WO2021261415A1 - Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method - Google Patents

Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method Download PDF

Info

Publication number
WO2021261415A1
WO2021261415A1 PCT/JP2021/023303 JP2021023303W WO2021261415A1 WO 2021261415 A1 WO2021261415 A1 WO 2021261415A1 JP 2021023303 W JP2021023303 W JP 2021023303W WO 2021261415 A1 WO2021261415 A1 WO 2021261415A1
Authority
WO
WIPO (PCT)
Prior art keywords
harvesting
unit
harvester
crop
weed
Prior art date
Application number
PCT/JP2021/023303
Other languages
French (fr)
Japanese (ja)
Inventor
藤田敏章
瀬川卓二
中西雄大
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020107948A external-priority patent/JP7423442B2/en
Priority claimed from JP2020107945A external-priority patent/JP7423440B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202180035315.8A priority Critical patent/CN115666223A/en
Publication of WO2021261415A1 publication Critical patent/WO2021261415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/02Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having reciprocating cutters
    • A01D34/24Lifting devices for the cutter-bar
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D57/00Delivering mechanisms for harvesters or mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D57/00Delivering mechanisms for harvesters or mowers
    • A01D57/01Devices for leading crops to the mowing apparatus
    • A01D57/02Devices for leading crops to the mowing apparatus using reels
    • A01D57/04Arrangements for changing the position of the reels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D61/00Elevators or conveyors for binders or combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers

Definitions

  • the present invention relates to a harvester provided with a harvesting and transporting device having a harvesting section and a transporting section.
  • the present invention relates to a harvester provided with a harvesting device for harvesting crops in a field.
  • the harvesting section (“cutting section” in Patent Document 1) in this harvester (“combine” in Patent Document 1) includes a rotation-driven auger (“horizontal feed auger” in Patent Document 1). Further, the transport unit (“feeder” in Patent Document 1) in this harvester transports the harvested product harvested by the harvester to the rear of the machine.
  • the harvester disclosed in Patent Document 2 is provided with a detection unit (“image recognition module and data processing module” in the document) capable of detecting a fallen crop in front of the harvester.
  • the detection unit is configured to be able to detect weeds. Information such as fallen crops is used to generate field maps.
  • the operator needs to switch the power transmission path from the power source to the auger in order to drive the auger in the reverse direction.
  • the operation of switching the power transmission path is generally performed by operating an operating tool such as a lever.
  • An object of the present invention is to provide a harvester in which the clogging can be easily cleared automatically when the harvesting and transporting device is clogged.
  • An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to at least one of a crop type and a weed type.
  • a feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, the harvesting section including a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the aircraft.
  • the crops in the field are harvested, and the transport unit transports the harvested product harvested by the harvesting unit to the rear of the machine body, and determines whether or not the harvest transport device is clogged. It is provided with a reversing control unit for reversing driving the auger when it is determined by the determination unit that the harvesting and transporting device is clogged.
  • the jam determination unit determines that the harvest transfer device is clogged. Then, in that case, the reverse control unit drives the auger in reverse. That is, according to the present invention, the auger is automatically reverse-driven when the harvest transfer device is clogged. This makes it easier to clear the blockage.
  • a height changing device for changing the height position of the auger with respect to the header and a height control unit for controlling the height position of the auger with respect to the header by controlling the height changing device. It is preferable that the height control unit raises the height position of the auger with respect to the header when the jamming determination unit determines that the harvest transfer device is clogged.
  • the height position of the auger with respect to the header is automatically raised when the harvest transfer device is clogged.
  • the gap between the bottom plate of the header and the auger is widened.
  • the clogging can be easily cleared.
  • the reversing control unit raises the harvesting unit and reversely drives the auger when the jamming determination unit determines that the harvesting and transporting device is clogged. It is preferable that the above is feasible.
  • the harvest transport device when the harvest transport device is clogged, the clogged harvest or the like is discharged forward from the raised harvesting section. At this time, if an unharvested crop (for example, a planted culm) exists in front of the machine, the discharged harvested product or the like is likely to be placed on the unharvested crop.
  • an unharvested crop for example, a planted culm
  • the reverse rotation control unit reversely drives the auger after moving the machine forward in the first clogging control.
  • the reversing control unit when the jamming determination unit determines that the harvesting and transporting device is clogged, the reversing control unit reversely drives the auger after reversing the machine body at the time of the second clogging. It is preferable that the control can be executed.
  • the harvest transport device when the harvest transport device is clogged, the clogged harvest or the like is discharged from the harvesting section to the ground. Therefore, it is not necessary to temporarily reduce the traveling speed of the aircraft to a relatively low speed immediately after restarting the harvesting operation. As a result, it is easy to shorten the time required for the harvesting work as compared with the case where the clogged harvested product or the like is placed on the unharvested crop.
  • the harvesting unit includes a reel that scrapes the planted culm while being driven to rotate, and when the jamming determination unit determines that the harvesting and transporting device is clogged, the header is used.
  • the jamming determination unit determines that the harvesting and transporting device is clogged, the header is used.
  • the clogging determination unit determines whether or not the harvest transfer device is clogged based on the detection result by the detection unit. be.
  • the rotation speed of the auger is a value related to whether or not the harvest transfer device is clogged.
  • the clogging determination unit determines whether or not the harvest transfer device is clogged based on the rotation speed of the auger. This makes it easy to realize a harvester that determines whether or not the harvest transfer device is clogged with a relatively simple configuration.
  • the auger is provided with an electric motor that gives reverse power to the auger, and the reverse control unit drives the auger in reverse by driving the electric motor.
  • Another feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, wherein the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and can be raised and lowered with respect to the machine body.
  • the transport unit is a harvester control program that controls a harvester that transports the harvested product harvested by the harvest unit to the rear of the machine, and is a harvest transport device. To realize a clogging determination function for determining whether or not the harvesting is clogged, and a reversing control function for reversing driving the auger when the harvesting and transporting device is determined to be clogged by the jamming determination function. It is in.
  • Another feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, wherein the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and can be raised and lowered with respect to the machine body.
  • a recording medium recording a harvester control program that controls a harvester that harvests crops in the field and transports the harvested product harvested by the harvester to the rear of the machine.
  • a jam determination function for determining whether or not the harvest transfer device is clogged, and a reverse control function for reversing driving the auger when the harvest transfer device is determined to be clogged by the jam determination function. It is to record the harvester control program to be realized on the computer.
  • the transport unit is a harvester control method for controlling a harvester that transports the harvested product harvested by the harvest unit to the rear of the machine, and the harvest transport unit. It is provided with a clogging determination step for determining whether or not the harvester is clogged, and a reversal control step for reversing driving the auger when it is determined by the jamming determination step that the harvesting and transporting device is clogged.
  • the harvester according to the present invention includes a traveling device capable of traveling in a field, a harvesting device for harvesting crops in the field, a detection unit for detecting a weed region in which weeds are present in the crop in front of the harvesting device, and the above.
  • a state changing unit for changing the vehicle speed of the traveling device in the weed region to a lower speed side than the vehicle speed when traveling outside the weed region is provided, and the detecting unit is provided with a crop type and a weed region.
  • the state changing unit changes the vehicle speed of the traveling device to the low speed side according to at least one of the type of crop and the type of weed. It is characterized in that it is configured to be determinable.
  • At least one of the crop type and the weed type is grasped by the detection unit, and the vehicle speed is controlled to the low speed side according to at least one of the crop type and the weed type. Therefore, when the commercial value of the crop is high, careful harvesting is possible in the weed area. As a result, a harvester capable of performing suitable harvesting work is realized according to at least one of the type of crop and the type of weed.
  • a threshing device comprising a sorting processing unit for sorting the material into harvested and non-harvested material is provided, and the sorting processing unit has a plurality of chaflip arranged along the transport direction of the threshing processed material. It also has a chaff sheave whose leakage opening can be changed by changing the postures of the plurality of chaflip, and the state changing unit has a type of the crop when selecting the crops harvested in the weed area. It is preferable that the chaff sheave is configured to reduce the leakage opening degree according to at least one of the weed type and the weed type.
  • the risk of weeds being mixed with the harvested products selected by the sorting processing unit increases.
  • the vehicle speed is changed to the low speed side in the weed area and the leakage opening of the chaf sheave becomes smaller, so that the harvested products carefully harvested in the weed area are carefully sorted by the sorting processing unit.
  • the risk of weeds being mixed with the harvested products selected by the sorting processing unit is reduced.
  • the detection unit is configured to be able to acquire the type of the crop, and the state change unit detects the weed area in front of the harvesting device and the type of the crop is beans. , It is preferable to stop the traveling device.
  • Some beans have high commercial value. Therefore, when beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. With this configuration, when the type of crop is beans, such inconvenience can be avoided by stopping the traveling device.
  • the detection unit is configured to be able to acquire both the type of the crop and the type of the weed, and the state changing unit detects the weed region in front of the harvesting device and the crop.
  • the type of the above is other than beans, it is preferable to determine the degree of change of the vehicle speed of the traveling device to the low speed side according to the type of the weed.
  • the state changing unit determines the degree of change of the vehicle speed of the traveling device to the low speed side according to the weed rate, which is the amount of the weeds per unit area in the weed area.
  • Another feature of the present invention is a harvester control program for controlling a harvester provided with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
  • a detection function that detects a weed area where weeds are present mixed with crops in front, and a state change function that changes the vehicle speed of the traveling device in the weed area to a speed lower than the vehicle speed when traveling outside the weed area.
  • the detection function acquires at least one of the crop type and the weed type in the weed region, and the state change function obtains the crop type and the weed type.
  • the purpose is to determine the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the above.
  • Another feature of the present invention is a recording medium recording a harvester control program for controlling a harvester equipped with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
  • a detection function for detecting a weed area where weeds are present mixed with crops in front of the harvesting device, and a vehicle speed of the traveling device in the weed area set to a lower speed side than the vehicle speed when traveling outside the weed area.
  • the harvester control program that realizes the state change function to be changed on the computer is recorded, and the detection function acquires at least one of the crop type and the weed type in the weed area, and the detection function obtains the above.
  • the state change function is to record a harvester control program that determines the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the crop type and the weed type.
  • Another feature of the present invention is a harvester control method for controlling a harvester provided with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
  • a detection step for detecting a weed area in which weeds are present mixed with crops in front and a state change step for changing the vehicle speed of the traveling device in the weed area to a speed lower than the vehicle speed when traveling outside the weed area.
  • the detection step at least one of the crop type and the weed type in the weed region is acquired, and in the state change step, at least one of the crop type and the weed type is obtained.
  • the degree of change of the vehicle speed of the traveling device to the low speed side is determined.
  • FIG. 8 It is a figure which shows the 1st Embodiment (hereinafter, the same is applied to FIG. 8), and is the left side view of a combine. It is a figure which shows the orbit running in a field. It is a figure which shows the cutting running along the cutting running path. It is a block diagram which shows the structure about the control part. It is a figure which shows the structure of a height changing device and the like. It is a figure which shows the change of the height position of an auger with respect to a header. It is a figure which shows the example when the 1st clogging control is executed. It is a figure which shows the example when the 2nd clogging control is executed.
  • FIG. 18 It is a figure which shows the 2nd Embodiment (hereinafter, it is the same until FIG. 18), and is the whole side view of the harvester. It is the whole plan view of the harvester. It is a functional block diagram which shows the control system of a harvester. It is explanatory drawing which shows typically the flow of the generation of recognition output data by a recognition part. It is a side view of the main part which shows the working state of a harvesting apparatus. It is a side view of the main part which shows the working state of a harvesting apparatus. It is a flowchart which shows the state change process of the state determination part. It is a schematic plan view which shows the image of the field by the 2nd image pickup apparatus. It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop. It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop.
  • the ordinary type combine 1 (corresponding to the “harvester” according to the present invention) includes a harvest transfer device 2, a crawler type traveling device 11, an operation unit 12, a threshing device 13, and a grain tank 14. , Equipped with a grain discharging device 18, a satellite positioning module 80, and an engine E.
  • the harvest transfer device 2 has a harvest unit H and a transfer unit 16.
  • the combine 1 includes a harvesting and transporting device 2 having a harvesting section H and a transporting section 16.
  • the traveling device 11 is provided at the lower part of the combine 1. Further, the traveling device 11 is driven by the power from the engine E. The combine 1 can be self-propelled by the traveling device 11.
  • the operation unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11.
  • An operator who monitors the work of the combine 1 can be boarded on the driving unit 12. The operator may monitor the work of the combine 1 from outside the combine 1.
  • the grain discharge device 18 is provided on the upper side of the grain tank 14. Further, the satellite positioning module 80 is attached to the upper surface of the operating unit 12.
  • the harvesting section H is provided in the front portion of the combine 1.
  • the transport section 16 is provided on the rear side of the harvest section H.
  • the harvesting unit H includes a header 5, an auger 6, a cutting device 15, and a reel 17.
  • the reaping device 15 cuts the planted culm in the field. Further, the reel 17 is driven to rotate around the reel axis 17b along the left-right direction of the machine body to scrape the planted grain culm to be harvested.
  • the harvesting unit H includes a reel 17 that scrapes the planted culm while being rotationally driven.
  • the harvested grain culm (corresponding to the "harvest” according to the present invention) cut by the harvesting device 15 is accepted in the header 5. Further, the auger 6 is configured in a cylindrical shape extending in the left-right direction of the machine body. The auger 6 is rotationally driven around an auger shaft 6b extending in the left-right direction of the machine body. As a result, the harvested culm received in the header 5 is sent to the transport unit 16 by the auger 6.
  • the harvesting unit H harvests the grain in the field (corresponding to the "crop" according to the present invention). Then, the combine 1 can be cut and run by the running device 11 while cutting the planted culms in the field by the cutting device 15.
  • the harvested culm harvested by the harvesting unit H is transported to the rear of the machine by the transporting unit 16. As a result, the harvested grain culm is transported to the threshing device 13.
  • the transport unit 16 transports the harvested grain culms harvested by the harvesting unit H to the rear of the machine body.
  • the harvested grain culm is threshed.
  • the grains obtained by the threshing treatment are stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
  • a communication terminal 4 is arranged in the driving unit 12.
  • the communication terminal 4 is configured to be able to display various information.
  • the communication terminal 4 is fixed to the driving unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the driving unit 12, and the communication terminal 4 may be located outside the combine 1. ..
  • the combine 1 is circulated while harvesting grains in the outer peripheral region of the field as shown in FIG. 2, and then harvested in the inner region of the field as shown in FIG. , Is configured to harvest field grain.
  • the lap running shown in FIG. 2 is performed by manual running. Further, the cutting run in the inner region shown in FIG. 3 is performed by automatic running. That is, the combine 1 can run automatically.
  • the present invention is not limited to this, and the lap running shown in FIG. 2 may be performed by automatic running.
  • the driving unit 12 is provided with a main speed change lever 19.
  • the main shift lever 19 is artificially operated.
  • the vehicle speed of the combine 1 changes. That is, when the combine 1 is manually traveling, the operator can change the vehicle speed of the combine 1 by operating the main shift lever 19.
  • the operator can change the rotation speed of the engine E by operating the communication terminal 4.
  • the appropriate working speed differs depending on the type of crop. If the operator operates the communication terminal 4 and sets the rotation speed of the engine E to an appropriate rotation speed, the work can be performed at a work speed suitable for the type of crop.
  • the combine 1 includes a cutting clutch C1.
  • the power output from the engine E is distributed to the cutting clutch C1 and the traveling device 11.
  • the traveling device 11 is driven by power from the engine E.
  • the cutting clutch C1 is configured so that the state can be changed between the on state in which power is transmitted and the off state in which power is not transmitted.
  • the transport unit drive shaft 16a rotates in the forward rotation direction.
  • the transport unit drive shaft 16a is a drive shaft of the transport unit 16.
  • the transport unit 16 is driven in the normal rotation direction by rotating the transport unit drive shaft 16a in the normal rotation direction.
  • the power transmitted from the engine E to the transport unit drive shaft 16a is distributed to the one-way clutch C2, the reaping device 15, and the auger 6.
  • the cutting device 15 is driven and the auger 6 is rotationally driven in the forward rotation direction.
  • the one-way clutch C2 is configured to transmit the rotational power in the forward rotation direction to the reel 17 and not to transmit the rotational power in the reverse rotation direction to the reel 17. Therefore, when the transport unit drive shaft 16a is rotating in the forward rotation direction, the rotational power of the transport unit drive shaft 16a is transmitted to the reel 17 via the one-way clutch C2. As a result, the reel 17 is driven.
  • the power output from the engine E is not transmitted to the transport unit drive shaft 16a. At this time, the power output from the engine E is not transmitted to any of the reel 17, the cutting device 15, and the auger 6.
  • the combine 1 includes an electric motor 7.
  • the electric motor 7 is configured to give reverse power to the transport unit drive shaft 16a. That is, the transport unit drive shaft 16a is rotated in the reverse direction by the power from the electric motor 7.
  • the transport unit 16 is driven in the reverse direction by rotating the transport unit drive shaft 16a in the reverse direction.
  • the power transmitted from the electric motor 7 to the transport unit drive shaft 16a is distributed to the one-way clutch C2, the cutting device 15, and the auger 6.
  • the cutting device 15 is driven and the auger 6 is rotationally driven in the reverse direction.
  • the one-way clutch C2 does not transmit the rotational power of the transport unit drive shaft 16a to the reel 17. Therefore, at this time, the reel 17 is not driven.
  • the electric motor 7 gives the auger 6 reverse power. That is, the combine 1 includes an electric motor 7 that gives reverse power to the auger 6.
  • the transport unit 16 is configured to transport the harvested grain culm to the rear of the machine body when it is driven in the forward rotation direction. Further, the transport unit 16 is configured to transport the cut grain culm to the front of the machine body when it is driven in the reverse direction.
  • the auger 6 is configured to send the cut grain culm to the transport unit 16 when it is driven in the forward rotation direction. Further, the auger 6 is configured to send the cut grain culm to the front of the machine body when it is driven in the reverse direction.
  • the combine 1 includes a control unit 20.
  • the control unit 20 includes a vehicle position calculation unit 21, an area calculation unit 22, a route calculation unit 23, and a travel control unit 24.
  • the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 4, the satellite positioning module 80 sends positioning data indicating the own vehicle position of the combine 1 to the own vehicle position calculation unit 21 based on the received GPS signal.
  • GPS Global Positioning System
  • the vehicle position calculation unit 21 calculates the position coordinates of the combine 1 over time based on the positioning data output by the satellite positioning module 80.
  • the calculated position coordinates of the combine 1 over time are sent to the area calculation unit 22 and the travel control unit 24.
  • the area calculation unit 22 calculates the outer peripheral area SA and the work target area CA as shown in FIG. 3 based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 21.
  • the area calculation unit 22 calculates the traveling locus of the combine 1 in the orbital traveling on the outer peripheral side of the field based on the temporal position coordinates of the combine 1 received from the own vehicle position calculation unit 21. .. Then, the region calculation unit 22 calculates the region on the outer peripheral side of the field in which the combine 1 circulates while harvesting grains as the outer peripheral region SA, based on the calculated travel locus of the combine 1. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
  • the traveling path of the combine 1 for orbiting traveling on the outer peripheral side of the field is indicated by an arrow.
  • the combine 1 makes three laps. Then, when the cutting run along this running path is completed, the field is in the state shown in FIG.
  • the area calculation unit 22 calculates the area on the outer peripheral side of the field where the combine 1 circulates while harvesting grains as the outer peripheral area SA. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
  • the calculation result by the area calculation unit 22 is sent to the route calculation unit 23.
  • the route calculation unit 23 calculates the mowing travel route LI, which is the travel route for the mowing operation in the work target area CA, as shown in FIG. 3, based on the calculation result received from the area calculation unit 22.
  • the cutting travel path LI is a plurality of mesh lines extending in the vertical and horizontal directions. Further, the plurality of mesh lines do not have to be straight lines and may be curved.
  • the cutting travel route LI calculated by the route calculation unit 23 is sent to the travel control unit 24.
  • the travel control unit 24 is configured to be able to control the travel device 11. Then, the travel control unit 24 controls the automatic travel of the combine 1 based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21 and the harvesting travel route LI received from the route calculation unit 23. More specifically, as shown in FIG. 3, the traveling control unit 24 controls the traveling of the combine 1 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
  • the operator manually operates the combine 1 and performs a cutting run so as to orbit along the boundary line of the field in the outer peripheral portion of the field as shown in FIG.
  • the combine 1 makes three laps.
  • this lap run is completed, the field is in the state shown in FIG.
  • the area calculation unit 22 calculates the travel locus of the combine 1 in the orbital travel shown in FIG. 2 based on the temporal position coordinates of the combine 1 received from the own vehicle position calculation unit 21. Then, as shown in FIG. 3, the area calculation unit 22 sets the outer peripheral region SA of the region on the outer peripheral side of the field in which the combine 1 orbits while cutting the planted culm, based on the calculated travel locus of the combine 1. Calculated as. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
  • the route calculation unit 23 sets the cutting travel route LI in the work target area CA as shown in FIG. 3 based on the calculation result received from the area calculation unit 22.
  • the traveling control unit 24 controls the traveling of the combine 1 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
  • the combine 1 When the automatic traveling in the work target area CA is started, as shown in FIG. 3, the combine 1 repeats traveling along the cutting travel path LI and changing the direction to cover the entire work target area CA. Perform a harvesting run to cover it.
  • the carrier CV is parked outside the field. Then, in the outer peripheral region SA, the stop position PP is set at a position near the carrier CV.
  • the carrier CV can collect and transport the grains discharged from the grain discharge device 18 by the combine 1. At the time of grain discharge, the combine 1 stops at the stop position PP, and the grain is discharged to the carrier CV by the grain discharge device 18.
  • the portion where the cutting run is completed is the outer peripheral area SA.
  • the area calculation unit 22 is configured to calculate the outer peripheral area SA and the work target area CA over time during the execution of the cutting run in the field.
  • the combine 1 includes a cutting cylinder 15A, a reel cylinder 17A, and a height changing device 6A.
  • control unit 20 has a clogging control unit 25.
  • the jam control unit 25 includes a reverse rotation control unit 26.
  • the reverse rotation control unit 26 is configured to be able to control the cutting cylinder 15A.
  • the harvest transfer device 2 swings in the direction in which the front end portion of the harvest transfer device 2 rises. As a result, the harvesting section H rises with respect to the aircraft.
  • the harvest transfer device 2 swings in the direction in which the front end portion of the harvest transfer device 2 descends. As a result, the harvesting section H descends with respect to the aircraft.
  • the reverse rotation control unit 26 can control the raising and lowering of the harvesting unit H with respect to the machine body. Further, the harvesting unit H can be raised and lowered with respect to the machine body.
  • the harvesting unit H includes a header 5 for receiving the harvested grain culm and a rotary-driven auger 6, and is configured to be able to move up and down with respect to the machine body, and harvests the grain in the field.
  • the jam control unit 25 includes a reel control unit 27.
  • the reel control unit 27 is configured to be able to control the reel cylinder 17A.
  • the reel control unit 27 controls the reel cylinder 17A in the extension direction, the reel 17 rises with respect to the header 5.
  • the reel control unit 27 controls the reel cylinder 17A in the contraction direction, the reel 17 descends with respect to the header 5.
  • the reel control unit 27 can control the raising and lowering of the reel 17 with respect to the header 5. Further, the reel 17 can be raised and lowered with respect to the header 5.
  • the height changing device 6A is composed of a telescopic cylinder.
  • the clogging control unit 25 includes a height control unit 28.
  • the height control unit 28 is configured to be able to control the height changing device 6A.
  • the header 5 has a shaft support portion 51 and a device support portion 52.
  • the device support portion 52 is provided so as to project outward from the side plate 53 of the header 5 in the left-right direction of the machine body.
  • the device support portion 52 supports the height changing device 6A.
  • the shaft support portion 51 is configured to be slidable up and down with respect to the side plate 53.
  • the shaft support portion 51 is supported by the device support portion 52 via the height changing device 6A.
  • the auger shaft 6b is supported by the shaft support portion 51.
  • the height control unit 28 controls the height changing device 6A in the extension direction, the shaft support portion 51 and the auger shaft 6b rise with respect to the side plate 53, as shown in FIG. As a result, as shown in FIG. 6, the auger 6 rises with respect to the header 5.
  • the height control unit 28 controls the height changing device 6A in the contraction direction, the shaft support portion 51 and the auger shaft 6b descend with respect to the side plate 53, as shown in FIG. As a result, as shown in FIG. 6, the auger 6 descends with respect to the header 5.
  • the shaft support portion 51, the device support portion 52, and the height changing device 6A are provided at the left end and the right end of the header 5, respectively.
  • the shaft support portion 51, the device support portion 52, and the height changing device 6A at the left end of the header 5 and the shaft support portion 51, the device support portion 52, and the height changing device 6A at the right end of the header 5 have similar structures to each other.
  • the auger shaft 6b is provided so as to extend over the left and right shaft support portions 51.
  • the height changing device 6A changes the height position of the auger 6 with respect to the header 5. Further, the height control unit 28 controls the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A.
  • the distance between the bottom plate 5a and the auger 6 is the first distance D1.
  • the distance between the bottom plate 5a and the auger 6 is the second distance D2.
  • the second interval D2 is wider than the first interval D1.
  • the combine 1 is provided with a height changing device 6A that changes the height position of the auger 6 with respect to the header 5. Further, the combine 1 includes a height control unit 28 that controls the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A.
  • the combine 1 includes a detection unit SE. Further, the control unit 20 has a clogging determination unit 29.
  • the detection unit SE detects the rotation speed of the auger 6 while the combine 1 is harvesting in the field.
  • the detection result by the detection unit SE is sent to the clogging determination unit 29.
  • the clogging determination unit 29 determines whether or not the harvest transfer device 2 is clogged based on the detection result by the detection unit SE. More specifically, the clogging determination unit 29 determines whether or not the rotation speed of the auger 6 is less than a predetermined threshold value based on the detection result by the detection unit SE. Then, when the rotation speed of the auger 6 is equal to or higher than a predetermined threshold value, the clogging determination unit 29 determines that the harvest transfer device 2 is not clogged. Further, when the rotation speed of the auger 6 is less than a predetermined threshold value, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged.
  • the combine 1 is provided with a detection unit SE that detects the rotation speed of the auger 6. Further, the combine 1 includes a clogging determination unit 29 for determining whether or not the harvesting and transporting device 2 is clogged.
  • the jam determination unit 29 may be configured to determine whether or not the harvesting unit H is clogged in the harvesting and transporting device 2, or may determine whether or not the transporting unit 16 is clogged. It may be configured in.
  • the jam determination unit 29 determines that the harvest transfer device 2 is clogged
  • the jam determination unit 29 sends a predetermined signal to the jam control unit 25 as shown in FIG.
  • This signal is a signal indicating that the harvest transfer device 2 is clogged.
  • the jam control unit 25 receives this signal, the reverse control unit 26, the reel control unit 27, and the height control unit 28 in the jam control unit 25 execute control for clearing the jam of the harvest transfer device 2. ..
  • the control for clearing the clogging of the harvest transfer device 2 will be described in detail.
  • the reverse rotation control unit 26 is configured to be able to control the cutting clutch C1 and the electric motor 7. Then, the reverse rotation control unit 26 can execute the first clogging control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged.
  • the first clogging control is a control in which the harvesting portion H is raised and the auger 6 is reversely driven.
  • the reverse rotation control unit 26 raises the harvesting unit H with respect to the machine body by controlling the cutting cylinder 15A in the extension direction.
  • the reverse rotation control unit 26 sends a predetermined command to the travel control unit 24. This command commands the aircraft to move forward by a predetermined distance.
  • the travel control unit 24 controls the travel device 11 to advance the aircraft by a predetermined distance.
  • the reverse rotation control unit 26 switches the cutting clutch C1 from the on state to the off state and drives the electric motor 7.
  • the power in the forward rotation direction output from the engine E is cut off by the cutting clutch C1
  • the power in the reverse rotation direction output from the electric motor 7 drives the auger 6 in the reverse direction.
  • the first clogging control is completed.
  • the combine 1 includes a reverse control unit 26 that reversely drives the auger 6 when the jam determination unit 29 determines that the harvest transport device 2 is clogged.
  • the reverse rotation control unit 26 can execute the first jamming control that raises the harvesting unit H and reversely drives the auger 6 when the jamming determination unit 29 determines that the harvesting and transporting device 2 is clogged. be.
  • the reverse rotation control unit 26 reversely drives the auger 6 after moving the aircraft forward in the first jam control.
  • the reverse rotation control unit 26 drives the auger 6 in reverse direction by driving the electric motor 7.
  • the reverse rotation control unit 26 can execute the second clogging control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged.
  • the second clogging control is a control in which the auger 6 is reversely driven after the aircraft is moved backward.
  • the reverse rotation control unit 26 first sends a predetermined command to the travel control unit 24. This command commands the aircraft to move backward by a predetermined distance.
  • the travel control unit 24 controls the travel device 11 to move the aircraft backward by a predetermined distance.
  • the present invention is not limited to this, and the reversing control unit 26 controls the cutting cylinder 15A in the extension direction to raise the harvesting unit H with respect to the aircraft prior to moving the aircraft backward by a predetermined distance. It may be configured in.
  • the reverse rotation control unit 26 switches the cutting clutch C1 from the on state to the off state and drives the electric motor 7.
  • the power in the forward rotation direction output from the engine E is cut off by the cutting clutch C1
  • the power in the reverse rotation direction output from the electric motor 7 drives the auger 6 in the reverse direction.
  • the second clogging control is completed.
  • the reverse rotation control unit 26 can execute the second jamming control that reversely drives the auger 6 after moving the machine backward when the jamming determination unit 29 determines that the harvest transfer device 2 is clogged. be.
  • the communication terminal 4 is configured to be able to select which of the first clogging control and the second clogging control is executed. More specifically, the communication terminal 4 can display a control selection screen (not shown). Then, when the control selection screen is displayed on the communication terminal 4, the operator arbitrarily selects either the first clogging control or the second clogging control by operating the communication terminal 4. can.
  • a signal indicating the selection content by the operator is sent from the communication terminal 4 to the clogging control unit 25.
  • the reversing control unit 26 receives one of the first clogging control and the second clogging control in response to this signal. Run. That is, the reverse rotation control unit 26 executes which of the first clogging control and the second clogging control is selected by the operator.
  • the present invention is not limited to this, and the reverse rotation control unit 26 automatically selects and executes the appropriate one of the first clogging control and the second clogging control according to the work situation. It may be configured in.
  • the reel control unit 27 can execute the reel ascending control when it is determined by the jam determination unit 29 that the harvest transfer device 2 is clogged.
  • the reel raising control is a control for raising the reel 17 with respect to the header 5.
  • the reel control unit 27 raises the reel 17 with respect to the header 5 by controlling the reel cylinder 17A in the extension direction. This completes the reel rise control.
  • the combine 1 includes a reel control unit 27 that raises the reel 17 with respect to the header 5 when the jamming determination unit 29 determines that the harvest transport device 2 is clogged.
  • the reel rise control is executed at the same time as the first jam control or the second jam control.
  • the height control unit 28 can execute the auger rise control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged.
  • the auger rise control is a control for raising the height position of the auger 6 with respect to the header 5.
  • the height control unit 28 raises the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A in the extension direction. This completes the auger rise control.
  • the height control unit 28 raises the height position of the auger 6 with respect to the header 5 when the jam determination unit 29 determines that the harvest transfer device 2 is clogged.
  • the auger rise control is executed at the same time as the first clogging control or the second clogging control.
  • the combine 1 is controlled in the order of step S01 to step S06.
  • the harvest transfer device 2 is clogged (step S01). As a result, it is assumed that the rotation speed of the auger 6 is less than a predetermined threshold value. At this time, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged. As a result, the reverse rotation control unit 26 executes the first clogging control. Further, the reel control unit 27 executes reel ascending control. Further, the height control unit 28 executes the auger rise control.
  • the reverse rotation control unit 26 controls to temporarily stop the traveling of the combine harvester 1 via the traveling control unit 24 when executing the first jam control.
  • step S02 the harvesting section H rises due to the first clogging control.
  • the reel 17 is raised with respect to the header 5 by the reel raising control.
  • the height position of the auger 6 with respect to the header 5 is raised by the auger rise control.
  • the combine harvester 1 moves forward by a predetermined distance by the first jam control (step S03).
  • the auger 6 is reversely driven by the first clogging control (step S04).
  • the harvested grain culms and the like clogged in the harvesting and transporting device 2 are discharged forward from the harvesting section H.
  • the discharged cut grain culms and the like are placed on the unharvested planted culms.
  • the reverse rotation control unit 26 controls the combine 1 to move backward by a predetermined distance via the travel control unit 24 (step S05).
  • the forward distance in step S03 and the reverse distance in step S05 may be the same or different from each other.
  • the reversing control unit 26 lowers the harvesting unit H (step S06).
  • the reel control unit 27 lowers the reel 17 with respect to the header 5.
  • the height control unit 28 lowers the height position of the auger 6 with respect to the header 5.
  • step S06 When the control up to step S06 is completed, the combine 1 resumes the harvesting run.
  • the first clogging control is completed by steps S02 to S04. That is, step S05 and step S06 are not included in the first clogging control.
  • the present invention is not limited to this, and steps S05 and S06 may be included in the first clogging control.
  • the combine 1 is controlled in the order of step S11 to step S15.
  • the harvest transfer device 2 is clogged (step S11). As a result, it is assumed that the rotation speed of the auger 6 is less than a predetermined threshold value. At this time, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged. As a result, the reverse rotation control unit 26 executes the second clogging control. Further, the reel control unit 27 executes reel ascending control. Further, the height control unit 28 executes the auger rise control.
  • the reverse rotation control unit 26 controls to temporarily stop the traveling of the combine harvester 1 via the traveling control unit 24 when the second jamming control is executed.
  • step S12 the harvesting section H rises due to the second clogging control.
  • the reel 17 is raised with respect to the header 5 by the reel raising control.
  • the height position of the auger 6 with respect to the header 5 is raised by the auger rise control.
  • the combine harvester 1 moves backward by a predetermined distance by the second jam control (step S13). Then, the auger 6 is reversely driven by the second clogging control (step S14). As a result, the harvested grain culms and the like clogged in the harvesting and transporting device 2 are discharged forward from the harvesting section H. As a result, the discharged cut grain culms and the like fall to the ground in the harvested area.
  • the control at the time of the second clogging includes the control of raising the harvesting portion H before the aircraft moves backward.
  • the present invention is not limited to this, and the control at the time of the second clogging may not include the control for raising the harvesting portion H. That is, it is not necessary to control the harvesting portion H to be raised before the aircraft moves backward.
  • the reversing control unit 26 lowers the harvesting unit H (step S15).
  • the reel control unit 27 lowers the reel 17 with respect to the header 5.
  • the height control unit 28 lowers the height position of the auger 6 with respect to the header 5.
  • step S15 When the control up to step S15 is completed, the combine 1 resumes the cutting run.
  • the second clogging control is completed by steps S12 to S14. That is, step S15 is not included in the second clogging control.
  • the present invention is not limited to this, and step S15 may be included in the second clogging control.
  • the jam determination unit 29 determines that the harvest transfer device 2 is clogged. Then, in that case, the reverse rotation control unit 26 reversely drives the auger 6. That is, according to the configuration described above, the auger 6 is automatically reversely driven when the harvest transfer device 2 is clogged. This makes it easier to clear the blockage.
  • the traveling device 11 may be a wheel type or a semi-crawler type.
  • the cutting travel route LI calculated by the route calculation unit 23 is a plurality of mesh lines extending in the vertical and horizontal directions.
  • the present invention is not limited to this, and the cutting travel path LI calculated by the route calculation unit 23 does not have to be a plurality of mesh lines extending in the vertical and horizontal directions.
  • the cutting travel path LI calculated by the route calculation unit 23 may be a spiral travel route.
  • the cutting travel path LI does not have to be orthogonal to another cutting travel route LI.
  • the cutting travel path LI calculated by the route calculation unit 23 may be a plurality of parallel lines parallel to each other.
  • the operator manually operates the combine 1 and, as shown in FIG. 2, performs a cutting run so as to orbit along the boundary line of the field in the outer peripheral portion of the field.
  • the present invention is not limited to this, and the combine 1 may be configured to automatically travel and perform cutting traveling so as to orbit along the boundary line of the field in the outer peripheral portion of the field.
  • the number of laps at this time may be a number other than three laps.
  • the number of laps at this time may be one lap.
  • a part or all of the 29 may be provided outside the combine 1, and may be provided, for example, in a management server provided outside the combine 1.
  • the height changing device 6A may not be provided. That is, it may be configured so that the height position of the auger 6 with respect to the header 5 cannot be changed.
  • the reverse rotation control unit 26 may be configured so that the first clogging control cannot be executed.
  • the reverse rotation control unit 26 may be configured so that the second clogging control cannot be executed.
  • the reverse rotation control unit 26 may be configured so that the aircraft does not move forward before the auger 6 is reversely driven in the first jam control.
  • Combine 1 may be configured so that it cannot run automatically. For example, when the harvest transfer device 2 is not clogged, the harvesting operation is performed manually by the operator, and when the harvest transfer device 2 is clogged, the reverse control unit 26 described in the above embodiment automatically controls the harvest operation. It may be a configuration to be executed.
  • the harvester control program for realizing the function of each member in the above embodiment may be configured as a recording medium on which the harvester control program is recorded. Further, it may be configured as a harvester control method in which what is performed by each member in the above embodiment is performed by one or a plurality of steps.
  • FIGS. 9 and 10 When the front-rear direction of the machine 101 is defined, it is defined along the traveling direction of the machine in the working state.
  • the direction indicated by reference numeral (F) in FIGS. 9 and 10 is the front side of the machine, and the direction indicated by reference numeral (B) in FIGS. 9 and 10 is the rear side of the machine body.
  • the direction indicated by the reference numeral (U) in FIG. 9 is the upper side of the machine, and the direction indicated by the reference numeral (D) in FIG. 9 is the lower side of the machine body.
  • FIG. 10 is the left side of the machine, and the direction indicated by the reference numeral (R) in FIG. 10 is the right side of the machine body.
  • R reference numeral
  • a conventional combine harvester which is a form of a harvester, is provided with a machine body 101 and a pair of left and right crawler type traveling devices 111.
  • the machine 101 is provided with a boarding unit 112, a threshing device 113, a grain tank 114, a harvesting device 115, a transport device 116, and a grain discharging device 118.
  • the traveling device 111 is provided at the lower part of the combine.
  • the traveling device 111 has a pair of left and right crawler traveling mechanisms.
  • the combine can travel in the field by the traveling device 111.
  • an elevating device is provided for each of the left and right crawler traveling mechanisms.
  • the elevating device also commonly known as "Monroe" is configured so that the height position of the machine body 101 with respect to each of the left and right crawler traveling mechanisms can be changed separately. From this, the elevating device is configured to be able to roll the machine 101 by changing the height position of the machine 101 with respect to each of the left and right crawler traveling mechanisms.
  • the boarding unit 112, the threshing device 113, and the grain tank 114 are provided above the traveling device 111, and these are configured as the upper part of the machine body 101.
  • a passenger of the combine harvester or an observer who monitors the work of the combine harvester can board the boarding unit 112. Usually, the passenger and the observer are also used. When the passenger and the observer are different persons, the observer may monitor the work of the combine from outside the combine.
  • a drive engine (not shown) is provided below the boarding section 112.
  • the grain discharge device 118 is connected to the lower rear portion of the grain tank 114.
  • the harvesting device 115 harvests the crops in the field.
  • the crop is, for example, a planted culm such as rice, but may be soybean, corn, or the like.
  • the combine can be run by the traveling device 111 while harvesting the crops in the field by the harvesting device 115.
  • the transport device 116 is provided adjacent to the rear side of the harvest device 115.
  • the harvesting device 115 and the transport device 116 are supported on the front portion of the machine body 101 so as to be able to move up and down.
  • the harvesting device 115 and the transport device 116 are integrally swung up and down by being moved up and down by the header actuator 115H capable of expanding and contracting.
  • the harvesting device 115 is provided with a harvesting header 115A, a scraping reel 115B, a horizontal feed auger 115C, and a hair clipper-shaped cutting blade 115D.
  • the harvest header 115A divides the front planted crop into a harvest target and a non-harvest target, and accepts the harvest target among the front planted crops.
  • the scraping reel 115B is located above the harvest header 115A.
  • the reel support arm 115K is swingably supported by the harvest header 115A.
  • the reel support arm 115K is oscillated by a reel actuator 115J capable of expanding and contracting.
  • the rotation shaft core portion of the suction reel 115B is supported by the free end region of the reel support arm 115K. For this reason, the suction reel 115B is configured to be able to swing up and down by the expansion and contraction operation of the reel actuator 115J.
  • the scraping reel 115B is configured to be rotatable around the lateral axis of the machine while being supported by the reel support arm 115K. Further, the rotation shaft core portion of the suction reel 115B is configured to be slidable along the front-rear direction in the free end region of the reel support arm 115K. That is, the scraping reel 115B is configured to be swingable up and down with respect to the harvest header 115A, and is configured to be repositionable back and forth with respect to the harvest header 115A.
  • the scraping reel 115B is equipped with a plurality of tines 115T, and the tines 115T act on the planted crops.
  • the scraping reel 115B scrapes the portion of the planted crop near the tip with the tine 115T toward the rear.
  • the cutting blade 115D cuts the root side of the planted crop that has been scraped backward by the scraping reel 115B.
  • the lateral feed auger 115C is rotationally driven to the lateral axis of the machine body, laterally feeds the harvested crops cut by the cutting blade 115D to the middle side in the left-right direction, collects them, and sends them to the rear transport device 116.
  • the lateral feed auger 115C is configured so that the position can be changed in the vertical direction.
  • the ground height H1 (see FIG. 13) of the harvest header 115A is set high, and the planted crop may be harvested only on the tip side. At this time, it is necessary to cut the culm after harvesting so that the culm is not left in the field in a tall state. Therefore, a residual culm processing unit 119 is provided behind the harvesting device 115.
  • the residual culm processing unit 119 has a horizontally long hair clipper-shaped cutting blade extending in the left-right direction of the machine, and the cutting blade reciprocates left and right to cut the residual culm.
  • the crops harvested by the harvesting device 115 are transported to the threshing device 113 by the transport device 116.
  • the harvested crop is threshed by the threshing device 113.
  • the threshing device 113 has a threshing unit 113A, a sorting processing unit 113B, and a wall insert 113C.
  • the threshing section 113A is shown as a handling cylinder in FIG. 9, the handling chamber for accommodating the handling cylinder, the dust feed valve arranged at the upper part of the handling chamber, and the periphery of the lower region of the handling cylinder. The located net and also included in the threshing section 113A.
  • the dust valve guides the processed crop harvested by the harvesting device 115 backward.
  • the threshing unit 113A threshes the crops transported by the transport device 116, that is, the processed crops to be processed by the threshing device 113.
  • the sorting processing unit 113B is provided below the threshing unit 113A, and while receiving the processed crops that have been threshed by the threshing unit 113A and rocking and transporting them backward, the processed crops are sieved into harvested and non-harvested products. do.
  • the sorting processing unit 113B is provided with a chaf sheave, and the chaf sheave has a plurality of chaf flips.
  • Each of the chaflip extends laterally to the aircraft.
  • the plurality of chaflips are arranged along the transport direction (front-back direction) in which the processed crop is transported, and each of the plurality of chaflips is arranged in an inclined posture toward the rear end side and diagonally upward.
  • the leakage opening of each chaflip can be changed.
  • the fact that the leakage opening can be changed means that the tilted posture is changed.
  • the sorting processing unit 113B has a plurality of chaflip arranged along the transport direction of the threshed product, and has a chaff sheave capable of changing the leakage opening degree by changing the posture of the plurality of chaflip.
  • the wall insert 113C supplies the sorting wind to the sorting processing unit 113B.
  • the grains obtained by the threshing process are stored in the grain tank 114.
  • the grains stored in the grain tank 114 are discharged to the outside of the machine by the grain discharging device 118, if necessary.
  • the grain discharge device 118 is configured to swing around the vertical axis core at the rear of the machine. That is, the free end portion of the grain discharge device 118 protrudes to the lateral outside of the machine body 101 so that the crop can be discharged, and the free end portion of the grain discharge device 118 is within the range of the machine width of the machine body 101.
  • the grain discharge device 118 is configured so that it can be switched between the stored storage state and the position. When the grain discharging device 118 is in the retracted state, the free end portion of the grain discharging device 118 is located in front of the boarding section 112 and above the harvesting device 115.
  • a first image pickup device 121A and a distance measuring sensor 122 are provided on the front upper part of the boarding section 112.
  • the first image pickup apparatus 121A is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera.
  • the first imaging device 121A is provided at the front of the machine 101 and at a position higher than the harvesting device 115 so as to look down on the unharvested crops in front of the harvesting device 115. That is, the first image pickup apparatus 121A can take an image from a viewpoint looking down on the front in the traveling direction.
  • the image pickup field of view of the first image pickup apparatus 121A in the front-rear direction is, for example, 15 meters or 25 meters.
  • the imaging data acquired by the first imaging device 121A is converted into imaging data and sent to the combine control system.
  • the first image pickup device 121A images the field during the harvesting operation.
  • Various objects exist as imaging targets in the field.
  • the combine control system has a function of identifying a specific object from the image pickup data sent from the first image pickup device 121A. As such specific objects, in FIGS. 9 and 10, the normal planted grain group indicated by the reference numeral Z0, the weed group indicated by the reference numeral Z1, and the collapsed crop group indicated by the reference numeral Z2. , Are shown schematically.
  • the distance measuring sensor 122 is configured to be capable of measuring the distance between the image pickup target in the field existing in front of the aircraft 101 and the aircraft 101.
  • the ranging sensor 122 may be a sonar, a radar (millimeter wave), or a LIDAR (for example, a laser scanner or a laser radar). If the distance measuring sensor 122 is a sonar, it is advantageous in terms of cost. If the range-finding sensor 122 is a millimeter-wave radar, it is possible to perform measurements that are not easily affected by the weather, which is advantageous in terms of cost.
  • the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions.
  • the distance measuring sensor 122 is LIDAR, the separation distance can be measured accurately.
  • the LIDAR is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of distance measurement than the type of LIDAR that scans in two dimensions.
  • the range-finding sensor 122 may be configured by a combination of sonar, radar, and LIDAR.
  • the second image pickup device 121B is provided at the lower rear portion of the harvesting device 115.
  • the second image pickup device 121B is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera.
  • the second image pickup apparatus 121B can image the harvest trace region S (see FIG. 16) behind the harvesting apparatus 115. Therefore, the second image pickup apparatus 121B is configured to be able to detect the field state after the work while the work is running.
  • a satellite positioning module 180 is provided on the ceiling of the boarding section 112.
  • the satellite positioning module 180 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the position of the own vehicle.
  • GNSS Global Navigation Satellite System
  • an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 180.
  • the inertial navigation unit may be arranged at a place different from the satellite positioning module 180 in the combine.
  • the control unit 130 shown in FIG. 11 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs.
  • the control unit 130 includes a first crop detection unit 131A, a second crop detection unit 131B, a state determination unit 132, a storage unit 133, a notification unit 134, a travel control unit 135, and a work control unit 136. It is prepared.
  • the first crop detection unit 131A is the "detection unit” of the present invention.
  • the state determination unit 132 is the "state change unit" of the present invention.
  • the height position information output from the unit 123, the height position information output from the reel height detection unit 124, and the height position information output from the auger height detection unit 125 are controlled by a control unit through a wiring network. It is input to 130.
  • the harvesting device 115 and the transport device 116 are configured to swing up and down, and the cutting height detection unit 123 is provided at the swing axis core portion of the transport device 116.
  • the cutting height detecting unit 123 is configured to be able to detect the ground height H1 (see FIGS.
  • the reel height detection unit 124 can detect the height position H2 (see FIGS. 13 and 14) of the suction reel 115B with respect to the harvest header 115A by detecting the swing angle of the reel support arm 115K with respect to the harvest header 115A. It is configured in.
  • the auger height detection unit 125 can detect the height position H3 (see FIGS. 13 and 14) of the lateral auger 115C by detecting the vertical position of an actuator (not shown) that raises and lowers the lateral auger 115C up and down. It is configured in.
  • the first crop detection unit 131A is a planted crop based on the imaging data sequentially acquired by the first imaging device 121A and the distance data sequentially acquired by the distance measuring sensor 122 over time. The area where the plant is located is detected and the height of the planted crop is detected. Further, the first crop detection unit 131A determines the type of crop by using, for example, a machine-learned (deep learning) neural network. In other words, the first crop detection unit 131A is configured to be able to acquire the type of crop to be harvested by the harvesting device 115. Examples of crop types include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like. Further, the first crop detection unit 131A is configured to be able to detect the size and length of the tip of the crop based on the imaging data.
  • the first crop detection unit 131A is configured to be able to detect a fallen crop (for example, a fallen grain culm) based on the height of the planted crop.
  • the flow of generation of recognition output data by the first crop detection unit 131A is shown in FIG.
  • the RGB pixel value of the imaging data is input to the first crop detection unit 131A from the first imaging device 121A as an input value.
  • This imaging data is associated with the distance data acquired by the distance measuring sensor 122, and the fallen crop is detected based on the crop height in the area where the planted crop exists.
  • the first crop detection unit 131A is configured to detect a fallen crop based on the crop height of the planted crop and the size of the area where the planted crop spreads at the same crop height.
  • the area of the area where the planted crop spreads at the same crop height may be calculated by area calculation based on at least one of the imaging data and the distance data, and in addition, the area recognized by the imaging data. It may be calculated from the shape. Alternatively, the size of the area where the planted crop spreads at the same crop height may be calculated from at least one of the shape of the area recognized by the image recognition data and the relative size.
  • the first crop detection unit 131A is configured to detect a weed region in which weeds are present mixed with the crop in front of the harvesting device 115, and can acquire the type of weeds (including the size of weeds) in the weed region. It is configured in.
  • the first crop detection unit 131A is configured to be able to acquire the weed rate, which is the amount of weeds per unit area in the weed area. As described above, the first crop detection unit 131A is configured to be able to discriminate crop lodging and weeds from the field.
  • the first imaging device 121A acquires imaging data at predetermined time intervals, for example, at intervals of 0.1 to 0.5 seconds and inputs the imaging data to the first crop detection unit 131A, the first crop detection unit 131A also , Output recognition output data at the same time interval.
  • the first image pickup device 121A captures the image in front of the aircraft, and the distance measuring sensor 122 measures the distance between the aircraft 101 and the object in front of the aircraft. Then, based on the image pickup data captured by the first image pickup device 121A and the distance data in front of the aircraft measured by the distance measurement sensor 122, the first crop detection unit 131A sets the crop in the field as a specific object. While recognizing, the crop height of the crop in the field is detected.
  • the second crop detection unit 131B can detect unharvested residual crops such as lodging crops based on the imaging data of the imaging data sequentially acquired by the second imaging device 121B. be. Further, the second crop detection unit 131B determines the type of the remaining crop by using, for example, a machine-learned (deep learning) neural network. Examples of the types of residual crops include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like.
  • the control unit 130 is provided with a storage unit 133, and the storage unit 133 is provided with a plurality of harvest control patterns and a plurality of travel control patterns.
  • the storage unit 133 is a semiconductor storage element such as EEPROM.
  • the harvest control pattern is, for example, depending on at least one of the crop type and the crop height, the ground height H1 of the harvest header 115A, the height position H2 of the scraping reel 115B, and the height position H3 of the lateral feed auger 115C. And, are stored in the storage unit 133 as a look-up table for adjusting. That is, the harvest control pattern and the running control pattern corresponding to the type of crop and the height of the crop are selected by the state determination unit 132. Then, the target value is output from the state determination unit 132 to the work control unit 136 according to the selected harvest control pattern and travel control pattern.
  • the travel control pattern is stored in the storage unit 133 as a look-up table for adjusting the vehicle speed and the vehicle height of the travel device 111, for example, according to at least one of the crop type and the crop height. That is, the traveling control pattern corresponding to at least one of the crop type and the crop height is selected by the state determination unit 132. Then, the target value is output from the state determination unit 132 to the travel control unit 135 according to the selected travel control pattern.
  • the travel control unit 135 has a vehicle speed control unit 135A and a vehicle height control unit 135B.
  • the target value of the vehicle speed and the target value of the vehicle height are determined based on the travel control pattern selected by the state determination unit 132.
  • the vehicle speed control unit 135A performs speed adjustment control of the traveling device 111 with reference to the target value of the vehicle speed.
  • the vehicle height control unit 135B controls the elevating mechanism of the traveling device 111 with reference to the target value of the vehicle height.
  • the travel control unit 135 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and gives a travel control signal to the travel device 111.
  • the travel control unit 135 In the case of manual steering, the travel control unit 135 generates a control signal and controls the travel device 111 based on the operation by the passenger.
  • the travel control unit 135 controls steering and vehicle speed based on the automatic travel command given by the automatic travel control module of the control unit 130 and the positioning data from the satellite positioning module 180. To do.
  • the work control unit 136 has a header control unit 136A, a reel control unit 136B, and an auger control unit 136C.
  • the header control unit 136A controls the raising and lowering of the harvest header 115A with reference to the target value of the ground height H1.
  • the reel control unit 136B adjusts and controls the vertical position and the front-rear position of the suction reel 115B with reference to the target value of the height position H2 and the target value of the front-rear position of the suction reel 115B. Further, the auger control unit 136C adjusts and controls the vertical position of the lateral feed auger 115C with reference to the target value of the height position H3.
  • the work control unit 136 has a function of controlling devices related to harvesting and threshing of crops in the field, such as the harvesting device 115 and the threshing device 113.
  • the work control unit 136 In the case of manual steering, the work control unit 136 generates a control signal and controls the harvesting device 115 and the like based on the operation by the passenger.
  • the work control unit 136 sets the height H1 of the harvesting device 115 to the ground and the height of the scraping reel 115B based on the imaging data obtained by the first imaging device 121A and the distance information obtained by the distance measuring sensor 122.
  • the position H2, the front-rear position of the scraping reel 115B, the height position H3 of the lateral feed auger 115C, and the like are controlled.
  • the harvest control pattern also includes parameters relating to the operating speed of the harvest device 115, where the work control unit 136 is a transmission (eg, static) for the harvest device 115 based on the harvest control pattern selected by the state determination unit 132.
  • the hydraulic continuously variable transmission is configured to be capable of speed change control.
  • the control unit 130 of this embodiment is configured to be connectable to a communication network.
  • the control unit 130 is provided with a communication unit 137, and the communication unit 137 can communicate with the management computer 102 via a wired or wireless communication network.
  • crop lodging information, weed information, etc. in the field are transmitted to the field management computer 102 via the wireless communication network together with the position information positioned by the satellite positioning module 180, and the field map information in the management computer 102. Recorded in.
  • the farm manager can utilize the crop lodging information, weed information, etc. in the field for the next year's agricultural plan.
  • the harvest control pattern will be described with reference to FIGS. 11, 13 and 14.
  • the parameters of the harvest control pattern include a target value of the ground height H1 of the harvest header 115A, a target value of the height position H2 of the scraping reel 115B, and a target value of the front and rear positions of the scraping reel 115B. If the height position H2 of the scraping reel 115B is too high, it becomes difficult for the scraping reel 115B to scrape the crop. Further, if the height position H2 of the scraping reel 115B is too low, the crop is likely to be entangled with the scraping reel 115B. As shown in FIGS.
  • the rotation trajectory of the tine 115T is such that the tine 115T of the scraping reel 115B scrapes the tip from the front upper part to the rear. Should overlap with the tip area of the crop.
  • the ground height H1 and the height position H2 are set as different parameters for each harvest control pattern.
  • the appropriate harvest control pattern among the plurality of harvest control patterns is selected by the state determination unit 132 based on the type of crop, the height of the crop, the vertical height of the tip region of the crop, the surface area of the tip region, and the like. Will be done.
  • the target values of the ground height H1 and the height position H2 are read from the selected harvest control pattern, and the control signal for adjusting the ground height H1 and the height position H2 is sent from the state determination unit 132 to the work control unit.
  • Sent to 136 For example, if the crop type is legume, the ground height H1 is set to the lowest region. If the type of crop is buckwheat or rapeseed, the ground height H1 is set lower than that of rice grains and higher than that of beans.
  • the state determination unit 132 is configured so that the working state of the harvesting device 115 can be changed by operating the header actuator 115H according to the height of the planted crop. At this time, in the working state of the harvesting device 115, the ground height H1 of the harvesting device 115, the height position H2 of the scraping reel 115B, the front-rear position of the scraping reel 115B, the rotation speed of the scraping reel 115B, and so on. The rotation locus of the tine 115T and the like are included. Further, the state determining unit 132 is configured to be able to change the vehicle speed of the traveling device 111 in addition to the working state of the harvesting device 115.
  • the ground height H1 of the harvesting device 115 is the “harvesting height” and also the “working height” of the harvesting header 115A.
  • the state determination unit 132 is configured to be able to change the harvest height of the harvesting device 115 according to at least one of the crop type and the crop height by operating the header actuator 115H. Further, the state determination unit 132 is configured to be able to change the height position H2 of the scraping reel 115B according to at least one of the crop type and the crop height by operating the reel actuator 115J.
  • the harvest control pattern is selected by the state determining unit 132 so that the tine 115T of the scraping reel 115B scrapes the tips from the front upper part to the rearward, and the ground height H1.
  • the height position H2 is adjusted.
  • the ground height H1 is adjusted, the lower end portion (the portion where the cutting blade is located) of the harvest header 115A is located below the tip region of the crop.
  • the front end position of the scraping reel 115B is located above the tip of the crop. As a result, the tip region of the crop is scraped backward by the scraping reel 115B.
  • the tip region of the crop is efficiently harvested by the harvesting device 115, and the tip region is transported by the rear transport device 116.
  • the crop is threshed by the threshing device 113. Therefore, the transport load of the transport device 116 and the threshing load of the threshing device 113 are reduced, and the harvesting efficiency of the harvesting device 115 is improved, as compared with the configuration in which the harvesting device 115 is used to harvest the crop to the root region.
  • the horizontal feed auger 115C is configured so that the position can be changed in the vertical direction according to the type of crop.
  • the harvest header 115A is provided with an actuator capable of raising and lowering the lateral feed auger 115C in the vertical direction.
  • the actuator may be hydraulic or electric.
  • a harvest control pattern having an appropriate height position H3 target value according to the crop type is selected by the state determination unit 132. Then, based on the selected harvest control pattern, the target value of the height position H3 is sent from the state determination unit 132 to the work control unit 136, and the lateral feed auger 115C is controlled to move up and down.
  • the harvested crop whose stock is cut by the cutting blade 115D is laterally fed to the side where the transport device 116 is located by the lateral feed auger 115C on the bottom plate 115u of the harvest header 115A.
  • the vertical gap between the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A changes.
  • the target value of the height position H3 is set to the lower height position H31. Therefore, when harvesting rice or wheat is performed, the horizontal feed auger 115C is located lower than the harvest header 115A, and the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A are in the vertical direction. The gap becomes narrower. As a result, the tip portion of the rice grain or wheat is efficiently laterally fed by the laterally fed auger 115C.
  • the tip of beans When the type of crop is beans, the tip of beans has larger grains than the tip of rice or wheat. Therefore, when the tip portion of beans is laterally fed by the laterally fed auger 115C, if the vertical gap between the lower end of the laterally fed auger 115C and the bottom plate 115u of the harvest header 115A is too narrow, the beans or the like will be generated. It may be crushed or damaged. Therefore, in the harvest control pattern when the crop type is beans, the target value of the height position H3 is set to the higher height position H32. Therefore, when the bean harvesting operation is performed, the lateral feed auger 115C is located higher than the case of rice grains and wheat.
  • the vertical gap between the lower end of the laterally fed auger 115C and the bottom plate 115u of the harvest header 115A becomes wider.
  • the tip portion of the beans is laterally fed by the laterally fed auger 115C, the beans and the like are less likely to be damaged.
  • the state determination unit 132 changes the vertical width of the transport path in the harvesting device 115 by changing the height position H3 according to the type of crop. That is, the state determination unit 132 sets the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A as the vertical width of the transport path by operating an actuator capable of raising and lowering the horizontal feed auger 115C in the vertical direction. Change the vertical width of the gap between.
  • the processing of the state determination unit 132 is performed based on the flowchart shown in FIG. 15, and the processing from the start to the end in the flowchart of FIG. 15 is periodically executed.
  • the first crop detection unit 131A is configured to be able to detect not only the type of crop to be harvested but also weeds and lodging crops. Therefore, the state determination unit 132 executes different processes depending on whether the crop to be harvested is detected, the fallen crop is detected, or the weed is detected.
  • the state determination unit 132 determines the detection result of the second crop detection unit 131B (step # 01).
  • the second crop detection unit 131B detects the harvest trace after the harvesting operation by the harvesting device 115.
  • the second image pickup apparatus 121B images the harvest trace region S which is the region behind the harvesting apparatus 115 and in front of the traveling apparatus 111, that is, the region between the harvesting apparatus 115 and the traveling apparatus 111. do.
  • the residual culm processing unit 119 is omitted in order to simply show how the second image pickup apparatus 121B captures the harvest trace region S.
  • step # 01 "detection of the uncut portion" is determined. That is, the rear of the harvesting device 115 is imaged by the second image pickup device 121B, and whether or not the image pickup data of the second image pickup device 121B includes a crop (for example, a fallen crop) is determined by the second crop detection unit 131B.
  • the state determination unit 132 determines the detection result of the first crop detection unit 131A (step # 03).
  • the state determination unit 132 determines the detection result of the first crop detection unit 131A (step # 03).
  • the state determination unit 132 so that the harvesting device 115 can efficiently harvest the tip region of the crop.
  • the harvest control pattern is selected according to at least one of the crop type and the crop height (step # 04). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern.
  • the ground height H1 of the harvest header 115A, the height position H2 of the scraping reel 115B, and the lateral feed auger 115C so that the tine 115T of the scraping reel 115B scrapes the tip from the front upper part to the rear.
  • the height position H3 of is adjusted.
  • step # 01 detection of the uncut portion
  • the state determination unit 132 selects the harvest control pattern when the uncut portion is detected, and this harvest control pattern.
  • the control signal based on the above is output to the travel control unit 135 and the work control unit 136 (step # 02).
  • step # 02 the harvesting operation is retried in the uncut area.
  • the second image pickup device 121B is configured to be capable of detecting residual crops left unharvested after the harvesting operation by the harvesting device 115. As shown in FIG. 17, when the fallen crop is not harvested by the harvesting device 115 and the harvesting device 115 passes above the fallen crop, the fallen crop is provided by the second image pickup device 121B provided below the harvesting device 115. Is imaged, and the presence of the fallen crop is determined by the second crop detection unit 131B (step # 01: detection of uncut portion). Then, based on the process of step # 02, the traveling device 111 reversely operates, and the aircraft 101 retracts by a preset distance.
  • the state determination unit 132 moves the traveling device 111 backward by a preset distance. Since the processing of the flowchart shown in FIG. 15 is performed periodically, in the state where the harvesting device 115 is separated from the upper side of the fallen crop and the detected fallen crop is located in front of the harvesting device 115, the “detection” is performed in step # 01. It switches to the judgment of "no result". As described above, the state determining unit 132 is configured so that the working states of the traveling device 111 and the harvesting device 115 can be changed according to the field state after the work.
  • step # 03 fallen crop
  • step # 05 fallen crop
  • the state determination unit 132 is configured to change the ground height H1 of the harvesting device 115 to a low value when it is determined that the ground height H1 of the harvesting device 115 is too high based on the harvest trace.
  • step # 03 the fallen crop
  • the state determination unit 132 selects a harvest control pattern for harvesting the fallen crop and is based on this harvest control pattern.
  • the control signal is output to the travel control unit 135 and the work control unit 136 (step # 05).
  • step # 05 the ground height H1 of the harvest header 115A is adjusted to the lowest region, and the height position H2 of the scraping reel 115B is adjusted to the lowest region. Then, the position of the scraping reel 115B in the front-rear direction is adjusted to the frontmost region.
  • step # 05 the speed change device for the harvesting device 115 (for example, the hydrostatic continuously variable transmission) is speed-controlled to the high speed side, and the rotation speed of the suction reel 115B is increased.
  • the process of step # 05 reduces the vehicle speed of the traveling device 111.
  • the state determination unit 132 switches to the harvest control pattern for harvesting the fallen crop, and the ground height H1 of the harvest header 115A and the scraping reel 115B.
  • the height position H2 becomes lower.
  • the scraping reel 115B rotates at a higher speed than the normal harvesting operation while the harvester advances at a low speed, and the crop in the collapsed state is scraped into the harvest header 115A by the scraping reel 115B. ..
  • the state determination unit 132 positions the scraping reel 115B in the lowermost region and the frontmost region, increases the rotational speed of the scraping reel 115B, and increases the rotation speed of the scraping reel 115B.
  • the vehicle speed of the traveling device 111 is reduced. As a result, the combine harvests the leftover crops while gradually advancing.
  • step # 03 ⁇ collapsed crop
  • step # 04 step # described later.
  • the processing of 06 is performed.
  • step # 03 the determination in step # 03 is "the crop to be harvested”
  • step # 04 is performed again, and at this time, the vehicle speed of the traveling device 111 is increased as compared with the time when the crop in the collapsed state is harvested.
  • step # 03 weeds
  • crops are planted in the field
  • weeds may be mixed in the crops.
  • the state determination unit 132 determines the degree of influence on the weed harvesting work in three stages of "small”, “medium”, and "large” based on the type of crop to be harvested and the type of weed. Judgment (step # 06).
  • the state determination unit 132 sets "small" in step # 06. select. In this case, as in step # 04, the state determining unit 132 selects a harvest control pattern according to at least one of the crop type and the crop height so that the harvesting device 115 can efficiently harvest the tip region of the crop. (Step # 07). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern.
  • weeds enter the threshing device 113 If weeds enter the threshing device 113, the threshing load and sorting accuracy are affected, but if the vehicle speed slows down, the degree of influence on the threshing load and sorting accuracy is reduced. Select "Medium”. In this case, it is determined whether or not the type of crop to be harvested is beans (step # 08).
  • the state determination unit 132 slows down the vehicle speed and allows the harvesting device 115 to efficiently harvest the tip region of the crop.
  • a harvest control pattern for performing the harvesting operation by the harvesting apparatus 115 is selected according to at least one of the crop type and the crop height (step # 09). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern. That is, the state determination unit 132 changes the vehicle speed of the traveling device 111 in the weed region to a lower speed side than the vehicle speed when traveling in a region other than the weed region.
  • step # 09 when the weed area is detected in front of the harvesting device 115 and the crop type is other than beans, the state determining unit 132 determines the degree of change in the vehicle speed of the traveling device 111 according to the type of weeds. do. Specifically, the state determination unit 132 determines the degree of change in the vehicle speed of the traveling device 111 according to the weed rate, which is the amount of weeds per unit area in the weed area. As the weed rate increases, the state determination unit 132 changes the vehicle speed of the traveling device 111 to the lower speed side. Further, the state determination unit 132 may have a configuration in which the vehicle speed is gradually changed to the low speed side by prioritizing the determination elements according to the type of crop, the type of weed, the weed rate, and the like.
  • the state determination unit 132 reduces the leakage opening degree of the chaff sheave provided in the sorting processing unit 113B.
  • the chaff sheave is provided with a plurality of chaflip, and the gap between the plurality of chaflip is narrowed by changing the tilting posture (tilt angle) of the chaflip. Weeds, etc. are often larger than grains, and by narrowing the leakage opening of the chaf sheave, weeds, etc. are less likely to leak from the gaps between the chaflip, and the effect on sorting accuracy is reduced.
  • the state determination unit 132 is configured to reduce the leakage opening degree of the chaff sheave according to at least one of the type of crop and the type of weed when selecting the crop harvested in the weed region. ..
  • the state determining unit 132 stops the traveling device 111 (step # 10). Since some beans have high commercial value, if the beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. When the type of crop is legumes, such inconvenience can be avoided by stopping the traveling device 111.
  • the state determination unit 132 determines "large" in step # 06, selects a harvest control pattern for stopping the traveling device 111, and the aircraft 101 stops (step # 10). .. Then, after the worker manually removes the weeds, the harvesting work by the harvesting device 115 is restarted. Further, the state determination unit 132 may have a configuration in which the determination elements are prioritized according to the type of weed, the weed rate, etc., and the vehicle speed is gradually reduced to stop the traveling device 111.
  • the state determination unit 132 is configured to be able to determine the degree of change in the vehicle speed of the traveling device 111 according to the type of weeds.
  • the present invention is not limited to the configuration exemplified in the above-described embodiment, and the following will exemplify another typical embodiment of the present invention.
  • the first crop detection unit 131A is constructed with a neural network that can be learned by using deep learning, but the first crop detection unit 131A does not have to be constructed with a neural network. ..
  • the neural network is constructed on the management computer 102 and other terminals, and the first crop detection unit 131A and the management computer 102 and other terminals communicate with each other to perform input / output in the neural network.
  • the first crop detection unit 131A may have a configuration capable of acquiring at least one of the type of crop and the type of the weed in the weed region.
  • the traveling device 111 is configured as a crawler type, but the traveling device 111 may be configured as a wheel type.
  • the first crop detection unit 131A is configured to be able to acquire both the type of crop and the type of weed in the weed region, but is not limited to this embodiment.
  • the first crop detection unit 131A may be configured to be able to acquire at least one of the type of crop and the type of weed in the weed area.
  • the state determination unit 132 stops the traveling device 111 when the weed area is detected in front of the harvesting device 115 and the crop type is beans. Not limited. For example, if the weed area is detected in front of the harvesting device 115 and the crop type is beans, the state determining unit 132 may decelerate the traveling device 111 at a lower speed than in the case of other than beans. good.
  • the state determination unit 132 determines the degree of change of the vehicle speed of the traveling device 111 to the low speed side according to the weed rate, which is the amount of weeds per unit area in the weed area. It is not limited to the embodiment. For example, the state determination unit 132 determines the degree of change of the vehicle speed of the traveling device 111 to the low speed side according to the height of the weed, the thickness of the stem of the weed, etc. in addition to the weed rate (or instead of the weed rate). It may be configured to be used.
  • the state determination unit 132 when the state determination unit 132 selects the crops harvested in the weed area, the leakage opening degree of the chaff sheave is reduced according to at least one of the crop type and the weed type.
  • the present invention is not limited to this embodiment.
  • the state determination unit 132 may be configured to control the increase or decrease of the rotation speed of the wall insert 113C according to at least one of the type of crop and the type of weed.
  • the state determining unit 132 may be configured to control the increase or decrease of the rotation speed of the handling cylinder of the threshing unit 113A according to at least one of the type of crop and the type of weed.
  • the state determining unit 132 may be configured to adjust the angle of the dust feed valve of the threshing unit 113A according to at least one of the type of crop and the type of weed.
  • the harvester control program for realizing the function of each member in the above embodiment may be configured as a recording medium on which the harvester control program is recorded. Further, it may be configured as a harvester control method in which what is performed by each member in the above embodiment is performed by one or a plurality of steps.
  • the present invention can be used for a harvester equipped with a harvesting and transporting device having a harvesting section and a transporting section. Further, the present invention can be applied not only to ordinary combine harvesters but also to general harvesters for harvesting crops such as head-feeding combine harvesters (for example, corn harvesters and carrot harvesters).
  • head-feeding combine harvesters for example, corn harvesters and carrot harvesters.
  • (First Embodiment) 1 combine (harvester) 2 Harvesting and transporting device 5 Header 6 Auger 6A Height changing device 7 Electric motor 16 Transporting section 17 Reel 26 Reverse control control section 27 Reel control section 28 Height control section 29 Clog determination section H Harvesting section SE detection section

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Outside Dividers And Delivering Mechanisms For Harvesters (AREA)
  • Harvester Elements (AREA)

Abstract

A harvester comprises a harvesting/conveying device 2 that has a harvesting unit H and a conveying unit, the harvesting unit H including a header 5 that accepts harvested material and a rotationally driven auger 6, the harvesting unit being configured to be raised or lowered in relation to the harvester body, and to harvest crops in a field. The conveying unit is provided with: a clogging assessment unit that conveys the harvested material that was harvested by the harvesting unit H to the rear of the harvester body, and assesses whether the harvesting/conveying device 2 is clogged; and a reverse control unit that drives the auger 6 in reverse when the clogging assessment unit has assessed that the harvesting/conveying device 2 is clogged.

Description

収穫機、収穫機制御プログラム、収穫機制御プログラムを記録した記録媒体、収穫機制御方法Harvester, harvester control program, recording medium recording harvester control program, harvester control method
 本発明は、収穫部及び搬送部を有する収穫搬送装置を備える収穫機に関する。 The present invention relates to a harvester provided with a harvesting and transporting device having a harvesting section and a transporting section.
 また、本発明は、圃場の作物を収穫する収穫装置が備えられている収穫機に関する。 Further, the present invention relates to a harvester provided with a harvesting device for harvesting crops in a field.
 [1]上記のような収穫機として、例えば、特許文献1に記載のものが既に知られている。この収穫機(特許文献1では「コンバイン」)における収穫部(特許文献1では「刈取部」)は、回転駆動するオーガ(特許文献1では「横送りオーガ」)を含んでいる。また、この収穫機における搬送部(特許文献1では「フィーダ」)は、収穫部により収穫された収穫物を機体後方へ搬送する。 [1] As the above-mentioned harvester, for example, the one described in Patent Document 1 is already known. The harvesting section (“cutting section” in Patent Document 1) in this harvester (“combine” in Patent Document 1) includes a rotation-driven auger (“horizontal feed auger” in Patent Document 1). Further, the transport unit (“feeder” in Patent Document 1) in this harvester transports the harvested product harvested by the harvester to the rear of the machine.
 [2]例えば特許文献2に開示された収穫機に、収穫装置の前方の倒伏作物を検出可能な検出部(文献では「画像認識モジュール、及び、データ処理モジュール」)が備えられている。検出部は雑草も検出可能に構成されている。倒伏作物等の情報が圃場マップの生成に用いられる。 [2] For example, the harvester disclosed in Patent Document 2 is provided with a detection unit (“image recognition module and data processing module” in the document) capable of detecting a fallen crop in front of the harvester. The detection unit is configured to be able to detect weeds. Information such as fallen crops is used to generate field maps.
日本国特開2017-35017号公報Japanese Patent Application Laid-Open No. 2017-3517 日本国特開2019-8536号公報Japanese Patent Application Laid-Open No. 2019-8536
 [1]背景技術[1]に対応する課題は、以下の通りである。
 ここで、特許文献1に記載の収穫機の収穫搬送装置においては、収穫物等による詰まりが生じることがある。収穫搬送装置が詰まった場合、オーガを逆転駆動することにより、詰まりを解消することができる。
[1] The problems corresponding to the background technology [1] are as follows.
Here, in the harvest transfer device of the harvester described in Patent Document 1, clogging may occur due to a harvested product or the like. When the harvest transfer device is clogged, the clog can be cleared by reversely driving the auger.
 その際、オペレータは、オーガを逆転駆動させるために、動力源からオーガへの動力伝達経路の切り替え操作を行う必要がある。動力伝達経路の切り替え操作は、一般に、レバー等の操作具を操作することにより行われる。 At that time, the operator needs to switch the power transmission path from the power source to the auger in order to drive the auger in the reverse direction. The operation of switching the power transmission path is generally performed by operating an operating tool such as a lever.
 しかしながら、オペレータの熟練度が比較的低い場合、収穫搬送装置が詰まっていることに気付くことなく収穫走行を継続してしまう事態が想定される。また、収穫搬送装置が詰まっていることに気付いた場合でも、詰まりの解消方法をオペレータが知らない可能性もある。 However, if the operator's skill level is relatively low, it is assumed that the harvesting operation will be continued without noticing that the harvesting and transporting device is clogged. Also, even if the harvest transfer device is noticed to be clogged, the operator may not know how to clear the clog.
 本発明の目的は、収穫搬送装置が詰まった場合に詰まりが自動的に解消されやすい収穫機を提供することである。 An object of the present invention is to provide a harvester in which the clogging can be easily cleared automatically when the harvesting and transporting device is clogged.
 [2]背景技術[2]に対応する課題は、以下の通りである。
 ところで、収穫作業を好適に行うために、作物の種類と、雑草の種類と、の少なくとも一方が把握される構成が望ましい。特に、作物の商品価値が高いものである場合等において、圃場の状態の変化に応じて車速の制御が行われる構成は重要であって、作物の種類と、雑草の種類と、の少なくとも一方に応じて車速が低速側に制御されることが望ましい。
[2] The issues corresponding to the background technology [2] are as follows.
By the way, in order to perform the harvesting work favorably, it is desirable to have a configuration in which at least one of the type of crop and the type of weed is grasped. In particular, when the commercial value of the crop is high, it is important to control the vehicle speed according to the change in the state of the field, and it is important to select at least one of the type of crop and the type of weed. It is desirable that the vehicle speed is controlled to the low speed side accordingly.
 本発明の目的は、作物の種類と、雑草の種類と、の少なくとも一方に応じて、好適な収穫作業を可能な収穫機を提供することにある。 An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to at least one of a crop type and a weed type.
 [1]課題[1]に対応する解決手段は、以下の通りである。
 本発明の特徴は、収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送し、前記収穫搬送装置が詰まっているか否かを判定する詰まり判定部と、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御部と、を備えることにある。
[1] The solutions corresponding to the problem [1] are as follows.
A feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, the harvesting section including a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the aircraft. At the same time, the crops in the field are harvested, and the transport unit transports the harvested product harvested by the harvesting unit to the rear of the machine body, and determines whether or not the harvest transport device is clogged. It is provided with a reversing control unit for reversing driving the auger when it is determined by the determination unit that the harvesting and transporting device is clogged.
 本発明であれば、収穫搬送装置が詰まった場合、詰まり判定部によって、収穫搬送装置が詰まっていると判定される。そして、その場合、逆転制御部がオーガを逆転駆動させる。即ち、本発明であれば、収穫搬送装置が詰まった場合に、オーガが自動的に逆転駆動される。これにより、詰まりが解消されやすくなる。 According to the present invention, when the harvest transfer device is clogged, the jam determination unit determines that the harvest transfer device is clogged. Then, in that case, the reverse control unit drives the auger in reverse. That is, according to the present invention, the auger is automatically reverse-driven when the harvest transfer device is clogged. This makes it easier to clear the blockage.
 従って、本発明であれば、収穫搬送装置が詰まった場合に詰まりが自動的に解消されやすい収穫機を実現できる。 Therefore, according to the present invention, it is possible to realize a harvester in which the clogging can be easily cleared automatically when the harvesting and transporting device is clogged.
 さらに、本発明において、前記ヘッダに対する前記オーガの高さ位置を変更する高さ変更装置と、前記高さ変更装置を制御することにより前記ヘッダに対する前記オーガの高さ位置を制御する高さ制御部と、を備え、前記高さ制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記ヘッダに対する前記オーガの高さ位置を上昇させると好適である。 Further, in the present invention, a height changing device for changing the height position of the auger with respect to the header and a height control unit for controlling the height position of the auger with respect to the header by controlling the height changing device. It is preferable that the height control unit raises the height position of the auger with respect to the header when the jamming determination unit determines that the harvest transfer device is clogged.
 この構成によれば、収穫搬送装置が詰まった場合に、ヘッダに対するオーガの高さ位置が自動的に上昇する。その結果、ヘッダの底板と、オーガと、の間の隙間が広がることとなる。これにより、ヘッダの底板と、オーガと、の間に収穫物等が詰まっている場合に、詰まりが確実に解消されやすくなる。 According to this configuration, the height position of the auger with respect to the header is automatically raised when the harvest transfer device is clogged. As a result, the gap between the bottom plate of the header and the auger is widened. As a result, when the crop or the like is clogged between the bottom plate of the header and the auger, the clogging can be easily cleared.
 さらに、本発明において、前記逆転制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に、前記収穫部を上昇させると共に前記オーガを逆転駆動させる第1詰まり時制御を実行可能であると好適である。 Further, in the present invention, the reversing control unit raises the harvesting unit and reversely drives the auger when the jamming determination unit determines that the harvesting and transporting device is clogged. It is preferable that the above is feasible.
 収穫搬送装置が詰まった場合にオーガを逆転駆動させると、詰まっていた収穫物等が、収穫部から前方に排出されることとなる。 If the auger is driven in reverse when the harvest transfer device is clogged, the clogged crops, etc. will be discharged forward from the harvesting section.
 ここで、上記の構成によれば、収穫搬送装置が詰まった場合、上昇した収穫部から、詰まっていた収穫物等が前方に排出される。このとき、機体の前方に未収穫の作物(例えば植立穀稈)が存在していれば、排出された収穫物等は、未収穫の作物の上に載りやすい。 Here, according to the above configuration, when the harvest transport device is clogged, the clogged harvest or the like is discharged forward from the raised harvesting section. At this time, if an unharvested crop (for example, a planted culm) exists in front of the machine, the discharged harvested product or the like is likely to be placed on the unharvested crop.
 これにより、収穫搬送装置の詰まりが解消された後で収穫走行を再開した際、未収穫の作物と共に、その上に載っている収穫物等を収穫部に受け入れることができる。その結果、詰まっていた収穫物等を地面に排出して捨てる場合に比べて、収穫ロスを少なくすることが可能となる。 As a result, when the harvesting run is resumed after the clogging of the harvesting and transporting device is cleared, the harvested crops and the like on the unharvested crops can be accepted by the harvesting department. As a result, it is possible to reduce the harvest loss as compared with the case where the clogged harvest or the like is discharged to the ground and discarded.
 さらに、本発明において、前記逆転制御部は、前記第1詰まり時制御において、前記機体を前進させた後で前記オーガを逆転駆動させると好適である。 Further, in the present invention, it is preferable that the reverse rotation control unit reversely drives the auger after moving the machine forward in the first clogging control.
 この構成によれば、機体が前進した後で、詰まっていた収穫物等が収穫部から前方に排出される。これにより、排出された収穫物等が、未収穫の作物の上に確実に載りやすくなる。その結果、収穫ロスをより確実に少なくすることが可能となる。 According to this configuration, after the aircraft has moved forward, the jammed crops etc. are discharged forward from the harvesting section. This makes it easier for the discharged crops and the like to be reliably placed on the unharvested crops. As a result, it becomes possible to reduce the harvest loss more reliably.
 さらに、本発明において、前記逆転制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に、前記機体を後進させた後で前記オーガを逆転駆動させる第2詰まり時制御を実行可能であると好適である。 Further, in the present invention, when the jamming determination unit determines that the harvesting and transporting device is clogged, the reversing control unit reversely drives the auger after reversing the machine body at the time of the second clogging. It is preferable that the control can be executed.
 上述のように、詰まっていた収穫物等が未収穫の作物の上に載せられる場合には、収穫走行を再開した際、未収穫の作物と共に、その上に載っている収穫物等が収穫部に受け入れられることとなる。この場合、比較的多くの収穫物等が収穫部に受け入れられることとなる。そのため、収穫走行を再開した直後においては、再び詰まりが生じないように、機体の走行速度を一時的に比較的低い速度とする必要がある。これにより、収穫作業に要する時間が長くなりがちである。 As mentioned above, when the jammed crops are placed on the unharvested crops, when the harvesting run is resumed, the unharvested crops and the harvested crops on it are harvested. Will be accepted by. In this case, a relatively large amount of harvested products will be accepted by the harvesting department. Therefore, immediately after resuming harvesting, it is necessary to temporarily set the traveling speed of the aircraft to a relatively low speed so that clogging does not occur again. This tends to increase the time required for harvesting work.
 ここで、上記の構成によれば、収穫搬送装置が詰まった場合、詰まっていた収穫物等が収穫部から地面に排出される。そのため、収穫走行を再開した直後に機体の走行速度を一時的に比較的低い速度とする必要がない。これにより、詰まっていた収穫物等が未収穫の作物の上に載せられる場合に比べて、収穫作業に要する時間を短縮しやすい。 Here, according to the above configuration, when the harvest transport device is clogged, the clogged harvest or the like is discharged from the harvesting section to the ground. Therefore, it is not necessary to temporarily reduce the traveling speed of the aircraft to a relatively low speed immediately after restarting the harvesting operation. As a result, it is easy to shorten the time required for the harvesting work as compared with the case where the clogged harvested product or the like is placed on the unharvested crop.
 さらに、本発明において、前記収穫部は、回転駆動しながら植立穀稈を掻き込むリールを含んでおり、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記ヘッダに対して前記リールを上昇させるリール制御部を備えると好適である。 Further, in the present invention, the harvesting unit includes a reel that scrapes the planted culm while being driven to rotate, and when the jamming determination unit determines that the harvesting and transporting device is clogged, the header is used. On the other hand, it is preferable to include a reel control unit for raising the reel.
 この構成によれば、収穫搬送装置が詰まった場合、ヘッダに対してリールが上昇する。これにより、詰まっていた収穫物等が収穫部から前方に排出される際に、リールが排出の妨げとなる事態を回避しやすい。 According to this configuration, when the harvest transfer device is clogged, the reel rises with respect to the header. As a result, it is easy to avoid a situation in which the reel interferes with the discharge when the jammed crop or the like is discharged forward from the harvesting section.
 さらに、本発明において、前記オーガの回転速度を検知する検知部を備え、前記詰まり判定部は、前記検知部による検知結果に基づいて、前記収穫搬送装置が詰まっているか否かを判定すると好適である。 Further, in the present invention, it is preferable to include a detection unit for detecting the rotation speed of the auger, and the clogging determination unit determines whether or not the harvest transfer device is clogged based on the detection result by the detection unit. be.
 ヘッダの底板と、オーガと、の間に収穫物等が詰まった場合、オーガの回転速度が低下しがちである。即ち、オーガの回転速度は、収穫搬送装置が詰まっているか否かに関係する値である。 If the harvest etc. is clogged between the bottom plate of the header and the auger, the rotation speed of the auger tends to decrease. That is, the rotation speed of the auger is a value related to whether or not the harvest transfer device is clogged.
 ここで、上記の構成によれば、詰まり判定部は、オーガの回転速度に基づいて、収穫搬送装置が詰まっているか否かを判定する。これにより、収穫搬送装置が詰まっているか否かが判定される収穫機を、比較的簡素な構成により実現しやすい。 Here, according to the above configuration, the clogging determination unit determines whether or not the harvest transfer device is clogged based on the rotation speed of the auger. This makes it easy to realize a harvester that determines whether or not the harvest transfer device is clogged with a relatively simple configuration.
 さらに、本発明において、前記オーガに逆転動力を与える電動モータを備え、前記逆転制御部は、前記電動モータを駆動させることによって、前記オーガを逆転駆動させると好適である。 Further, in the present invention, it is preferable that the auger is provided with an electric motor that gives reverse power to the auger, and the reverse control unit drives the auger in reverse by driving the electric motor.
 この構成によれば、動力源(例えばエンジン)からオーガへの動力伝達経路において、動力源からの動力を正転方向と逆転方向との間で切り替え可能な正逆切替機構を設ける必要がない。そのため、動力源からオーガへの動力伝達経路を比較的シンプルな構成とすることが可能となる。 According to this configuration, it is not necessary to provide a forward / reverse switching mechanism capable of switching the power from the power source between the forward rotation direction and the reverse rotation direction in the power transmission path from the power source (for example, the engine) to the auger. Therefore, it is possible to make the power transmission path from the power source to the auger a relatively simple configuration.
 また、本発明の別の特徴は、収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御プログラムであって、前記収穫搬送装置が詰まっているか否かを判定する詰まり判定機能と、前記詰まり判定機能によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御機能と、をコンピュータに実現させることにある。 Another feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, wherein the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and can be raised and lowered with respect to the machine body. The transport unit is a harvester control program that controls a harvester that transports the harvested product harvested by the harvest unit to the rear of the machine, and is a harvest transport device. To realize a clogging determination function for determining whether or not the harvesting is clogged, and a reversing control function for reversing driving the auger when the harvesting and transporting device is determined to be clogged by the jamming determination function. It is in.
 また、本発明の別の特徴は、収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、前記収穫搬送装置が詰まっているか否かを判定する詰まり判定機能と、前記詰まり判定機能によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御機能と、をコンピュータに実現させる収穫機制御プログラムを記録していることにある。 Another feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, wherein the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and can be raised and lowered with respect to the machine body. A recording medium recording a harvester control program that controls a harvester that harvests crops in the field and transports the harvested product harvested by the harvester to the rear of the machine. , A jam determination function for determining whether or not the harvest transfer device is clogged, and a reverse control function for reversing driving the auger when the harvest transfer device is determined to be clogged by the jam determination function. It is to record the harvester control program to be realized on the computer.
 また、本発明の別の特徴は、収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御方法であって、前記収穫搬送装置が詰まっているか否かを判定する詰まり判定ステップと、前記詰まり判定ステップによって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御ステップと、を備えることにある。 Another feature of the present invention is a harvesting and transporting device having a harvesting section and a transporting section, wherein the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and can be raised and lowered with respect to the machine body. The transport unit is a harvester control method for controlling a harvester that transports the harvested product harvested by the harvest unit to the rear of the machine, and the harvest transport unit. It is provided with a clogging determination step for determining whether or not the harvester is clogged, and a reversal control step for reversing driving the auger when it is determined by the jamming determination step that the harvesting and transporting device is clogged.
 [2]課題[2]に対応する解決手段は、以下の通りである。
 本発明による収穫機は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出部と、前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更部と、が備えられ、前記検出部は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得可能に構成され、前記状態変更部は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定可能に構成されていることを特徴とする。
[2] The solutions corresponding to the problem [2] are as follows.
The harvester according to the present invention includes a traveling device capable of traveling in a field, a harvesting device for harvesting crops in the field, a detection unit for detecting a weed region in which weeds are present in the crop in front of the harvesting device, and the above. A state changing unit for changing the vehicle speed of the traveling device in the weed region to a lower speed side than the vehicle speed when traveling outside the weed region is provided, and the detecting unit is provided with a crop type and a weed region. It is configured so that at least one of the type of weed can be acquired, and the state changing unit changes the vehicle speed of the traveling device to the low speed side according to at least one of the type of crop and the type of weed. It is characterized in that it is configured to be determinable.
 本発明によると、作物の種類と、雑草の種類と、の少なくとも一方が検出部によって把握され、作物の種類と、雑草の種類と、の少なくとも一方に応じて車速が低速側に制御される。このため、作物の商品価値が高いものである場合等に、雑草領域で丁寧な収穫が可能となる。これにより、作物の種類と、雑草の種類と、の少なくとも一方に応じて、好適な収穫作業を可能な収穫機が実現される。 According to the present invention, at least one of the crop type and the weed type is grasped by the detection unit, and the vehicle speed is controlled to the low speed side according to at least one of the crop type and the weed type. Therefore, when the commercial value of the crop is high, careful harvesting is possible in the weed area. As a result, a harvester capable of performing suitable harvesting work is realized according to at least one of the type of crop and the type of weed.
 本発明において、前記収穫装置によって収穫された作物を脱穀処理する脱穀部と、前記脱穀部の下方に設けられるとともに前記脱穀処理された脱穀処理物を受け止めて後方へ揺動搬送しながら前記脱穀処理物を収穫物と非収穫物とに選別する選別処理部と、を有する脱穀装置が備えられ、前記選別処理部は、前記脱穀処理物の搬送方向に沿って並べられた複数のチャフリップを有するとともに前記複数のチャフリップの姿勢を変更することで漏下開度を変更可能なチャフシーブを有し、前記状態変更部は、前記雑草領域で収穫された作物を選別する際に、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記チャフシーブの漏下開度を小さくするように構成されていると好適である。 In the present invention, the threshing section for threshing the crops harvested by the harvesting apparatus and the threshing process provided below the threshing section while receiving the threshing processed product and rocking and transporting the crop backward. A threshing device comprising a sorting processing unit for sorting the material into harvested and non-harvested material is provided, and the sorting processing unit has a plurality of chaflip arranged along the transport direction of the threshing processed material. It also has a chaff sheave whose leakage opening can be changed by changing the postures of the plurality of chaflip, and the state changing unit has a type of the crop when selecting the crops harvested in the weed area. It is preferable that the chaff sheave is configured to reduce the leakage opening degree according to at least one of the weed type and the weed type.
 雑草領域で収穫された作物を選別する場合、選別処理部で選別された収穫物に雑草が混じるリスクが大きくなる。本構成であれば、雑草領域で車速が低速側に変更されるとともに、チャフシーブの漏下開度が小さくなるため、雑草領域で慎重に収穫された収穫物が、選別処理部で慎重に選別される。これにより、選別処理部で選別された収穫物に雑草が混じるリスクが低減される。 When selecting crops harvested in the weed area, the risk of weeds being mixed with the harvested products selected by the sorting processing unit increases. In this configuration, the vehicle speed is changed to the low speed side in the weed area and the leakage opening of the chaf sheave becomes smaller, so that the harvested products carefully harvested in the weed area are carefully sorted by the sorting processing unit. To. As a result, the risk of weeds being mixed with the harvested products selected by the sorting processing unit is reduced.
 本発明において、前記検出部は、前記作物の種類を取得可能に構成され、前記状態変更部は、前記収穫装置の前方に前記雑草領域が検出され、かつ、前記作物の種類が豆類であると、前記走行装置を停止させると好適である。 In the present invention, the detection unit is configured to be able to acquire the type of the crop, and the state change unit detects the weed area in front of the harvesting device and the type of the crop is beans. , It is preferable to stop the traveling device.
 豆類には商品価値の高いものもある。そのため、豆類が雑草と一緒に脱穀処理されると、例えば豆粒に雑草が付着する等の要因によって、豆粒が汚れて商品価値を落としたりする虞がある。本構成であれば、作物の種類が豆類である場合、走行装置を停止させることによって、このような不都合が回避される。 Some beans have high commercial value. Therefore, when beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. With this configuration, when the type of crop is beans, such inconvenience can be avoided by stopping the traveling device.
 本発明において、前記検出部は、前記作物の種類及び前記雑草の種類の両方を取得可能に構成され、前記状態変更部は、前記収穫装置の前方に前記雑草領域が検出され、かつ、前記作物の種類が豆類以外であると、前記雑草の種類に応じて前記走行装置の車速の低速側への変更度合いを決定すると好適である。 In the present invention, the detection unit is configured to be able to acquire both the type of the crop and the type of the weed, and the state changing unit detects the weed region in front of the harvesting device and the crop. When the type of the above is other than beans, it is preferable to determine the degree of change of the vehicle speed of the traveling device to the low speed side according to the type of the weed.
 本構成によって、作物の種類と雑草の種類との両方に基づいて車速を最適に調整する構成が可能となり、効率的な収穫作業と、雑草領域における慎重な収穫作業と、の両立が可能となる。 With this configuration, it is possible to optimally adjust the vehicle speed based on both the type of crop and the type of weed, and it is possible to achieve both efficient harvesting work and careful harvesting work in the weed area. ..
 本発明において、前記状態変更部は、前記雑草領域における単位面積当たりの前記雑草の量である雑草率に応じて前記走行装置の車速の低速側への変更度合いを決定すると好適である。 In the present invention, it is preferable that the state changing unit determines the degree of change of the vehicle speed of the traveling device to the low speed side according to the weed rate, which is the amount of the weeds per unit area in the weed area.
 本構成によって、雑草領域における雑草の量に応じて、車速のきめ細かい調整が可能となり、効率的な収穫作業と、雑草領域における慎重な収穫作業と、の両立が可能となる。 With this configuration, it is possible to finely adjust the vehicle speed according to the amount of weeds in the weed area, and it is possible to achieve both efficient harvesting work and careful harvesting work in the weed area.
 また、本発明の別の特徴は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御プログラムであって、前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出機能と、前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更機能と、をコンピュータに実現させ、前記検出機能は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得し、前記状態変更機能は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定することにある。 Another feature of the present invention is a harvester control program for controlling a harvester provided with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field. A detection function that detects a weed area where weeds are present mixed with crops in front, and a state change function that changes the vehicle speed of the traveling device in the weed area to a speed lower than the vehicle speed when traveling outside the weed area. The detection function acquires at least one of the crop type and the weed type in the weed region, and the state change function obtains the crop type and the weed type. The purpose is to determine the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the above.
 また、本発明の別の特徴は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出機能と、前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更機能と、をコンピュータに実現させる収穫機制御プログラムを記録しており、前記検出機能は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得し、前記状態変更機能は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定する収穫機制御プログラムを記録していることにある。 Another feature of the present invention is a recording medium recording a harvester control program for controlling a harvester equipped with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field. , A detection function for detecting a weed area where weeds are present mixed with crops in front of the harvesting device, and a vehicle speed of the traveling device in the weed area set to a lower speed side than the vehicle speed when traveling outside the weed area. The harvester control program that realizes the state change function to be changed on the computer is recorded, and the detection function acquires at least one of the crop type and the weed type in the weed area, and the detection function obtains the above. The state change function is to record a harvester control program that determines the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the crop type and the weed type.
 また、本発明の別の特徴は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御方法であって、前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出ステップと、前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更ステップと、を備え、前記検出ステップにおいて、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方が取得され、前記状態変更ステップにおいて、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いが決定されることにある。 Another feature of the present invention is a harvester control method for controlling a harvester provided with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field. A detection step for detecting a weed area in which weeds are present mixed with crops in front, and a state change step for changing the vehicle speed of the traveling device in the weed area to a speed lower than the vehicle speed when traveling outside the weed area. In the detection step, at least one of the crop type and the weed type in the weed region is acquired, and in the state change step, at least one of the crop type and the weed type is obtained. On the other hand, the degree of change of the vehicle speed of the traveling device to the low speed side is determined.
第1実施形態を示す図であって(以下、図8まで同じ。)、コンバインの左側面図である。It is a figure which shows the 1st Embodiment (hereinafter, the same is applied to FIG. 8), and is the left side view of a combine. 圃場における周回走行を示す図である。It is a figure which shows the orbit running in a field. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows the cutting running along the cutting running path. 制御部に関する構成を示すブロック図である。It is a block diagram which shows the structure about the control part. 高さ変更装置等の構成を示す図である。It is a figure which shows the structure of a height changing device and the like. ヘッダに対するオーガの高さ位置の変化を示す図である。It is a figure which shows the change of the height position of an auger with respect to a header. 第1詰まり時制御が実行された場合の例を示す図である。It is a figure which shows the example when the 1st clogging control is executed. 第2詰まり時制御が実行された場合の例を示す図である。It is a figure which shows the example when the 2nd clogging control is executed. 第2実施形態を示す図であって(以下、図18まで同じ。)、収穫機の全体側面図である。It is a figure which shows the 2nd Embodiment (hereinafter, it is the same until FIG. 18), and is the whole side view of the harvester. 収穫機の全体平面図である。It is the whole plan view of the harvester. 収穫機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a harvester. 認識部による認識出力データの生成の流れを模式的に示す説明図である。It is explanatory drawing which shows typically the flow of the generation of recognition output data by a recognition part. 収穫装置の作業状態を示す要部側面図である。It is a side view of the main part which shows the working state of a harvesting apparatus. 収穫装置の作業状態を示す要部側面図である。It is a side view of the main part which shows the working state of a harvesting apparatus. 状態決定部の状態変更処理を示すフローチャート図である。It is a flowchart which shows the state change process of the state determination part. 第二撮像装置による圃場の撮像を示す模式平面図である。It is a schematic plan view which shows the image of the field by the 2nd image pickup apparatus. 倒伏作物の検出時に作業状態が変更されることを示す説明図である。It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop. 倒伏作物の検出時に作業状態が変更されることを示す説明図である。It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop.
[第1実施形態]
 以下、図1~図8を参照しながら、第1実施形態について説明する。尚、以下の説明においては、特に断りがない限り、図1、図5、図6に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図1、図5、図6に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
[First Embodiment]
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 8. In the following description, unless otherwise specified, the direction of the arrow F shown in FIGS. 1, 5 and 6 is referred to as “front” and the direction of arrow B is referred to as “rear”. Further, the direction of the arrow U shown in FIGS. 1, 5, and 6 is "up", and the direction of the arrow D is "down".
 〔コンバインの全体構成〕
 図1に示すように、普通型のコンバイン1(本発明に係る「収穫機」に相当)は、収穫搬送装置2、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、穀粒排出装置18、衛星測位モジュール80、エンジンEを備えている。収穫搬送装置2は、収穫部H及び搬送部16を有している。
[Overall composition of combine harvester]
As shown in FIG. 1, the ordinary type combine 1 (corresponding to the “harvester” according to the present invention) includes a harvest transfer device 2, a crawler type traveling device 11, an operation unit 12, a threshing device 13, and a grain tank 14. , Equipped with a grain discharging device 18, a satellite positioning module 80, and an engine E. The harvest transfer device 2 has a harvest unit H and a transfer unit 16.
 即ち、コンバイン1は、収穫部H及び搬送部16を有する収穫搬送装置2を備えている。 That is, the combine 1 includes a harvesting and transporting device 2 having a harvesting section H and a transporting section 16.
 走行装置11は、コンバイン1における下部に備えられている。また、走行装置11は、エンジンEからの動力によって駆動する。そして、コンバイン1は、走行装置11によって自走可能である。 The traveling device 11 is provided at the lower part of the combine 1. Further, the traveling device 11 is driven by the power from the engine E. The combine 1 can be self-propelled by the traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視するオペレータが搭乗可能である。尚、オペレータは、コンバイン1の機外からコンバイン1の作業を監視していても良い。 Further, the operation unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. An operator who monitors the work of the combine 1 can be boarded on the driving unit 12. The operator may monitor the work of the combine 1 from outside the combine 1.
 穀粒排出装置18は、穀粒タンク14の上側に設けられている。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharge device 18 is provided on the upper side of the grain tank 14. Further, the satellite positioning module 80 is attached to the upper surface of the operating unit 12.
 収穫部Hは、コンバイン1における前部に備えられている。そして、搬送部16は、収穫部Hの後側に設けられている。また、収穫部Hは、ヘッダ5、オーガ6、刈取装置15、リール17を含んでいる。 The harvesting section H is provided in the front portion of the combine 1. The transport section 16 is provided on the rear side of the harvest section H. Further, the harvesting unit H includes a header 5, an auger 6, a cutting device 15, and a reel 17.
 刈取装置15は、圃場の植立穀稈を刈り取る。また、リール17は、機体左右方向に沿うリール軸芯17b周りに回転駆動しながら収穫対象の植立穀稈を掻き込む。 The reaping device 15 cuts the planted culm in the field. Further, the reel 17 is driven to rotate around the reel axis 17b along the left-right direction of the machine body to scrape the planted grain culm to be harvested.
 即ち、収穫部Hは、回転駆動しながら植立穀稈を掻き込むリール17を含んでいる。 That is, the harvesting unit H includes a reel 17 that scrapes the planted culm while being rotationally driven.
 刈取装置15により刈り取られた刈取穀稈(本発明に係る「収穫物」に相当)は、ヘッダ5に受け入れられる。また、オーガ6は、機体左右方向に延びる円筒状に構成されている。オーガ6は、機体左右方向に延びるオーガ軸6bを中心に回転駆動する。これにより、ヘッダ5に受け入れられた刈取穀稈は、オーガ6によって搬送部16へ送られる。 The harvested grain culm (corresponding to the "harvest" according to the present invention) cut by the harvesting device 15 is accepted in the header 5. Further, the auger 6 is configured in a cylindrical shape extending in the left-right direction of the machine body. The auger 6 is rotationally driven around an auger shaft 6b extending in the left-right direction of the machine body. As a result, the harvested culm received in the header 5 is sent to the transport unit 16 by the auger 6.
 この構成により、収穫部Hは、圃場の穀物(本発明に係る「作物」に相当)を収穫する。そして、コンバイン1は、刈取装置15によって圃場の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。 With this configuration, the harvesting unit H harvests the grain in the field (corresponding to the "crop" according to the present invention). Then, the combine 1 can be cut and run by the running device 11 while cutting the planted culms in the field by the cutting device 15.
 収穫部Hにより収穫された刈取穀稈は、搬送部16によって機体後方へ搬送される。これにより、刈取穀稈は脱穀装置13へ搬送される。 The harvested culm harvested by the harvesting unit H is transported to the rear of the machine by the transporting unit 16. As a result, the harvested grain culm is transported to the threshing device 13.
 即ち、搬送部16は、収穫部Hにより収穫された刈取穀稈を機体後方へ搬送する。 That is, the transport unit 16 transports the harvested grain culms harvested by the harvesting unit H to the rear of the machine body.
 脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 In the threshing device 13, the harvested grain culm is threshed. The grains obtained by the threshing treatment are stored in the grain tank 14. The grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
 また、図1に示すように、運転部12には、通信端末4が配置されている。通信端末4は、種々の情報を表示可能に構成されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン1の機外に位置していても良い。 Further, as shown in FIG. 1, a communication terminal 4 is arranged in the driving unit 12. The communication terminal 4 is configured to be able to display various information. In the present embodiment, the communication terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the driving unit 12, and the communication terminal 4 may be located outside the combine 1. ..
 ここで、コンバイン1は、図2に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図3に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, the combine 1 is circulated while harvesting grains in the outer peripheral region of the field as shown in FIG. 2, and then harvested in the inner region of the field as shown in FIG. , Is configured to harvest field grain.
 本実施形態においては、図2に示す周回走行は手動走行により行われる。また、図3に示す内側の領域での刈取走行は、自動走行により行われる。即ち、コンバイン1は、自動走行が可能である。 In the present embodiment, the lap running shown in FIG. 2 is performed by manual running. Further, the cutting run in the inner region shown in FIG. 3 is performed by automatic running. That is, the combine 1 can run automatically.
 尚、本発明はこれに限定されず、図2に示す周回走行は自動走行により行われても良い。 The present invention is not limited to this, and the lap running shown in FIG. 2 may be performed by automatic running.
 また、図1に示すように、運転部12には、主変速レバー19が設けられている。主変速レバー19は、人為操作される。コンバイン1が手動走行しているとき、オペレータが主変速レバー19を操作すると、コンバイン1の車速が変化する。即ち、コンバイン1が手動走行しているとき、オペレータは、主変速レバー19を操作することにより、コンバイン1の車速を変更することができる。 Further, as shown in FIG. 1, the driving unit 12 is provided with a main speed change lever 19. The main shift lever 19 is artificially operated. When the operator operates the main shift lever 19 while the combine 1 is manually traveling, the vehicle speed of the combine 1 changes. That is, when the combine 1 is manually traveling, the operator can change the vehicle speed of the combine 1 by operating the main shift lever 19.
 尚、オペレータは、通信端末4を操作することにより、エンジンEの回転速度を変更することができる。 The operator can change the rotation speed of the engine E by operating the communication terminal 4.
 作物の種類によって、脱粒しやすさや倒伏しやすさ等の生育特性は異なる。従って、作物の種類によって、適切な作業速度は異なる。オペレータが通信端末4を操作し、エンジンEの回転速度を適切な回転速度に設定すれば、作物の種類に適した作業速度で作業を行うことができる。 Growth characteristics such as ease of threshing and ease of lodging differ depending on the type of crop. Therefore, the appropriate working speed differs depending on the type of crop. If the operator operates the communication terminal 4 and sets the rotation speed of the engine E to an appropriate rotation speed, the work can be performed at a work speed suitable for the type of crop.
 〔動力伝達に関する構成〕
 図4に示すように、コンバイン1は、刈取クラッチC1を備えている。エンジンEから出力された動力は、刈取クラッチC1及び走行装置11に分配される。走行装置11は、エンジンEからの動力により駆動する。
[Structure related to power transmission]
As shown in FIG. 4, the combine 1 includes a cutting clutch C1. The power output from the engine E is distributed to the cutting clutch C1 and the traveling device 11. The traveling device 11 is driven by power from the engine E.
 また、刈取クラッチC1は、動力を伝達する入状態と、動力を伝達しない切状態と、の間で状態変更可能に構成されている。 Further, the cutting clutch C1 is configured so that the state can be changed between the on state in which power is transmitted and the off state in which power is not transmitted.
 刈取クラッチC1が入状態であるとき、エンジンEから出力された動力は搬送部駆動軸16aに伝達される。これにより、搬送部駆動軸16aは正転方向に回転する。ここで、搬送部駆動軸16aは、搬送部16の駆動軸である。搬送部駆動軸16aが正転方向に回転することにより、搬送部16は、正転方向に駆動する。 When the cutting clutch C1 is in the engaged state, the power output from the engine E is transmitted to the transport unit drive shaft 16a. As a result, the transport unit drive shaft 16a rotates in the forward rotation direction. Here, the transport unit drive shaft 16a is a drive shaft of the transport unit 16. The transport unit 16 is driven in the normal rotation direction by rotating the transport unit drive shaft 16a in the normal rotation direction.
 また、図4に示すように、エンジンEから搬送部駆動軸16aに伝達された動力は、ワンウェイクラッチC2、刈取装置15、オーガ6に分配される。これにより、刈取装置15が駆動すると共に、オーガ6が正転方向に回転駆動する。 Further, as shown in FIG. 4, the power transmitted from the engine E to the transport unit drive shaft 16a is distributed to the one-way clutch C2, the reaping device 15, and the auger 6. As a result, the cutting device 15 is driven and the auger 6 is rotationally driven in the forward rotation direction.
