WO2021261552A1 - 蒸発器及びループ型ヒートパイプ - Google Patents

蒸発器及びループ型ヒートパイプ Download PDF

Info

Publication number
WO2021261552A1
WO2021261552A1 PCT/JP2021/023933 JP2021023933W WO2021261552A1 WO 2021261552 A1 WO2021261552 A1 WO 2021261552A1 JP 2021023933 W JP2021023933 W JP 2021023933W WO 2021261552 A1 WO2021261552 A1 WO 2021261552A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
evaporator
chamber
liquid
upper chamber
Prior art date
Application number
PCT/JP2021/023933
Other languages
English (en)
French (fr)
Inventor
和英 袴田
佳司 坂川
悠 春木
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US18/013,026 priority Critical patent/US20230247793A1/en
Priority to EP21830065.5A priority patent/EP4174937A1/en
Publication of WO2021261552A1 publication Critical patent/WO2021261552A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0021Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for aircrafts or cosmonautics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Definitions

  • the present disclosure relates to an evaporator and a loop type heat pipe equipped with the evaporator.
  • a heat transport system using such a loop type heat pipe is used for cooling electronic devices such as computers and home appliances, for example.
  • As a loop type heat pipe there is one that circulates a working fluid by utilizing capillary force and / or gravity.
  • the loop type heat pipe has a closed loop formed by an evaporator, a condenser, a steam tube connecting the evaporator and the condenser, and a liquid tube connecting the condenser and the evaporator.
  • the closed loop is filled with a working fluid.
  • the working fluid of the liquid phase is heated by the heat transmitted from the heating element, and a part of the working fluid is changed to a gas.
  • the gas-liquid two-phase working fluid moves in the steam pipe due to the pressure difference and buoyancy and reaches the condenser.
  • the condenser the working fluid is cooled and turned into a liquid.
  • the working fluid of this liquid phase returns to the evaporator by capillary force and / or gravity. In this way, in the loop type heat pipe, heat is transferred from the evaporator to the condenser by circulating the working fluid in the two-phase closed loop, and the heating element thermally connected to the evaporator is cooled.
  • Patent Document 1 proposes an evaporator used for the above-mentioned loop type heat pipe, which is provided with a wick arranged below the evaporator. The inside of the hole of this wick is filled with the working fluid, and the working fluid of the liquid phase remains in the evaporator even when the loop type heat pipe is stopped.
  • Some evaporators have a heat receiving element placed at the bottom of a container containing a working fluid, and the heat receiving element and the heating element are thermally connected to each other.
  • the heat receiving body has a dry portion that is not in contact with the working fluid of the liquid phase and a wet portion that is in contact with the working fluid of the liquid phase. Since the working fluid does not evaporate in the dry portion, the dry portion absorbs less heat than the wet portion. As a result, the ability to cool the heating element is lower in the dry portion than in the wet portion, and the heating element may have uneven cooling.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is an evaporator in which a heat receiving body thermally connected to a heating element is arranged at the bottom and a loop type heat pipe provided with the evaporator. It is an object of the present invention to propose a device that can efficiently cool a heating element in contact with a heat receiving element even if the attitude of the evaporator changes.
  • the evaporator is an evaporator that changes at least a part of the working fluid of the liquid phase into a gas by receiving heat from a heating element, and is a casing having a storage chamber for accommodating the working fluid inside. It includes a body and a heat receiving body arranged on the bottom surface of the housing and thermally connected to the heating body. Then, the housing divides the storage chamber into an upper chamber and a lower chamber, and has a perforated plate having a large number of pores communicating the upper chamber and the lower chamber, and at least one opened in the upper chamber. It is characterized by having a working fluid inlet, a wall member that partitions the bottom of the lower chamber into a plurality of liquid reservoirs, and at least one working fluid outlet that is the lower chamber and is open above the wall member. There is.
  • the loop type heat pipe includes the above-mentioned evaporator that changes at least a part of the working fluid of the liquid phase into a gas, and a condenser that changes the working fluid of the vapor phase into a liquid. It is characterized by including a steam pipe connecting the working fluid outlet of the evaporator and the inlet of the condenser, and a liquid pipe connecting the outlet of the condenser and the working fluid inlet of the evaporator. ..
  • the working fluid of the liquid phase that has flowed into the upper chamber of the evaporator accommodation chamber passes through the pores of the perforated plate and enters the lower chamber, and the liquid in the lower chamber. It falls into the reservoir.
  • the working fluid in the upper chamber diffuses on the perforated plate instead of immediately flowing down to the lower chamber due to the flow resistance generated when passing through the pores.
  • the working fluid in the upper chamber is distributed not only to the pores directly below the working fluid inlet but also to the pores distant from directly below the working fluid inlet, and then falls into the lower chamber. In this way, the working fluid is distributed not only to the liquid reservoir directly under the working fluid inlet but also to the liquid reservoir portion away from directly below the working fluid inlet.
  • the heat receiving body thermally connected to the heating element is an evaporator arranged at the bottom and a loop type heat pipe provided with the evaporator, and even if the attitude of the evaporator changes, the heat receiving body and the heat receiving body are described. It is possible to propose one that can efficiently cool the heating element in contact.
  • FIG. 1 is a diagram showing a schematic configuration of an aircraft equipped with a loop type heat pipe according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the evaporator.
  • FIG. 3 is a side view illustrating the internal structure of the evaporator.
  • FIG. 4 is a plan view of the inside of the evaporator for explaining the liquid reservoir.
  • FIG. 5 is a plan view of the inside of the evaporator for explaining a modified example of the liquid reservoir portion.
  • FIG. 6 is a side view of the evaporator in a state where the inflow amount of the working fluid in the liquid phase is small.
  • FIG. 1 is a diagram showing a schematic configuration of an aircraft 50 equipped with a loop type heat pipe 10 according to an embodiment of the present disclosure.
  • the loop type heat pipe 10 shown in FIG. 1 includes an evaporator 2, a steam pipe 4, a condenser 3, and a liquid pipe 5 that form a closed loop.
  • a working fluid which is a condensable fluid, is enclosed in the closed loop.
  • the working fluid naturally circulates in the loop type heat pipe 10 by utilizing the phase change and gravity.
  • the working fluid is not particularly limited, and is a condensable fluid (for example, water, alcohol, ammonia, fluorocarbon, hydrofluorocarbon, hydrofluoroether, and a mixture thereof, which are conventionally used as the working fluid of the heat pipe. Etc.).
  • the evaporator 2 is thermally connected to a heating element 99 which is a heat source.
  • the working fluid of the liquid phase absorbs heat from the heating element 99, and a part of the working fluid boils and changes into a gas.
  • the gas-liquid two-phase working fluid moves through the steam pipe 4 connecting the outlet of the evaporator 2 and the inlet of the condenser 3 by a pressure difference or buoyancy, and reaches the condenser 3.
  • the condenser 3 is installed above the evaporator 2.
  • a cooling flow path (not shown) is formed in the condenser 3, and the two-phase working fluid dissipates heat while passing through the cooling flow path, is cooled, and changes to a liquid.
  • the working fluid of the liquid phase descends by gravity through the liquid pipe 5 connecting the outlet of the condenser 3 and the inlet of the evaporator 2 and returns to the evaporator 2.
  • the loop type heat pipe 10 having the above configuration is mounted on a transport aircraft.
  • transport aircraft examples include ships (including submersibles), railroad vehicles, automobiles, and aircraft.
  • the loop type heat pipe 10 is mounted on an aircraft 50 as an example of a transport aircraft.
  • the aircraft 50 has an allowable tilt angle of ⁇ ° during normal operation, and tilting within a range from horizontal to an allowable tilt angle during normal operation is permitted.
  • FIG. 1 shows a part of the fuselage 51 and the main wing 53 of the aircraft 50.
  • the fuselage 51 has a multi-layer structure including an outer plate 52 and an inner wall 54 provided on the passenger compartment side of the outer plate 52.
  • a cooling chamber 55 is formed between the outer plate 52 and the inner wall 54.
  • the temperature inside the cooling chamber 55 is low due to the cold heat transmitted from the outer plate 52, which is exposed to the outside air at a significantly lower temperature than the ground during flight.
  • the outer plate 52 may be provided with an air inlet and an air outlet that communicate with the cooling chamber 55, and outside air may be introduced into the cooling chamber 55 during flight.
  • the condenser 3 is arranged in the cooling chamber 55, and the heating element 99 and the evaporator 2 thermally connected to the heating element 99 are arranged on the cabin side of the inner wall 54.
  • a fan 56 for forcibly aerating the condenser 3 is provided in the cooling chamber 55.
  • the working fluid is condensed by utilizing the cold heat of the outside air.
  • the heating element 99 is not particularly limited, and examples thereof include electronic devices including heat generating parts such as control panels, engine control units (ECUs), and other computers, mechanical parts such as bearings that generate frictional heat, and batteries. .. Further, instead of the heating element 99, the cabin air may be used as the heat source.
  • FIG. 2 is a perspective view of the evaporator 2 according to the present embodiment
  • FIG. 3 is a side view for explaining the internal structure of the evaporator 2
  • FIG. 4 is a plan view of the inside of the evaporator 2 for explaining the liquid reservoir 66
  • the evaporator 2 includes a housing 6 and a heat receiving body 28 provided on the bottom surface 62 of the housing 6.
  • the housing 6 has a rectangular parallelepiped shape in which the upper surface 61 and the bottom surface 62 have the maximum area.
  • a working fluid accommodating chamber 23 is formed inside the housing 6.
  • a part or all of the bottom surface 62 of the housing 6 is formed of a heat receiving body 28.
  • the heat receiving body 28 is a plate-shaped member made of a metal material having high thermal conductivity such as copper.
  • the heat receiving body 28 has a heat receiving surface 281 appearing outside the housing 6 and a boiling surface 282 appearing inside the accommodation chamber 23 inside the housing 6.
  • the heat receiving surface 281 is thermally connected to a heating element 99 arranged below the evaporator 2 and receives heat from the heating element 99.
  • the storage chamber 23 is partitioned by the perforated plate 22 into an upper chamber 24 above the perforated plate 22 and a lower chamber 25 below the perforated plate 22.
  • the perforated plate 22 is parallel to the upper surface 61 and the bottom surface 62 of the housing 6.
  • the perforated plate 22 has a large number of pores, and the passage of the working fluid through each pore is allowed.
  • At least one working fluid inlet 67 is open in the upper chamber 24.
  • the working fluid inlet 67 is preferably opened at the highest position of the upper chamber 24.
  • the working fluid inlet 67 according to the present embodiment is open to the upper surface 61 of the housing 6.
  • the working fluid inlet 67 is connected to a liquid pipe 5 extending upward.
  • At least one working fluid outlet 68 is open in the lower chamber 25.
  • the working fluid outlet 68 is preferably opened at the highest position of the lower chamber 25.
  • the working fluid outlet 68 according to the present embodiment is open to the perforated plate 22 forming the ceiling of the lower chamber 25.
  • the working fluid outlet 68 may be formed on the side wall of the housing 6 or the tip of a pipe member inserted into the lower chamber 25 through the housing 6.
  • the working fluid outlet 68 is connected to a steam pipe 4 extending upward.
  • the bottom of the lower chamber 25 is divided into a plurality of liquid reservoirs 66 by a wall member 65.
