WO2021261343A1 - Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium - Google Patents

Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium Download PDF

Info

Publication number
WO2021261343A1
WO2021261343A1 PCT/JP2021/022768 JP2021022768W WO2021261343A1 WO 2021261343 A1 WO2021261343 A1 WO 2021261343A1 JP 2021022768 W JP2021022768 W JP 2021022768W WO 2021261343 A1 WO2021261343 A1 WO 2021261343A1
Authority
WO
WIPO (PCT)
Prior art keywords
harvesting
height
field
crop
unit
Prior art date
Application number
PCT/JP2021/022768
Other languages
French (fr)
Japanese (ja)
Inventor
藤田敏章
瀬川卓二
木村憲司
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020107946A external-priority patent/JP2022002478A/en
Priority claimed from JP2020107944A external-priority patent/JP7433145B2/en
Priority claimed from JP2020107943A external-priority patent/JP2022002475A/en
Priority claimed from JP2020107949A external-priority patent/JP7423443B2/en
Priority claimed from JP2020107947A external-priority patent/JP7423441B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202180024574.0A priority Critical patent/CN115334867A/en
Publication of WO2021261343A1 publication Critical patent/WO2021261343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/02Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors
    • A01B63/10Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by hydraulic or pneumatic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/02Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having reciprocating cutters
    • A01D34/24Lifting devices for the cutter-bar
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/02Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having reciprocating cutters
    • A01D34/28Adjusting devices for the cutter-bar
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D57/00Delivering mechanisms for harvesters or mowers
    • A01D57/22Delivering mechanisms for harvesters or mowers for standing stalks
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D67/00Undercarriages or frames specially adapted for harvesters or mowers; Mechanisms for adjusting the frame; Platforms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/30Straw separators, i.e. straw walkers, for separating residual grain from the straw
    • A01F12/32Straw separators, i.e. straw walkers, for separating residual grain from the straw with shaker screens or sieves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/44Grain cleaners; Grain separators

Definitions

  • the present invention relates to a harvester, a harvester control system, a harvester control method, a harvester control program, and a recording medium in which a harvester control program is recorded.
  • a state changing unit in the document, a “cutting unit" in which the working state of the harvesting device (“cutting unit” in the document) can be changed by operating an actuator (“elevating drive unit” in the document).
  • a “control state switching unit” is provided.
  • An electronic control unit is provided in the harvesting device, and the state changing unit acquires the type of the harvesting device based on the communication between the electronic control unit of the harvester main body and the electronic control unit of the harvesting device, and the working state of the harvesting device. To change.
  • the harvester disclosed in Patent Document 1 is provided with a state changing unit (“control state switching unit” in the document) capable of changing the working state of the harvesting device (“cutting unit” in the document).
  • An electronic control unit is provided in the harvesting device, and a configuration is disclosed in which the type of the harvesting device can be acquired based on the communication between the electronic control unit of the harvester main body and the electronic control unit of the harvesting device.
  • the harvester disclosed in Patent Document 1 is provided with a height detection unit (“cutting height sensor” in the document) for detecting an uneven state of a field immediately after harvesting.
  • the height of the harvesting section (“cutting and transporting section” in the literature) to the ground is changed according to the unevenness of the field detected by the height detecting section.
  • the harvester disclosed in Patent Document 2 is provided with a cutting height sensor that detects an uneven state of a field after work while traveling.
  • the height of the harvesting device (“cutting and transporting unit” in the literature) to the ground is changed according to the unevenness of the field detected by the cutting height sensor.
  • the [first issue] corresponding to the above [first background technology] is as follows.
  • the crop condition of the field varies depending on the weather and the field. Therefore, if the configuration is such that not only the type of the harvesting device but also the crop state of the field can be acquired in real time, the working state of the harvesting device can be finely changed, and the harvesting accuracy of the harvesting device is improved.
  • the present invention is to provide a harvester capable of finely changing the working state of the harvester.
  • the [second issue] corresponding to the above-mentioned [second background technology] is as follows.
  • the harvester disclosed in Patent Document 1 it is common that a plurality of harvesting devices are used properly according to the type of harvested product, but one harvesting device can be used for as many types of crops as possible. It is desirable to be able to do it.
  • the height of the crop and the size of the harvest target contained in the crop are different. For this reason, if the harvesting device and the harvesting target are incompatible, the crop may spill into the field from the transporting route of the harvesting device, causing crop loss, or the harvesting device may be damaged in the transport path of the harvesting device.
  • An object of the present invention is to provide a harvester having a harvesting device capable of performing suitable harvesting work according to the type of crop.
  • the [third issue] corresponding to the above-mentioned [third background technology] is as follows.
  • the height detecting section is provided directly below the harvesting section, the raising and lowering control of the harvesting section is performed based on the uneven state of the field after harvesting. For this reason, the timing of raising and lowering control of the harvesting portion is delayed as compared with the configuration in which the uneven state of the field before harvesting is detected. For this reason, in a place where the unevenness of the field is severe, the control of raising and lowering the harvesting part is delayed, the tip of the harvesting part comes into contact with the ground of the field, and the harvesting part is soiled on the ground together with the crop. Etc. may also be picked up.
  • An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to the field condition after the work.
  • the [fourth problem] corresponding to the above-mentioned [fourth background technology] is as follows.
  • the harvester disclosed in Patent Document 2 has a configuration in which the ground height of the harvester is changed based on the uneven state of the field detected by the cutting height sensor. Since weeds and lodging crops exist in the field, it is possible that the optimum harvesting work may not be performed simply by changing the ground height of the harvesting device according to the unevenness of the field. For this reason, a harvester capable of changing the overall state of the harvesting work according to the state of various fields, not just the uneven state of the field, is desired.
  • An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to the field condition after the work.
  • the outer edge of the field provided so as to surround the field includes a ridge, a water supply / drainage pump, and the like. Then, when the harvester changes direction at the corner of the field, the harvesting part advances to a position overlapping the outer edge of the field in a plan view, and then the turning run is performed, so that efficient direction change can be easily performed. However, when the harvesting portion overlaps with the outer edge of the field in a plan view, it is necessary to prevent the harvesting portion from interfering with the outer edge of the field.
  • Patent Document 1 does not describe a configuration for preventing the harvesting portion from interfering with the outer edge of the field when the harvesting portion overlaps with the outer edge of the field in a plan view.
  • An object of the present invention is to provide a harvester capable of preventing the harvesting section from interfering with the outer edge of the field.
  • the harvester according to the present invention has a traveling device capable of traveling in the field, a harvest header that is supported by the machine body so as to be able to move up and down and accepts the planted crop in front, and a scraping that scrapes the planted crop by rotary drive.
  • a harvesting device that has a reel and harvests crops in the field, an actuator that operates the harvesting device, a crop detector that detects the height of the planted crop, and the actuator according to the height of the planted crop. It is characterized by being provided with a state changing unit capable of changing the working state of the harvesting apparatus by operating the harvesting apparatus.
  • the height of the planted crop is detected by the crop detection unit as the crop state in the field. That is, the crop detection unit can be configured to detect the height of the planted crop in real time, which makes it possible to finely change the working state of the harvesting device. As a result, the harvesting accuracy of the harvesting device is improved, and a harvesting machine capable of finely changing the working state of the harvesting device is realized.
  • the above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems.
  • the control system in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device.
  • the above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method.
  • the control method in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device.
  • a crop detection step for detecting the height of a planted crop which is a control method for the harvester, and a state change for changing the working state of the harvesting device by operating the actuator according to the height of the planted crop. It is characterized by having a step.
  • the above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • the control program in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device.
  • a crop detection function that detects the height of the planted crop and a state change function that changes the working state of the harvester by operating the actuator according to the height of the planted crop.
  • the working state includes the harvest height of the harvesting apparatus.
  • the working state includes the height position of the scraping reel.
  • the height position of the scraping reel can be finely changed based on the height of the planted crop, so the height at which the planted crop is scraped is suitable.
  • the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
  • the working state includes the front-rear position of the suction reel.
  • the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
  • the working state includes the rotation speed of the scraping reel.
  • the crop height in the field changes for each area of the field, for example, due to the presence of lodging crops.
  • the harvesting device can accurately harvest the planted crop, and the loss of the crop in the harvesting device is reduced.
  • the working state includes the working height of the harvest header.
  • the working height of the harvest header can be changed based on the height of the planted crop, so the harvest height can be finely changed. This makes it possible to reduce the threshing load and improve the sorting accuracy when the crop is threshed.
  • the scraping reel is provided with a tine that scrapes into the planted crop, and that the working state includes the rotation locus of the tine.
  • Tyne can suitably scrape the planted crop based on the height of the planted crop.
  • the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
  • the crop detection unit detects the height of the planted crop based on the image pickup data captured by the image pickup device.
  • the state changing unit is configured to be able to change the vehicle speed of the traveling device in addition to the working state of the harvesting device.
  • the harvesting device can harvest the planted crop with higher accuracy, and the loss of the crop in the harvesting device is further reduced.
  • the crop detection unit is configured to be able to detect a fallen crop based on the height of the planted crop. Further, in the present invention, it is preferable that the crop detection unit is configured to detect a fallen crop based on the height of the planted crop and the size of the area where the planted crop spreads at the same height. be.
  • the height of the planted crop can be detected and the fallen crop can be detected by the crop detection unit, even if the detection unit is separate from the crop detection unit and is not provided with a dedicated detection unit for detecting the fallen crop. , Both are possible.
  • the state changing portion positions the suction reel in the lowermost region and the frontmost region when the collapsed crop is detected.
  • the scraping reel has a suitable scraping action on the fallen crop, so that the loss of the fallen crop is reduced.
  • the state changing unit increases the rotation speed of the suction reel and decelerates the vehicle speed of the traveling device when the collapsed crop is detected.
  • the suction reel acts to scrape the fallen crops while the aircraft slowly moves forward, so the loss of the fallen crops is reduced.
  • the [second solution] corresponding to the above-mentioned [second problem] is as follows. That is, the harvester according to the present invention is supported by the machine body so as to be able to move up and down, a harvesting device for harvesting crops in the field, a crop detection unit for acquiring the type of crop to be worked on by the harvesting device, and the type of crop. It is characterized by being provided with a state changing unit for changing the vertical width of the transport path in the harvesting apparatus according to the above.
  • the transport path of the harvester since the vertical width of the transport path in the harvester is changed according to the type of crop, the transport path of the harvester tends to be compatible with the crop. Therefore, it is possible to reduce the risk that the crop will spill into the field from the transport route of the harvesting device and the crop will be lost, or the harvest target will be damaged in the transport path of the harvesting device.
  • one harvesting device can be used for as many types of crops as possible, and a harvesting device capable of performing suitable harvesting work according to the type of crop is realized.
  • the "type of crop" in the present invention may include the amount of crop.
  • the above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems.
  • the control system in this case is a crop detection system that is supported by the machine body so as to be able to move up and down and has a harvesting device for harvesting crops in the field, and obtains the type of crop to be worked on by the harvesting device. It is characterized by being provided with a section and a state changing section for changing the vertical width of the transport path in the harvesting apparatus according to the type of the crop.
  • the above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method.
  • the control method in this case is a control method of a harvester having a harvesting device that is supported by the machine body so as to be able to move up and down and harvests crops in the field, and is a crop detection method for acquiring the type of crop to be worked on by the harvesting device. It is characterized by comprising a step and a state changing step of changing the vertical width of the transport path in the harvesting apparatus according to the type of the crop.
  • the present invention can also be subject to control programs.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • the control program is supported by the machine body so as to be able to move up and down, and in the control program of the harvester having a harvesting device for harvesting the crops in the field, the crop detection function for acquiring the type of the crop to be worked on by the harvesting device is provided. It is characterized in that a computer is made to execute a state changing function of changing the vertical width of a transport path in the harvesting apparatus according to the type of the crop.
  • the harvesting device includes a harvesting header that receives crops, a lateral feed auger that is rotationally driven and collects the harvested crops in the central region in the left-right direction and sends them to a rear transport device, and the lateral feed auger is raised and lowered.
  • a first actuator to be operated is provided, and the state changing unit operates the first actuator to set the vertical width of the transport path to the lower end portion of the lateral feed auger and the bottom plate of the harvest header. It is preferable to change the vertical width of the gap between.
  • the horizontal feed auger will not be able to perform a sufficient lateral feed action on the harvested crop, and the crop may spill into the field. Further, if the vertical width of the gap between the lower end portion of the horizontal feed auger and the bottom plate of the harvest header is too small, the crop target may be sandwiched between the horizontal feed auger and the bottom plate and crushed. In this configuration, the vertical width of the gap between the lower end of the horizontal feed auger and the bottom plate of the harvest header is changed by the first actuator, so that the transport path of the harvester is compatible with the crop.
  • the harvesting apparatus is provided with a harvesting header for receiving crops, a scraping reel for rotationally driving and scraping crops into the harvesting header, and a second actuator for raising and lowering the scraping reels. It is preferable that the state changing portion changes the vertical width of the gap between the lower end portion of the scraping reel and the bottom plate of the harvest header as the vertical width of the transport path by operating the second actuator. be.
  • the vertical width of the gap between the lower end of the scraping reel and the bottom plate of the harvesting header is changed by the second actuator, so that the transport path of the harvesting device is compatible with the crop.
  • a third actuator for raising and lowering the harvesting device is provided, and the state changing unit is configured to be able to change the harvest height of the harvesting device according to the type of the crop by operating the third actuator. It is preferable to have.
  • the harvest height of the harvesting device is changed according to the type of crop, so the crop can be harvested efficiently and the risk of clogging of the transport route is reduced. Further, in this configuration, the necessary part of the crops in the field is harvested by the harvesting device, and the excess part of the crops in the field is not harvested by the harvesting device and does not enter the transport route. Therefore, it is possible to reduce the threshing load and improve the sorting accuracy.
  • the harvester according to the present invention has a traveling device capable of traveling in the field, a harvesting section that is supported by the machine body so as to be able to move up and down to harvest crops in the field, an actuator that raises and lowers the harvesting section, and the harvesting section.
  • the non-contact height detection unit that detects the height of the unevenness of the field in front of the harvesting part, and the ground height of the harvesting part are determined based on the height of the unevenness, and the drive of the actuator is controlled to control the driving of the actuator. It is characterized by being equipped with a harvest height control unit that automatically changes the ground height of the harvest unit.
  • the non-contact height detection unit detects the height of the unevenness of the field in front of the harvesting unit. Therefore, the timing of raising / lowering control of the harvesting section can be made faster than in a configuration in which the height detecting section is provided directly under the harvesting section to detect the uneven state of the field after harvesting. Therefore, even in a place where the unevenness of the field is severe, the height of the harvesting portion to the ground can be automatically changed without delaying the elevating control of the harvesting portion. Further, since the height detection unit is a non-contact type, there is no wear due to contact as compared with the case where the height detection unit is a contact type, and the life can be extended. As a result, a harvester capable of performing suitable harvesting work according to the field condition after the work is realized.
  • the present invention can also be subject to control systems.
  • the control system includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section.
  • It is a control system of the harvester having a non-contact height detection unit that detects the height of the unevenness of the field in front of the harvesting part, and the ground height of the harvesting part based on the height of the unevenness.
  • the harvest height control unit is provided, which controls the drive of the third actuator to automatically change the ground height of the harvest unit.
  • the control method includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section.
  • a control method of a harvester having a height detection step of detecting the height of unevenness of a field in front of the harvesting part by a non-contact height detecting part, and the harvesting based on the height of the unevenness. It is characterized by comprising a harvest height control step that determines the ground height of the portion and controls the drive of the third actuator to automatically change the ground height of the harvest portion.
  • the present invention can also be subject to control programs.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • the control program includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section.
  • the height detection function of detecting the height of the unevenness of the field in front of the harvesting part by the non-contact height detecting part, and the height of the harvesting part based on the height of the unevenness is characterized by having a computer execute a harvest height control function that determines the ground height and controls the drive of the third actuator to automatically change the ground height of the harvesting portion.
  • the height detecting unit detects the height of the unevenness based on the image captured by the image pickup device.
  • a non-contact height detection unit that can detect the height of unevenness in the field is realized by analyzing the captured image.
  • the height detecting unit detects the height of the unevenness based on the distance information obtained by the optical ranging device.
  • a non-contact height detection unit that can detect the height of unevenness in the field is realized by analyzing the distance information.
  • the harvesting section is provided with a harvesting header that accepts the planted crop in front and a cutting blade that is supported by the harvesting header and cuts the planted crop. It is preferable to detect the height of the unevenness on the front side of the cutting blade. Further, in the present invention, it is preferable that a divider is provided at the end position of the tip of the harvest header in the harvest width direction, and the height detecting portion detects the height of the unevenness on the front side of the divider. ..
  • the height detecting unit detects the ridge height as the height of the unevenness.
  • the tip portion of the harvesting portion may come into contact with the upper surface portion of the ridge R, and the harvesting portion may pick up the soil of the ridge R together with the crop.
  • the harvest height control unit can automatically change the ground height of the harvest unit so that the harvest unit does not come into contact with the upper surface portion of the ridge R. As a result, the efficiency of the harvesting work is improved in the field where the ridge R is formed.
  • a plurality of the unevennesses are arranged in parallel over the working width of the harvesting section, the height detecting section is configured to be able to detect the height of the plurality of unevennesses, and the harvesting height control section is configured. It is preferable to determine the ground height of the harvesting portion based on the highest unevenness among the plurality of unevenness.
  • the harvest height control unit can automatically change the ground height of the harvest unit so that the harvest unit does not come into contact with any of the plurality of irregularities. This improves the efficiency of the harvesting work in the field.
  • a harvest tilt changing mechanism capable of rolling the harvesting section to change the left / right tilt of the harvesting section
  • the harvest height control section is said to be within the range of the harvest width of the harvesting section.
  • the optimum harvest height for the planted crop may differ for each of the plurality of irregularities.
  • the distance between the lower end of the harvesting section and each of the plurality of irregularities is as short as possible.
  • the left-right tilt of the harvesting portion is changed by the harvest tilt changing mechanism according to the height of the unevenness, so that the distance between each of the plurality of irregularities and the lower end of the harvesting portion can be adjusted. Will be easier.
  • the harvesting inclination changing mechanism capable of changing the left-right inclination of the harvesting part by rolling the harvesting part is provided, and the harvesting height control part is described so that the harvesting part is in a horizontal posture. It is preferable to let the harvest tilt changing mechanism change the left and right tilt of the harvesting portion.
  • the harvesting part is kept in a horizontal state, so that the posture of the harvesting part becomes stable, for example, in a field with severe unevenness.
  • a positioning unit that outputs positioning data indicating the position of the machine and a storage unit that can store the height of the unevenness in association with the positioning data are provided, and the height detecting unit is a traveling device. Is configured to be able to detect the first height, which is the height of the unevenness in the unharvested region adjacent to the left and right outer sides of the harvest width of the harvesting portion, when the vehicle travels in one direction. , The first height is stored in association with the positioning data, and the harvest height control unit directs the traveling device in the direction opposite to the one direction while the unharvested area is located within the range of the harvest width.
  • the height of the harvesting section to the ground is determined based on the second height, which is the height of the unevenness detected by the height detecting section, and the first height stored in the storage section. It is preferable to determine.
  • the harvest height control unit may not be able to suitably change the ground height of the harvest unit. According to this configuration, the harvester travels in the area adjacent to the unharvested area in the direction opposite to the one direction before the harvester travels in one direction in the unharvested area where the blind spot area exists.
  • the height detection unit detects the height of the unevenness in the unharvested region from the opposite direction, and the height of the detected unevenness is stored as the first height, so that the height of the unevenness in the blind spot region Is obtained as the first height.
  • the height detecting unit can detect the height of the unevenness in the blind spot region, and the harvest height control unit can suitably change the height of the harvesting unit to the ground.
  • the harvester according to the present invention includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field, a field condition detecting unit for detecting the field state after work while traveling, and a post-working device. It is characterized by being provided with a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state.
  • the state of the field after harvesting may be various states such as the presence of residual crops, but according to the present invention, the field state detection unit detects the field state after various operations. Further, not only the harvesting device but also the traveling device is configured to be changeable according to the field condition after the work, so that the overall state of the harvesting work can be changed. As a result, a harvester capable of performing suitable harvesting work according to the field condition after the work is realized.
  • the above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems.
  • the control system in this case is a control system of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting the crops in the field, and the field state after the work while being operated by the harvester. It is characterized by being provided with a field state detecting unit for detecting the above, and a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state after the work. do.
  • the above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method.
  • the control method in this case is a control method of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting the crops in the field, and the field state after the work while the harvester is in operation. It is characterized by including a field state detecting step for detecting the above, and a state changing step for changing at least one working state of the traveling device and the harvesting device according to the field state after the work.
  • the present invention can also be subject to control programs.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • the control program is a control program of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting crops in the field, and detects the field state after the work while the harvester is running the work. It is characterized in that a computer is made to execute a field state detecting function for changing a working state and a state changing function for changing at least one working state of the traveling device and the harvesting device according to the field state after the work.
  • the field state detection unit detects the harvest trace after the harvesting operation by the harvesting device, and the state changing unit determines that the ground height of the harvesting device is too high based on the harvesting trace. , It is preferable to change the height of the harvesting device to the ground to be low.
  • the crop height of each crop changes depending on the condition of each crop, so if the ground height of the harvesting device is too high, the harvesting device may not be able to harvest the crop appropriately.
  • the state of each crop is detectable based on the harvest trace, so even if the height of the harvesting device to the ground is too high, the harvesting device suitablely harvests the crop. can.
  • the harvesting apparatus is provided with a harvesting header for receiving the planted crop in front and a scraping reel for scraping the planted crop, and the field state detecting unit harvests after the harvesting operation by the harvesting apparatus. It is configured to be able to detect the remaining crops left untreated, and when the remaining crops are detected by the field condition detecting unit, the traveling device is moved backward by a preset distance, and the said The vertical position of the harvest header is positioned in the lowermost region, the position of the scraping reel is positioned in the lowermost region and the frontmost region, and the vehicle speed of the traveling device is set to the residual crop after the completion of the reverse movement. It is preferable to advance the traveling device in a state where the vehicle speed is decelerated from the vehicle speed before the detection.
  • the field condition detection unit may erroneously detect that the ground of the field is raised by the thickness of the residual crops.
  • the harvesting device is unnecessarily raised and operated according to the thickness of the remaining crop, and there is a risk that the loss of the crop will increase.
  • the field condition detection unit can detect the residual crop, the condition of the harvesting device is changed so as to be suitable for harvesting the residual crop. Further, in this configuration, after the traveling device moves backward, the state of the harvesting device is changed, and the traveling device moves forward again, that is, so-called retries of the harvesting work are automatically performed. As a result, the remaining crops are harvested without being stepped on by the traveling device.
  • the field state detection unit detects the field state immediately after the harvesting apparatus works as the field state after the work.
  • the state changing unit can quickly change the working state of at least one of the traveling device and the harvesting device based on the field state immediately after the work.
  • a dust sending valve that guides the processed crops harvested by the harvesting apparatus to the rear, and a threshing section for threshing the treated crops and a threshing section below the threshing section are provided and the threshing process is performed.
  • a sorting processing unit that receives the treated crop and swings it backward to sort the treated crop into a harvested product and a non-harvested product, and to sort the treated crop into the harvested product and the non-harvested product.
  • the field condition detection unit is configured to be able to detect the harvested product discharged from at least one of the threshing unit and the sorting processing unit. When the harvested product is detected by the field condition detection unit, the state changing unit controls at least one of the threshing unit, the sorting processing unit, and the Karami, and determines the vehicle speed of the traveling device. It is preferable to control it.
  • the field condition detection unit can detect the crops discharged from at least one of the threshing part and the sorting processing part, the ratio of crop loss is evaluated based on the discharged harvests.
  • Configuration is possible. That is, in the present configuration, the state changing unit is the threshing unit so that the crop loss in the harvested product discharged from at least one of the threshing unit and the sorting processing unit is reduced based on the detection of the field condition detection unit. It is possible to change the state of each of the sorting processing unit and the wall insert, and the vehicle speed. As a result, the loss of crops due to the operating states of the traveling device, the threshing section, the sorting processing section, and the wall insert is reduced.
  • the field state detection unit is an image pickup device that captures an image of the field state after the work.
  • the feature of the present invention is to acquire information on the outer edge portion indicating the three-dimensional shape of the harvesting portion that is configured to be able to move up and down with respect to the machine and harvests the crops in the field and the outer edge portion of the field that is provided so as to surround the field.
  • the harvesting part overlaps with the outer edge of the field in a plan view as the aircraft travels, the harvesting part does not interfere with the outer edge of the field based on the outer edge information.
  • the raising and lowering of the harvesting portion is automatically controlled so that the harvesting portion does not interfere with the outer edge of the field according to the three-dimensional shape of the outer edge of the field. This makes it possible to realize a harvester that can prevent the harvesting portion from interfering with the outer edge of the field.
  • the above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems.
  • the control system in this case is a control system for a harvester having a harvesting section for harvesting crops in the field while being able to move up and down with respect to the machine, and is a three-dimensional structure of the outer edge of the field provided so as to surround the field.
  • the acquisition unit that acquires the outer edge portion information indicating the shape and the harvesting portion overlap with the outer edge portion of the field in a plan view as the harvester runs the harvesting portion is based on the outer edge portion information. It is characterized by being provided with an elevating control unit that automatically controls the elevating and lowering of the harvesting unit so that the unit does not interfere with the outer edge of the field.
  • the present invention can also be subject to the control method.
  • the control method is a control method for a harvester having a harvesting part that is configured to be able to move up and down with respect to the machine and harvests crops in the field, and is a three-dimensional structure of the outer edge of the field provided so as to surround the field.
  • the harvesting portion overlaps with the field outer edge portion in a plan view due to the acquisition step of acquiring the outer edge portion information indicating the shape and the traveling of the harvester, the harvesting is performed based on the outer edge portion information. It is characterized by comprising an elevating control step that automatically controls the elevating and lowering of the harvesting part so that the part does not interfere with the outer edge of the field.
  • the present invention can also be subject to control programs.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • the control program is a control program for a harvester that is configured to be able to move up and down with respect to the machine and has a harvesting section for harvesting crops in the field.
  • the harvesting portion overlaps with the field outer edge portion in a plan view due to the acquisition function of acquiring the indicated outer edge portion information and the traveling of the harvester, the harvesting portion is based on the outer edge portion information. It is characterized by having a computer execute an elevating control function that automatically controls the elevating and lowering of the harvesting portion so as not to interfere with the outer edge of the field.
  • the elevating control unit controls the elevating and lowering of the harvesting unit so that the lower the above-ground height of the field outer edge is, the lower the above-ground height of the harvesting unit is.
  • the elevating control unit When the elevating control unit is configured to raise the harvesting part to the highest position regardless of the ground clearance of the field outer edge when the harvesting part overlaps the field outer edge in a plan view. It is possible to prevent the harvesting part from interfering with the outer edge of the field. However, in this case, when the harvesting portion overlaps with the outer edge of the field in a plan view, it is necessary to start raising the harvesting portion at a relatively early stage. As a result, the position of action of the harvesting part on unharvested crops tends to be higher than the appropriate height.
  • the harvesting part when the crop in the field is a grain and the harvesting part has a cutting device for cutting the culm, when the harvesting part overlaps with the outer edge of the field in a plan view, it is harvested at a relatively early stage. When you start to raise the part, the cutting height tends to be higher than the appropriate height.
  • the ground clearance of the harvesting part when the harvesting part overlaps with the outer edge of the field in a plan view becomes the minimum necessary according to the above-ground height of the outer edge of the field.
  • the configuration can be realized. As a result, it is possible to realize a harvester that can easily avoid a situation in which the position of action of the harvesting portion on unharvested crops becomes higher than the appropriate height.
  • the elevating control unit controls the elevating and lowering of the harvesting unit so that the separation distance between the harvesting unit and the outer edge of the field is maintained wider than a predetermined value. be.
  • the present invention includes a traveling control unit that controls the traveling of the machine body so that the harvesting portion does not overlap the field outer edge portion in a plan view when the ground clearance of the field outer edge portion is higher than a predetermined height. Is suitable.
  • the harvesting section When the ground clearance of the outer edge of the field is relatively high, when the harvesting section overlaps the outer edge of the field in plan view, the harvesting section may start to rise at a relatively early stage under the control of the elevating control section. is assumed. As a result, the position of action of the harvesting part on unharvested crops tends to be higher than the appropriate height.
  • the peripheral harvesting run which is a running along the outer edge of the field, can be executed at the outermost peripheral portion of the field, and the outer edge of the field is executed during the peripheral harvesting run.
  • a detector that detects the three-dimensional shape of the part of the field adjacent to the area where the crop has been harvested, and an outer edge map that shows the distribution of the three-dimensional shape of the outer edge of the field based on the detection result of the detection unit. It is preferable that the acquisition unit acquires the outer edge map, and the elevating control unit controls the elevating of the harvesting unit based on the outer edge map.
  • the detection unit detects the three-dimensional shape of the part of the outer edge of the field adjacent to the area where the crop has been harvested in the field. Therefore, when the detection unit detects the three-dimensional shape of the outer edge of the field, it is unlikely that the detection will be hindered by the crop. As a result, the map generator can generate an outer edge map with good accuracy. As a result, the accuracy of the elevating control of the harvesting section by the elevating control section tends to be good.
  • the peripheral harvesting run which is a run performed along the outer edge of the field at the outermost periphery of the field, is configured to be feasible, and the acquisition section has a three-dimensional shape of the outer edge of the field.
  • a detection unit that acquires a map of the outer edge portion showing the distribution and detects the three-dimensional shape of the portion of the outer edge portion of the field adjacent to the region where the crop has been harvested in the field during the execution of the surrounding harvesting run.
  • the elevating control unit includes a map updating unit that updates the outer edge map based on the detection result of the detection unit, and the elevating control unit elevates the harvesting unit based on the outer edge map updated by the map updating unit. It is preferable to control.
  • the outer edge map is created by the map update unit. Is updated.
  • the elevating control of the harvesting unit by the elevating control unit tends to be appropriate.
  • the detection unit detects the three-dimensional shape of the portion of the outer edge of the field adjacent to the area where the crop has been harvested in the field. Therefore, when the detection unit detects the three-dimensional shape of the outer edge of the field, it is unlikely that the detection will be hindered by the crop. As a result, the accuracy of the outer edge map updated by the map update unit tends to be good. As a result, the accuracy of the elevating control of the harvesting section by the elevating control section tends to be good.
  • FIG. 1 It is a figure which shows the elevating control of a harvesting part according to the height above the ground of the field outer edge part. It is a figure which shows the example of the case where the running of the machine body is controlled so that the harvesting part does not overlap with the outer edge part of a field in a plan view. It is a figure which shows the example of the case where the running of the machine body is controlled so that the harvesting part does not overlap with the outer edge part of a field in a plan view. It is a block diagram which shows the structure about the control part in another Embodiment of 3rd Embodiment. It is a figure which shows an example of the outer edge part map before being updated by the map update part in another embodiment of 3rd Embodiment.
  • FIG. 1 when the front-rear direction of the machine 1 is defined, it is defined along the traveling direction of the machine in the working state.
  • the direction indicated by reference numeral (F) in FIGS. 1 and 2 is the front side of the aircraft, and the direction indicated by reference numeral (B) in FIGS. 1 and 2 is the rear side of the aircraft.
  • the direction indicated by the reference numeral (U) in FIG. 1 is the upper side of the machine, and the direction indicated by the reference numeral (D) in FIG. 1 is the lower side of the machine body.
  • FIG. 2 is the left side of the aircraft, and the direction indicated by the reference numeral (R) in FIG. 2 is the right side of the aircraft.
  • R the direction indicated by the reference numeral
  • the left-right direction of the aircraft 1 is defined as viewed from the direction of travel of the aircraft.
  • FIGS. 1 and 2 a normal combine, which is a form of a harvester, is provided with a machine 1 and a pair of left and right crawler type traveling devices 11.
  • the machine body 1 is provided with a boarding unit 12, a threshing device 13, a grain tank 14, a harvesting device 15, a transport device 16, and a grain discharging device 18.
  • the traveling device 11 is provided at the lower part of the combine.
  • the traveling device 11 has a pair of left and right crawler traveling mechanisms, and the combine can travel in the field by the traveling device 11.
  • an elevating device is provided for each of the left and right crawler traveling mechanisms.
  • the elevating device also commonly known as "Monroe" is configured so that the height position of the machine body 1 with respect to each of the left and right crawler traveling mechanisms can be changed separately. From this, the elevating device is configured to be able to roll the machine 1 by changing the height position of the machine 1 with respect to each of the left and right crawler traveling mechanisms.
  • the boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1.
  • a passenger of the combine harvester and an observer who monitors the work of the combine harvester can board the boarding unit 12. Usually, the passenger and the observer are also used. When the passenger and the observer are different persons, the observer may monitor the work of the combine from outside the combine.
  • a drive engine (not shown) is provided below the boarding section 12.
  • the grain discharge device 18 is connected to the rear lower portion of the grain tank 14.
  • the harvesting device 15 harvests the crops in the field.
  • the crop is, for example, a planted culm such as rice, but may be soybean, corn, or the like.
  • the combine can be run by the traveling device 11 while harvesting the crops in the field by the harvesting device 15.
  • the transport device 16 is provided adjacent to the rear side of the harvest device 15.
  • the harvesting device 15 and the transport device 16 are supported on the front portion of the machine body 1 so as to be able to move up and down.
  • the harvesting device 15 and the transport device 16 are integrally swung up and down by being moved up and down (swinging operation) by the header actuator 15H capable of expanding and contracting.
  • the header actuator 15H is the "third actuator" and the "actuator" of the present invention.
  • the harvesting device 15 is provided with a harvesting header 15A, a scraping reel 15B, a horizontal feed auger 15C, and a hair clipper-shaped cutting blade 15D. Dividers are provided at both ends (end positions) of the tip of the harvest header 15A in the harvest width direction.
  • the harvest header 15A divides the front planted crop into a harvest target and a non-harvest target, and accepts the harvest target among the front planted crops.
  • the scraping reel 15B is located above the harvest header 15A.
  • the reel support arm 15K is swingably supported by the harvest header 15A, and the reel support arm 15K is swing-operated by a reel actuator 15J capable of expanding and contracting.
  • the rotation shaft core portion of the suction reel 15B is supported by the free end region of the reel support arm 15K. For this reason, the suction reel 15B is configured to be able to swing up and down by the expansion and contraction operation of the reel actuator 15J.
  • the scraping reel 15B is configured to be rotatable around the lateral axis of the machine while being supported by the reel support arm 15K. Further, the rotation shaft core portion of the suction reel 15B is configured to be slidable along the front-rear direction in the free end region of the reel support arm 15K. That is, the scraping reel 15B is configured to be swingable up and down with respect to the harvest header 15A, and is configured to be repositionable back and forth with respect to the harvest header 15A.
  • the scraping reel 15B is equipped with a plurality of tines 15T, and the tines 15T act on the planted crops. When the planted crop is harvested from the field, the scraping reel 15B scrapes the portion of the planted crop near the tip with the tine 15T toward the rear.
  • the cutting blade 15D is supported by the harvest header 15A.
  • the cutting blade 15D cuts the root side of the planted crop that has been scraped backward by the scraping reel 15B.
  • the lateral feed auger 15C is rotationally driven to the lateral axis of the machine body, laterally feeds the harvested crops cut by the cutting blade 15D to the middle side in the left-right direction, collects them, and sends them to the rear transport device 16.
  • the lateral feed auger 15C is configured so that the position can be changed in the vertical direction.
  • the ground height H1 (see FIG. 5) of the harvest header 15A is set high, and the planted crop may be harvested only on the tip side. At this time, it is necessary to cut the culm after harvesting so that the culm is not left in the field in a tall state. Therefore, a residual culm processing unit 19 is provided behind the harvesting device 15.
  • the residual culm processing unit 19 has a horizontally long hair clipper-shaped cutting blade extending in the left-right direction of the machine, and the cutting blade reciprocates left and right to cut the residual culm.
  • the crops harvested by the harvesting device 15 are transported to the threshing device 13 by the transport device 16.
  • the harvested crop is threshed by the threshing device 13.
  • the threshing device 13 has a threshing unit 13A, a sorting processing unit 13B, and a wall insert 13C.
  • the threshing section 13A is shown as a handling cylinder in FIG. 1, the handling chamber for accommodating the handling cylinder, the dust feed valve arranged at the upper part of the handling chamber, and the periphery of the lower region of the handling cylinder.
  • the dust valve guides the processed crop harvested by the harvesting device 15 to the rear.
  • the threshing unit 13A threshes the crops transported by the transport device 16, that is, the processed crops to be processed by the threshing device 13.
  • the sorting processing unit 13B is provided below the threshing unit 13A, and while receiving the processed crops that have been threshed by the threshing unit 13A and rocking and transporting them backward, the processed crops are sieved into harvested and non-harvested products. do.
  • the sorting processing unit 13B is provided with a chaf sheave, and the chaf sheave has a plurality of chaf flips.
  • Each of the chaflip extends laterally to the aircraft.
  • the plurality of chaflips are arranged along the transport direction (front-back direction) in which the processed crop is transported, and each of the plurality of chaflips is arranged in an inclined posture toward the rear end side and diagonally upward.
  • the leakage opening of each chaflip can be changed.
  • the fact that the leakage opening can be changed means that the tilted posture is changed.
  • the sorting processing unit 13B has a plurality of chaflip arranged along the transport direction of the threshing processed product, and has a chaff sheave capable of changing the leakage opening degree by changing the posture of the plurality of chaflip.
  • the wall insert 13C supplies the sorting wind to the sorting processing unit 13B.
  • the grains obtained by the threshing process are stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
  • the grain discharging device 18 is configured to be swingable around the vertical axis core at the rear of the machine body. That is, the free end portion of the grain discharge device 18 protrudes to the lateral outside of the machine body 1 so that the crop can be discharged, and the free end portion of the grain discharge device 18 is within the range of the machine width of the machine body 1.
  • the grain discharging device 18 is configured so as to be switchable between the stored storage state and the positioned storage state. When the grain discharging device 18 is in the stored state, the free end portion of the grain discharging device 18 is located on the front side of the boarding portion 12 and above the harvesting device 15.
  • a first image pickup device 21A and a distance measuring sensor 22 are provided on the front upper part of the boarding section 12.
  • the first image pickup device 21A is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera.
  • the first image pickup device 21A is the "imaging device" of the present invention.
  • the first imaging device 21A is provided at the front of the machine 1 and at a position higher than the harvesting device 15 so as to look down on the unharvested crops in front of the harvesting device 15. That is, the first image pickup apparatus 21A can take an image from a viewpoint looking down on the front in the traveling direction.
  • the image pickup field of view of the first image pickup apparatus 21A in the front-rear direction is, for example, 15 meters or 25 meters.
  • the imaging data acquired by the first imaging device 21A is converted into imaging data and sent to the combine control system.
  • the first image pickup device 21A images the field at the time of harvesting work.
  • Various objects exist as imaging targets in the field.
  • the combine control system has a function of identifying a specific object from the image pickup data sent from the first image pickup device 21A. As such specific objects, in FIGS. 1 and 2, the normal planted grain group indicated by the reference numeral Z0, the weed group indicated by the reference numeral Z1, and the collapsed crop group indicated by the reference numeral Z2. , Are shown schematically.
  • the distance measuring sensor 22 is configured to be capable of measuring the distance between the image pickup target and the aircraft 1 in the field existing in front of the aircraft 1.
  • the distance measuring sensor 22 may be a sonar, a radar (millimeter wave), or a LIDAR (for example, a laser scanner or a laser radar). If the distance measuring sensor 22 is a sonar, it is advantageous in terms of cost. If the range-finding sensor 22 is a millimeter-wave radar, it is possible to perform measurements that are not easily affected by the weather, which is advantageous in terms of cost.
  • the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions.
  • the distance measuring sensor 22 is LIDAR, the separation distance can be measured accurately.
  • the LIDAR is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of distance measurement than the type of LIDAR that scans in two dimensions.
  • the range-finding sensor 22 may be configured by a combination of sonar, radar, and LIDAR.
  • the second imaging device 21B is provided at the lower rear portion of the harvesting device 15.
  • the second image pickup device 21B is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera.
  • the first image pickup device 21A is the "imaging device" of the present invention.
  • the second image pickup device 21B can image the harvest trace area S (see FIG. 8) behind the harvest device 15. Therefore, the second image pickup device 21B is configured to be able to detect the field state after the work while the work is running.
  • a satellite positioning module 80 is provided on the ceiling of the boarding section 12.
  • the satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the position of the own vehicle.
  • GNSS Global Navigation Satellite System
  • an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 80.
  • the inertial navigation unit may be arranged at a place different from the satellite positioning module 80 in the combine.
  • the control unit 30 shown in FIG. 3 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs.
  • the control unit 30 includes a first crop detection unit 31A, a second crop detection unit 31B, a state determination unit 32, a storage unit 33, a notification unit 34, a travel control unit 35, and a work control unit 36. It is prepared.
  • the first crop detection unit 31A is the "crop detection unit” of the present invention.
  • the second crop detection unit 31B is the "field state detection unit” of the present invention.
  • the state determination unit 32 is the "state change unit” of the present invention.
  • the height position information output from the unit 23, the height position information output from the reel height detection unit 24, and the height position information output from the auger height detection unit 25 are controlled by a control unit through a wiring network. It is input to 30.
  • the harvesting device 15 and the transport device 16 are configured to swing up and down, and the cutting height detection unit 23 is provided at the swing shaft core portion of the transport device 16.
  • the cutting height detecting unit 23 is configured to be able to detect the ground height H1 (see FIGS.
  • the reel height detection unit 24 can detect the height position H2 (see FIGS. 5 and 6) of the suction reel 15B with respect to the harvest header 15A by detecting the swing angle of the reel support arm 15K with respect to the harvest header 15A. It is configured in.
  • the auger height detection unit 25 can detect the height position H3 (see FIGS. 5 and 6) of the lateral auger 15C by detecting the vertical position of an actuator (not shown) that raises and lowers the lateral auger 15C up and down. It is configured in.
  • the first crop detection unit 31A is a planted crop based on the imaging data sequentially acquired by the first imaging device 21A and the distance data sequentially acquired by the distance measuring sensor 22 over time. The area where the plant is located is detected and the height of the planted crop is detected. Further, the first crop detection unit 31A determines the type of crop by using, for example, a machine-learned (deep learning) neural network. In other words, the first crop detection unit 31A is configured to be able to acquire the type of crop to be harvested by the harvesting device 15. Examples of crop types include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like. Further, the first crop detection unit 31A is configured to be able to detect the size and length of the tip of the crop based on the imaging data.
  • the first crop detection unit 31A is configured to be able to detect a fallen crop (for example, a fallen grain culm) based on the height of the planted crop.
  • a fallen crop for example, a fallen grain culm
  • the flow of generation of recognition output data by the first crop detection unit 31A is shown in FIG.
  • the RGB pixel value of the imaging data is input to the first crop detection unit 31A from the first imaging device 21A as an input value.
  • This imaging data is associated with the distance data acquired by the distance measuring sensor 22, and the fallen crop is detected based on the crop height in the area where the planted crop exists.
  • the first crop detection unit 31A is configured to detect a fallen crop based on the crop height of the planted crop and the size of the area where the planted crop spreads at the same crop height.
  • the area of the area where the planted crop spreads at the same crop height may be calculated by area calculation based on at least one of the imaging data and the distance data, and in addition, the area recognized by the imaging data. It may be calculated from the shape. Alternatively, the size of the area where the planted crop spreads at the same crop height may be calculated from at least one of the shape of the area recognized by the image recognition data and the relative size.
  • the first crop detection unit 31A is configured to detect a weed area in which weeds are present mixed with the crop in front of the harvesting device 15, and can acquire the type of weeds (including the size of weeds) in the weed area. It is configured in.
  • the first crop detection unit 31A is configured to be able to acquire the weed rate, which is the amount of weeds per unit area in the weed area. As described above, the first crop detection unit 31A is configured to be able to discriminate crop lodging and weeds from the field.
  • the first imaging device 21A acquires imaging data at predetermined time intervals, for example, at intervals of 0.1 to 0.5 seconds and inputs the imaging data to the first crop detection unit 31A, the first crop detection unit 31A also , Output recognition output data at the same time interval.
  • the first image pickup device 21A takes an image in front of the machine body, and the distance measuring sensor 22 measures the distance between the machine body 1 and the object in front of the machine body. Then, based on the image pickup data captured by the first image pickup device 21A and the distance data in front of the aircraft measured by the distance measurement sensor 22, the first crop detection unit 31A sets the crop in the field as a specific object. While recognizing, the crop height of the crop in the field is detected.
  • the second crop detection unit 31B can detect unharvested residual crops such as lodging crops based on the imaging data of the imaging data sequentially acquired by the second imaging device 21B. be. Further, the second crop detection unit 31B determines the type of the remaining crop by using, for example, a machine-learned (deep learning) neural network. Examples of the types of residual crops include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like.
  • the control unit 30 is provided with a storage unit 33, and the storage unit 33 is provided with a plurality of harvest control patterns and a plurality of travel control patterns.
  • the storage unit 33 is a semiconductor storage element such as an EEPROM.
  • the harvest control pattern is, for example, depending on at least one of the crop type and the crop height, the ground height H1 of the harvest header 15A, the height position H2 of the scraping reel 15B, and the height position H3 of the lateral feed auger 15C. And, are stored in the storage unit 33 as a look-up table for adjusting. That is, the harvest control pattern and the running control pattern corresponding to the type of crop and the height of the crop are selected by the state determination unit 32. Then, the target value is output from the state determination unit 32 to the work control unit 36 according to the selected harvest control pattern and travel control pattern.
  • the travel control pattern is stored in the storage unit 33 as a look-up table for adjusting the vehicle speed and the vehicle height of the travel device 11, for example, according to at least one of the crop type and the crop height. That is, the traveling control pattern corresponding to at least one of the crop type and the crop height is selected by the state determination unit 32. Then, the target value is output from the state determination unit 32 to the travel control unit 35 according to the selected travel control pattern.
  • the travel control unit 35 has a vehicle speed control unit 35A and a vehicle height control unit 35B.
  • the target value of the vehicle speed and the target value of the vehicle height are determined based on the travel control pattern selected by the state determination unit 32.
  • the vehicle speed control unit 35A performs speed adjustment control of the traveling device 11 based on the target value of the vehicle speed.
  • the vehicle height control unit 35B controls the elevating mechanism of the traveling device 11 with reference to the target value of the vehicle height.
  • the travel control unit 35 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and gives a travel control signal to the travel device 11.
  • the travel control unit 35 In the case of manual steering, the travel control unit 35 generates a control signal and controls the travel device 11 based on the operation by the passenger.
  • the travel control unit 35 controls steering and vehicle speed based on the automatic travel command given by the automatic travel control module of the control unit 30 and the positioning data from the satellite positioning module 80. To do.
  • the work control unit 36 has a header control unit 36A, a reel control unit 36B, and an auger control unit 36C.
  • the header control unit 36A controls the raising and lowering of the harvest header 15A with reference to the target value of the ground height H1.
  • the reel control unit 36B adjusts and controls the vertical position and the front-rear position of the suction reel 15B with reference to the target value of the height position H2 and the target value of the front-rear position of the suction reel 15B.
  • the auger control unit 36C adjusts and controls the vertical position of the lateral feed auger 15C with reference to the target value of the height position H3.
  • the work control unit 36 has a function of controlling devices related to harvesting and threshing of crops in the field, such as a harvesting device 15 and a threshing device 13.
  • the work control unit 36 In the case of manual steering, the work control unit 36 generates a control signal and controls the harvesting device 15 and the like based on the operation by the passenger.
  • the work control unit 36 determines the height H1 of the harvesting device 15 and the height of the scraping reel 15B based on the imaging data obtained by the first imaging device 21A and the distance information obtained by the distance measuring sensor 22. The position H2, the front-rear position of the scraping reel 15B, the height position H3 of the lateral feed auger 15C, and the like are controlled.
  • the harvest control pattern also includes parameters relating to the operating speed of the harvest device 15, and the work control unit 36 is a transmission (eg, static) for the harvest device 15 based on the harvest control pattern selected by the state determination unit 32.
  • the hydraulic continuously variable transmission is configured to be capable of speed change control.
  • the control unit 30 of the first embodiment is configured to be connectable to a communication network.
  • the control unit 30 is provided with a communication unit 37, and the communication unit 37 can communicate with the management computer 2 via a wired or wireless communication network.
  • crop lodging information, weed information, etc. in the field are transmitted to the field management computer 2 via the wireless communication network together with the position information positioned by the satellite positioning module 80, and the field map information in the management computer 2 is transmitted. Recorded in.
  • the farm manager can utilize the crop lodging information, weed information, etc. in the field for the next year's agricultural plan.
  • the harvest control pattern will be described with reference to FIGS. 3, 5 and 6.
  • the parameters of the harvest control pattern include a target value of the ground height H1 of the harvest header 15A, a target value of the height position H2 of the scraping reel 15B, and a target value of the front and rear positions of the scraping reel 15B. If the height position H2 of the scraping reel 15B is too high, it becomes difficult for the scraping reel 15B to scrape the crop. Further, if the height position H2 of the scraping reel 15B is too low, the crop is likely to be entangled with the scraping reel 15B. As shown in FIGS.
  • the rotation trajectory of the tine 15T is such that the tine 15T of the scraping reel 15B scrapes the tip from the front upper part to the rear side. Should overlap with the tip area of the crop.
  • the ground height H1 and the height position H2 are set as different parameters for each harvest control pattern.
  • An appropriate harvest control pattern among a plurality of harvest control patterns is selected by the state determination unit 32 based on the type of crop, the height of the crop, the vertical height of the tip region of the crop, the surface area of the tip region, and the like. Will be done.
  • the target values of the ground height H1 and the height position H2 are read from the selected harvest control pattern, and the control signal for adjusting the ground height H1 and the height position H2 is transmitted from the state determination unit 32 to the work control unit.
  • Sent to 36 For example, if the crop type is legume, the ground height H1 is set to the lowest region. If the type of crop is buckwheat or rapeseed, the ground height H1 is set lower than that of rice grains and higher than that of beans.
  • the state determination unit 32 is configured so that the working state of the harvesting device 15 can be changed by operating the header actuator 15H according to the height of the planted crop. At this time, in the working state of the harvesting device 15, the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, the front-rear position of the scraping reel 15B, the rotation speed of the scraping reel 15B, and so on. The rotation locus of the tine 15T and the like are included. Further, the state determining unit 32 is configured to be able to change the vehicle speed of the traveling device 11 in addition to the working state of the harvesting device 15.
  • the ground height H1 of the harvesting device 15 is the “harvesting height” and also the “working height” of the harvesting header 15A.
  • the state determination unit 32 is configured to be able to change the harvest height of the harvesting device 15 according to at least one of the crop type and the crop height by operating the header actuator 15H. Further, the state determining unit 32 is configured to be able to change the height position H2 of the scraping reel 15B according to at least one of the crop type and the crop height by operating the reel actuator 15J.
  • the harvest control pattern is selected by the state determining unit 32 so that the tine 15T of the scraping reel 15B scrapes the tips from the front upper part to the rearward, and the ground height H1.
  • the height position H2 is adjusted.
  • the ground height H1 is adjusted, the lower end portion (the portion where the cutting blade is located) of the harvest header 15A is located below the tip region of the crop.
  • the front end position of the scraping reel 15B is located above the tip of the crop. As a result, the tip region of the crop is scraped backward by the scraping reel 15B.
  • the harvesting device 15 is efficiently harvested by the harvesting device 15, and the tip region is transported by the rear transport device 16.
  • the crop is threshed by the threshing device 13. Therefore, the transport load of the transport device 16 and the threshing load of the threshing device 13 are reduced, and the harvesting efficiency of the harvesting device 15 is improved, as compared with the configuration in which the harvesting device 15 is used to harvest the crop to the root region.
  • the horizontal feed auger 15C is configured so that the position can be changed in the vertical direction according to the type of crop.
  • the harvest header 15A is provided with an actuator capable of raising and lowering the lateral feed auger 15C in the vertical direction.
  • the actuators are the "first actuator” and the “actuator” of the present invention, and may be hydraulic or electric.
  • a harvest control pattern having an appropriate height position H3 target value according to the type of crop is selected by the state determination unit 32. Then, based on the selected harvest control pattern, the target value of the height position H3 is sent from the state determination unit 32 to the work control unit 36, and the lateral feed auger 15C is controlled to move up and down.
  • the harvested crop whose root is cut by the cutting blade 15D is laterally fed to the side where the transport device 16 is located by the lateral feed auger 15C on the bottom plate 15u of the harvest header 15A.
  • the vertical gap between the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A changes.
  • the target value of the height position H3 is set to the lower height position H31. Therefore, when the rice grain or wheat is harvested, the horizontal feed auger 15C is located lower than the harvest header 15A, and the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A are in the vertical direction. The gap becomes narrower. As a result, the tip portion of the rice grain or wheat is efficiently laterally fed by the laterally fed auger 15C.
  • the tip of beans has larger grains than the tip of rice or wheat. Therefore, when the tip portion of the beans is laterally fed by the laterally-fed auger 15C, if the vertical gap between the lower end of the laterally-fed auger 15C and the bottom plate 15u of the harvest header 15A is too narrow, the beans and the like will be generated. It may be crushed or damaged. Therefore, in the harvest control pattern when the crop type is beans, the target value of the height position H3 is set to the higher height position H32. Therefore, when the bean harvesting operation is performed, the lateral feed auger 15C is located higher than the case of rice grains and wheat.
  • the vertical gap between the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A becomes wider.
  • the tip portion of the beans is laterally fed by the laterally fed auger 15C, the beans and the like are less likely to be damaged.
  • the state determination unit 32 changes the vertical width of the transport path in the harvesting device 15 by changing the height position H3 according to the type of crop. That is, the state determining unit 32 sets the vertical width of the transport path to the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A by operating an actuator capable of raising and lowering the horizontal feed auger 15C in the vertical direction. Change the vertical width of the gap between.
  • the processing of the state determination unit 32 is performed based on the flowchart shown in FIG. 7, and the processing from the start to the end in the flowchart of FIG. 7 is periodically executed.
  • the first crop detection unit 31A is configured to be able to detect not only the type of crop to be harvested but also weeds and lodging crops. Therefore, the state determination unit 32 executes different processes depending on whether the crop to be harvested is detected, the fallen crop is detected, or the weed is detected.
  • the state determination unit 32 determines the detection result of the second crop detection unit 31B (step # 01).
  • the second crop detection unit 31B detects the harvest trace after the harvesting operation by the harvesting device 15.
  • the second image pickup device 21B captures a harvest trace area S which is a region behind the harvesting device 15 and in front of the traveling device 11, that is, a region between the harvesting device 15 and the traveling device 11. do.
  • the residual culm processing unit 19 is omitted in order to simply show how the second image pickup apparatus 21B captures the harvest trace region S.
  • step # 01 "detection of the uncut portion" is determined. That is, the rear of the harvesting device 15 is imaged by the second image pickup device 21B, and whether or not the image pickup data of the second image pickup device 21B includes a crop (for example, a fallen crop) is determined by the second crop detection unit 31B.
  • the state determination unit 32 determines the detection result of the first crop detection unit 31A (step # 03).
  • the state determination unit 32 sets the harvesting device 15 to efficiently harvest the tip region of the crop.
  • the harvest control pattern is selected according to at least one of the crop type and the crop height (step # 04). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern.
  • the ground height H1 of the harvest header 15A, the height position H2 of the scraping reel 15B, and the lateral feed auger 15C so that the tine 15T of the scraping reel 15B scrapes the tip from the front upper part to the rear.
  • the height position H3 of is adjusted.
  • step # 01 detection of the uncut portion
  • the state determination unit 32 selects a harvest control pattern when the uncut portion is detected, and this harvest control pattern.
  • the control signal based on the above is output to the travel control unit 35 and the work control unit 36 (step # 02).
  • step # 02 the harvesting operation is retried in the uncut area.
  • the second image pickup device 21B is configured to be able to detect residual crops left unharvested after the harvesting operation by the harvesting device 15. As shown in FIG. 9, when the fallen crop is not harvested by the harvesting device 15 and the harvesting device 15 passes above the fallen crop, the fallen crop is subjected to the second imaging device 21B provided below and behind the harvesting device 15. Is imaged, and the presence of the fallen crop is determined by the second crop detection unit 31B (step # 01: detection of uncut portion). Then, based on the process of step # 02, the traveling device 11 reversely operates, and the aircraft 1 retreats by a preset distance. That is, when the residual crop is detected by the second image pickup device 21B, the state determination unit 32 moves the traveling device 11 backward by a preset distance.
  • the state determining unit 32 is configured so that the working states of the traveling device 11 and the harvesting device 15 can be changed according to the field state after the work. Then, the fallen crop is detected by the first crop detection unit 31A (step # 03: fallen crop), and the process of step # 05 described later is performed. That is, the state determination unit 32 is configured to change the ground height H1 of the harvesting device 15 to a low level when it is determined that the ground height H1 of the harvesting device 15 is too high based on the harvest trace.
  • step # 03 the fallen crop
  • the state determination unit 32 selects a harvest control pattern for harvesting the fallen crop and is based on this harvest control pattern.
  • the control signal is output to the travel control unit 35 and the work control unit 36 (step # 05).
  • step # 05 the ground height H1 of the harvest header 15A is adjusted to the lowest region, and the height position H2 of the scraping reel 15B is adjusted to the lowest region. Then, the position of the scraping reel 15B in the front-rear direction is adjusted to the frontmost region.
  • step # 05 the speed change device for the harvesting device 15 (for example, the hydrostatic continuously variable transmission device) is speed-controlled to the high speed side, and the rotation speed of the suction reel 15B is increased.
  • the process of step # 05 reduces the vehicle speed of the traveling device 11.
  • the state determination unit 32 switches to the harvest control pattern for harvesting the fallen crop, and the harvest header 15A has a ground height H1 and the scraping reel 15B.
  • the height position H2 becomes lower.
  • the scraping reel 15B rotates at a higher speed than the normal harvesting operation while the harvester advances at a low speed, and the crop in the collapsed state is scraped into the harvest header 15A by the scraping reel 15B. ..
  • the state determination unit 32 positions the scraping reel 15B in the lowermost region and the frontmost region, increases the rotational speed of the scraping reel 15B, and increases the rotation speed of the scraping reel 15B.
  • the vehicle speed of the traveling device 11 is reduced. As a result, the combine harvests the leftover crops while gradually advancing.
  • step # 03 ⁇ collapsed crop
  • step # 04 or step # described later is performed.
  • the processing of 06 is performed.
  • step # 03 is "the crop to be harvested”
  • step # 04 is performed again, and at this time, the vehicle speed of the traveling device 11 is increased as compared with the time when the crop in the collapsed state is harvested.
  • step # 03 weeds
  • crops are planted in the field, weeds may be mixed in the crops.
  • weeds are also planted by the scraping reel 15B. It is scraped together and sent to the rear grain removal device 13 by the transport device 16. Therefore, the state determination unit 32 determines the degree of influence on the weed harvesting work in three stages of "small”, “medium”, and "large” based on the type of crop to be harvested and the type of weed. Judgment (step # 06).
  • the state determination unit 32 sets "small” in step # 06. select. In this case, as in step # 04, the state determining unit 32 selects a harvest control pattern according to at least one of the crop type and the crop height so that the harvesting device 15 can efficiently harvest the tip region of the crop. (Step # 07). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern.
  • the state determination unit 32 may perform step # 06. Select "Medium”. In this case, it is determined whether or not the type of crop to be harvested is beans (step # 08).
  • the state determination unit 32 slows down the vehicle speed and allows the harvesting device 15 to efficiently harvest the tip region of the crop.
  • a harvest control pattern for performing the harvesting operation by the harvesting apparatus 15 is selected according to at least one of the crop type and the crop height (step # 09). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern. That is, the state determination unit 32 changes the vehicle speed of the traveling device 11 in the weed region to a lower speed side than the vehicle speed when traveling in a region other than the weed region.
  • step # 09 when the weed area is detected in front of the harvesting device 15 and the crop type is other than beans, the state determining unit 32 determines the degree of change in the vehicle speed of the traveling device 11 according to the type of weeds. do. Specifically, the state determination unit 32 determines the degree of change in the vehicle speed of the traveling device 11 according to the weed rate, which is the amount of weeds per unit area in the weed area. As the weed rate increases, the state determination unit 32 changes the vehicle speed of the traveling device 11 to the lower speed side. Further, the state determination unit 32 may have a configuration in which the vehicle speed is gradually changed to the low speed side by prioritizing the determination elements according to the type of crop, the type of weed, the weed rate, and the like.
  • the state determination unit 32 reduces the leakage opening degree of the chaff sheave provided in the sorting processing unit 13B.
  • the chaff sheave is provided with a plurality of chaflip, and the gap between the plurality of chaflip is narrowed by changing the tilting posture (tilt angle) of the chaflip. Weeds, etc. are often larger than grains, and by narrowing the leakage opening of the chaf sheave, weeds, etc. are less likely to leak from the gaps between the chaflip, and the effect on sorting accuracy is reduced.
  • the state determination unit 32 is configured to reduce the leakage opening degree of the chaff sheave according to at least one of the type of crop and the type of weed when selecting the crop harvested in the weed region. ..
  • the state determining unit 32 stops the traveling device 11 (step #). 10). Since some beans have high commercial value, if the beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. When the type of crop is beans, such inconvenience can be avoided by stopping the traveling device 11.
  • the state determination unit 32 determines "large" in step # 06, selects a harvest control pattern for stopping the traveling device 11, and the aircraft 1 stops (step # 10). .. Then, after the worker manually removes the weeds, the harvesting work by the harvesting device 15 is restarted. Further, the state determination unit 32 may have a configuration in which the determination elements are prioritized according to the type of weed, the weed rate, etc., and the vehicle speed is gradually reduced to stop the traveling device 11.
  • the state determination unit 32 is configured to be able to determine the degree of change in the vehicle speed of the traveling device 11 according to the type of weeds.
  • the above-mentioned state determining unit 32 automatically changes the vertical width of the gap between the lower end portion of the lateral feed auger 15C and the bottom plate 15u of the harvest header 15A as the vertical width of the transport path, but the state determining unit 32
  • the 32 may be configured to notify the monitor provided in the boarding section 12, for example, as guidance without changing the vertical width of the transport path. In this case, the operator boarding the boarding unit 12 is urged to perform an elevating operation such as the lateral feed auger 15C, and the operator can manually perform the elevating operation.
  • the present invention is not limited to the configuration exemplified in the above-mentioned first embodiment, and the following will exemplify another typical embodiment of the present invention.
  • a neural network that can be learned by using deep learning is constructed in the first crop detection unit 31A and the second crop detection unit 31B, but the first crop detection unit It is not necessary to construct a neural network in 31A, and it is not necessary to construct a neural network in the second crop detection unit 31B.
  • the neural network is constructed on the management computer 2 and other terminals, and the first crop detection unit 31A and the management computer 2 and other terminals communicate with each other to perform input / output in the neural network. There may be. Further, input / output in the neural network may be performed by communication between the second crop detection unit 31B and the management computer 2 or another terminal.
  • the first crop detection unit 31A may be configured to detect the height of the planted crop. Further, as another embodiment of the above-mentioned [second solution means], the first crop detection unit 31A may be configured to acquire the type of planted crop to be worked on by the harvesting device 15. In addition, as another embodiment of the above-mentioned [fourth solution means], the second crop detection unit 31B may be configured to detect the field state after the work while the work is running.
  • the traveling device 11 is configured as a crawler type, but the traveling device 11 may be configured as a wheel type.
  • the working state of the harvesting device 15 includes the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, and the rotation speed of the scraping reel 15B.
  • the working state of the harvesting device 15 includes the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, and the scraping reel 15B.
  • the configuration may include at least one of a rotation speed and a rotation locus of the tine 15T.
  • the first crop detection unit 31A plants based on the image pickup data acquired by the first image pickup device 21A and the distance data acquired by the distance measuring sensor 22. Detects the height of standing crops, but is not limited to this embodiment.
  • the distance measuring sensor 22 may not be provided.
  • the first image pickup device 21A is configured as a pair of left and right surround cameras and the first crop detection unit 31A detects the height of the planted crop based on the image pickup data of the pair of left and right surround cameras. good.
  • the first image pickup apparatus 21A may not be provided.
  • the first crop detection unit 31A may be configured to detect the height of the planted crop based on the distance data acquired by one or more distance measuring sensors 22.
  • the state determining unit 32 is configured to be able to change the vehicle speed of the traveling device 11 in addition to the working state of the harvesting device 15, but the state determining unit 32 is the traveling device.
  • the vehicle speed of 11 may not be changed.
  • the state determination unit 32 positions the scraping reel 15B in the lowermost region and the frontmost region. It is not limited to the form.
  • the state determination unit 32 controls to position the upper and lower positions of the harvest header 15A in the lower region, and the position of the scraping reel 15B. At least one of a control for moving the reel 15B to the lower region and a control for locating the position of the suction reel 15B in the front region may be possible.
  • the state determination unit 32 increases the rotation speed of the scraping reel 15B and decelerates the vehicle speed of the traveling device 11. It is not limited to the embodiment. As another embodiment of the above-mentioned [first solution], when a fallen crop is detected, the state determination unit 32 controls to increase the rotation speed of the suction reel 15B and controls to decrease the vehicle speed of the traveling device 11. At least one of the above may be possible.
  • the first crop detection unit 31A acquires the type of planted crop based on the image pickup data acquired by the first image pickup device 21A, but is limited to this embodiment. Not done.
  • the first image pickup apparatus 21A may not be provided.
  • the first crop detection unit 31A may acquire the type of crop based on the distance data acquired by the distance measuring sensor 22.
  • a Fourier transform process for distance data may be performed, and the type of crop may be determined based on the distribution of frequency components obtained by the Fourier transform process. ..
  • the crop type may be configured to acquire crop information managed by the management computer 2.
  • the crop type may be manually entered by the operator or supervisor.
  • the state determination unit 32 is configured to change the vertical width of the gap between the bottom plate 15u of 15A and the bottom plate 15u, but is not limited to this embodiment.
  • the reel actuator 15J the “second actuator” and the “actuator” of the present invention
  • the vertical width of the transport path is set as the suction reel.
  • the state determination unit 32 may be configured so as to change the vertical width of the gap between the lower end portion of the 15B and the bottom plate 15u of the harvest header 15A.
  • the state determination unit 32 operates the header actuator 15H to set the ground height H1 of the harvest header 15A according to the type of crop. It is configured to be modifiable, but is not limited to this embodiment. For example, as another embodiment showing the above-mentioned [second solution], the state determination unit 32 may be configured not to change the ground height H1 of the harvest header 15A according to the type of crop.
  • the harvesting device 15 and the transport device 16 may be integrally configured.
  • the transport path is a gap between the bottom plate of the transport device 16 and the lower portion of the chain conveyor, and the vertical width of this gap may be changed according to the type of crop.
  • the amount of crop may be included in the "type of crop" in the invention showing the above-mentioned [second solution].
  • the state determination unit 32 adjusts the vertical width of the transport path in the harvesting device 15 and the transport device 16 according to the amount of crops.
  • the configuration may be widely changed.
  • the residual culm processing unit 19 is provided behind the harvesting device 15, but as another embodiment showing the above-mentioned [fourth solution], the residual culm processing unit is provided. It may be a harvester that is not provided with 19.
  • the state determination unit 32 retracts the traveling device 11 when the second crop detection unit 31B detects a fallen crop. Further, when the fallen crop is detected by the first crop detection unit 31A after the retreat of the traveling device 11 is completed, the state determination unit 32 positions the vertical position of the harvest header 15A in the lowermost region and scrapes it. The position of the reel 15B is located in the lowermost region and the frontmost region, but is not limited to this embodiment. As another embodiment showing the above-mentioned [fourth solution], the state determination unit 32 retracts the traveling device 11 when a fallen crop is detected by the second crop detection unit 31B alone, and then the harvest header 15A.
  • the upper and lower positions may be positioned in the lower region, and the position of the suction reel 15B may be positioned in the lower region and the front region.
  • the configuration may not include the first crop detection unit 31A.
  • the state determining unit 32 controls to position the vertical position of the harvest header 15A in the lower region and the position of the scraping reel 15B on the lower side. At least one of the control of moving to the region and the control of locating the position of the suction reel 15B in the front region may be possible.
  • the second imaging device 21B is provided at the rear lower portion of the harvesting device 15, but is not limited to this embodiment.
  • the second image pickup device 21B is provided at at least one of the rear end portion of the threshing device 13 and the rear end portion of the grain tank 14. Is also good.
  • the second crop detection unit 31B may be configured to be able to detect the harvested product discharged from at least one of the threshing unit 13A and the sorting processing unit 13B.
  • the state determination unit 32 controls at least one of the threshing unit 13A, the sorting processing unit 13B, and the wall insert 13C based on the amount or ratio of the loss of the crop contained in the discharged harvested product, and further runs. It may be configured to control the vehicle speed of the device 11. That is, when the harvested product is detected by the second crop detection unit 31B, the state determination unit 32 controls at least one of the threshing unit 13A, the sorting processing unit 13B, and the wall insert 13C, and the vehicle speed of the traveling device 11. It may be configured to control. When the state determining unit 32 controls the threshing unit 13A, the rotation speed of the handling cylinder may be controlled, or the angle of the dust feed valve may be adjusted.
  • the second crop detection unit 31B detects the harvest trace after the harvesting operation by the harvesting device 15 based on the imaging data acquired by the second imaging device 21B.
  • the second image pickup apparatus 21B may not be provided.
  • the second crop detection unit 31B may be configured to detect the harvest trace after the harvesting operation based on the distance data acquired by the sensor as exemplified by the distance measuring sensor 22.
  • a Fourier transform process is performed on the distance data, and a fallen crop or the like is determined from the harvest trace based on the distribution of the frequency component obtained by the Fourier transform process. May be.
  • the tip of the fallen crop is located on the side where the harvesting device 15 is located, and the tip of the fallen crop is located on the side where the harvesting device 15 is located.
  • the fallen crop may fall down while being located on the opposite side.
  • FIGS. 11 to 19 A second embodiment of the combine as an example of the harvester according to the present invention is described below based on FIGS. 11 to 19.
  • beans such as soybeans are planted in the field as crops, and a normal combine harvester, which is a form of a harvester, harvests the beans.
  • the aircraft 1 a pair of left and right crawler type traveling devices 11, a boarding section 12, a threshing device 13, a grain tank 14, and a harvesting device 15 (in the "harvesting section" of the present invention).
  • A) a transport device 16, a grain ejection device 18, and a satellite positioning module 80 are provided.
  • the traveling device 11 is provided at the lower part of the combine.
  • the traveling device 11 has the same configuration as that of the first embodiment described above, and the elevating device in each of the left and right crawler traveling mechanisms is driven up and down separately, so that the machine body 1 rolls (see FIG. 19).
  • the boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1.
  • the boarding unit 12, the threshing device 13, the grain tank 14, the grain discharging device 18, and the satellite positioning module 80 have the same configurations as those in the first embodiment described above.
  • the harvesting device 15 is provided with a harvesting header 15A, a scraping reel 15B, a horizontal feed auger 15C, a hair clipper-shaped cutting blade 15D, and a header actuator 15H.
  • the harvest header 15A, the scraping reel 15B, the lateral feed auger 15C, the cutting blade 15D, and the header actuator 15H have the same configurations as those in the first embodiment described above.
  • a plurality of ridges R are formed in the field, and the upper surface portion of the ridge R is higher than the ground of the field by the ridge height H4.
  • a plurality of ridges R are arranged side by side in one direction, and beans are planted on the upper surface portion of each ridge R.
  • the height of the upper surface portion of the ridge R is not constant at the ridge height H4, and the upper surface portion of the ridge R has irregularities. In FIG. 11, this unevenness is shown as a vertical difference ⁇ H. Therefore, the height of the harvesting device 15 with respect to the ground is adjusted according to the vertical difference ⁇ H.
  • the adjustment of the height of the harvesting device 15 to the ground according to the vertical difference ⁇ H may be, for example, a fine adjustment in a range of 10 cm or more, or a fine adjustment in a range of 2 to 3 cm.
  • optical distance measuring devices 21C and 21D are provided at the right front end portion and the left front end portion of the harvesting device 15, respectively, and the machine body 1 and an object in front (field ground, crops, etc.) are provided.
  • the distance from and to is configured to be measurable by the optical distance measuring devices 21C and 21D.
  • the optical range measuring devices 21C and 21D are LIDAR (for example, a laser scanner or a laser radar), and the LIDAR can scan in three dimensions in the vertical direction in addition to the front and the left and right. Therefore, the optical ranging devices 21C and 21D can have a wider ranging range than the two-dimensional scanning type LIDAR, and the separation distance can be measured with high accuracy.
  • the control unit 40 shown in FIG. 14 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs.
  • the control unit 40 includes a ridge detection unit 41, a harvest height control unit 42, a storage unit 43, a travel control unit 45, and a work control unit 46.
  • the satellite positioning module 80 is the "positioning unit" of the present invention and outputs positioning data indicating the position of the aircraft 1.
  • the positioning data output from the satellite positioning module 80, the distance data output from each of the optical ranging devices 21C and 21D, and the height position information output from the harvest height detection unit 26 are connected through the wiring network. It is input to the control unit 40.
  • the distance between the machine 1 and the object in front of the machine is measured by the optical distance measuring devices 21C and 21D.
  • the object in front of the machine includes the shape of the crop and the shape of the field that can be seen through the crop (the shape of the ridge R in FIGS. 11 to 3). That is, the distance data is continuously acquired over time by the optical distance measuring devices 21C and 21D.
  • the ridge detection unit 41 detects the field shape and the crop shape in front of the harvesting device 15 as specific object information based on the distance data. For example, the ridge detection unit 41 detects the shape of the ridge R and the ridge height H4 in the field by using a machine-learned (deep learning) neural network.
  • the ridge detection unit 41 and the optical distance measuring devices 21C and 21D are "height detection units" of the present invention, and detect the ridge height H4 based on the distance information by the optical distance measuring devices 21C and 21D.
  • the ridge detection unit 41 detects the ridge height H4 on the front side of the cutting blade 15D, and detects the ridge height H4 on the front side of the divider of the harvest header 15A.
  • the ridge height H4 is the "height of unevenness" of the present invention. That is, the height detecting unit detects the ridge height H4 as the height of the unevenness.
  • the control unit 40 is provided with a storage unit 43, which is a semiconductor storage element such as an EEPROM.
  • the shape and ridge height H4 of the ridge R detected by the ridge detection unit 41 are stored in the storage unit 43 over time in a state associated with the positioning data output from the satellite positioning module 80. That is, the storage unit 43 is configured to be able to store the ridge height H4 in association with the positioning data. Therefore, the ridge height H4 for each positioning data is stored in the storage unit 43.
  • the harvest height control unit 42 is configured to be able to read the ridge height H4 for each positioning data from the storage unit 43.
  • the harvest height control unit 42 targets the harvesting device 15 based on the ridge height H4 of the ridge R acquired from the ridge detection unit 41 and the ridge height H4 at a predetermined position stored in the storage unit 43. Determine the height to the ground.
  • the harvest height control unit 42 can calculate the vertical difference ⁇ H of the ridge height H4 in the predetermined region by reading a plurality of ridge heights H4 over a predetermined region based on the positioning data from the storage unit 43. Is. From this, the harvest height control unit 42 adjusts the target ground height of the harvesting device 15 according to the vertical difference ⁇ H.
  • the harvest height control unit 42 determines the vehicle speed of the traveling device 11 and the height position of the machine body 1 with respect to the traveling device 11 (so-called “Monroe height”) according to the ridge height H4 and the vertical difference ⁇ H. Is configured to be adjustable.
  • the harvest height detecting unit 26 detects the ground height of the harvesting device 15 by detecting the swing angle of the transport device 16 and the height position of the machine body 1 (the height of the monroe) with respect to the traveling device 11. It is configured to be possible.
  • the ground height detected by the harvest height detection unit 26 is sent to the harvest height control unit 42 as height data.
  • the harvest height control unit 42 outputs a control signal to the travel control unit 45 and the work control unit 46 based on the target ground height of the harvesting device 15 and the height data acquired from the harvest height detection unit 26.
  • the travel control unit 45 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and controls steering, vehicle speed, and vehicle height (Monroe height) to the travel device 11.
  • the travel control unit 45 includes a vehicle speed control unit 45A and a vehicle height control unit 45B. Control signals related to vehicle speed and vehicle height are sent from the harvest height control unit 42 to the travel control unit 45.
  • the vehicle speed control unit 45A performs speed adjustment control of the traveling device 11 based on the control signal acquired from the harvest height control unit 42.
  • the vehicle height control unit 45B controls the elevating mechanism of the traveling device 11 based on the control signal acquired from the harvest height control unit 42.
  • the work control unit 46 controls devices related to harvesting and threshing crops in the field, such as a harvesting device 15 and a threshing device 13.
  • the work control unit 46 has a header control unit 46A.
  • the harvest height control unit 42 outputs a signal for elevating control to the harvest header 15A to the header control unit 46A based on the target ground height.
  • the height of the harvesting device 15 to the ground is controlled by the header actuator 15H. That is, the header control unit 46A drives and controls the header actuator 15H based on the elevation control signal acquired from the harvest height control unit 42.
  • the harvest height control unit 42 determines the ground height of the harvesting device 15 based on the ridge height H4, controls the drive of the header actuator 15H, and automatically adjusts the ground height of the harvesting device 15. Change to. Further, for example, based on the distance data measured by the optical distance measuring devices 21C and 21D, the work control unit 46 has a front-rear position and a height position of the suction reel 15B and a transmission device for the harvesting device 15 (for example, static). (Hydraulic continuously variable transmission), etc. can be controlled.
  • the control unit 40 of the second embodiment is configured to be connectable to a communication network.
  • the control unit 40 is provided with a communication unit 47, and the communication unit 47 can communicate with the management computer 2 via a wired or wireless communication network.
  • the lodging information of the crop in the field and the unevenness of the ground in the field are transmitted to the field management computer 2 via the wireless communication network together with the positioning data measured by the satellite positioning module 80, and the field in the management computer 2 is used. It is recorded in the map information of.
  • the farm manager can utilize the information on the lodging of the crops in the field and the unevenness of the ground in the field for the agricultural plan for the next year.
  • the right front end portion and the left front end portion of the harvesting device 15 are provided with optical distance measuring devices 21C and 21D, respectively, and the ridge detection unit 41 is provided with distance data from the optical range measuring devices 21C and 21D. Based on the above, it is configured so that the ridge information of the field can be detected.
  • the distance data from the optical ranging devices 21C, 21D includes the distance between the optical ranging devices 21C, 21D and the ground of the field, and the distance between the optical ranging devices 21C, 21D and the crop in front. Is done.
  • the ridge detection unit 41 extracts the distance data indicating the distance between the optical distance measuring devices 21C and 21D and the ground of the field from the distance data, and detects the unevenness of the ground.
  • a plurality of ridges R (unevenness) are arranged in parallel over the working width of the harvesting device 15, and the ridge detection unit 41 is configured to be able to detect the ridge height H4 of the plurality of ridges R. ..
  • FIG. 15 shows a region of the ground of the field located behind the crops in the field from the viewpoint from the optical ranging devices 21C and 21D as the blind spot region DA1.
  • the blind spot area DA1 is an area that becomes a blind spot because the optical ranging devices 21C and 21D cannot measure the distance from the ground of the field because they are blocked by the crops in the field. If the unevenness of the field in the blind spot region DA1 is not measured by the optical ranging devices 21C and 21D, the harvest height control unit 42 cannot accurately calculate the vertical difference ⁇ H, and the height of the harvesting device 15 to the ground is determined. It may not be possible to adjust it appropriately. In order to avoid this inconvenience, in the second embodiment, as shown in FIGS. 16 and 17, the optical distance measuring devices 21C and 21D are configured to be able to measure the distance data with respect to the blind spot region DA1. ..
  • the reciprocating run means that the harvester works along the longitudinal direction of the ridge R and is unharvested adjacent to one of the left and right by the turning run in the longitudinal end region of the ridge R. It means moving to the ridge R and harvesting the crops in the field while repeating the work run again along the longitudinal direction of the unharvested ridge R.
  • the harvester harvests beans while traveling along the longitudinal direction of the ridge R in the working area W1.
  • the harvester turns in the direction opposite to the forward direction in the work area W1 and, as shown in FIG. 17, the work area W2 adjacent to the work area W1 is formed on the ridge R.
  • Harvest beans while running along the longitudinal direction.
  • the optical ranging devices 21C and 21D acquire the distance data in front of the harvesting device 15, and the ridge detection unit 41 acquires the shape of the ridge R and the ridges. Height H4 is detected.
  • the optical distance measuring devices 21C and 21D are configured to be able to acquire distance data on the lateral side of the machine body rather than the harvesting width of the harvesting device 15.
  • the ridge detection unit 41 is configured to be able to detect the shape of the ridge R and the ridge height H4 on the lateral side of the machine body rather than the harvest width of the harvesting device 15.
  • the working area W2 exists as an unharvested area on the left side of the traveling direction of the harvester. Therefore, the distance data of the work area W2 is acquired by the optical distance measuring device 21C located on the left side of the machine body, and the shape and the ridge height H4 of the ridge R of the work area W2 are detected by the ridge detection unit 41.
  • the ridge height H4 in the work area W2, which is the unharvested area, is referred to as "first height". That is, the ridge detection unit 41 is the ridge height H4 in the unharvested region adjacent to the left and right outside of the harvest width of the harvesting device 15 when the traveling device 11 travels in one direction. ] Is configured to be detectable.
  • the ridge height H4 of the work area W2 measured during the work run in the work area W1 is associated with the positioning data measured by the satellite positioning module 80 and stored in the storage unit 43. That is, the storage unit 43 stores the ridge height H4 as the "first height" in association with the positioning data. At this time, it is desirable that the positioning data stored in the storage unit 43 does not indicate the position of the satellite positioning module 80, but indicates the detection position of the ridge R in the work area W2. Therefore, the positioning data stored in the storage unit 43 is data offset diagonally forward by a preset distance from the position of the satellite positioning module 80, that is, data indicating the detection position of the ridge R in the work area W2. good.
  • the blind spot region DA2 is a region that cannot be detected by the optical ranging devices 21C and 21D during work traveling in the work region W1.
  • the harvester harvests beans in the work area W2 while traveling in the direction opposite to the forward direction in the work area W1.
  • the optical distance measuring devices 21C and 21D acquire the distance data in front of the harvesting device 15, and the ridge detection unit 41 detects the shape of the ridge R and the ridge height H4.
  • the work area W2 is located within the range of the harvest width of the harvesting device 15, and the distance data with respect to the blind spot area DA2 is firmly acquired by the optical range measuring devices 21C and 21D, and the ridge detection unit 41 in the blind spot area DA2.
  • the ridge height H4 is detected as the "second height".
  • the blind spot area DA1 is located behind the crops in the field with respect to the viewpoint from the optical distance measuring devices 21C and 21D, and the work is being carried out in the work area W2. This is an area where distance data cannot be measured by the optical distance measuring devices 21C and 21D.
  • the ridge height H4 in the blind spot area DA1 is already detected as the "first height" during the work running in the work area W1, and this first height is stored in the storage unit 43 in association with the positioning data. ing. Of the ridge height H4 (first height) stored in the storage unit 43, the ridge height H4 (first height) of the area corresponding to the positioning data at the time when the work area W2 is being worked is the blind spot.
  • the harvest height control unit 42 It is read out by the harvest height control unit 42 as the ridge height H4 (first height) in the region DA1. That is, the harvest height control unit 42 stores the ridge height H4 (second height) detected by the ridge detection unit 41 while the work area W2 is working, and the work area W1 in the storage unit 43 during the work travel. The stored ridge height H4 (first height) is synthesized.
  • the ridge height H4 of both the blind spot areas DA1 and DA2 is detected, and the ridge height H4 in the work area W2 is detected without omission.
  • the harvest height control unit 42 can accurately calculate the vertical difference ⁇ H.
  • the traveling device 11 is in the above-mentioned one direction (direction advanced in the work area W1) in a state where the work area W2 as the unharvested area is located within the range of the harvest width of the harvest device 15.
  • the height of the harvesting device 15 with respect to the ground based on the second height, which is the ridge height H4 detected by the ridge detection unit 41, and the first height stored in the storage unit 43 when traveling in the opposite direction. Determine the.
  • each of the plurality of ridges R has a different ridge height H4 within the harvest width of the harvesting apparatus 15.
  • the ridge height of R3 is higher by ⁇ H2 than H4.
  • the harvest height control unit 42 determines the ground height of the harvesting device 15 based on the highest ridge R1 (unevenness) on the left side of the machine body (right side of the paper surface) among the plurality of ridges R (unevenness).
  • the cutting blade 15D cuts the root of the beans so that the harvesting device 15 cuts the root of the beans.
  • the height to the ground is adjusted.
  • the left and right elevating devices are configured to be independently drive-controllable.
  • the inertial navigation unit for example, a gyro acceleration sensor or a magnetic orientation sensor
  • the satellite positioning module 80 detects the tilt angle (pitch angle, roll angle, yaw angle) of the aircraft 1.
  • the harvest height control unit 42 may be configured to horizontally control the machine body 1 based on the inclination angle of the machine body 1.
  • the crawler traveling mechanism on the left side (right side of the paper) of the traveling device 11 rides on the ridge R1 and travels while trampling the ridge R1. Therefore, among the elevating devices in each of the left and right crawler traveling mechanisms, the set height of the elevating device on the left side (right side of the paper) that is trampling the ridge R1 is higher than the set height of the elevating device on the right side (left side of the paper).
  • the harvest height control unit 42 outputs a control signal to the vehicle height control unit 45B of the travel control unit 45 so as to set it low.
  • the vehicle height (height of Monroe) of the crawler traveling mechanism on the left side (right side of the paper) in the traveling device 11 is higher than the vehicle height (height of Monroe) of the crawler traveling mechanism on the right side (left side of the paper surface). It is lower by ⁇ H3.
  • the elevating devices in each of the left and right crawler traveling mechanisms are the "harvest inclination changing mechanism" of the present invention, and the harvesting device 15 is rolled to change the left and right inclination of the harvesting device 15. It is configured to be possible. That is, the harvest height control unit 42 causes the elevating devices of the left and right crawler traveling mechanisms to change the left-right tilt of the harvest device 15 so that the harvest device 15 is in the horizontal posture. As a result, the harvesting device 15 is held horizontally without being tilted.
  • the harvest height control unit 42 harvests based on the highest ridge R (unevenness) among the plurality of ridges R (unevenness).
  • the height of the device 15 to ground is determined, but is not limited to this embodiment.
  • the harvesting apparatus 15 may be rolled as shown in FIG. In FIG. 19, three ridges R exist within the range of the harvest width of the harvesting apparatus 15, and the ridge height H4 of the ridge R1 on the left side of the machine (right side of the paper) is the ridge height R3 of the ridge R3 on the right side of the machine (left side of the paper). It is higher by ⁇ H2 than H4.
  • the harvest height control unit 42 is a harvesting device based on the difference in the ridge height H4 between the ridges R1 and the ridges R3 and the separation distance between the ridges R1 and the ridges R3 in the lateral direction of the aircraft. Calculate the angle at which 15 is rolled.
  • a control signal is output to the vehicle height control unit 45B of the travel control unit 45 so that the ground clearance of the left and right one side portion of the harvesting device 15 is higher than the ground clearance of the left and right other side portions. It may be.
  • the harvesting device 15 is tilted, and the portion of the harvesting device 15 located above the ridge R1 on the left side of the machine (on the right side of the paper) is the ridge R3 on the right side of the machine (on the left side of the paper) in the harvesting device 15. It is higher by ⁇ H2 than the portion located above.
  • the portion of the harvesting device 15 located above the ridge R2 in the center of the left and right sides of the machine (center of the paper) is ⁇ H1 more than the portion of the harvesting device 15 located above the ridge R3 on the right side of the machine (left side of the paper). Only expensive.
  • the cutting blade 15D is used for beans with the lower end portion of the harvesting device 15, that is, the bottom surface portion of the harvesting header 15A and the upper surface portions of the ridges R1, R2, and R3 having the same separation distance in the vertical direction. Cut off the stock of.
  • the harvest height control unit 42 may be configured to cause the elevating devices of the left and right crawler traveling mechanisms to change the left-right inclination of the harvest device 15.
  • a neural network that can be learned by using deep learning is constructed in the ridge detection unit 41, but the neural network may not be constructed in the ridge detection unit 41. ..
  • the neural network may be constructed on another computer or terminal CT, and input / output in the neural network may be performed by communication between the ridge detection unit 41 and the other computer or terminal CT. .. That is, the ridge detection unit 41 may detect the height of the unevenness of the field in front of the harvesting device 15.
  • the height detection unit described above includes the ridge detection unit 41 and the optical distance measuring devices 21C and 21D, but the height detection unit includes the optical distance measuring devices 21C and 21D and the ridge detection unit 41. It may be integrally configured.
  • the height detection unit does not necessarily have to be composed of optical distance measuring devices 21C and 21D (LIDAR).
  • the height detection unit may be a sonar or a radar (millimeter wave). If the height detector is sonar, it is advantageous in terms of cost. If the height detection unit is a millimeter-wave radar, measurement that is not easily affected by the weather is possible, which is advantageous in terms of cost. If the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions. In short, a non-contact height detecting unit that detects the height of the unevenness of the field in front of the harvesting device 15 may be provided.
  • the height detection unit does not necessarily have to be composed of optical distance measuring devices 21C and 21D (LIDAR).
  • the height detection unit may be provided with an image pickup device, and the height detection section may be configured to detect the ridge height H4 based on the image captured by the image pickup device.
  • the image pickup apparatus may be a monocular camera or a stereo camera.
  • the ridge detection unit 41 detects the ridge height H4 as the height of the unevenness in the field, but is not limited to this embodiment.
  • the ridge detection unit 41 may be configured to detect unevenness (vertical difference ⁇ H) in the field in a field without ridges R in which rice or wheat is planted.
  • the ordinary combine 101 (corresponding to the “harvester” according to the present invention) includes a harvesting section 110, a crawler-type traveling device 11, a boarding section 12, a threshing device 13, and a grain tank 14. It is equipped with a transport device 16, a grain discharge device 18, a satellite positioning module 80, and an engine E.
  • the traveling device 11 is provided at the lower part of the combine 101. Further, the traveling device 11 is driven by the power from the engine E. The combine 101 can be self-propelled by the traveling device 11.
  • the boarding unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11.
  • the boarding unit 12, the threshing device 13, the grain tank 14, and the grain discharging device 18 have the satellite positioning module 80 having the above-described configurations in the first embodiment and the second embodiment.
  • the boarding unit 12 is provided with a main shift lever 119.
  • the main shift lever 119 is artificially operated. When the operator operates the main shift lever 119 while the combine 101 is manually traveling, the vehicle speed of the combine 101 changes. That is, when the combine 101 is manually traveling, the operator can change the vehicle speed of the combine 101 by operating the main shift lever 119.
  • the harvesting section 110 is provided in the front portion of the combine 101.
  • the transport device 16 is provided on the rear side of the harvesting section 110.
  • the harvesting unit 110 includes a cutting device 115 and a reel 117.
  • the reaping device 115 cuts the planted culm in the field 5 (see FIG. 21). Further, the reel 117 is driven to rotate around the reel axis 117b along the left-right direction of the machine body to scrape the planted grain culm to be harvested. The cut grain culm cut by the cutting device 115 is sent to the transport device 16.
  • the harvested grain culm harvested by the harvesting unit 110 is transported to the rear of the machine by the transport device 16. As a result, the harvested grain culm is transported to the threshing device 13.
  • the harvesting unit 110 harvests the grain of the field 5 (corresponding to the "crop" according to the present invention). Then, the combine 101 can be cut and run by the running device 11 while cutting the planted culm in the field 5 by the cutting device 115.
  • a communication terminal 4 is arranged in the boarding unit 12.
  • the communication terminal 4 is configured to be able to display various information.
  • the communication terminal 4 is fixed to the boarding unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the boarding unit 12, and the communication terminal 4 may be located outside the combine 101. ..
  • the combine 101 is configured to harvest grains in the field 5 located inside the field outer edge portion 6.
  • the field outer edge 6 is provided so as to surround the field 5.
  • the field outer edge 6 includes, for example, a ridge 61, a water supply / drainage pump 62 (see FIG. 26), and the like.
  • the combine 101 is configured to be capable of performing a peripheral harvesting run.
  • the peripheral harvesting run is a run performed along the outer edge portion 6 of the field at the outermost peripheral portion in the field 5.
  • the number of laps in the surrounding harvesting run is one.
  • the present invention is not limited to this, and the number of laps in the surrounding harvesting run may be any number of times of two or more.
  • the combine 101 is configured to harvest the grain of the field 5 by performing a peripheral harvesting run and then performing a cutting run in the inner region of the field 5 as shown in FIGS. 22 and 23. There is.
  • the combine 101 is configured to be capable of performing a peripheral harvesting run, which is a run along the outer edge of the field 6 at the outermost periphery of the field 5.
  • the surrounding harvesting run shown in FIG. 21 is performed by manual running. Further, the cutting run in the inner region shown in FIGS. 22 and 23 is performed by automatic running. That is, the combine 101 is capable of automatic traveling.
  • the present invention is not limited to this, and the surrounding harvesting running shown in FIG. 21 may be performed by automatic running.
  • the operator can change the rotation speed of the engine E by operating the communication terminal 4.
  • the appropriate working speed differs depending on the type of crop. If the operator operates the communication terminal 4 and sets the rotation speed of the engine E to an appropriate rotation speed, the work can be performed at a work speed suitable for the type of crop.
  • the combine 101 includes a control unit 120.
  • the control unit 120 includes a vehicle position calculation unit 121, an area calculation unit 122, a route calculation unit 123, and an automatic driving control unit 124.
  • the automatic traveling control unit 124 controls the automatic traveling of the combine 101.
  • the automatic travel control unit 124 includes a route selection unit 125 and a travel control unit 126.
  • the satellite positioning module 80 sends positioning data indicating the own vehicle position of the combine 101 to the own vehicle position calculation unit 121 based on the received GPS signal.
  • the own vehicle position calculation unit 121 calculates the position coordinates of the combine 101 over time based on the positioning data output by the satellite positioning module 80.
  • the calculated position coordinates of the combine 101 over time are sent to the area calculation unit 122 and the automatic traveling control unit 124.
  • the area calculation unit 122 calculates the cut area SA and the uncut area CA as shown in FIG. 22 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121.
  • the cut area SA is an area in which grains have been harvested in the field 5.
  • the uncut area CA is an area in the field 5 where grains have not been harvested yet.
  • the area calculation unit 122 calculates the travel locus of the combine 101 in the surrounding harvesting operation in the field 5 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121. Then, the area calculation unit 122 calculates the area where the combine 101 has performed the surrounding harvesting as the cut area SA based on the calculated travel locus of the combine 101. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
  • the traveling path of the combine 101 in the surrounding harvesting traveling in the field 5 is indicated by an arrow.
  • the field 5 is in the state shown in FIG. 22.
  • the area calculation unit 122 calculates the area where the combine 101 has performed the surrounding harvesting run as the already-cut area SA. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
  • the calculation result by the area calculation unit 122 is sent to the route calculation unit 123.
  • the route calculation unit 123 calculates the mowing travel route LI, which is a travel route for the mowing operation in the uncut area CA, as shown in FIG. 22, based on the calculation result received from the area calculation unit 122.
  • the cutting travel path LI is a plurality of mesh lines extending in the vertical and horizontal directions. Further, the plurality of mesh lines do not have to be straight lines and may be curved.
  • the plurality of mowing travel path LIs calculated by the route calculation unit 123 are sent to the automatic travel control unit 124.
  • the route selection unit 125 in the automatic travel control unit 124 determines the combine 101 based on the position coordinates of the combine 101 received from the own vehicle position calculation unit 121 and the plurality of cutting travel routes LI received from the route calculation unit 123. Next, the harvesting route LI to be traveled is selected. Information indicating the cutting travel route LI selected by the route selection unit 125 is sent to the travel control unit 126.
  • the travel control unit 126 is configured to be able to control the travel device 11. Then, the travel control unit 126 automatically travels the combine 101 based on the position coordinates of the combine 101 received from the own vehicle position calculation unit 121 and the information indicating the cutting travel route LI selected by the route selection unit 125. To control. More specifically, as shown in FIG. 22, the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
  • the traveling control unit 126 of the combine 101 so that the harvesting traveling along the cutting traveling route LI selected by the route selection unit 125 is performed next to the cutting traveling route LI currently being traveled. Control driving.
  • the operator manually operates the combine 101 to perform a surrounding harvesting run as shown in FIG. 21.
  • the field 5 is in the state shown in FIG. 22.
  • the area calculation unit 122 calculates the travel locus of the combine 101 in the surrounding harvesting travel shown in FIG. 21 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121. Then, as shown in FIG. 22, the region calculation unit 122 sets the region on the outer peripheral side of the field 5 in which the combine 101 travels while cutting the planted culm, based on the calculated travel locus of the combine 101, as a pre-cut region. Calculated as SA. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
  • the route calculation unit 123 sets the cutting travel route LI in the uncut area CA as shown in FIG. 22 based on the calculation result received from the area calculation unit 122.
  • the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI. Further, the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling along the cutting traveling route LI selected by the route selecting unit 125 is performed next to the cutting traveling route LI currently traveling. do.
  • the combine 101 repeats running along the cutting running path LI and changing the direction by the ⁇ turn, thereby repeating the uncut area CA.
  • the harvesting run is performed on the outer peripheral part of the combine harvester. As a result, the uncut area CA shrinks and the already cut area SA expands.
  • the area calculation unit 122 is configured to calculate the already-cut area SA and the uncut area CA over time during the cutting run in the field 5.
  • the combine 101 repeats traveling along the cutting travel path LI and changing the direction by the U-turn. As a result, the cutting run is performed so as to cover the entire uncut area CA.
  • the carrier CV is parked at the outer edge portion 6 of the field. Then, in the mowed area SA, a stop position PP is set at a position near the carrier CV.
  • the carrier CV collects and transports the grains discharged from the grain discharge device 18 by the combine 101. At the time of grain discharge, the combine 101 stops at the stop position PP, and the grain is discharged to the carrier CV by the grain discharge device 18.
  • the combine 101 includes a cutting cylinder 115A. Further, as shown in FIG. 24, the automatic traveling control unit 124 has an elevating control unit 127.
  • the elevating control unit 127 is configured to be able to control the cutting cylinder 115A.
  • the elevating control unit 127 controls the cutting cylinder 115A in the extending direction
  • the transport device 16 and the harvesting unit 110 integrally swing in the direction in which the harvesting unit 110 rises. As a result, the harvesting unit 110 rises with respect to the aircraft.
  • the elevating control unit 127 controls the cutting cylinder 115A in the contraction direction
  • the transport device 16 and the harvesting unit 110 integrally swing in the direction in which the harvesting unit 110 descends.
  • the harvesting unit 110 descends with respect to the airframe.
  • the elevating control unit 127 can control the elevating of the harvesting unit 110 with respect to the machine body. Further, the harvesting unit 110 can be raised and lowered with respect to the machine body.
  • the combine 101 is configured to be able to move up and down with respect to the machine body, and is provided with a harvesting section 110 for harvesting grains in the field 5.
  • control unit 120 has a map generation unit 128 and an acquisition unit 129. Further, as shown in FIGS. 24 and 25, the combine 101 includes a detection unit 130.
  • the detection unit 130 is a camera (for example, a CCD camera, a CMOS camera, or an infrared camera). As shown in FIG. 25, the detection unit 130 is provided at the rear end of the combine 101. Further, the detection unit 130 is directed to the rear right of the machine body.
  • a camera for example, a CCD camera, a CMOS camera, or an infrared camera.
  • the combine 101 is executing a peripheral harvesting run.
  • the direction of the surrounding harvesting run is counterclockwise in a plan view. Therefore, as shown in FIG. 25, when the surrounding harvesting run is being executed, the detection unit 130 takes an image of the portion of the field outer edge portion 6 adjacent to the cut area SA. As a result, the detection unit 130 detects the three-dimensional shape of the portion of the field outer edge portion 6 adjacent to the cut area SA.
  • the combine 101 is provided with a detection unit 130 that detects the three-dimensional shape of the portion of the field outer edge 6 adjacent to the region where the grain has been harvested in the field 5 during the execution of the surrounding harvesting run.
  • the detection result by the detection unit 130 is sent to the map generation unit 128.
  • the map generation unit 128 generates an outer edge map based on the detection result of the detection unit 130.
  • the outer edge map is a map showing the distribution of the three-dimensional shape of the field outer edge 6. Further, the outer edge map corresponds to the "outer edge information" according to the present invention. Then, the acquisition unit 129 acquires the outer edge portion map from the map generation unit 128.
  • the combine 101 includes a map generation unit 128 that generates an outer edge map showing the distribution of the three-dimensional shape of the field outer edge 6 based on the detection result of the detection unit 130. Further, the acquisition unit 129 acquires the outer edge portion map. Further, the combine 101 includes an acquisition unit 129 for acquiring information on the outer edge portion indicating the three-dimensional shape of the outer edge portion 6 of the field provided so as to surround the field 5.
  • the detection unit 130 From the start to the end of the surrounding harvesting run, the detection unit 130 will take an image of the entire circumference of the field outer edge portion 6. As a result, the detection unit 130 can detect the three-dimensional shape of the field outer edge portion 6 over the entire circumference of the field outer edge portion 6. As a result, the map generation unit 128 can generate an outer edge portion map corresponding to the entire circumference of the field outer edge portion 6.
  • FIG. 26 shows an example of the outer edge map generated by the map generator 128.
  • the outer edge map shown in FIG. 26 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61, the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61, and the position and three-dimensional shape of the water supply / drainage pump 62. It has been. As shown in FIG. 27, the side surface portion 61a is inclined so as to be higher toward the outside (the farther from the field 5). Further, the upper surface portion 61b is horizontal.
  • the outer edge map acquired by the acquisition unit 129 is sent to the automatic traveling control unit 124. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the outer edge map.
  • FIG. 27 shows an example in which the combine 101 changes direction in the vicinity of the outer edge portion 6 of the field.
  • the surrounding harvest run has already been completed.
  • the outer edge map has already been generated by the map generation unit 128. Further, the combine 101 is automatically traveling.
  • the combine 101 first goes straight while performing a mowing run in the uncut area CA. Then, when the harvesting unit 110 enters the uncut area SA from the uncut area CA, the combine 101 changes direction by an ⁇ turn.
  • the combine 101 turns to the left side of the machine while decelerating under the control of the traveling control unit 126. Then, the combine 101 is temporarily stopped in a state where the harvesting portion 110 overlaps the field outer edge portion 6 in a plan view.
  • the combine 101 changes the direction of the aircraft while moving backward and forward. This completes the change of direction of the combine 101.
  • the traveling control unit 126 receives information indicating the cutting traveling route LI selected by the route selection unit 125 and the acquisition unit 129. Based on the outer edge map and the target route of the combine 101 at the time of turning. In addition, in FIG. 27, the illustration of the cutting travel path LI is omitted.
  • the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route. Further, the traveling control unit 126 sends the calculated target route to the elevating control unit 127 before the harvesting unit 110 enters the uncut area SA from the uncut area CA.
  • the elevating control unit 127 generates elevating schedule information indicating the elevating control schedule of the harvesting unit 110 based on the target route received from the traveling control unit 126 and the outer edge portion map received from the acquisition unit 129. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 according to the generated elevating schedule information.
  • the elevating control unit 127 generates elevating schedule information so that the harvesting unit 110 does not interfere with the field outer edge portion 6 when the harvesting unit 110 overlaps with the field outer edge portion 6 in a plan view.
  • the raising and lowering of the harvesting section 110 is automatically controlled so that the harvesting section 110 does not interfere with the field outer edge portion 6.
  • the harvesting unit 110 is provided with an elevating control unit 127 that automatically controls the elevating and lowering of the harvesting unit 110.
  • the ascending / descending schedule information includes the aircraft position where the harvesting unit 110 starts to rise, the aircraft position where the harvesting unit 110 ends ascending, and the aircraft position where the harvesting unit 110 starts descending. It contains information indicating the position of the aircraft to end the descent of the harvesting unit 110.
  • the elevating control unit 127 is scheduled to move up and down so that the lower the ground height of the field outer edge portion 6, the closer the position of the machine body at which the harvesting portion 110 starts to rise is to the field outer edge portion 6. Generate information. As a result, the lower the ground clearance of the field outer edge portion 6, the lower the ground clearance reached by the harvesting portion 110 when the harvesting portion 110 overlaps with the field outer edge portion 6 in a plan view.
  • the elevating control unit 127 controls the elevating of the harvesting unit 110 so that the lower the above-ground height of the field outer edge portion 6 is, the lower the above-ground height of the harvesting unit 110 is.
  • FIG. 28 shows a case where the above-ground height of the field outer edge portion 6 is the first height T1 and a case where the above-ground height of the field outer edge portion 6 is the second height T2. ..
  • the second height T2 is lower than the first height T1.
  • the ascending of the harvesting portion 110 is started when the front lower end of the harvesting portion 110 reaches the position P1. Further, when the above-ground height of the field outer edge portion 6 is the second height T2, the ascending of the harvesting portion 110 is started when the front lower end of the harvesting portion 110 reaches the position P2.
  • the distance between the position P2 and the field outer edge 6 is shorter than the distance between the position P1 and the field outer edge 6.
  • the harvesting portion 110 starts to rise as compared with the case where the above-ground height of the field outer edge 6 is the first height T1.
  • the position of the machine is close to the outer edge of the field 6.
  • the harvesting portion 110 is viewed in a plan view as compared with the case where the ground clearance of the field outer edge portion 6 is the first height T1.
  • the ground clearance reached by the harvesting section 110 becomes low when the field overlaps with the field outer edge portion 6.
  • the elevating control unit 127 generates elevating schedule information so that the separation distance D1 between the harvesting unit 110 and the field outer edge portion 6 is maintained wider than a predetermined value. ..
  • the raising and lowering of the harvesting section 110 is controlled so that the separation distance D1 between the harvesting section 110 and the field outer edge portion 6 is maintained to be wider than a predetermined value.
  • the elevating control unit 127 controls the elevating of the harvesting unit 110 so that the separation distance D1 between the harvesting unit 110 and the field outer edge portion 6 is maintained wider than a predetermined value.
  • this predetermined value can be set arbitrarily.
  • the traveling control unit 126 is selected by the route selection unit 125 before the harvesting unit 110 enters the uncut area SA from the uncut area CA.
  • the target route of the combine 101 at the time of turning is calculated based on the information indicating the harvesting travel route LI and the outer edge map received from the acquisition unit 129. Then, the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route.
  • the combine 101 advances to a position where the harvesting portion 110 overlaps with the field outer edge portion 6 in a plan view.
  • the harvesting portion 110 is on the field outer edge portion 6 in a plan view. It is configured to run so that it does not overlap.
  • the travel control unit 126 performs the ⁇ -turn target route as shown in FIG. 29 when the combine 101 during automatic traveling changes direction. Instead, the target route as shown in FIG. 30 is calculated. Then, the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route.
  • the combine 101 first goes straight while performing a mowing run in the uncut area CA. Then, after the harvesting section 110 enters the cutting zone SA from the uncut region CA, the combine 101 temporarily stops in a state where the harvesting portion 110 does not overlap the field outer edge portion 6 in a plan view.
  • the combine 101 changes the direction of the aircraft while repeating backward and forward movements. This completes the change of direction of the combine 101.
  • the traveling control unit 126 controls the traveling of the aircraft so that the harvesting unit 110 does not overlap the field outer edge portion 6 in a plan view.
  • the combine 101 includes a traveling control unit 126 that controls the traveling of the machine body so that the harvesting unit 110 does not overlap the field outer edge portion 6 in a plan view when the ground clearance of the field outer edge portion 6 is higher than a predetermined height. ing.
  • this predetermined height can be set arbitrarily. Further, in FIGS. 29 and 30, the illustration of the cutting travel path LI is omitted.
  • the raising and lowering of the harvesting section 110 is automatically controlled so that the harvesting section 110 does not interfere with the field outer edge portion 6 according to the three-dimensional shape of the field outer edge portion 6.
  • the acquisition unit 129 acquires the outer edge portion map generated by the map generation unit 128.
  • the present invention is not limited to this.
  • another embodiment of the third embodiment according to the present invention will be described focusing on the differences from the third embodiment.
  • the configuration other than the parts described below is the same as that of the third embodiment.
  • the same reference numerals are given to the same configurations as those of the third embodiment.
  • control unit 120 in another embodiment of the third embodiment includes a map update unit 132 and an acquisition unit 229.
  • the acquisition unit 229 acquires the outer edge map from the management server 131 located outside the combine 101.
  • the management server 131 stores an outer edge map generated based on the detection result of the detection unit 130 in the harvesting work performed in the field 5 in the past.
  • the present invention is not limited to this, and the outer edge map stored in the management server 131 detects the three-dimensional shape of the field outer edge 6 in the work carried out by a work vehicle such as a tractor or a rice transplanter. It may be generated, or it may be generated by the operation input of the operator.
  • the acquisition unit 229 acquires an outer edge map showing the distribution of the three-dimensional shape of the field outer edge 6.
  • FIG. 32 shows an example of the outer edge map acquired from the management server 131.
  • the outer edge map shown in FIG. 32 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61 and the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61.
  • the acquisition unit 229 sends the acquired outer edge map to the map update unit 132. Further, the detection result by the detection unit 130 is sent to the map update unit 132.
  • the map update unit 132 updates the outer edge map received from the acquisition unit 229 based on the detection result of the detection unit 130.
  • the combine 101 includes a map update unit 132 that updates the outer edge map based on the detection result of the detection unit 130.
  • the detection unit 130 From the start to the end of the surrounding harvesting run, the detection unit 130 will take an image of the entire circumference of the field outer edge portion 6. As a result, the detection unit 130 can detect the three-dimensional shape of the field outer edge portion 6 over the entire circumference of the field outer edge portion 6. As a result, the map update unit 132 can update the entire outer edge map.
  • FIG. 32 shows an example of the outer edge map before being updated by the map update unit 132.
  • the outer edge map shown in FIG. 32 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61 and the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61.
  • the outer edge map before being updated by the map update unit 132 does not include information indicating the existence of the water supply / drainage pump 62, but actually, the field outer edge portion 6 includes the water supply / drainage pump 62. It is assumed that there is. In that case, the three-dimensional shape of the water supply / drainage pump 62 is detected by the detection unit 130 during the execution of the surrounding harvesting run. As a result, the outer edge map updated by the map update unit 132 includes the position and the three-dimensional shape of the water supply / drainage pump 62. That is, for example, when the outer edge map shown in FIG. 32 is updated by the map updating unit 132, the existence of the water supply / drainage pump 62 is reflected, and the outer edge map as shown in FIG. 26 is obtained.
  • the outer edge map updated by the map updating unit 132 is sent to the automatic traveling control unit 124. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the updated outer edge map.
  • the elevating control of the harvesting unit 110 is the same as that of the above embodiment.
  • the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the outer edge portion map updated by the map updating unit 132.
  • the updated outer edge map may be sent from the map update unit 132 to the management server 131.
  • the outer edge map stored in the management server 131 is updated by replacing the outer edge map before the update stored in the management server 131 with the outer edge map sent from the map update unit 132. May be configured.
  • the traveling device 11 may be a wheel type or a semi-crawler type.
  • the cutting travel path LI calculated by the route calculation unit 123 is a plurality of mesh lines extending in the vertical and horizontal directions.
  • the present invention is not limited to this, and the cutting travel path LI calculated by the route calculation unit 123 does not have to be a plurality of mesh lines extending in the vertical and horizontal directions.
  • the cutting travel path LI calculated by the route calculation unit 123 may be a spiral travel route.
  • the cutting travel path LI does not have to be orthogonal to another cutting travel route LI.
  • the cutting travel path LI calculated by the route calculation unit 123 may be a plurality of parallel lines parallel to each other.
  • a part or all of the 129, 129 and the map update unit 132 may be provided outside the combine 101, for example, in a management facility or a management server 131 provided outside the combine 101. You may have.
  • the detection unit 130 may be other than the camera.
  • the detection unit 130 may be a radar or a LIDAR (laser radar).
  • the combine 101 may be configured so that it cannot run automatically.
  • the vehicle speed and steering may be controlled by manual operation, and the elevating and lowering of the harvesting unit 110 may be automatically controlled by the elevating control unit 127.
  • the elevating control unit 127 may be configured to control the elevating of the harvesting unit 110 regardless of the ground clearance of the field outer edge portion 6.
  • the elevating control unit 127 of the harvesting unit 110 keeps the distance D1 between the harvesting unit 110 and the field outer edge portion 6 wider than a predetermined value. Control the ascent and descent.
  • a predetermined value may not be set.
  • the detection unit 130 may not be provided on the combine 101.
  • the detection unit 130 may be provided on a flyable multicopter.
  • the map generation unit 128 may generate an outer edge portion map based on information other than the detection result of the detection unit 130. For example, the map generation unit 128 may generate an outer edge map based on the locus of the harvesting unit 110 when the harvesting unit 110 moves up and down manually.
  • the outer edge map shows the position and height of the lowest portion of the side surface portion 61a of the ridge shore 61 and the position and height of the highest portion of the side surface portion 61a of the ridge shore 61. Is also good.
  • the present invention is applicable not only to ordinary combine harvesters but also to general harvesters for harvesting crops such as head-feeding combine harvesters (for example, corn harvesters and carrot harvesters). Further, the technical features of the harvester of the present invention can also be applied to a control system. Therefore, the present invention can also be subject to control systems. In addition, the technical features of the harvester of the present invention are also applicable to control methods. Therefore, the present invention can also be subject to the control method. In addition, the technical features of the harvester of the present invention are also applicable to control programs. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
  • a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.

Abstract

This harvester is provided with: a traveling device 11 capable of traveling through a field; a harvesting device 15 for harvesting a crop in the field, supported in a vertically movable manner by a machine body 1, and comprising a harvesting header 15A for receiving a planted crop ahead, and a raking reel 15B for raking the planted crop via rotary drive; an actuator 15H for operating the harvesting device 15; a crop detection unit for detecting the height of the planted crop; and a state changing unit capable of operating the actuator 15H according to the height of the planted crop, thereby changing the operating state of the harvesting device 15.

Description

収穫機、収穫機の制御システム、収穫機の制御方法、収穫機の制御プログラム、及び、記録媒体Harvester, harvester control system, harvester control method, harvester control program, and recording medium
 本発明は、収穫機、収穫機の制御システム、収穫機の制御方法、収穫機の制御プログラム、及び、収穫機の制御プログラムが記録された記録媒体に関する。 The present invention relates to a harvester, a harvester control system, a harvester control method, a harvester control program, and a recording medium in which a harvester control program is recorded.
[第一背景技術]
 例えば特許文献1に開示された収穫機では、アクチュエータ(文献では「昇降駆動ユニット」)を操作することによって収穫装置(文献では「刈取部」)の作業状態を変更可能な状態変更部(文献では「制御状態切換部」)が備えられている。収穫装置に電子制御ユニットが設けられ、状態変更部は、収穫機本体の電子制御ユニットと、収穫装置の電子制御ユニットと、の通信に基づいて収穫装置の種別を取得し、収穫装置の作業状態を変更する。
[First background technology]
For example, in the harvester disclosed in Patent Document 1, a state changing unit (in the document, a "cutting unit") in which the working state of the harvesting device ("cutting unit" in the document) can be changed by operating an actuator (“elevating drive unit” in the document). A "control state switching unit") is provided. An electronic control unit is provided in the harvesting device, and the state changing unit acquires the type of the harvesting device based on the communication between the electronic control unit of the harvester main body and the electronic control unit of the harvesting device, and the working state of the harvesting device. To change.
[第二背景技術]
 例えば特許文献1に開示された収穫機では、収穫装置(文献では「刈取部」)の作業状態を変更可能な状態変更部(文献では「制御状態切換部」)が備えられている。収穫装置に電子制御ユニットが設けられ、収穫機本体の電子制御ユニットと、収穫装置の電子制御ユニットと、の通信に基づいて、収穫装置の種別を取得可能な構成が開示されている。
[Second background technology]
For example, the harvester disclosed in Patent Document 1 is provided with a state changing unit (“control state switching unit” in the document) capable of changing the working state of the harvesting device (“cutting unit” in the document). An electronic control unit is provided in the harvesting device, and a configuration is disclosed in which the type of the harvesting device can be acquired based on the communication between the electronic control unit of the harvester main body and the electronic control unit of the harvesting device.
[第三背景技術]
 例えば特許文献1に開示された収穫機に、収穫直後の圃場の凹凸状態を検出する高さ検出部(文献では「刈高さセンサ」)が備えられている。高さ検出部によって検出された圃場の凹凸状態に応じて、収穫部(文献では「刈取搬送部」)の対地高さが変更される。
[Third background technology]
For example, the harvester disclosed in Patent Document 1 is provided with a height detection unit (“cutting height sensor” in the document) for detecting an uneven state of a field immediately after harvesting. The height of the harvesting section (“cutting and transporting section” in the literature) to the ground is changed according to the unevenness of the field detected by the height detecting section.
[第四背景技術]
 例えば特許文献2に開示された収穫機に、作業走行しながら作業後の圃場の凹凸状態を検出する刈高さセンサが備えられている。刈高さセンサによって検出された圃場の凹凸状態に応じて、収穫装置(文献では「刈取搬送部」)の対地高さが変更される。
[Fourth background technology]
For example, the harvester disclosed in Patent Document 2 is provided with a cutting height sensor that detects an uneven state of a field after work while traveling. The height of the harvesting device (“cutting and transporting unit” in the literature) to the ground is changed according to the unevenness of the field detected by the cutting height sensor.
[第五背景技術]
 上記のような収穫機として、例えば、特許文献3に記載のものが既に知られている。この収穫機(文献では「コンバイン」)における収穫部(文献では「刈取部」)は、機体に対して昇降可能に構成されている。
[Fifth background technology]
As the above-mentioned harvester, for example, the one described in Patent Document 3 is already known. The harvesting section (“cutting section” in the literature) in this harvester (“combine” in the literature) is configured to be able to move up and down with respect to the machine.
特開2019-126318号JP-A-2019-126318 特開2019-180320号JP-A-2019-180320 特開2017-35017号公報Japanese Unexamined Patent Publication No. 2017-3517
 上述の[第一背景技術]に対応する[第一課題]は、以下のとおりである。収穫装置で作物を好適に収穫するためには、圃場の作物状態を把握した上で収穫装置の状態を変更することが好ましい。圃場の作物状態は、天候によって異なったり、圃場によって異なったりする。このため、収穫装置の種別だけではなく、圃場の作物状態をリアルタイムで取得できる構成であれば、収穫装置の作業状態をきめ細かく変更可能となり、収穫装置の収穫精度が向上する。本発明は、収穫装置の作業状態をきめ細かく変更可能な収穫機を提供することにある。 The [first issue] corresponding to the above [first background technology] is as follows. In order to appropriately harvest crops with the harvesting device, it is preferable to change the state of the harvesting device after grasping the crop condition in the field. The crop condition of the field varies depending on the weather and the field. Therefore, if the configuration is such that not only the type of the harvesting device but also the crop state of the field can be acquired in real time, the working state of the harvesting device can be finely changed, and the harvesting accuracy of the harvesting device is improved. The present invention is to provide a harvester capable of finely changing the working state of the harvester.
 上述の[第二背景技術]に対応する[第二課題]は、以下のとおりである。特許文献1に開示された収穫機のように、複数の収穫装置が、収穫物の種類に応じて使い分けられるのが一般的であるが、一つの収穫装置が出来るだけ多くの作物の種類に兼用できることが望ましい。しかし、作物の種類によって、作物の高さと、作物の中に含まれる収穫対象の大きさと、は夫々異なる。このため、収穫装置と収穫対象との相性が悪いと、収穫装置の搬送経路から作物が圃場に零れ落ちて作物のロスが発生したり、収穫装置の搬送経路で収穫対象に傷が付いたりして、好適な収穫作業ができない虞がある。また、作物の種類によっては、茎が太い等の理由によって詰まりの発生し易い作物も存在する。このような作物の場合、搬送経路を搬送される作物の量が一時的に増えることも考えられるため、搬送経路で詰まりが発生する虞が高くなる。このため、作物の種類(量)に応じて搬送経路に詰まりが発生し難い構成が望まれる。本発明の目的は、作物の種類に応じて好適な収穫作業を可能な収穫装置を有する収穫機を提供することにある。 The [second issue] corresponding to the above-mentioned [second background technology] is as follows. As in the case of the harvester disclosed in Patent Document 1, it is common that a plurality of harvesting devices are used properly according to the type of harvested product, but one harvesting device can be used for as many types of crops as possible. It is desirable to be able to do it. However, depending on the type of crop, the height of the crop and the size of the harvest target contained in the crop are different. For this reason, if the harvesting device and the harvesting target are incompatible, the crop may spill into the field from the transporting route of the harvesting device, causing crop loss, or the harvesting device may be damaged in the transport path of the harvesting device. Therefore, there is a risk that proper harvesting work will not be possible. In addition, depending on the type of crop, there are some crops that are prone to clogging due to reasons such as thick stems. In the case of such crops, it is possible that the amount of crops transported along the transport route will temporarily increase, so there is a high possibility that clogging will occur in the transport route. Therefore, it is desired that the transport route is less likely to be clogged depending on the type (amount) of the crop. An object of the present invention is to provide a harvester having a harvesting device capable of performing suitable harvesting work according to the type of crop.
 上述の[第三背景技術]に対応する[第三課題]は、以下のとおりである。特許文献2に開示された収穫機では、高さ検出部は収穫部の真下に設けられているため、収穫後の圃場の凹凸状態に基づいて、収穫部の昇降制御が行われる。このため、収穫前の圃場の凹凸状態を検出する構成と比較して、収穫部の昇降制御のタイミングが遅い。このことから、圃場の凹凸状態が激しいような場所では収穫部の昇降制御が遅れてしまって、収穫部の先端部分が圃場の地面に接触してしまい、収穫部が作物と一緒に地面の土等も拾ってしまう虞がある。本発明の目的は、作業後の圃場状態に応じて好適な収穫作業を可能な収穫機を提供することにある。 The [third issue] corresponding to the above-mentioned [third background technology] is as follows. In the harvester disclosed in Patent Document 2, since the height detecting section is provided directly below the harvesting section, the raising and lowering control of the harvesting section is performed based on the uneven state of the field after harvesting. For this reason, the timing of raising and lowering control of the harvesting portion is delayed as compared with the configuration in which the uneven state of the field before harvesting is detected. For this reason, in a place where the unevenness of the field is severe, the control of raising and lowering the harvesting part is delayed, the tip of the harvesting part comes into contact with the ground of the field, and the harvesting part is soiled on the ground together with the crop. Etc. may also be picked up. An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to the field condition after the work.
 上述の[第四背景技術]に対応する[第四課題]は、以下のとおりである。特許文献2に開示された収穫機では、刈高さセンサによって検出された圃場の凹凸状態に基づいて収穫装置の対地高さが変更される構成である。圃場には雑草や倒伏作物などが存在するため、単に圃場の凹凸状態に応じて収穫装置の対地高さを変更するだけでは、最適な収穫作業が行われない場合も考えられる。このため、単なる圃場の凹凸状態のみならず、種々の圃場の状態に応じて全体的な収穫作業の状態を変更可能な収穫機が望まれる。本発明の目的は、作業後の圃場状態に応じて好適な収穫作業を可能な収穫機を提供することにある。 The [fourth problem] corresponding to the above-mentioned [fourth background technology] is as follows. The harvester disclosed in Patent Document 2 has a configuration in which the ground height of the harvester is changed based on the uneven state of the field detected by the cutting height sensor. Since weeds and lodging crops exist in the field, it is possible that the optimum harvesting work may not be performed simply by changing the ground height of the harvesting device according to the unevenness of the field. For this reason, a harvester capable of changing the overall state of the harvesting work according to the state of various fields, not just the uneven state of the field, is desired. An object of the present invention is to provide a harvester capable of performing suitable harvesting work according to the field condition after the work.
 上述の[第五背景技術]に対応する[第五課題]は、以下のとおりである。一般に、圃場を囲む状態で設けられた圃場外縁部には、畦畔や給排水ポンプ等が含まれている。そして、収穫機が圃場の角部において方向転換する際、収穫部が平面視で圃場外縁部に重複する位置まで前進してから切り返し走行を行うことにより、効率の良い方向転換を行いやすい。ただし、収穫部が平面視で圃場外縁部に重複する状態となる際、収穫部が圃場外縁部に干渉することを回避する必要がある。ここで、特許文献1には、収穫部が平面視で圃場外縁部に重複する状態となる際、収穫部が圃場外縁部に干渉することを回避するための構成について記載されていない。本発明の目的は、収穫部が圃場外縁部に干渉することを回避できる収穫機を提供することである。 The [fifth issue] corresponding to the above-mentioned [fifth background technology] is as follows. Generally, the outer edge of the field provided so as to surround the field includes a ridge, a water supply / drainage pump, and the like. Then, when the harvester changes direction at the corner of the field, the harvesting part advances to a position overlapping the outer edge of the field in a plan view, and then the turning run is performed, so that efficient direction change can be easily performed. However, when the harvesting portion overlaps with the outer edge of the field in a plan view, it is necessary to prevent the harvesting portion from interfering with the outer edge of the field. Here, Patent Document 1 does not describe a configuration for preventing the harvesting portion from interfering with the outer edge of the field when the harvesting portion overlaps with the outer edge of the field in a plan view. An object of the present invention is to provide a harvester capable of preventing the harvesting section from interfering with the outer edge of the field.
 上述の[第一課題]に対応する[第一解決手段]は、以下のとおりである。
 即ち、本発明による収穫機は、圃場を走行可能な走行装置と、機体に上下昇降可能に支持され、前方の植立作物を受け入れる収穫ヘッダ、及び、回転駆動によって植立作物を掻き込む掻込リールを有し、圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、植立作物の高さを検出する作物検出部と、植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更可能な状態変更部と、が備えられていることを特徴とする。
The [first solution] corresponding to the above [first problem] is as follows.
That is, the harvester according to the present invention has a traveling device capable of traveling in the field, a harvest header that is supported by the machine body so as to be able to move up and down and accepts the planted crop in front, and a scraping that scrapes the planted crop by rotary drive. A harvesting device that has a reel and harvests crops in the field, an actuator that operates the harvesting device, a crop detector that detects the height of the planted crop, and the actuator according to the height of the planted crop. It is characterized by being provided with a state changing unit capable of changing the working state of the harvesting apparatus by operating the harvesting apparatus.
 圃場の作物を収穫する際に、圃場の作物高さを把握することは、収穫装置で作物を好適に収穫するために重要な要素である。本発明によると、圃場の作物状態として植立作物の高さが作物検出部によって検出される。つまり、作物検出部によって植立作物の高さをリアルタイムで検出する構成が可能となり、これによって、収穫装置の作業状態のきめ細かい変更が可能となる。その結果、収穫装置の収穫精度が向上し、収穫装置の作業状態をきめ細かく変更可能な収穫機が実現される。 When harvesting crops in the field, grasping the height of the crops in the field is an important factor for properly harvesting the crops with the harvesting device. According to the present invention, the height of the planted crop is detected by the crop detection unit as the crop state in the field. That is, the crop detection unit can be configured to detect the height of the planted crop in real time, which makes it possible to finely change the working state of the harvesting device. As a result, the harvesting accuracy of the harvesting device is improved, and a harvesting machine capable of finely changing the working state of the harvesting device is realized.
 上述した収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。この場合における制御システムは、圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御システムであって、植立作物の高さを検出する作物検出部と、植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更可能な状態変更部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems. The control system in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device. A state in which the working state of the harvesting device can be changed by operating the crop detection unit that detects the height of the planted crop and the actuator according to the height of the planted crop, which is a control system of the harvester. It is characterized by being provided with a change part.
 上述した収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。この場合における制御方法は、圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御方法であって、植立作物の高さを検出する作物検出ステップと、植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更する状態変更ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method. The control method in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device. A crop detection step for detecting the height of a planted crop, which is a control method for the harvester, and a state change for changing the working state of the harvesting device by operating the actuator according to the height of the planted crop. It is characterized by having a step.
 上述した収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。この場合における制御プログラムは、圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御プログラムにおいて、植立作物の高さを検出する作物検出機能と、植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更する状態変更機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right. The control program in this case includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device. In the control program of the harvester, a crop detection function that detects the height of the planted crop and a state change function that changes the working state of the harvester by operating the actuator according to the height of the planted crop. , Is characterized by having a computer execute.
 本発明において、前記作業状態に、前記収穫装置の収穫高さが含まれると好適である。 In the present invention, it is preferable that the working state includes the harvest height of the harvesting apparatus.
 本構成であれば、植立作物の高さに基づいて収穫装置の収穫高さのきめ細かい変更が可能となる。これにより、作物を脱穀処理する際に、脱穀負荷の低減と、選別精度の向上と、が可能となる。 With this configuration, it is possible to finely change the harvest height of the harvester based on the height of the planted crop. This makes it possible to reduce the threshing load and improve the sorting accuracy when the crop is threshed.
 本発明において、前記作業状態に、前記掻込リールの高さ位置が含まれると好適である。 In the present invention, it is preferable that the working state includes the height position of the scraping reel.
 本構成であれば、植立作物の高さに基づいて掻込リールの高さ位置のきめ細かい変更が可能となるため、植立作物を掻き込む高さが好適なものとなる。これにより、収穫装置が植立作物を精度よく収穫可能となり、収穫装置における作物のロスが低減される。 With this configuration, the height position of the scraping reel can be finely changed based on the height of the planted crop, so the height at which the planted crop is scraped is suitable. As a result, the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
 本発明において、前記作業状態に、前記掻込リールの前後位置が含まれると好適である。 In the present invention, it is preferable that the working state includes the front-rear position of the suction reel.
 本構成であれば、植立作物の高さに基づいて掻込リールの前後位置のきめ細かい変更が可能となるため、植立作物を掻き込むタイミングが好適なものとなる。これにより、収穫装置が植立作物を精度よく収穫可能となり、収穫装置における作物のロスが低減される。 With this configuration, it is possible to finely change the front-back position of the suction reel based on the height of the planted crop, so the timing of scraping the planted crop is suitable. As a result, the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
 本発明において、前記作業状態に、前記掻込リールの回転速度が含まれると好適である。 In the present invention, it is preferable that the working state includes the rotation speed of the scraping reel.
 圃場の作物高さは、例えば倒伏作物等の存在によって、圃場の領域ごとに変化する。本構成であれば、作物検出部によって植立作物の高さをリアルタイムで検出する構成が可能であって、植立作物の高さに基づいて掻込リールの回転速度のきめ細かい変更が可能となる。これにより、例えば倒伏作物等が存在する場合であっても、収穫装置が植立作物を精度よく収穫可能となり、収穫装置における作物のロスが低減される。 The crop height in the field changes for each area of the field, for example, due to the presence of lodging crops. With this configuration, it is possible to detect the height of the planted crop in real time by the crop detection unit, and it is possible to finely change the rotation speed of the scraping reel based on the height of the planted crop. .. As a result, even when a fallen crop or the like is present, the harvesting device can accurately harvest the planted crop, and the loss of the crop in the harvesting device is reduced.
 本発明において、前記作業状態に、前記収穫ヘッダの作業高さが含まれると好適である。 In the present invention, it is preferable that the working state includes the working height of the harvest header.
 本構成であれば、植立作物の高さに基づいて収穫ヘッダの作業高さの変更が可能となるため、収穫高さのきめ細かい変更が可能となる。これにより、作物を脱穀処理する際に、脱穀負荷の低減と、選別精度の向上と、が可能となる。 With this configuration, the working height of the harvest header can be changed based on the height of the planted crop, so the harvest height can be finely changed. This makes it possible to reduce the threshing load and improve the sorting accuracy when the crop is threshed.
 本発明において、前記掻込リールに、植立作物に掻込作用するタインが備えられ、前記作業状態に、前記タインの回転軌跡が含まれると好適である。 In the present invention, it is preferable that the scraping reel is provided with a tine that scrapes into the planted crop, and that the working state includes the rotation locus of the tine.
 本構成であれば、植立作物の高さに基づいてタインが植立作物に対して好適に掻込作用できる。これにより、収穫装置が植立作物を精度よく収穫可能となり、収穫装置における作物のロスが低減される。 With this configuration, Tyne can suitably scrape the planted crop based on the height of the planted crop. As a result, the harvesting device can accurately harvest the planted crops, and the crop loss in the harvesting device is reduced.
 本発明において、前記作物検出部は、撮像装置によって撮像された撮像データに基づいて植立作物の高さを検出すると好適である。 In the present invention, it is preferable that the crop detection unit detects the height of the planted crop based on the image pickup data captured by the image pickup device.
 本構成によって、画像処理に基づいて作物高さのみならず、倒伏作物、雑草、更には障害物の検出が可能となり、収穫装置の作業状態の一層きめ細かい変更が可能となる。 With this configuration, not only the height of the crop but also the fallen crop, weeds, and obstacles can be detected based on the image processing, and the working state of the harvesting device can be changed more finely.
 本発明において、前記状態変更部は、前記収穫装置の作業状態に加えて前記走行装置の車速を変更可能に構成されていると好適である。 In the present invention, it is preferable that the state changing unit is configured to be able to change the vehicle speed of the traveling device in addition to the working state of the harvesting device.
 倒伏作物等が存在すると、収穫装置の作業状態のみならず、走行装置の車速が変更されると好ましい。本構成であれば、作物検出部によって植立作物の高さをリアルタイムで検出する構成が可能であって、植立作物の高さに基づいて、収穫装置の作業状態と、走行装置の車速と、のきめ細かい変更が可能となる。これにより、例えば倒伏作物等が存在する場合であっても、収穫装置が植立作物を一層精度よく収穫可能となり、収穫装置における作物のロスが更に低減される。 If there are fallen crops, it is preferable that not only the working condition of the harvesting device but also the vehicle speed of the traveling device is changed. With this configuration, it is possible to detect the height of the planted crop in real time by the crop detection unit, and based on the height of the planted crop, the working state of the harvesting device and the vehicle speed of the traveling device. , Can be finely changed. As a result, even when, for example, a fallen crop is present, the harvesting device can harvest the planted crop with higher accuracy, and the loss of the crop in the harvesting device is further reduced.
 本発明において、前記作物検出部は、植立作物の高さに基づいて倒伏作物を検出可能に構成されていると好適である。また、本発明において、前記作物検出部は、植立作物の高さと、植立作物が同じ高さで広がる領域の広さと、に基づいて倒伏作物を検出するように構成されていると好適である。 In the present invention, it is preferable that the crop detection unit is configured to be able to detect a fallen crop based on the height of the planted crop. Further, in the present invention, it is preferable that the crop detection unit is configured to detect a fallen crop based on the height of the planted crop and the size of the area where the planted crop spreads at the same height. be.
 本構成によって、作物検出部とは別体で、倒伏作物を検出する専用の検出部が設けられていなくても、作物検出部によって、植立作物の高さの検出と、倒伏作物の検出と、の両方が可能となる。 With this configuration, the height of the planted crop can be detected and the fallen crop can be detected by the crop detection unit, even if the detection unit is separate from the crop detection unit and is not provided with a dedicated detection unit for detecting the fallen crop. , Both are possible.
 本発明において、前記状態変更部は、前記倒伏作物が検出されたら、前記掻込リールの位置を最も下側の領域かつ最も前側の領域に位置させると好適である。 In the present invention, it is preferable that the state changing portion positions the suction reel in the lowermost region and the frontmost region when the collapsed crop is detected.
 本構成によって、掻込リールが倒伏作物に好適に掻込作用するため、倒伏作物のロスが低減される。 With this configuration, the scraping reel has a suitable scraping action on the fallen crop, so that the loss of the fallen crop is reduced.
 本発明において、前記状態変更部は、前記倒伏作物が検出されたら、前記掻込リールの回転速度を上昇させ、かつ、前記走行装置の車速を減速させると好適である。 In the present invention, it is preferable that the state changing unit increases the rotation speed of the suction reel and decelerates the vehicle speed of the traveling device when the collapsed crop is detected.
 本構成によって、機体がゆっくりと前進ながら、掻込リールが倒伏作物に好適に掻込作用するため、倒伏作物のロスが低減される。 With this configuration, the suction reel acts to scrape the fallen crops while the aircraft slowly moves forward, so the loss of the fallen crops is reduced.
 上述の[第二課題]に対応する[第二解決手段]は、以下のとおりである。
 即ち、本発明による収穫機は、機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置と、前記収穫装置の作業対象の作物の種類を取得する作物検出部と、前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更部と、が備えられていることを特徴とする。
The [second solution] corresponding to the above-mentioned [second problem] is as follows.
That is, the harvester according to the present invention is supported by the machine body so as to be able to move up and down, a harvesting device for harvesting crops in the field, a crop detection unit for acquiring the type of crop to be worked on by the harvesting device, and the type of crop. It is characterized by being provided with a state changing unit for changing the vertical width of the transport path in the harvesting apparatus according to the above.
 本発明によると、作物の種類に応じて収穫装置における搬送経路の上下幅が変更されるため、収穫装置の搬送経路が作物と相性の良いものになり易い。このため、収穫装置の搬送経路から作物が圃場に零れ落ちて作物のロスが発生したり、収穫装置の搬送経路で収穫対象に傷が付いたりする虞が軽減される。これにより、一つの収穫装置が出来るだけ多くの作物の種類に兼用可能となり、作物の種類に応じて好適な収穫作業を可能な収穫装置が実現される。なお、本発明における『作物の種類』に、作物の量が含まれても良い。 According to the present invention, since the vertical width of the transport path in the harvester is changed according to the type of crop, the transport path of the harvester tends to be compatible with the crop. Therefore, it is possible to reduce the risk that the crop will spill into the field from the transport route of the harvesting device and the crop will be lost, or the harvest target will be damaged in the transport path of the harvesting device. As a result, one harvesting device can be used for as many types of crops as possible, and a harvesting device capable of performing suitable harvesting work according to the type of crop is realized. The "type of crop" in the present invention may include the amount of crop.
 上述した収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。この場合における制御システムは、機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御システムであって、前記収穫装置の作業対象の作物の種類を取得する作物検出部と、前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems. The control system in this case is a crop detection system that is supported by the machine body so as to be able to move up and down and has a harvesting device for harvesting crops in the field, and obtains the type of crop to be worked on by the harvesting device. It is characterized by being provided with a section and a state changing section for changing the vertical width of the transport path in the harvesting apparatus according to the type of the crop.
 上述した収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。この場合における制御方法は、機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御方法であって、前記収穫装置の作業対象の作物の種類を取得する作物検出ステップと、前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method. The control method in this case is a control method of a harvester having a harvesting device that is supported by the machine body so as to be able to move up and down and harvests crops in the field, and is a crop detection method for acquiring the type of crop to be worked on by the harvesting device. It is characterized by comprising a step and a state changing step of changing the vertical width of the transport path in the harvesting apparatus according to the type of the crop.
 上述した収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。この場合における制御プログラムは、機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御プログラムにおいて、前記収穫装置の作業対象の作物の種類を取得する作物検出機能と、前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right. In this case, the control program is supported by the machine body so as to be able to move up and down, and in the control program of the harvester having a harvesting device for harvesting the crops in the field, the crop detection function for acquiring the type of the crop to be worked on by the harvesting device is provided. It is characterized in that a computer is made to execute a state changing function of changing the vertical width of a transport path in the harvesting apparatus according to the type of the crop.
 本発明において、前記収穫装置に、作物を受け入れる収穫ヘッダと、回転駆動するとともに収穫された作物を左右方向中央領域に寄せ集めて後方の搬送装置へ送り出す横送りオーガと、前記横送りオーガを昇降操作する第一アクチュエータと、が備えられ、前記状態変更部は、前記第一アクチュエータを操作することによって、前記搬送経路の上下幅として、前記横送りオーガの下端部と、前記収穫ヘッダの底板と、の隙間の上下幅を変更すると好適である。 In the present invention, the harvesting device includes a harvesting header that receives crops, a lateral feed auger that is rotationally driven and collects the harvested crops in the central region in the left-right direction and sends them to a rear transport device, and the lateral feed auger is raised and lowered. A first actuator to be operated is provided, and the state changing unit operates the first actuator to set the vertical width of the transport path to the lower end portion of the lateral feed auger and the bottom plate of the harvest header. It is preferable to change the vertical width of the gap between.
 横送りオーガの下端部と、収穫ヘッダの底板と、の隙間の上下幅が大きすぎると、横送りオーガが収穫作物に十分な横送り作用をできず、作物が圃場に零れ落ちる虞がある。また、横送りオーガの下端部と、収穫ヘッダの底板と、の隙間の上下幅が小さすぎると、作物の収穫対象が横送りオーガと底板とに挟まれて潰れる虞がる。本構成であれば、横送りオーガの下端部と、収穫ヘッダの底板と、の隙間の上下幅が第一アクチュエータによって変更されるため、収穫装置の搬送経路が作物と相性の良いものになる。 If the vertical width of the gap between the lower end of the horizontal feed auger and the bottom plate of the harvest header is too large, the horizontal feed auger will not be able to perform a sufficient lateral feed action on the harvested crop, and the crop may spill into the field. Further, if the vertical width of the gap between the lower end portion of the horizontal feed auger and the bottom plate of the harvest header is too small, the crop target may be sandwiched between the horizontal feed auger and the bottom plate and crushed. In this configuration, the vertical width of the gap between the lower end of the horizontal feed auger and the bottom plate of the harvest header is changed by the first actuator, so that the transport path of the harvester is compatible with the crop.
 本発明において、前記収穫装置に、作物を受け入れる収穫ヘッダと、回転駆動するとともに作物を前記収穫ヘッダに掻き込む掻込リールと、前記掻込リールを昇降操作する第二アクチュエータと、が備えられ、前記状態変更部は、前記第二アクチュエータを操作することによって、前記搬送経路の上下幅として、前記掻込リールの下端部と、前記収穫ヘッダの底板と、の隙間の上下幅を変更すると好適である。 In the present invention, the harvesting apparatus is provided with a harvesting header for receiving crops, a scraping reel for rotationally driving and scraping crops into the harvesting header, and a second actuator for raising and lowering the scraping reels. It is preferable that the state changing portion changes the vertical width of the gap between the lower end portion of the scraping reel and the bottom plate of the harvest header as the vertical width of the transport path by operating the second actuator. be.
 本構成であれば、掻込リールの下端部と、収穫ヘッダの底板と、の隙間の上下幅が第二アクチュエータによって変更されるため、収穫装置の搬送経路が作物と相性の良いものになる。 In this configuration, the vertical width of the gap between the lower end of the scraping reel and the bottom plate of the harvesting header is changed by the second actuator, so that the transport path of the harvesting device is compatible with the crop.
 前記収穫装置を昇降操作する第三アクチュエータが備えられ、前記状態変更部は、前記第三アクチュエータを操作することによって、前記作物の種類に応じて前記収穫装置の収穫高さを変更可能に構成されていると好適である。 A third actuator for raising and lowering the harvesting device is provided, and the state changing unit is configured to be able to change the harvest height of the harvesting device according to the type of the crop by operating the third actuator. It is preferable to have.
 本構成であれば、作物の種類に応じて収穫装置の収穫高さが変更されるため、作物の収穫対象を効率よく収穫でき、搬送経路の詰まる虞が軽減される。また、本構成であれば、圃場の作物のうちの必要な部分が収穫装置によって収穫され、圃場の作物のうちの余分な部分が収穫装置に収穫されずに搬送経路に入り込まない。このため、脱穀負荷の低減と、選別精度の向上と、が可能となる。 With this configuration, the harvest height of the harvesting device is changed according to the type of crop, so the crop can be harvested efficiently and the risk of clogging of the transport route is reduced. Further, in this configuration, the necessary part of the crops in the field is harvested by the harvesting device, and the excess part of the crops in the field is not harvested by the harvesting device and does not enter the transport route. Therefore, it is possible to reduce the threshing load and improve the sorting accuracy.
 上述の[第三課題]に対応する[第三解決手段]は、以下のとおりである。
 即ち、本発明による収穫機は、圃場を走行可能な走行装置と、機体に上下昇降可能に支持され、圃場の作物を収穫する収穫部と、前記収穫部を昇降操作するアクチュエータと、前記収穫部の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部と、前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御部と、が備えられていることを特徴とする。
The [third solution] corresponding to the above-mentioned [third problem] is as follows.
That is, the harvester according to the present invention has a traveling device capable of traveling in the field, a harvesting section that is supported by the machine body so as to be able to move up and down to harvest crops in the field, an actuator that raises and lowers the harvesting section, and the harvesting section. The non-contact height detection unit that detects the height of the unevenness of the field in front of the harvesting part, and the ground height of the harvesting part are determined based on the height of the unevenness, and the drive of the actuator is controlled to control the driving of the actuator. It is characterized by being equipped with a harvest height control unit that automatically changes the ground height of the harvest unit.
 本構成によると、非接触式の高さ検出部が収穫部の前方における圃場の凹凸の高さを検出する。このため、高さ検出部が収穫部の真下等に設けられて収穫後の圃場の凹凸状態を検出する構成と比較して、収穫部の昇降制御のタイミングを速くできる。よって、圃場の凹凸状態が激しいような場所であっても、収穫部の昇降制御が遅れることなく、収穫部の対地高さを自動的に変更可能となる。また、高さ検出部が非接触式であるため、高さ検出部が接触式である場合と比較して、接触による摩耗がなく、長寿命化が可能となる。これにより、作業後の圃場状態に応じて好適な収穫作業を可能な収穫機が実現される。 According to this configuration, the non-contact height detection unit detects the height of the unevenness of the field in front of the harvesting unit. Therefore, the timing of raising / lowering control of the harvesting section can be made faster than in a configuration in which the height detecting section is provided directly under the harvesting section to detect the uneven state of the field after harvesting. Therefore, even in a place where the unevenness of the field is severe, the height of the harvesting portion to the ground can be automatically changed without delaying the elevating control of the harvesting portion. Further, since the height detection unit is a non-contact type, there is no wear due to contact as compared with the case where the height detection unit is a contact type, and the life can be extended. As a result, a harvester capable of performing suitable harvesting work according to the field condition after the work is realized.
 上述した収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。この場合における制御システムは、圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御システムであって、前記収穫部の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部と、前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems. In this case, the control system includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. It is a control system of the harvester having a non-contact height detection unit that detects the height of the unevenness of the field in front of the harvesting part, and the ground height of the harvesting part based on the height of the unevenness. The harvest height control unit is provided, which controls the drive of the third actuator to automatically change the ground height of the harvest unit.
 上述した収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。この場合における制御方法は、圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御方法であって、前記収穫部の前方における圃場の凹凸の高さを非接触式の高さ検出部で検出する高さ検出ステップと、前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method. In this case, the control method includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. It is a control method of a harvester having a height detection step of detecting the height of unevenness of a field in front of the harvesting part by a non-contact height detecting part, and the harvesting based on the height of the unevenness. It is characterized by comprising a harvest height control step that determines the ground height of the portion and controls the drive of the third actuator to automatically change the ground height of the harvest portion.
 上述した収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。この場合における制御プログラムは、圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御プログラムにおいて、前記収穫部の前方における圃場の凹凸の高さを非接触式の高さ検出部で検出する高さ検出機能と、前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right. In this case, the control program includes a traveling device capable of traveling in the field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. In the control program of the harvester, the height detection function of detecting the height of the unevenness of the field in front of the harvesting part by the non-contact height detecting part, and the height of the harvesting part based on the height of the unevenness. It is characterized by having a computer execute a harvest height control function that determines the ground height and controls the drive of the third actuator to automatically change the ground height of the harvesting portion.
 本発明において、前記高さ検出部は、撮像装置による撮像画像に基づいて前記凹凸の高さを検出すると好適である。 In the present invention, it is preferable that the height detecting unit detects the height of the unevenness based on the image captured by the image pickup device.
 本構成であれば、撮像画像の解析によって、圃場の凹凸の高さを検出可能な非接触式の高さ検出部が実現される。 With this configuration, a non-contact height detection unit that can detect the height of unevenness in the field is realized by analyzing the captured image.
 本発明において、前記高さ検出部は、光学式測距装置による距離情報に基づいて前記凹凸の高さを検出すると好適である。 In the present invention, it is preferable that the height detecting unit detects the height of the unevenness based on the distance information obtained by the optical ranging device.
 本構成であれば、距離情報の解析によって、圃場の凹凸の高さを検出可能な非接触式の高さ検出部が実現される。 With this configuration, a non-contact height detection unit that can detect the height of unevenness in the field is realized by analyzing the distance information.
 本発明において、前記収穫部に、前方の植立作物を受け入れる収穫ヘッダと、前記収穫ヘッダに支持されるとともに前記植立作物を切断する切断刃と、が備えられ、前記高さ検出部は、前記切断刃よりも前側における前記凹凸の高さを検出すると好適である。また、本発明において、前記収穫ヘッダの先端部の収穫幅方向における端部位置にデバイダが設けられ、前記高さ検出部は、前記デバイダよりも前側における前記凹凸の高さを検出すると好適である。 In the present invention, the harvesting section is provided with a harvesting header that accepts the planted crop in front and a cutting blade that is supported by the harvesting header and cuts the planted crop. It is preferable to detect the height of the unevenness on the front side of the cutting blade. Further, in the present invention, it is preferable that a divider is provided at the end position of the tip of the harvest header in the harvest width direction, and the height detecting portion detects the height of the unevenness on the front side of the divider. ..
 本構成によって、収穫部の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部が容易に実現される。 With this configuration, a non-contact height detection unit that detects the height of unevenness in the field in front of the harvesting unit is easily realized.
 本発明において、前記高さ検出部は、前記凹凸の高さとして畝高さを検出すると好適である。 In the present invention, it is preferable that the height detecting unit detects the ridge height as the height of the unevenness.
 圃場に畝Rが形成されている場合、収穫部の先端部分が畝Rの上面部分に接触してしまい、収穫部が作物と一緒に畝Rの土等も拾ってしまう虞がある。本構成であれば、収穫部が畝Rの上面部分と接触しないように、収穫高さ制御部が、収穫部の対地高さを自動的に変更可能となる。これにより、畝Rが形成された圃場で収穫作業の効率が向上する。 When the ridge R is formed in the field, the tip portion of the harvesting portion may come into contact with the upper surface portion of the ridge R, and the harvesting portion may pick up the soil of the ridge R together with the crop. With this configuration, the harvest height control unit can automatically change the ground height of the harvest unit so that the harvest unit does not come into contact with the upper surface portion of the ridge R. As a result, the efficiency of the harvesting work is improved in the field where the ridge R is formed.
 本発明において、前記収穫部の作業幅に亘って複数の前記凹凸が並列し、前記高さ検出部は、前記複数の凹凸の高さを検出可能に構成され、前記収穫高さ制御部は、前記複数の凹凸のうちの最も高い前記凹凸を基準に前記収穫部の対地高さを決定すると好適である。 In the present invention, a plurality of the unevennesses are arranged in parallel over the working width of the harvesting section, the height detecting section is configured to be able to detect the height of the plurality of unevennesses, and the harvesting height control section is configured. It is preferable to determine the ground height of the harvesting portion based on the highest unevenness among the plurality of unevenness.
 収穫部の作業幅に亘って複数の凹凸が並列する場合、複数の凹凸の何れかと収穫部とが接触する可能性は高くなる。収穫部と接触する凹凸が一つであっても、収穫部が圃場の凹凸と接触すると、収穫部が作物と一緒に圃場の土等も拾ってしまう虞がある。本構成であれば、収穫部が複数の凹凸の何れとも接触しないように、収穫高さ制御部が、収穫部の対地高さを自動的に変更可能となる。これにより、圃場で収穫作業の効率が向上する。 When a plurality of irregularities are arranged in parallel over the working width of the harvesting portion, there is a high possibility that any of the plurality of irregularities will come into contact with the harvesting portion. Even if there is only one unevenness that comes into contact with the harvesting part, if the harvesting part comes into contact with the unevenness of the field, the harvesting part may pick up soil or the like in the field together with the crop. With this configuration, the harvest height control unit can automatically change the ground height of the harvest unit so that the harvest unit does not come into contact with any of the plurality of irregularities. This improves the efficiency of the harvesting work in the field.
 本発明において、前記収穫部をローリングさせて前記収穫部の左右の傾きを変更可能な収穫傾斜変更機構が備えられ、前記収穫高さ制御部は、前記収穫部の収穫幅の範囲内において、前記複数の凹凸のうちの左右一方側の領域の前記凹凸の高さが前記複数の凹凸のうちの左右他方側の領域の前記凹凸の高さよりも高い場合、前記収穫部のうちの前記左右一方側の部分の対地高さを前記収穫部のうちの前記左右他方側の部分の対地高さよりも高くするように、前記収穫傾斜変更機構に前記収穫部の左右の傾きを変更させると好適である。 In the present invention, a harvest tilt changing mechanism capable of rolling the harvesting section to change the left / right tilt of the harvesting section is provided, and the harvest height control section is said to be within the range of the harvest width of the harvesting section. When the height of the unevenness in the left and right one side region of the plurality of unevenness is higher than the height of the unevenness in the left and right other side region of the plurality of unevenness, the left and right one side of the harvesting portion. It is preferable to have the harvest tilt changing mechanism change the left-right tilt of the harvest portion so that the ground height of the portion is higher than the ground height of the left and right other side portions of the harvest portion.
 収穫部の収穫幅の範囲内において、複数の凹凸の高さが異なる場合、植えられた作物にとっての最適な収穫高さが、複数の凹凸ごとに異なる場合も考えられる。特に、作物を株元から収穫する場合、収穫部の下端部と、複数の凹凸の夫々と、の離間距離は出来るだけ短いことが望ましい。本構成であれば、凹凸の高さに応じて、収穫部の左右の傾きが収穫傾斜変更機構によって変更されるため、複数の凹凸の夫々と、収穫部の下端部と、の離間距離の調節が容易になる。 If the heights of multiple irregularities differ within the range of the harvest width of the harvesting section, the optimum harvest height for the planted crop may differ for each of the plurality of irregularities. In particular, when harvesting crops from the root of a plant, it is desirable that the distance between the lower end of the harvesting section and each of the plurality of irregularities is as short as possible. In this configuration, the left-right tilt of the harvesting portion is changed by the harvest tilt changing mechanism according to the height of the unevenness, so that the distance between each of the plurality of irregularities and the lower end of the harvesting portion can be adjusted. Will be easier.
 本発明において、前記収穫部をローリングさせて前記収穫部の左右の傾きを変更可能な収穫傾斜変更機構が備えられ、前記収穫高さ制御部は、前記収穫部が水平姿勢となるように、前記収穫傾斜変更機構に前記収穫部の左右の傾きを変更させると好適である。 In the present invention, the harvesting inclination changing mechanism capable of changing the left-right inclination of the harvesting part by rolling the harvesting part is provided, and the harvesting height control part is described so that the harvesting part is in a horizontal posture. It is preferable to let the harvest tilt changing mechanism change the left and right tilt of the harvesting portion.
 本構成によって、収穫部が水平状態に保持されるため、例えば凹凸の激しい圃場等で、収穫部の姿勢が安定的になる。 With this configuration, the harvesting part is kept in a horizontal state, so that the posture of the harvesting part becomes stable, for example, in a field with severe unevenness.
 本発明において、機体の位置を示す測位データを出力する測位ユニットと、前記凹凸の高さを前記測位データと関連付けて記憶可能な記憶部と、が備えられ、前記高さ検出部は、走行装置が一方向へ向かって走行する際に、前記収穫部の収穫幅よりも左右外側に隣接する未収穫領域における前記凹凸の高さである第一高さを検出可能に構成され、前記記憶部は、前記第一高さを前記測位データと関連付けて記憶し、前記収穫高さ制御部は、前記未収穫領域が前記収穫幅の範囲に位置する状態で走行装置が前記一方向と反対方向へ向かって走行する際に前記高さ検出部によって検出された前記凹凸の高さである第二高さと、前記記憶部に記憶された前記第一高さと、に基づいて前記収穫部の対地高さを決定すると好適である。 In the present invention, a positioning unit that outputs positioning data indicating the position of the machine and a storage unit that can store the height of the unevenness in association with the positioning data are provided, and the height detecting unit is a traveling device. Is configured to be able to detect the first height, which is the height of the unevenness in the unharvested region adjacent to the left and right outer sides of the harvest width of the harvesting portion, when the vehicle travels in one direction. , The first height is stored in association with the positioning data, and the harvest height control unit directs the traveling device in the direction opposite to the one direction while the unharvested area is located within the range of the harvest width. The height of the harvesting section to the ground is determined based on the second height, which is the height of the unevenness detected by the height detecting section, and the first height stored in the storage section. It is preferable to determine.
 高さ検出部が収穫部の前方における圃場の凹凸の高さを検出する場合、収穫部からの前方視点で作物の裏側に隠れて死角となる死角領域が圃場に存在し、高さ検出部は死角領域における凹凸の高さを検出できない。このため、収穫高さ制御部は、収穫部の対地高さを好適に変更できない虞がある。本構成によると、当該死角領域の存在する未収穫領域を収穫機が一方向に向かって作業走行する前に、未収穫領域に隣接する領域を収穫機が当該一方向と反対方向に走行する。このときに、高さ検出部が未収穫領域における凹凸の高さを反対方向から検出し、この検出された凹凸の高さが第一高さとして記憶されるため、死角領域における凹凸の高さが第一高さとして取得される。これにより、高さ検出部は死角領域における凹凸の高さを検出できるようになり、収穫高さ制御部は、収穫部の対地高さを好適に変更できる。 When the height detection part detects the height of the unevenness of the field in front of the harvesting part, there is a blind spot area hidden behind the crop and becomes a blind spot from the front viewpoint from the harvesting part, and the height detecting part is The height of unevenness in the blind spot area cannot be detected. Therefore, the harvest height control unit may not be able to suitably change the ground height of the harvest unit. According to this configuration, the harvester travels in the area adjacent to the unharvested area in the direction opposite to the one direction before the harvester travels in one direction in the unharvested area where the blind spot area exists. At this time, the height detection unit detects the height of the unevenness in the unharvested region from the opposite direction, and the height of the detected unevenness is stored as the first height, so that the height of the unevenness in the blind spot region Is obtained as the first height. As a result, the height detecting unit can detect the height of the unevenness in the blind spot region, and the harvest height control unit can suitably change the height of the harvesting unit to the ground.
 上述の[第四課題]に対応する[第四解決手段]は、以下のとおりである。
 即ち、本発明による収穫機は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、作業走行しながら作業後の圃場状態を検出する圃場状態検出部と、前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更可能な状態変更部と、が備えられていることを特徴とする。
The [fourth solution] corresponding to the above [fourth problem] is as follows.
That is, the harvester according to the present invention includes a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field, a field condition detecting unit for detecting the field state after work while traveling, and a post-working device. It is characterized by being provided with a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state.
 収穫後の圃場の状態は、例えば残作物が存在する等の種々の状態が考えられるが、本発明によると、圃場状態検出部によって種々の作業後の圃場状態が検出される。また、収穫装置のみならず、走行装置も作業後の圃場状態に応じて変更可能なように構成されているため、全体的な収穫作業の状態変更が可能となる。これにより、作業後の圃場状態に応じて好適な収穫作業を可能な収穫機が実現される。 The state of the field after harvesting may be various states such as the presence of residual crops, but according to the present invention, the field state detection unit detects the field state after various operations. Further, not only the harvesting device but also the traveling device is configured to be changeable according to the field condition after the work, so that the overall state of the harvesting work can be changed. As a result, a harvester capable of performing suitable harvesting work according to the field condition after the work is realized.
 上述した収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。この場合における制御システムは、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御システムであって、前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出部と、前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更可能な状態変更部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems. The control system in this case is a control system of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting the crops in the field, and the field state after the work while being operated by the harvester. It is characterized by being provided with a field state detecting unit for detecting the above, and a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state after the work. do.
 上述した収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。この場合における制御方法は、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御方法であって、前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出ステップと、前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更する状態変更ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method. The control method in this case is a control method of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting the crops in the field, and the field state after the work while the harvester is in operation. It is characterized by including a field state detecting step for detecting the above, and a state changing step for changing at least one working state of the traveling device and the harvesting device according to the field state after the work.
 上述した収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。この場合における制御プログラムは、圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御プログラムにおいて、前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出機能と、前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更する状態変更機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right. In this case, the control program is a control program of a harvester having a traveling device capable of traveling in the field and a harvesting device for harvesting crops in the field, and detects the field state after the work while the harvester is running the work. It is characterized in that a computer is made to execute a field state detecting function for changing a working state and a state changing function for changing at least one working state of the traveling device and the harvesting device according to the field state after the work.
 本発明において、前記圃場状態検出部は、前記収穫装置による収穫作業後の収穫跡を検出し、前記状態変更部は、前記収穫跡に基づいて前記収穫装置の対地高さが高すぎると判定すると、前記収穫装置の対地高さを低く変更すると好適である。 In the present invention, the field state detection unit detects the harvest trace after the harvesting operation by the harvesting device, and the state changing unit determines that the ground height of the harvesting device is too high based on the harvesting trace. , It is preferable to change the height of the harvesting device to the ground to be low.
 同一圃場であっても、例えば作物の作物高さは、夫々の作物の状態等によって変化するため、収穫装置の対地高さが高すぎると、収穫装置が作物を好適に収穫できない場合もある。本構成によると、夫々の作物の状態等は、収穫跡に基づいて検出可能に構成されているため、収穫装置の対地高さが高すぎる場合であっても、収穫装置は作物を好適に収穫できる。 Even in the same field, for example, the crop height of each crop changes depending on the condition of each crop, so if the ground height of the harvesting device is too high, the harvesting device may not be able to harvest the crop appropriately. According to this configuration, the state of each crop is detectable based on the harvest trace, so even if the height of the harvesting device to the ground is too high, the harvesting device suitablely harvests the crop. can.
 本発明において、前記収穫装置に、前方の植立作物を受け入れる収穫ヘッダと、植立作物を掻き込む掻込リールと、が備えられ、前記圃場状態検出部は、前記収穫装置による収穫作業後に収穫されずに残された残作物を検出可能に構成され、前記状態変更部は、前記残作物が前記圃場状態検出部によって検出されると、前記走行装置をあらかじめ設定された距離だけ後進させ、前記収穫ヘッダの上下位置を最も下側の領域に位置させるとともに前記掻込リールの位置を最も下側の領域かつ最も前側の領域に位置させ、前記後進の完了後に前記走行装置の車速を前記残作物が検出される前の車速よりも減速させた状態で前記走行装置を前進させると好適である。 In the present invention, the harvesting apparatus is provided with a harvesting header for receiving the planted crop in front and a scraping reel for scraping the planted crop, and the field state detecting unit harvests after the harvesting operation by the harvesting apparatus. It is configured to be able to detect the remaining crops left untreated, and when the remaining crops are detected by the field condition detecting unit, the traveling device is moved backward by a preset distance, and the said The vertical position of the harvest header is positioned in the lowermost region, the position of the scraping reel is positioned in the lowermost region and the frontmost region, and the vehicle speed of the traveling device is set to the residual crop after the completion of the reverse movement. It is preferable to advance the traveling device in a state where the vehicle speed is decelerated from the vehicle speed before the detection.
 例えば倒伏作物等の残作物が収穫装置で収穫されずに残ってしまった場合、圃場状態検出部が残作物の厚みの分だけ圃場の地面が盛り上がっていると誤検知してしまう虞がある。こうなると、残作物の厚みに応じて収穫装置が不必要に上昇操作されてしまい、作物のロスが増大する虞がある。本構成であれば、圃場状態検出部が残作物を検出可能であるため、収穫装置の状態が残作物の収穫に適するように変更される。また、本構成であれば、走行装置が後進動作してから、収穫装置の状態が変更され、走行装置が再び前進動作するという、いわゆる収穫作業のリトライが自動的に行われる。これにより、残作物が、走行装置に踏まれることなく収穫される。 For example, if residual crops such as fallen crops are left unharvested by the harvesting device, the field condition detection unit may erroneously detect that the ground of the field is raised by the thickness of the residual crops. In this case, the harvesting device is unnecessarily raised and operated according to the thickness of the remaining crop, and there is a risk that the loss of the crop will increase. In this configuration, since the field condition detection unit can detect the residual crop, the condition of the harvesting device is changed so as to be suitable for harvesting the residual crop. Further, in this configuration, after the traveling device moves backward, the state of the harvesting device is changed, and the traveling device moves forward again, that is, so-called retries of the harvesting work are automatically performed. As a result, the remaining crops are harvested without being stepped on by the traveling device.
 本発明において、前記圃場状態検出部は、前記作業後の圃場状態として、前記収穫装置が作業した直後の圃場状態を検出すると好適である。 In the present invention, it is preferable that the field state detection unit detects the field state immediately after the harvesting apparatus works as the field state after the work.
 本構成であれば、収穫装置が作業した直後の圃場状態を検出することによって、収穫装置が作物を好適に収穫したかどうかの確認が可能になる。これにより、状態変更部は、作業直後の圃場状態に基づいて、走行装置と収穫装置との少なくとも一方の作業状態を迅速に変更可能となる。 With this configuration, it is possible to confirm whether or not the harvesting device has properly harvested the crop by detecting the field condition immediately after the harvesting device has worked. As a result, the state changing unit can quickly change the working state of at least one of the traveling device and the harvesting device based on the field state immediately after the work.
 本発明において、前記収穫装置によって収穫された処理作物を後方へ案内する送塵弁を有し、前記処理作物を脱穀処理する脱穀部と、前記脱穀部の下方に設けられるとともに、前記脱穀処理された前記処理作物を受け止めて後方へ揺動搬送しながら前記処理作物を収穫物と非収穫物とに選別する選別処理部と、前記処理作物を前記収穫物と前記非収穫物とに選別するための選別風を前記選別処理部に供給する唐箕と、が備えられ、前記圃場状態検出部は、前記脱穀部と前記選別処理部との少なくとも一方から排出された前記収穫物を検出可能に構成され、前記状態変更部は、前記収穫物が前記圃場状態検出部によって検出されると、前記脱穀部と前記選別処理部と前記唐箕との少なくとも一つを制御し、かつ、前記走行装置の車速を制御すると好適である。 In the present invention, there is a dust sending valve that guides the processed crops harvested by the harvesting apparatus to the rear, and a threshing section for threshing the treated crops and a threshing section below the threshing section are provided and the threshing process is performed. A sorting processing unit that receives the treated crop and swings it backward to sort the treated crop into a harvested product and a non-harvested product, and to sort the treated crop into the harvested product and the non-harvested product. The field condition detection unit is configured to be able to detect the harvested product discharged from at least one of the threshing unit and the sorting processing unit. When the harvested product is detected by the field condition detection unit, the state changing unit controls at least one of the threshing unit, the sorting processing unit, and the Karami, and determines the vehicle speed of the traveling device. It is preferable to control it.
 本構成によると、圃場状態検出部は、脱穀部と選別処理部との少なくとも一方から排出された収穫物を検出可能であるため、この排出された収穫物に基づいて作物ロスの割合を評価する構成が可能となる。つまり、本構成であれば、圃場状態検出部の検出に基づいて、脱穀部と選別処理部との少なくとも一方から排出された収穫物における作物ロスが少なくなるように、状態変更部が、脱穀部と選別処理部と唐箕との夫々の状態と、車速と、を変更可能となる。これにより、走行装置と脱穀部と選別処理部と唐箕との夫々の動作状態に起因する作物のロスが低減される。 According to this configuration, since the field condition detection unit can detect the crops discharged from at least one of the threshing part and the sorting processing part, the ratio of crop loss is evaluated based on the discharged harvests. Configuration is possible. That is, in the present configuration, the state changing unit is the threshing unit so that the crop loss in the harvested product discharged from at least one of the threshing unit and the sorting processing unit is reduced based on the detection of the field condition detection unit. It is possible to change the state of each of the sorting processing unit and the wall insert, and the vehicle speed. As a result, the loss of crops due to the operating states of the traveling device, the threshing section, the sorting processing section, and the wall insert is reduced.
 本発明において、前記圃場状態検出部は、前記作業後の圃場状態を撮像する撮像装置であると好適である。 In the present invention, it is preferable that the field state detection unit is an image pickup device that captures an image of the field state after the work.
 本構成であれば、撮像装置によって撮像された撮像データに基づいて、種々の作業後の圃場状態の検出が可能となる。 With this configuration, it is possible to detect the field state after various operations based on the image pickup data captured by the image pickup device.
 上述の[第五課題]に対応する[第五解決手段]は、以下のとおりである。
 即ち、本発明の特徴は、機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部と、圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得部と、機体の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御部と、を備えることにある。
The [fifth solution] corresponding to the above-mentioned [fifth problem] is as follows.
That is, the feature of the present invention is to acquire information on the outer edge portion indicating the three-dimensional shape of the harvesting portion that is configured to be able to move up and down with respect to the machine and harvests the crops in the field and the outer edge portion of the field that is provided so as to surround the field. When the harvesting part overlaps with the outer edge of the field in a plan view as the aircraft travels, the harvesting part does not interfere with the outer edge of the field based on the outer edge information. Is provided with an elevating control unit that automatically controls the elevating and lowering of the harvesting unit.
 本発明であれば、圃場外縁部の立体形状に応じて、収穫部が圃場外縁部に干渉しないように、収穫部の昇降が自動的に制御される。これにより、収穫部が圃場外縁部に干渉することを回避できる収穫機を実現できる。 According to the present invention, the raising and lowering of the harvesting portion is automatically controlled so that the harvesting portion does not interfere with the outer edge of the field according to the three-dimensional shape of the outer edge of the field. This makes it possible to realize a harvester that can prevent the harvesting portion from interfering with the outer edge of the field.
 上述した収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。この場合における制御システムは、機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御システムであって、圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得部と、前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御部と、が備えられていることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control system. Therefore, the present invention can also be subject to control systems. The control system in this case is a control system for a harvester having a harvesting section for harvesting crops in the field while being able to move up and down with respect to the machine, and is a three-dimensional structure of the outer edge of the field provided so as to surround the field. When the acquisition unit that acquires the outer edge portion information indicating the shape and the harvesting portion overlap with the outer edge portion of the field in a plan view as the harvester runs, the harvesting portion is based on the outer edge portion information. It is characterized by being provided with an elevating control unit that automatically controls the elevating and lowering of the harvesting unit so that the unit does not interfere with the outer edge of the field.
 上述した収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。この場合における制御方法は、機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御方法であって、圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得ステップと、前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御ステップと、を備えることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control method. Therefore, the present invention can also be subject to the control method. In this case, the control method is a control method for a harvester having a harvesting part that is configured to be able to move up and down with respect to the machine and harvests crops in the field, and is a three-dimensional structure of the outer edge of the field provided so as to surround the field. When the harvesting portion overlaps with the field outer edge portion in a plan view due to the acquisition step of acquiring the outer edge portion information indicating the shape and the traveling of the harvester, the harvesting is performed based on the outer edge portion information. It is characterized by comprising an elevating control step that automatically controls the elevating and lowering of the harvesting part so that the part does not interfere with the outer edge of the field.
 上述した収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。この場合における制御プログラムは、機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御プログラムにおいて、圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得機能と、前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御機能と、をコンピュータに実行させることを特徴とする。 The above-mentioned technical features of the harvester can also be applied to the control program. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right. In this case, the control program is a control program for a harvester that is configured to be able to move up and down with respect to the machine and has a harvesting section for harvesting crops in the field. When the harvesting portion overlaps with the field outer edge portion in a plan view due to the acquisition function of acquiring the indicated outer edge portion information and the traveling of the harvester, the harvesting portion is based on the outer edge portion information. It is characterized by having a computer execute an elevating control function that automatically controls the elevating and lowering of the harvesting portion so as not to interfere with the outer edge of the field.
 さらに、本発明において、前記昇降制御部は、前記圃場外縁部の地上高さが低いほど、前記収穫部の地上高さが低くなるように、前記収穫部の昇降を制御すると好適である。 Further, in the present invention, it is preferable that the elevating control unit controls the elevating and lowering of the harvesting unit so that the lower the above-ground height of the field outer edge is, the lower the above-ground height of the harvesting unit is.
 昇降制御部が、収穫部が平面視で圃場外縁部に重複する状態となる際、圃場外縁部の地上高さとは無関係に、収穫部を最も高い位置まで上昇させるように構成されている場合、収穫部が圃場外縁部に干渉することを回避できる。しかし、この場合、収穫部が平面視で圃場外縁部に重複する状態となる際、比較的早い時点で収穫部を上昇させ始める必要がある。その結果、未収穫の作物に対する収穫部の作用位置が、適切な高さよりも高くなってしまいがちである。 When the elevating control unit is configured to raise the harvesting part to the highest position regardless of the ground clearance of the field outer edge when the harvesting part overlaps the field outer edge in a plan view. It is possible to prevent the harvesting part from interfering with the outer edge of the field. However, in this case, when the harvesting portion overlaps with the outer edge of the field in a plan view, it is necessary to start raising the harvesting portion at a relatively early stage. As a result, the position of action of the harvesting part on unharvested crops tends to be higher than the appropriate height.
 例えば、圃場の作物が穀物であり、収穫部が穀稈を刈り取る刈取装置を有している場合において、収穫部が平面視で圃場外縁部に重複する状態となる際、比較的早い時点で収穫部を上昇させ始めると、刈り取り高さが、適切な高さよりも高くなってしまいがちである。 For example, when the crop in the field is a grain and the harvesting part has a cutting device for cutting the culm, when the harvesting part overlaps with the outer edge of the field in a plan view, it is harvested at a relatively early stage. When you start to raise the part, the cutting height tends to be higher than the appropriate height.
 ここで、上記の構成によれば、収穫部が平面視で圃場外縁部に重複する状態となる際の収穫部の地上高さが、圃場外縁部の地上高さに応じて必要最低限となる構成を実現できる。これにより、未収穫の作物に対する収穫部の作用位置が適切な高さよりも高くなってしまう事態を回避しやすい収穫機を実現できる。 Here, according to the above configuration, the ground clearance of the harvesting part when the harvesting part overlaps with the outer edge of the field in a plan view becomes the minimum necessary according to the above-ground height of the outer edge of the field. The configuration can be realized. As a result, it is possible to realize a harvester that can easily avoid a situation in which the position of action of the harvesting portion on unharvested crops becomes higher than the appropriate height.
 さらに、本発明において、前記昇降制御部は、前記収穫部と前記圃場外縁部との間の離間距離が所定値よりも広い状態が維持されるように、前記収穫部の昇降を制御すると好適である。 Further, in the present invention, it is preferable that the elevating control unit controls the elevating and lowering of the harvesting unit so that the separation distance between the harvesting unit and the outer edge of the field is maintained wider than a predetermined value. be.
 この構成によれば、収穫部が圃場外縁部に干渉しないように収穫部の昇降を自動的に制御する昇降制御部を、確実に設けることが可能となる。 According to this configuration, it is possible to reliably provide an elevating control unit that automatically controls the elevating and lowering of the harvesting unit so that the harvesting unit does not interfere with the outer edge of the field.
 さらに、本発明において、前記圃場外縁部の地上高さが所定高さよりも高い場合に前記収穫部が平面視で前記圃場外縁部に重複しないように前記機体の走行を制御する走行制御部を備えると好適である。 Further, in the present invention, the present invention includes a traveling control unit that controls the traveling of the machine body so that the harvesting portion does not overlap the field outer edge portion in a plan view when the ground clearance of the field outer edge portion is higher than a predetermined height. Is suitable.
 圃場外縁部の地上高さが比較的高い場合、収穫部が平面視で圃場外縁部に重複する状態となる際、昇降制御部の制御により、比較的早い時点で収穫部が上昇し始める事態が想定される。これにより、未収穫の作物に対する収穫部の作用位置が、適切な高さよりも高くなってしまいがちである。 When the ground clearance of the outer edge of the field is relatively high, when the harvesting section overlaps the outer edge of the field in plan view, the harvesting section may start to rise at a relatively early stage under the control of the elevating control section. is assumed. As a result, the position of action of the harvesting part on unharvested crops tends to be higher than the appropriate height.
 また、圃場外縁部の地上高さが比較的高い場合、収穫部が平面視で圃場外縁部に重複する状態となる際、収穫部が最も高い位置まで上昇しても、収穫部が圃場外縁部に干渉してしまう事態が想定される。 In addition, when the ground clearance of the outer edge of the field is relatively high, when the harvesting part overlaps the outer edge of the field in a plan view, even if the harvesting part rises to the highest position, the harvesting part is the outer edge of the field. It is assumed that it will interfere with.
 ここで、上記の構成によれば、圃場外縁部の地上高さが比較的高い場合には、収穫部が平面視で圃場外縁部に重複しないように機体の走行が制御される収穫機を実現できる。これにより、上述のように、未収穫の作物に対する収穫部の作用位置が適切な高さよりも高くなる事態、及び、収穫部が圃場外縁部に干渉する事態を回避することが可能となる。 Here, according to the above configuration, when the ground clearance of the outer edge of the field is relatively high, a harvester whose running is controlled so that the harvesting portion does not overlap the outer edge of the field in a plan view is realized. can. As a result, as described above, it is possible to avoid a situation in which the position of action of the harvesting portion on the unharvested crop is higher than the appropriate height and a situation in which the harvesting portion interferes with the outer edge of the field.
 さらに、本発明において、圃場内の最外周部において前記圃場外縁部に沿って行われる走行である周囲収穫走行を実行可能に構成されており、前記周囲収穫走行の実行中に、前記圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する検知部と、前記検知部の検知結果に基づいて前記圃場外縁部の立体形状の分布を示す外縁部マップを生成するマップ生成部と、を備え、前記取得部は、前記外縁部マップを取得し、前記昇降制御部は、前記外縁部マップに基づいて前記収穫部の昇降を制御すると好適である。 Further, in the present invention, the peripheral harvesting run, which is a running along the outer edge of the field, can be executed at the outermost peripheral portion of the field, and the outer edge of the field is executed during the peripheral harvesting run. Of these, a detector that detects the three-dimensional shape of the part of the field adjacent to the area where the crop has been harvested, and an outer edge map that shows the distribution of the three-dimensional shape of the outer edge of the field based on the detection result of the detection unit. It is preferable that the acquisition unit acquires the outer edge map, and the elevating control unit controls the elevating of the harvesting unit based on the outer edge map.
 この構成によれば、検知部は、圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する。そのため、検知部が圃場外縁部の立体形状を検知する際、作物によって検知が阻害される事態が起こりにくい。これにより、マップ生成部は、精度の良好な外縁部マップを生成できる。その結果、昇降制御部による収穫部の昇降制御の精度が良好となりやすい。 According to this configuration, the detection unit detects the three-dimensional shape of the part of the outer edge of the field adjacent to the area where the crop has been harvested in the field. Therefore, when the detection unit detects the three-dimensional shape of the outer edge of the field, it is unlikely that the detection will be hindered by the crop. As a result, the map generator can generate an outer edge map with good accuracy. As a result, the accuracy of the elevating control of the harvesting section by the elevating control section tends to be good.
 さらに、本発明において、圃場内の最外周部において前記圃場外縁部に沿って行われる走行である周囲収穫走行を実行可能に構成されており、前記取得部は、前記圃場外縁部の立体形状の分布を示す外縁部マップを取得し、前記周囲収穫走行の実行中に、前記圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する検知部と、前記検知部の検知結果に基づいて前記外縁部マップを更新するマップ更新部と、を備え、前記昇降制御部は、前記マップ更新部により更新された前記外縁部マップに基づいて前記収穫部の昇降を制御すると好適である。 Further, in the present invention, the peripheral harvesting run, which is a run performed along the outer edge of the field at the outermost periphery of the field, is configured to be feasible, and the acquisition section has a three-dimensional shape of the outer edge of the field. A detection unit that acquires a map of the outer edge portion showing the distribution and detects the three-dimensional shape of the portion of the outer edge portion of the field adjacent to the region where the crop has been harvested in the field during the execution of the surrounding harvesting run. The elevating control unit includes a map updating unit that updates the outer edge map based on the detection result of the detection unit, and the elevating control unit elevates the harvesting unit based on the outer edge map updated by the map updating unit. It is preferable to control.
 取得部により取得された外縁部マップと、実際の圃場外縁部の立体形状の分布と、に齟齬がある場合、取得部により取得された外縁部マップに基づいて収穫部の昇降が制御されると、収穫部の昇降が不適切となる可能性がある。 If there is a discrepancy between the outer edge map acquired by the acquisition unit and the distribution of the three-dimensional shape of the actual field outer edge, if the elevation of the harvesting unit is controlled based on the outer edge map acquired by the acquisition unit. , The raising and lowering of the harvesting part may be inappropriate.
 ここで、上記の構成によれば、取得部により取得された外縁部マップと、実際の圃場外縁部の立体形状の分布と、に齟齬がある場合であっても、マップ更新部によって外縁部マップが更新される。これにより、昇降制御部による収穫部の昇降制御が適切になりやすい。 Here, according to the above configuration, even if there is a discrepancy between the outer edge map acquired by the acquisition unit and the distribution of the three-dimensional shape of the actual field outer edge, the outer edge map is created by the map update unit. Is updated. As a result, the elevating control of the harvesting unit by the elevating control unit tends to be appropriate.
 しかも、この構成によれば、検知部は、圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する。そのため、検知部が圃場外縁部の立体形状を検知する際、作物によって検知が阻害される事態が起こりにくい。これにより、マップ更新部により更新された外縁部マップの精度が良好となりやすい。その結果、昇降制御部による収穫部の昇降制御の精度が良好となりやすい。 Moreover, according to this configuration, the detection unit detects the three-dimensional shape of the portion of the outer edge of the field adjacent to the area where the crop has been harvested in the field. Therefore, when the detection unit detects the three-dimensional shape of the outer edge of the field, it is unlikely that the detection will be hindered by the crop. As a result, the accuracy of the outer edge map updated by the map update unit tends to be good. As a result, the accuracy of the elevating control of the harvesting section by the elevating control section tends to be good.
収穫機の全体側面図である。It is an overall side view of a harvester. 収穫機の全体平面図である。It is the whole plan view of the harvester. 収穫機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a harvester. 認識部による認識出力データの生成の流れを模式的に示す説明図である。It is explanatory drawing which shows typically the flow of the generation of recognition output data by a recognition part. 収穫装置の作業状態を示す要部側面図である。It is a side view of the main part which shows the working state of a harvesting apparatus. 収穫装置の作業状態を示す要部側面図である。It is a side view of the main part which shows the working state of a harvesting apparatus. 状態決定部の状態変更処理を示すフローチャート図である。It is a flowchart which shows the state change process of the state determination part. 第二撮像装置による圃場の撮像を示す模式平面図である。It is a schematic plan view which shows the image of the field by the 2nd image pickup apparatus. 倒伏作物の検出時に作業状態が変更されることを示す説明図である。It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop. 倒伏作物の検出時に作業状態が変更されることを示す説明図である。It is explanatory drawing which shows that the working state is changed at the time of the detection of a fallen crop. 収穫機の全体側面図である。It is an overall side view of a harvester. 収穫装置で作物を収穫する状態を示す要部平面図である。It is a main part plan view which shows the state of harvesting a crop with a harvesting apparatus. 収穫装置で作物を収穫する状態を示す正面図である。It is a front view which shows the state of harvesting a crop with a harvesting apparatus. 収穫機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a harvester. 圃場の凹凸の高さを計測する際の死角領域を示す平面図である。It is a top view which shows the blind spot region at the time of measuring the height of the unevenness of a field. 未収穫領域の圃場の凹凸の高さを計測する状態を示す平面図である。It is a top view which shows the state which measures the height of the unevenness of the field of an unharvested area. 未収穫領域の圃場の凹凸の高さを計測する状態を示す平面図である。It is a top view which shows the state which measures the height of the unevenness of the field of an unharvested area. 収穫装置で作物を収穫する状態を示す正面図である。It is a front view which shows the state of harvesting a crop with a harvesting apparatus. 収穫装置で作物を収穫する状態を示す正面図である。It is a front view which shows the state of harvesting a crop with a harvesting apparatus. コンバインの左側面図である。It is a left side view of the combine. 周囲収穫走行を示す図である。It is a figure which shows the surrounding harvesting run. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows the cutting running along the cutting running path. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows the cutting running along the cutting running path. 制御部に関する構成を示すブロック図である。It is a block diagram which shows the structure about the control part. 検知部による検知方向を示す図である。It is a figure which shows the detection direction by a detection part. 外縁部マップの一例を示す図である。It is a figure which shows an example of the outer edge map. 昇降制御部による収穫部の昇降制御を示す図である。It is a figure which shows the elevating control of a harvesting part by an elevating control part. 圃場外縁部の地上高さに応じた収穫部の昇降制御を示す図である。It is a figure which shows the elevating control of a harvesting part according to the height above the ground of the field outer edge part. 収穫部が平面視で圃場外縁部に重複しないように機体の走行が制御される場合の例を示す図である。It is a figure which shows the example of the case where the running of the machine body is controlled so that the harvesting part does not overlap with the outer edge part of a field in a plan view. 収穫部が平面視で圃場外縁部に重複しないように機体の走行が制御される場合の例を示す図である。It is a figure which shows the example of the case where the running of the machine body is controlled so that the harvesting part does not overlap with the outer edge part of a field in a plan view. 第三実施形態の別実施形態における制御部に関する構成を示すブロック図である。It is a block diagram which shows the structure about the control part in another Embodiment of 3rd Embodiment. 第三実施形態の別実施形態におけるマップ更新部により更新される前の外縁部マップの一例を示す図である。It is a figure which shows an example of the outer edge part map before being updated by the map update part in another embodiment of 3rd Embodiment.
 本発明に係る収穫機の一例としてのコンバインの実施形態が、図面に基づいて以下に記載されている。この実施形態で、機体1の前後方向を定義するときは、作業状態における機体進行方向に沿って定義する。図1及び図2に符号(F)で示す方向が機体前側、図1及び図2に符号(B)で示す方向が機体後側である。図1に符号(U)で示す方向が機体上側、図1に符号(D)で示す方向が機体下側である。図2に符号(L)で示す方向が機体左側、図2に符号(R)で示す方向が機体右側である。機体1の左右方向を定義するときは、機体進行方向視で見た状態で左右を定義する。 An embodiment of the combine as an example of the harvester according to the present invention is described below based on the drawings. In this embodiment, when the front-rear direction of the machine 1 is defined, it is defined along the traveling direction of the machine in the working state. The direction indicated by reference numeral (F) in FIGS. 1 and 2 is the front side of the aircraft, and the direction indicated by reference numeral (B) in FIGS. 1 and 2 is the rear side of the aircraft. The direction indicated by the reference numeral (U) in FIG. 1 is the upper side of the machine, and the direction indicated by the reference numeral (D) in FIG. 1 is the lower side of the machine body. The direction indicated by the reference numeral (L) in FIG. 2 is the left side of the aircraft, and the direction indicated by the reference numeral (R) in FIG. 2 is the right side of the aircraft. When defining the left-right direction of the aircraft 1, the left-right direction is defined as viewed from the direction of travel of the aircraft.
〔第一実施形態における収穫機の基本構成〕
 以下、上述の[第一解決手段]、[第二解決手段]及び[第四解決手段]を例示する第一実施形態を、図1~図10に基づいて説明する。図1及び図2に示されるように、収穫機の一形態である普通型のコンバインに、機体1と、左右一対のクローラ式の走行装置11と、が備えられている。機体1に、搭乗部12と、脱穀装置13と、穀粒タンク14と、収穫装置15と、搬送装置16と、穀粒排出装置18と、が備えられている。
[Basic configuration of the harvester in the first embodiment]
Hereinafter, the first embodiment illustrating the above-mentioned [first solution means], [second solution means], and [fourth solution means] will be described with reference to FIGS. 1 to 10. As shown in FIGS. 1 and 2, a normal combine, which is a form of a harvester, is provided with a machine 1 and a pair of left and right crawler type traveling devices 11. The machine body 1 is provided with a boarding unit 12, a threshing device 13, a grain tank 14, a harvesting device 15, a transport device 16, and a grain discharging device 18.
 走行装置11は、コンバインの下部に備えられている。走行装置11は左右一対のクローラ走行機構を有し、コンバインは、走行装置11によって圃場を走行可能である。また、左右のクローラ走行機構の夫々に昇降装置が設けられている。当該昇降装置は、通称『モンロー』とも呼ばれ、左右のクローラ走行機構の夫々に対する機体1の高さ位置を各別に変更可能に構成されている。このことから、当該昇降装置は、左右のクローラ走行機構の夫々に対する機体1の高さ位置を変更して機体1をローリングさせることを可能に構成されている。 The traveling device 11 is provided at the lower part of the combine. The traveling device 11 has a pair of left and right crawler traveling mechanisms, and the combine can travel in the field by the traveling device 11. Further, an elevating device is provided for each of the left and right crawler traveling mechanisms. The elevating device, also commonly known as "Monroe", is configured so that the height position of the machine body 1 with respect to each of the left and right crawler traveling mechanisms can be changed separately. From this, the elevating device is configured to be able to roll the machine 1 by changing the height position of the machine 1 with respect to each of the left and right crawler traveling mechanisms.
 搭乗部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられ、これらは機体1の上部として構成されている。コンバインの搭乗者やコンバインの作業を監視する監視者が、搭乗部12に搭乗可能である。通常、搭乗者と監視者とは兼務される。なお、搭乗者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。搭乗部12の下方に駆動用のエンジン(不図示)が備えられている。穀粒排出装置18は、穀粒タンク14の後下部に連結されている。 The boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1. A passenger of the combine harvester and an observer who monitors the work of the combine harvester can board the boarding unit 12. Usually, the passenger and the observer are also used. When the passenger and the observer are different persons, the observer may monitor the work of the combine from outside the combine. A drive engine (not shown) is provided below the boarding section 12. The grain discharge device 18 is connected to the rear lower portion of the grain tank 14.
 収穫装置15は圃場の作物を収穫する。作物は、例えば稲等の植立穀稈であるが、大豆やトウモロコシ等であっても良い。そして、コンバインは、収穫装置15によって圃場の作物を収穫しながら走行装置11によって走行する作業走行が可能である。搬送装置16は収穫装置15よりも後側に隣接して設けられている。収穫装置15及び搬送装置16は、機体1の前部に上下昇降可能に支持されている。収穫装置15及び搬送装置16は、伸縮動作可能なヘッダ用アクチュエータ15Hによって上下に昇降操作(揺動操作)されることによって、一体的に上下揺動する。ヘッダ用アクチュエータ15Hは、本発明の『第三アクチュエータ』及び『アクチュエータ』である。 The harvesting device 15 harvests the crops in the field. The crop is, for example, a planted culm such as rice, but may be soybean, corn, or the like. Then, the combine can be run by the traveling device 11 while harvesting the crops in the field by the harvesting device 15. The transport device 16 is provided adjacent to the rear side of the harvest device 15. The harvesting device 15 and the transport device 16 are supported on the front portion of the machine body 1 so as to be able to move up and down. The harvesting device 15 and the transport device 16 are integrally swung up and down by being moved up and down (swinging operation) by the header actuator 15H capable of expanding and contracting. The header actuator 15H is the "third actuator" and the "actuator" of the present invention.
 収穫装置15に、収穫ヘッダ15Aと、掻込リール15Bと、横送りオーガ15Cと、バリカン状の切断刃15Dと、が備えられている。収穫ヘッダ15Aの先端部の収穫幅方向における両端部(端部位置)にデバイダが設けられている。収穫ヘッダ15Aは、前方の植立作物を収穫対象と非収穫対象とに分草するとともに、前方の植立作物のうちの収穫対象を受け入れる。 The harvesting device 15 is provided with a harvesting header 15A, a scraping reel 15B, a horizontal feed auger 15C, and a hair clipper-shaped cutting blade 15D. Dividers are provided at both ends (end positions) of the tip of the harvest header 15A in the harvest width direction. The harvest header 15A divides the front planted crop into a harvest target and a non-harvest target, and accepts the harvest target among the front planted crops.
 掻込リール15Bは収穫ヘッダ15Aの上方に位置する。収穫ヘッダ15Aにリール支持アーム15Kが揺動可能に支持され、リール支持アーム15Kは、伸縮動作可能なリールアクチュエータ15Jによって揺動操作される。掻込リール15Bの回転軸芯部分は、リール支持アーム15Kの遊端領域に支持されている。このことから、掻込リール15Bは、リールアクチュエータ15Jの伸縮動作によって上下揺動可能に構成されている。 The scraping reel 15B is located above the harvest header 15A. The reel support arm 15K is swingably supported by the harvest header 15A, and the reel support arm 15K is swing-operated by a reel actuator 15J capable of expanding and contracting. The rotation shaft core portion of the suction reel 15B is supported by the free end region of the reel support arm 15K. For this reason, the suction reel 15B is configured to be able to swing up and down by the expansion and contraction operation of the reel actuator 15J.
 掻込リール15Bは、リール支持アーム15Kに支持された状態で、機体横向き軸芯まわりに回転可能に構成されている。また、掻込リール15Bの回転軸芯部分はリール支持アーム15Kの遊端領域で前後方向に沿ってスライド可能に構成されている。つまり、掻込リール15Bは、収穫ヘッダ15Aに対して上下揺動可能に構成されるとともに、収穫ヘッダ15Aに対して前後に位置変更可能に構成される。 The scraping reel 15B is configured to be rotatable around the lateral axis of the machine while being supported by the reel support arm 15K. Further, the rotation shaft core portion of the suction reel 15B is configured to be slidable along the front-rear direction in the free end region of the reel support arm 15K. That is, the scraping reel 15B is configured to be swingable up and down with respect to the harvest header 15A, and is configured to be repositionable back and forth with respect to the harvest header 15A.
 掻込リール15Bに複数のタイン15Tが備えられ、タイン15Tは植立作物に掻込作用する。掻込リール15Bは、圃場から植立作物を収穫する際に、植立作物のうちの先端寄りの箇所をタイン15Tで後方に向けて掻込む。 The scraping reel 15B is equipped with a plurality of tines 15T, and the tines 15T act on the planted crops. When the planted crop is harvested from the field, the scraping reel 15B scrapes the portion of the planted crop near the tip with the tine 15T toward the rear.
 切断刃15Dは、収穫ヘッダ15Aに支持される。切断刃15Dは、掻込リール15Bによって後方に掻き込まれた植立作物の株元側を切断する。横送りオーガ15Cは、機体横向き軸芯に回転駆動し、切断刃15Dによる切断後の収穫作物を左右方向の中間側に横送りして寄せ集めて後方の搬送装置16に向けて送り出す。詳細については後述するが、横送りオーガ15Cは、上下方向に位置変更可能なように構成されている。 The cutting blade 15D is supported by the harvest header 15A. The cutting blade 15D cuts the root side of the planted crop that has been scraped backward by the scraping reel 15B. The lateral feed auger 15C is rotationally driven to the lateral axis of the machine body, laterally feeds the harvested crops cut by the cutting blade 15D to the middle side in the left-right direction, collects them, and sends them to the rear transport device 16. Although the details will be described later, the lateral feed auger 15C is configured so that the position can be changed in the vertical direction.
 脱穀装置13における脱穀負荷を軽減するため、収穫ヘッダ15Aの対地高さH1(図5参照)が高く設定され、植立作物は穂先側のみが収穫される場合がある。このとき、収穫後の残稈が、背丈の高い状態で圃場に残されないようにするため、当該残稈を切断する必要がある。このため、収穫装置15の後方に残稈処理部19が設けられている。残稈処理部19は機体左右方向に亘る横長のバリカン状の切断刃を有し、当該切断刃が左右に往復運動することによって、当該残稈が切断される。 In order to reduce the threshing load in the threshing device 13, the ground height H1 (see FIG. 5) of the harvest header 15A is set high, and the planted crop may be harvested only on the tip side. At this time, it is necessary to cut the culm after harvesting so that the culm is not left in the field in a tall state. Therefore, a residual culm processing unit 19 is provided behind the harvesting device 15. The residual culm processing unit 19 has a horizontally long hair clipper-shaped cutting blade extending in the left-right direction of the machine, and the cutting blade reciprocates left and right to cut the residual culm.
 収穫装置15によって収穫された作物(例えば刈取穀稈)は、搬送装置16によって脱穀装置13へ搬送される。収穫された作物は脱穀装置13によって脱穀処理される。脱穀装置13は、脱穀部13Aと選別処理部13Bと唐箕13Cを有する。なお、図1では脱穀部13Aは扱胴として示されているが、この扱胴を収納する扱室と、扱室の上部に配置された送塵弁と、扱胴の下側領域の周囲に位置する受網と、も脱穀部13Aに含まれる。送塵弁は、収穫装置15によって収穫された処理作物を後方へ案内する。脱穀部13Aは、搬送装置16によって搬送された作物、即ち脱穀装置13の処理対象である処理作物を脱穀処理する。選別処理部13Bは、脱穀部13Aの下方に設けられるとともに、脱穀部13Aによって脱穀処理された処理作物を受け止めて後方へ揺動搬送しながら、処理作物を収穫物と非収穫物とに篩選別する。 The crops harvested by the harvesting device 15 (for example, harvested grain culms) are transported to the threshing device 13 by the transport device 16. The harvested crop is threshed by the threshing device 13. The threshing device 13 has a threshing unit 13A, a sorting processing unit 13B, and a wall insert 13C. Although the threshing section 13A is shown as a handling cylinder in FIG. 1, the handling chamber for accommodating the handling cylinder, the dust feed valve arranged at the upper part of the handling chamber, and the periphery of the lower region of the handling cylinder. The located net and also included in the threshing section 13A. The dust valve guides the processed crop harvested by the harvesting device 15 to the rear. The threshing unit 13A threshes the crops transported by the transport device 16, that is, the processed crops to be processed by the threshing device 13. The sorting processing unit 13B is provided below the threshing unit 13A, and while receiving the processed crops that have been threshed by the threshing unit 13A and rocking and transporting them backward, the processed crops are sieved into harvested and non-harvested products. do.
 公知の技術であるため、図示はしないが、選別処理部13Bにチャフシーブが備えられ、チャフシーブは複数のチャフリップを有する。チャフリップの夫々は機体横方向に延びる。複数のチャフリップは処理作物が搬送される搬送方向(前後方向)に沿って並べられ、複数のチャフリップの夫々は、後端側ほど斜め上方に向かう傾斜姿勢で配置されている。チャフリップの夫々の漏下開度が変更可能に構成されている。漏下開度が変更可能とは、傾斜姿勢が変更されることを意味する。具体的には、チャフリップが前後方向に対して平行に近くなる程、漏下開度が小さくなり、チャフリップが上下方向に対して平行に近くなる程、漏下開度が大きくなる。処理作物は、チャフリップの上で後方へ揺動搬送され、収穫物としての穀粒が複数のチャフリップ間の隙間から下方へ漏下する。選別処理部13Bは、脱穀処理物の搬送方向に沿って並べられた複数のチャフリップを有するとともに複数のチャフリップの姿勢を変更することで漏下開度を変更可能なチャフシーブを有する。
唐箕13Cは選別処理部13Bに選別風を供給する。
Although not shown because it is a known technique, the sorting processing unit 13B is provided with a chaf sheave, and the chaf sheave has a plurality of chaf flips. Each of the chaflip extends laterally to the aircraft. The plurality of chaflips are arranged along the transport direction (front-back direction) in which the processed crop is transported, and each of the plurality of chaflips is arranged in an inclined posture toward the rear end side and diagonally upward. The leakage opening of each chaflip can be changed. The fact that the leakage opening can be changed means that the tilted posture is changed. Specifically, the closer the chaflip is parallel to the front-rear direction, the smaller the leakage opening degree, and the closer the chaflip is parallel to the vertical direction, the larger the leakage opening degree. The treated crop is rocked backwards over the chaflip and the crop grain leaks downward through the gaps between the chaflip. The sorting processing unit 13B has a plurality of chaflip arranged along the transport direction of the threshing processed product, and has a chaff sheave capable of changing the leakage opening degree by changing the posture of the plurality of chaflip.
The wall insert 13C supplies the sorting wind to the sorting processing unit 13B.
 脱穀処理によって得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。穀粒排出装置18は機体後部の縦軸芯回りに揺動可能に構成されている。即ち、穀粒排出装置18の遊端部が機体1よりも機体横外側へ張り出して作物を排出可能な排出状態と、穀粒排出装置18の遊端部が機体1の機体横幅の範囲内に位置する収納状態と、に切換可能なように穀粒排出装置18は構成されている。穀粒排出装置18が収納状態である場合、穀粒排出装置18の遊端部は搭乗部12よりも前側に位置するとともに収穫装置15の上方に位置する。 The grains obtained by the threshing process are stored in the grain tank 14. The grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed. The grain discharging device 18 is configured to be swingable around the vertical axis core at the rear of the machine body. That is, the free end portion of the grain discharge device 18 protrudes to the lateral outside of the machine body 1 so that the crop can be discharged, and the free end portion of the grain discharge device 18 is within the range of the machine width of the machine body 1. The grain discharging device 18 is configured so as to be switchable between the stored storage state and the positioned storage state. When the grain discharging device 18 is in the stored state, the free end portion of the grain discharging device 18 is located on the front side of the boarding portion 12 and above the harvesting device 15.
 搭乗部12の前上部に、第一撮像装置21Aと測距センサ22とが設けられている。第一撮像装置21Aは、可視光を撮像可能なカラーカメラであって、例えばCCDカメラやCMOSカメラである。第一撮像装置21Aは、本発明の『撮像装置』である。第一撮像装置21Aは、収穫装置15の前方の未収穫の作物を見下ろすように、機体1の前部、かつ、収穫装置15よりも高い位置に設けられている。即ち、第一撮像装置21Aは、進行方向前方を上から見下ろす視点で撮像できる。第一撮像装置21Aの前後方向における撮像視野は、例えば15メートルや25メートルである。 A first image pickup device 21A and a distance measuring sensor 22 are provided on the front upper part of the boarding section 12. The first image pickup device 21A is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera. The first image pickup device 21A is the "imaging device" of the present invention. The first imaging device 21A is provided at the front of the machine 1 and at a position higher than the harvesting device 15 so as to look down on the unharvested crops in front of the harvesting device 15. That is, the first image pickup apparatus 21A can take an image from a viewpoint looking down on the front in the traveling direction. The image pickup field of view of the first image pickup apparatus 21A in the front-rear direction is, for example, 15 meters or 25 meters.
 第一撮像装置21Aによって取得された撮像データは、撮像データ化され、コンバインの制御系に送られる。第一撮像装置21Aは収穫作業時に圃場を撮像する。圃場には種々の物体が撮像対象として存在している。コンバインの制御系は、第一撮像装置21Aから送られてきた撮像データから特定の物体を識別する機能を有する。そのような特定の物体として、図1及び図2では、符号Z0で示された正常な植立穀稈群と、符号Z1で示された雑草群と、符号Z2で示された倒伏作物群と、が模式的に示されている。 The imaging data acquired by the first imaging device 21A is converted into imaging data and sent to the combine control system. The first image pickup device 21A images the field at the time of harvesting work. Various objects exist as imaging targets in the field. The combine control system has a function of identifying a specific object from the image pickup data sent from the first image pickup device 21A. As such specific objects, in FIGS. 1 and 2, the normal planted grain group indicated by the reference numeral Z0, the weed group indicated by the reference numeral Z1, and the collapsed crop group indicated by the reference numeral Z2. , Are shown schematically.
 測距センサ22は、機体1の前方に存在する圃場の撮像対象と機体1との離間距離を計測可能に構成されている。測距センサ22は、ソナーであっても良いし、レーダー(ミリ波)であっても良いし、LIDAR(例えばレーザースキャナーやレーザーレーダー)であっても良い。測距センサ22がソナーであればコスト面で有利である。測距センサ22がミリ波レーダーであれば、天候に左右され難い測定が可能であって、コスト面で有利である。ミリ波レーダーが、前方、左右に加え、上下方向を三次元でスキャンできる構成であれば、二次元でスキャンするタイプのミリ波レーダーよりも測距範囲を広範囲にすることが可能となる。測距センサ22がLIDARであれば離間距離の測定が精度よく行われる。加えて、LIDARが、前方、左右に加え、上下方向を三次元でスキャンできる構成であれば、二次元でスキャンするタイプのLIDARよりも測距範囲を広範囲にすることが可能となる。また、測距センサ22は、ソナーとレーダーとLIDARとの組み合わせによって構成されても良い。 The distance measuring sensor 22 is configured to be capable of measuring the distance between the image pickup target and the aircraft 1 in the field existing in front of the aircraft 1. The distance measuring sensor 22 may be a sonar, a radar (millimeter wave), or a LIDAR (for example, a laser scanner or a laser radar). If the distance measuring sensor 22 is a sonar, it is advantageous in terms of cost. If the range-finding sensor 22 is a millimeter-wave radar, it is possible to perform measurements that are not easily affected by the weather, which is advantageous in terms of cost. If the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions. If the distance measuring sensor 22 is LIDAR, the separation distance can be measured accurately. In addition, if the LIDAR is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of distance measurement than the type of LIDAR that scans in two dimensions. Further, the range-finding sensor 22 may be configured by a combination of sonar, radar, and LIDAR.
 第一実施形態では、収穫装置15の後下部に第二撮像装置21Bが設けられている。第二撮像装置21Bは、可視光を撮像可能なカラーカメラであって、例えばCCDカメラやCMOSカメラである。第一撮像装置21Aは、本発明の『撮像装置』である。第二撮像装置21Bは、収穫装置15の後方の収穫跡領域S(図8参照)を撮像できる。このため、第二撮像装置21Bは、作業走行しながら作業後の圃場状態を検出可能に構成されている。 In the first embodiment, the second imaging device 21B is provided at the lower rear portion of the harvesting device 15. The second image pickup device 21B is a color camera capable of capturing visible light, and is, for example, a CCD camera or a CMOS camera. The first image pickup device 21A is the "imaging device" of the present invention. The second image pickup device 21B can image the harvest trace area S (see FIG. 8) behind the harvest device 15. Therefore, the second image pickup device 21B is configured to be able to detect the field state after the work while the work is running.
 搭乗部12の天井部には、衛星測位モジュール80が設けられている。衛星測位モジュール80は、人工衛星GSからのGNSS(Global Navigation Satellite System)の信号(GPS信号を含む)を受信して、自車位置を取得する。なお、衛星測位モジュール80による衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法ユニットが衛星測位モジュール80に組み込まれている。もちろん、慣性航法ユニットは、コンバインにおいて衛星測位モジュール80と別の箇所に配置されても良い。 A satellite positioning module 80 is provided on the ceiling of the boarding section 12. The satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the position of the own vehicle. In addition, in order to complement the satellite navigation by the satellite positioning module 80, an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic orientation sensor is incorporated in the satellite positioning module 80. Of course, the inertial navigation unit may be arranged at a place different from the satellite positioning module 80 in the combine.
〔第一実施形態における制御ユニットの構成〕
 図3に示される制御ユニット30は、コンバインの制御系の中核要素であり、複数のECUの集合体として示されている。制御ユニット30に、第一作物検出部31Aと、第二作物検出部31Bと、状態決定部32と、記憶部33と、報知部34と、走行制御部35と、作業制御部36と、が備えられている。第一作物検出部31Aは、本発明の『作物検出部』である。第二作物検出部31Bは、本発明の『圃場状態検出部』である。状態決定部32は、本発明の『状態変更部』である。
[Structure of control unit in the first embodiment]
The control unit 30 shown in FIG. 3 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs. The control unit 30 includes a first crop detection unit 31A, a second crop detection unit 31B, a state determination unit 32, a storage unit 33, a notification unit 34, a travel control unit 35, and a work control unit 36. It is prepared. The first crop detection unit 31A is the "crop detection unit" of the present invention. The second crop detection unit 31B is the "field state detection unit" of the present invention. The state determination unit 32 is the "state change unit" of the present invention.
 衛星測位モジュール80から出力された測位データと、第一撮像装置21Aからの撮像データと、第二撮像装置21Bからの撮像データと、測距センサ22から出力された距離データと、刈高さ検出部23から出力された高さ位置情報と、リール高さ検出部24から出力された高さ位置情報と、オーガ高さ検出部25から出力された高さ位置情報と、は配線網を通じて制御ユニット30に入力される。上述したように、収穫装置15及び搬送装置16(図1等参照)は上下揺動可能に構成され、刈高さ検出部23は搬送装置16の揺動軸芯箇所に設けられている。刈高さ検出部23は、搬送装置16の揺動角度を検出することによって、収穫装置15の下端部における対地高さH1(図5及び図6参照)を検出可能に構成されている。リール高さ検出部24は、収穫ヘッダ15Aに対するリール支持アーム15Kの揺動角度を検出することによって、掻込リール15Bの収穫ヘッダ15Aに対する高さ位置H2(図5及び図6参照)を検出可能に構成されている。オーガ高さ検出部25は、横送りオーガ15Cを上下昇降させるアクチュエータ(不図示)の上下位置を検出することによって、横送りオーガ15Cの高さ位置H3(図5及び図6参照)を検出可能に構成されている。 Positioning data output from the satellite positioning module 80, imaging data from the first imaging device 21A, imaging data from the second imaging device 21B, distance data output from the distance measuring sensor 22, and cutting height detection. The height position information output from the unit 23, the height position information output from the reel height detection unit 24, and the height position information output from the auger height detection unit 25 are controlled by a control unit through a wiring network. It is input to 30. As described above, the harvesting device 15 and the transport device 16 (see FIG. 1 and the like) are configured to swing up and down, and the cutting height detection unit 23 is provided at the swing shaft core portion of the transport device 16. The cutting height detecting unit 23 is configured to be able to detect the ground height H1 (see FIGS. 5 and 6) at the lower end portion of the harvesting device 15 by detecting the swing angle of the transport device 16. The reel height detection unit 24 can detect the height position H2 (see FIGS. 5 and 6) of the suction reel 15B with respect to the harvest header 15A by detecting the swing angle of the reel support arm 15K with respect to the harvest header 15A. It is configured in. The auger height detection unit 25 can detect the height position H3 (see FIGS. 5 and 6) of the lateral auger 15C by detecting the vertical position of an actuator (not shown) that raises and lowers the lateral auger 15C up and down. It is configured in.
 第一作物検出部31Aは、第一撮像装置21Aによって継時的に遂次取得された撮像データと、測距センサ22によって経時的に遂次取得された距離データと、に基づいて植立作物の存在領域を検出するとともに植立作物の高さを検出する。また、第一作物検出部31Aは、例えば機械学習(深層学習)されたニューラルネットワークを用いることによって、作物の種類を判定する。換言すると、第一作物検出部31Aは、収穫装置15の収穫対象の作物の種類を取得可能に構成されている。作物の種類は、例えば米穀、麦(大麦、小麦、蕎麦)、豆(大豆、小豆、黒豆)、菜種、トウモロコシ、等が挙げられる。また、第一作物検出部31Aは、撮像データに基づいて作物における穂先の大きさや長さを検出可能に構成されている。 The first crop detection unit 31A is a planted crop based on the imaging data sequentially acquired by the first imaging device 21A and the distance data sequentially acquired by the distance measuring sensor 22 over time. The area where the plant is located is detected and the height of the planted crop is detected. Further, the first crop detection unit 31A determines the type of crop by using, for example, a machine-learned (deep learning) neural network. In other words, the first crop detection unit 31A is configured to be able to acquire the type of crop to be harvested by the harvesting device 15. Examples of crop types include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like. Further, the first crop detection unit 31A is configured to be able to detect the size and length of the tip of the crop based on the imaging data.
 第一実施形態では、第一作物検出部31Aは、植立作物の高さに基づいて倒伏作物(例えば倒伏穀稈)を検出可能に構成されている。第一作物検出部31Aによる認識出力データの生成の流れが、図4に示されている。第一作物検出部31Aには、第一撮像装置21Aから撮像データのRGB画素値が入力値として入力される。この撮像データと、測距センサ22によって取得された距離データと、が関連付けられ、植立作物の存在領域における作物高さに基づいて倒伏作物が検出される。第一作物検出部31Aは、植立作物の作物高さと、植立作物が同じ作物高さで広がる領域の広さと、に基づいて倒伏作物を検出するように構成されている。植立作物が同じ作物高さで広がる領域の広さは、撮像データと距離データとの少なくとも一つに基づいて面積計算によって算出されても良いし、加えて撮像データで画像認識された領域の形状から算出されても良い。あるいは、植立作物が同じ作物高さで広がる領域の広さは、撮像データで画像認識された領域の形状と、相対的な広さと、の少なくとも一方から算出されても良い。 In the first embodiment, the first crop detection unit 31A is configured to be able to detect a fallen crop (for example, a fallen grain culm) based on the height of the planted crop. The flow of generation of recognition output data by the first crop detection unit 31A is shown in FIG. The RGB pixel value of the imaging data is input to the first crop detection unit 31A from the first imaging device 21A as an input value. This imaging data is associated with the distance data acquired by the distance measuring sensor 22, and the fallen crop is detected based on the crop height in the area where the planted crop exists. The first crop detection unit 31A is configured to detect a fallen crop based on the crop height of the planted crop and the size of the area where the planted crop spreads at the same crop height. The area of the area where the planted crop spreads at the same crop height may be calculated by area calculation based on at least one of the imaging data and the distance data, and in addition, the area recognized by the imaging data. It may be calculated from the shape. Alternatively, the size of the area where the planted crop spreads at the same crop height may be calculated from at least one of the shape of the area recognized by the image recognition data and the relative size.
 また、第一作物検出部31Aは、収穫装置15の前方の作物に混ざって雑草の存在する雑草領域を検出するように構成され、雑草領域における雑草の種類(雑草の大きさも含む)を取得可能に構成されている。 Further, the first crop detection unit 31A is configured to detect a weed area in which weeds are present mixed with the crop in front of the harvesting device 15, and can acquire the type of weeds (including the size of weeds) in the weed area. It is configured in.
 図4の例では正常な植立穀稈の中に倒伏作物と雑草とが示されている。雑草の存在する雑草領域は符号F1を付与された矩形の枠で示され、倒伏作物の存在領域は符号F2を付与された矩形の枠で示されている。また、第一作物検出部31Aは、雑草領域における単位面積当たりの雑草の量である雑草率を取得可能に構成されている。このように、第一作物検出部31Aは、圃場の中から作物の倒伏や雑草を判別可能に構成されている。第一撮像装置21Aは、所定時間間隔、例えば0.1~0.5秒間隔で撮像データを取得し、その撮像データを第一作物検出部31Aに入力するので、第一作物検出部31Aも、同じ時間間隔で、認識出力データを出力する。 In the example of FIG. 4, lodging crops and weeds are shown in normal planted culms. The weed area in which weeds are present is indicated by a rectangular frame assigned the symbol F1, and the area in which the fallen crop is present is indicated by a rectangular frame assigned the reference numeral F2. Further, the first crop detection unit 31A is configured to be able to acquire the weed rate, which is the amount of weeds per unit area in the weed area. As described above, the first crop detection unit 31A is configured to be able to discriminate crop lodging and weeds from the field. Since the first imaging device 21A acquires imaging data at predetermined time intervals, for example, at intervals of 0.1 to 0.5 seconds and inputs the imaging data to the first crop detection unit 31A, the first crop detection unit 31A also , Output recognition output data at the same time interval.
 自動走行では、第一撮像装置21Aによる機体前方の撮像と、測距センサ22による機体1と機体前方の物体との距離の測定と、が行われる。そして、第一撮像装置21Aによって撮像された撮像データと、測距センサ22によって測定された機体前方の距離データと、に基づいて、第一作物検出部31Aは、特定の物体として圃場の作物を認識するとともに当該圃場の作物の作物高さを検出する。 In the automatic driving, the first image pickup device 21A takes an image in front of the machine body, and the distance measuring sensor 22 measures the distance between the machine body 1 and the object in front of the machine body. Then, based on the image pickup data captured by the first image pickup device 21A and the distance data in front of the aircraft measured by the distance measurement sensor 22, the first crop detection unit 31A sets the crop in the field as a specific object. While recognizing, the crop height of the crop in the field is detected.
 第二作物検出部31Bは、第二撮像装置21Bによって継時的に遂次取得された撮像データの撮像データに基づいて、例えば倒伏作物等の収穫されずに取り残された残作物を検出可能である。また、第二作物検出部31Bは、例えば機械学習(深層学習)されたニューラルネットワークを用いることによって、残作物の種類を判定する。残作物の種類は、例えば米穀、麦(大麦、小麦、蕎麦)、豆(大豆、小豆、黒豆)、菜種、トウモロコシ、等が挙げられる。 The second crop detection unit 31B can detect unharvested residual crops such as lodging crops based on the imaging data of the imaging data sequentially acquired by the second imaging device 21B. be. Further, the second crop detection unit 31B determines the type of the remaining crop by using, for example, a machine-learned (deep learning) neural network. Examples of the types of residual crops include rice grains, wheat (barley, wheat, buckwheat), beans (soybeans, adzuki beans, black beans), rapeseed, corn, and the like.
 制御ユニット30に記憶部33が備えられ、記憶部33に、複数の収穫制御パターンと、複数の走行制御パターンと、が備えられている。記憶部33は、例えばEEPROM等の半導体の記憶素子である。 The control unit 30 is provided with a storage unit 33, and the storage unit 33 is provided with a plurality of harvest control patterns and a plurality of travel control patterns. The storage unit 33 is a semiconductor storage element such as an EEPROM.
 収穫制御パターンは、例えば作物の種類と作物高さとの少なくとも一方に応じて、収穫ヘッダ15Aの対地高さH1と、掻込リール15Bの高さ位置H2と、横送りオーガ15Cの高さ位置H3と、を調整するためのルックアップテーブルとして記憶部33に格納されている。つまり、作物の種類や作物高さに対応した収穫制御パターン及び走行制御パターンが状態決定部32によって選択される。そして、選択された収穫制御パターン及び走行制御パターンに応じて目標値が状態決定部32から作業制御部36へ出力される。 The harvest control pattern is, for example, depending on at least one of the crop type and the crop height, the ground height H1 of the harvest header 15A, the height position H2 of the scraping reel 15B, and the height position H3 of the lateral feed auger 15C. And, are stored in the storage unit 33 as a look-up table for adjusting. That is, the harvest control pattern and the running control pattern corresponding to the type of crop and the height of the crop are selected by the state determination unit 32. Then, the target value is output from the state determination unit 32 to the work control unit 36 according to the selected harvest control pattern and travel control pattern.
 走行制御パターンは、例えば作物の種類と作物高さとの少なくとも一方に応じて、走行装置11の車速及び車高を調整するためのルックアップテーブルとして記憶部33に格納されている。つまり、作物の種類と作物高さとの少なくとも一方に対応した走行制御パターンが状態決定部32によって選択される。そして、選択された走行制御パターンに応じて目標値が状態決定部32から走行制御部35へ出力される。 The travel control pattern is stored in the storage unit 33 as a look-up table for adjusting the vehicle speed and the vehicle height of the travel device 11, for example, according to at least one of the crop type and the crop height. That is, the traveling control pattern corresponding to at least one of the crop type and the crop height is selected by the state determination unit 32. Then, the target value is output from the state determination unit 32 to the travel control unit 35 according to the selected travel control pattern.
 走行制御部35は、車速制御部35Aと車高制御部35Bとを有する。状態決定部32によって選択された走行制御パターンに基づいて車速の目標値と、車高の目標値と、が決定される。車速制御部35Aは、車速の目標値を基準として走行装置11の速度調整制御を行う。車高制御部35Bは、車高の目標値を基準として走行装置11の昇降機構に対する制御を行う。 The travel control unit 35 has a vehicle speed control unit 35A and a vehicle height control unit 35B. The target value of the vehicle speed and the target value of the vehicle height are determined based on the travel control pattern selected by the state determination unit 32. The vehicle speed control unit 35A performs speed adjustment control of the traveling device 11 based on the target value of the vehicle speed. The vehicle height control unit 35B controls the elevating mechanism of the traveling device 11 with reference to the target value of the vehicle height.
 即ち、走行制御部35は、エンジン制御機能、操舵制御機能、車速制御機能、車高制御機能などを有し、走行装置11に走行制御信号を与える。手動操舵の場合、搭乗者による操作に基づいて、走行制御部35が制御信号を生成し、走行装置11を制御する。自動操舵の場合、制御ユニット30の自動走行制御モジュールによって与えられる自動走行指令と、衛星測位モジュール80からの測位データと、に基づいて、走行制御部35は、操舵や車速に関する制御を走行装置11に対して行う。 That is, the travel control unit 35 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and gives a travel control signal to the travel device 11. In the case of manual steering, the travel control unit 35 generates a control signal and controls the travel device 11 based on the operation by the passenger. In the case of automatic steering, the travel control unit 35 controls steering and vehicle speed based on the automatic travel command given by the automatic travel control module of the control unit 30 and the positioning data from the satellite positioning module 80. To do.
 作業制御部36は、ヘッダ制御部36Aと、リール制御部36Bと、オーガ制御部36Cと、を有する。状態決定部32によって選択された収穫制御パターンに基づいて対地高さH1の目標値と、高さ位置H2の目標値と、掻込リール15Bの前後位置の目標値と、高さ位置H3の目標値と、が決定される。ヘッダ制御部36Aは、対地高さH1の目標値を基準として収穫ヘッダ15Aの昇降制御を行う。リール制御部36Bは、高さ位置H2の目標値と、掻込リール15Bの前後位置の目標値と、を基準として掻込リール15Bの上下位置及び前後位置を調整制御する。さらに、オーガ制御部36Cは、高さ位置H3の目標値を基準として横送りオーガ15Cの上下位置を調整制御する。 The work control unit 36 has a header control unit 36A, a reel control unit 36B, and an auger control unit 36C. The target value of the ground height H1, the target value of the height position H2, the target value of the front-rear position of the scraping reel 15B, and the target of the height position H3 based on the harvest control pattern selected by the state determination unit 32. The value and is determined. The header control unit 36A controls the raising and lowering of the harvest header 15A with reference to the target value of the ground height H1. The reel control unit 36B adjusts and controls the vertical position and the front-rear position of the suction reel 15B with reference to the target value of the height position H2 and the target value of the front-rear position of the suction reel 15B. Further, the auger control unit 36C adjusts and controls the vertical position of the lateral feed auger 15C with reference to the target value of the height position H3.
 即ち、作業制御部36は、収穫装置15や脱穀装置13等、圃場の作物の収穫や脱穀に関する装置の制御を行う機能を有する。手動操舵の場合、搭乗者による操作に基づいて、作業制御部36が制御信号を生成し、収穫装置15等を制御する。自動操舵の場合、第一撮像装置21Aによる撮像データと、測距センサ22による距離情報と、に基づいて、作業制御部36は、収穫装置15の対地高さH1と、掻込リール15Bの高さ位置H2と、掻込リール15Bの前後位置と、横送りオーガ15Cの高さ位置H3と、等を制御する。加えて、収穫制御パターンには収穫装置15の動作速度に関するパラメータも含まれ、作業制御部36は、状態決定部32によって選択された収穫制御パターンに基づいて収穫装置15用の変速装置(例えば静油圧式無段変速装置)を変速制御可能に構成されている。 That is, the work control unit 36 has a function of controlling devices related to harvesting and threshing of crops in the field, such as a harvesting device 15 and a threshing device 13. In the case of manual steering, the work control unit 36 generates a control signal and controls the harvesting device 15 and the like based on the operation by the passenger. In the case of automatic steering, the work control unit 36 determines the height H1 of the harvesting device 15 and the height of the scraping reel 15B based on the imaging data obtained by the first imaging device 21A and the distance information obtained by the distance measuring sensor 22. The position H2, the front-rear position of the scraping reel 15B, the height position H3 of the lateral feed auger 15C, and the like are controlled. In addition, the harvest control pattern also includes parameters relating to the operating speed of the harvest device 15, and the work control unit 36 is a transmission (eg, static) for the harvest device 15 based on the harvest control pattern selected by the state determination unit 32. The hydraulic continuously variable transmission) is configured to be capable of speed change control.
 第一実施形態の制御ユニット30は、通信ネットワークに接続可能に構成されている。制御ユニット30に通信部37が備えられ、通信部37は、有線または無線の通信ネットワークを介して管理コンピュータ2と通信可能である。例えば圃場における作物の倒伏情報、雑草の情報、等が、衛星測位モジュール80によって測位された位置情報とともに、無線通信ネットワークを介して圃場の管理コンピュータ2へ送信され、管理コンピュータ2における圃場のマップ情報に記録される。これにより、圃場の管理者は、圃場における作物の倒伏情報、雑草の情報、等を次年度の農業計画に活用できる。 The control unit 30 of the first embodiment is configured to be connectable to a communication network. The control unit 30 is provided with a communication unit 37, and the communication unit 37 can communicate with the management computer 2 via a wired or wireless communication network. For example, crop lodging information, weed information, etc. in the field are transmitted to the field management computer 2 via the wireless communication network together with the position information positioned by the satellite positioning module 80, and the field map information in the management computer 2 is transmitted. Recorded in. As a result, the farm manager can utilize the crop lodging information, weed information, etc. in the field for the next year's agricultural plan.
〔第一実施形態における収穫装置の作業状態について〕
 収穫制御パターンについて、図3、図5及び図6に基づいて説明する。収穫制御パターンのパラメータに、収穫ヘッダ15Aの対地高さH1の目標値と、掻込リール15Bの高さ位置H2の目標値と、掻込リール15Bの前後位置の目標値と、が含まれる。掻込リール15Bの高さ位置H2が高すぎると、掻込リール15Bが作物に対して掻き込み作用し難くなる。また、掻込リール15Bの高さ位置H2が低すぎると、作物が掻込リール15Bに絡み付き易くなる。図5及び図6に示されるように、圃場の作物が収穫装置15によって収穫される際に、掻込リール15Bのタイン15Tが穂先を前上方から後方に掻き込むように、タイン15Tの回転軌跡が作物の穂先領域と重複するのが望ましい。
[About the working state of the harvesting device in the first embodiment]
The harvest control pattern will be described with reference to FIGS. 3, 5 and 6. The parameters of the harvest control pattern include a target value of the ground height H1 of the harvest header 15A, a target value of the height position H2 of the scraping reel 15B, and a target value of the front and rear positions of the scraping reel 15B. If the height position H2 of the scraping reel 15B is too high, it becomes difficult for the scraping reel 15B to scrape the crop. Further, if the height position H2 of the scraping reel 15B is too low, the crop is likely to be entangled with the scraping reel 15B. As shown in FIGS. 5 and 6, when the crop in the field is harvested by the harvesting device 15, the rotation trajectory of the tine 15T is such that the tine 15T of the scraping reel 15B scrapes the tip from the front upper part to the rear side. Should overlap with the tip area of the crop.
 複数の収穫制御パターンの夫々において、対地高さH1及び高さ位置H2は、収穫制御パターンごとに異なるパラメータとして設定されている。作物の種類と、作物高さと、作物の穂先領域の上下高さと、当該穂先領域の表面積と、等に基づいて、複数の収穫制御パターンのうちの適切な収穫制御パターンが状態決定部32によって選択される。そして、選択された収穫制御パターンから対地高さH1及び高さ位置H2の目標値が読み出され、対地高さH1及び高さ位置H2の調整用の制御信号が状態決定部32から作業制御部36へ送られる。例えば作物の種類が豆類であれば、対地高さH1は、最も低い領域に設定される。また、作物の種類が蕎麦や菜種であれば、対地高さH1は、米穀の場合よりも低く設定され、かつ、豆類の場合よりも高く設定される。 In each of the plurality of harvest control patterns, the ground height H1 and the height position H2 are set as different parameters for each harvest control pattern. An appropriate harvest control pattern among a plurality of harvest control patterns is selected by the state determination unit 32 based on the type of crop, the height of the crop, the vertical height of the tip region of the crop, the surface area of the tip region, and the like. Will be done. Then, the target values of the ground height H1 and the height position H2 are read from the selected harvest control pattern, and the control signal for adjusting the ground height H1 and the height position H2 is transmitted from the state determination unit 32 to the work control unit. Sent to 36. For example, if the crop type is legume, the ground height H1 is set to the lowest region. If the type of crop is buckwheat or rapeseed, the ground height H1 is set lower than that of rice grains and higher than that of beans.
 このように、状態決定部32は、植立作物の高さに応じてヘッダ用アクチュエータ15Hを操作することによって収穫装置15の作業状態を変更可能なように構成されている。このとき、収穫装置15の作業状態に、収穫装置15の対地高さH1と、掻込リール15Bの高さ位置H2と、掻込リール15Bの前後位置と、掻込リール15Bの回転速度と、タイン15Tの回転軌跡と、が含まれる。また、状態決定部32は、収穫装置15の作業状態に加えて走行装置11の車速を変更可能に構成されている。収穫装置15の対地高さH1は、『収穫高さ』であって、収穫ヘッダ15Aの『作業高さ』でもある。換言すると、状態決定部32は、ヘッダ用アクチュエータ15Hを操作することによって、作物の種類と作物高さとの少なくとも一方に応じて収穫装置15の収穫高さを変更可能に構成されている。また、状態決定部32は、リールアクチュエータ15Jを操作することによって、作物の種類と作物高さとの少なくとも一方に応じて掻込リール15Bの高さ位置H2を変更可能に構成されている。 As described above, the state determination unit 32 is configured so that the working state of the harvesting device 15 can be changed by operating the header actuator 15H according to the height of the planted crop. At this time, in the working state of the harvesting device 15, the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, the front-rear position of the scraping reel 15B, the rotation speed of the scraping reel 15B, and so on. The rotation locus of the tine 15T and the like are included. Further, the state determining unit 32 is configured to be able to change the vehicle speed of the traveling device 11 in addition to the working state of the harvesting device 15. The ground height H1 of the harvesting device 15 is the “harvesting height” and also the “working height” of the harvesting header 15A. In other words, the state determination unit 32 is configured to be able to change the harvest height of the harvesting device 15 according to at least one of the crop type and the crop height by operating the header actuator 15H. Further, the state determining unit 32 is configured to be able to change the height position H2 of the scraping reel 15B according to at least one of the crop type and the crop height by operating the reel actuator 15J.
 圃場の作物が収穫装置15によって収穫される際に、掻込リール15Bのタイン15Tが穂先を前上方から後方に掻き込むように、収穫制御パターンが状態決定部32によって選択され、対地高さH1及び高さ位置H2が調整される。対地高さH1が調整されると、収穫ヘッダ15Aの下端部(刈刃の位置する部分)は作物の穂先領域よりも下側に位置する。また、高さ位置H2が調整されると、掻込リール15Bの前端位置は、作物の穂先よりも上側に位置する。この結果、掻込リール15Bによって作物の穂先領域が上下に亘って後方へ掻き込まれる。つまり、第一作物検出部31Aによって検出された作物高さ及び作物の種類に基づいて、作物の穂先領域のみが収穫装置15によって効率よく収穫され、当該穂先領域が後方の搬送装置16で搬送されて脱穀装置13で脱穀処理される。このため、作物の株元領域まで収穫装置15によって収穫される構成と比較して、搬送装置16の搬送負荷や脱穀装置13の脱穀負荷が軽減され、収穫装置15の収穫効率が良好となる。 When the crops in the field are harvested by the harvesting device 15, the harvest control pattern is selected by the state determining unit 32 so that the tine 15T of the scraping reel 15B scrapes the tips from the front upper part to the rearward, and the ground height H1. And the height position H2 is adjusted. When the ground height H1 is adjusted, the lower end portion (the portion where the cutting blade is located) of the harvest header 15A is located below the tip region of the crop. Further, when the height position H2 is adjusted, the front end position of the scraping reel 15B is located above the tip of the crop. As a result, the tip region of the crop is scraped backward by the scraping reel 15B. That is, based on the crop height and the type of crop detected by the first crop detection unit 31A, only the tip region of the crop is efficiently harvested by the harvesting device 15, and the tip region is transported by the rear transport device 16. The crop is threshed by the threshing device 13. Therefore, the transport load of the transport device 16 and the threshing load of the threshing device 13 are reduced, and the harvesting efficiency of the harvesting device 15 is improved, as compared with the configuration in which the harvesting device 15 is used to harvest the crop to the root region.
 横送りオーガ15Cは、作物の種類に応じて上下方向に位置変更可能なように構成されている。図示はしないが、収穫ヘッダ15Aに、横送りオーガ15Cを上下方向に昇降操作可能なアクチュエータが備えられている。当該アクチュエータは、本発明の『第一アクチュエータ』及び『アクチュエータ』であって、油圧式であっても良いし、電動式であっても良い。作物の種類に応じて適切な高さ位置H3の目標値を有する収穫制御パターンが状態決定部32によって選択される。そして、選択された収穫制御パターンに基づいて、高さ位置H3の目標値が状態決定部32から作業制御部36へ送られ、横送りオーガ15Cが昇降制御される。 The horizontal feed auger 15C is configured so that the position can be changed in the vertical direction according to the type of crop. Although not shown, the harvest header 15A is provided with an actuator capable of raising and lowering the lateral feed auger 15C in the vertical direction. The actuators are the "first actuator" and the "actuator" of the present invention, and may be hydraulic or electric. A harvest control pattern having an appropriate height position H3 target value according to the type of crop is selected by the state determination unit 32. Then, based on the selected harvest control pattern, the target value of the height position H3 is sent from the state determination unit 32 to the work control unit 36, and the lateral feed auger 15C is controlled to move up and down.
 切断刃15Dによって株元を切断された収穫作物は、収穫ヘッダ15Aの底板15uにおいて横送りオーガ15Cによって搬送装置16の位置する側に横送りされる。この際に、横送りオーガ15Cの高さ位置H3が上下方向に沿って変更されると、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の上下方向の隙間が変化する。 The harvested crop whose root is cut by the cutting blade 15D is laterally fed to the side where the transport device 16 is located by the lateral feed auger 15C on the bottom plate 15u of the harvest header 15A. At this time, when the height position H3 of the horizontal feed auger 15C is changed along the vertical direction, the vertical gap between the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A changes.
 作物の種類が米穀や麦類である場合、作物の形状は上下に細長く、穀粒は小さな粒状である。このため、作物の種類が米穀や麦類である場合の収穫制御パターンでは、高さ位置H3の目標値は低めの高さ位置H31に設定される。このため、米穀や麦類の収穫作業が行われる場合、横送りオーガ15Cは収穫ヘッダ15Aに対して低く位置し、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の上下方向の隙間が狭くなる。これにより、米穀や麦類の穂先部分が、横送りオーガ15Cによって効率よく横送りされる。 When the type of crop is rice or wheat, the shape of the crop is elongated up and down, and the grain is small and granular. Therefore, in the harvest control pattern when the type of crop is rice or wheat, the target value of the height position H3 is set to the lower height position H31. Therefore, when the rice grain or wheat is harvested, the horizontal feed auger 15C is located lower than the harvest header 15A, and the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A are in the vertical direction. The gap becomes narrower. As a result, the tip portion of the rice grain or wheat is efficiently laterally fed by the laterally fed auger 15C.
 作物の種類が豆類である場合、豆類の穂先部分は米穀や麦類の穂先部分よりも大きな粒を有する。このため、横送りオーガ15Cによって豆類の穂先部分が横送りされる際に、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の上下方向の隙間が狭すぎると、豆粒等が潰されたり損傷を受けたりする虞がある。このため、作物の種類が豆類である場合の収穫制御パターンでは、高さ位置H3の目標値は高めの高さ位置H32に設定される。このため、豆類の収穫作業が行われる場合、横送りオーガ15Cは、米穀や麦類である場合よりも高く位置する。このことから、作物の種類が米穀や麦類である場合と比較して、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の上下方向の隙間が広くなる。これにより、横送りオーガ15Cによって豆類の穂先部分が横送りされる際に、豆粒等が損傷を受け難くなる。 When the type of crop is beans, the tip of beans has larger grains than the tip of rice or wheat. Therefore, when the tip portion of the beans is laterally fed by the laterally-fed auger 15C, if the vertical gap between the lower end of the laterally-fed auger 15C and the bottom plate 15u of the harvest header 15A is too narrow, the beans and the like will be generated. It may be crushed or damaged. Therefore, in the harvest control pattern when the crop type is beans, the target value of the height position H3 is set to the higher height position H32. Therefore, when the bean harvesting operation is performed, the lateral feed auger 15C is located higher than the case of rice grains and wheat. From this, as compared with the case where the type of crop is rice or wheat, the vertical gap between the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A becomes wider. As a result, when the tip portion of the beans is laterally fed by the laterally fed auger 15C, the beans and the like are less likely to be damaged.
 このように、状態決定部32は、作物の種類に応じて高さ位置H3を変更することによって、収穫装置15における搬送経路の上下幅を変更する。即ち、状態決定部32は、横送りオーガ15Cを上下方向に昇降操作可能なアクチュエータを操作することによって、搬送経路の上下幅として、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の隙間の上下幅を変更する。 In this way, the state determination unit 32 changes the vertical width of the transport path in the harvesting device 15 by changing the height position H3 according to the type of crop. That is, the state determining unit 32 sets the vertical width of the transport path to the lower end portion of the horizontal feed auger 15C and the bottom plate 15u of the harvest header 15A by operating an actuator capable of raising and lowering the horizontal feed auger 15C in the vertical direction. Change the vertical width of the gap between.
〔第一実施形態における状態決定部の状態変更処理〕
 状態決定部32の処理は、図7に示されるフローチャートに基づいて行われ、図7のフローチャートにおけるスタートからエンドまでの処理が周期的に実行される。上述したように、第一作物検出部31Aは、収穫対象の作物の種類のみならず、雑草と倒伏作物とを検出可能に構成されている。このため、状態決定部32は、収穫対象の作物が検出されている場合と、倒伏作物が検出されている場合と、雑草が検出されている場合と、で異なる処理を実行する。
[Status change processing of the status determination unit in the first embodiment]
The processing of the state determination unit 32 is performed based on the flowchart shown in FIG. 7, and the processing from the start to the end in the flowchart of FIG. 7 is periodically executed. As described above, the first crop detection unit 31A is configured to be able to detect not only the type of crop to be harvested but also weeds and lodging crops. Therefore, the state determination unit 32 executes different processes depending on whether the crop to be harvested is detected, the fallen crop is detected, or the weed is detected.
 まず、状態決定部32は、第二作物検出部31Bの検出結果を判定する(ステップ#01)。第二作物検出部31Bは、収穫装置15による収穫作業後の収穫跡を検出する。図8に示されるように、第二撮像装置21Bは、収穫装置15の後方かつ走行装置11の前方の領域、即ち収穫装置15と走行装置11との間の領域である収穫跡領域Sを撮像する。なお、図8では、第二撮像装置21Bが収穫跡領域Sを撮像する様子を簡易に示すため、残稈処理部19を省略して示している。第二撮像装置21Bによって撮像された撮像データに基づいて、収穫跡領域Sに残作物が第二作物検出部31Bによって検出されると、ステップ#01では『刈残しの検出』が判定される。即ち、収穫装置15の後方が第二撮像装置21Bによって撮像され、第二撮像装置21Bの撮像データに作物(例えば倒伏作物)が含まれているかどうかが第二作物検出部31Bによって判定される。 First, the state determination unit 32 determines the detection result of the second crop detection unit 31B (step # 01). The second crop detection unit 31B detects the harvest trace after the harvesting operation by the harvesting device 15. As shown in FIG. 8, the second image pickup device 21B captures a harvest trace area S which is a region behind the harvesting device 15 and in front of the traveling device 11, that is, a region between the harvesting device 15 and the traveling device 11. do. In FIG. 8, the residual culm processing unit 19 is omitted in order to simply show how the second image pickup apparatus 21B captures the harvest trace region S. When the second crop detection unit 31B detects the residual crop in the harvest trace region S based on the image pickup data captured by the second image pickup device 21B, in step # 01, "detection of the uncut portion" is determined. That is, the rear of the harvesting device 15 is imaged by the second image pickup device 21B, and whether or not the image pickup data of the second image pickup device 21B includes a crop (for example, a fallen crop) is determined by the second crop detection unit 31B.
 第二作物検出部31Bで検出結果がない場合(ステップ#01:検出結果なし)、状態決定部32は、第一作物検出部31Aの検出結果を判定する(ステップ#03)。第一作物検出部31Aによって収穫対象の作物が検出されている場合(ステップ#03:収穫対象の作物)、状態決定部32は、収穫装置15が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫制御パターンを選択する(ステップ#04)。そして状態決定部32は、選択した収穫制御パターンに基づいて走行制御部35及び作業制御部36に制御信号を出力する。即ち、掻込リール15Bのタイン15Tが穂先を前上方から後方に掻き込む状態となるように、収穫ヘッダ15Aの対地高さH1と、掻込リール15Bの高さ位置H2と、横送りオーガ15Cの高さ位置H3と、が調整される。 When there is no detection result in the second crop detection unit 31B (step # 01: no detection result), the state determination unit 32 determines the detection result of the first crop detection unit 31A (step # 03). When the crop to be harvested is detected by the first crop detection unit 31A (step # 03: crop to be harvested), the state determination unit 32 sets the harvesting device 15 to efficiently harvest the tip region of the crop. The harvest control pattern is selected according to at least one of the crop type and the crop height (step # 04). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern. That is, the ground height H1 of the harvest header 15A, the height position H2 of the scraping reel 15B, and the lateral feed auger 15C so that the tine 15T of the scraping reel 15B scrapes the tip from the front upper part to the rear. The height position H3 of is adjusted.
 第二作物検出部31Bによって刈残しが検出された場合(ステップ#01:刈残しの検出)、状態決定部32は、刈残しが検出された場合の収穫制御パターンを選択し、この収穫制御パターンに基づく制御信号を走行制御部35及び作業制御部36に出力する(ステップ#02)。ステップ#02では、刈残し領域における収穫作業のリトライ処理が行われる。 When the second crop detection unit 31B detects the uncut portion (step # 01: detection of the uncut portion), the state determination unit 32 selects a harvest control pattern when the uncut portion is detected, and this harvest control pattern. The control signal based on the above is output to the travel control unit 35 and the work control unit 36 (step # 02). In step # 02, the harvesting operation is retried in the uncut area.
 第二撮像装置21Bは、収穫装置15による収穫作業後に収穫されずに残された残作物を検出可能に構成されている。図9に示されるように、倒伏作物が収穫装置15によって収穫されず、収穫装置15が倒伏作物の上方を通過した場合、収穫装置15の後下方に設けられた第二撮像装置21Bによって倒伏作物が撮像され、第二作物検出部31Bによって倒伏作物の存在が判定される(ステップ#01:刈残しの検出)。そしてステップ#02の処理に基づいて、走行装置11が逆転動作して、機体1が予め設定された距離だけ後退する。つまり、状態決定部32は、残作物が第二撮像装置21Bによって検出されると、走行装置11をあらかじめ設定された距離だけ後進させる。図7に示されるフローチャートの処理は周期的に行われるため、収穫装置15が倒伏作物の上方から離れ、収穫装置15の前方に検出された倒伏作物が位置する状態で、ステップ#01で『検出結果なし』という判定に切換わる。このように、状態決定部32は、作業後の圃場状態に応じて走行装置11と収穫装置15との夫々の作業状態を変更可能なように構成されている。そして、第一作物検出部31Aによって倒伏作物が検出され(ステップ#03:倒伏作物)、後述のステップ#05の処理が行われる。つまり、状態決定部32は、収穫跡に基づいて収穫装置15の対地高さH1が高すぎると判定すると、収穫装置15の対地高さH1を低く変更するように構成されている。 The second image pickup device 21B is configured to be able to detect residual crops left unharvested after the harvesting operation by the harvesting device 15. As shown in FIG. 9, when the fallen crop is not harvested by the harvesting device 15 and the harvesting device 15 passes above the fallen crop, the fallen crop is subjected to the second imaging device 21B provided below and behind the harvesting device 15. Is imaged, and the presence of the fallen crop is determined by the second crop detection unit 31B (step # 01: detection of uncut portion). Then, based on the process of step # 02, the traveling device 11 reversely operates, and the aircraft 1 retreats by a preset distance. That is, when the residual crop is detected by the second image pickup device 21B, the state determination unit 32 moves the traveling device 11 backward by a preset distance. Since the processing of the flowchart shown in FIG. 7 is performed periodically, in the state where the harvesting device 15 is separated from the upper side of the fallen crop and the detected fallen crop is located in front of the harvesting device 15, "detection" is performed in step # 01. It switches to the judgment of "no result". As described above, the state determining unit 32 is configured so that the working states of the traveling device 11 and the harvesting device 15 can be changed according to the field state after the work. Then, the fallen crop is detected by the first crop detection unit 31A (step # 03: fallen crop), and the process of step # 05 described later is performed. That is, the state determination unit 32 is configured to change the ground height H1 of the harvesting device 15 to a low level when it is determined that the ground height H1 of the harvesting device 15 is too high based on the harvest trace.
 第一作物検出部31Aによって倒伏作物が検出されている場合(ステップ#03:倒伏作物)、状態決定部32は、倒伏作物を収穫するための収穫制御パターンを選択し、この収穫制御パターンに基づく制御信号を走行制御部35及び作業制御部36に出力する(ステップ#05)。図10に示されるように、ステップ#05の処理によって、収穫ヘッダ15Aの対地高さH1が最も下側の領域に調整され、掻込リール15Bの高さ位置H2が最も下側の領域に調整され、掻込リール15Bの前後方向における位置が最も前側の領域に調整される。また、ステップ#05の処理によって、収穫装置15用の変速装置(例えば静油圧式無段変速装置)が高速側に変速制御され、掻込リール15Bの回転速度が増速される。加えて、ステップ#05の処理によって、走行装置11の車速が減速される。 When the fallen crop is detected by the first crop detection unit 31A (step # 03: the fallen crop), the state determination unit 32 selects a harvest control pattern for harvesting the fallen crop and is based on this harvest control pattern. The control signal is output to the travel control unit 35 and the work control unit 36 (step # 05). As shown in FIG. 10, by the process of step # 05, the ground height H1 of the harvest header 15A is adjusted to the lowest region, and the height position H2 of the scraping reel 15B is adjusted to the lowest region. Then, the position of the scraping reel 15B in the front-rear direction is adjusted to the frontmost region. Further, by the process of step # 05, the speed change device for the harvesting device 15 (for example, the hydrostatic continuously variable transmission device) is speed-controlled to the high speed side, and the rotation speed of the suction reel 15B is increased. In addition, the process of step # 05 reduces the vehicle speed of the traveling device 11.
 つまり、第一作物検出部31Aによって倒伏状態の作物が検知されると、状態決定部32によって倒伏作物収穫用の収穫制御パターンに切換えられ、収穫ヘッダ15Aの対地高さH1と掻込リール15Bの高さ位置H2とが低くなる。そして、圃場における作物の倒伏領域では、収穫機が低速で前進しながら掻込リール15Bが通常の収穫作業よりも高速回転し、倒伏状態の作物が掻込リール15Bによって収穫ヘッダ15Aへ掻き込まれる。換言すると、状態決定部32は、倒伏作物が検出されたら、掻込リール15Bの位置を最も下側の領域かつ最も前側の領域に位置させ、掻込リール15Bの回転速度を上昇させ、かつ、走行装置11の車速を減速させる。これにより、コンバインは、徐々に前進しながら刈残した倒伏作物を刈り取る。 That is, when the first crop detection unit 31A detects a crop in a fallen state, the state determination unit 32 switches to the harvest control pattern for harvesting the fallen crop, and the harvest header 15A has a ground height H1 and the scraping reel 15B. The height position H2 becomes lower. Then, in the collapsed region of the crop in the field, the scraping reel 15B rotates at a higher speed than the normal harvesting operation while the harvester advances at a low speed, and the crop in the collapsed state is scraped into the harvest header 15A by the scraping reel 15B. .. In other words, when the fallen crop is detected, the state determination unit 32 positions the scraping reel 15B in the lowermost region and the frontmost region, increases the rotational speed of the scraping reel 15B, and increases the rotation speed of the scraping reel 15B. The vehicle speed of the traveling device 11 is reduced. As a result, the combine harvests the leftover crops while gradually advancing.
 図7に示されるフローチャートの処理は周期的に行われるため、第一作物検出部31Aが倒伏状態の作物を検知しなくなると(ステップ#03:≠倒伏作物)、ステップ#04または後述のステップ#06の処理が行われる。ステップ#03の判定が『収穫対象の作物』である場合、ステップ#04の処理が再び行われ、このときに走行装置11の車速が倒伏状態の作物の収穫時よりも増速される。 Since the processing of the flowchart shown in FIG. 7 is performed periodically, when the first crop detection unit 31A does not detect the crop in the collapsed state (step # 03: ≠ collapsed crop), step # 04 or step # described later is performed. The processing of 06 is performed. When the determination in step # 03 is "the crop to be harvested", the process of step # 04 is performed again, and at this time, the vehicle speed of the traveling device 11 is increased as compared with the time when the crop in the collapsed state is harvested.
 第一作物検出部31Aによって雑草が検出された場合(ステップ#03:雑草)について説明する。圃場には作物が植えられているが、作物に雑草が混ざっている場合があり、この場合には、植立作物が収穫装置15によって収穫される際に雑草も掻込リール15Bによって植立作物とともに掻き込まれ、搬送装置16によって後方の脱穀装置13へ送られる。このため、状態決定部32は、収穫対象の作物の種類と、雑草の種類と、に基づいて、雑草の収穫作業に及ぼす影響度を『小』、『中』、『大』の三段階で判定する(ステップ#06)。 The case where weeds are detected by the first crop detection unit 31A (step # 03: weeds) will be described. Although crops are planted in the field, weeds may be mixed in the crops. In this case, when the planted crops are harvested by the harvesting device 15, weeds are also planted by the scraping reel 15B. It is scraped together and sent to the rear grain removal device 13 by the transport device 16. Therefore, the state determination unit 32 determines the degree of influence on the weed harvesting work in three stages of "small", "medium", and "large" based on the type of crop to be harvested and the type of weed. Judgment (step # 06).
 雑草が少ない場合と、雑草が小さい場合と、脱穀装置13に雑草が入り込んでも脱穀負荷や選別精度に影響を及びさない場合と、等では、状態決定部32はステップ#06で『小』を選択する。この場合、ステップ#04と同じく、状態決定部32は、収穫装置15が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫制御パターンを選択する(ステップ#07)。そして状態決定部32は、選択した収穫制御パターンに基づいて走行制御部35及び作業制御部36に制御信号を出力する。 In cases where there are few weeds, small weeds, and cases where weeds do not affect the threshing load and sorting accuracy even if weeds enter the threshing device 13, the state determination unit 32 sets "small" in step # 06. select. In this case, as in step # 04, the state determining unit 32 selects a harvest control pattern according to at least one of the crop type and the crop height so that the harvesting device 15 can efficiently harvest the tip region of the crop. (Step # 07). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern.
 脱穀装置13に雑草が入り込むと脱穀負荷や選別精度に影響を及ぼすものの、車速が減速すれば脱穀負荷や選別精度への影響度合いが軽減される場合には、状態決定部32はステップ#06で『中』を選択する。この場合、収穫対象の作物の種類が豆類であるかどうかが判定される(ステップ#08)。 If weeds enter the threshing device 13 and affect the threshing load and sorting accuracy, but if the vehicle speed slows down and the degree of influence on the threshing load and sorting accuracy is reduced, the state determination unit 32 may perform step # 06. Select "Medium". In this case, it is determined whether or not the type of crop to be harvested is beans (step # 08).
 収穫対象の作物の種類が豆類以外であると(ステップ#08:豆類以外)、状態決定部32は、車速を減速させ、かつ、収穫装置15が作物の穂先領域を効率よく収穫できるように、作物の種類と作物高さとの少なくとも一方に応じて収穫装置15による収穫作業を実行する収穫制御パターンを選択する(ステップ#09)。そして状態決定部32は、選択した収穫制御パターンに基づいて走行制御部35及び作業制御部36に制御信号を出力する。即ち、状態決定部32は、雑草領域において走行装置11の車速を、雑草領域以外を走行する場合の車速よりも低速側に変更する。 When the type of crop to be harvested is other than beans (step # 08: other than beans), the state determination unit 32 slows down the vehicle speed and allows the harvesting device 15 to efficiently harvest the tip region of the crop. A harvest control pattern for performing the harvesting operation by the harvesting apparatus 15 is selected according to at least one of the crop type and the crop height (step # 09). Then, the state determination unit 32 outputs a control signal to the travel control unit 35 and the work control unit 36 based on the selected harvest control pattern. That is, the state determination unit 32 changes the vehicle speed of the traveling device 11 in the weed region to a lower speed side than the vehicle speed when traveling in a region other than the weed region.
 ステップ#09において状態決定部32は、収穫装置15の前方に雑草領域が検出され、かつ、作物の種類が豆類以外であると、雑草の種類に応じて走行装置11の車速の変更度合いを決定する。具体的には、状態決定部32は、雑草領域における単位面積当たりの雑草の量である雑草率に応じて走行装置11の車速の変更度合いを決定する。雑草率が多くなるほど、状態決定部32は走行装置11の車速をより低速側に変更する。また、状態決定部32は、作物の種類、雑草の種類、雑草率、等に応じて判断要素に優先順位を付けて段階的に車速を低速側に変更する構成であっても良い。 In step # 09, when the weed area is detected in front of the harvesting device 15 and the crop type is other than beans, the state determining unit 32 determines the degree of change in the vehicle speed of the traveling device 11 according to the type of weeds. do. