后,其出射光线C IIIC IV的配光角度为β,边缘光线E IIE III经过第一透镜第二凹面6112折射之后,其出射光线E IIIE IV的配光角度为第一透镜611的最大配光角度βmax,所述第一透镜611的最大配光角度βmax为15°,所述第一透镜第二凹面6112满足配光条件:
Figure PCTCN2020102181-appb-000003
请参考图5,所述第二透镜第二凹面6122边缘光线E IVE V经过第二透镜第二凹面6122折射之后,其出射光线与光轴OZ的夹角为θ max,其它任意光线C IVC V经过第二透镜第二凹面6122折射之后,其出射光线与OZ的夹角为θ,所述第二透镜第二凹面6122满足配光条件:
Figure PCTCN2020102181-appb-000004
具体的,如图5所示,O为位于垂直腔面发射激光器VCSEL芯片2的中心点,E为位于垂直腔面发射激光器VCSEL芯片2边缘的一个发射点,其最大发射角与光轴OZ的夹角为γmax,本实施例一具体实施方案优选该发射点的最大发射角(发射光线EE II与光轴OZ的夹角)γmax为9°,其为光束短轴方向的发散角半角。将边缘光线EE II进行反向延长,交于光轴OZ下方于O′点,O′点设定为第一广角扩束透镜系统61的等效发光点。
本实施例一所述一种用于广角飞行时间光学测距的红外发射模块,所述第一透镜第一凹面6111为球面,其曲率半径R以O′点为圆心,那么光线EE II经过第一透镜第一凹面6111后,其折射光线E IIE III与光轴OZ的夹角保持不变,其为γmax。本实施例一具体实施方案优选该第一透镜第一凹面6111的曲率半径为R=1.7621435mm。
所述第一透镜第二凹面6112的配光方式为按照以下正切条件来进行配光。假设C为垂直腔面发射激光器VCSEL芯片2有效区域内任一个发射点,光线CC II与光轴OZ的夹角为γ,光线CC II经过第一透镜第一凹面6111后,其折射光线C IIC III与光轴OZ的夹角保持不变,其为γ,该光线经过第一透镜第二凹面6112再次折射之后,其出射光线C IIIC IV的配光角度为β。边缘光线E IIE III经过第一透镜第二凹面6112折射之后,其出射光线E IIIE IV的配光角度为所述 第一透镜611的最大配光角度βmax,该第一透镜611的最大配光角度βmax为15°。本实施例一具体实施方案优选垂直腔面发射激光器VCSEL芯片2发射的光线经过第一透镜611第1次扩束后,其任意一条出射光线的配光角度β满足以下正切条件:
Figure PCTCN2020102181-appb-000005
所述第一透镜611,其第一透镜第二凹面6112的面型轮廓由上述公式2通过数值计算的方法逐点算出。
所述第二透镜612,其第二透镜第一凹面6121,本实施例一具体实施方案优选每一点位置的切线都垂直于该点位置的入射光线方向,那么经过第二透镜第一凹面6121折射之后,其所有的折射光线都沿原方向前进,即E IVE V与E IIIE IV的传播方向一致,其与光轴OZ的夹角都为βmax,C IVC V与C IIIC IV方向一致,其与光轴OZ的夹角都为β。第二透镜第一凹面6121则可以根据每一根入射光线C IIIC IV的切线方向相连来算出。
所述第二透镜612,其第二透镜第二凹面6122的配光方式为按照以下的正切条件来进行配光。边缘光线E IVE V经过第二透镜第二凹面6122折射之后,其出射光线与光轴OZ的夹角为θ max。其它任意光线C IVC V经过第二透镜第二凹面6122折射之后,其出射光线与OZ的夹角为θ。本实施例一具体实施方案优选垂直腔面发射激光器VCSEL芯片2发射的光线经过第二透镜612的第2次扩束后,其任意一条出射光线的配光角度θ满足以下正切条件:
Figure PCTCN2020102181-appb-000006
所述第二透镜612,其第二透镜第二凹面6122的面型轮廓由上述公式3通过数值计算的方法逐点算出。
经过第一透镜611第1次配光的配光角度β、以及经过第二透镜612第2 次配光的配光角度θ,分别与垂直腔面发射激光器VCSEL芯片2的发射角γ之间的关系如表格2所示,其关系图如图6所示。从垂直腔面发射激光器VCSEL芯片2发射的光线,经过第一透镜611第一次配光之后,其最大的配光角度全角30°≤2βmax≤75°,再经过第二透镜612的第2次配光,最后输出光束的最大配光全角60°≤2θmax≤150°。
本实施例一所述的一种用于广角飞行时间光学测距的红外发射模块,所述从垂直腔面发射激光器VCSEL芯片2发射的光线,经过第一透镜611第一次配光之后输出光束的光束角,以及再经过第二透镜612第二次配光之后输出光束的光束角,其为增长两倍的关系。
表格1经过第一透镜611第一次配光的配光角度β、以及经过第二透镜612第二次配光的配光角度θ,分别与垂直腔面发射激光器VCSEL芯片2的发射角γ之间的关系:
Figure PCTCN2020102181-appb-000007
Figure PCTCN2020102181-appb-000008
本实施例一所述的一种用于广角飞行时间光学测距的红外发射模块,所述垂直腔面发射激光器VCSEL芯片2,其0.6米远出的光斑模拟图如图7所示,其为椭圆光斑,其X方向的光束角为24°,其Y方向的光束角为18°。
本实施例一所述的一种用于广角飞行时间光学测距的红外发射模块的计算机模拟如图8所示。其在0.6米远出的辐射度分布如图9所示。由于垂直腔面发射激光器VCSEL芯片2,其本身发射的激光为椭圆高斯光束,光线经过第一透镜611和第二透镜612两次扩束之后,其在0.6米远处的照射光斑接近方形光斑,覆盖范围接近2米。其光强的远场角度分布(配光曲线)如图10所示,其模拟结果显示峰值光强一半位置处的光束角宽度为154.1553505207763000°×146.1346931901400100°,照射角度可以满足广角接收器组件4的探测范围。
如图3所示,本发明还提供了一种用于广角飞行时间光学测距的红外发射模组,包括上述所述的一种用于广角飞行时间光学测距的红外发射模块,所述基座10一侧装设有广角接收器组件4,所述广角接收器组件4包括光学成像系统7,装设在光学成像系统7下方的接收光信号的飞行时间成像器8,所述飞行时间成像器8经过处理后输出图像信息。
如图3所示,所述飞行时间成像器8装设在基板1上或者装设在单独的另一块基板上。
如图10所示,所述广角接收组件4包括成像光学系统7,所述光学成像系统7为由两片光学镜片组合成的第一光学成像系统71,所述第一光学成像系统71包括从物侧到像侧依次设置的第一广角凹透镜711、第一隔圈712、第一孔径光阑713、第二隔圈714和第一凸透镜715,所述第一广角凹透镜711 为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述第一凸透镜715为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第一光学成像系统71的接收角度为2ψmax,所述第一光学成像系统(71)的接收角度2ψmax≥90°,光路图如图11所示。其视场角大于90°,本实施例一优选该第一光学成像系统71的全视场角为120°。