 ワンウェイクラッチC2は、正転方向の回転動力をリール17に伝達し、且つ、逆転方向の回転動力をリール17に伝達しないように構成されている。そのため、搬送部駆動軸16aが正転方向に回転しているとき、搬送部駆動軸16aの回転動力は、ワンウェイクラッチC2を介して、リール17に伝達される。これにより、リール17が駆動する。 The one-way clutch C2 is configured to transmit the rotational power in the forward rotation direction to the reel 17 and not to transmit the rotational power in the reverse rotation direction to the reel 17. Therefore, when the transport unit drive shaft 16a is rotating in the forward rotation direction, the rotational power of the transport unit drive shaft 16a is transmitted to the reel 17 via the one-way clutch C2. As a result, the reel 17 is driven.
 また、刈取クラッチC1が切状態であるとき、エンジンEから出力された動力は搬送部駆動軸16aに伝達されない。このとき、エンジンEから出力された動力は、リール17、刈取装置15、オーガ6の何れにも伝達されない。 Further, when the cutting clutch C1 is in the disengaged state, the power output from the engine E is not transmitted to the transport unit drive shaft 16a. At this time, the power output from the engine E is not transmitted to any of the reel 17, the cutting device 15, and the auger 6.
 また、図4に示すように、コンバイン1は、電動モータ7を備えている。電動モータ7は、搬送部駆動軸16aに逆転動力を与えるように構成されている。即ち、搬送部駆動軸16aは、電動モータ7からの動力によって逆転方向に回転する。搬送部駆動軸16aが逆転方向に回転することにより、搬送部16は、逆転方向に駆動する。 Further, as shown in FIG. 4, the combine 1 includes an electric motor 7. The electric motor 7 is configured to give reverse power to the transport unit drive shaft 16a. That is, the transport unit drive shaft 16a is rotated in the reverse direction by the power from the electric motor 7. The transport unit 16 is driven in the reverse direction by rotating the transport unit drive shaft 16a in the reverse direction.
 そして、電動モータ7から搬送部駆動軸16aに伝達された動力は、ワンウェイクラッチC2、刈取装置15、オーガ6に分配される。これにより、刈取装置15が駆動すると共に、オーガ6が逆転方向に回転駆動する。 Then, the power transmitted from the electric motor 7 to the transport unit drive shaft 16a is distributed to the one-way clutch C2, the cutting device 15, and the auger 6. As a result, the cutting device 15 is driven and the auger 6 is rotationally driven in the reverse direction.
 また、搬送部駆動軸16aが逆転方向に回転しているとき、ワンウェイクラッチC2は、搬送部駆動軸16aの回転動力をリール17に伝達しない。そのため、このとき、リール17は駆動しない。 Further, when the transport unit drive shaft 16a is rotating in the reverse direction, the one-way clutch C2 does not transmit the rotational power of the transport unit drive shaft 16a to the reel 17. Therefore, at this time, the reel 17 is not driven.
 以上の構成により、電動モータ7は、オーガ6に逆転動力を与える。即ち、コンバイン1は、オーガ6に逆転動力を与える電動モータ7を備えている。 With the above configuration, the electric motor 7 gives the auger 6 reverse power. That is, the combine 1 includes an electric motor 7 that gives reverse power to the auger 6.
 尚、搬送部16は、正転方向に駆動しているとき、刈取穀稈を機体後方へ搬送するように構成されている。また、搬送部16は、逆転方向に駆動しているとき、刈取穀稈を機体前方へ搬送するように構成されている。 The transport unit 16 is configured to transport the harvested grain culm to the rear of the machine body when it is driven in the forward rotation direction. Further, the transport unit 16 is configured to transport the cut grain culm to the front of the machine body when it is driven in the reverse direction.
 また、オーガ6は、正転方向に駆動しているとき、刈取穀稈を搬送部16へ送るように構成されている。また、オーガ6は、逆転方向に駆動しているとき、刈取穀稈を機体前方へ送るように構成されている。 Further, the auger 6 is configured to send the cut grain culm to the transport unit 16 when it is driven in the forward rotation direction. Further, the auger 6 is configured to send the cut grain culm to the front of the machine body when it is driven in the reverse direction.
 〔制御部に関する構成〕
 図4に示すように、コンバイン1は、制御部20を備えている。制御部20は、自車位置算出部21、領域算出部22、経路算出部23、走行制御部24を有している。
[Structure related to control unit]
As shown in FIG. 4, the combine 1 includes a control unit 20. The control unit 20 includes a vehicle position calculation unit 21, an area calculation unit 22, a route calculation unit 23, and a travel control unit 24.
 図1に示すように、衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図4に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン1の自車位置を示す測位データを自車位置算出部21へ送る。 As shown in FIG. 1, the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 4, the satellite positioning module 80 sends positioning data indicating the own vehicle position of the combine 1 to the own vehicle position calculation unit 21 based on the received GPS signal.
 自車位置算出部21は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、領域算出部22及び走行制御部24へ送られる。 The vehicle position calculation unit 21 calculates the position coordinates of the combine 1 over time based on the positioning data output by the satellite positioning module 80. The calculated position coordinates of the combine 1 over time are sent to the area calculation unit 22 and the travel control unit 24.
 領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図3に示すように、外周領域SA及び作業対象領域CAを算出する。 The area calculation unit 22 calculates the outer peripheral area SA and the work target area CA as shown in FIG. 3 based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 21.
 より具体的には、領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン1の走行軌跡を算出する。そして、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 22 calculates the traveling locus of the combine 1 in the orbital traveling on the outer peripheral side of the field based on the temporal position coordinates of the combine 1 received from the own vehicle position calculation unit 21. .. Then, the region calculation unit 22 calculates the region on the outer peripheral side of the field in which the combine 1 circulates while harvesting grains as the outer peripheral region SA, based on the calculated travel locus of the combine 1. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
 例えば、図2においては、圃場の外周側における周回走行のためのコンバイン1の走行経路が矢印で示されている。図2に示す例では、コンバイン1は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図3に示す状態となる。 For example, in FIG. 2, the traveling path of the combine 1 for orbiting traveling on the outer peripheral side of the field is indicated by an arrow. In the example shown in FIG. 2, the combine 1 makes three laps. Then, when the cutting run along this running path is completed, the field is in the state shown in FIG.
 図3に示すように、領域算出部22は、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 As shown in FIG. 3, the area calculation unit 22 calculates the area on the outer peripheral side of the field where the combine 1 circulates while harvesting grains as the outer peripheral area SA. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
 そして、図4に示すように、領域算出部22による算出結果は、経路算出部23へ送られる。 Then, as shown in FIG. 4, the calculation result by the area calculation unit 22 is sent to the route calculation unit 23.
 経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図3に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。尚、図3に示すように、本実施形態においては、刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。また、複数のメッシュ線は直線でなくても良く、湾曲していても良い。 The route calculation unit 23 calculates the mowing travel route LI, which is the travel route for the mowing operation in the work target area CA, as shown in FIG. 3, based on the calculation result received from the area calculation unit 22. As shown in FIG. 3, in the present embodiment, the cutting travel path LI is a plurality of mesh lines extending in the vertical and horizontal directions. Further, the plurality of mesh lines do not have to be straight lines and may be curved.
 図4に示すように、経路算出部23により算出された刈取走行経路LIは、走行制御部24へ送られる。 As shown in FIG. 4, the cutting travel route LI calculated by the route calculation unit 23 is sent to the travel control unit 24.
 走行制御部24は、走行装置11を制御可能に構成されている。そして、走行制御部24は、自車位置算出部21から受け取ったコンバイン1の位置座標と、経路算出部23から受け取った刈取走行経路LIと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部24は、図3に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 The travel control unit 24 is configured to be able to control the travel device 11. Then, the travel control unit 24 controls the automatic travel of the combine 1 based on the position coordinates of the combine 1 received from the own vehicle position calculation unit 21 and the harvesting travel route LI received from the route calculation unit 23. More specifically, as shown in FIG. 3, the traveling control unit 24 controls the traveling of the combine 1 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
 〔コンバインによる収穫作業の流れ〕
 以下では、コンバイン1による収穫作業の例として、コンバイン1が、図2に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work by combine harvester]
In the following, as an example of the harvesting work by the combine 1, the flow when the combine 1 performs the harvesting work in the field shown in FIG. 2 will be described.
 最初に、オペレータは、コンバイン1を手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。図2に示す例では、コンバイン1は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図3に示す状態となる。 First, the operator manually operates the combine 1 and performs a cutting run so as to orbit along the boundary line of the field in the outer peripheral portion of the field as shown in FIG. In the example shown in FIG. 2, the combine 1 makes three laps. When this lap run is completed, the field is in the state shown in FIG.
 領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図2に示す周回走行でのコンバイン1の走行軌跡を算出する。そして、図3に示すように、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 The area calculation unit 22 calculates the travel locus of the combine 1 in the orbital travel shown in FIG. 2 based on the temporal position coordinates of the combine 1 received from the own vehicle position calculation unit 21. Then, as shown in FIG. 3, the area calculation unit 22 sets the outer peripheral region SA of the region on the outer peripheral side of the field in which the combine 1 orbits while cutting the planted culm, based on the calculated travel locus of the combine 1. Calculated as. Further, the area calculation unit 22 calculates the area inside the field from the calculated outer peripheral area SA as the work target area CA.
 次に、経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図3に示すように、作業対象領域CAにおける刈取走行経路LIを設定する。 Next, the route calculation unit 23 sets the cutting travel route LI in the work target area CA as shown in FIG. 3 based on the calculation result received from the area calculation unit 22.
 そして、オペレータが自動走行開始ボタン(図示せず)を押すことにより、図3に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、走行制御部24は、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 Then, when the operator presses the automatic running start button (not shown), automatic running along the cutting running path LI is started as shown in FIG. At this time, the traveling control unit 24 controls the traveling of the combine 1 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
 作業対象領域CAにおける自動走行が開始されると、図3に示すように、コンバイン1は、刈取走行経路LIに沿った走行と、方向転換と、を繰り返すことにより、作業対象領域CAの全体を網羅するように刈取走行を行う。 When the automatic traveling in the work target area CA is started, as shown in FIG. 3, the combine 1 repeats traveling along the cutting travel path LI and changing the direction to cover the entire work target area CA. Perform a harvesting run to cover it.
 尚、本実施形態においては、図2及び図3に示すように、圃場外に運搬車CVが駐車している。そして、外周領域SAにおいて、運搬車CVの近傍位置には、停車位置PPが設定されている。 In this embodiment, as shown in FIGS. 2 and 3, the carrier CV is parked outside the field. Then, in the outer peripheral region SA, the stop position PP is set at a position near the carrier CV.
 運搬車CVは、コンバイン1が穀粒排出装置18から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバイン1は停車位置PPに停車し、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 The carrier CV can collect and transport the grains discharged from the grain discharge device 18 by the combine 1. At the time of grain discharge, the combine 1 stops at the stop position PP, and the grain is discharged to the carrier CV by the grain discharge device 18.
 そして、作業対象領域CAにおける全ての刈取走行経路LIに沿った刈取走行が完了すると、圃場の全体が収穫済みとなる。 Then, when the cutting run along all the cutting running paths LI in the work target area CA is completed, the entire field is harvested.
 尚、本実施形態では、作業対象領域CAにおいて、刈取走行が完了した部分は外周領域SAとなる。領域算出部22は、圃場における刈取走行の実行中に、外周領域SA及び作業対象領域CAを経時的に算出するように構成されている。 In the present embodiment, in the work target area CA, the portion where the cutting run is completed is the outer peripheral area SA. The area calculation unit 22 is configured to calculate the outer peripheral area SA and the work target area CA over time during the execution of the cutting run in the field.
 〔収穫部、リール、オーガの昇降制御に関する構成〕
 図1、図4、図5に示すように、コンバイン1は、刈取シリンダ15A、リールシリンダ17A、高さ変更装置6Aを備えている。
[Structure related to raising / lowering control of harvesting section, reel, and auger]
As shown in FIGS. 1, 4, and 5, the combine 1 includes a cutting cylinder 15A, a reel cylinder 17A, and a height changing device 6A.
 また、図4に示すように、制御部20は、詰まり時制御部25を有している。詰まり時制御部25は、逆転制御部26を含んでいる。 Further, as shown in FIG. 4, the control unit 20 has a clogging control unit 25. The jam control unit 25 includes a reverse rotation control unit 26.
 逆転制御部26は、刈取シリンダ15Aを制御可能に構成されている。逆転制御部26が刈取シリンダ15Aを伸び方向に制御すると、収穫搬送装置2は、収穫搬送装置2の前端部が上昇する方向に揺動する。これにより、収穫部Hは、機体に対して上昇する。 The reverse rotation control unit 26 is configured to be able to control the cutting cylinder 15A. When the reverse rotation control unit 26 controls the cutting cylinder 15A in the extension direction, the harvest transfer device 2 swings in the direction in which the front end portion of the harvest transfer device 2 rises. As a result, the harvesting section H rises with respect to the aircraft.
 また、逆転制御部26が刈取シリンダ15Aを縮み方向に制御すると、収穫搬送装置2は、収穫搬送装置2の前端部が下降する方向に揺動する。これにより、収穫部Hは、機体に対して下降する。 Further, when the reversing control unit 26 controls the cutting cylinder 15A in the contraction direction, the harvest transfer device 2 swings in the direction in which the front end portion of the harvest transfer device 2 descends. As a result, the harvesting section H descends with respect to the aircraft.
 この構成により、逆転制御部26は、収穫部Hの機体に対する昇降を制御可能である。また、収穫部Hは、機体に対して昇降可能である。 With this configuration, the reverse rotation control unit 26 can control the raising and lowering of the harvesting unit H with respect to the machine body. Further, the harvesting unit H can be raised and lowered with respect to the machine body.
 即ち、収穫部Hは、刈取穀稈を受け入れるヘッダ5と、回転駆動するオーガ6と、を含み、機体に対して昇降可能に構成されると共に、圃場の穀物を収穫する。 That is, the harvesting unit H includes a header 5 for receiving the harvested grain culm and a rotary-driven auger 6, and is configured to be able to move up and down with respect to the machine body, and harvests the grain in the field.
 また、図4に示すように、詰まり時制御部25は、リール制御部27を含んでいる。 Further, as shown in FIG. 4, the jam control unit 25 includes a reel control unit 27.
 リール制御部27は、リールシリンダ17Aを制御可能に構成されている。リール制御部27がリールシリンダ17Aを伸び方向に制御すると、リール17は、ヘッダ5に対して上昇する。 The reel control unit 27 is configured to be able to control the reel cylinder 17A. When the reel control unit 27 controls the reel cylinder 17A in the extension direction, the reel 17 rises with respect to the header 5.
 また、リール制御部27がリールシリンダ17Aを縮み方向に制御すると、リール17は、ヘッダ5に対して下降する。 Further, when the reel control unit 27 controls the reel cylinder 17A in the contraction direction, the reel 17 descends with respect to the header 5.
 この構成により、リール制御部27は、リール17のヘッダ5に対する昇降を制御可能である。また、リール17は、ヘッダ5に対して昇降可能である。 With this configuration, the reel control unit 27 can control the raising and lowering of the reel 17 with respect to the header 5. Further, the reel 17 can be raised and lowered with respect to the header 5.
 また、図5に示すように、高さ変更装置6Aは、伸縮可能なシリンダにより構成されている。また、図4に示すように、詰まり時制御部25は、高さ制御部28を含んでいる。高さ制御部28は、高さ変更装置6Aを制御可能に構成されている。 Further, as shown in FIG. 5, the height changing device 6A is composed of a telescopic cylinder. Further, as shown in FIG. 4, the clogging control unit 25 includes a height control unit 28. The height control unit 28 is configured to be able to control the height changing device 6A.
 図5に示すように、ヘッダ5は、軸支持部51及び装置支持部52を有している。装置支持部52は、ヘッダ5の側板53から機体左右方向外側に突出する状態で設けられている。装置支持部52は、高さ変更装置6Aを支持している。 As shown in FIG. 5, the header 5 has a shaft support portion 51 and a device support portion 52. The device support portion 52 is provided so as to project outward from the side plate 53 of the header 5 in the left-right direction of the machine body. The device support portion 52 supports the height changing device 6A.
 また、軸支持部51は、側板53に対して上下にスライド移動可能に構成されている。軸支持部51は、高さ変更装置6Aを介して装置支持部52に支持されている。そして、オーガ軸6bは、軸支持部51に支持されている。 Further, the shaft support portion 51 is configured to be slidable up and down with respect to the side plate 53. The shaft support portion 51 is supported by the device support portion 52 via the height changing device 6A. The auger shaft 6b is supported by the shaft support portion 51.
 高さ制御部28が高さ変更装置6Aを伸び方向に制御すると、図5に示すように、軸支持部51及びオーガ軸6bは、側板53に対して上昇する。これにより、図6に示すように、オーガ6は、ヘッダ5に対して上昇する。 When the height control unit 28 controls the height changing device 6A in the extension direction, the shaft support portion 51 and the auger shaft 6b rise with respect to the side plate 53, as shown in FIG. As a result, as shown in FIG. 6, the auger 6 rises with respect to the header 5.
 また、高さ制御部28が高さ変更装置6Aを縮み方向に制御すると、図5に示すように、軸支持部51及びオーガ軸6bは、側板53に対して下降する。これにより、図6に示すように、オーガ6は、ヘッダ5に対して下降する。 Further, when the height control unit 28 controls the height changing device 6A in the contraction direction, the shaft support portion 51 and the auger shaft 6b descend with respect to the side plate 53, as shown in FIG. As a result, as shown in FIG. 6, the auger 6 descends with respect to the header 5.
 尚、本実施形態において、軸支持部51、装置支持部52、高さ変更装置6Aは、ヘッダ5の左端及び右端にそれぞれ設けられている。ヘッダ5の左端における軸支持部51、装置支持部52、高さ変更装置6Aと、ヘッダ5の右端における軸支持部51、装置支持部52、高さ変更装置6Aと、は互いに同様の構造を有している。そして、オーガ軸6bは、左右の軸支持部51に亘る状態で設けられている。 In the present embodiment, the shaft support portion 51, the device support portion 52, and the height changing device 6A are provided at the left end and the right end of the header 5, respectively. The shaft support portion 51, the device support portion 52, and the height changing device 6A at the left end of the header 5 and the shaft support portion 51, the device support portion 52, and the height changing device 6A at the right end of the header 5 have similar structures to each other. Have. The auger shaft 6b is provided so as to extend over the left and right shaft support portions 51.
 以上の構成により、高さ変更装置6Aは、ヘッダ5に対するオーガ6の高さ位置を変更する。また、高さ制御部28は、高さ変更装置6Aを制御することによりヘッダ5に対するオーガ6の高さ位置を制御する。 With the above configuration, the height changing device 6A changes the height position of the auger 6 with respect to the header 5. Further, the height control unit 28 controls the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A.
 図6に示すように、ヘッダ5に対するオーガ6の高さ位置が高いほど、ヘッダ5の底板5aとオーガ6との間の間隔は広い。本実施形態において、ヘッダ5に対するオーガ6の高さ位置が最も低いとき、底板5aとオーガ6との間の間隔は、第1間隔D1である。また、ヘッダ5に対するオーガ6の高さ位置が最も高いとき、底板5aとオーガ6との間の間隔は、第2間隔D2である。尚、第2間隔D2は、第1間隔D1よりも広い。 As shown in FIG. 6, the higher the height position of the auger 6 with respect to the header 5, the wider the distance between the bottom plate 5a of the header 5 and the auger 6. In the present embodiment, when the height position of the auger 6 with respect to the header 5 is the lowest, the distance between the bottom plate 5a and the auger 6 is the first distance D1. Further, when the height position of the auger 6 with respect to the header 5 is the highest, the distance between the bottom plate 5a and the auger 6 is the second distance D2. The second interval D2 is wider than the first interval D1.
 即ち、コンバイン1は、ヘッダ5に対するオーガ6の高さ位置を変更する高さ変更装置6Aを備えている。また、コンバイン1は、高さ変更装置6Aを制御することによりヘッダ5に対するオーガ6の高さ位置を制御する高さ制御部28を備えている。 That is, the combine 1 is provided with a height changing device 6A that changes the height position of the auger 6 with respect to the header 5. Further, the combine 1 includes a height control unit 28 that controls the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A.
 〔収穫搬送装置に詰まりが生じた際の制御に関する構成〕
 図4に示すように、コンバイン1は、検知部SEを備えている。また、制御部20は、詰まり判定部29を有している。
[Structure related to control when the harvest transfer device is clogged]
As shown in FIG. 4, the combine 1 includes a detection unit SE. Further, the control unit 20 has a clogging determination unit 29.
 検知部SEは、コンバイン1が圃場において収穫作業を行っているときに、オーガ6の回転速度を検知する。検知部SEによる検知結果は、詰まり判定部29へ送られる。 The detection unit SE detects the rotation speed of the auger 6 while the combine 1 is harvesting in the field. The detection result by the detection unit SE is sent to the clogging determination unit 29.
 詰まり判定部29は、検知部SEによる検知結果に基づいて、収穫搬送装置2が詰まっているか否かを判定する。より具体的には、詰まり判定部29は、検知部SEによる検知結果に基づいて、オーガ6の回転速度が所定の閾値未満であるか否かを判定する。そして、オーガ6の回転速度が所定の閾値以上である場合、詰まり判定部29は、収穫搬送装置2が詰まっていないと判定する。また、オーガ6の回転速度が所定の閾値未満である場合、詰まり判定部29は、収穫搬送装置2が詰まっていると判定する。 The clogging determination unit 29 determines whether or not the harvest transfer device 2 is clogged based on the detection result by the detection unit SE. More specifically, the clogging determination unit 29 determines whether or not the rotation speed of the auger 6 is less than a predetermined threshold value based on the detection result by the detection unit SE. Then, when the rotation speed of the auger 6 is equal to or higher than a predetermined threshold value, the clogging determination unit 29 determines that the harvest transfer device 2 is not clogged. Further, when the rotation speed of the auger 6 is less than a predetermined threshold value, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged.
 即ち、コンバイン1は、オーガ6の回転速度を検知する検知部SEを備えている。また、コンバイン1は、収穫搬送装置2が詰まっているか否かを判定する詰まり判定部29を備えている。 That is, the combine 1 is provided with a detection unit SE that detects the rotation speed of the auger 6. Further, the combine 1 includes a clogging determination unit 29 for determining whether or not the harvesting and transporting device 2 is clogged.
 尚、詰まり判定部29は、収穫搬送装置2のうち、収穫部Hが詰まっているか否かを判定するように構成されていても良いし、搬送部16が詰まっているか否かを判定するように構成されていても良い。 The jam determination unit 29 may be configured to determine whether or not the harvesting unit H is clogged in the harvesting and transporting device 2, or may determine whether or not the transporting unit 16 is clogged. It may be configured in.
 詰まり判定部29により、収穫搬送装置2が詰まっていると判定された場合、図4に示すように、詰まり判定部29は、所定の信号を詰まり時制御部25へ送る。この信号は、収穫搬送装置2が詰まっていることを示す信号である。詰まり時制御部25がこの信号を受け取ると、詰まり時制御部25における逆転制御部26、リール制御部27、高さ制御部28は、収穫搬送装置2の詰まりを解消するための制御を実行する。以下では、収穫搬送装置2の詰まりを解消するための制御について詳述する。 When the jam determination unit 29 determines that the harvest transfer device 2 is clogged, the jam determination unit 29 sends a predetermined signal to the jam control unit 25 as shown in FIG. This signal is a signal indicating that the harvest transfer device 2 is clogged. When the jam control unit 25 receives this signal, the reverse control unit 26, the reel control unit 27, and the height control unit 28 in the jam control unit 25 execute control for clearing the jam of the harvest transfer device 2. .. In the following, the control for clearing the clogging of the harvest transfer device 2 will be described in detail.
 図4に示すように、逆転制御部26は、刈取クラッチC1及び電動モータ7を制御可能に構成されている。そして、逆転制御部26は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、第1詰まり時制御を実行可能である。第1詰まり時制御とは、収穫部Hを上昇させると共にオーガ6を逆転駆動させる制御である。 As shown in FIG. 4, the reverse rotation control unit 26 is configured to be able to control the cutting clutch C1 and the electric motor 7. Then, the reverse rotation control unit 26 can execute the first clogging control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged. The first clogging control is a control in which the harvesting portion H is raised and the auger 6 is reversely driven.
 詳述すると、第1詰まり時制御が実行されると、まず、逆転制御部26は、刈取シリンダ15Aを伸び方向に制御することにより、収穫部Hを機体に対して上昇させる。次に、逆転制御部26は、所定の指令を走行制御部24へ送る。この指令は、機体を所定距離だけ前進させることを命令するものである。 More specifically, when the first clogging control is executed, first, the reverse rotation control unit 26 raises the harvesting unit H with respect to the machine body by controlling the cutting cylinder 15A in the extension direction. Next, the reverse rotation control unit 26 sends a predetermined command to the travel control unit 24. This command commands the aircraft to move forward by a predetermined distance.
 走行制御部24がこの指令を受け取ると、走行制御部24は、走行装置11を制御することにより、機体を所定距離だけ前進させる。 When the travel control unit 24 receives this command, the travel control unit 24 controls the travel device 11 to advance the aircraft by a predetermined distance.
 次に、逆転制御部26は、刈取クラッチC1を入状態から切状態に切り替えると共に、電動モータ7を駆動させる。これにより、エンジンEから出力される正転方向の動力は刈取クラッチC1にて遮断されると共に、電動モータ7から出力される逆転方向の動力により、オーガ6が逆転駆動する。これにより、第1詰まり時制御が完了する。 Next, the reverse rotation control unit 26 switches the cutting clutch C1 from the on state to the off state and drives the electric motor 7. As a result, the power in the forward rotation direction output from the engine E is cut off by the cutting clutch C1, and the power in the reverse rotation direction output from the electric motor 7 drives the auger 6 in the reverse direction. As a result, the first clogging control is completed.
 即ち、コンバイン1は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合にオーガ6を逆転駆動させる逆転制御部26を備えている。また、逆転制御部26は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、収穫部Hを上昇させると共にオーガ6を逆転駆動させる第1詰まり時制御を実行可能である。また、逆転制御部26は、第1詰まり時制御において、機体を前進させた後でオーガ6を逆転駆動させる。また、逆転制御部26は、電動モータ7を駆動させることによって、オーガ6を逆転駆動させる。 That is, the combine 1 includes a reverse control unit 26 that reversely drives the auger 6 when the jam determination unit 29 determines that the harvest transport device 2 is clogged. Further, the reverse rotation control unit 26 can execute the first jamming control that raises the harvesting unit H and reversely drives the auger 6 when the jamming determination unit 29 determines that the harvesting and transporting device 2 is clogged. be. Further, the reverse rotation control unit 26 reversely drives the auger 6 after moving the aircraft forward in the first jam control. Further, the reverse rotation control unit 26 drives the auger 6 in reverse direction by driving the electric motor 7.
 また、逆転制御部26は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、第2詰まり時制御を実行可能である。第2詰まり時制御とは、機体を後進させた後でオーガ6を逆転駆動させる制御である。 Further, the reverse rotation control unit 26 can execute the second clogging control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged. The second clogging control is a control in which the auger 6 is reversely driven after the aircraft is moved backward.
 詳述すると、第2詰まり時制御が実行されると、まず、逆転制御部26は、所定の指令を走行制御部24へ送る。この指令は、機体を所定距離だけ後進させることを命令するものである。 More specifically, when the second clogging control is executed, the reverse rotation control unit 26 first sends a predetermined command to the travel control unit 24. This command commands the aircraft to move backward by a predetermined distance.
 走行制御部24がこの指令を受け取ると、走行制御部24は、走行装置11を制御することにより、機体を所定距離だけ後進させる。 When the travel control unit 24 receives this command, the travel control unit 24 controls the travel device 11 to move the aircraft backward by a predetermined distance.
 尚、本発明はこれに限定されず、機体を所定距離だけ後進させることに先立ち、逆転制御部26が刈取シリンダ15Aを伸び方向に制御することにより、収穫部Hを機体に対して上昇させるように構成されていても良い。 The present invention is not limited to this, and the reversing control unit 26 controls the cutting cylinder 15A in the extension direction to raise the harvesting unit H with respect to the aircraft prior to moving the aircraft backward by a predetermined distance. It may be configured in.
 次に、逆転制御部26は、刈取クラッチC1を入状態から切状態に切り替えると共に、電動モータ7を駆動させる。これにより、エンジンEから出力される正転方向の動力は刈取クラッチC1にて遮断されると共に、電動モータ7から出力される逆転方向の動力により、オーガ6が逆転駆動する。これにより、第2詰まり時制御が完了する。 Next, the reverse rotation control unit 26 switches the cutting clutch C1 from the on state to the off state and drives the electric motor 7. As a result, the power in the forward rotation direction output from the engine E is cut off by the cutting clutch C1, and the power in the reverse rotation direction output from the electric motor 7 drives the auger 6 in the reverse direction. As a result, the second clogging control is completed.
 即ち、逆転制御部26は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、機体を後進させた後でオーガ6を逆転駆動させる第2詰まり時制御を実行可能である。 That is, the reverse rotation control unit 26 can execute the second jamming control that reversely drives the auger 6 after moving the machine backward when the jamming determination unit 29 determines that the harvest transfer device 2 is clogged. be.
 尚、本実施形態において、通信端末4は、第1詰まり時制御と第2詰まり時制御とのうち、何れが実行されるかを選択可能に構成されている。より具体的には、通信端末4は、制御選択画面(図示せず)を表示することができる。そして、通信端末4に制御選択画面が表示されているとき、オペレータは、通信端末4を操作することにより、第1詰まり時制御と第2詰まり時制御とのうちの何れか一方を任意に選択できる。 In the present embodiment, the communication terminal 4 is configured to be able to select which of the first clogging control and the second clogging control is executed. More specifically, the communication terminal 4 can display a control selection screen (not shown). Then, when the control selection screen is displayed on the communication terminal 4, the operator arbitrarily selects either the first clogging control or the second clogging control by operating the communication terminal 4. can.
 そして、図4に示すように、オペレータによる選択内容を示す信号が、通信端末4から詰まり時制御部25へ送られる。詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合、逆転制御部26は、この信号に応じて、第1詰まり時制御と第2詰まり時制御とのうちの何れか一方を実行する。即ち、逆転制御部26は、第1詰まり時制御と第2詰まり時制御とのうち、オペレータにより選択された方を実行する。 Then, as shown in FIG. 4, a signal indicating the selection content by the operator is sent from the communication terminal 4 to the clogging control unit 25. When the jamming determination unit 29 determines that the harvest transfer device 2 is clogged, the reversing control unit 26 receives one of the first clogging control and the second clogging control in response to this signal. Run. That is, the reverse rotation control unit 26 executes which of the first clogging control and the second clogging control is selected by the operator.
 尚、本発明はこれに限定されず、逆転制御部26は、作業状況に応じて、第1詰まり時制御と第2詰まり時制御とのうち適切な方を自動的に選択し、実行するように構成されていても良い。 The present invention is not limited to this, and the reverse rotation control unit 26 automatically selects and executes the appropriate one of the first clogging control and the second clogging control according to the work situation. It may be configured in.
 また、図4に示すように、リール制御部27は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、リール上昇制御を実行可能である。リール上昇制御とは、ヘッダ5に対してリール17を上昇させる制御である。 Further, as shown in FIG. 4, the reel control unit 27 can execute the reel ascending control when it is determined by the jam determination unit 29 that the harvest transfer device 2 is clogged. The reel raising control is a control for raising the reel 17 with respect to the header 5.
 より具体的には、リール上昇制御が実行されると、リール制御部27は、リールシリンダ17Aを伸び方向に制御することにより、リール17をヘッダ5に対して上昇させる。これにより、リール上昇制御が完了する。 More specifically, when the reel raising control is executed, the reel control unit 27 raises the reel 17 with respect to the header 5 by controlling the reel cylinder 17A in the extension direction. This completes the reel rise control.
 即ち、コンバイン1は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合にヘッダ5に対してリール17を上昇させるリール制御部27を備えている。 That is, the combine 1 includes a reel control unit 27 that raises the reel 17 with respect to the header 5 when the jamming determination unit 29 determines that the harvest transport device 2 is clogged.
 尚、本実施形態において、リール上昇制御は、第1詰まり時制御または第2詰まり時制御と同時に実行される。 In the present embodiment, the reel rise control is executed at the same time as the first jam control or the second jam control.
 また、図4に示すように、高さ制御部28は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合に、オーガ上昇制御を実行可能である。オーガ上昇制御とは、ヘッダ5に対するオーガ6の高さ位置を上昇させる制御である。 Further, as shown in FIG. 4, the height control unit 28 can execute the auger rise control when it is determined by the clogging determination unit 29 that the harvest transfer device 2 is clogged. The auger rise control is a control for raising the height position of the auger 6 with respect to the header 5.
 より具体的には、オーガ上昇制御が実行されると、高さ制御部28は、高さ変更装置6Aを伸び方向に制御することにより、ヘッダ5に対するオーガ6の高さ位置を上昇させる。これにより、オーガ上昇制御が完了する。 More specifically, when the auger rise control is executed, the height control unit 28 raises the height position of the auger 6 with respect to the header 5 by controlling the height changing device 6A in the extension direction. This completes the auger rise control.
 即ち、高さ制御部28は、詰まり判定部29によって収穫搬送装置2が詰まっていると判定された場合にヘッダ5に対するオーガ6の高さ位置を上昇させる。 That is, the height control unit 28 raises the height position of the auger 6 with respect to the header 5 when the jam determination unit 29 determines that the harvest transfer device 2 is clogged.
 尚、本実施形態において、オーガ上昇制御は、第1詰まり時制御または第2詰まり時制御と同時に実行される。 In the present embodiment, the auger rise control is executed at the same time as the first clogging control or the second clogging control.
 〔第1詰まり時制御の流れ〕
 以下では、収穫作業中に第1詰まり時制御が実行された場合の例として、コンバイン1が図7に示すように制御される場合について説明する。
[Flow of control at the time of first clogging]
In the following, as an example of the case where the first clogging control is executed during the harvesting operation, the case where the combine 1 is controlled as shown in FIG. 7 will be described.
 図7に示す例では、コンバイン1は、ステップS01からステップS06の順に制御される。 In the example shown in FIG. 7, the combine 1 is controlled in the order of step S01 to step S06.
 まず、収穫搬送装置2に詰まりが生じる(ステップS01)。これにより、オーガ6の回転速度が所定の閾値未満となったものとする。このとき、詰まり判定部29は、収穫搬送装置2が詰まっていると判定する。その結果、逆転制御部26は、第1詰まり時制御を実行する。また、リール制御部27は、リール上昇制御を実行する。また、高さ制御部28は、オーガ上昇制御を実行する。 First, the harvest transfer device 2 is clogged (step S01). As a result, it is assumed that the rotation speed of the auger 6 is less than a predetermined threshold value. At this time, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged. As a result, the reverse rotation control unit 26 executes the first clogging control. Further, the reel control unit 27 executes reel ascending control. Further, the height control unit 28 executes the auger rise control.
 尚、この例では、逆転制御部26は、第1詰まり時制御の実行に際して、コンバイン1の機体の走行を一旦停止する制御を、走行制御部24を介して行う。 In this example, the reverse rotation control unit 26 controls to temporarily stop the traveling of the combine harvester 1 via the traveling control unit 24 when executing the first jam control.
 次に、第1詰まり時制御により、収穫部Hが上昇する(ステップS02)。また、これと同時に、リール上昇制御により、ヘッダ5に対してリール17が上昇する。また、これと同時に、オーガ上昇制御により、ヘッダ5に対するオーガ6の高さ位置が上昇する。 Next, the harvesting section H rises due to the first clogging control (step S02). At the same time, the reel 17 is raised with respect to the header 5 by the reel raising control. At the same time, the height position of the auger 6 with respect to the header 5 is raised by the auger rise control.
 次に、第1詰まり時制御により、コンバイン1の機体が所定距離だけ前進する(ステップS03)。そして、第1詰まり時制御により、オーガ6が逆転駆動される(ステップS04)。これにより、収穫搬送装置2に詰まっていた刈取穀稈等が、収穫部Hから前方に排出される。その結果、排出された刈取穀稈等は、未収穫の植立穀稈の上に載る。 Next, the combine harvester 1 moves forward by a predetermined distance by the first jam control (step S03). Then, the auger 6 is reversely driven by the first clogging control (step S04). As a result, the harvested grain culms and the like clogged in the harvesting and transporting device 2 are discharged forward from the harvesting section H. As a result, the discharged cut grain culms and the like are placed on the unharvested planted culms.
 次に、逆転制御部26は、走行制御部24を介して、コンバイン1の機体を所定距離だけ後進させる制御を行う(ステップS05)。尚、ステップS03での前進距離と、ステップS05での後進距離と、は互いに同一であっても良いし、互いに異なっていても良い。 Next, the reverse rotation control unit 26 controls the combine 1 to move backward by a predetermined distance via the travel control unit 24 (step S05). The forward distance in step S03 and the reverse distance in step S05 may be the same or different from each other.
 次に、逆転制御部26は、収穫部Hを下降させる(ステップS06)。また、これと同時に、リール制御部27は、ヘッダ5に対してリール17を下降させる。また、これと同時に、高さ制御部28は、ヘッダ5に対するオーガ6の高さ位置を下降させる。 Next, the reversing control unit 26 lowers the harvesting unit H (step S06). At the same time, the reel control unit 27 lowers the reel 17 with respect to the header 5. At the same time, the height control unit 28 lowers the height position of the auger 6 with respect to the header 5.
 ステップS06までの制御が完了すると、コンバイン1は、刈取走行を再開する。 When the control up to step S06 is completed, the combine 1 resumes the harvesting run.
 尚、以上で説明した例では、第1詰まり時制御は、ステップS02からステップS04によって完了する。即ち、ステップS05及びステップS06は、第1詰まり時制御に含まれていない。しかしながら、本発明はこれに限定されず、ステップS05及びステップS06が第1詰まり時制御に含まれていても良い。 In the example described above, the first clogging control is completed by steps S02 to S04. That is, step S05 and step S06 are not included in the first clogging control. However, the present invention is not limited to this, and steps S05 and S06 may be included in the first clogging control.
 〔第2詰まり時制御の流れ〕
 以下では、収穫作業中に第2詰まり時制御が実行された場合の例として、コンバイン1が図8に示すように制御される場合について説明する。
[Flow of control at the time of second clogging]
In the following, as an example of the case where the second clogging control is executed during the harvesting operation, the case where the combine 1 is controlled as shown in FIG. 8 will be described.
 図8に示す例では、コンバイン1は、ステップS11からステップS15の順に制御される。 In the example shown in FIG. 8, the combine 1 is controlled in the order of step S11 to step S15.
 まず、収穫搬送装置2に詰まりが生じる(ステップS11)。これにより、オーガ6の回転速度が所定の閾値未満となったものとする。このとき、詰まり判定部29は、収穫搬送装置2が詰まっていると判定する。その結果、逆転制御部26は、第2詰まり時制御を実行する。また、リール制御部27は、リール上昇制御を実行する。また、高さ制御部28は、オーガ上昇制御を実行する。 First, the harvest transfer device 2 is clogged (step S11). As a result, it is assumed that the rotation speed of the auger 6 is less than a predetermined threshold value. At this time, the clogging determination unit 29 determines that the harvest transfer device 2 is clogged. As a result, the reverse rotation control unit 26 executes the second clogging control. Further, the reel control unit 27 executes reel ascending control. Further, the height control unit 28 executes the auger rise control.
 尚、この例では、逆転制御部26は、第2詰まり時制御の実行に際して、コンバイン1の機体の走行を一旦停止する制御を、走行制御部24を介して行う。 In this example, the reverse rotation control unit 26 controls to temporarily stop the traveling of the combine harvester 1 via the traveling control unit 24 when the second jamming control is executed.
 次に、第2詰まり時制御により、収穫部Hが上昇する(ステップS12)。また、これと同時に、リール上昇制御により、ヘッダ5に対してリール17が上昇する。また、これと同時に、オーガ上昇制御により、ヘッダ5に対するオーガ6の高さ位置が上昇する。 Next, the harvesting section H rises due to the second clogging control (step S12). At the same time, the reel 17 is raised with respect to the header 5 by the reel raising control. At the same time, the height position of the auger 6 with respect to the header 5 is raised by the auger rise control.
 次に、第2詰まり時制御により、コンバイン1の機体が所定距離だけ後進する(ステップS13)。そして、第2詰まり時制御により、オーガ6が逆転駆動される(ステップS14)。これにより、収穫搬送装置2に詰まっていた刈取穀稈等が、収穫部Hから前方に排出される。その結果、排出された刈取穀稈等は、収穫済みの領域における地面に落下する。 Next, the combine harvester 1 moves backward by a predetermined distance by the second jam control (step S13). Then, the auger 6 is reversely driven by the second clogging control (step S14). As a result, the harvested grain culms and the like clogged in the harvesting and transporting device 2 are discharged forward from the harvesting section H. As a result, the discharged cut grain culms and the like fall to the ground in the harvested area.
 尚、このように、この例では、第2詰まり時制御に、機体の後進の前に収穫部Hを上昇させる制御が含まれている。しかしながら、本発明はこれに限定されず、第2詰まり時制御に、収穫部Hを上昇させる制御が含まれていなくても良い。即ち、機体の後進の前に収穫部Hを上昇させる制御は行われなくても良い。 As described above, in this example, the control at the time of the second clogging includes the control of raising the harvesting portion H before the aircraft moves backward. However, the present invention is not limited to this, and the control at the time of the second clogging may not include the control for raising the harvesting portion H. That is, it is not necessary to control the harvesting portion H to be raised before the aircraft moves backward.
 次に、逆転制御部26は、収穫部Hを下降させる(ステップS15)。また、これと同時に、リール制御部27は、ヘッダ5に対してリール17を下降させる。また、これと同時に、高さ制御部28は、ヘッダ5に対するオーガ6の高さ位置を下降させる。 Next, the reversing control unit 26 lowers the harvesting unit H (step S15). At the same time, the reel control unit 27 lowers the reel 17 with respect to the header 5. At the same time, the height control unit 28 lowers the height position of the auger 6 with respect to the header 5.
 ステップS15までの制御が完了すると、コンバイン1は、刈取走行を再開する。 When the control up to step S15 is completed, the combine 1 resumes the cutting run.
 尚、以上で説明した例では、第2詰まり時制御は、ステップS12からステップS14によって完了する。即ち、ステップS15は、第2詰まり時制御に含まれていない。しかしながら、本発明はこれに限定されず、ステップS15が第2詰まり時制御に含まれていても良い。 In the example described above, the second clogging control is completed by steps S12 to S14. That is, step S15 is not included in the second clogging control. However, the present invention is not limited to this, and step S15 may be included in the second clogging control.
 以上で説明した構成であれば、収穫搬送装置2が詰まった場合、詰まり判定部29によって、収穫搬送装置2が詰まっていると判定される。そして、その場合、逆転制御部26がオーガ6を逆転駆動させる。即ち、以上で説明した構成であれば、収穫搬送装置2が詰まった場合に、オーガ6が自動的に逆転駆動される。これにより、詰まりが解消されやすくなる。 With the configuration described above, when the harvest transfer device 2 is clogged, the jam determination unit 29 determines that the harvest transfer device 2 is clogged. Then, in that case, the reverse rotation control unit 26 reversely drives the auger 6. That is, according to the configuration described above, the auger 6 is automatically reversely driven when the harvest transfer device 2 is clogged. This makes it easier to clear the blockage.
 従って、以上で説明した構成であれば、収穫搬送装置2が詰まった場合に詰まりが自動的に解消されやすいコンバイン1を実現できる。 Therefore, with the configuration described above, it is possible to realize a combine 1 in which the clogging is easily cleared automatically when the harvesting and transporting device 2 is clogged.
 尚、以上に記載した実施形態は一例に過ぎないのであり、本発明はこれに限定されるものではなく、適宜変更が可能である。 It should be noted that the above-described embodiment is only an example, and the present invention is not limited to this, and can be appropriately modified.
[第1実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another Embodiment of the First Embodiment]
Hereinafter, another embodiment obtained by modifying the above-described embodiment will be described. Except for the matters described in each of the following separate embodiments, the matters are the same as those described in the above-described embodiments. The above-described embodiment and the following separate embodiments may be appropriately combined as long as there is no contradiction. The scope of the present invention is not limited to the above-described embodiment and the following separate embodiments.
 (1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。 (1) The traveling device 11 may be a wheel type or a semi-crawler type.
 (2)上記実施形態においては、経路算出部23により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。しかしながら、本発明はこれに限定されず、経路算出部23により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線でなくても良い。例えば、経路算出部23により算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。また、刈取走行経路LIは、別の刈取走行経路LIと直交していなくても良い。また、経路算出部23により算出される刈取走行経路LIは、互いに平行な複数の平行線であっても良い。 (2) In the above embodiment, the cutting travel route LI calculated by the route calculation unit 23 is a plurality of mesh lines extending in the vertical and horizontal directions. However, the present invention is not limited to this, and the cutting travel path LI calculated by the route calculation unit 23 does not have to be a plurality of mesh lines extending in the vertical and horizontal directions. For example, the cutting travel path LI calculated by the route calculation unit 23 may be a spiral travel route. Further, the cutting travel path LI does not have to be orthogonal to another cutting travel route LI. Further, the cutting travel path LI calculated by the route calculation unit 23 may be a plurality of parallel lines parallel to each other.
 (3)上記実施形態においては、オペレータは、コンバイン1を手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン1が自動で走行し、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行うように構成されていても良い。また、このときの周回数は、3周以外の数であっても良い。例えば、このときの周回数は1周であっても良い。 (3) In the above embodiment, the operator manually operates the combine 1 and, as shown in FIG. 2, performs a cutting run so as to orbit along the boundary line of the field in the outer peripheral portion of the field. However, the present invention is not limited to this, and the combine 1 may be configured to automatically travel and perform cutting traveling so as to orbit along the boundary line of the field in the outer peripheral portion of the field. Further, the number of laps at this time may be a number other than three laps. For example, the number of laps at this time may be one lap.
 (4)自車位置算出部21、領域算出部22、経路算出部23、走行制御部24、詰まり時制御部25、逆転制御部26、リール制御部27、高さ制御部28、詰まり判定部29のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理サーバに備えられていても良い。 (4) Own vehicle position calculation unit 21, area calculation unit 22, route calculation unit 23, travel control unit 24, jam control unit 25, reverse rotation control unit 26, reel control unit 27, height control unit 28, jam determination unit. A part or all of the 29 may be provided outside the combine 1, and may be provided, for example, in a management server provided outside the combine 1.
 (5)高さ変更装置6Aは設けられていなくても良い。即ち、ヘッダ5に対するオーガ6の高さ位置が変更できないように構成されていても良い。 (5) The height changing device 6A may not be provided. That is, it may be configured so that the height position of the auger 6 with respect to the header 5 cannot be changed.
 (6)逆転制御部26は、第1詰まり時制御を実行できないように構成されていても良い。 (6) The reverse rotation control unit 26 may be configured so that the first clogging control cannot be executed.
 (7)逆転制御部26は、第2詰まり時制御を実行できないように構成されていても良い。 (7) The reverse rotation control unit 26 may be configured so that the second clogging control cannot be executed.
 (8)逆転制御部26は、第1詰まり時制御において、オーガ6を逆転駆動させる前に機体を前進させないように構成されていても良い。 (8) The reverse rotation control unit 26 may be configured so that the aircraft does not move forward before the auger 6 is reversely driven in the first jam control.
 (9)コンバイン1は、自動走行ができないように構成されていても良い。例えば、収穫搬送装置2が詰まっていないときにはオペレータの手動操作によって収穫作業が行われると共に、収穫搬送装置2が詰まったときに、上記実施形態にて説明した逆転制御部26による自動的な制御が実行される構成であっても良い。 (9) Combine 1 may be configured so that it cannot run automatically. For example, when the harvest transfer device 2 is not clogged, the harvesting operation is performed manually by the operator, and when the harvest transfer device 2 is clogged, the reverse control unit 26 described in the above embodiment automatically controls the harvest operation. It may be a configuration to be executed.
 (10)上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを1つまたは複数のステップにより行う収穫機制御方法として構成されていても良い。 (10) It may be configured as a harvester control program that realizes the function of each member in the above embodiment on a computer. Further, the harvester control program for realizing the function of each member in the above embodiment may be configured as a recording medium on which the harvester control program is recorded. Further, it may be configured as a harvester control method in which what is performed by each member in the above embodiment is performed by one or a plurality of steps.
[第2実施形態]
 以下、図9~図18を参照しながら、本発明の第2実施形態について説明する。
[Second Embodiment]
Hereinafter, the second embodiment of the present invention will be described with reference to FIGS. 9 to 18.
 本発明に係る収穫機の一例としてのコンバインの実施形態が、図面に基づいて以下に記載されている。この実施形態で、機体101の前後方向を定義するときは、作業状態における機体進行方向に沿って定義する。図9及び図10に符号(F)で示す方向が機体前側、図9及び図10に符号(B)で示す方向が機体後側である。図9に符号(U)で示す方向が機体上側、図9に符号(D)で示す方向が機体下側である。図10に符号(L)で示す方向が機体左側、図10に符号(R)で示す方向が機体右側である。機体101の左右方向を定義するときは、機体進行方向視で見た状態で左右を定義する。 An embodiment of the combine as an example of the harvester according to the present invention is described below based on the drawings. In this embodiment, when the front-rear direction of the machine 101 is defined, it is defined along the traveling direction of the machine in the working state. The direction indicated by reference numeral (F) in FIGS. 9 and 10 is the front side of the machine, and the direction indicated by reference numeral (B) in FIGS. 9 and 10 is the rear side of the machine body. The direction indicated by the reference numeral (U) in FIG. 9 is the upper side of the machine, and the direction indicated by the reference numeral (D) in FIG. 9 is the lower side of the machine body. The direction indicated by the reference numeral (L) in FIG. 10 is the left side of the machine, and the direction indicated by the reference numeral (R) in FIG. 10 is the right side of the machine body. When defining the left-right direction of the aircraft 101, the left-right direction is defined in the state of being viewed in the traveling direction of the aircraft.
〔収穫機の基本構成〕
 図9及び図10に示されるように、収穫機の一形態である普通型のコンバインに、機体101と、左右一対のクローラ式の走行装置111と、が備えられている。機体101に、搭乗部112と、脱穀装置113と、穀粒タンク114と、収穫装置115と、搬送装置116と、穀粒排出装置118と、が備えられている。
[Basic configuration of harvester]
As shown in FIGS. 9 and 10, a conventional combine harvester, which is a form of a harvester, is provided with a machine body 101 and a pair of left and right crawler type traveling devices 111. The machine 101 is provided with a boarding unit 112, a threshing device 113, a grain tank 114, a harvesting device 115, a transport device 116, and a grain discharging device 118.
 走行装置111は、コンバインの下部に備えられている。走行装置111は左右一対のクローラ走行機構を有する。コンバインは、走行装置111によって圃場を走行可能である。また、左右のクローラ走行機構の夫々に昇降装置が設けられている。当該昇降装置は、通称『モンロー』とも呼ばれ、左右のクローラ走行機構の夫々に対する機体101の高さ位置を各別に変更可能に構成されている。このことから、当該昇降装置は、左右のクローラ走行機構の夫々に対する機体101の高さ位置を変更して機体101をローリングさせることを可能に構成されている。 The traveling device 111 is provided at the lower part of the combine. The traveling device 111 has a pair of left and right crawler traveling mechanisms. The combine can travel in the field by the traveling device 111. Further, an elevating device is provided for each of the left and right crawler traveling mechanisms. The elevating device, also commonly known as "Monroe", is configured so that the height position of the machine body 101 with respect to each of the left and right crawler traveling mechanisms can be changed separately. From this, the elevating device is configured to be able to roll the machine 101 by changing the height position of the machine 101 with respect to each of the left and right crawler traveling mechanisms.
 搭乗部112、脱穀装置113、穀粒タンク114は、走行装置111よりも上側に備えられ、これらは機体101の上部として構成されている。コンバインの搭乗者やコンバインの作業を監視する監視者が、搭乗部112に搭乗可能である。通常、搭乗者と監視者とは兼務される。なお、搭乗者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。搭乗部112の下方に駆動用のエンジン(不図示)が備えられている。穀粒排出装置118は、穀粒タンク114の後下部に連結されている。 The boarding unit 112, the threshing device 113, and the grain tank 114 are provided above the traveling device 111, and these are configured as the upper part of the machine body 101. A passenger of the combine harvester or an observer who monitors the work of the combine harvester can board the boarding unit 112. Usually, the passenger and the observer are also used. When the passenger and the observer are different persons, the observer may monitor the work of the combine from outside the combine. A drive engine (not shown) is provided below the boarding section 112. The grain discharge device 118 is connected to the lower rear portion of the grain tank 114.
 収穫装置115は圃場の作物を収穫する。作物は、例えば稲等の植立穀稈であるが、大豆やトウモロコシ等であっても良い。そして、コンバインは、収穫装置115によって圃場の作物を収穫しながら走行装置111によって走行する作業走行が可能である。搬送装置116は収穫装置115よりも後側に隣接して設けられている。収穫装置115及び搬送装置116は、機体101の前部に上下昇降可能に支持されている。収穫装置115及び搬送装置116は、伸縮動作可能なヘッダ用アクチュエータ115Hによって上下に昇降操作されることによって、一体的に上下揺動する。 The harvesting device 115 harvests the crops in the field. The crop is, for example, a planted culm such as rice, but may be soybean, corn, or the like. Then, the combine can be run by the traveling device 111 while harvesting the crops in the field by the harvesting device 115. The transport device 116 is provided adjacent to the rear side of the harvest device 115. The harvesting device 115 and the transport device 116 are supported on the front portion of the machine body 101 so as to be able to move up and down. The harvesting device 115 and the transport device 116 are integrally swung up and down by being moved up and down by the header actuator 115H capable of expanding and contracting.
 収穫装置115に、収穫ヘッダ115Aと、掻込リール115Bと、横送りオーガ115Cと、バリカン状の切断刃115Dと、が備えられている。収穫ヘッダ115Aは、前方の植立作物を収穫対象と非収穫対象とに分草するとともに、前方の植立作物のうちの収穫対象を受け入れる。 The harvesting device 115 is provided with a harvesting header 115A, a scraping reel 115B, a horizontal feed auger 115C, and a hair clipper-shaped cutting blade 115D. The harvest header 115A divides the front planted crop into a harvest target and a non-harvest target, and accepts the harvest target among the front planted crops.
 掻込リール115Bは収穫ヘッダ115Aの上方に位置する。収穫ヘッダ115Aにリール支持アーム115Kが揺動可能に支持される。リール支持アーム115Kは、伸縮動作可能なリールアクチュエータ115Jによって揺動操作される。掻込リール115Bの回転軸芯部分は、リール支持アーム115Kの遊端領域に支持されている。このことから、掻込リール115Bは、リールアクチュエータ115Jの伸縮動作によって上下揺動可能に構成されている。 The scraping reel 115B is located above the harvest header 115A. The reel support arm 115K is swingably supported by the harvest header 115A. The reel support arm 115K is oscillated by a reel actuator 115J capable of expanding and contracting. The rotation shaft core portion of the suction reel 115B is supported by the free end region of the reel support arm 115K. For this reason, the suction reel 115B is configured to be able to swing up and down by the expansion and contraction operation of the reel actuator 115J.
 掻込リール115Bは、リール支持アーム115Kに支持された状態で、機体横向き軸芯まわりに回転可能に構成されている。また、掻込リール115Bの回転軸芯部分はリール支持アーム115Kの遊端領域で前後方向に沿ってスライド可能に構成されている。つまり、掻込リール115Bは、収穫ヘッダ115Aに対して上下揺動可能に構成されるとともに、収穫ヘッダ115Aに対して前後に位置変更可能に構成される。 The scraping reel 115B is configured to be rotatable around the lateral axis of the machine while being supported by the reel support arm 115K. Further, the rotation shaft core portion of the suction reel 115B is configured to be slidable along the front-rear direction in the free end region of the reel support arm 115K. That is, the scraping reel 115B is configured to be swingable up and down with respect to the harvest header 115A, and is configured to be repositionable back and forth with respect to the harvest header 115A.
 掻込リール115Bに複数のタイン115Tが備えられ、タイン115Tは植立作物に掻込作用する。掻込リール115Bは、圃場から植立作物を収穫する際に、植立作物のうちの先端寄りの箇所をタイン115Tで後方に向けて掻込む。 The scraping reel 115B is equipped with a plurality of tines 115T, and the tines 115T act on the planted crops. When the planted crop is harvested from the field, the scraping reel 115B scrapes the portion of the planted crop near the tip with the tine 115T toward the rear.
 切断刃115Dは、掻込リール115Bによって後方に掻き込まれた植立作物の株元側を切断する。横送りオーガ115Cは、機体横向き軸芯に回転駆動し、切断刃115Dによる切断後の収穫作物を左右方向の中間側に横送りして寄せ集めて後方の搬送装置116に向けて送り出す。詳細については後述するが、横送りオーガ115Cは、上下方向に位置変更可能なように構成されている。 The cutting blade 115D cuts the root side of the planted crop that has been scraped backward by the scraping reel 115B. The lateral feed auger 115C is rotationally driven to the lateral axis of the machine body, laterally feeds the harvested crops cut by the cutting blade 115D to the middle side in the left-right direction, collects them, and sends them to the rear transport device 116. Although the details will be described later, the lateral feed auger 115C is configured so that the position can be changed in the vertical direction.
 脱穀装置113における脱穀負荷を軽減するため、収穫ヘッダ115Aの対地高さH1(図13参照)が高く設定され、植立作物は穂先側のみが収穫される場合がある。このとき、収穫後の残稈が、背丈の高い状態で圃場に残されないようにするため、当該残稈を切断する必要がある。このため、収穫装置115の後方に残稈処理部119が設けられている。残稈処理部119は機体左右方向に亘る横長のバリカン状の切断刃を有し、当該切断刃が左右に往復運動することによって、当該残稈が切断される。 In order to reduce the threshing load in the threshing device 113, the ground height H1 (see FIG. 13) of the harvest header 115A is set high, and the planted crop may be harvested only on the tip side. At this time, it is necessary to cut the culm after harvesting so that the culm is not left in the field in a tall state. Therefore, a residual culm processing unit 119 is provided behind the harvesting device 115. The residual culm processing unit 119 has a horizontally long hair clipper-shaped cutting blade extending in the left-right direction of the machine, and the cutting blade reciprocates left and right to cut the residual culm.
 収穫装置115によって収穫された作物(例えば刈取穀稈)は、搬送装置116によって脱穀装置113へ搬送される。収穫された作物は脱穀装置113によって脱穀処理される。脱穀装置113は、脱穀部113Aと選別処理部113Bと唐箕113Cを有する。なお、図9では脱穀部113Aは扱胴として示されているが、この扱胴を収納する扱室と、扱室の上部に配置された送塵弁と、扱胴の下側領域の周囲に位置する受網と、も脱穀部113Aに含まれる。送塵弁は、収穫装置115によって収穫された処理作物を後方へ案内する。脱穀部113Aは、搬送装置116によって搬送された作物、即ち脱穀装置113の処理対象である処理作物を脱穀処理する。選別処理部113Bは、脱穀部113Aの下方に設けられるとともに、脱穀部113Aによって脱穀処理された処理作物を受け止めて後方へ揺動搬送しながら、処理作物を収穫物と非収穫物とに篩選別する。 The crops harvested by the harvesting device 115 (for example, harvested grain culms) are transported to the threshing device 113 by the transport device 116. The harvested crop is threshed by the threshing device 113. The threshing device 113 has a threshing unit 113A, a sorting processing unit 113B, and a wall insert 113C. Although the threshing section 113A is shown as a handling cylinder in FIG. 9, the handling chamber for accommodating the handling cylinder, the dust feed valve arranged at the upper part of the handling chamber, and the periphery of the lower region of the handling cylinder. The located net and also included in the threshing section 113A. The dust valve guides the processed crop harvested by the harvesting device 115 backward. The threshing unit 113A threshes the crops transported by the transport device 116, that is, the processed crops to be processed by the threshing device 113. The sorting processing unit 113B is provided below the threshing unit 113A, and while receiving the processed crops that have been threshed by the threshing unit 113A and rocking and transporting them backward, the processed crops are sieved into harvested and non-harvested products. do.
 公知の技術であるため、図示はしないが、選別処理部113Bにチャフシーブが備えられ、チャフシーブは複数のチャフリップを有する。チャフリップの夫々は機体横方向に延びる。複数のチャフリップは処理作物が搬送される搬送方向(前後方向)に沿って並べられ、複数のチャフリップの夫々は、後端側ほど斜め上方に向かう傾斜姿勢で配置されている。チャフリップの夫々の漏下開度が変更可能に構成されている。漏下開度が変更可能とは、傾斜姿勢が変更されることを意味する。具体的には、チャフリップが前後方向に対して平行に近くなる程、漏下開度が小さくなり、チャフリップが上下方向に対して平行に近くなる程、漏下開度が大きくなる。処理作物は、チャフリップの上で後方へ揺動搬送され、収穫物としての穀粒が複数のチャフリップ間の隙間から下方へ漏下する。選別処理部113Bは、脱穀処理物の搬送方向に沿って並べられた複数のチャフリップを有するとともに複数のチャフリップの姿勢を変更することで漏下開度を変更可能なチャフシーブを有する。唐箕113Cは選別処理部113Bに選別風を供給する。 Although not shown because it is a known technique, the sorting processing unit 113B is provided with a chaf sheave, and the chaf sheave has a plurality of chaf flips. Each of the chaflip extends laterally to the aircraft. The plurality of chaflips are arranged along the transport direction (front-back direction) in which the processed crop is transported, and each of the plurality of chaflips is arranged in an inclined posture toward the rear end side and diagonally upward. The leakage opening of each chaflip can be changed. The fact that the leakage opening can be changed means that the tilted posture is changed. Specifically, the closer the chaflip is parallel to the front-rear direction, the smaller the leakage opening degree, and the closer the chaflip is parallel to the vertical direction, the larger the leakage opening degree. The treated crop is rocked backwards over the chaflip and the crop grain leaks downward through the gaps between the chaflip. The sorting processing unit 113B has a plurality of chaflip arranged along the transport direction of the threshed product, and has a chaff sheave capable of changing the leakage opening degree by changing the posture of the plurality of chaflip. The wall insert 113C supplies the sorting wind to the sorting processing unit 113B.
 脱穀処理によって得られた穀粒は、穀粒タンク114に貯留される。穀粒タンク114に貯留された穀粒は、必要に応じて、穀粒排出装置118によって機外に排出される。穀粒排出装置118は機体後部の縦軸芯回りに揺動可能に構成されている。即ち、穀粒排出装置118の遊端部が機体101よりも機体横外側へ張り出して作物を排出可能な排出状態と、穀粒排出装置118の遊端部が機体101の機体横幅の範囲内に位置する収納状態と、に切換可能なように穀粒排出装置118は構成されている。穀粒排出装置118が収納状態である場合、穀粒排出装置118の遊端部は搭乗部112よりも前側に位置するとともに収穫装置115の上方に位置する。 The grains obtained by the threshing process are stored in the grain tank 114. The grains stored in the grain tank 114 are discharged to the outside of the machine by the grain discharging device 118, if necessary. The grain discharge device 118 is configured to swing around the vertical axis core at the rear of the machine. That is, the free end portion of the grain discharge device 118 protrudes to the lateral outside of the machine body 101 so that the crop can be discharged, and the free end portion of the grain discharge device 118 is within the range of the machine width of the machine body 101. The grain discharge device 118 is configured so that it can be switched between the stored storage state and the position. When the grain discharging device 118 is in the retracted state, the free end portion of the grain discharging device 118 is located in front of the boarding section 112 and above the harvesting device 115.
 搭乗部112の前上部に、第一撮像装置121Aと測距センサ122とが設けられている。第一撮像装置121Aは、可視光を撮像可能なカラーカメラであって、例えばCCDカメラやCMOSカメラである。第一撮像装置121Aは、収穫装置115の前方の未収穫の作物を見下ろすように、機体101の前部、かつ、収穫装置115よりも高い位置に設けられている。即ち、第一撮像装置121Aは、進行方向前方を上から見下ろす視点で撮像できる。第一撮像装置121Aの前後方向における撮像視野は、例えば15メートルや25メートルである。 A first image pickup device 121A and a distance measuring sensor 122 are provided on the front upper part of the boarding section 112. The first image pickup apparatus 121A is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera. The first imaging device 121A is provided at the front of the machine 101 and at a position higher than the harvesting device 115 so as to look down on the unharvested crops in front of the harvesting device 115. That is, the first image pickup apparatus 121A can take an image from a viewpoint looking down on the front in the traveling direction. The image pickup field of view of the first image pickup apparatus 121A in the front-rear direction is, for example, 15 meters or 25 meters.
 第一撮像装置121Aによって取得された撮像データは、撮像データ化され、コンバインの制御系に送られる。第一撮像装置121Aは収穫作業時に圃場を撮像する。圃場には種々の物体が撮像対象として存在している。コンバインの制御系は、第一撮像装置121Aから送られてきた撮像データから特定の物体を識別する機能を有する。そのような特定の物体として、図9及び図10では、符号Z0で示された正常な植立穀稈群と、符号Z1で示された雑草群と、符号Z2で示された倒伏作物群と、が模式的に示されている。 The imaging data acquired by the first imaging device 121A is converted into imaging data and sent to the combine control system. The first image pickup device 121A images the field during the harvesting operation. Various objects exist as imaging targets in the field. The combine control system has a function of identifying a specific object from the image pickup data sent from the first image pickup device 121A. As such specific objects, in FIGS. 9 and 10, the normal planted grain group indicated by the reference numeral Z0, the weed group indicated by the reference numeral Z1, and the collapsed crop group indicated by the reference numeral Z2. , Are shown schematically.
 測距センサ122は、機体101の前方に存在する圃場の撮像対象と機体101との離間距離を計測可能に構成されている。測距センサ122は、ソナーであっても良いし、レーダー(ミリ波)であっても良いし、LIDAR(例えばレーザースキャナーやレーザーレーダー)であっても良い。測距センサ122がソナーであればコスト面で有利である。測距センサ122がミリ波レーダーであれば、天候に左右され難い測定が可能であって、コスト面で有利である。ミリ波レーダーが、前方、左右に加え、上下方向を三次元でスキャンできる構成であれば、二次元でスキャンするタイプのミリ波レーダーよりも測距範囲を広範囲にすることが可能となる。測距センサ122がLIDARであれば離間距離の測定が精度よく行われる。加えて、LIDARが、前方、左右に加え、上下方向を三次元でスキャンできる構成であれば、二次元でスキャンするタイプのLIDARよりも測距範囲を広範囲にすることが可能となる。また、測距センサ122は、ソナーとレーダーとLIDARとの組み合わせによって構成されても良い。 The distance measuring sensor 122 is configured to be capable of measuring the distance between the image pickup target in the field existing in front of the aircraft 101 and the aircraft 101. The ranging sensor 122 may be a sonar, a radar (millimeter wave), or a LIDAR (for example, a laser scanner or a laser radar). If the distance measuring sensor 122 is a sonar, it is advantageous in terms of cost. If the range-finding sensor 122 is a millimeter-wave radar, it is possible to perform measurements that are not easily affected by the weather, which is advantageous in terms of cost. If the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions. If the distance measuring sensor 122 is LIDAR, the separation distance can be measured accurately. In addition, if the LIDAR is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of distance measurement than the type of LIDAR that scans in two dimensions. Further, the range-finding sensor 122 may be configured by a combination of sonar, radar, and LIDAR.
 本実施形態では、収穫装置115の後下部に第二撮像装置121Bが設けられている。第二撮像装置121Bは、可視光を撮像可能なカラーカメラであって、例えばCCDカメラやCMOSカメラである。第二撮像装置121Bは、収穫装置115の後方の収穫跡領域S(図16参照)を撮像できる。このため、第二撮像装置121Bは、作業走行しながら作業後の圃場状態を検出可能に構成されている。 In the present embodiment, the second image pickup device 121B is provided at the lower rear portion of the harvesting device 115. The second image pickup device 121B is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera. The second image pickup apparatus 121B can image the harvest trace region S (see FIG. 16) behind the harvesting apparatus 115. Therefore, the second image pickup apparatus 121B is configured to be able to detect the field state after the work while the work is running.
 搭乗部112の天井部には、衛星測位モジュール180が設けられている。衛星測位モジュール180は、人工衛星GSからのGNSS(Global Navigation Satellite System)の信号(GPS信号を含む)を受信して、自車位置を取得する。なお、衛星測位モジュール180による衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法ユニットが衛星測位モジュール180に組み込まれている。もちろん、慣性航法ユニットは、コンバインにおいて衛星測位モジュール180と別の箇所に配置されても良い。 A satellite positioning module 180 is provided on the ceiling of the boarding section 112. The satellite positioning module 180 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the position of the own vehicle. In addition, in order to complement the satellite navigation by the satellite positioning module 180, an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 180. Of course, the inertial navigation unit may be arranged at a place different from the satellite positioning module 180 in the combine.
〔制御ユニットの構成〕
 図11に示される制御ユニット130は、コンバインの制御系の中核要素であり、複数のECUの集合体として示されている。制御ユニット130に、第一作物検出部131Aと、第二作物検出部131Bと、状態決定部132と、記憶部133と、報知部134と、走行制御部135と、作業制御部136と、が備えられている。第一作物検出部131Aは、本発明の『検出部』である。状態決定部132は、本発明の『状態変更部』である。
[Control unit configuration]
The control unit 130 shown in FIG. 11 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs. The control unit 130 includes a first crop detection unit 131A, a second crop detection unit 131B, a state determination unit 132, a storage unit 133, a notification unit 134, a travel control unit 135, and a work control unit 136. It is prepared. The first crop detection unit 131A is the "detection unit" of the present invention. The state determination unit 132 is the "state change unit" of the present invention.
 衛星測位モジュール180から出力された測位データと、第一撮像装置121Aからの撮像データと、第二撮像装置121Bからの撮像データと、測距センサ122から出力された距離データと、刈高さ検出部123から出力された高さ位置情報と、リール高さ検出部124から出力された高さ位置情報と、オーガ高さ検出部125から出力された高さ位置情報と、は配線網を通じて制御ユニット130に入力される。上述したように、収穫装置115及び搬送装置116(図9等参照)は上下揺動可能に構成され、刈高さ検出部123は搬送装置116の揺動軸芯箇所に設けられている。刈高さ検出部123は、搬送装置116の揺動角度を検出することによって、収穫装置115の下端部における対地高さH1(図13及び図14参照)を検出可能に構成されている。リール高さ検出部124は、収穫ヘッダ115Aに対するリール支持アーム115Kの揺動角度を検出することによって、掻込リール115Bの収穫ヘッダ115Aに対する高さ位置H2(図13及び図14参照)を検出可能に構成されている。オーガ高さ検出部125は、横送りオーガ115Cを上下昇降させるアクチュエータ(不図示)の上下位置を検出することによって、横送りオーガ115Cの高さ位置H3(図13及び図14参照)を検出可能に構成されている。 Positioning data output from the satellite positioning module 180, imaging data from the first imaging device 121A, imaging data from the second imaging device 121B, distance data output from the ranging sensor 122, and cutting height detection. The height position information output from the unit 123, the height position information output from the reel height detection unit 124, and the height position information output from the auger height detection unit 125 are controlled by a control unit through a wiring network. It is input to 130. As described above, the harvesting device 115 and the transport device 116 (see FIG. 9 and the like) are configured to swing up and down, and the cutting height detection unit 123 is provided at the swing axis core portion of the transport device 116. The cutting height detecting unit 123 is configured to be able to detect the ground height H1 (see FIGS. 13 and 14) at the lower end of the harvesting device 115 by detecting the swing angle of the transport device 116. The reel height detection unit 124 can detect the height position H2 (see FIGS. 13 and 14) of the suction reel 115B with respect to the harvest header 115A by detecting the swing angle of the reel support arm 115K with respect to the harvest header 115A. It is configured in. The auger height detection unit 125 can detect the height position H3 (see FIGS. 13 and 14) of the lateral auger 115C by detecting the vertical position of an actuator (not shown) that raises and lowers the lateral auger 115C up and down. It is configured in.
 第一作物検出部131Aは、第一撮像装置121Aによって継時的に遂次取得された撮像データと、測距センサ122によって経時的に遂次取得された距離データと、に基づいて植立作物の存在領域を検出するとともに植立作物の高さを検出する。また、第一作物検出部131Aは、例えば機械学習(深層学習)されたニューラルネットワークを用いることによって、作物の種類を判定する。換言すると、第一作物検出部131Aは、収穫装置115の収穫対象の作物の種類を取得可能に構成されている。作物の種類は、例えば米穀、麦(大麦、小麦、蕎麦)、豆(大豆、小豆、黒豆)、菜種、トウモロコシ、等が挙げられる。また、第一作物検出部131Aは、撮像データに基づいて作物における穂先の大きさや長さを検出可能に構成されている。 The first crop detection unit 131A is a planted crop based on the imaging data sequentially acquired by the first imaging device 121A and the distance data sequentially acquired by the distance measuring sensor 122 over time. The area where the plant is located is detected and the height of the planted crop is detected. Further, the first crop detection unit 131A determines the type of crop by using, for example, a machine-learned (deep learning) neural network. In other words, the first crop detection unit 131A is configured to be able to acquire the type of crop to be harvested by the harvesting device 115. Examples of crop types include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like. Further, the first crop detection unit 131A is configured to be able to detect the size and length of the tip of the crop based on the imaging data.
 本実施形態では、第一作物検出部131Aは、植立作物の高さに基づいて倒伏作物(例えば倒伏穀稈)を検出可能に構成されている。第一作物検出部131Aによる認識出力データの生成の流れが、図12に示されている。第一作物検出部131Aには、第一撮像装置121Aから撮像データのRGB画素値が入力値として入力される。この撮像データと、測距センサ122によって取得された距離データと、が関連付けられ、植立作物の存在領域における作物高さに基づいて倒伏作物が検出される。第一作物検出部131Aは、植立作物の作物高さと、植立作物が同じ作物高さで広がる領域の広さと、に基づいて倒伏作物を検出するように構成されている。植立作物が同じ作物高さで広がる領域の広さは、撮像データと距離データとの少なくとも一つに基づいて面積計算によって算出されても良いし、加えて撮像データで画像認識された領域の形状から算出されても良い。あるいは、植立作物が同じ作物高さで広がる領域の広さは、撮像データで画像認識された領域の形状と、相対的な広さと、の少なくとも一方から算出されても良い。 In the present embodiment, the first crop detection unit 131A is configured to be able to detect a fallen crop (for example, a fallen grain culm) based on the height of the planted crop. The flow of generation of recognition output data by the first crop detection unit 131A is shown in FIG. The RGB pixel value of the imaging data is input to the first crop detection unit 131A from the first imaging device 121A as an input value. This imaging data is associated with the distance data acquired by the distance measuring sensor 122, and the fallen crop is detected based on the crop height in the area where the planted crop exists. The first crop detection unit 131A is configured to detect a fallen crop based on the crop height of the planted crop and the size of the area where the planted crop spreads at the same crop height. The area of the area where the planted crop spreads at the same crop height may be calculated by area calculation based on at least one of the imaging data and the distance data, and in addition, the area recognized by the imaging data. It may be calculated from the shape. Alternatively, the size of the area where the planted crop spreads at the same crop height may be calculated from at least one of the shape of the area recognized by the image recognition data and the relative size.
 また、第一作物検出部131Aは、収穫装置115の前方の作物に混ざって雑草の存在する雑草領域を検出するように構成され、雑草領域における雑草の種類(雑草の大きさも含む)を取得可能に構成されている。 Further, the first crop detection unit 131A is configured to detect a weed region in which weeds are present mixed with the crop in front of the harvesting device 115, and can acquire the type of weeds (including the size of weeds) in the weed region. It is configured in.
 図12の例では正常な植立穀稈の中に倒伏作物と雑草とが示されている。雑草の存在する雑草領域は符号F1を付与された矩形の枠で示され、倒伏作物の存在領域は符号F2を付与された矩形の枠で示されている。また、第一作物検出部131Aは、雑草領域における単位面積当たりの雑草の量である雑草率を取得可能に構成されている。このように、第一作物検出部131Aは、圃場の中から作物の倒伏や雑草を判別可能に構成されている。第一撮像装置121Aは、所定時間間隔、例えば0.1~0.5秒間隔で撮像データを取得し、その撮像データを第一作物検出部131Aに入力するので、第一作物検出部131Aも、同じ時間間隔で、認識出力データを出力する。 In the example of FIG. 12, lodging crops and weeds are shown in normal planted culms. The weed area in which weeds are present is indicated by a rectangular frame assigned the symbol F1, and the area in which the fallen crop is present is indicated by a rectangular frame assigned the reference numeral F2. Further, the first crop detection unit 131A is configured to be able to acquire the weed rate, which is the amount of weeds per unit area in the weed area. As described above, the first crop detection unit 131A is configured to be able to discriminate crop lodging and weeds from the field. Since the first imaging device 121A acquires imaging data at predetermined time intervals, for example, at intervals of 0.1 to 0.5 seconds and inputs the imaging data to the first crop detection unit 131A, the first crop detection unit 131A also , Output recognition output data at the same time interval.
 自動走行では、第一撮像装置121Aによる機体前方の撮像と、測距センサ122による機体101と機体前方の物体との距離の測定と、が行われる。そして、第一撮像装置121Aによって撮像された撮像データと、測距センサ122によって測定された機体前方の距離データと、に基づいて、第一作物検出部131Aは、特定の物体として圃場の作物を認識するとともに当該圃場の作物の作物高さを検出する。 In the automatic traveling, the first image pickup device 121A captures the image in front of the aircraft, and the distance measuring sensor 122 measures the distance between the aircraft 101 and the object in front of the aircraft. Then, based on the image pickup data captured by the first image pickup device 121A and the distance data in front of the aircraft measured by the distance measurement sensor 122, the first crop detection unit 131A sets the crop in the field as a specific object. While recognizing, the crop height of the crop in the field is detected.
 第二作物検出部131Bは、第二撮像装置121Bによって継時的に遂次取得された撮像データの撮像データに基づいて、例えば倒伏作物等の収穫されずに取り残された残作物を検出可能である。また、第二作物検出部131Bは、例えば機械学習(深層学習)されたニューラルネットワークを用いることによって、残作物の種類を判定する。残作物の種類は、例えば米穀、麦(大麦、小麦、蕎麦)、豆(大豆、小豆、黒豆)、菜種、トウモロコシ、等が挙げられる。 The second crop detection unit 131B can detect unharvested residual crops such as lodging crops based on the imaging data of the imaging data sequentially acquired by the second imaging device 121B. be. Further, the second crop detection unit 131B determines the type of the remaining crop by using, for example, a machine-learned (deep learning) neural network. Examples of the types of residual crops include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like.
 制御ユニット130に記憶部133が備えられ、記憶部133に、複数の収穫制御パターンと、複数の走行制御パターンと、が備えられている。記憶部133は、例えばEEPROM等の半導体の記憶素子である。 The control unit 130 is provided with a storage unit 133, and the storage unit 133 is provided with a plurality of harvest control patterns and a plurality of travel control patterns. The storage unit 133 is a semiconductor storage element such as EEPROM.
 収穫制御パターンは、例えば作物の種類と作物高さとの少なくとも一方に応じて、収穫ヘッダ115Aの対地高さH1と、掻込リール115Bの高さ位置H2と、横送りオーガ115Cの高さ位置H3と、を調整するためのルックアップテーブルとして記憶部133に格納されている。つまり、作物の種類や作物高さに対応した収穫制御パターン及び走行制御パターンが状態決定部132によって選択される。そして、選択された収穫制御パターン及び走行制御パターンに応じて目標値が状態決定部132から作業制御部136へ出力される。 The harvest control pattern is, for example, depending on at least one of the crop type and the crop height, the ground height H1 of the harvest header 115A, the height position H2 of the scraping reel 115B, and the height position H3 of the lateral feed auger 115C. And, are stored in the storage unit 133 as a look-up table for adjusting. That is, the harvest control pattern and the running control pattern corresponding to the type of crop and the height of the crop are selected by the state determination unit 132. Then, the target value is output from the state determination unit 132 to the work control unit 136 according to the selected harvest control pattern and travel control pattern.
 走行制御パターンは、例えば作物の種類と作物高さとの少なくとも一方に応じて、走行装置111の車速及び車高を調整するためのルックアップテーブルとして記憶部133に格納されている。つまり、作物の種類と作物高さとの少なくとも一方に対応した走行制御パターンが状態決定部132によって選択される。そして、選択された走行制御パターンに応じて目標値が状態決定部132から走行制御部135へ出力される。 The travel control pattern is stored in the storage unit 133 as a look-up table for adjusting the vehicle speed and the vehicle height of the travel device 111, for example, according to at least one of the crop type and the crop height. That is, the traveling control pattern corresponding to at least one of the crop type and the crop height is selected by the state determination unit 132. Then, the target value is output from the state determination unit 132 to the travel control unit 135 according to the selected travel control pattern.
 走行制御部135は、車速制御部135Aと車高制御部135Bとを有する。状態決定部132によって選択された走行制御パターンに基づいて車速の目標値と、車高の目標値と、が決定される。車速制御部135Aは、車速の目標値を基準として走行装置111の速度調整制御を行う。車高制御部135Bは、車高の目標値を基準として走行装置111の昇降機構に対する制御を行う。 The travel control unit 135 has a vehicle speed control unit 135A and a vehicle height control unit 135B. The target value of the vehicle speed and the target value of the vehicle height are determined based on the travel control pattern selected by the state determination unit 132. The vehicle speed control unit 135A performs speed adjustment control of the traveling device 111 with reference to the target value of the vehicle speed. The vehicle height control unit 135B controls the elevating mechanism of the traveling device 111 with reference to the target value of the vehicle height.
 即ち、走行制御部135は、エンジン制御機能、操舵制御機能、車速制御機能、車高制御機能などを有し、走行装置111に走行制御信号を与える。手動操舵の場合、搭乗者による操作に基づいて、走行制御部135が制御信号を生成し、走行装置111を制御する。自動操舵の場合、制御ユニット130の自動走行制御モジュールによって与えられる自動走行指令と、衛星測位モジュール180からの測位データと、に基づいて、走行制御部135は、操舵や車速に関する制御を走行装置111に対して行う。 That is, the travel control unit 135 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and gives a travel control signal to the travel device 111. In the case of manual steering, the travel control unit 135 generates a control signal and controls the travel device 111 based on the operation by the passenger. In the case of automatic steering, the travel control unit 135 controls steering and vehicle speed based on the automatic travel command given by the automatic travel control module of the control unit 130 and the positioning data from the satellite positioning module 180. To do.
 作業制御部136は、ヘッダ制御部136Aと、リール制御部136Bと、オーガ制御部136Cと、を有する。状態決定部132によって選択された収穫制御パターンに基づいて対地高さH1の目標値と、高さ位置H2の目標値と、掻込リール115Bの前後位置の目標値と、高さ位置H3の目標値と、が決定される。ヘッダ制御部136Aは、対地高さH1の目標値を基準として収穫ヘッダ115Aの昇降制御を行う。リール制御部136Bは、高さ位置H2の目標値と、掻込リール115Bの前後位置の目標値と、を基準として掻込リール115Bの上下位置及び前後位置を調整制御する。更に、オーガ制御部136Cは、高さ位置H3の目標値を基準として横送りオーガ115Cの上下位置を調整制御する。 The work control unit 136 has a header control unit 136A, a reel control unit 136B, and an auger control unit 136C. The target value of the ground height H1, the target value of the height position H2, the target value of the front-rear position of the suction reel 115B, and the target of the height position H3 based on the harvest control pattern selected by the state determination unit 132. The value and is determined. The header control unit 136A controls the raising and lowering of the harvest header 115A with reference to the target value of the ground height H1. The reel control unit 136B adjusts and controls the vertical position and the front-rear position of the suction reel 115B with reference to the target value of the height position H2 and the target value of the front-rear position of the suction reel 115B. Further, the auger control unit 136C adjusts and controls the vertical position of the lateral feed auger 115C with reference to the target value of the height position H3.
 即ち、作業制御部136は、収穫装置115や脱穀装置113等、圃場の作物の収穫や脱穀に関する装置の制御を行う機能を有する。手動操舵の場合、搭乗者による操作に基づいて、作業制御部136が制御信号を生成し、収穫装置115等を制御する。自動操舵の場合、第一撮像装置121Aによる撮像データと、測距センサ122による距離情報と、に基づいて、作業制御部136は、収穫装置115の対地高さH1と、掻込リール115Bの高さ位置H2と、掻込リール115Bの前後位置と、横送りオーガ115Cの高さ位置H3と、等を制御する。加えて、収穫制御パターンには収穫装置115の動作速度に関するパラメータも含まれ、作業制御部136は、状態決定部132によって選択された収穫制御パターンに基づいて収穫装置115用の変速装置(例えば静油圧式無段変速装置)を変速制御可能に構成されている。 That is, the work control unit 136 has a function of controlling devices related to harvesting and threshing of crops in the field, such as the harvesting device 115 and the threshing device 113. In the case of manual steering, the work control unit 136 generates a control signal and controls the harvesting device 115 and the like based on the operation by the passenger. In the case of automatic steering, the work control unit 136 sets the height H1 of the harvesting device 115 to the ground and the height of the scraping reel 115B based on the imaging data obtained by the first imaging device 121A and the distance information obtained by the distance measuring sensor 122. The position H2, the front-rear position of the scraping reel 115B, the height position H3 of the lateral feed auger 115C, and the like are controlled. In addition, the harvest control pattern also includes parameters relating to the operating speed of the harvest device 115, where the work control unit 136 is a transmission (eg, static) for the harvest device 115 based on the harvest control pattern selected by the state determination unit 132. The hydraulic continuously variable transmission) is configured to be capable of speed change control.
 本実施形態の制御ユニット130は、通信ネットワークに接続可能に構成されている。制御ユニット130に通信部137が備えられ、通信部137は、有線または無線の通信ネットワークを介して管理コンピュータ102と通信可能である。例えば圃場における作物の倒伏情報、雑草の情報、等が、衛星測位モジュール180によって測位された位置情報とともに、無線通信ネットワークを介して圃場の管理コンピュータ102へ送信され、管理コンピュータ102における圃場のマップ情報に記録される。これにより、圃場の管理者は、圃場における作物の倒伏情報、雑草の情報、等を次年度の農業計画に活用できる。 The control unit 130 of this embodiment is configured to be connectable to a communication network. The control unit 130 is provided with a communication unit 137, and the communication unit 137 can communicate with the management computer 102 via a wired or wireless communication network. For example, crop lodging information, weed information, etc. in the field are transmitted to the field management computer 102 via the wireless communication network together with the position information positioned by the satellite positioning module 180, and the field map information in the management computer 102. Recorded in. As a result, the farm manager can utilize the crop lodging information, weed information, etc. in the field for the next year's agricultural plan.
〔収穫装置の作業状態について〕
 収穫制御パターンについて、図11、図13及び図14に基づいて説明する。収穫制御パターンのパラメータに、収穫ヘッダ115Aの対地高さH1の目標値と、掻込リール115Bの高さ位置H2の目標値と、掻込リール115Bの前後位置の目標値と、が含まれる。掻込リール115Bの高さ位置H2が高すぎると、掻込リール115Bが作物に対して掻き込み作用し難くなる。また、掻込リール115Bの高さ位置H2が低すぎると、作物が掻込リール115Bに絡み付き易くなる。図13及び図14に示されるように、圃場の作物が収穫装置115によって収穫される際に、掻込リール115Bのタイン115Tが穂先を前上方から後方に掻き込むように、タイン115Tの回転軌跡が作物の穂先領域と重複するのが望ましい。
[About the working condition of the harvester]
The harvest control pattern will be described with reference to FIGS. 11, 13 and 14. The parameters of the harvest control pattern include a target value of the ground height H1 of the harvest header 115A, a target value of the height position H2 of the scraping reel 115B, and a target value of the front and rear positions of the scraping reel 115B. If the height position H2 of the scraping reel 115B is too high, it becomes difficult for the scraping reel 115B to scrape the crop. Further, if the height position H2 of the scraping reel 115B is too low, the crop is likely to be entangled with the scraping reel 115B. As shown in FIGS. 13 and 14, when the crop in the field is harvested by the harvesting device 115, the rotation trajectory of the tine 115T is such that the tine 115T of the scraping reel 115B scrapes the tip from the front upper part to the rear. Should overlap with the tip area of the crop.
 複数の収穫制御パターンの夫々において、対地高さH1及び高さ位置H2は、収穫制御パターンごとに異なるパラメータとして設定されている。作物の種類と、作物高さと、作物の穂先領域の上下高さと、当該穂先領域の表面積と、等に基づいて、複数の収穫制御パターンのうちの適切な収穫制御パターンが状態決定部132によって選択される。そして、選択された収穫制御パターンから対地高さH1及び高さ位置H2の目標値が読み出され、対地高さH1及び高さ位置H2の調整用の制御信号が状態決定部132から作業制御部136へ送られる。例えば作物の種類が豆類であれば、対地高さH1は、最も低い領域に設定される。また、作物の種類が蕎麦や菜種であれば、対地高さH1は、米穀の場合よりも低く設定され、かつ、豆類の場合よりも高く設定される。 In each of the plurality of harvest control patterns, the ground height H1 and the height position H2 are set as different parameters for each harvest control pattern. The appropriate harvest control pattern among the plurality of harvest control patterns is selected by the state determination unit 132 based on the type of crop, the height of the crop, the vertical height of the tip region of the crop, the surface area of the tip region, and the like. Will be done. Then, the target values of the ground height H1 and the height position H2 are read from the selected harvest control pattern, and the control signal for adjusting the ground height H1 and the height position H2 is sent from the state determination unit 132 to the work control unit. Sent to 136. For example, if the crop type is legume, the ground height H1 is set to the lowest region. If the type of crop is buckwheat or rapeseed, the ground height H1 is set lower than that of rice grains and higher than that of beans.
 このように、状態決定部132は、植立作物の高さに応じてヘッダ用アクチュエータ115Hを操作することによって収穫装置115の作業状態を変更可能なように構成されている。このとき、収穫装置115の作業状態に、収穫装置115の対地高さH1と、掻込リール115Bの高さ位置H2と、掻込リール115Bの前後位置と、掻込リール115Bの回転速度と、タイン115Tの回転軌跡と、が含まれる。また、状態決定部132は、収穫装置115の作業状態に加えて走行装置111の車速を変更可能に構成されている。収穫装置115の対地高さH1は、『収穫高さ』であって、収穫ヘッダ115Aの『作業高さ』でもある。換言すると、状態決定部132は、ヘッダ用アクチュエータ115Hを操作することによって、作物の種類と作物高さとの少なくとも一方に応じて収穫装置115の収穫高さを変更可能に構成されている。また、状態決定部132は、リールアクチュエータ115Jを操作することによって、作物の種類と作物高さとの少なくとも一方に応じて掻込リール115Bの高さ位置H2を変更可能に構成されている。 As described above, the state determination unit 132 is configured so that the working state of the harvesting device 115 can be changed by operating the header actuator 115H according to the height of the planted crop. At this time, in the working state of the harvesting device 115, the ground height H1 of the harvesting device 115, the height position H2 of the scraping reel 115B, the front-rear position of the scraping reel 115B, the rotation speed of the scraping reel 115B, and so on. The rotation locus of the tine 115T and the like are included. Further, the state determining unit 132 is configured to be able to change the vehicle speed of the traveling device 111 in addition to the working state of the harvesting device 115. The ground height H1 of the harvesting device 115 is the “harvesting height” and also the “working height” of the harvesting header 115A. In other words, the state determination unit 132 is configured to be able to change the harvest height of the harvesting device 115 according to at least one of the crop type and the crop height by operating the header actuator 115H. Further, the state determination unit 132 is configured to be able to change the height position H2 of the scraping reel 115B according to at least one of the crop type and the crop height by operating the reel actuator 115J.
 圃場の作物が収穫装置115によって収穫される際に、掻込リール115Bのタイン115Tが穂先を前上方から後方に掻き込むように、収穫制御パターンが状態決定部132によって選択され、対地高さH1及び高さ位置H2が調整される。対地高さH1が調整されると、収穫ヘッダ115Aの下端部(刈刃の位置する部分)は作物の穂先領域よりも下側に位置する。また、高さ位置H2が調整されると、掻込リール115Bの前端位置は、作物の穂先よりも上側に位置する。この結果、掻込リール115Bによって作物の穂先領域が上下に亘って後方へ掻き込まれる。つまり、第一作物検出部131Aによって検出された作物高さ及び作物の種類に基づいて、作物の穂先領域のみが収穫装置115によって効率よく収穫され、当該穂先領域が後方の搬送装置116で搬送されて脱穀装置113で脱穀処理される。このため、作物の株元領域まで収穫装置115によって収穫される構成と比較して、搬送装置116の搬送負荷や脱穀装置113の脱穀負荷が軽減され、収穫装置115の収穫効率が良好となる。 When the crops in the field are harvested by the harvesting device 115, the harvest control pattern is selected by the state determining unit 132 so that the tine 115T of the scraping reel 115B scrapes the tips from the front upper part to the rearward, and the ground height H1. And the height position H2 is adjusted. When the ground height H1 is adjusted, the lower end portion (the portion where the cutting blade is located) of the harvest header 115A is located below the tip region of the crop. Further, when the height position H2 is adjusted, the front end position of the scraping reel 115B is located above the tip of the crop. As a result, the tip region of the crop is scraped backward by the scraping reel 115B. That is, based on the crop height and the type of crop detected by the first crop detection unit 131A, only the tip region of the crop is efficiently harvested by the harvesting device 115, and the tip region is transported by the rear transport device 116. The crop is threshed by the threshing device 113. Therefore, the transport load of the transport device 116 and the threshing load of the threshing device 113 are reduced, and the harvesting efficiency of the harvesting device 115 is improved, as compared with the configuration in which the harvesting device 115 is used to harvest the crop to the root region.
 横送りオーガ115Cは、作物の種類に応じて上下方向に位置変更可能なように構成されている。図示はしないが、収穫ヘッダ115Aに、横送りオーガ115Cを上下方向に昇降操作可能なアクチュエータが備えられている。当該アクチュエータは、油圧式であっても良いし、電動式であっても良い。作物の種類に応じて適切な高さ位置H3の目標値を有する収穫制御パターンが状態決定部132によって選択される。そして、選択された収穫制御パターンに基づいて、高さ位置H3の目標値が状態決定部132から作業制御部136へ送られ、横送りオーガ115Cが昇降制御される。 The horizontal feed auger 115C is configured so that the position can be changed in the vertical direction according to the type of crop. Although not shown, the harvest header 115A is provided with an actuator capable of raising and lowering the lateral feed auger 115C in the vertical direction. The actuator may be hydraulic or electric. A harvest control pattern having an appropriate height position H3 target value according to the crop type is selected by the state determination unit 132. Then, based on the selected harvest control pattern, the target value of the height position H3 is sent from the state determination unit 132 to the work control unit 136, and the lateral feed auger 115C is controlled to move up and down.
 切断刃115Dによって株元を切断された収穫作物は、収穫ヘッダ115Aの底板115uにおいて横送りオーガ115Cによって搬送装置116の位置する側に横送りされる。この際に、横送りオーガ115Cの高さ位置H3が上下方向に沿って変更されると、横送りオーガ115Cの下端部と、収穫ヘッダ115Aの底板115uと、の上下方向の隙間が変化する。 The harvested crop whose stock is cut by the cutting blade 115D is laterally fed to the side where the transport device 116 is located by the lateral feed auger 115C on the bottom plate 115u of the harvest header 115A. At this time, when the height position H3 of the horizontal feed auger 115C is changed along the vertical direction, the vertical gap between the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A changes.
 作物の種類が米穀や麦類である場合、作物の形状は上下に細長く、穀粒は小さな粒状である。このため、作物の種類が米穀や麦類である場合の収穫制御パターンでは、高さ位置H3の目標値は低めの高さ位置H31に設定される。このため、米穀や麦類の収穫作業が行われる場合、横送りオーガ115Cは収穫ヘッダ115Aに対して低く位置し、横送りオーガ115Cの下端部と、収穫ヘッダ115Aの底板115uと、の上下方向の隙間が狭くなる。これにより、米穀や麦類の穂先部分が、横送りオーガ115Cによって効率よく横送りされる。 When the type of crop is rice or wheat, the shape of the crop is elongated up and down, and the grain is small and granular. Therefore, in the harvest control pattern when the type of crop is rice or wheat, the target value of the height position H3 is set to the lower height position H31. Therefore, when harvesting rice or wheat is performed, the horizontal feed auger 115C is located lower than the harvest header 115A, and the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A are in the vertical direction. The gap becomes narrower. As a result, the tip portion of the rice grain or wheat is efficiently laterally fed by the laterally fed auger 115C.
 作物の種類が豆類である場合、豆類の穂先部分は米穀や麦類の穂先部分よりも大きな粒を有する。このため、横送りオーガ115Cによって豆類の穂先部分が横送りされる際に、横送りオーガ115Cの下端部と、収穫ヘッダ115Aの底板115uと、の上下方向の隙間が狭すぎると、豆粒等が潰されたり損傷を受けたりする虞がある。このため、作物の種類が豆類である場合の収穫制御パターンでは、高さ位置H3の目標値は高めの高さ位置H32に設定される。このため、豆類の収穫作業が行われる場合、横送りオーガ115Cは、米穀や麦類である場合よりも高く位置する。このことから、作物の種類が米穀や麦類である場合と比較して、横送りオーガ115Cの下端部と、収穫ヘッダ115Aの底板115uと、の上下方向の隙間が広くなる。これにより、横送りオーガ115Cによって豆類の穂先部分が横送りされる際に、豆粒等が損傷を受け難くなる。 When the type of crop is beans, the tip of beans has larger grains than the tip of rice or wheat. Therefore, when the tip portion of beans is laterally fed by the laterally fed auger 115C, if the vertical gap between the lower end of the laterally fed auger 115C and the bottom plate 115u of the harvest header 115A is too narrow, the beans or the like will be generated. It may be crushed or damaged. Therefore, in the harvest control pattern when the crop type is beans, the target value of the height position H3 is set to the higher height position H32. Therefore, when the bean harvesting operation is performed, the lateral feed auger 115C is located higher than the case of rice grains and wheat. From this, as compared with the case where the type of crop is rice or wheat, the vertical gap between the lower end of the laterally fed auger 115C and the bottom plate 115u of the harvest header 115A becomes wider. As a result, when the tip portion of the beans is laterally fed by the laterally fed auger 115C, the beans and the like are less likely to be damaged.
 このように、状態決定部132は、作物の種類に応じて高さ位置H3を変更することによって、収穫装置115における搬送経路の上下幅を変更する。即ち、状態決定部132は、横送りオーガ115Cを上下方向に昇降操作可能なアクチュエータを操作することによって、搬送経路の上下幅として、横送りオーガ115Cの下端部と、収穫ヘッダ115Aの底板115uと、の隙間の上下幅を変更する。 In this way, the state determination unit 132 changes the vertical width of the transport path in the harvesting device 115 by changing the height position H3 according to the type of crop. That is, the state determination unit 132 sets the lower end portion of the horizontal feed auger 115C and the bottom plate 115u of the harvest header 115A as the vertical width of the transport path by operating an actuator capable of raising and lowering the horizontal feed auger 115C in the vertical direction. Change the vertical width of the gap between.
〔状態決定部の状態変更処理〕
 状態決定部132の処理は、図15に示されるフローチャートに基づいて行われ、図15のフローチャートにおけるスタートからエンドまでの処理が周期的に実行される。上述したように、第一作物検出部131Aは、収穫対象の作物の種類のみならず、雑草と倒伏作物とを検出可能に構成されている。このため、状態決定部132は、収穫対象の作物が検出されている場合と、倒伏作物が検出されている場合と、雑草が検出されている場合と、で異なる処理を実行する。
[Status change processing of the status determination unit]
The processing of the state determination unit 132 is performed based on the flowchart shown in FIG. 15, and the processing from the start to the end in the flowchart of FIG. 15 is periodically executed. As described above, the first crop detection unit 131A is configured to be able to detect not only the type of crop to be harvested but also weeds and lodging crops. Therefore, the state determination unit 132 executes different processes depending on whether the crop to be harvested is detected, the fallen crop is detected, or the weed is detected.
 まず、状態決定部132は、第二作物検出部131Bの検出結果を判定する(ステップ#01)。第二作物検出部131Bは、収穫装置115による収穫作業後の収穫跡を検出する。図16に示されるように、第二撮像装置121Bは、収穫装置115の後方かつ走行装置111の前方の領域、即ち収穫装置115と走行装置111との間の領域である収穫跡領域Sを撮像する。なお、図16では、第二撮像装置121Bが収穫跡領域Sを撮像する様子を簡易に示すため、残稈処理部119を省略して示している。第二撮像装置121Bによって撮像された撮像データに基づいて、収穫跡領域Sに残作物が第二作物検出部131Bによって検出されると、ステップ#01では『刈残しの検出』が判定される。即ち、収穫装置115の後方が第二撮像装置121Bによって撮像され、第二撮像装置121Bの撮像データに作物(例えば倒伏作物)が含まれているかどうかが第二作物検出部131Bによって判定される。 First, the state determination unit 132 determines the detection result of the second crop detection unit 131B (step # 01). The second crop detection unit 131B detects the harvest trace after the harvesting operation by the harvesting device 115. As shown in FIG. 16, the second image pickup apparatus 121B images the harvest trace region S which is the region behind the harvesting apparatus 115 and in front of the traveling apparatus 111, that is, the region between the harvesting apparatus 115 and the traveling apparatus 111. do. In FIG. 16, the residual culm processing unit 119 is omitted in order to simply show how the second image pickup apparatus 121B captures the harvest trace region S. When the second crop detection unit 131B detects the residual crop in the harvest trace region S based on the image pickup data captured by the second image pickup device 121B, in step # 01, "detection of the uncut portion" is determined. That is, the rear of the harvesting device 115 is imaged by the second image pickup device 121B, and whether or not the image pickup data of the second image pickup device 121B includes a crop (for example, a fallen crop) is determined by the second crop detection unit 131B.
 第二作物検出部131Bで検出結果がない場合(ステップ#01:検出結果なし)、状態決定部132は、第一作物検出部131Aの検出結果を判定する(ステップ#03)。第一作物検出部131Aによって収穫対象の作物が検出されている場合(ステップ#03:収穫対象の作物)、状態決定部132は、収穫装置115が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫制御パターンを選択する(ステップ#04)。そして状態決定部132は、選択した収穫制御パターンに基づいて走行制御部135及び作業制御部136に制御信号を出力する。即ち、掻込リール115Bのタイン115Tが穂先を前上方から後方に掻き込む状態となるように、収穫ヘッダ115Aの対地高さH1と、掻込リール115Bの高さ位置H2と、横送りオーガ115Cの高さ位置H3と、が調整される。 When there is no detection result in the second crop detection unit 131B (step # 01: no detection result), the state determination unit 132 determines the detection result of the first crop detection unit 131A (step # 03). When the crop to be harvested is detected by the first crop detection unit 131A (step # 03: crop to be harvested), the state determination unit 132 so that the harvesting device 115 can efficiently harvest the tip region of the crop. The harvest control pattern is selected according to at least one of the crop type and the crop height (step # 04). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern. That is, the ground height H1 of the harvest header 115A, the height position H2 of the scraping reel 115B, and the lateral feed auger 115C so that the tine 115T of the scraping reel 115B scrapes the tip from the front upper part to the rear. The height position H3 of is adjusted.
 第二作物検出部131Bによって刈残しが検出された場合(ステップ#01:刈残しの検出)、状態決定部132は、刈残しが検出された場合の収穫制御パターンを選択し、この収穫制御パターンに基づく制御信号を走行制御部135及び作業制御部136に出力する(ステップ#02)。ステップ#02では、刈残し領域における収穫作業のリトライ処理が行われる。 When the second crop detection unit 131B detects the uncut portion (step # 01: detection of the uncut portion), the state determination unit 132 selects the harvest control pattern when the uncut portion is detected, and this harvest control pattern. The control signal based on the above is output to the travel control unit 135 and the work control unit 136 (step # 02). In step # 02, the harvesting operation is retried in the uncut area.
 第二撮像装置121Bは、収穫装置115による収穫作業後に収穫されずに残された残作物を検出可能に構成されている。図17に示されるように、倒伏作物が収穫装置115によって収穫されず、収穫装置115が倒伏作物の上方を通過した場合、収穫装置115の後下方に設けられた第二撮像装置121Bによって倒伏作物が撮像され、第二作物検出部131Bによって倒伏作物の存在が判定される(ステップ#01:刈残しの検出)。そしてステップ#02の処理に基づいて、走行装置111が逆転動作して、機体101が予め設定された距離だけ後退する。つまり、状態決定部132は、残作物が第二撮像装置121Bによって検出されると、走行装置111をあらかじめ設定された距離だけ後進させる。図15に示されるフローチャートの処理は周期的に行われるため、収穫装置115が倒伏作物の上方から離れ、収穫装置115の前方に検出された倒伏作物が位置する状態で、ステップ#01で『検出結果なし』という判定に切換わる。このように、状態決定部132は、作業後の圃場状態に応じて走行装置111と収穫装置115との夫々の作業状態を変更可能なように構成されている。そして、第一作物検出部131Aによって倒伏作物が検出され(ステップ#03:倒伏作物)、後述のステップ#05の処理が行われる。つまり、状態決定部132は、収穫跡に基づいて収穫装置115の対地高さH1が高すぎると判定すると、収穫装置115の対地高さH1を低く変更するように構成されている。 The second image pickup device 121B is configured to be capable of detecting residual crops left unharvested after the harvesting operation by the harvesting device 115. As shown in FIG. 17, when the fallen crop is not harvested by the harvesting device 115 and the harvesting device 115 passes above the fallen crop, the fallen crop is provided by the second image pickup device 121B provided below the harvesting device 115. Is imaged, and the presence of the fallen crop is determined by the second crop detection unit 131B (step # 01: detection of uncut portion). Then, based on the process of step # 02, the traveling device 111 reversely operates, and the aircraft 101 retracts by a preset distance. That is, when the residual crop is detected by the second image pickup device 121B, the state determination unit 132 moves the traveling device 111 backward by a preset distance. Since the processing of the flowchart shown in FIG. 15 is performed periodically, in the state where the harvesting device 115 is separated from the upper side of the fallen crop and the detected fallen crop is located in front of the harvesting device 115, the “detection” is performed in step # 01. It switches to the judgment of "no result". As described above, the state determining unit 132 is configured so that the working states of the traveling device 111 and the harvesting device 115 can be changed according to the field state after the work. Then, the fallen crop is detected by the first crop detection unit 131A (step # 03: fallen crop), and the process of step # 05 described later is performed. That is, the state determination unit 132 is configured to change the ground height H1 of the harvesting device 115 to a low value when it is determined that the ground height H1 of the harvesting device 115 is too high based on the harvest trace.
 第一作物検出部131Aによって倒伏作物が検出されている場合(ステップ#03:倒伏作物)、状態決定部132は、倒伏作物を収穫するための収穫制御パターンを選択し、この収穫制御パターンに基づく制御信号を走行制御部135及び作業制御部136に出力する(ステップ#05)。図18に示されるように、ステップ#05の処理によって、収穫ヘッダ115Aの対地高さH1が最も下側の領域に調整され、掻込リール115Bの高さ位置H2が最も下側の領域に調整され、掻込リール115Bの前後方向における位置が最も前側の領域に調整される。また、ステップ#05の処理によって、収穫装置115用の変速装置(例えば静油圧式無段変速装置)が高速側に変速制御され、掻込リール115Bの回転速度が増速される。加えて、ステップ#05の処理によって、走行装置111の車速が減速される。 When the fallen crop is detected by the first crop detection unit 131A (step # 03: the fallen crop), the state determination unit 132 selects a harvest control pattern for harvesting the fallen crop and is based on this harvest control pattern. The control signal is output to the travel control unit 135 and the work control unit 136 (step # 05). As shown in FIG. 18, by the process of step # 05, the ground height H1 of the harvest header 115A is adjusted to the lowest region, and the height position H2 of the scraping reel 115B is adjusted to the lowest region. Then, the position of the scraping reel 115B in the front-rear direction is adjusted to the frontmost region. Further, by the process of step # 05, the speed change device for the harvesting device 115 (for example, the hydrostatic continuously variable transmission) is speed-controlled to the high speed side, and the rotation speed of the suction reel 115B is increased. In addition, the process of step # 05 reduces the vehicle speed of the traveling device 111.
 つまり、第一作物検出部131Aによって倒伏状態の作物が検知されると、状態決定部132によって倒伏作物収穫用の収穫制御パターンに切換えられ、収穫ヘッダ115Aの対地高さH1と掻込リール115Bの高さ位置H2とが低くなる。そして、圃場における作物の倒伏領域では、収穫機が低速で前進しながら掻込リール115Bが通常の収穫作業よりも高速回転し、倒伏状態の作物が掻込リール115Bによって収穫ヘッダ115Aへ掻き込まれる。換言すると、状態決定部132は、倒伏作物が検出されたら、掻込リール115Bの位置を最も下側の領域かつ最も前側の領域に位置させ、掻込リール115Bの回転速度を上昇させ、かつ、走行装置111の車速を減速させる。これにより、コンバインは、徐々に前進しながら刈残した倒伏作物を刈り取る。 That is, when the first crop detection unit 131A detects a crop in a fallen state, the state determination unit 132 switches to the harvest control pattern for harvesting the fallen crop, and the ground height H1 of the harvest header 115A and the scraping reel 115B. The height position H2 becomes lower. Then, in the collapsed region of the crop in the field, the scraping reel 115B rotates at a higher speed than the normal harvesting operation while the harvester advances at a low speed, and the crop in the collapsed state is scraped into the harvest header 115A by the scraping reel 115B. .. In other words, when the fallen crop is detected, the state determination unit 132 positions the scraping reel 115B in the lowermost region and the frontmost region, increases the rotational speed of the scraping reel 115B, and increases the rotation speed of the scraping reel 115B. The vehicle speed of the traveling device 111 is reduced. As a result, the combine harvests the leftover crops while gradually advancing.
 図15に示されるフローチャートの処理は周期的に行われるため、第一作物検出部131Aが倒伏状態の作物を検知しなくなると(ステップ#03:≠倒伏作物)、ステップ#04または後述のステップ#06の処理が行われる。ステップ#03の判定が『収穫対象の作物』である場合、ステップ#04の処理が再び行われ、このときに走行装置111の車速が倒伏状態の作物の収穫時よりも増速される。 Since the processing of the flowchart shown in FIG. 15 is performed periodically, when the first crop detection unit 131A does not detect the crop in the collapsed state (step # 03: ≠ collapsed crop), step # 04 or step # described later. The processing of 06 is performed. When the determination in step # 03 is "the crop to be harvested", the process of step # 04 is performed again, and at this time, the vehicle speed of the traveling device 111 is increased as compared with the time when the crop in the collapsed state is harvested.
 第一作物検出部131Aによって雑草が検出された場合(ステップ#03:雑草)について説明する。圃場には作物が植えられているが、作物に雑草が混ざっている場合があり、この場合には、植立作物が収穫装置115によって収穫される際に雑草も掻込リール115Bによって植立作物とともに掻き込まれ、搬送装置116によって後方の脱穀装置113へ送られる。このため、状態決定部132は、収穫対象の作物の種類と、雑草の種類と、に基づいて、雑草の収穫作業に及ぼす影響度を『小』、『中』、『大』の三段階で判定する(ステップ#06)。 The case where weeds are detected by the first crop detection unit 131A (step # 03: weeds) will be described. Although crops are planted in the field, weeds may be mixed in the crops. In this case, when the planted crops are harvested by the harvesting device 115, the weeds are also planted by the scraping reel 115B. It is scraped together and sent to the rear grain removal device 113 by the transport device 116. Therefore, the state determination unit 132 determines the degree of influence on the weed harvesting work in three stages of "small", "medium", and "large" based on the type of crop to be harvested and the type of weed. Judgment (step # 06).
 雑草が少ない場合と、雑草が小さい場合と、脱穀装置113に雑草が入り込んでも脱穀負荷や選別精度に影響を及びさない場合と、等では、状態決定部132はステップ#06で『小』を選択する。この場合、ステップ#04と同じく、状態決定部132は、収穫装置115が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫制御パターンを選択する(ステップ#07)。そして状態決定部132は、選択した収穫制御パターンに基づいて走行制御部135及び作業制御部136に制御信号を出力する。 In cases where there are few weeds, small weeds, and cases where weeds do not affect the threshing load and sorting accuracy even if weeds enter the threshing device 113, the state determination unit 132 sets "small" in step # 06. select. In this case, as in step # 04, the state determining unit 132 selects a harvest control pattern according to at least one of the crop type and the crop height so that the harvesting device 115 can efficiently harvest the tip region of the crop. (Step # 07). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern.
 脱穀装置113に雑草が入り込むと脱穀負荷や選別精度に影響を及ぼすものの、車速が減速すれば脱穀負荷や選別精度への影響度合いが軽減される場合には、状態決定部132はステップ#06で『中』を選択する。この場合、収穫対象の作物の種類が豆類であるかどうかが判定される(ステップ#08)。 If weeds enter the threshing device 113, the threshing load and sorting accuracy are affected, but if the vehicle speed slows down, the degree of influence on the threshing load and sorting accuracy is reduced. Select "Medium". In this case, it is determined whether or not the type of crop to be harvested is beans (step # 08).
 収穫対象の作物の種類が豆類以外であると(ステップ#08:豆類以外)、状態決定部132は、車速を減速させ、かつ、収穫装置115が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫装置115による収穫作業を実行する収穫制御パターンを選択する(ステップ#09)。そして状態決定部132は、選択した収穫制御パターンに基づいて走行制御部135及び作業制御部136に制御信号を出力する。即ち、状態決定部132は、雑草領域において走行装置111の車速を、雑草領域以外を走行する場合の車速よりも低速側に変更する。 When the type of crop to be harvested is other than beans (step # 08: other than beans), the state determination unit 132 slows down the vehicle speed and allows the harvesting device 115 to efficiently harvest the tip region of the crop. A harvest control pattern for performing the harvesting operation by the harvesting apparatus 115 is selected according to at least one of the crop type and the crop height (step # 09). Then, the state determination unit 132 outputs a control signal to the travel control unit 135 and the work control unit 136 based on the selected harvest control pattern. That is, the state determination unit 132 changes the vehicle speed of the traveling device 111 in the weed region to a lower speed side than the vehicle speed when traveling in a region other than the weed region.
 ステップ#09において状態決定部132は、収穫装置115の前方に雑草領域が検出され、かつ、作物の種類が豆類以外であると、雑草の種類に応じて走行装置111の車速の変更度合いを決定する。具体的には、状態決定部132は、雑草領域における単位面積当たりの雑草の量である雑草率に応じて走行装置111の車速の変更度合いを決定する。雑草率が多くなるほど、状態決定部132は走行装置111の車速をより低速側に変更する。また、状態決定部132は、作物の種類、雑草の種類、雑草率、等に応じて判断要素に優先順位を付けて段階的に車速を低速側に変更する構成であっても良い。 In step # 09, when the weed area is detected in front of the harvesting device 115 and the crop type is other than beans, the state determining unit 132 determines the degree of change in the vehicle speed of the traveling device 111 according to the type of weeds. do. Specifically, the state determination unit 132 determines the degree of change in the vehicle speed of the traveling device 111 according to the weed rate, which is the amount of weeds per unit area in the weed area. As the weed rate increases, the state determination unit 132 changes the vehicle speed of the traveling device 111 to the lower speed side. Further, the state determination unit 132 may have a configuration in which the vehicle speed is gradually changed to the low speed side by prioritizing the determination elements according to the type of crop, the type of weed, the weed rate, and the like.
 また、ステップ#09において状態決定部132は、選別処理部113Bに設けられたチャフシーブの漏下開度を小さくする。チャフシーブに複数のチャフリップが備えられ、チャフリップの傾斜姿勢(傾斜角度)が変更されることによって、複数のチャフリップの間の隙間が絞られる。雑草等は穀粒よりも大粒である場合が多く、チャフシーブの漏下開度が絞られることによって、チャフリップの間の隙間から雑草等が漏下し難くなり、選別精度への影響が軽減される。即ち、状態決定部132は、雑草領域で収穫された作物を選別する際に、作物の種類と雑草の種類との少なくとも一方に応じてチャフシーブの漏下開度を小さくするように構成されている。 Further, in step # 09, the state determination unit 132 reduces the leakage opening degree of the chaff sheave provided in the sorting processing unit 113B. The chaff sheave is provided with a plurality of chaflip, and the gap between the plurality of chaflip is narrowed by changing the tilting posture (tilt angle) of the chaflip. Weeds, etc. are often larger than grains, and by narrowing the leakage opening of the chaf sheave, weeds, etc. are less likely to leak from the gaps between the chaflip, and the effect on sorting accuracy is reduced. To. That is, the state determination unit 132 is configured to reduce the leakage opening degree of the chaff sheave according to at least one of the type of crop and the type of weed when selecting the crop harvested in the weed region. ..
 本実施形態で、収穫装置115の前方に雑草領域が検出され、かつ、作物の種類が豆類であると(ステップ#08:豆類)、状態決定部132は走行装置111を停止させる(ステップ#10)。豆類には商品価値の高いものもあるため、豆類が雑草と一緒に脱穀処理されると、例えば豆粒に雑草が付着する等の要因によって、豆粒が汚れて商品価値を落としたりする虞がある。作物の種類が豆類である場合、走行装置111を停止させることによって、このような不都合を回避できる。 In the present embodiment, when the weed area is detected in front of the harvesting device 115 and the crop type is beans (step # 08: beans), the state determining unit 132 stops the traveling device 111 (step # 10). ). Since some beans have high commercial value, if the beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. When the type of crop is legumes, such inconvenience can be avoided by stopping the traveling device 111.
 例えば雑草の茎が太い場合には、横送りオーガ115Cや搬送装置116や脱穀装置113で詰まりが発生する虞がある。また、茎の太い雑草が脱穀装置113に入り込むと、脱穀装置113における選別精度が低下する虞もある。これらの不都合が発生する虞が高い場合、状態決定部132はステップ#06で『大』を判定し、走行装置111を停止させる収穫制御パターンを選択し、機体101が停車する(ステップ#10)。そして、作業者が手作業で雑草を撤去した後に、収穫装置115による収穫作業が再開される。また、状態決定部132は、雑草の種類、雑草率、等に応じて判断要素に優先順位を付けて段階的に車速を減速して走行装置111を停止させる構成であっても良い。 For example, when the stem of a weed is thick, there is a possibility that the lateral feed auger 115C, the transport device 116, or the threshing device 113 may be clogged. Further, if weeds with thick stems enter the threshing device 113, the sorting accuracy of the threshing device 113 may decrease. When there is a high possibility that these inconveniences will occur, the state determination unit 132 determines "large" in step # 06, selects a harvest control pattern for stopping the traveling device 111, and the aircraft 101 stops (step # 10). .. Then, after the worker manually removes the weeds, the harvesting work by the harvesting device 115 is restarted. Further, the state determination unit 132 may have a configuration in which the determination elements are prioritized according to the type of weed, the weed rate, etc., and the vehicle speed is gradually reduced to stop the traveling device 111.
 このように、状態決定部132は、雑草の種類に応じて走行装置111の車速の変更度合いを決定可能に構成されている。 As described above, the state determination unit 132 is configured to be able to determine the degree of change in the vehicle speed of the traveling device 111 according to the type of weeds.
[第2実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another Embodiment of the Second Embodiment]
Hereinafter, another embodiment obtained by modifying the above-described embodiment will be described. Except for the matters described in each of the following separate embodiments, the matters are the same as those described in the above-described embodiments. The above-described embodiment and the following separate embodiments may be appropriately combined as long as there is no contradiction. The scope of the present invention is not limited to the above-described embodiment and the following separate embodiments.
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。 The present invention is not limited to the configuration exemplified in the above-described embodiment, and the following will exemplify another typical embodiment of the present invention.
(1)上述の実施形態では、第一作物検出部131Aに、深層学習を用いて学習可能なニューラルネットワークが構築されているが、第一作物検出部131Aにニューラルネットワークが構築されなくても良い。この場合、ニューラルネットワークは管理コンピュータ102やその他の端末に構築され、第一作物検出部131Aと、管理コンピュータ102やその他の端末と、が通信をすることによってニューラルネットワークにおける入出力が行われるものであっても良い。即ち、第一作物検出部131Aは、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得可能な構成であれば良い。 (1) In the above-described embodiment, the first crop detection unit 131A is constructed with a neural network that can be learned by using deep learning, but the first crop detection unit 131A does not have to be constructed with a neural network. .. In this case, the neural network is constructed on the management computer 102 and other terminals, and the first crop detection unit 131A and the management computer 102 and other terminals communicate with each other to perform input / output in the neural network. There may be. That is, the first crop detection unit 131A may have a configuration capable of acquiring at least one of the type of crop and the type of the weed in the weed region.
(2)上述の実施形態では、走行装置111はクローラ式に構成されているが、走行装置111はホイール式に構成されても良い。 (2) In the above-described embodiment, the traveling device 111 is configured as a crawler type, but the traveling device 111 may be configured as a wheel type.
(3)上述の実施形態では、第一作物検出部131Aは、作物の種類と、雑草領域における雑草の種類と、の両方を取得可能に構成されているが、この実施形態に限定されない。第一作物検出部131Aは、作物の種類と、雑草領域における雑草の種類と、の少なくとも一方を取得可能に構成されていれば良い。 (3) In the above-described embodiment, the first crop detection unit 131A is configured to be able to acquire both the type of crop and the type of weed in the weed region, but is not limited to this embodiment. The first crop detection unit 131A may be configured to be able to acquire at least one of the type of crop and the type of weed in the weed area.
(4)上述の実施形態では、状態決定部132は、収穫装置115の前方に雑草領域が検出され、かつ、作物の種類が豆類であると、走行装置111を停止させるが、この実施形態に限定されない。例えば、状態決定部132は、収穫装置115の前方に雑草領域が検出され、かつ、作物の種類が豆類であると、豆類以外の場合よりも走行装置111を低速に減速させる構成であっても良い。 (4) In the above-described embodiment, the state determination unit 132 stops the traveling device 111 when the weed area is detected in front of the harvesting device 115 and the crop type is beans. Not limited. For example, if the weed area is detected in front of the harvesting device 115 and the crop type is beans, the state determining unit 132 may decelerate the traveling device 111 at a lower speed than in the case of other than beans. good.
(5)上述の実施形態では、状態決定部132は、雑草領域における単位面積当たりの雑草の量である雑草率に応じて走行装置111の車速の低速側への変更度合いを決定するが、この実施形態に限定されない。例えば、状態決定部132は、雑草率に加えて(もしくは雑草率に代えて)、雑草の背丈、雑草の茎の太さ等に応じて走行装置111の車速の低速側への変更度合いを決定する構成であっても良い。 (5) In the above-described embodiment, the state determination unit 132 determines the degree of change of the vehicle speed of the traveling device 111 to the low speed side according to the weed rate, which is the amount of weeds per unit area in the weed area. It is not limited to the embodiment. For example, the state determination unit 132 determines the degree of change of the vehicle speed of the traveling device 111 to the low speed side according to the height of the weed, the thickness of the stem of the weed, etc. in addition to the weed rate (or instead of the weed rate). It may be configured to be used.
(6)上述の実施形態では、状態決定部132は、雑草領域で収穫された作物を選別する際に、作物の種類と雑草の種類との少なくとも一方に応じてチャフシーブの漏下開度を小さくするように構成されているが、この実施形態に限定されない。例えば、状態決定部132は、作物の種類と雑草の種類との少なくとも一方に応じて唐箕113Cの回転速度の増速または減速を制御する構成であっても良い。また、状態決定部132は、作物の種類と雑草の種類との少なくとも一方に応じて脱穀部113Aの扱胴の回転速度の増速または減速を制御する構成であっても良い。加えて、状態決定部132は、作物の種類と雑草の種類との少なくとも一方に応じて脱穀部113Aの送塵弁の角度を調整する構成であっても良い。 (6) In the above-described embodiment, when the state determination unit 132 selects the crops harvested in the weed area, the leakage opening degree of the chaff sheave is reduced according to at least one of the crop type and the weed type. However, the present invention is not limited to this embodiment. For example, the state determination unit 132 may be configured to control the increase or decrease of the rotation speed of the wall insert 113C according to at least one of the type of crop and the type of weed. Further, the state determining unit 132 may be configured to control the increase or decrease of the rotation speed of the handling cylinder of the threshing unit 113A according to at least one of the type of crop and the type of weed. In addition, the state determining unit 132 may be configured to adjust the angle of the dust feed valve of the threshing unit 113A according to at least one of the type of crop and the type of weed.
(7)上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを1つまたは複数のステップにより行う収穫機制御方法として構成されていても良い。 (7) It may be configured as a harvester control program that realizes the function of each member in the above embodiment on a computer. Further, the harvester control program for realizing the function of each member in the above embodiment may be configured as a recording medium on which the harvester control program is recorded. Further, it may be configured as a harvester control method in which what is performed by each member in the above embodiment is performed by one or a plurality of steps.
 なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. Moreover, the embodiment disclosed in the present specification is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.
 本発明は、収穫部及び搬送部を有する収穫搬送装置を備える収穫機に利用可能である。また、本発明は、普通型コンバインのみならず、自脱型コンバイン等、作物を収穫する収穫機全般(例えばトウモロコシ収穫機やニンジン収穫機)に適用可能である。 The present invention can be used for a harvester equipped with a harvesting and transporting device having a harvesting section and a transporting section. Further, the present invention can be applied not only to ordinary combine harvesters but also to general harvesters for harvesting crops such as head-feeding combine harvesters (for example, corn harvesters and carrot harvesters).
 (第1実施形態)
 1   コンバイン(収穫機)
 2   収穫搬送装置
 5   ヘッダ
 6   オーガ
 6A  高さ変更装置
 7   電動モータ
 16  搬送部
 17  リール
 26  逆転制御部
 27  リール制御部
 28  高さ制御部
 29  詰まり判定部
 H   収穫部
 SE  検知部
(First Embodiment)
1 combine (harvester)
2 Harvesting and transporting device 5 Header 6 Auger 6A Height changing device 7 Electric motor 16 Transporting section 17 Reel 26 Reverse control control section 27 Reel control section 28 Height control section 29 Clog determination section H Harvesting section SE detection section
 (第2実施形態)
 111   走行装置
 113   脱穀装置
 113A  脱穀部
 113B  選別処理部
 115   収穫装置
 131A  第一作物検出部(検出部)
 132   状態決定部(状態変更部)
 F1    雑草領域
 
(Second Embodiment)
111 Traveling device 113 Threshing device 113A Threshing section 113B Sorting process section 115 Harvesting device 131A First crop detection section (detection section)
132 Status determination unit (status change unit)
F1 weed area

Claims (19)

  1.  収穫部及び搬送部を有する収穫搬送装置を備え、
     前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、
     前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送し、
     前記収穫搬送装置が詰まっているか否かを判定する詰まり判定部と、
     前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御部と、を備える収穫機。
    Equipped with a harvesting and transporting device having a harvesting section and a transporting section,
    The harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the airframe, and harvests the crops in the field.
    The transport unit transports the harvested product harvested by the harvesting unit to the rear of the machine.
    A clogging determination unit that determines whether or not the harvest transfer device is clogged, and a clogging determination unit.
    A harvester including a reversing control unit that reversely drives the auger when it is determined by the clogging determining unit that the harvesting and transporting device is clogged.
  2.  前記ヘッダに対する前記オーガの高さ位置を変更する高さ変更装置と、
     前記高さ変更装置を制御することにより前記ヘッダに対する前記オーガの高さ位置を制御する高さ制御部と、を備え、
     前記高さ制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記ヘッダに対する前記オーガの高さ位置を上昇させる請求項1に記載の収穫機。
    A height changing device that changes the height position of the auger with respect to the header, and
    A height control unit for controlling the height position of the auger with respect to the header by controlling the height changing device is provided.
    The harvester according to claim 1, wherein the height control unit raises the height position of the auger with respect to the header when the jam determination unit determines that the harvest transfer device is clogged.
  3.  前記逆転制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に、前記収穫部を上昇させると共に前記オーガを逆転駆動させる第1詰まり時制御を実行可能である請求項1または2に記載の収穫機。 A claim that the reverse control unit can execute a first jam control that raises the harvest unit and reversely drives the auger when the jam determination unit determines that the harvest transfer device is clogged. Item 2. The harvester according to item 1 or 2.
  4.  前記逆転制御部は、前記第1詰まり時制御において、前記機体を前進させた後で前記オーガを逆転駆動させる請求項3に記載の収穫機。 The harvester according to claim 3, wherein the reversing control unit reversely drives the auger after advancing the machine in the first clogging control.
  5.  前記逆転制御部は、前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に、前記機体を後進させた後で前記オーガを逆転駆動させる第2詰まり時制御を実行可能である請求項1から4の何れか一項に記載の収穫機。 When the jamming determination unit determines that the harvesting and transporting device is clogged, the reversing control unit can execute a second jamming control that reversely drives the auger after moving the machine backward. The harvester according to any one of claims 1 to 4.
  6.  前記収穫部は、回転駆動しながら植立穀稈を掻き込むリールを含んでおり、
     前記詰まり判定部によって前記収穫搬送装置が詰まっていると判定された場合に前記ヘッダに対して前記リールを上昇させるリール制御部を備える請求項1から5の何れか一項に記載の収穫機。
    The harvesting section includes a reel that squeezes the planted culm while being rotationally driven.
    The harvester according to any one of claims 1 to 5, further comprising a reel control unit that raises the reel with respect to the header when the jam determination unit determines that the harvest transfer device is clogged.
  7.  前記オーガの回転速度を検知する検知部を備え、
     前記詰まり判定部は、前記検知部による検知結果に基づいて、前記収穫搬送装置が詰まっているか否かを判定する請求項1から6の何れか一項に記載の収穫機。
    It is equipped with a detector that detects the rotation speed of the auger.
    The harvester according to any one of claims 1 to 6, wherein the jam determination unit determines whether or not the harvest transfer device is clogged based on the detection result by the detection unit.
  8.  前記オーガに逆転動力を与える電動モータを備え、
     前記逆転制御部は、前記電動モータを駆動させることによって、前記オーガを逆転駆動させる請求項1から7の何れか一項に記載の収穫機。
    Equipped with an electric motor that gives reverse power to the auger,
    The harvester according to any one of claims 1 to 7, wherein the reverse control unit reversely drives the auger by driving the electric motor.
  9.  収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御プログラムであって、
     前記収穫搬送装置が詰まっているか否かを判定する詰まり判定機能と、
     前記詰まり判定機能によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御機能と、をコンピュータに実現させる収穫機制御プログラム。
    It is equipped with a harvesting and transporting device having a harvesting section and a transporting section, and the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the aircraft and to produce crops in the field. The transport unit is a harvester control program that controls a harvester that harvests and transports the harvested product harvested by the harvest unit to the rear of the machine.
    A clogging determination function for determining whether or not the harvest transfer device is clogged, and a clogging determination function.
    A harvester control program that enables a computer to realize a reverse control function for reverse-driving the auger when it is determined by the jam determination function that the harvest transfer device is jammed.
  10.  収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、
     前記収穫搬送装置が詰まっているか否かを判定する詰まり判定機能と、
     前記詰まり判定機能によって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御機能と、をコンピュータに実現させる収穫機制御プログラムを記録した記録媒体。
    It is equipped with a harvesting and transporting device having a harvesting section and a transporting section, and the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the aircraft and to produce crops in the field. The transport unit is a recording medium on which a harvester control program for controlling a harvester that harvests and transports the harvested product harvested by the harvest unit to the rear of the machine is recorded.
    A clogging determination function for determining whether or not the harvest transfer device is clogged, and a clogging determination function.
    A recording medium recording a harvester control program that realizes a reverse control function for reverse-driving the auger when it is determined by the jam determination function that the harvest transfer device is clogged, and a harvester control program that realizes a computer.
  11.  収穫部及び搬送部を有する収穫搬送装置を備え、前記収穫部は、収穫物を受け入れるヘッダと、回転駆動するオーガと、を含み、機体に対して昇降可能に構成されると共に、圃場の作物を収穫し、前記搬送部は、前記収穫部により収穫された収穫物を機体後方へ搬送する収穫機を制御する収穫機制御方法であって、
     前記収穫搬送装置が詰まっているか否かを判定する詰まり判定ステップと、
     前記詰まり判定ステップによって前記収穫搬送装置が詰まっていると判定された場合に前記オーガを逆転駆動させる逆転制御ステップと、を備える収穫機制御方法。
    It is equipped with a harvesting and transporting device having a harvesting section and a transporting section, and the harvesting section includes a header for receiving the harvested material and a rotary-driven auger, and is configured to be able to move up and down with respect to the aircraft and to produce crops in the field. The transport unit is a harvester control method for controlling a harvester that harvests and transports the harvested product harvested by the harvesting unit to the rear of the machine.
    A jam determination step for determining whether or not the harvest transfer device is jam, and a jam determination step.
    A harvester control method comprising a reverse rotation control step for reversely driving the auger when it is determined by the jam determination step that the harvest transfer device is clogged.
  12.  圃場を走行可能な走行装置と、
     圃場の作物を収穫する収穫装置と、
     前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出部と、
     前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更部と、が備えられ、
     前記検出部は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得可能に構成され、
     前記状態変更部は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定可能に構成されている収穫機。
    A traveling device that can travel in the field and
    A harvesting device that harvests crops in the field,
    A detection unit that detects the weed area where weeds are present mixed with the crop in front of the harvesting device.
    A state changing unit for changing the vehicle speed of the traveling device in the weed region to a lower speed side than the vehicle speed when traveling outside the weed region is provided.
    The detection unit is configured to be able to acquire at least one of the type of crop and the type of weed in the weed area.
    The state changing unit is a harvester configured to be able to determine the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the type of crop and the type of weed.
  13.  前記収穫装置によって収穫された作物を脱穀処理する脱穀部と、前記脱穀部の下方に設けられるとともに前記脱穀処理された脱穀処理物を受け止めて後方へ揺動搬送しながら前記脱穀処理物を収穫物と非収穫物とに選別する選別処理部と、を有する脱穀装置が備えられ、
     前記選別処理部は、前記脱穀処理物の搬送方向に沿って並べられた複数のチャフリップを有するとともに前記複数のチャフリップの姿勢を変更することで漏下開度を変更可能なチャフシーブを有し、
     前記状態変更部は、前記雑草領域で収穫された作物を選別する際に、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記チャフシーブの漏下開度を小さくするように構成されている請求項12に記載の収穫機。
    A threshing section for threshing the crops harvested by the harvesting device, and a threshing section provided below the threshing section, and the threshed product is harvested while receiving the threshed product that has been threshed and rocking and transporting it backward. It is equipped with a threshing device, which has a sorting processing unit for sorting and non-harvested products.
    The sorting processing unit has a plurality of chaflip arranged along the transport direction of the threshing processed product, and has a chaff sheave capable of changing the leakage opening degree by changing the posture of the plurality of chaflip. ,
    The state changing unit is configured to reduce the leakage opening degree of the chaff sheave according to at least one of the type of the crop and the type of the weed when selecting the crop harvested in the weed area. The harvester according to claim 12.
  14.  前記検出部は、前記作物の種類を取得可能に構成され、
     前記状態変更部は、前記収穫装置の前方に前記雑草領域が検出され、かつ、前記作物の種類が豆類であると、前記走行装置を停止させる請求項12または13に記載の収穫機。
    The detection unit is configured to be able to acquire the type of the crop.
    The harvester according to claim 12 or 13, wherein the state changing unit stops the traveling device when the weed area is detected in front of the harvesting device and the type of the crop is beans.
  15.  前記検出部は、前記作物の種類及び前記雑草の種類の両方を取得可能に構成され、
     前記状態変更部は、前記収穫装置の前方に前記雑草領域が検出され、かつ、前記作物の種類が豆類以外であると、前記雑草の種類に応じて前記走行装置の車速の低速側への変更度合いを決定する請求項12から14の何れか一項に記載の収穫機。
    The detection unit is configured to be able to acquire both the type of crop and the type of weed.
    When the weed area is detected in front of the harvesting device and the type of the crop is other than beans, the state changing unit changes the vehicle speed of the traveling device to the low speed side according to the type of the weed. The harvester according to any one of claims 12 to 14, wherein the degree is determined.
  16.  前記状態変更部は、前記雑草領域における単位面積当たりの前記雑草の量である雑草率に応じて前記走行装置の車速の低速側への変更度合いを決定する請求項12から15の何れか一項に記載の収穫機。 One of claims 12 to 15, wherein the state changing unit determines the degree of change of the vehicle speed of the traveling device to the low speed side according to the weed rate, which is the amount of the weeds per unit area in the weed area. The harvester described in.
  17.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御プログラムであって、
     前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出機能と、
     前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更機能と、をコンピュータに実現させ、
     前記検出機能は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得し、
     前記状態変更機能は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定する収穫機制御プログラム。
    It is a harvester control program that controls a harvester equipped with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    A detection function that detects weed areas where weeds are present in the crops in front of the harvesting device.
    A computer is provided with a state change function for changing the vehicle speed of the traveling device in the weed area to a speed lower than the vehicle speed when traveling outside the weed area.
    The detection function acquires at least one of the crop type and the weed type in the weed area.
    The state change function is a harvester control program that determines the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the type of crop and the type of weed.
  18.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、
     前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出機能と、
     前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更機能と、をコンピュータに実現させる収穫機制御プログラムを記録しており、
     前記検出機能は、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方を取得し、
     前記状態変更機能は、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いを決定する収穫機制御プログラムを記録した記録媒体。
    A recording medium that records a harvester control program that controls a harvester equipped with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    A detection function that detects weed areas where weeds are present in the crops in front of the harvesting device.
    A harvester control program that realizes a computer with a state change function for changing the vehicle speed of the traveling device in the weed region to a speed lower than the vehicle speed when traveling outside the weed region is recorded.
    The detection function acquires at least one of the crop type and the weed type in the weed area.
    The state change function is a recording medium recording a harvester control program that determines the degree of change of the vehicle speed of the traveling device to the low speed side according to at least one of the type of crop and the type of weed.
  19.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、が備えられた収穫機を制御する収穫機制御方法であって、
     前記収穫装置の前方の作物に混ざって雑草の存在する雑草領域を検出する検出ステップと、
     前記雑草領域において前記走行装置の車速を、前記雑草領域以外を走行する場合の車速よりも低速側に変更する状態変更ステップと、を備え、
     前記検出ステップにおいて、作物の種類と、前記雑草領域における前記雑草の種類と、の少なくとも一方が取得され、
     前記状態変更ステップにおいて、前記作物の種類と前記雑草の種類との少なくとも一方に応じて前記走行装置の車速の低速側への変更度合いが決定される収穫機制御方法。
     
    It is a harvester control method for controlling a harvester equipped with a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    A detection step for detecting a weed area in which weeds are present mixed with crops in front of the harvesting device.
    A state change step of changing the vehicle speed of the traveling device in the weed region to a lower speed side than the vehicle speed when traveling outside the weed region is provided.
    In the detection step, at least one of the crop type and the weed type in the weed area is acquired.
    A harvester control method in which in the state change step, the degree of change of the vehicle speed of the traveling device to the low speed side is determined according to at least one of the type of crop and the type of weed.
PCT/JP2021/023303 2020-06-23 2021-06-21 Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method WO2021261415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180035315.8A CN115666223A (en) 2020-06-23 2021-06-21 Harvester, harvester control program, recording medium having harvester control program recorded thereon, and harvester control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-107945 2020-06-23
JP2020-107948 2020-06-23
JP2020107948A JP7423442B2 (en) 2020-06-23 2020-06-23 harvester
JP2020107945A JP7423440B2 (en) 2020-06-23 2020-06-23 harvester

Publications (1)

Publication Number Publication Date
WO2021261415A1 true WO2021261415A1 (en) 2021-12-30

Family

ID=79281383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023303 WO2021261415A1 (en) 2020-06-23 2021-06-21 Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method

Country Status (2)

Country Link
CN (1) CN115666223A (en)
WO (1) WO2021261415A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336823A (en) * 1992-06-08 1993-12-21 Kubota Corp Auger type carrying part of whole culm charging type combine
US6247296B1 (en) * 1999-04-23 2001-06-19 Deere & Comapny Drive arrangement for the crop conveying and/or processing mechanism of a harvesting machine
WO2014156627A1 (en) * 2013-03-25 2014-10-02 ヤンマー株式会社 Combine
JP2020000123A (en) * 2018-06-28 2020-01-09 株式会社クボタ Harvester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336823A (en) * 1992-06-08 1993-12-21 Kubota Corp Auger type carrying part of whole culm charging type combine
US6247296B1 (en) * 1999-04-23 2001-06-19 Deere & Comapny Drive arrangement for the crop conveying and/or processing mechanism of a harvesting machine
WO2014156627A1 (en) * 2013-03-25 2014-10-02 ヤンマー株式会社 Combine
JP2020000123A (en) * 2018-06-28 2020-01-09 株式会社クボタ Harvester

Also Published As

Publication number Publication date
CN115666223A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US11044847B2 (en) Cutter head with automatic setting of the reel finger orientation
WO2019124174A1 (en) Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method
US9301446B2 (en) Arrangement and method for the anticipatory assessment of plants to be gathered with a harvesting machine
US11758847B2 (en) Residue quality assessment and performance system for a harvester
US11997947B2 (en) System and method for setting a profile of a header during a non-harvesting mode
WO2021261343A1 (en) Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium
JP2017169539A (en) Combine harvester
WO2020218464A1 (en) Harvester, obstacle determination program, recording medium on which obstacle determination program is recorded, obstacle determination method, agricultural work machine, control program, recording medium on which control program is recorded, and control method
WO2021261415A1 (en) Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method
WO2022123889A1 (en) Work vehicle, object state detection system, object state detection method, object state detection program, and recording medium in which object state detection program is recorded
JP7433145B2 (en) harvester
JP7423441B2 (en) harvester
JP7423440B2 (en) harvester
JP2019135953A (en) Work support system
JP2022002475A (en) Harvester
JP7423442B2 (en) harvester
WO2022185792A1 (en) Autonomous driving method, combine, and autonomous driving system
WO2022196116A1 (en) Autonomous driving method, combine, and autonomous driving system
WO2022071373A1 (en) Harvester
US20220022376A1 (en) Method and arrangement for controlling an operating parameter of a forage harvester
WO2022181074A1 (en) Harvester
WO2022136980A1 (en) Automation of an agricultural machine
JP2024084935A (en) Work vehicle and automatic driving control system for work vehicle
JP2021003026A (en) Work path creating system and combine
JPH10313652A (en) Supporting device for crop harvester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829984

Country of ref document: EP

Kind code of ref document: A1