WO2022000384A1 - 一种资源配置方法、终端设备及网络设备 - Google Patents

一种资源配置方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2022000384A1
WO2022000384A1 PCT/CN2020/099790 CN2020099790W WO2022000384A1 WO 2022000384 A1 WO2022000384 A1 WO 2022000384A1 CN 2020099790 W CN2020099790 W CN 2020099790W WO 2022000384 A1 WO2022000384 A1 WO 2022000384A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
pdcch search
harq process
target
terminal device
Prior art date
Application number
PCT/CN2020/099790
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080100728.5A priority Critical patent/CN115516962A/zh
Priority to PCT/CN2020/099790 priority patent/WO2022000384A1/zh
Publication of WO2022000384A1 publication Critical patent/WO2022000384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a resource configuration method, terminal equipment and network equipment.
  • NTN non-terrestrial network
  • the signal propagation delay between the terminal equipment and the satellite in NTN is greatly increased.
  • the hybrid automatic repeat request hybrid automatic repeat request
  • HARQ hybrid automatic repeat request
  • the retransmission mechanism is insufficient to support continuous transmission of data in NTN, resulting in a lower downlink data transmission rate in NTN.
  • the embodiments of the present invention provide a resource configuration method, terminal equipment and network equipment, which can solve the problem that since the maximum number of HARQ processes supported by the current NR protocol is 16, the reselection mechanism is insufficient to support continuous transmission of data in NTN, so that The problem of low data transfer rates in NTN.
  • a first aspect provides a resource configuration method, comprising: receiving multiple resource sets configured by a network device, at least one resource set in the multiple resource sets is associated with a hybrid automatic repeat request HARQ process group number;
  • the target HARQ identifier is determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set.
  • a resource allocation method including:
  • a network device can configure multiple resource sets for a terminal device, and at least one resource set in the multiple resource sets is associated with a HARQ process group number, so that after receiving a message sent by the network device After the downlink control information, the HARQ process group number associated with the target resource set where the downlink control information is located may be determined, and then according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set, you can The target HARQ is determined.
  • the HARQ can be grouped, and the unique HARQ identifier can be jointly determined through the group number and the HARQ identifier, so that more than 16 HARQ processes can be supported, so that the retransmission mechanism can support NTN.
  • the continuous transmission of data increases the data transmission rate in NTN.
  • a terminal device including:
  • a receiving module configured to receive multiple resource sets configured by the network device, at least one resource set in the multiple resource sets is associated with a HARQ process group number; receive downlink control information sent by the network device;
  • a processing module configured to determine the HARQ process group number associated with the target resource set where the downlink control information is located, where the target resource set is a resource set in the multiple resource sets; according to the downlink control information in the The indicated HARQ identifier and the HARQ process group number associated with the target resource set determine the target HARQ identifier.
  • a network device including:
  • a sending module is configured to configure multiple resource sets for a terminal device, at least one resource set in the multiple resource sets is associated with a HARQ process group number; send downlink control information to the terminal device.
  • a terminal device including:
  • a receiver configured to receive multiple resource sets configured by a network device; wherein at least one resource set in the multiple resource sets is associated with a HARQ process group number; and receive downlink control information sent by the network device;
  • a processor configured to determine the HARQ process group number associated with the target resource set where the downlink control information is located, where the target resource set is a resource set in the multiple resource sets; according to the indication in the downlink control information
  • the HARQ identifier of the target resource set and the HARQ process group number associated with the target resource set determine the target HARQ identifier.
  • a network device comprising: a transmitter configured to configure multiple resource sets for a terminal device, at least one resource set in the multiple resource sets is associated with a HARQ process group number; Send downlink control information.
  • a computer-readable storage medium comprising: computer instructions that, when executed on a computer, cause the computer to execute the method of the implementation of the first aspect above, or to execute the implementation of the second aspect above Methods.
  • a computer program product including computer instructions, when the computer program product runs on a computer, the computer executes the computer instructions, so that the computer executes the method of the implementation manner of the above-mentioned first aspect, or executes the above-mentioned first aspect. Two ways to implement the method.
  • a ninth aspect provides a chip, where the chip is coupled to a memory in a terminal device, so that the chip calls program instructions stored in the memory when running, so that the terminal device executes the method of the implementation of the first aspect above, or makes the network
  • the device performs the method of the implementation manner of the second aspect above.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a resource configuration method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 1 of indicating a HARQ process by taking 4 groups as an example according to an embodiment of the present invention
  • FIG. 4 is a second schematic diagram of a resource configuration method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 2 of indicating a HARQ process by taking 4 groups as an example according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a communication satellite provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a mobile phone according to an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used to mean serving as an example, illustration or illustration. Any embodiments or designs described as “exemplary” or “such as” in the embodiments of the present invention should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • multiple resource sets refer to two resource sets, or, more than two resource sets.
  • 3GPP is studying the NTN technology, which generally provides communication services to terrestrial users by means of satellite communication. Compared with terrestrial cellular network communication, satellite communication has the following advantages:
  • satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • Satellite communication has great social value. Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites can be divided into low-Earth orbit (LEO) satellites, medium-Earth orbit (MEO) satellites, geostationary Earth orbit (GEO) satellites, and high-elliptical orbit (GEO) satellites according to their orbital altitudes.
  • LEO and GEO low-Earth orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of the single-hop communication between the user equipment and the satellite is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of the single-hop communication between the user equipment and the satellite is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • NR has a two-level retransmission mechanism: the HARQ mechanism at the media access control (MAC) layer and the automatic repeat-request (ARQ) mechanism at the radio link control (RLC) layer.
  • the retransmission of lost or erroneous data is mainly handled by the HARQ mechanism of the MAC layer, supplemented by the retransmission function of the RLC layer.
  • the HARQ mechanism of the MAC layer can provide fast retransmission, and the ARQ mechanism of the RLC layer can provide reliable data transmission.
  • HARQ uses the Stop-and-Wait Protocol (Stop-and-Wait Protocol) to send data.
  • Stop-and-wait Protocol After the sender sends a terabyte (TB), it stops and waits for an acknowledgment. In this way, the sender stops and waits for an acknowledgment after each transmission, resulting in low user throughput. Therefore, NR uses multiple parallel HARQ processes. When one HARQ process is waiting for acknowledgment information, the sender can use another HARQ process to continue sending data.
  • These HARQ processes collectively form a HARQ entity, which incorporates a stop-and-wait protocol, allowing data to be transmitted continuously.
  • HARQ is divided into uplink HARQ and downlink HARQ. Uplink HARQ is for uplink data transmission, and downlink HARQ is for downlink data transmission, and the two are independent of each other.
  • the terminal equipment has its own HARQ entity corresponding to each serving cell.
  • Each HARQ entity maintains a set of parallel downlink HARQ processes.
  • each downlink carrier supports up to 16 HARQ processes.
  • the base station may indicate the maximum number of downlink HARQ processes to the UE through semi-static configuration of Radio Resource Control (Radio Resource Control, RRC) signaling according to the network deployment situation. If the network does not provide corresponding configuration parameters, the default number of downlink HARQ processes is 8.
  • RRC Radio Resource Control
  • Each downlink HARQ process corresponds to a HARQ process identifier (HARQ ID), and the BCCH uses a dedicated broadcast HARQ process.
  • HARQ ID HARQ process identifier
  • each downlink HARQ process can only process one TB at the same time; for terminals that support downlink space division multiplexing, each downlink HARQ process can process one or two TBs simultaneously.
  • HARQ is divided into two categories: synchronous and asynchronous in the time domain, and non-adaptive and adaptive in the frequency domain.
  • NR downlink uses an asynchronous adaptive HARQ mechanism.
  • Asynchronous HARQ, ie retransmission, can occur at any time, and the time interval between retransmission of the same TB and the previous transmission is not fixed.
  • Adaptive HARQ can change the frequency domain resources and modulation and coding scheme (MCS) used for retransmission.
  • MCS modulation and coding scheme
  • the signal propagation delay between terminal equipment (or user equipment) and satellites in NTN is greatly increased.
  • the hybrid automatic retransmission of the current terrestrial NR system is directly used in NTN request (hybrid automatic repeat request, HARQ) mechanism, since the current maximum number of HARQ processes supported by the NR protocol is 16, the reselection mechanism is insufficient to support the continuous transmission of data in NTN, resulting in a lower data transmission rate in NTN.
  • HARQ hybrid automatic repeat request
  • embodiments of the present invention provide a resource configuration method, a terminal device, and a network device.
  • the network device can configure multiple resource sets for the terminal device, and at least one resource set in the multiple resource sets is associated with a HARQ process group number, so that after receiving the downlink control information sent by the network device, the downlink control information can be determined.
  • the HARQ process group number associated with the target resource set where the information is located, and then the target HARQ can be determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set.
  • the HARQ can be grouped, and the unique HARQ identifier can be jointly determined through the group number and the HARQ identifier, so that more than 16 HARQ processes can be supported, so that the retransmission mechanism can support NTN.
  • the continuous transmission of data increases the data transmission rate in NTN.
  • the resource configuration method provided by the embodiment of the present invention can be applied to a wireless communication system.
  • FIG. 1 it is a schematic diagram of a system architecture of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system includes terminal equipment and network equipment, and the network equipment is a satellite.
  • the connection between the above-mentioned terminal device and the satellite may be a wireless connection.
  • the 1 can configure multiple resource sets to the terminal device; wherein, at least one resource in the multiple resource sets The set is associated with a hybrid automatic repeat request HARQ process grouping number; and the satellite can also send downlink control information to the terminal equipment, and the terminal equipment can determine the HARQ process grouping number associated with the target resource set where the received downlink control information is located, The target HARQ identifier is determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set, where the target resource set is one resource set among multiple resource sets.
  • the terminal device in this embodiment of the present invention may be referred to as user equipment (user equipment, UE).
  • the terminal device can be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant) digital assistant, PDA) and other equipment, the terminal equipment can also be a mobile phone, a mobile station (mobile station, MS), a mobile terminal (mobile terminal), a notebook computer, etc.
  • RAN communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone) or a computer with a mobile terminal, etc. Exchange voice and/or data with the radio access network.
  • the terminal device may also be a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a future 5G network or a terminal device in a future evolved network, etc.
  • a computing device or other processing device connected to a wireless modem
  • vehicle-mounted device a wearable device
  • terminal device in a future 5G network a terminal device in a future evolved network
  • the network device in this embodiment of the present invention may be a communication satellite in an NTN system, or may be an evolution in an LTE system, an NR communication system, or an authorized auxiliary access long-term evolution (LAA-LTE) system type base station (evolutional node B, referred to as eNB or e-NodeB) macro base station, micro base station (also called “small base station”), pico base station, access point (AP), transmission point (transmission point, TP) or a new generation base station (new generation Node B, gNodeB), etc.
  • LAA-LTE auxiliary access long-term evolution
  • a resource configuration method provided by an embodiment of the present invention can be applied to scheduling uplink data transmission/downlink data transmission through downlink control information.
  • a resource configuration method provided by an embodiment of the present invention includes: a network device configures a terminal device with multiple resource sets, and at least one resource set in the multiple resource sets is associated with a HARQ process group number; the network device sends downlink control information to the terminal device , correspondingly, the terminal device receives the downlink control information sent by the network device, determines the HARQ process group number associated with the target resource set where the downlink control information is located, and determines the HARQ process group number associated with the target resource set according to the HARQ identifier indicated in the downlink control information and the target resource set.
  • the group number determines the target HARQ identifier, and the target resource set is one resource set among multiple resource sets.
  • HARQ processes can be grouped, the HARQ process group number is a number used to distinguish each group, and a HARQ process group number can be set for each HARQ process grouping.
  • the network device may send downlink control information on multiple configured PDCCH search spaces, and correspondingly, the terminal device may receive multiple physical downlink control channel (physical downlink control channel, PDCCH) search spaces configured by the network device. Downlink control information.
  • PDCCH physical downlink control channel
  • the foregoing resource set may include two situations:
  • each resource set in the multiple resource sets is a control resource set (control resource set).
  • each resource set in the multiple resource sets is a PDCCH search space.
  • the resource configuration method provided by the embodiment of the present invention is exemplarily described below based on the situations of two different resource sets.
  • Embodiment 1 (the first case: each resource set in multiple resource sets is a control resource set)
  • an embodiment of the present invention provides a resource configuration method, and the method includes the following steps:
  • the network device configures multiple control resource sets to the terminal device.
  • the terminal device receives multiple control resource sets configured by the network device.
  • At least one control resource set in the multiple control resource sets is associated with a HARQ process group number.
  • multiple control resource sets do not overlap each other in the frequency domain.
  • the association relationship between the control resource set and the HARQ process group number may be predefined in the communication protocol, or may be configured by the network device.
  • the above multiple control resource sets may be carried by the network device in RRC signaling and configured to the terminal device.
  • the network device may carry the above multiple control resource sets in an RRC reconfiguration message and configured to the terminal device.
  • the above-mentioned multiple control resource sets may also be carried by the network device in media access control (media access control, MAC) signaling and configured to the terminal device.
  • the network device may carry the above-mentioned multiple control resource sets in the The MAC control element (control element, CE) is configured to the terminal device.
  • the foregoing multiple control resource sets may also be configured by the network device to the terminal device by being carried in other messages, which is not limited in this embodiment of the present invention.
  • the network device configures multiple PDCCH search spaces for the terminal device.
  • the terminal device receives multiple PDCCH search spaces configured by the network device.
  • At least one PDCCH search space among the multiple PDCCH search spaces is associated with one control resource set.
  • the association relationship between the PDCCH search space and the control resource set may be predefined in a communication protocol, or may be configured by a network device.
  • the above-mentioned multiple control resource sets and the above-mentioned multiple PDCCH search spaces may be carried in the same configuration message (for example, both carried in the RRC reconfiguration message) for configuration, or may be configured through different configuration messages (for example, a It is carried in the RRC reconfiguration message, and the other is carried in the MAC CE) for configuration, which is not limited in this embodiment of the present invention.
  • the network device sends downlink control information to the terminal device on multiple PDCCH search spaces.
  • the terminal device receives downlink control information on multiple PDCCH search spaces configured by the network device.
  • the terminal device determines a target PDCCH search space where the downlink control information is located.
  • the target PDCCH search space is one PDCCH search space among multiple PDCCH search spaces.
  • the terminal device determines a target control resource set associated with the target PDCCH search space.
  • the target PDCCH search space since at least one PDCCH search space among the multiple PDCCH search spaces is associated with a control resource set, after the target PDCCH search space is determined, it can be determined according to the association between the PDCCH search space and the control resource set.
  • the target controls the set of resources.
  • the terminal device determines the HARQ process group number associated with the target control resource set.
  • At least one control resource set in multiple control resource sets is associated with a HARQ process group number, after the target control resource set is determined, it can be determined according to the association relationship between the control resource set and the HARQ process group number Get the unique HARQ process group number.
  • the terminal device determines the target HARQ identifier according to the HARQ identifier and the HARQ process group number indicated in the downlink control information.
  • 204 to 206 in the above FIG. 2 can also be replaced with the following 208 and 209 .
  • the terminal device determines the target control resource set where the downlink control information is located.
  • the terminal device determines the HARQ process group number associated with the target control resource set.
  • the maximum value of the HARQ process group number is determined by the maximum number of HARQ processes.
  • the minimum value of the HARQ process group number is 1.
  • the maximum value of the HARQ process grouping number is specifically determined by the following formula:
  • M ceil(N/2 n ); wherein, M is the maximum value of the HARQ process group number, N is the maximum number of HARQ processes supported by the terminal device, and n is the number of bits used to indicate the HARQ identifier in the downlink control information .
  • the downlink control information indicates the HARQ identifier (HARQ-ID) through 4 bits, that is to say, the downlink control information may indicate 16 HARQ processes.
  • the maximum number of HARQ processes (which may be expressed as N) supported by the terminal device in the NTN may be indicated in a pre-defined manner in a communication protocol or a manner in which a network device is configured.
  • the network device when the network device configures the association relationship between the resource set and the HARQ process group number, the association relationship between the PDCCH search space and the control resource set, and the maximum number of HARQ processes supported by the terminal device,
  • the configuration may be performed through RRC signaling, MAC signaling, or other messages, which is not specifically limited in this embodiment of the present invention.
  • the network device configures the relationship between the resource set and the HARQ process group number, the relationship between the PDCCH search space and the control resource set, and the mode of the maximum number of HARQ processes supported by the terminal device. It can include at least one of the following configuration methods:
  • the HARQ process group number may be expressed as m, where m is greater than or equal to 1, and m is less than or equal to M.
  • the target HARQ identity (also called the extended HARQ identity) can be calculated according to the following formula:
  • e-HARQ-ID (m-1)*2 n +HARQ-ID, where e-HARQ-ID is the extended HARQ identifier, m is the HARQ process group number, and HARQ-ID is the HARQ indicated in the downlink control information identifier, where n is the number of bits used to indicate the HARQ identifier in the downlink control information.
  • the HARQ identifier is indicated by 4 bits in the downlink control information, which can indicate 16 HARQ processes.
  • the information format of the HARQ identifier indicated by 4 bits in the downlink control information in the related art is not changed.
  • more than 16 HARQ processes can be indicated by means of the HARQ process group number and these 4 bits.
  • the number of bits n used to indicate the HARQ identifier in the downlink control information can be any integer greater than or equal to 1.
  • the HARQ process group number and the n bits can be used to indicate more than 2 n bits.
  • the group numbers are 1, 2, 3, and 4, and each group of 16 HARQ processes
  • the first group may indicate the 0th to 15th HARQ processes
  • the second group may indicate the 16 to 31 HARQ processes
  • the 3rd group may indicate the 32nd to 47th HARQ processes
  • the 4th group may indicate the 48th to 63rd HARQ processes.
  • FIG. 3 it is a schematic diagram of indicating a HARQ process by taking four groups as an example, and each group in FIG. 3 is associated with at least one control resource set.
  • the control resource sets associated with different groups do not overlap in the frequency domain.
  • the network device can configure multiple control resource sets for the terminal device, and at least one control resource set in the multiple control resource sets is associated with a HARQ process group number, so that when the network device receives the After the downlink control information is sent, the HARQ process group number associated with the target control resource set where the downlink control information is located can be determined, and then the target can be determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number.
  • HARQ the network device can configure multiple control resource sets for the terminal device, and at least one control resource set in the multiple control resource sets is associated with a HARQ process group number, so that when the network device receives the After the downlink control information is sent, the HARQ process group number associated with the target control resource set where the downlink control information is located can be determined, and then the target can be determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number.
  • the HARQ can be grouped, and the unique HARQ identifier can be jointly determined through the group number and the HARQ identifier, so that more than 16 HARQ processes can be supported, so that the retransmission mechanism can support NTN.
  • the continuous transmission of data increases the data transmission rate in NTN.
  • Embodiment 2 (Second case: each resource set in multiple resource sets is a PDCCH search space)
  • an embodiment of the present invention provides a resource configuration method, and the method includes the following steps:
  • the network device configures multiple PDCCH search spaces for the terminal device.
  • the terminal device receives multiple PDCCH search spaces configured by the network device.
  • At least one PDCCH search space among the multiple PDCCH search spaces is associated with a HARQ process group number.
  • the PDCCH monitoring occasions corresponding to the above-mentioned multiple PDCCH search spaces do not overlap each other in the time domain.
  • the association relationship between the PDCCH search space and the HARQ process group number may be predefined in a communication protocol, or may be configured by a network device.
  • the multiple PDCCH search spaces may be carried by the network device in RRC signaling and configured to the terminal device.
  • the network device may carry the multiple PDCCH search spaces in the RRC reconfiguration message and configure the terminal device.
  • the above-mentioned multiple PDCCH search spaces may also be carried by the network device in media access control (media access control, MAC) signaling and configured to the terminal device.
  • the network device may carry the above-mentioned multiple PDCCH search spaces in the The MAC control element (control element, CE) is configured to the terminal device.
  • the above-mentioned multiple PDCCH search spaces may also be configured by the network device to the terminal device by being carried in other messages, which is not limited in this embodiment of the present invention.
  • the network device sends downlink control information to the terminal device on multiple PDCCH search spaces.
  • the downlink control information is received on multiple PDCCH search spaces configured by the network device.
  • the network device may further configure multiple control resource sets, and at least one PDCCH search space among the multiple PDCCH search spaces is associated with one control resource set.
  • the terminal device determines a target PDCCH search space where the downlink control information is located.
  • the target PDCCH search space is one PDCCH search space among multiple PDCCH search spaces.
  • the terminal device determines the HARQ process group number associated with the target PDCCH search space.
  • the relationship between the PDCCH search space and the HARQ process group number can be determined according to the relationship between the PDCCH search space and the HARQ process group number. Determine the unique HARQ process grouping number.
  • the terminal device determines the target HARQ identifier according to the HARQ identifier and the HARQ process group number indicated in the downlink control information.
  • the method for determining the target HARQ identifier in 405 in this embodiment is similar to the method for determining the target HARQ identifier in 207 in the above-mentioned Embodiment 1, and reference may be made to the relevant description in 207, which will not be repeated here.
  • the group numbers are 1, 2, 3, and 4, and each group of 16 HARQ processes
  • the first group may indicate the 0th to 15th HARQ processes
  • the second group may indicate the 16 to 31 HARQ processes
  • the 3rd group may indicate the 32nd to 47th HARQ processes
  • the 4th group may indicate the 48th to 63rd HARQ processes.
  • FIG. 5 it is a schematic diagram of indicating a HARQ process by taking 4 groups as an example, and each group in FIG. 5 is associated with at least one PDCCH search space. Among them, the PDCCH search spaces associated with different groups do not overlap in the frequency domain.
  • the network device can configure multiple PDCCH search spaces for the terminal device, and at least one PDCCH search space in the multiple PDCCH search spaces is associated with a HARQ process group number.
  • the HARQ process group number associated with the target PDCCH search space where the downlink control information is located can be determined, and then the target can be determined according to the HARQ identifier indicated in the downlink control information and the HARQ process group number.
  • the HARQ can be grouped, and the unique HARQ identifier can be jointly determined through the group number and the HARQ identifier, so that more than 16 HARQ processes can be supported, so that the retransmission mechanism can support NTN.
  • the continuous transmission of data increases the data transmission rate in NTN.
  • an embodiment of the present invention provides a network device, including:
  • the sending module 601 is configured to configure multiple resource sets for the terminal device; wherein, at least one resource set in the multiple resource sets is associated with a HARQ process group number; send downlink control information to the terminal device.
  • the sending module 601 is further configured to configure multiple PDCCH search spaces before sending downlink control information to the terminal device, and at least one PDCCH search space in the multiple PDCCH search spaces is associated with a control resource set;
  • the sending module 601 is specifically configured to send downlink control information to a terminal device on multiple PDCCH search spaces.
  • each resource set in the multiple resource sets is a control resource set, and the multiple resource sets do not overlap each other in the frequency domain.
  • At least one PDCCH search space among the multiple PDCCH search spaces is associated with one control resource set.
  • each resource set in the multiple resource sets is a PDCCH search space, and the PDCCH monitoring occasions corresponding to the multiple resource sets do not overlap each other in the time domain.
  • the maximum value of the HARQ process group number is determined by the maximum number of HARQ processes.
  • the maximum value of the HARQ process grouping number is specifically determined by the following formula:
  • M ceil(N/2 n ); wherein, M is the maximum value of the HARQ process group number, N is the maximum number of HARQ processes supported by the terminal device, and n is the number of bits used to indicate the HARQ identifier in the downlink control information .
  • the association between the resource set and the HARQ process group number, the association between the PDCCH search space and the control resource set, and the maximum number of HARQ processes supported by the terminal device are determined by at least one of the following methods: :
  • the exemplary division is performed by functional modules, and other division manners may also be used.
  • An embodiment of the present invention also provides a network device, including: a memory storing executable program codes;
  • a processor coupled to the memory
  • the processor invokes the executable program code stored in the memory to execute the resource configuration method executed by the network device in the embodiment of the present invention.
  • the network device in the embodiment of the present invention may be a communication satellite, and the communication satellite may include:
  • the transmitter 701 is configured to configure multiple resource sets for a terminal device; wherein, at least one resource set in the multiple resource sets is associated with a HARQ process group number; and sends downlink control information to the terminal device.
  • the transmitter 701 is further configured to configure multiple PDCCH search spaces before sending downlink control information to the terminal device, and at least one PDCCH search space in the multiple PDCCH search spaces is associated with a control resource set;
  • the transmitter 701 is specifically configured to send downlink control information to a terminal device on multiple PDCCH search spaces.
  • each resource set in the multiple resource sets is a control resource set, and the multiple resource sets do not overlap each other in the frequency domain.
  • At least one PDCCH search space among the multiple PDCCH search spaces is associated with one control resource set.
  • each resource set in the multiple resource sets is a PDCCH search space, and the PDCCH monitoring occasions corresponding to the multiple resource sets do not overlap each other in the time domain.
  • the maximum value of the HARQ process group number is determined by the maximum number of HARQ processes.
  • the maximum value of the HARQ process grouping number is specifically determined by the following formula:
  • M ceil(N/2 n ); wherein, M is the maximum value of the HARQ process group number, N is the maximum number of HARQ processes supported by the terminal device, and n is the number of bits used to indicate the HARQ identifier in the downlink control information .
  • the minimum value of the HARQ process group number is 1.
  • the association between the resource set and the HARQ process group number, the association between the PDCCH search space and the control resource set, and the maximum number of HARQ processes supported by the terminal device are determined by at least one of the following methods: :
  • an embodiment of the present invention provides a terminal device, including:
  • a receiving module 801 configured to receive multiple resource sets configured by a network device; wherein at least one resource set in the multiple resource sets is associated with a HARQ process group number; and receive downlink control information sent by the network device;
  • the processing module 802 is used to determine the HARQ process group number associated with the target resource set where the downlink control information is located, and determine the target HARQ identifier according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set.
  • a collection is a resource collection among multiple resource collections.
  • the receiving module 801 is specifically configured to receive downlink control information on multiple PDCCH search spaces configured by the network device.
  • each resource set in the multiple resource sets is a control resource set, and the multiple resource sets do not overlap each other in the frequency domain.
  • At least one PDCCH search space among multiple PDCCH search spaces configured by the network device is associated with one control resource set.
  • the processing module 802 is specifically configured to determine a target PDCCH search space where the downlink control information is located, and the target PDCCH search space is a PDCCH search space in multiple PDCCH search spaces;
  • the processing module 802 is specifically configured to determine the target control resource set where the downlink control information is located;
  • each resource set in the multiple resource sets is a PDCCH search space, and the PDCCH monitoring occasions corresponding to the multiple resource sets do not overlap each other in the time domain.
  • the processing module 802 is specifically used to determine the target PDCCH search space where the downlink control information is located, and the target PDCCH search space is a PDCCH search space in multiple PDCCH search spaces;
  • the maximum value of the HARQ process group number is determined by the maximum number of HARQ processes.
  • the maximum value of the HARQ process grouping number is specifically determined by the following formula:
  • M ceil(N/2 n ); wherein, M is the maximum value of the HARQ process group number, N is the maximum number of HARQ processes supported by the terminal device, and n is the number of bits used to indicate the HARQ identifier in the downlink control information .
  • the minimum value of the HARQ process group number is 1.
  • the association between the resource set and the HARQ process group number, the association between the PDCCH search space and the control resource set, and the maximum number of HARQ processes supported by the terminal device are determined by at least one of the following methods: :
  • the exemplary division is performed by functional modules, and other division manners may also be used.
  • An embodiment of the present invention also provides a terminal device, including: a memory storing executable program codes;
  • a processor coupled to the memory
  • the processor invokes the executable program code stored in the memory to execute the resource configuration method executed by the terminal device in the embodiment of the present invention.
  • the terminal device in this embodiment of the present invention may be a mobile phone.
  • the mobile phone may include: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) ) module 970, processor 980, and power supply 990 and other components.
  • the radio frequency circuit 910 includes a receiver 910 and a transmitter 912 .
  • the RF circuit 910 can be used for receiving and sending signals during sending and receiving of information or during a call. In particular, after receiving the downlink information of the base station, it is processed by the processor 980; in addition, the designed uplink data is sent to the base station.
  • RF circuitry 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 910 may communicate with networks and other devices via wireless communications.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to the global system of mobile communication (global system of mobile communication, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access) multiple access, CDMA), wideband code division multiple access (WCDMA), long term evolution (long term evolution, LTE), email, short message service (short messaging service, SMS) and so on.
  • GSM global system of mobile communication
  • general packet radio service general packet radio service
  • GPRS code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • long term evolution long term evolution
  • email short message service
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920 .
  • the memory 920 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc. Additionally, memory 920 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 may be used to receive inputted numerical or character information, and generate key signal input related to user setting and function control of the mobile phone.
  • the input unit 930 may include a touch panel 931 and other input devices 932 .
  • the touch panel 931 also referred to as a touch screen, can collect touch operations made by the user on or near it (such as the user's finger, stylus, etc., any suitable object or accessory on or near the touch panel 931). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 931 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may further include other input devices 932 .
  • other input devices 932 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 931 can cover the display panel 941. When the touch panel 931 detects a touch operation on or near it, it transmits it to the processor 980 to determine the type of the touch event, and then the processor 980 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 941 .
  • the touch panel 931 and the display panel 941 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 931 and the display panel 941 can be integrated to form Realize the input and output functions of the mobile phone.
  • the cell phone may also include at least one sensor 950, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 941 and/or when the mobile phone is moved to the ear. or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the terminal device may include an acceleration sensor, a depth sensor, or a distance sensor, or the like.
  • the audio circuit 960, the speaker 961, and the microphone 962 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 960 can convert the received audio data into an electrical signal, and transmit it to the speaker 961, and the speaker 961 converts it into a sound signal for output; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 960 After receiving, it is converted into audio data, and then the audio data is output to the processor 980 for processing, and then sent to, for example, another mobile phone through the RF circuit 910, or the audio data is output to the memory 920 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it is not a necessary component of the mobile phone, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the mobile phone, and uses various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 920, and calling the data stored in the memory 9020. Various functions of the mobile phone and processing data, so as to monitor the mobile phone as a whole.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc. , the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 980.
  • the mobile phone also includes a power supply 990 (such as a battery) for supplying power to various components.
  • a power supply 990 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 980 through a power management system, so as to manage charging, discharging, and power consumption management functions through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, and the like, which will not be repeated here.
  • the RF circuit 910 is configured to receive multiple resource sets configured by the network device; wherein, at least one resource set in the multiple resource sets is associated with a HARQ process group number of a hybrid automatic repeat request; the receiving network device Downlink control information sent;
  • the processor 980 is configured to determine the HARQ process group number associated with the target resource set where the downlink control information is located, and determine the target HARQ identifier according to the HARQ identifier indicated in the downlink control information and the HARQ process group number associated with the target resource set, and the target resource A collection is a resource collection among multiple resource collections.
  • the RF circuit 910 is specifically configured to receive downlink control information on multiple physical downlink control channel PDCCH search spaces configured by the network device.
  • each resource set in the multiple resource sets is a control resource set, and the multiple resource sets do not overlap each other in the frequency domain.
  • At least one PDCCH search space among multiple PDCCH search spaces configured by the network device is associated with one control resource set.
  • the processor 980 is specifically configured to determine a target PDCCH search space where the downlink control information is located, and the target PDCCH search space is a PDCCH search space in multiple PDCCH search spaces;
  • the processor 980 is specifically configured to determine the target control resource set where the downlink control information is located;
  • each resource set in the multiple resource sets is a PDCCH search space, and the PDCCH monitoring occasions corresponding to the multiple resource sets do not overlap each other in the time domain.
  • the processor 980 is specifically configured to determine a target PDCCH search space where the downlink control information is located, and the target PDCCH search space is a PDCCH search space among multiple PDCCH search spaces;
  • the maximum value of the HARQ process group number is determined by the maximum number of HARQ processes.
  • the maximum value of the HARQ process grouping number is specifically determined by the following formula:
  • M ceil(N/2 n ); wherein, M is the maximum value of the HARQ process group number, N is the maximum number of HARQ processes supported by the terminal device, and n is the number of bits used to indicate the HARQ identifier in the downlink control information .
  • the minimum value of the HARQ process group number is 1.
  • the association between the resource set and the HARQ process group number, the association between the PDCCH search space and the control resource set, and the maximum number of HARQ processes supported by the terminal device are determined by at least one of the following methods: :
  • Embodiments of the present invention further provide a computer-readable storage medium, including: computer instructions, which, when executed on a computer, cause the computer to execute various processes of the terminal device in the foregoing method embodiments.
  • Embodiments of the present invention further provide a computer-readable storage medium, including: computer instructions, which, when executed on a computer, cause the computer to execute various processes of the network device in the foregoing method embodiments.
  • Embodiments of the present invention further provide a computer program product, including computer instructions.
  • the computer program product runs on a computer
  • the computer executes the computer instructions, so that the computer executes each process of the terminal device in the above method embodiments.
  • Embodiments of the present invention further provide a computer program product, including computer instructions.
  • the computer program product runs on a computer
  • the computer executes the computer instructions, so that the computer executes each process of the network device in the above method embodiments.
  • Embodiments of the present invention further provide a chip, where the chip is coupled to a memory in a terminal device, so that the chip invokes program instructions stored in the memory when running, so that the terminal device performs various processes of the terminal device in the above method embodiments.
  • Embodiments of the present invention further provide a chip, where the chip is coupled to a memory in a network device, so that the chip invokes program instructions stored in the memory when running, so that the network device executes various processes of the network device in the foregoing method embodiments.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • the computer-readable storage medium can be any available medium that can be stored by a computer or a data storage device such as a server, a data center, etc. that includes one or more available media integrated.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

Abstract

本发明实施例提供一种资源配置方法、终端设备及网络设备,应用于通信技术领域,本发明实施例包括:接收网络设备配置的多个资源集合,多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收网络设备发送的下行控制信息,确定下行控制信息的所在的目标资源集合所关联的HARQ进程分组号,目标资源集合为多个资源集合中的一个资源集合;根据下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。

Description

一种资源配置方法、终端设备及网络设备 技术领域
本发明涉及通信技术领域,尤其涉及一种资源配置方法、终端设备及网络设备。
背景技术
目前3GPP正在研究非地面通信网络(non terrestrial network,NTN)技术,NTN一般采用卫星通信的方式向地面终端设备提供通信服务。
NTN中终端设备与卫星之间的信号传播时延相对于新空口(New Radio,NR)系统中大幅增加,如果在NTN中直接沿用目前陆地NR系统的混合自动重传请求(hybrid automatic repeat request,HARQ)机制,那么由于目前NR协议所支持的最大HARQ进程数为16,因此导致重传机制不足以支持NTN中数据的连续传输,使得NTN中下行数据传输速率较低。
发明内容
本发明实施例提供了一种资源配置方法、终端设备及网络设备,可以解决由于目前NR协议所支持的最大HARQ进程数为16,因此导致重选机制不足以支持NTN中数据的连续传输,使得NTN中数据传输速率较低的问题。
第一方面,提供一种资源配置方法,包括:接收网络设备配置的多个资源集合,所述多个资源集合中的至少一个资源集合关联一个混合自动重传请求HARQ进程分组号;
接收所述网络设备发送的下行控制信息,确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,所述目标资源集合为所述多个资源集合中的一个资源集合;
根据所述下行控制信息中指示的HARQ标识和所述目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
第二方面,提供一种资源配置方法,包括:
向终端设备配置多个资源集合;其中,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;
向所述终端设备发送下行控制信息。
本发明实施例中提供的资源配置方法,网络设备可以为终端设备配置多个资源集合,且该多个资源集合中的至少一个资源集合关联一个HARQ进程分组号,这样在接收到网络设备发送的下行控制信息之后,可以确定该下行控制信息所在的目标资源集合所关联的HARQ进程分组号,然后根据该下行控制信息中指示的HARQ标识,以及该目标资源集合所关联的HARQ进程分组号,可以确定出目标HARQ。如此由于引入了HARQ进程分组号,这样可以将HARQ分组,并通过分组号和HARQ标识,共同确定出唯一的HARQ标识,从而可以支持多于16个HARQ进程,以使得重传机制可以支持NTN中数据的连续传输,提高了NTN中的数据传输速率。
第三方面,提供一种终端设备,包括:
接收模块,用于接收网络设备配置的多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收所述网络设备发送的下行控制信息;
处理模块,用于确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,,所述目标资源集合为所述多个资源集合中的一个资源集合;根据所述下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
第四方面,提供一种网络设备,包括:
发送模块,用于向终端设备配置多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向所述终端设备发送下行控制信息。
第五方面,提供一种终端设备,包括:
接收器,用于接收网络设备配置的多个资源集合;其中,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收所述网络设备发送的下行控制信息;
处理器,用于确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,所述目标资源集合为所述多个资源集合中的一个资源集合;根据所述下行控制信息中指示的HARQ标识和所述目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
第六方面,提供一种网络设备,包括:发送器,用于向终端设备配置多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向所述终端设备发送下行控制信息。
第七方面,提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述第一方面的实现方式的方法,或者,执行上述第二方面的实现方式的方法。
第八方面,提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述第一方面的实现方式的方法,或者,执行上述第二方面的实现方式的方法。
第九方面,提供一种芯片,芯片与终端设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得终端设备执行如上述第一方面的实现方式的方法,或者,使得网络设备执行上述第二方面的实现方式的方法。
附图说明
图1为本发明实施例提供的一种无线通信系统的架构示意图;
图2为本发明实施例提供的一种资源配置方法示意图一;
图3为本发明实施例提供的一种以4个分组为例的一种指示HARQ进程的示意图一;
图4为本发明实施例提供的一种资源配置方法示意图二;
图5为本发明实施例提供的一种以4个分组为例的一种指示HARQ进程的示意图二;
图6为本发明实施例提供的一种网络设备的结构示意图;
图7为本发明实施例提供的一种通信卫星的结构示意图;
图8为本发明实施例提供的一种终端设备的结构示意图;
图9为本发明实施例提供的一种手机的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
在本发明的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多 个资源集合是指两个资源集合,或者,两个以上资源集合。
相关技术中,3GPP正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有以下优点:
首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。
其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。
再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同可以分为低地球轨道(low-Earth orbit,LEO)卫星、中地球轨道(medium-Earth orbit,MEO)卫星、地球同步轨道(geostationary Earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户设备与卫星之间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户设备与卫星之间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
NR有两级重传机制:介质访问控制(media access control,MAC)层的HARQ机制和无线链路控制(radio link control,RLC)层的自动重传请求(Automatic Repeat-reQuest,ARQ)机制。丢失或出错的数据的重传主要是由MAC层的HARQ机制处理的,并由RLC层的重传功能进行补充。MAC层的HARQ机制能够提供快速重传,RLC层的ARQ机制能够提供可靠的数据传输。
HARQ使用停等协议(Stop-and-Wait Protocol)来发送数据。在停等协议中,发送端发送一个太字节(TB)后,就停下来等待确认信息。这样,每次传输后发送端就停下来等待确认,会导致用户吞吐量很低。因此,NR使用多个并行的HARQ进程,当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,这个实体结合了停等协议,允许数据连续传输。HARQ有上行HARQ和下行HARQ之分。上行HARQ针对上行数据传输,下行HARQ针对下行数据传输,两者相互独立。
基于目前NR协议的规定,终端设备对应每个服务小区都有各自的HARQ实体。每个HARQ实体维护一组并行的下行HARQ进程。目前每个下行载波支持最多16个HARQ进程。基站可以根据网络部署情况通过无线资源控制(Radio Resource Control,RRC)信令半静态配置向UE指示最大的下行HARQ进程数。如果网络没有提供相应的配置参数,则下行缺省的HARQ进程数为8。每个下行HARQ进程对应一个HARQ进程标识(HARQ ID),BCCH使用一个专用的广播HARQ进程。
对于不支持下行空分复用的终端,每个下行HARQ进程只能同时处理1个TB;对于支持下行空分复用的终端,每个下行HARQ进程可以同时处理1个或者2个TB。
HARQ在时域上分为同步和异步两类,在频域上分为非自适应和自适应两类。NR下行使用异步自适应HARQ机制,异步HARQ即重传可以发生在任意时刻,同一个TB的重传与上一次传输的时间间隔是不固定的。自适应HARQ即可以改变重传所使用的频域资源和调制与编码策略(modulation and coding scheme,MCS)。
NTN中终端设备(也可以是用户设备)与卫星之间的信号传播时延相对于新空口(New Radio,NR)系统中大幅增加,如果在NTN中直接沿用目前陆地NR系统的混合自动重传请求(hybrid automatic repeat request,HARQ)机制,那么由于目前NR协议所支持的最大HARQ进程数为16,因此导致重选机制不足以支持NTN中数据的连续传输,使得NTN中数据传输速率较低。
为了解决上述问题,本发明实施例提供一种资源配置方法、终端设备及网络设备。网络设备可以通过为终端设备配置多个资源集合,且该多个资源集合中的至少一个资源集合关联一个HARQ进程分组号,这样在接收到网络设备发送的下行控制信息之后,可以确定该下行控制信息所在的目标资源集合所关联的HARQ进程分组号,然后根据该下行控制信息中指示的HARQ标识,以及该目标资源集合所关联的HARQ进程分组号,可以确定出目标HARQ。如此由于引入了HARQ进程分组号,这样可以将HARQ分组,并通过分组号和HARQ标识,共同确定出唯一的HARQ标识,从而可以支持多于16个HARQ进程,以使得重传机制可以支持NTN中数据的连续传输,提高了NTN中的数据传输速率。
本发明实施例提供的资源配置方法,可以应用于无线通信系统。示例性的,如图1所示,为本发明实施例提供的一种无线通信系统的系统架构示意图。在图1中,该无线通信系统包括终端设备和网络设备,该网络设备为卫星。在实际应用中上述终端设备与卫星之间的连接可以为无线连接。在本发明实施例提供的资源配置方法应用在图1所示的无线通信系统之中时,图1中的卫星可以向终端设备配置多个资源集合;其中,多个资源集合中的至少一个资源集合关联一个混合自动重传请求HARQ进程分组号;并且该卫星还可以向终端设备发送下行控制信息,终端设备可以确定接收到的该下行控制信息所在的目标资源集合所关联的HARQ进程分组号,根据该下行控制信息中指示的HARQ标识和该目标资源集合所关联的HARQ进程分组号确定目标HARQ标识,目标资源集合为多个资源集合中的一个资源集合。
本发明实施例中的终端设备可以称之为用户设备(user equipment,UE)。该终端设备可以为个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备,该终端设备也可以为手机、移动台(mobile station,MS)、移动终端(mobile terminal)和笔记本电脑等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。终端设备还可以为有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的网络中的终端设备等。上述仅仅是一种示例,实际应用中不限于此。
本发明实施例中的网络设备可以是NTN系统中的通信卫星,也可以是LTE系统、NR通信系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基 站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。上述网络设备还可以是未来5G通信系统或未来演进网络中的其他类网络设备。
本发明实施例提供的一种资源配置方法,可以适用于通过下行控制信息对上行数据传输/下行数据传输进行调度。
本发明实施例提供的一种资源配置方法包括:网络设备向终端设备配置多个资源集合,多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;网络设备向终端设备发送下行控制信息,相应的,终端设备接收网络设备发送的下行控制信息,确定下行控制信息所在的目标资源集合所关联的HARQ进程分组号,根据下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号确定目标HARQ标识,目标资源集合为多个资源集合中的一个资源集合。
本发明实施例中的方案,可以对HARQ进程进行分组,HARQ进程分组号为用于区分每个分组的编号,可以为每个HARQ进程进行分组设置一个HARQ进程分组号。
可选的,网络设备可以在配置的多个PDCCH搜索空间上发送下行控制信息,相应的,终端设备可以在网络设备配置的多个物理下行控制信道(physical downlink control channel,PDCCH)搜索空间上接收下行控制信息。
本发明实施例中,上述资源集合可以包括两种情况:
第一种情况:多个资源集合中的每个资源集合为控制资源集(control resource set)。
第二种情况:多个资源集合中的每个资源集合为PDCCH搜索空间。
下面分别基于两种不同资源集合的情况对本发明实施例提供的资源配置方法进行示例性的说明。
实施例一(第一种情况:多个资源集合中的每个资源集合为控制资源集)
如图2所示,本发明实施例提供一种资源配置方法,该方法包括以下步骤:
201、网络设备向终端设备配置多个控制资源集。
相应的,终端设备接收网络设备配置的多个控制资源集。
其中,多个控制资源集中的至少一个控制资源集关联一个HARQ进程分组号。
本发明实施例中,多个控制资源集在频域上相互不重叠。
可选的,控制资源集与HARQ进程分组号的关联关系可以是通信协议中预定义的,也可以是网络设备配置的。
可选的,上述多个控制资源集可以是网络设备携带在RRC信令中配置给终端设备的,例如,网络设备可以将上述多个控制资源集携带在RRC重配置消息中配置给终端设备。
可选的,上述多个控制资源集还可以是网络设备携带在介质访问控制(media access control,MAC)信令中配置给终端设备的,例如,网络设备可以将上述多个控制资源集携带在MAC控制单元(control element,CE)中配置给终端设备的。
可选的,上述多个控制资源集还可以是网络设备通过携带在其他消息中配置给终端设备的,本发明实施例不作限定。
202、网络设备为终端设备配置多个PDCCH搜索空间。
相应的,终端设备接收网络设备配置的多个PDCCH搜索空间。
其中,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
可选的,PDCCH搜索空间与控制资源集之间的关联关系可以是通信协议中预定义的,也可以是网络设备配置的。
需要说明的是,上述201中配置多个控制资源集,以及202中配置多个PDCCH搜索空间的方法类似,此处不再赘述。
可选的,上述多个控制资源集和上述多个PDCCH搜索空间可以携带在同一个配置消息 中(例如,均携带在RRC重配置消息)进行配置,也可以通过不同的配置消息(例如,一个携带在RRC重配置消息中,另一个携带在MAC CE中)进行配置,本发明实施例不作限定。
203、网络设备在多个PDCCH搜索空间上向终端设备发送下行控制信息。
相应的,终端设备在网络设备配置的多个PDCCH搜索空间上接收下行控制信息。
204、终端设备确定该下行控制信息所在的目标PDCCH搜索空间。
其中,目标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间。
205、终端设备确定目标PDCCH搜索空间所关联的目标控制资源集。
本发明实施例中,由于多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集,因此在确定目标PDCCH搜索空间之后,可以根据PDCCH搜索空间与控制资源集之间的关联关系确定出目标控制资源集。
206、终端设备确定目标控制资源集所关联的HARQ进程分组号。
本发明实施例中,由于多个控制资源集中的至少一个控制资源集关联一个HARQ进程分组号,因此在确定目标控制资源集之后,可以根据控制资源集与HARQ进程分组号之间的关联关系确定出唯一的HARQ进程分组号。
207、终端设备根据该下行控制信息中指示的HARQ标识和HARQ进程分组号确定目标HARQ标识。
可选的,上述图2中的204至206还可以替换为下述208和209。
208、终端设备确定下行控制信息所在的目标控制资源集。
209、终端设备确定目标控制资源集所关联的HARQ进程分组号。
可选的,HARQ进程分组号的最大取值由最大HARQ进程数确定。
可选的,HARQ进程分组号的最小取值为1。
可选的,HARQ进程分组号的最大取值具体由以下公式确定:
M=ceil(N/2 n);其中,M为HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为下行控制信息中用于指示HARQ标识的比特位个数。
相关技术中,下行控制信息中通过4个bit指示HARQ标识(HARQ-ID),也就是说下行控制信息可以指示16个HARQ进程。
可选的,可以通过在通信协议中预定义的方式,或者,网络设备配置的方式,指示NTN中终端设备支持的最大HARQ进程数目(可以表示为N)。
可选的,本发明实施例中,网络设备配置资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数时,可以通过RRC信令、MAC信令,或者其他消息进行配置,本发明实施例不作具体限定。
可选的,本发明实施例中,网络设备配置资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数的方式可以包括以下配置方式中的至少一种:
静态配置、半静态配置和动态配置。
示例性的,针对最多N个HARQ进程,以下行控制信息中通过4个bit指示HARQ标识为例,可以每16个HARQ进程分为一组,一共可以分为M=ceil(N/16)个组。其中,N、M和n均为整数。
可选的,HARQ进程分组号可以表示为m,其中,m大于或等于1,且m小于或等于M。
可以根据下述公式计算出目标HARQ标识(也称为扩展的HARQ标识):
e-HARQ-ID=(m-1)*2 n+HARQ-ID,其中,e-HARQ-ID为扩展的HARQ标识,m为HARQ进程分组号,HARQ-ID为下行控制信息中指示的HARQ标识,n为下行控制信息中用于指示HARQ标识的比特位个数。
示例性的,以下行控制信息中通过4个bit指示HARQ标识为例,可以根据下述公式e-HARQ-ID=(m-1)*16+HARQ-ID计算出目标HARQ标识(也称为扩展的HARQ标识)。
相关技术中下行控制信息中通过4个bit指示HARQ标识,可以指示16个HARQ进程,本发明实施例中,在不改变相关技术中下行控制信息中通过4个bit指示HARQ标识的信息格式的情况下,可以借助HARQ进程分组号和这4个bit,指示大于16个HARQ进程。
需要说明的,下行控制信息中用于指示HARQ标识的bit个数n,可以取大于或等于1的任意整数,本发明实施例可以借助HARQ进程分组号和这n个bit,指示大于2 n个HARQ进程。
示例性的,假设有4个分组,分组号分别为1、2、3和4,每16个HARQ进程一组,那么第1组可以指示第0至15个HARQ进程,第2组可以指示第16至31个HARQ进程,第3组可以指示第32至47个HARQ进程,第4组可以指示第48至63个HARQ进程。
示例性的,如图3所示,为以4个分组为例的一种指示HARQ进程的示意图,图3中每个分组关联至少一个控制资源集。其中,不同分组关联的控制资源集在频域上不重叠。
本发明实施例提供的资源配置方法,网络设备可以通过为终端设备配置多个控制资源集,且该多个控制资源集中的至少一个控制资源集关联一个HARQ进程分组号,这样在接收到网络设备发送的下行控制信息之后,可以确定该下行控制信息所在的目标控制资源集所关联的HARQ进程分组号,然后根据该下行控制信息中指示的HARQ标识,以及该HARQ进程分组号,可以确定出目标HARQ。如此由于引入了HARQ进程分组号,这样可以将HARQ分组,并通过分组号和HARQ标识,共同确定出唯一的HARQ标识,从而可以支持多于16个HARQ进程,以使得重传机制可以支持NTN中数据的连续传输,提高了NTN中的数据传输速率。
实施例二(第二种情况:多个资源集合中的每个资源集合为PDCCH搜索空间)
如图4所示,本发明实施例提供一种资源配置方法,该方法包括以下步骤:
401、网络设备向终端设备配置多个PDCCH搜索空间。
相应的,终端设备接收网络设备配置的多个PDCCH搜索空间。
其中,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个HARQ进程分组号。
本发明实施例中,上述多个PDCCH搜索空间对应的PDCCH监听时机在时域上相互不重叠。
可选的,PDCCH搜索空间与HARQ进程分组号的关联关系可以是通信协议中预定义的,也可以是网络设备配置的。
可选的,上述多个PDCCH搜索空间可以是网络设备携带在RRC信令中配置给终端设备的,例如,网络设备可以将上述多个PDCCH搜索空间携带在RRC重配置消息中配置给终端设备。
可选的,上述多个PDCCH搜索空间还可以是网络设备携带在介质访问控制(media access control,MAC)信令中配置给终端设备的,例如,网络设备可以将上述多个PDCCH搜索空间携带在MAC控制单元(control element,CE)中配置给终端设备的。
可选的,上述多个PDCCH搜索空间还可以是网络设备通过携带在其他消息中配置给终端设备的,本发明实施例不作限定。
402、网络设备在多个PDCCH搜索空间上向终端设备发送下行控制信息。
相应的,在网络设备配置的多个PDCCH搜索空间上接收下行控制信息。
可选的,网络设备还可以配置多个控制资源集,上述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
403、终端设备确定该下行控制信息所在的目标PDCCH搜索空间。
其中,目标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间。
404、终端设备确定目标PDCCH搜索空间所关联的HARQ进程分组号。
本发明实施例中,由于多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个HARQ进程分组号,因此在确定目标PDCCH搜索空间之后,可以根据PDCCH搜索空间与HARQ进程分组号之间的关联关系确定出唯一的HARQ进程分组号。
405、终端设备根据该下行控制信息中指示的HARQ标识和HARQ进程分组号确定目标HARQ标识。
本实施例中405确定目标HARQ标识的方法与上述实施例一中207确定目标HARQ标识的方法类似,可以参照207的相关描述,此处不再赘述。
示例性的,假设有4个分组,分组号分别为1、2、3和4,每16个HARQ进程一组,那么第1组可以指示第0至15个HARQ进程,第2组可以指示第16至31个HARQ进程,第3组可以指示第32至47个HARQ进程,第4组可以指示第48至63个HARQ进程。
示例性的,如图5所示,为以4个分组为例的一种指示HARQ进程的示意图,图5中每个分组关联至少一个PDCCH搜索空间。其中,不同分组关联的PDCCH搜索空间在频域上不重叠。
本发明实施例提供的资源配置方法,网络设备可以为终端设备配置多个PDCCH搜索空间,且该多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个HARQ进程分组号,这样在接收到网络设备发送的下行控制信息之后,可以确定该下行控制信息所在的目标PDCCH搜索空间所关联的HARQ进程分组号,然后根据该下行控制信息中指示的HARQ标识,以及该HARQ进程分组号,可以确定出目标HARQ。如此由于引入了HARQ进程分组号,这样可以将HARQ分组,并通过分组号和HARQ标识,共同确定出唯一的HARQ标识,从而可以支持多于16个HARQ进程,以使得重传机制可以支持NTN中数据的连续传输,提高了NTN中的数据传输速率。
如图6所示,本发明实施例提供一种网络设备,包括:
发送模块601,用于向终端设备配置多个资源集合;其中,多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向终端设备发送下行控制信息。
可选的,发送模块601,还用于向终端设备发送下行控制信息之前,配置多个PDCCH搜索空间,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集;
发送模块601,具体用于在多个PDCCH搜索空间上向终端设备发送下行控制信息。
可选的,多个资源集合中的每个资源集合为控制资源集,多个资源集合在频域上相互不重叠。
可选的,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
可选的,多个资源集合中的每个资源集合为PDCCH搜索空间,多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
可选的,HARQ进程分组号的最大取值由最大HARQ进程数确定。
可选的,HARQ进程分组号的最大取值具体由以下公式确定:
M=ceil(N/2 n);其中,M为HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为下行控制信息中用于指示HARQ标识的比特位个数。
可选的,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
通信协议中预定义的、网络设备配置的。
需要说明的是,上述网络设备中,是以功能模块进行的示例性的划分,还可以有其他的划分方式。
本发明实施例还提供一种网络设备,包括:存储有可执行程序代码的存储器;
与存储器耦合的处理器;
处理器调用存储器中存储的可执行程序代码,执行本发明实施例中网络设备所执行的资源配置方法。
如图7所示,本发明实施例中的网络设备可以为通信卫星,该通信卫星可以包括:
发送器701,用于向终端设备配置多个资源集合;其中,多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向终端设备发送下行控制信息。
可选的,发送器701,还用于向终端设备发送下行控制信息之前,配置多个PDCCH搜索空间,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集;
发送器701,具体用于在多个PDCCH搜索空间上向终端设备发送下行控制信息。
可选的,多个资源集合中的每个资源集合为控制资源集,多个资源集合在频域上相互不重叠。
可选的,多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
可选的,多个资源集合中的每个资源集合为PDCCH搜索空间,多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
可选的,HARQ进程分组号的最大取值由最大HARQ进程数确定。
可选的,HARQ进程分组号的最大取值具体由以下公式确定:
M=ceil(N/2 n);其中,M为HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为下行控制信息中用于指示HARQ标识的比特位个数。
可选的,HARQ进程分组号的最小取值为1。
可选的,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
通信协议中预定义的、网络设备配置的。
如图8所示,本发明实施例提供一种终端设备,包括:
接收模块801,用于接收网络设备配置的多个资源集合;其中,多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收网络设备发送的下行控制信息;
处理模块802,用于确定下行控制信息所在的目标资源集合所关联的HARQ进程分组号,根据下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号确定目标HARQ标识,目标资源集合为多个资源集合中的一个资源集合。
可选的,接收模块801,具体用于在网络设备配置的多个PDCCH搜索空间上接收下行控制信息。
可选的,多个资源集合中的每个资源集合为控制资源集,多个资源集合在频域上相互不重叠。
可选的,网络设备配置的多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
可选的,处理模块802,具体用于确定下行控制信息所在的目标PDCCH搜索空间,目标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间;
确定目标PDCCH搜索空间所关联的目标控制资源集;
确定目标控制资源集所关联的HARQ进程分组号;
可选的,处理模块802,具体用于确定下行控制信息所在的目标控制资源集;
确定目标控制资源集所关联的HARQ进程分组号。
可选的,多个资源集合中的每个资源集合为PDCCH搜索空间,多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
可选的,处理模块802,具体用于确定下行控制信息所在的目标PDCCH搜索空间,目 标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间;
确定目标PDCCH搜索空间所关联的HARQ进程分组号。
可选的,HARQ进程分组号的最大取值由最大HARQ进程数确定。
可选的,HARQ进程分组号的最大取值具体由以下公式确定:
M=ceil(N/2 n);其中,M为HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为下行控制信息中用于指示HARQ标识的比特位个数。
可选的,HARQ进程分组号的最小取值为1。
可选的,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
通信协议中预定义的、网络设备配置的。
需要说明的是,上述终端设备中,是以功能模块进行的示例性的划分,还可以有其他的划分方式。
本发明实施例还提供一种终端设备,包括:存储有可执行程序代码的存储器;
与存储器耦合的处理器;
处理器调用存储器中存储的可执行程序代码,执行本发明实施例中终端设备所执行的资源配置方法。
可选的,本发明实施例中的终端设备可以为手机。
示例性的,如图9所示,手机可以包括:射频(radio frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。其中,射频电路910包括接收器910和发送器912。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作), 并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图7中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。本发明实施例中,该终端设备可以包括加速度传感器、深度传感器或者距离传感器等。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器9020内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,RF电路910,用于接收网络设备配置的多个资源集合;其中,多 个资源集合中的至少一个资源集合关联一个混合自动重传请求HARQ进程分组号;接收网络设备发送的下行控制信息;
处理器980,用于确定下行控制信息所在的目标资源集合所关联的HARQ进程分组号,根据下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号确定目标HARQ标识,目标资源集合为多个资源集合中的一个资源集合。
可选的,RF电路910,具体用于在网络设备配置的多个物理下行控制信道PDCCH搜索空间上接收下行控制信息。
可选的,多个资源集合中的每个资源集合为控制资源集,多个资源集合在频域上相互不重叠。
可选的,网络设备配置的多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
可选的,处理器980,具体用于确定下行控制信息所在的目标PDCCH搜索空间,目标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间;
确定目标PDCCH搜索空间所关联的目标控制资源集;
确定目标控制资源集所关联的HARQ进程分组号;
可选的,处理器980,具体用于确定下行控制信息所在的目标控制资源集;
确定目标控制资源集所关联的HARQ进程分组号。
可选的,多个资源集合中的每个资源集合为PDCCH搜索空间,多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
可选的,处理器980具体用于确定下行控制信息所在的目标PDCCH搜索空间,目标PDCCH搜索空间为多个PDCCH搜索空间中的一个PDCCH搜索空间;
确定目标PDCCH搜索空间所关联的HARQ进程分组号。
可选的,HARQ进程分组号的最大取值由最大HARQ进程数确定。
可选的,HARQ进程分组号的最大取值具体由以下公式确定:
M=ceil(N/2 n);其中,M为HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为下行控制信息中用于指示HARQ标识的比特位个数。
可选的,HARQ进程分组号的最小取值为1。
可选的,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
通信协议中预定义的、网络设备配置的。
本发明实施例还提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种计算机可读存储介质,包括:计算机指令,当其在计算机上运行时,使得计算机执行如上述方法实施例中网络设备的各个过程。
本发明实施例还提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种计算机程序产品,包括,计算机指令,当计算机程序产品在计算机上运行时,计算机运行计算机指令,使得计算机执行如上述方法实施例中网络设备的各个过程。
本发明实施例还提供一种芯片,芯片与终端设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得终端设备执行如上述方法实施例中终端设备的各个过程。
本发明实施例还提供一种芯片,芯片与网络设备中的存储器耦合,使得芯片在运行时调用存储器中存储的程序指令,使得网络设备执行如上述方法实施例中网络设备的各个过程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (64)

  1. 一种资源配置方法,其特征在于,包括:
    接收网络设备配置的多个资源集合,所述多个资源集合中的至少一个资源集合关联一个混合自动重传请求HARQ进程分组号;
    接收所述网络设备发送的下行控制信息,确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,所述目标资源集合为所述多个资源集合中的一个资源集合;
    根据所述下行控制信息中指示的HARQ标识和所述目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
  2. 根据权利要求1所述的方法,其特征在于,所述接收所述网络设备发送的下行控制信息,包括:
    在所述网络设备配置的多个物理下行控制信道PDCCH搜索空间上接收所述下行控制信息。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  4. 根据权利要求3所述的方法,其特征在于,所述网络设备配置的多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  5. 根据权利要求3或4所述的方法,其特征在于,所述确定所述下行控制信息的所在的目标资源集合所关联的HARQ进程分组号,包括:
    确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  6. 根据权利要求3或4所述的方法,其特征在于,所述确定所述下行控制信息的所在的目标资源集合所关联的HARQ进程分组号,包括:
    确定所述下行控制信息所在的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  7. 根据权利要求1或2所述的方法,其特征在于,
    所述多个资源集合中的每个资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  8. 根据权利要求7所述的方法,其特征在于,所述确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,包括:
    确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的HARQ进程分组号。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  10. 根据权利要求9所述的方法,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述HARQ进程分组号的最小取值为1。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、所述网络设备配置的。
  13. 一种资源配置方法,其特征在于,包括:
    向终端设备配置多个资源集合;其中,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;
    向所述终端设备发送下行控制信息。
  14. 根据权利要求13所述的方法,其特征在于,向所述终端设备发送下行控制信息之前,所述方法还包括:
    配置多个PDCCH搜索空间,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集;
    向所述终端设备发送下行控制信息,包括:
    在所述多个PDCCH搜索空间上向所述终端设备发送所述下行控制信息。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  16. 根据权利要求15所述的方法,其特征在于,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  17. 根据权利要求13或14所述的方法,其特征在于,
    所述多个资源集合中的每个资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  18. 根据权利要求13至17任一项所述的方法,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  19. 根据权利要求18所述的方法,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  20. 根据权利要求13至19任一项所述的方法,其特征在于,HARQ进程分组号的最小取值为1。
  21. 根据权利要求13至20任一项所述的方法,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、网络设备配置的。
  22. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备配置的多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收所述网络设备发送的下行控制信息;
    处理模块,用于确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,所述目标资源集合为所述多个资源集合中的一个资源集合;根据所述下行控制信息中指示的HARQ标识和目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
  23. 根据权利要求22所述的终端设备,其特征在于,
    所述接收模块,具体用于在所述网络设备配置的多个PDCCH搜索空间上接收所述下行控制信息。
  24. 根据权利要求22和23所述的终端设备,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  25. 根据权利要求24所述的终端设备,其特征在于,所述网络设备配置的多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  26. 根据权利要求24或25所述的终端设备,其特征在于,
    所述处理模块,具体用于确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  27. 根据权利要求24或25所述的终端设备,其特征在于,
    所述处理模块,具体用于确定所述下行控制信息所在的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  28. 根据权利要求22或23所述的终端设备,其特征在于,
    所述多个资源集合中的每个资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  29. 根据权利要求28所述的终端设备,其特征在于,
    所述处理模块,具体用于确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的HARQ进程分组号。
  30. 根据权利要求22至29任一项所述的终端设备,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  31. 根据权利要求30所述的终端设备,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  32. 根据权利要求22至31任一项所述的方法,其特征在于,HARQ进程分组号的最小取值为1。
  33. 根据权利要求22至32任一项所述的终端设备,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、所述网络设备配置的。
  34. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备配置多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向所述终端设备发送下行控制信息。
  35. 根据权利要求34所述的网络设备,其特征在于,
    发送模块,还用于向所述终端设备发送下行控制信息之前,配置多个PDCCH搜索空间,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集;
    发送模块,具体用于在所述多个PDCCH搜索空间上向所述终端设备发送所述下行控制信息。
  36. 根据权利要求34或35所述的网络设备,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  37. 根据权利要求36所述的网络设备,其特征在于,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  38. 根据权利要求34或35所述的网络设备,其特征在于,
    资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  39. 根据权利要求34至38任一项所述的网络设备,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  40. 根据权利要求39所述的网络设备,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  41. 根据权利要求34至40任一项所述的网络设备,其特征在于,HARQ进程分组号的最小取值为1。
  42. 根据权利要求34至41任一项所述的网络设备,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、网络设备配置的。
  43. 一种终端设备,其特征在于,包括:
    接收器,用于接收网络设备配置的多个资源集合;其中,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;接收所述网络设备发送的下行控制信息;
    处理器,用于确定所述下行控制信息所在的目标资源集合所关联的HARQ进程分组号,所述目标资源集合为所述多个资源集合中的一个资源集合;根据所述下行控制信息中指示的HARQ标识和所述目标资源集合所关联的HARQ进程分组号,确定目标HARQ标识。
  44. 根据权利要求43所述的终端设备,其特征在于,
    所述接收器,具体用于在所述网络设备配置的多个物理下行控制信道PDCCH搜索空间上接收所述下行控制信息。
  45. 根据权利要求43和44所述的终端设备,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  46. 根据权利要求45所述的终端设备,其特征在于,所述网络设备配置的多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  47. 根据权利要求45或46所述的终端设备,其特征在于,
    所述处理器,具体用于确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  48. 根据权利要求45或46所述的终端设备,其特征在于,
    所述处理器,具体用于确定所述下行控制信息所在的目标控制资源集;
    确定所述目标控制资源集所关联的HARQ进程分组号。
  49. 根据权利要求43或44所述的终端设备,其特征在于,
    所述多个资源集合中的每个资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  50. 根据权利要求49所述的终端设备,其特征在于,
    所述处理器,具体用于确定所述下行控制信息所在的目标PDCCH搜索空间,所述目标PDCCH搜索空间为所述多个PDCCH搜索空间中的一个PDCCH搜索空间;
    确定所述目标PDCCH搜索空间所关联的HARQ进程分组号。
  51. 根据权利要求43至50任一项所述的终端设备,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  52. 根据权利要求51所述的终端设备,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  53. 根据权利要求43至52任一项所述的终端设备,其特征在于,所述HARQ进程分组号的最小取值为1。
  54. 根据权利要求43至53任一项所述的终端设备,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、所述网络设备配置的。
  55. 一种网络设备,其特征在于,包括:
    发送器,用于向终端设备配置多个资源集合,所述多个资源集合中的至少一个资源集合关联一个HARQ进程分组号;向所述终端设备发送下行控制信息。
  56. 根据权利要求55所述的网络设备,其特征在于,
    发送器,还用于向所述终端设备发送下行控制信息之前,配置多个PDCCH搜索空间,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集;
    发送器,具体用于在所述多个PDCCH搜索空间上向所述终端设备发送所述下行控制信息。
  57. 根据权利要求55或56所述的网络设备,其特征在于,
    所述多个资源集合中的每个资源集合为控制资源集,所述多个资源集合在频域上相互不重叠。
  58. 根据权利要求57所述的网络设备,其特征在于,所述多个PDCCH搜索空间中的至少一个PDCCH搜索空间关联一个控制资源集。
  59. 根据权利要求55或56所述的网络设备,其特征在于,其特征在于,
    所述多个资源集合中的一个资源集合为PDCCH搜索空间,所述多个资源集合对应的PDCCH监听时机在时域上相互不重叠。
  60. 根据权利要求55至59任一项所述的网络设备,其特征在于,HARQ进程分组号的最大取值由最大HARQ进程数确定。
  61. 根据权利要求60所述的网络设备,其特征在于,所述HARQ进程分组号的最大取值具体由以下公式确定:
    M=ceil(N/2 n);其中,M为所述HARQ进程分组号的最大取值,N为终端设备支持的最大HARQ进程数,n为所述下行控制信息中用于指示HARQ标识的比特位个数。
  62. 根据权利要求55至61任一项所述的网络设备,其特征在于,所述HARQ进程分组号的最小取值为1。
  63. 根据权利要求55至62任一项所述的网络设备,其特征在于,资源集合与HARQ进程分组号之间的关联关系,PDCCH搜索空间与控制资源集之间的关联关系、以及终端设备支持的最大HARQ进程数为通过以下方式中的至少一种确定的:
    通信协议中预定义的、网络设备配置的。
  64. 一种计算机可读存储介质,包括:计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法,或者执行如权利要求13至21中任一项所述的方法。
PCT/CN2020/099790 2020-07-01 2020-07-01 一种资源配置方法、终端设备及网络设备 WO2022000384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080100728.5A CN115516962A (zh) 2020-07-01 2020-07-01 一种资源配置方法、终端设备及网络设备
PCT/CN2020/099790 WO2022000384A1 (zh) 2020-07-01 2020-07-01 一种资源配置方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099790 WO2022000384A1 (zh) 2020-07-01 2020-07-01 一种资源配置方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2022000384A1 true WO2022000384A1 (zh) 2022-01-06

Family

ID=79317746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099790 WO2022000384A1 (zh) 2020-07-01 2020-07-01 一种资源配置方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN115516962A (zh)
WO (1) WO2022000384A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005712A1 (en) * 2017-06-26 2019-01-03 Idac Holdings, Inc. UPLINK TRANSMISSION WITHOUT UPLINK AUTHORIZATION
CN109802769A (zh) * 2017-11-17 2019-05-24 北京展讯高科通信技术有限公司 免调度上行传输harq进程标识的确定方法、装置及用户设备
CN110034878A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种资源指示方法、资源确定方法及设备
WO2020093399A1 (zh) * 2018-11-09 2020-05-14 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
CN111294939A (zh) * 2019-02-22 2020-06-16 展讯通信(上海)有限公司 C-rnti的能力上报、分配方法及装置、存储介质、终端、基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005712A1 (en) * 2017-06-26 2019-01-03 Idac Holdings, Inc. UPLINK TRANSMISSION WITHOUT UPLINK AUTHORIZATION
CN109802769A (zh) * 2017-11-17 2019-05-24 北京展讯高科通信技术有限公司 免调度上行传输harq进程标识的确定方法、装置及用户设备
CN110034878A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种资源指示方法、资源确定方法及设备
WO2020093399A1 (zh) * 2018-11-09 2020-05-14 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
CN111294939A (zh) * 2019-02-22 2020-06-16 展讯通信(上海)有限公司 C-rnti的能力上报、分配方法及装置、存储介质、终端、基站

Also Published As

Publication number Publication date
CN115516962A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN106231637A (zh) 辅小区变换方法、装置以及基站
JP7048762B2 (ja) Harq-ackコードブックの決定方法及び端末
CN110958089B (zh) 传输块与码字的对应关系、相关设备以及系统
WO2022056929A1 (zh) 一种控制终端设备的方法、终端设备及网络设备
WO2022006909A1 (zh) 测量间隔的配置方法、网络设备及终端设备
WO2022000384A1 (zh) 一种资源配置方法、终端设备及网络设备
US20230224836A1 (en) Synchronization Signal Block (SSB) Transmission Method, Terminal Device and Network Device
WO2022151502A1 (zh) 配置srs传输资源的方法、终端设备及网络设备
WO2022095046A1 (zh) 确定上行传输时域资源的方法、终端设备及网络设备
US20230179345A1 (en) Wireless communication method, terminal device, and network device
WO2022141426A1 (zh) 一种切片信息的指示方法、终端设备及网络设备
WO2022140977A1 (zh) 一种drx方法、终端设备及网络设备
WO2022183347A1 (zh) 一种pusch重复传输方法、终端设备及网络设备
WO2022126457A1 (zh) 一种寻呼方法、终端设备及网络设备
WO2023077328A1 (zh) Ntn中终端设备上报定时提前的方法、终端设备及存储介质
KR102646769B1 (ko) 데이터 전송방법, 단말기 및 네트워크 장치
WO2018028062A1 (zh) 组播业务传输方法、终端、基站和通信系统
WO2022000146A1 (zh) 通信方法及终端设备
WO2022133727A1 (zh) Pusch重复传输方法及终端设备
WO2022198504A1 (zh) Pdcch配置的方法、终端设备及存储介质
WO2023000268A1 (zh) 非地面通信网络中获取时间的方法、终端设备及存储介质
WO2022021440A1 (zh) 无线通信方法、终端设备及网络设备
WO2022061672A1 (zh) 通信方法、终端设备及网络设备
US20220408487A1 (en) Communication method, telecommunication system, network node, base station and user equipment
US20230044732A1 (en) Method for processing multiple resource conflicts and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943668

Country of ref document: EP

Kind code of ref document: A1