本实施例一所述的广角接收组件4的第一光学成像系统71,其调制传递函数(MTF)曲线如图12所示,其在80线对中心视场的分辨率可以达到0.8以上,边缘视场的分辨率也可以达到0.5以上。
本实施例一所述的广角接收组件4的第一光学成像系统71,其点列图如图13所示,每个视场的点列图的均方根值大约为2-3μm。
本实施例一所述的广角接收组件4的第一光学成像系统71,其场曲与畸变图如图14所示,全视场的畸变控制在2%以内。
本实施例一所述的广角接收组件4的第一光学成像系统71,其光学参数如表格3所示,第一广角凹透镜711,其为凹透镜,其为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,第一凸透镜715,其为凸透镜,其为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30。
本实施例一所述的广角接收组件4的第一光学成像系统71,所述第一广角凹透镜711及第一凸透镜715都为非球面,其非球面系数如表格4所示。
表格2本实施例一所述的广角接收组件4的第一光学成像系统71的光学参数
表面 类型 曲率半径 厚度 折射率nd 阿贝系数vd 净口径 圆锥系数
物面 标准 无限 600     1475.705 0
7111 偶次非球面 2.150777 0.23 1.544919 55.929938 1.216296 0
7112 偶次非球面 -0.19937 0.4297     0.551478 -0.7237014
713(光阑) 标准 无限 0.099851     0.34 0
7141 偶次非球面 0.666992 0.48285 1.671371 19.244900 0.743101 -3.84827
7142 偶次非球面 -0.62214 0.565005     0.700685 -5.374114
像面 标准 无限       0.802506 0
表格3本实施例一所述的广角接收组件4的第一光学成像系统71的每个面的非球面系数:
Figure PCTCN2020102181-appb-000009
所述第一光学成像系统71其中一片镜片的其中一个面,其镀有红外通过、可见光阻挡的红外带通滤波膜,或者采用单独的一个平面镜片作为红外通过、可见光阻挡的红外带通滤波片,或者在模组保护玻璃上镀红外通过、可见光阻挡的红外带通滤波膜。
实施例二
本实施例二与实施例一的区别是,广角扩束透镜系统6的结构发生改变,作用和效果与实施例一相同,其他的结构特征不变。
请参考图15,所述广角扩束透镜系统6为由两片凹透镜和其中一面为菲涅尔透镜组合成的第二广角扩束透镜系统62,所述第二广角扩束透镜系统62包括第三透镜621,装设在第三透镜621上方的第四透镜622,所述第三透镜621具有第三透镜第一凹面6211和第三透镜第二凹面6212,所述第四透镜622具有第四透镜第一凹面6221和第四透镜第二凹面6222,所述第四透镜第二凹面6222进行分段并将每一小段的斜面平铺到同一个平面上,形成锯齿状的菲涅尔面,所述第三透镜第二凹面6212为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
请参考图16,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第三透镜621进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第四透镜622进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
实施例三
本实施例三与实施例一的区别是,广角扩束透镜系统6的结构发生改变,作用和效果与实施例一相同,其他的结构特征不变。
请参考图17和18,所述广角扩束透镜系统6为由一片凹透镜和自由曲面凹透镜组合成的第三广角扩束透镜系统63,所述第三广角扩束透镜系统63包括第五透镜631,装设在第五透镜631上方的第六透镜632,所述第五透镜631具有第五透镜第一凹面6311和第五透镜第二凹面6312,所述第六透镜632具有第六透镜第一凹面6321和第六透镜第二凹面6322,所述第六透镜第二凹面6322为X轴横向及Y轴纵向方向非对称分布的自由曲面配光透镜,所述自由曲面配光透镜沿X轴横向配光角度较大,厚度比较厚,沿Y轴纵向配光角度较小,厚度比较薄,所述第五透镜第二凹面6312为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
请参考图19,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第五透镜631进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第六透镜632进行第二次扩束,第二次扩束后沿X轴方向输出的光束角全角为2θmax,所述60°≤2θmax≤150°,沿Y轴方向输出的光束角全角为2θ’max,所述60°≤2θ′max≤150°。
具体的,所述第五透镜631具有第五透镜第一凹面6311和第五透镜第二凹面6312,所述第五透镜631将垂直腔面发射激光器VCSEL芯片2发射的光束进行第一次扩束,扩束后的最大的光束角30°≤2βmax≤75°。
所述第六透镜632具有第六透镜第一凹面6321和第六透镜第二凹面 6322,所述第六透镜第一凹面6321为对称的非球面,所述第六透镜第二凹面6322为XY方向非对称的自由曲面,所述第六透镜632将第五透镜631入射过来的光束进行第二次扩束,扩束后的光线最后以X横向方向的光束全角60°≤2θmax≤150°,Y纵向方向的光束全角60°≤2θ′max≤150°,照射被测物体,所述X横向和Y纵向的光束角全角可达160°。
本具体本实施例三所述的一种用于广角飞行时间光学测距的红外发射模块,其沿X横向方向发射与接收如图20所示。其在X横向方向,所述第三广角扩束透镜系统63的发射角全角为2θmax,所述广角接收组件4的接收角度为2ψmax。
本具体本实施例三所述的一种用于广角飞行时间光学测距的红外发射模块,其沿Y纵向方向发射与接收如图21所示。其在Y纵向方向,所述第三广角扩束透镜系统63的发射角全角为2θ′max,所述广角接收组件4的接收角度为2ψ′max。
对于不同长宽比的飞行时间成像器,如长宽比为2∶1或者16∶9等,可以根据实际X横向及Y纵向方向的视场角设计不同配光角度的自由曲面透镜,本具体实施方案优选所述第六透镜632的X横向方向的配光角度为150°,Y纵向方向的配光角度为150°。
实施例四
本实施例四与实施例一的区别是,所述光学成像系统7的结构发生改变,所述广角扩束透镜系统6的结构、作用和效果与实施例一相同,所述广角接收组件4的光学成像系统7接收效果更好,其他的结构特征不变。
所述光学成像系统7为由三片光学镜片组合成的第二光学成像系统72,其光路结构为:其将所述实施例一具体实施方案所述第一孔径光阑713后边的第一凸透镜715拆分成两个,一个正透镜及一个负透镜,其可以更好地矫正球差及轴外像差。