  • the working fluid of the liquid phase is housed in each liquid reservoir 66.
  • the wall member 65 is made of a metal material having high thermal conductivity, such as copper. However, the material of the wall member 65 is not limited to the metal material.
  • the wall member 65 according to the present embodiment is a plate-shaped member that stands up from the boiling surface 282 of the heat receiving body 28, which is the floor surface of the accommodation chamber 23 (of which, the lower chamber 25).
  • the plurality of liquid reservoirs 66 are a plurality of recesses arranged in the tilting direction (that is, the tilting direction) of the transport aircraft.
  • a plurality of rectangular liquid reservoirs 66 are formed at the bottom of the lower chamber 25 by a grid-like wall member 65 standing up from the bottom surface of the lower chamber 25.
  • the mode of the liquid reservoir 66 is not limited to this.
  • a plurality of rectangular liquid reservoirs 66 may be formed at the bottom of the lower chamber 25 by a plurality of parallel wall members 65 standing up from the floor surface of the lower chamber 25.
  • the mode of the wall member 65 is not limited to the above as long as it forms a plurality of liquid reservoirs 66 at the bottom of the lower chamber 25.
  • the wall member 65 may have a plate shape that rises from the boiling surface 282 of the heat receiving body 28.
  • the wall member 65 may be formed by cutting out a plurality of liquid reservoirs 66 from the heat transfer block in contact with the boiling surface 282.
  • the working fluid of the liquid phase flows into the upper chamber 24 through the liquid pipe 5 and the working fluid inlet 67.
  • the working fluid in the upper chamber 24 passes through the pores of the perforated plate 22 and enters the lower chamber 25, and falls into the liquid reservoir 66 in the lower chamber 25.
  • the working fluid in the upper chamber 24 does not immediately flow down to the lower chamber 25 due to the flow resistance generated when passing through the pores, but temporarily stays in the upper chamber 24 and is horizontal on the perforated plate 22. Diffuse in the direction.
  • the working fluid of the liquid phase staying in the upper chamber 24 forms a liquid layer 71 having a thickness in the vertical direction in the upper chamber 24.
  • the working fluid in the upper chamber 24 is distributed not only to the pores directly below the working fluid inlet 67 but also to the pores distant from the working fluid inlet 67.
  • the working fluid falls from each of the large number of pores arranged evenly on the entire surface of the perforated plate 22.
  • the working fluid is distributed not only to the liquid reservoir 66 directly under the working fluid inlet 67 but also to the liquid reservoir 66 away from directly below the working fluid inlet 67.
  • the liquid level L of the working fluid of the liquid phase housed in the liquid reservoir 66 is located lower than the wall member 65 when the boiling surface 282 is horizontal. However, the liquid level L may be at the same position as or higher than the wall member 65.
  • the heat received by the heating element 28 from the heating element 99 is released from the boiling surface 282 and the wall member 65 to the working fluid. Due to the heat, at least a part of the working fluid of the liquid phase in the liquid reservoir 66 boils and becomes a gas phase. As a result, the part above the liquid level L in the lower chamber 25 is filled with the working fluid of the gas phase (or the gas-liquid two-phase of the gas phase and the liquid phase).
  • the liquid level L does not exist in the two-phase fluid, but the volume ratio of the gas existing in the liquid increases as the working fluid in the lower chamber 25 goes upward, so that the gas-liquid two-phase flow
  • a boundary surface in which the volume ratio (also referred to as void ratio) occupied by the gas is a predetermined ratio (for example, 50%) may be defined as a virtual liquid level L.
  • the perforated plate 22 a large number of pores are regularly arranged evenly over the entire surface.
  • the shape of the pores is not limited to a circle, and the perforated plate 22 may be, for example, a punching metal or a metal net. Since the total area of the perforated plate 22 is determined by the size of the housing 6 of the evaporator 2, the parameters of the perforated plate 22 that can be selected are the number of pores, the pore diameter, and the plate thickness.
  • the pore diameter may be the average diameter of the pores.
  • the pressure on the upper chamber 24 side of the pores of the porous plate 22 is referred to as the primary pressure P1, and the pressure on the lower chamber 25 side of the pores is referred to as the secondary pressure P2.
  • the primary pressure P1 is the pressure loss when the working fluid passes through the liquid pipe 5 from the water head pressure exerted on the perforated plate 22 by the working fluid in the upper chamber 24 and the liquid pipe 5, and the working fluid is from the liquid pipe 5 to the upper chamber 24. It is obtained by subtracting the pressure loss when the flow path rapidly expands and the pressure loss due to the surface tension of the working fluid.
  • the primary pressure P1 may be approximated by the head pressure.
  • the secondary pressure P2 is the pressure exerted on the perforated plate 22 by the working fluid in the lower chamber 25, and varies depending on the amount of evaporation of the working fluid in the lower chamber 25.
  • the primary pressure P1 In order for the working fluid to pass from the upper chamber 24 to the lower chamber 25, the primary pressure P1 must be greater than the sum of the secondary pressure P2 and the pressure loss ⁇ p of the working fluid passing through the perforated plate 22 ( P1> P2 + ⁇ p). Therefore, the aperture ratio ⁇ of the perforated plate 22 may be set so that the primary pressure P1 during the rated operation becomes larger than the sum of the secondary pressure P2 and the pressure loss ⁇ p during the rated operation. However, when the primary pressure P1 is significantly larger than the sum of the secondary pressure P2 and the pressure loss ⁇ p of the working fluid passing through the perforated plate 22, the working fluid flowing into the upper chamber 24 enters the upper chamber 24. It flows out to the lower chamber 25 without staying. Therefore, the pressure loss ⁇ p of the working fluid passing through the perforated plate 22 can be obtained by the known formula represented by Equation 1, and the pressure loss for maintaining the working pressure in the target operating state can be appropriately set.
  • the parameters of the pressure loss ⁇ p of the working fluid passing through the pores of the porous plate 22 are the density ⁇ of the working fluid, the average flow velocity u 0 of the working fluid, and the drag coefficient ⁇ .
  • Parameters resistance coefficient ⁇ , the aperture ratio of the porous plate 22 epsilon, friction coefficient lambda, is a function ⁇ regarding the ratio of pore size and pore equivalent diameter d h, and the plate thickness of the porous plate 22 (thickness l) ..
  • the aperture ratio ⁇ of the perforated plate 22 is determined from the pressure loss ⁇ p.
  • the aperture ratio ⁇ of the perforated plate 22 is defined as the ratio of the total area of the pores to the total area of the perforated plate 22.
  • the plate thickness of the porous plate 22 is determined from the strength appropriate for the aperture ratio ⁇ .
  • the thickness l of the perforated plate 22 is preferably thin, but if it is less than 0.01 mm, the strength may be insufficient.
  • Pressure loss ⁇ p of the porous plate 22 is sensitive to variations in the aperture ratio ⁇ and the equivalent diameter d h of the porous plate 22.
  • the equivalent diameter d h has the flow path cross-sectional area of the pore as a parameter and is a function of the pore diameter.
  • the combination of the pore diameter and the number of pores can be determined based on the aperture ratio ⁇ , but the pore diameter is preferably 0.01 mm or more. Although it depends on the type of working fluid, if the pore diameter is less than 0.01 mm, the head may become excessive and the flow of working fluid may be stagnant.
  • the working fluid can be leached from the upper chamber 24 through the perforated plate 22 into the lower chamber 25 without bias.
  • the pressure loss ⁇ p of the perforated plate 22 can be set so that the working fluid does not pass through the perforated plate 22 until the liquid layer 71 of the upper chamber 24 reaches a predetermined thickness.
  • the passage of the working fluid through the porous plate 22 is suppressed until the working fluid in the upper chamber 24 reaches a predetermined thickness, so that the working fluid is uniformly diffused in the porous plate 22.
  • the working fluid can be leached from the upper chamber 24 through the perforated plate 22 into the lower chamber 25 without bias.
  • the pressure loss ⁇ p of the perforated plate 22 can be set so that the working fluid of the lower chamber 25 does not flow back to the upper chamber 24.
  • the working fluid of the liquid phase passes through the perforated plate 22. Leach into the lower chamber 25.
  • the evaporator 2 is an evaporator 2 that changes at least a part of the working fluid of the liquid phase into a gas by receiving heat from the heating element 99, and has the working fluid inside. It includes a housing 6 having a storage chamber 23 for accommodating, and a heat receiving body 28 arranged on the bottom surface 62 of the housing 6 and thermally connected to the heating body 99.
  • the housing 6 is opened into the upper chamber 24 and the perforated plate 22 having a large number of pores that divide the accommodation chamber 23 into the upper chamber 24 and the lower chamber 25 and communicate the upper chamber 24 and the lower chamber 25.
  • the loop type heat pipe 10 includes the above-mentioned evaporator 2 that changes at least a part of the working fluid of the liquid phase into a gas, and a condenser 3 that changes the working fluid of the gas phase into a liquid. It includes a steam pipe 4 that connects the working fluid outlet 68 of the evaporator 2 and the inlet of the condenser 3, and a liquid pipe 5 that connects the outlet of the condenser 3 and the working fluid inlet 67 of the evaporator 2.
  • the working fluid of the liquid phase that has flowed into the upper chamber 24 of the accommodating chamber 23 of the evaporator 2 passes through the pores of the porous plate 22 to the lower chamber 25. It invades and falls into the liquid reservoir 66 of the lower chamber 25.
  • the working fluid in the upper chamber 24 does not immediately flow down to the lower chamber 25 due to the flow resistance generated when passing through the pores, but diffuses on the perforated plate 22.
  • the working fluid in the upper chamber 24 is distributed not only to the pores directly below the working fluid inlet 67 but also to the pores distant from directly below the working fluid inlet 67, and then falls into the lower chamber 25. In this way, the working fluid is distributed not only to the liquid reservoir 66 directly under the working fluid inlet 67 but also to the liquid reservoir 66 away from directly below the working fluid inlet 67.
  • the working fluid of the liquid phase of the liquid reservoir 66 is tilted on the bottom surface 62.
  • the wall member 65 obstructs the flow and stays in the liquid reservoir 66. In this way, even if the posture of the evaporator 2 changes and the bottom surface 62 of the housing 6 is tilted from the horizontal, the working fluid remains at the bottom of the accommodation chamber 23, and the heat receiving body 28 and the working fluid are in thermal contact with each other. The state is maintained.
  • the dry portion is dispersed with respect to the heating element 99 with which the heat receiving element 28 is thermally in contact and is not unevenly distributed. Therefore, regardless of the change in the posture of the evaporator 2, the entire region in contact with the heat receiving element 28 of the heating element 99 can be efficiently cooled.
  • the upper chamber 24 has a predetermined thickness composed of a working fluid of a liquid phase that has flowed in from the working fluid inlet 67 and temporarily stays in the upper chamber 24. It has a liquid layer 71. Therefore, in the evaporator 2 and the loop type heat pipe 10 according to the present embodiment, the perforated plate 22 uses the working fluid so that the upper chamber 24 has a liquid layer 71 having a predetermined thickness made of the working fluid of the liquid phase. It has an opening ratio ⁇ that temporarily stays in the upper chamber 24.
  • the head pressure of the working fluid of the liquid phase flowing into the upper chamber 24 of the evaporator 2 can prevent the backflow of the working fluid of the lower chamber 25 into the upper chamber 24. Further, the working fluid can be leached from the upper chamber 24 to the lower chamber 25 through a large number of pores arranged over the entire surface of the perforated plate 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

発熱体からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器が、内部に作動流体を収容する収容室を有する筐体と、筐体の底面に配置されて、発熱体と熱的に接続される受熱体とを備える。筐体は、収容室を上部室と下部室とに仕切るとともに上部室と下部室とを連通する多数の細孔を有する多孔板と、上部室に開口した少なくとも1つの作動流体入口と、下部室の底部を複数の液溜部に区画する壁部材と、下部室であって壁部材より上方に開口した少なくとも1つの作動流体出口とを有する。

Description

蒸発器及びループ型ヒートパイプ
 本開示は、蒸発器、及び、それを備えたループ型ヒートパイプに関する。
 従来、作動流体の相変化を利用して高密度な熱輸送を行うループ型ヒートパイプの技術が知られている。このようなループ型ヒートパイプを利用した熱輸送システムは、例えば、コンピュータや家電などの電子機器の冷却に利用されている。ループ型ヒートパイプとしては、毛細管力及び/又は重力を利用して作動流体を循環させるものがある。
 ループ型ヒートパイプは、蒸発器、凝縮器、蒸発器と凝縮器とを連絡する蒸気管、及び、凝縮器と蒸発器とを連絡する液管によって形成された閉ループを有する。閉ループには、作動流体が封入される。蒸発器では、液相の作動流体が発熱体から伝わる熱で加熱されて、その一部が気体に変化する。気液二相の作動流体は圧力差や浮力によって蒸気管内を移動し、凝縮器に到達する。凝縮器では、作動流体が冷却されて液体に変化する。この液相の作動流体は毛細管力及び/又は重力によって蒸発器へ還流する。このようにして、ループ型ヒートパイプでは、作動流体が二相閉ループを循環することで蒸発器から凝縮器へ熱が輸送され、蒸発器と熱的に接続された発熱体が冷却される。
 特許文献1では、上記のループ型ヒートパイプに用いられる蒸発器であって、その下部に配置されたウィックを備えるものが提案されている。このウィックの孔内は作動流体で満たされており、ループ型ヒートパイプが停止した状態においても蒸発器内に液相の作動流体が残留する。
特許第5741354号公報
 電子機器の高性能化及び小型化が急速に進み、近年では、電子機器を多数搭載した船舶、鉄道車両、自動車、及び航空機などの輸送機におけるサーマルマネージメントへの要求も高まりつつある。上記のような作動流体の循環に重力を利用したループ型ヒートパイプを搭載した輸送機では、機体の姿勢が時々刻々と変化することから、姿勢の変化により作動流体を循環させる駆動力が低下し、熱輸送量が低下するという課題がある。
 蒸発器には、作動流体の収容された容器の底部に受熱体が配置され、この受熱体と発熱体とが熱的に接続されたものがある。このような蒸発器では、当該蒸発器の姿勢が傾くと、容器の底部に溜まった液相の作動流体と受熱体の一部とが接触しない状態となることが想定される。つまり、受熱体には、液相の作動流体と接触していないドライ部分と、液相の作動流体と接触しているウエット部分とが生じることとなる。ドライ部分では作動流体の蒸発が生じないことから、ドライ部分はウエット部分と比較して吸熱が小さい。これにより、ドライ部分ではウェット部分と比較して発熱体を冷却する能力が低く、発熱体に冷却ムラが生じる可能性がある。
 本開示は以上の事情に鑑みてされたものであり、その目的は、発熱体と熱的に接続される受熱体が底部に配置された蒸発器及びそれを備えるループ型ヒートパイプであって、蒸発器の姿勢が変化しても、受熱体と接触している発熱体を効率的に冷却できるものを提案することにある。
 本開示の一態様に係る蒸発器は、発熱体からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器であって、内部に前記作動流体を収容する収容室を有する筐体と、前記筐体の底面に配置されて、前記発熱体と熱的に接続される受熱体とを備える。そして、前記筐体が、前記収容室を上部室と下部室とに仕切るとともに前記上部室と前記下部室とを連通する多数の細孔を有する多孔板と、前記上部室に開口した少なくとも1つの作動流体入口と、前記下部室の底部を複数の液溜部に区画する壁部材と、前記下部室であって前記壁部材より上方に開口した少なくとも1つの作動流体出口とを有することを特徴としている。
 また、本開示の一態様に係るループ型ヒートパイプは、液相の作動流体の少なくとも一部を気体に変化させる上記の蒸発器と、気相の前記作動流体を液体に変化させる凝縮器と、前記蒸発器の前記作動流体出口と前記凝縮器の入口とを連絡する蒸気管と、前記凝縮器の出口と前記蒸発器の前記作動流体入口とを連絡する液管とを備えることを特徴としている。
 上記構成の蒸発器及びループ型ヒートパイプでは、蒸発器の収容室のうち上部室に流入した液相の作動流体は、多孔板の細孔を通過して下部室へ侵入し、下部室の液溜部へ落下する。ここで、上部室の作動流体は、細孔を通過する際に生じる流れ抵抗により、直ちに下部室へ流下するのではなく、多孔板上で拡散する。これにより、上部室の作動流体は、作動流体入口の直下の細孔だけでなく、作動流体入口直下から離れた細孔にも分配されてから、下部室へ落下する。このようにして、作動流体入口直下の液溜部のみならず、作動流体入口直下から離れた液溜部にも作動流体が分配される。
 蒸発器の筐体の底面が水平から傾いたときに、液溜部の液相の作動流体は底面の傾きに沿って下方へ流れようとするが、壁部材によってその流れが阻害されて液溜部に留まる。このように、蒸発器の姿勢が変化して筐体の底面が水平から傾いても、作動流体が収容室の底部に残留し、受熱体と作動流体とが熱的に接触した状態が維持される。また、受熱体と作動流体とが熱的に接触しないドライ部分が生じても、ドライ部分は受熱体が熱的に接触している発熱体に対し分散して、偏在しない。よって、蒸発器の姿勢の変化に拘わらず、発熱体の受熱体と接触している領域全体を効率的に冷却することができる。
 本開示によれば、発熱体と熱的に接続される受熱体が底部に配置された蒸発器及びそれを備えるループ型ヒートパイプであって、蒸発器の姿勢が変化しても、受熱体と接触している発熱体を効率的に冷却できるものを提案することができる。
図1は、本開示の一実施形態に係るループ型ヒートパイプを搭載した航空機の概略構成を示す図である。 図2は、蒸発器の斜視図である。 図3は、蒸発器の内部構造を説明する側面図である。 図4は、液溜部を説明する蒸発器内部の平面図である。 図5は、液溜部の変形例を説明する蒸発器内部の平面図である。 図6は、液相の作動流体の流入量が少ない状態の蒸発器の側面図である。
 次に、図面を参照して本開示の実施の形態を説明する。図1は、本開示の一実施形態に係るループ型ヒートパイプ10を搭載した航空機50の概略構成を示す図である。
 図1に示すループ型ヒートパイプ10は、閉ループを形成する蒸発器2、蒸気管4、凝縮器3、及び、液管5を備える。閉ループ内には、凝縮性の流体である作動流体が封入されている。作動流体は、ループ型ヒートパイプ10を相変化と重力を利用して自然循環する。なお、作動流体は、特に限定されず、従来ヒートパイプの作動流体として使用されている凝縮性の流体(例えば、水、アルコール、アンモニア、フルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテル、及び、それらの混合液など)であってよい。
 蒸発器2は、熱源である発熱体99と熱的に接続される。この蒸発器2では、液相の作動流体が発熱体99から吸熱し、その一部が沸騰して気体に変化する。気液二相の作動流体は、蒸発器2の出口と凝縮器3の入口とを連絡する蒸気管4を圧力差や浮力によって移動し、凝縮器3へ到達する。
 凝縮器3は、蒸発器2よりも上方に設置される。凝縮器3には冷却流路(図示略)が形成されており、二相の作動流体は冷却流路を通過するうちに放熱し、冷却されて液体に変化する。液相の作動流体は、凝縮器3の出口と蒸発器2の入口とを連絡する液管5を重力によって降下し、蒸発器2へ還る。
 上記構成のループ型ヒートパイプ10は、輸送機に搭載される。このような輸送機として、船舶(潜水艇を含む)、鉄道車両、自動車、及び航空機などが例示される。本実施形態では、輸送機の一例としての航空機50にループ型ヒートパイプ10が搭載されている。この航空機50は、通常運行時の傾転許容角度がα°であって、通常運行時に水平から傾転許容角度までの範囲内での傾動が許容される。
 図1には、航空機50の胴体51及び主翼53の一部が示されている。胴体51は、外板52と、外板52より客室側に設けられた内壁54とを含む複層構造を有する。外板52と内壁54との間には、冷却室55が形成されている。冷却室55内は、飛行中に地上よりも著しく低温の外気に晒される外板52から伝わる冷熱によって低温となっている。或いは、外板52に冷却室55と連通される空気入口と空気出口とが設けられ、飛行中の冷却室55に外気が導入されてもよい。
 上記の航空機50において、凝縮器3は冷却室55内に配置され、発熱体99及びこれと熱的に接続された蒸発器2は内壁54よりも客室側に配置されている。冷却室55内には、凝縮器3に強制的に通気させるためのファン56が設けられている。この凝縮器3では、外気の冷熱を利用して作動流体を凝縮させる。発熱体99は、特に限定されないが、例えば、制御盤やエンジンコントロールユニット(ECU)やその他コンピュータなどの発熱部品を含む電子機器、軸受などの摩擦熱が生じる機械部品、及び、電池などが挙げられる。また、発熱体99に代えて、客室空気が熱源とされてもよい。
〔蒸発器2の構成〕
 以下、上記構成のループ型ヒートパイプ10が備える蒸発器2の構成について説明する。図2は本実施形態に係る蒸発器2の斜視図、図3は蒸発器2の内部構造を説明する側面図、図4は液溜部66を説明する蒸発器2内部の平面図、図5は液溜部66の変形例を説明する蒸発器2内部の平面図である。
 図2及び図3に示すように、本実施形態に係る蒸発器2は、筐体6と、筐体6の底面62に設けられた受熱体28とを備える。
 筐体6は、上面61及び底面62が最大面積の直方体形状を呈する。筐体6の内部には、作動流体の収容室23が形成されている。筐体6の底面62の一部又は全部は、受熱体28で形成されている。受熱体28は、銅などの熱伝導率の高い金属材料からなる板状部材である。受熱体28は、筐体6の外に表れる受熱面281と、筐体6内の収容室23内に表れる沸騰面282とを有する。受熱面281は、蒸発器2の下方に配置された発熱体99と熱的に接続され、発熱体99から熱を受け取る。
 収容室23は、多孔板22によって、多孔板22よりも上側の上部室24と、多孔板22よりも下側の下部室25とに仕切られている。多孔板22は、筐体6の上面61及び底面62と平行である。多孔板22は、多数の細孔を有し、各細孔を通じた作動流体の通過が許容される。
 上部室24には、少なくとも1つの作動流体入口67が開口している。作動流体入口67は、上部室24のうち最も高い位置に開口していることが望ましい。本実施形態に係る作動流体入口67は、筐体6の上面61に開口している。作動流体入口67は上方へ延びる液管5と接続されている。
 下部室25には、少なくとも1つの作動流体出口68が開口している。作動流体出口68は、下部室25のうち最も高い位置に開口していることが望ましい。本実施形態に係る作動流体出口68は、下部室25の天井を形成している多孔板22に開口している。但し、作動流体出口68は、筐体6の側壁や、筐体6を通じて下部室25内へ挿入された管部材の先端などに形成されていてもよい。作動流体出口68は上方へ延びる蒸気管4と接続されている。
 下部室25の底部は、壁部材65によって複数の液溜部66に区画されている。各液溜部66には液相の作動流体が収容される。壁部材65は、例えば、銅などの熱伝導率の高い金属材料から成る。但し、壁部材65の材料は金属材料に限定されない。本実施形態に係る壁部材65は、収容室23(そのうち、下部室25)の床面である受熱体28の沸騰面282から起立した板状部材である。
 複数の液溜部66は、輸送機の傾転方向(即ち、傾き方向)に並ぶ複数の凹部である。本実施形態では、図4に示すように、下部室25の底面から起立した格子状の壁部材65によって、下部室25の底部に複数の矩形状の液溜部66が形成されている。但し、液溜部66の態様はこれに限定されない。例えば、図5に示すように、下部室25の床面から起立した平行な複数の壁部材65によって、下部室25の底部に複数の長方形状の液溜部66が形成されていてもよい。
 なお、壁部材65は、下部室25の底部に複数の液溜部66を形成するものであれば、その態様は上記に限定されない。例えば、壁部材65は、受熱体28の沸騰面282から起立する板状を呈していてよい。また、例えば、壁部材65は、沸騰面282と接触している伝熱ブロックから複数の液溜部66が削り出されることによって形成されていてもよい。
 上記構成の蒸発器2において、液管5及び作動流体入口67を通じて液相の作動流体が上部室24へ流入する。上部室24の作動流体は、多孔板22の細孔を通過して下部室25へ侵入し、下部室25の液溜部66へ落下する。ここで、上部室24の作動流体は、細孔を通過する際に生じる流れ抵抗により、直ちに下部室25へ流下するのではなく上部室24で一時的に滞留して、多孔板22上で水平方向へ拡散する。その結果、上部室24に滞留している液相の作動流体によって、上部室24に上下方向の厚みを有する液層71が形成されている。そして、上部室24の作動流体は、作動流体入口67の直下の細孔だけでなく、作動流体入口67から離れた細孔にも分配される。
 上記のようにして、多孔板22の全面に偏りなく配置された多数の細孔の各々から作動流体が落下する。これにより、作動流体入口67直下の液溜部66のみならず、作動流体入口67直下から離れた液溜部66にも作動流体が分配される。液溜部66に収容された液相の作動流体の液面Lは、沸騰面282が水平な状態において壁部材65より低い位置にある。但し、液面Lは壁部材65と同じ又はそれより高い位置にあってもよい。
 受熱体28が発熱体99から受け取った熱は、沸騰面282及び壁部材65から作動流体へ放出される。その熱によって液溜部66にある液相の作動流体の少なくとも一部は沸騰して気相となる。その結果、下部室25内の液面Lより上方は気相(又は、気相及び液相の気液二相)の作動流体で満たされる。なお、二相流体では厳密には液面Lは存在しないが、下部室25内の作動流体は上方に向かうに従って液体中に存在する気体の体積の割合が大きくなるので、気液二相流の中で気体の占める体積比率(ボイド率ともいう)が所定比率(例えば、50%)となる境界面が仮想的な液面Lと規定されてもよい。
〔多孔板22の構造〕
 多孔板22は、多数の細孔が全面に亘って偏りなく規則的に配置されている。細孔の形状は円形に限定されず、多孔板22は、例えば、パンチングメタルや金属網であってよい。多孔板22の総面積は蒸発器2の筐体6のサイズによって定まることから、選択し得る多孔板22のパラメータは細孔数、細孔径、及び板厚である。細孔径は、細孔の平均径であってよい。
 多孔板22の細孔の上部室24側の圧力を一次圧力P1とし、細孔の下部室25側の圧力を二次圧力P2と表す。一次圧力P1は、上部室24及び液管5内の作動流体が多孔板22に及ぼす水頭圧から、作動流体が液管5を通過する際の圧力損失、作動流体が液管5から上部室24へ流路が急激に拡大する際の圧力損失、及び、作動流体の表面張力による圧力損失等を差し引いたものである。一次圧力P1は水頭圧で近似されてもよい。二次圧力P2は、下部室25内の作動流体が多孔板22に及ぼす圧力であり、下部室25での作動流体の蒸発量によって変動する。
 作動流体が上部室24から下部室25へ通過するためには、一次圧力P1は、二次圧力P2と多孔板22を通過する作動流体の圧力損失Δpとの和よりも大きくなくてはならない(P1>P2+Δp)。そこで、定格運転時の一次圧力P1が定格運転時の二次圧力P2と圧力損失Δpの和よりも大きくなるように、多孔板22の開口率εが設定されてよい。但し、一次圧力P1が、二次圧力P2と多孔板22を通過する作動流体の圧力損失Δpとの和と比較して著しく大きい場合には、上部室24に流入した作動流体は上部室24に滞留することなく下部室25へ流れ出てしまう。そこで、多孔板22を通過する作動流体の圧力損失Δpは、数1で示される公知の式で求めることができ、目的の運転状態における作動圧力を保つための圧力損失を適切に設定できる。
Figure JPOXMLDOC01-appb-M000001
 多孔板22の細孔を通過する作動流体の圧力損失Δpのパラメータは、作動流体の密度ρ、作動流体の平均流速u0、及び、抵抗係数ζである。抵抗係数ζのパラメータは、多孔板22の開口率ε、摩擦抵抗係数λ、細孔の等価直径d、及び多孔板22の板厚(厚さl)と細孔径の比に関する関数τである。圧力損失Δpから多孔板22の開口率εが定まる。多孔板22の開口率εは、多孔板22の全面積に対する細孔の面積の総和の割合と定義される。開口率εに適切な強度から多孔板22の板厚が定まる。多孔板22の厚さlは、薄いほうが望ましいが、0.01mm未満であると強度が不十分となるおそれがある。
 多孔板22の圧力損失Δpは、多孔板22の開口率ε及び等価直径dの変動に敏感である。等価直径dは、細孔の流路断面積をパラメータとしており、細孔径の関数となる。開口率εに基づいて細孔径と細孔数の組み合わせを定めることができるが、細孔径は0.01mm以上が望ましい。作動流体の種類にもよるが、細孔径が0.01mm未満であると揚程が過剰となり作動流体の流れが滞るおそれがある。
 蒸発器2では、適切な開口率εの多孔板22を採用することにより、上部室24から多孔板22を通じて下部室25へ偏りなく作動流体を浸出させることができる。
 例えば、上部室24の液層71が所定厚さとなるまで、作動流体が多孔板22を通過しないように、多孔板22の圧力損失Δpを設定することができる。これにより、図6に示すように、上部室24の作動流体が所定厚さとなるまで作動流体の多孔板22の通過が抑制されるので、作動流体は多孔板22で均一に拡散する。その結果、上部室24から多孔板22を通じて下部室25へ偏りなく作動流体を浸出させることができる。
 また、例えば、下部室25の作動流体が上部室24へ逆流しないように、多孔板22の圧力損失Δpを設定することができる。この場合、蒸発器2へ流入する作動流体の流量が所定の定格範囲、又は、蒸発器2の作動流体の蒸発量が所定の定格範囲の場合に、液相の作動流体が多孔板22を通って下部室25へ浸出する。そして、作動流体の蒸発量の急激な増加に伴って下部室25の作動流体の圧力が急激に上昇する場合に、その圧力変動(脈動)が多孔板22及び上部室24の作動流体によって緩和される。
 以上に説明したように、本実施形態に係る蒸発器2は、発熱体99からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器2であって、内部に作動流体を収容する収容室23を有する筐体6と、筐体6の底面62に配置されて、発熱体99と熱的に接続される受熱体28とを備える。そして、筐体6は、収容室23を上部室24と下部室25とに仕切るとともに上部室24と下部室25とを連通する多数の細孔を有する多孔板22と、上部室24に開口した少なくとも1つの作動流体入口67と、下部室25の底部を複数の液溜部66に区画する壁部材65と、下部室25であって壁部材65より上方に開口した少なくとも1つの作動流体出口68とを有する。
 また、本実施形態に係るループ型ヒートパイプ10は、液相の作動流体の少なくとも一部を気体に変化させる上記の蒸発器2と、気相の作動流体を液体に変化させる凝縮器3と、蒸発器2の作動流体出口68と凝縮器3の入口とを連絡する蒸気管4と、凝縮器3の出口と蒸発器2の作動流体入口67とを連絡する液管5とを備える。
 上記構成の蒸発器2及びループ型ヒートパイプ10では、蒸発器2の収容室23のうち上部室24に流入した液相の作動流体は、多孔板22の細孔を通過して下部室25へ侵入し、下部室25の液溜部66へ落下する。ここで、上部室24の作動流体は、細孔を通過する際に生じる流れ抵抗により、直ちに下部室25へ流下するのではなく、多孔板22上で拡散する。これにより、上部室24の作動流体は、作動流体入口67の直下の細孔だけでなく、作動流体入口67直下から離れた細孔にも分配されてから、下部室25へ落下する。このようにして、作動流体入口67直下の液溜部66のみならず、作動流体入口67直下から離れた液溜部66にも作動流体が分配される。
 これにより、上記構成の蒸発器2及びループ型ヒートパイプ10では、蒸発器2の筐体6の底面62が水平から傾いたときに、液溜部66の液相の作動流体は底面62の傾きに沿って下方へ流れようとするが、壁部材65によってその流れが阻害されて液溜部66に留まる。このように、蒸発器2の姿勢が変化して筐体6の底面62が水平から傾いても、作動流体が収容室23の底部に残留し、受熱体28と作動流体とが熱的に接触した状態が維持される。また、受熱体28と作動流体とが熱的に接触しないドライ部分が生じても、ドライ部分は受熱体28が熱的に接触している発熱体99に対し分散して、偏在しない。よって、蒸発器2の姿勢の変化に拘わらず、発熱体99の受熱体28と接触している領域全体を効率的に冷却することができる。
 また、本実施形態に係る蒸発器2及びループ型ヒートパイプ10において、上部室24は、作動流体入口67から流入して当該上部室24に一時的に滞留した液相の作動流体からなる所定厚さの液層71を有する。そのために、本実施形態に係る蒸発器2及びループ型ヒートパイプ10において、多孔板22は、上部室24が液相の作動流体からなる所定厚さの液層71を有するように、作動流体を上部室24に一時的に滞留させる開口率εを有する。
 これにより、蒸発器2の上部室24へ流入した液相の作動流体による水頭圧によって、下部室25の作動流体への上部室24への逆流を防ぐことができる。また、多孔板22の全面に亘って配置された多数の細孔を通じて、上部室24から下部室25へ作動流体を浸出させることができる。
 以上に本開示の好適な実施の形態を説明したが、本開示の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本開示に含まれ得る。
2   :蒸発器
3   :凝縮器
4   :蒸気管
5   :液管
6   :筐体
10  :ループ型ヒートパイプ
22  :多孔板
23  :収容室
24  :上部室
25  :下部室
28  :受熱体
62  :底面
65  :壁部材
66  :液溜部
67  :作動流体入口
68  :作動流体出口
71  :液層
99  :発熱体

Claims (4)

  1.  発熱体からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器であって、
     内部に前記作動流体を収容する収容室を有する筐体と、
     前記筐体の底面に配置されて、前記発熱体と熱的に接続される受熱体とを備え、
     前記筐体は、
      前記収容室を上部室と下部室とに仕切るとともに前記上部室と前記下部室とを連通する多数の細孔を有する多孔板と、
      前記上部室に開口した少なくとも1つの作動流体入口と、
      前記下部室の底部を複数の液溜部に区画する壁部材と、
      前記下部室であって前記壁部材より上方に開口した少なくとも1つの作動流体出口とを有する、
    蒸発器。
  2.  前記上部室は、前記作動流体入口から流入して当該上部室に一時的に滞留した液相の前記作動流体からなる所定厚さの液層を有する、
    請求項1に記載の蒸発器。
  3.  前記多孔板は、前記上部室が液相の前記作動流体からなる所定厚さの液層を有するように、前記作動流体を前記上部室に一時的に滞留させる開口率を有する、
    請求項1に記載の蒸発器。
  4.  液相の作動流体の少なくとも一部を気体に変化させる請求項1~3のいずれか一項に記載の蒸発器と、
     気相の前記作動流体を液体に変化させる凝縮器と、
     前記蒸発器の前記作動流体出口と前記凝縮器の入口とを連絡する蒸気管と、
     前記凝縮器の出口と前記蒸発器の前記作動流体入口とを連絡する液管とを備える、
    ループ型ヒートパイプ。
PCT/JP2021/023933 2020-06-24 2021-06-24 蒸発器及びループ型ヒートパイプ WO2021261552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/013,026 US20230247793A1 (en) 2020-06-24 2021-06-24 Evaporator and loop heat pipe
EP21830065.5A EP4174937A1 (en) 2020-06-24 2021-06-24 Evaporator and loop heat pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-108949 2020-06-24
JP2020108949A JP2022006611A (ja) 2020-06-24 2020-06-24 蒸発器及びループ型ヒートパイプ

Publications (1)

Publication Number Publication Date
WO2021261552A1 true WO2021261552A1 (ja) 2021-12-30

Family

ID=79281276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023933 WO2021261552A1 (ja) 2020-06-24 2021-06-24 蒸発器及びループ型ヒートパイプ

Country Status (4)

Country Link
US (1) US20230247793A1 (ja)
EP (1) EP4174937A1 (ja)
JP (1) JP2022006611A (ja)
WO (1) WO2021261552A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR202017018A1 (tr) * 2020-10-26 2022-05-23 Aselsan Elektronik Sanayi Ve Ticaret As Yüksek Çözüm Hızına Sahip Isı Borusu Tasarım ve Analiz Yöntemi

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114603A (ja) * 2004-10-13 2006-04-27 Toshiba Corp 車両用半導体冷却装置
US20100214740A1 (en) * 2005-07-30 2010-08-26 Articchoke Enterprises Phase-Separated Evaporator, Blade-Thru Condenser and Heat Dissipation System Thereof
JP2013032904A (ja) * 2011-06-29 2013-02-14 Panasonic Corp 冷却装置およびこれを搭載した電子機器、および電気自動車
JP5741354B2 (ja) 2011-09-29 2015-07-01 富士通株式会社 ループ型ヒートパイプ及び電子機器
WO2020138081A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114603A (ja) * 2004-10-13 2006-04-27 Toshiba Corp 車両用半導体冷却装置
US20100214740A1 (en) * 2005-07-30 2010-08-26 Articchoke Enterprises Phase-Separated Evaporator, Blade-Thru Condenser and Heat Dissipation System Thereof
JP2013032904A (ja) * 2011-06-29 2013-02-14 Panasonic Corp 冷却装置およびこれを搭載した電子機器、および電気自動車
JP5741354B2 (ja) 2011-09-29 2015-07-01 富士通株式会社 ループ型ヒートパイプ及び電子機器
WO2020138081A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ

Also Published As

Publication number Publication date
EP4174937A1 (en) 2023-05-03
JP2022006611A (ja) 2022-01-13
US20230247793A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US7013956B2 (en) Heat pipe evaporator with porous valve
US5587880A (en) Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation
US8705236B2 (en) Loop heat pipe and electronic apparatus
US10948239B2 (en) Intermittent thermosyphon
US3661202A (en) Heat transfer apparatus with improved heat transfer surface
JP4898250B2 (ja) 冷水生成装置ならびにそれを用いた冷温水サーバー
JP2005195226A (ja) ポンプレス水冷システム
JP2019002642A (ja) 冷却器、およびサーモサイフォン
WO2021261552A1 (ja) 蒸発器及びループ型ヒートパイプ
JPWO2016047098A1 (ja) 冷媒中継装置、それを用いた冷却装置、および冷却方法
WO2020138081A1 (ja) 蒸発器及びループ型ヒートパイプ
JP2013245875A (ja) 冷却装置及び電子装置
JP2004020116A (ja) 平板型ヒートパイプ
Parker Modeling of loop heat pipes with applications to spacecraft thermal control
US20220065548A1 (en) Loop heat pipe and transportation machine
JP2011108685A (ja) 自然循環式沸騰冷却装置
WO2014132085A1 (en) A module for cooling one or more heat generating components
EP3904813A1 (en) Loop-type heat pipe and transporter
JP7271170B2 (ja) 蒸発器及びループ型ヒートパイプ
EP3904814A1 (en) Evaporator and loop-type heat pipe
Hoang et al. Development of a Gravity-Assist Water Loop Heat Pipe With Flat Evaporator for Waste Heat Removal
CN220200137U (zh) 用于储物柜的除湿装置、储物柜
Pastukhov et al. Development and investigation of a cooler for electronics on the basis of two-phase loop thermosyphons
JP2020106205A (ja) 熱輸送システム及び輸送機
JPH0791870A (ja) トップヒート式ヒートパイプ,冷却システム及び加熱システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021830065

Country of ref document: EP

Effective date: 20230124