请参考图22和23,所述第二光学成像系统72包括从物侧到像侧依次设置的第二广角凹透镜721、第三隔圈722、第二孔径光阑723、第二凸透镜724和半弯月透镜725,所述第二广角凹透镜721为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二凸透镜724为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述半弯月透镜725为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二光学成像系统72的接收角度为2ψmax。
所述第二光学成像系统72其中一片镜片的其中一个面,其镀有红外通过、可见光阻挡的红外带通滤波膜,或者采用单独的一个平面镜片作为红外通过、可见光阻挡的红外带通滤波片,或者在模组保护玻璃上镀红外通过、可见光阻挡的红外带通滤波膜。
所述光学成像系统7为由三片光学镜片组合成的第二光学成像系统72,其光路图如图24所示。所述光学成像系统7的视场角大于90°,本实施例四具体实施方案优选该第二光学成像系统72的全视场角为120°。
本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,其调制传递函数(MTF)曲线如图25所示,其在80线对中心视场的全部分辨率可以达到0.82以上。由于多采用了一片透镜,其调制传递函数比具体实施例一所述的广角接收组件4的第一光学成像系统71高了很多。
本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,其点列图如图26所示,每个视场的点列图的均方根值基本上都分布在2μm以内,最好位置的点列图的均方根值小于1μm。
本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,其场曲与畸变图如图27所示,全视场的畸变控制在1%以内。
本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,其光学参数包括曲面类型、曲率半径、厚度、折射率、阿贝系数、净口径、 以及圆锥系数如表格5所示,所述第二广角凹透镜721,其为凹透镜,其为高折射率、低色散系数材料,其折射率nd>1.6,阿贝系数vd<30。所述第二凸透镜724,其为凸透镜,其为低折射率、高色散系数材料,其折射率nd<1.58、阿贝系数vd>50。所述半弯月透镜725,其为半弯月透镜,其为高折射率、低色散系数材料,其折射率nd>1.6,阿贝系数vd<30。
本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,所述第二广角凹透镜721、第二凸透镜724及半弯月透镜725都为非球面,其非球面系数如表格6所示。
表格4本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72的光学参数
表面 类型 曲率半径 厚度 折射率nd 阿贝系数vd 净口径 圆锥系数
物面 标准 无限 600     1477.756 0
7211 偶次非球面 0.803986 0.23 1.661319 20.374576 1.041205 0
7212 偶次非球面 -0.31755 0.295349     0.460024 -6.307674
723(光阑) 标准 无限 0.02     0.329464 0
7241 偶次非球面 0.675875 0.395694 1.544919 55.929938 0.452339 2.844554
7242 偶次非球面 -0.40198 0.02     0.568379 -6.246033
7251 偶次非球面 -0.96726 0.294 1.661319 20.374576 0.572334 0
7252 偶次非球面 -0.6514 0.550757     0.747947 0
8(像面) 标准 无限       0.823459 0
表格5本实施例四具体实施方案所述广角接收组件4的第二光学成像系统72,所述每个面的非球面系数
Figure PCTCN2020102181-appb-000010
Figure PCTCN2020102181-appb-000011
实施例五
本实施例五与实施例一的区别是,所述广角扩束透镜系统6的结构发生改变,所述广角扩束透镜系统6为由两片凹透镜其中至少一个镜面设置为局部磨砂或者整面磨砂面组合成的第四光学扩束系统64,所述广角接收组件4的光学成像系统7与实施例一相同,其他的结构特征不变。
请参考图28,所述广角扩束透镜系统6为由两片凹透镜其中至少一个镜面设置为局部磨砂或者整面磨砂面组合成的第四广角扩束透镜系统64,所述第四广角扩束透镜系统64包括第七透镜641,装设在第七透镜641上方的第八透镜642,所述第七透镜641具有第七透镜第一凹面6411和第七透镜第二凹面6412,所述第八透镜642具有第八透镜第一凹面6421和第八透镜第二凹面6422,所述第七透镜641和第八透镜642其中至少一个镜面设置为局部磨砂或者整面磨砂面,所述第八透镜第二凹面6422为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
请参考图28,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第七透镜641进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第八透镜642进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
具体的,对于有些输出功率较大的垂直腔面发射激光器VCSEL芯片2,其 输出光束未必是单模的激光束,而是多模激光束,其输出光斑呈贝塞尔形状的环状分布,光斑中间有一个亮点,周围有好多光圈。对于这种情况,采用完全透明的两片凹透镜进行配光不能将照射光斑分布均匀。而需要将两片凹透镜的其中一个面进行磨砂雾化处理,才将照射光斑的中间亮点消除。
请参考图28,所述第七透镜641具有第七透镜第一凹面6411和第七透镜第二凹面6412,所述第四广角扩束透镜系统64将垂直腔面发射激光器VCSEL芯片2发射的多模激光束进行第一次扩束,扩束后的最大的光束角大于30°。由于垂直腔面发射激光器VCSEL芯片2发射的多模激光束,其输出光斑呈贝塞尔形状的环状分布,光斑中间有一个亮点,周围有好多光圈,对于这种情况,本实施例五将所述第七透镜641的第七透镜第一凹面6411的中间一部分进行磨砂雾化处理,其用于消除将照射光斑的中间亮点。
请参考图28,所述第八透镜642具有第八透镜第一凹面6421和第八透镜第二凹面6422,其将第七透镜641入射过来的光线进行第二次扩束,扩束后的光线最后以大于60°的光束角输出,照射被测物体,最大的光束全角可达150°。
实施例六
本实施例六与实施例一的区别是,广角扩束透镜系统6的结构发生改变,所述广角扩束透镜系统6为由一片透镜组合成的第七广角扩束透镜系统67,所述广角接收组件4的光学成像系统7与实施例一相同。
所述第七广角扩束透镜系统67和第一广角扩束透镜系统61的区别在于:所述第七广角扩束透镜系统67的第十六透镜671承担了第一透镜611和第二透镜612的屈光度,即所述第十六透镜671的焦距等效于第一透镜611和第二透镜612的组合焦距,所述第十六透镜的两个镜面的面型更凹。
请参考图29,所述广角扩束透镜系统6为由一片透镜组成的第七广角扩束透镜系统67,所述第七广角扩束透镜系统67包括第十六透镜671,所述第 十六透镜671,为双面凹透镜,具有负屈光度,所述第十六透镜671具有第十六透镜第一凹面6711和第十六透镜第二凹面6712,所述第十六透镜第二凹面6712为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第七广角扩束透镜系统67进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
所述该实施例的配光方式,请参考图30,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第十六透镜第一凹面6711进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述2βmax≥30°,经第十六透镜第二凹面6712进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述2θmax≥60°,最大的光束全角可达150°。
请参考图31,所述第十六透镜第一凹面6711为非球面,所述垂直腔面发射激光器VCSEL芯片2任意发射点,光线CC II与光轴OZ的夹角为γ,光线CC II经过第十六透镜第一凹面6711后,其折射光线C IIC III的配光角度为β,边缘光线EE II经过第十六透镜第一凹面6711折射之后,其折射光线E IIE III的配光角度为第十六透镜第一凹面6711的最大配光角度βmax,所述第十六透镜第一凹面6711的最大配光角度βmax≥15°,所述第十六透镜第一凹面6711的面型轮廓由
Figure PCTCN2020102181-appb-000012
通过数值计算的方法逐点算出。
请参考图31,所述第十六透镜第二凹面6712边缘光线E IIIE IV经过第十六透镜第二凹面6712折射之后,其出射光线与光轴OZ的夹角为θ max,其它任意光线C IIIC IV经过第十六透镜第二凹面6712折射之后,其出射光线与OZ的夹角为θ,所述第十六透镜第二凹面6712的面型轮廓由
Figure PCTCN2020102181-appb-000013
通过数值计算的方法逐点算出。
经过第十六透镜第一凹面6711第一次配光的配光角度β、以及经过第十 六透镜第二凹面6712第二次配光的配光角度θ,其最大的配光角度βmax≥15°,全角2βmax≥30°,再经过第十六透镜第二凹面6712的第二次配光,最后输出光束的最大配光角度θmax≥30°,全角2θmax≥60°,最大的光束全角可达150°。
具体的,如图31所示,O为位于垂直腔面发射激光器VCSEL芯片2的中心点,E为位于垂直腔面发射激光器VCSEL芯片2边缘的一个发射点,其最大发射角与光轴OZ的夹角为γmax,本实施例的具体实施方案优选该发射点的最大发射角(发射光线EE II与光轴OZ的夹角)γmax为9°,其为光束短轴方向的发散角半角。将边缘光线EE II进行反向延长,交于光轴OZ下方于O′点,O′点设定为第七广角扩束透镜系统67的等效发光点。
如图32所示,第七广角扩束透镜系统67的光强的远场角度分布图。
本实施例所述的采用单片透镜实现大角度配光的效果,其具有模具制作成本及透镜生产成本较低的优点,缺点是由于上下两个面都比较凹,对加工精度及装配精度的要求更高,对面型误差及装配误差比较敏感,容易产生杂光及光斑中心零级衍射亮点。
实施例七
本实施例七与实施例一的区别是,广角扩束透镜系统6的结构发生改变,所述广角扩束透镜系统6为由三片透镜组合成的第五广角扩束透镜系统65,所述广角接收组件4的光学成像系统7与实施例一相同。
请参考图33,所述广角扩束透镜系统6为由三片透镜组合成的第五广角扩束透镜系统65,所述第五广角扩束透镜系统65包括第九透镜651,装设在第九透镜651上方的第十透镜652,装设在第十透镜652上方的第十一透镜653,所述第九透镜651为双面凹透镜,具有负屈光度,所述第十透镜652为凹凸透镜,所述第十透镜652具有第十透镜第一凹面6521和第十透镜第二凸面6522,具有屈光度,所述第十一透镜653为凹透镜,所述第十一透镜653具有第十一透镜第一凹面6531和第十一透镜第二凹面6532,具有负屈光度, 所述第十一透镜第二凹面6532为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第五广角扩束透镜系统65进行扩束,扩束后的输出光束的光束角全角为2θmax,所述2θmax≥60°,最大的光束全角可达170°。
所述三片透镜组合成的作用是,采用三片透镜除了分担实施例一所述的两片透镜的屈光度,多增加一片镜片可以增加屈光度,使扩束的光束角全角增大,另一优点是其每片透镜可以分配更为平均的屈光度,从而可以采用更平缓的面型达到大角度的配光效果。由于面型变得更加平缓,其产生杂光及中心区域产生亮点的机会更小,中心与边缘区域的光强分布更均匀。
实施例八
本实施例八与实施例一的区别是,广角扩束透镜系统6的结构发生改变,所述广角扩束透镜系统6为由四片透镜组合成的第六广角扩束透镜系统66,所述广角接收组件4的光学成像系统7与实施例一相同。
请参考图34,所述广角扩束透镜系统6为由四片透镜组合成的第六广角扩束透镜系统66,所述第六广角扩束透镜系统66包括第十二透镜661,装设在第十二透镜661上方的第十三透镜662,装设在第十三透镜662上方的第十四透镜663,装设在第十四透镜663上方的第十五透镜664,所述第十二透镜661为双面凹透镜,具有负屈光度,所述第十三透镜662为凹凸透镜,所述第十三透镜662具有第十三透镜第一凹面6621和第十三透镜第二凸面6622,具有屈光度,所述第十四透镜663为凹凸透镜,所述第十四透镜663具有第十四透镜第一凹面6631和第十四透镜第二凸面6632,具有屈光度,所述第十五透镜664为凹透镜,所述第十五透镜664具有第十五透镜第一凹面6641和第十五透镜第二凹面6642,具有负屈光度,所述第十五透镜第二凹面6642为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片2发射的光束经第六广角扩束透镜系统66进行扩束,扩束后的输出光束 的光束角全角为2θmax,所述2θmax≥60°,最大的光束全角可达170°。
所述四片透镜组合成的作用是,采用四片透镜除了分担实施例一所述的两片透镜的屈光度,多增加两片镜片可以增加屈光度,使扩束的光束角全角增大,另一优点是其每片透镜可以分配更为平均的屈光度,从而可以采用更平缓的面型达到大角度的配光效果。由于面型变得更加平缓,其产生杂光及中心区域产生亮点的机会更小,中心与边缘区域的光强分布更均匀。
根据四片透镜组合的配光原理,同样可以实现五片镜片或五片镜片以上的配光组合结构,在本专利不作一一赘述。
综上所述,本发明的有益效果在于:
本发明设有基座10,所述基座10装设有基板1,装设在基板1上的垂直腔面发射激光器VCSEL芯片2,装设在垂直腔面发射激光器VCSEL芯片2上方并与基座10固定连接用于将垂直腔面发射激光器VCSEL芯片2发射的光束角度扩大到60°的广角扩束透镜系统6,所述广角扩束透镜系统6由至少一片镜片构成,所述广角扩束透镜系统6中至少一个镜片为中间凹下的凹透镜,所述凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片2发光表面对应面的另一侧,本发明提供一种用于广角飞行时间光学测距的红外发射模块,其结构简单,实现大角度的均匀配光,单片凹透镜可现实将光束角度扩大到60°至150°之间,两片透镜的组合结构可现实将光束角度扩大到最大160°,三片以上透镜的组合结构可现实将光束角度扩大到最大170°,大大提高了光学效率,另外本发明还提供了一种用于广角飞行时间光学测距的红外发射模组,通过广角接收器组件能获得大视场角的3D图像。

Claims (29)

  1. 一种用于广角飞行时间光学测距的红外发射模块,其特征在于,包括基座(10),所述基座(10)装设有基板(1),装设在基板(1)上的垂直腔面发射激光器VCSEL芯片(2),装设在基座(10)内部并将垂直腔面发射激光器VCSEL芯片(2)发射的光束角度进行扩大的广角扩束透镜系统(6),所述广角扩束透镜系统(6)由至少一片镜片构成,所述广角扩束透镜系统(6)中至少一个镜片为中间凹下的凹透镜,所述凹透镜的其中一个曲面轮廓为中间凹下且逐渐向外侧作弧状坡形延伸并位于垂直腔面发射激光器VCSEL芯片(2)发光表面对应面的另一侧,所述广角扩束透镜系统(6)的光束扩大全角在60°至150°之间。
  2. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述凹透镜的边缘处最大的光扩展角度大于入射到该透镜的光束角度的1.25倍以上。
  3. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)为一种多芯片的VCSEL阵列激光发射管或者单芯片的激光发射管,所述垂直腔面发射激光器VCSEL芯片(2)发射光的波长为700nm-5000nm之间或者可见光波段。
  4. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)的底面导电极通过导电胶与基板(1)上的导电极贴合导通,所述垂直腔面发射激光器VCSEL芯片(2)的表面导电极通过导电引线(9)与基板(1)上的另一个导电极焊接导通,所述垂直腔面发射激光器VCSEL芯片(2)工作点亮时通过基板(1)上的两个导电极供电。
  5. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)的镜片为光学透明树脂材料构件、光学透明硅胶材料构件、玻璃材料构件或者光敏无影胶材料构件;
    所述广角扩束透镜系统(6)的镜片材料的光学折射率在940nm波段介于1.30-1.75之间。
  6. 根据权利要求5所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述基座(10)为聚邻苯二甲酰胺PPA材料构件或者聚酰亚胺树脂PI材料构件,所述广角扩束透镜系统(6)其中的一个镜片与基座(10)为双料一体成型或者广角扩束透镜系统(6)的镜片与基座(10)通过粘接胶固定连接。
  7. 根据权利要求6所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)其中的一个镜片与基座(10)为材料相同的一体结构,所述镜片材料为透明液态硅胶或者耐高温透明树脂,所述耐高温透明树脂的玻璃化温度介于200-300℃之间,光学折射率在940nm波段介于1.30-1.75之间。
  8. 根据权利要求5所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)的镜片表面镀有光学增透膜或者透近红外波段的带通滤波光学膜或者在镜片材料中掺杂透红外波段的染色材料。
  9. 根据权利要求3所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)由多颗点状的表面发射垂直腔激光器排列而成,排列方式为交错排列、6边形排列、4边形排列或者随机散乱排列。
  10. 根据权利要求9所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)的发射角全角在15°至90°之间。
  11. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由两片凹透镜组合成的第 一广角扩束透镜系统(61),所述第一广角扩束透镜系统(61)包括第一透镜(611),装设在第一透镜(611)上方的第二透镜(612),所述第一透镜(611)具有第一透镜第一凹面(6111)和第一透镜第二凹面(6112),所述第二透镜(612)具有第二透镜第一凹面(6121)和第二透镜第二凹面(6122),所述第二透镜第二凹面(6122)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
  12. 根据权利要求11所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第一透镜(611)进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第二透镜(612)进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  13. 根据权利要求12所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述第一透镜第一凹面(6111)为球面或者非球面,所述垂直腔面发射激光器VCSEL芯片(2)任意发射点,光线CC II与光轴OZ的夹角为γ,光线CC II经过第一透镜第一凹面(6111)后,其折射光线C IIC III与光轴OZ的夹角保持不变,其为γ,该光线经过第一透镜第二凹面(6112)再次折射之后,其出射光线C IIIC IV的配光角度为β,边缘光线E IIE III经过第一透镜第二凹面(6112)折射之后,其出射光线E IIIE IV的配光角度为第一透镜(611)的最大配光角度βmax,所述第一透镜(611)的最大配光角度βmax为15°,所述第一透镜第二凹面(6112)满足配光条件:
    Figure PCTCN2020102181-appb-100001
  14. 根据权利要求13所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述第二透镜第二凹面(6122)边缘光线E IVE V经过第凹透镜第二凹面(6122)折射之后,其出射光线与光轴OZ的夹角为θ max,其它任意光线C IVC V经过第二透镜第二凹面(6122)折射之后,其出射光线与OZ的夹 角为θ,所述第二透镜第二凹面(6122)满足配光条件:
    Figure PCTCN2020102181-appb-100002
  15. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由两片凹透镜和其中一面为菲涅尔透镜组合成的第二广角扩束透镜系统(62),所述第二广角扩束透镜系统(62)与垂直腔面发射激光器VCSEL芯片(2)之间装设有第二硅胶(12),所述第二广角扩束透镜系统(62)包括第三透镜(621),装设在第三透镜(621)上方的第四透镜(622),所述第三透镜(621)具有第三透镜第一凹面(6211)和第三透镜第二凹面(6212),所述第四透镜(622)具有第四透镜第一凹面(6221)和第四透镜第二凹面(6222),所述第四透镜第二凹面(6222)进行分段并将每一小段的斜面平铺到同一个平面上,形成锯齿状的菲涅尔面,所述第三透镜第二凹面(6212)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
  16. 根据权利要求15所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第三透镜(621)进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第四透镜(622)进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  17. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由一片凹透镜和自由曲面凹透镜组合成的第三广角扩束透镜系统(63),所述第三广角扩束透镜系统(63)包括第五透镜(631),装设在第五透镜(631)上方的第六透镜(632),所述第五透镜(631)具有第五透镜第一凹面(6311)和第五透镜第二凹面(6312),所述第六透镜(632)具有第六透镜第一凹面(6321)和第六透镜 第二凹面(6322),所述第六透镜第二凹面(6322)为X轴横向及Y轴纵向方向非对称分布的自由曲面配光透镜,所述自由曲面配光透镜沿X轴横向配光角度较大,厚度比较厚,沿Y轴纵向配光角度较小,厚度比较薄,所述第五透镜第二凹面(6312)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
  18. 根据权利要求17所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第五透镜(631)进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第六透镜(632)进行第二次扩束,第二次扩束后沿X轴方向输出的光束角全角为2θmax,所述60°≤2θmax≤150°,沿Y轴方向输出的光束角全角为2θ’max,所述60°≤2θ’max≤150°。
  19. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由两片凹透镜其中至少一个镜面设置为局部磨砂或者整面磨砂面组合成的第四广角扩束透镜系统(64),所述第四广角扩束透镜系统(64)包括第七透镜(641),装设在第七透镜(641)上方的第八透镜(642),所述第七透镜(641)具有第七透镜第一凹面(6411)和第七透镜第二凹面(6412),所述第八透镜(642)具有第八透镜第一凹面(6421)和第八透镜第二凹面(6422),所述第七透镜(641)和第八透镜(642)其中至少一个镜面设置为局部磨砂或者整面磨砂面,所述第八透镜第二凹面(6422)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面。
  20. 根据权利要求19所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第七透镜(641)进行第一次扩束,第一次扩束后的最大的光束角全角为2βmax,所述30°≤2βmax≤75°,经第八透镜(642)进行第二次扩束,第二次扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  21. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射 模块,其特征在于,所述广角扩束透镜系统(6)为由三片透镜组合成的第五广角扩束透镜系统(65),所述第五广角扩束透镜系统(65)包括第九透镜(651),装设在第九透镜(651)上方的第十透镜(652),装设在第十透镜(652)上方的第十一透镜(653),所述第九透镜(651)为双面凹透镜,具有负屈光度,所述第十透镜(652)为凹凸透镜,所述第十透镜(652)具有第十透镜第一凹面(6521)和第十透镜第二凸面(6522),具有屈光度,所述第十一透镜(653)为凹透镜,所述第十一透镜(653)具有第十一透镜第一凹面(6531)和第十一透镜第二凹面(6532),具有负屈光度,所述第十一透镜第二凹面(6532)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第五广角扩束透镜系统(65)进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  22. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由四片透镜组合成的第六广角扩束透镜系统(66),所述第六广角扩束透镜系统(66)包括第十二透镜(661),装设在第十二透镜(661)上方的第十三透镜(662),装设在第十三透镜(662)上方的第十四透镜(663),装设在第十四透镜(663)上方的第十五透镜(664),所述第十二透镜(661)为双面凹透镜,具有负屈光度,所述第十三透镜(662)为凹凸透镜,所述第十三透镜(662)具有第十三透镜第一凹面(6621)和第十三透镜第二凸面(6622),具有屈光度,所述第十四透镜(663)为凹凸透镜,所述第十四透镜(663)具有第十四透镜第一凹面(6631)和第十四透镜第二凸面(6632),具有屈光度,所述第十五透镜(664)为凹透镜,所述第十五透镜(664)具有第十五透镜第一凹面(6641)和第十五透镜第二凹面(6642),具有负屈光度,所述第十五透镜第二凹面(6642)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第六广角扩束透镜系统(66)进行扩束,扩束 后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  23. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)为由一片透镜组成的第七广角扩束透镜系统(67),所述第七广角扩束透镜系统(67)包括第十六透镜(671),所述第十六透镜(671),为双面凹透镜,具有负屈光度,所述第十六透镜(671)具有第十六透镜第一凹面(6711)和第十六透镜第二凹面(6712),所述第十六透镜第二凹面(6712)为中间凹下且逐渐向外侧作弧状坡形延伸的曲面,所述垂直腔面发射激光器VCSEL芯片(2)发射的光束经第七广角扩束透镜系统(67)进行扩束,扩束后的输出光束的光束角全角为2θmax,所述60°≤2θmax≤150°。
  24. 根据权利要求1所述的一种用于广角飞行时间光学测距的红外发射模块,其特征在于,所述广角扩束透镜系统(6)的镜片表面为镜面或者具有混光作用的鳞片面或者微结构纹理面。
  25. 一种用于广角飞行时间光学测距的红外发射模组,其特征在于,包括权利要求1-23任一项所述的一种用于广角飞行时间光学测距的红外发射模块,所述基座(10)一侧装设有广角接收器组件(4),所述广角接收器组件(4)包括光学成像系统(7),装设在光学成像系统(7)下方的接收光信号的飞行时间成像器(8),所述飞行时间成像器(8)经过处理后输出图像信息。
  26. 根据权利要求25所述的一种用于广角飞行时间光学测距的红外发射模组,其特征在于,所述飞行时间成像器(8)装设在基板(1)上或者装设在单独的另一块基板上。
  27. 根据权利要求25所述的一种用于广角飞行时间光学测距的红外发射模组,其特征在于,所述光学成像系统(7)为由两片光学镜片组合成的第一光学成像系统(71),所述第一光学成像系统(71)包括从物侧到像侧依次设置的第一广角凹透镜(711)、第一隔圈(712)、第一孔径光阑(713)、第二 隔圈(714)和第一凸透镜(715),所述第一广角凹透镜(711)为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述第一凸透镜(715)为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第一光学成像系统(71)的接收角度为2ψmax。
  28. 根据权利要求25所述的一种用于广角飞行时间光学测距的红外发射模组,其特征在于,所述光学成像系统(7)为由三片光学镜片组合成的第二光学成像系统(72),所述第二光学成像系统(72)包括从物侧到像侧依次设置的第二广角凹透镜(721)、第三隔圈(722)、第二孔径光阑(723)、第二凸透镜(724)和半弯月透镜(725),所述第二广角凹透镜(721)为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二凸透镜(724)为低折射率、高色散系数材料,其折射率nd<1.58,阿贝系数vd>50,所述半弯月透镜(725)为高折射率、低色散系数材料,其折射率nd>1.6、阿贝系数vd<30,所述第二光学成像系统(72)的接收角度为2ψmax。
  29. 根据权利要求27或28所述的一种用于广角飞行时间光学测距的红外发射模组,其特征在于,所述第一光学成像系统(71)和第二光学成像系统(72)其中一片镜片的其中一个面,其镀有红外通过、可见光阻挡的红外带通滤波膜,或者采用单独的一个平面镜片作为红外通过、可见光阻挡的红外带通滤波片,或者在模组保护玻璃上镀红外通过、可见光阻挡的红外带通滤波膜。
PCT/CN2020/102181 2020-07-01 2020-07-15 一种用于广角飞行时间光学测距的红外发射模块及其模组 WO2022000575A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010638142.6 2020-07-01
CN202010638142.6A CN111830485A (zh) 2020-07-01 2020-07-01 一种用于广角飞行时间光学测距的红外发射模块及其模组

Publications (1)

Publication Number Publication Date
WO2022000575A1 true WO2022000575A1 (zh) 2022-01-06

Family

ID=72901125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102181 WO2022000575A1 (zh) 2020-07-01 2020-07-15 一种用于广角飞行时间光学测距的红外发射模块及其模组

Country Status (2)

Country Link
CN (1) CN111830485A (zh)
WO (1) WO2022000575A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453495A (zh) * 2022-09-20 2022-12-09 深圳市穗晶半导体有限公司 一种光传感装置、系统及制备方法
CN116202425A (zh) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 一种激光测距装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285912A (zh) * 2020-10-29 2021-01-29 中国航空工业集团公司洛阳电光设备研究所 一种基于单透镜的广角光学系统
TWI798834B (zh) * 2021-03-18 2023-04-11 神盾股份有限公司 光感測陣列模組與光收發裝置
CN113050110A (zh) * 2021-04-09 2021-06-29 艾普柯微电子(江苏)有限公司 光电传感器及其制备方法、测距装置
TWI766658B (zh) * 2021-04-23 2022-06-01 大立光電股份有限公司 光學鏡片系統及飛時測距感測模組
CN114296298A (zh) * 2021-06-22 2022-04-08 东莞市美光达光学科技有限公司 一种用于辅助照明、测距的配光结构及其配光方法
CN115144840B (zh) * 2022-09-02 2022-12-30 深圳阜时科技有限公司 一种扩束透镜、发射模组、光电检测装置及电子设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317720A (ja) * 2005-05-13 2006-11-24 Hitachi Koki Co Ltd 広角レンズ
US20140098223A1 (en) * 2012-10-09 2014-04-10 Optex Co., Ltd. Size measurement apparatus and size measurement method
CN104425692A (zh) * 2013-08-26 2015-03-18 首尔半导体株式会社 透镜及用于表面照明的发光模块
CN108074947A (zh) * 2017-12-26 2018-05-25 广东欧珀移动通信有限公司 输入输出模组和电子装置
CN108386740A (zh) * 2012-03-05 2018-08-10 首尔半导体株式会社 用于短投照明的照明透镜
CN208366323U (zh) * 2018-05-21 2019-01-11 余姚舜宇智能光学技术有限公司 光信号接收光学镜组
CN109996991A (zh) * 2017-02-13 2019-07-09 欧姆龙株式会社 激光照明装置和具有该激光照明装置的周边监视传感器
CN110084090A (zh) * 2019-01-22 2019-08-02 东莞市美光达光学科技有限公司 一种光学式屏下指纹识别模组
CN110966525A (zh) * 2019-12-20 2020-04-07 广东晶科电子股份有限公司 一种透镜和发光器件
CN111142215A (zh) * 2018-11-05 2020-05-12 南昌欧菲精密光学制品有限公司 光学组件、识别模组及移动终端
CN210629640U (zh) * 2019-11-08 2020-05-26 南昌欧菲生物识别技术有限公司 光发射模组、深度相机和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119816B2 (en) * 2012-11-21 2018-11-06 Nikon Metrology Nv Low drift reference for laser radar
JP2015179019A (ja) * 2014-03-19 2015-10-08 株式会社東芝 光軸指向装置
CN113325391A (zh) * 2017-12-08 2021-08-31 浙江舜宇智能光学技术有限公司 广角tof模组及其应用
CN213181998U (zh) * 2020-07-01 2021-05-11 东莞市美光达光学科技有限公司 一种用于广角飞行时间光学测距的红外发射模块及其模组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317720A (ja) * 2005-05-13 2006-11-24 Hitachi Koki Co Ltd 広角レンズ
CN108386740A (zh) * 2012-03-05 2018-08-10 首尔半导体株式会社 用于短投照明的照明透镜
US20140098223A1 (en) * 2012-10-09 2014-04-10 Optex Co., Ltd. Size measurement apparatus and size measurement method
CN104425692A (zh) * 2013-08-26 2015-03-18 首尔半导体株式会社 透镜及用于表面照明的发光模块
CN109996991A (zh) * 2017-02-13 2019-07-09 欧姆龙株式会社 激光照明装置和具有该激光照明装置的周边监视传感器
CN108074947A (zh) * 2017-12-26 2018-05-25 广东欧珀移动通信有限公司 输入输出模组和电子装置
CN208366323U (zh) * 2018-05-21 2019-01-11 余姚舜宇智能光学技术有限公司 光信号接收光学镜组
CN111142215A (zh) * 2018-11-05 2020-05-12 南昌欧菲精密光学制品有限公司 光学组件、识别模组及移动终端
CN110084090A (zh) * 2019-01-22 2019-08-02 东莞市美光达光学科技有限公司 一种光学式屏下指纹识别模组
CN210629640U (zh) * 2019-11-08 2020-05-26 南昌欧菲生物识别技术有限公司 光发射模组、深度相机和电子设备
CN110966525A (zh) * 2019-12-20 2020-04-07 广东晶科电子股份有限公司 一种透镜和发光器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202425A (zh) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 一种激光测距装置
CN116202425B (zh) * 2022-06-15 2023-09-12 武汉鑫岳光电科技有限公司 一种激光测距装置
CN115453495A (zh) * 2022-09-20 2022-12-09 深圳市穗晶半导体有限公司 一种光传感装置、系统及制备方法

Also Published As

Publication number Publication date
CN111830485A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022000575A1 (zh) 一种用于广角飞行时间光学测距的红外发射模块及其模组
CN111505832B (zh) 光学组件
CN108318874B (zh) 一种面阵激光雷达及移动平台
US10690912B2 (en) Prismatic AR display device
KR101487344B1 (ko) 광소자 및 그러한 광소자를 포함하는 복사 방출 장치
US10185211B2 (en) Projection light source device
CN108549085B (zh) 一种发射镜头、面阵激光雷达及移动平台
US11698441B2 (en) Time of flight-based three-dimensional sensing system
CN106371101B (zh) 一种智能测距及避障的装置
CN104819433B (zh) 椭圆光斑实现装置、光斑调节装置及手术灯
WO2015043521A1 (zh) 激光模组
US20180017668A1 (en) Ranging system, integrated panoramic reflector and panoramic collector
KR101439411B1 (ko) 전방위 렌즈 모듈
WO2022042078A1 (zh) 激光光源、光发射单元和激光雷达
WO2021057809A1 (zh) 激光雷达及其控制方法和具有激光雷达的设备
CN114296298A (zh) 一种用于辅助照明、测距的配光结构及其配光方法
JP2023518123A (ja) 対物レンズ、対物レンズの使用、対物レンズを含む計測システム及び対物レンズにおける両面非球面プラスチックレンズの使用
CN213181998U (zh) 一种用于广角飞行时间光学测距的红外发射模块及其模组
CN112462387A (zh) 一种仿生复眼式激光雷达系统及方法
KR20140145482A (ko) 차량용 tof 카메라
CN213600890U (zh) 一种将光束扩大到120°的广角飞行时间传感器模组
CN210514770U (zh) 一种改变菲涅尔透镜光路的结构
KR102421120B1 (ko) Ir-led 광 강도 증폭 장치
CN208921064U (zh) 一种激光相机及其光学成像系统
WO2020142878A1 (zh) 一种测距装置及移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942887

Country of ref document: EP

Kind code of ref document: A1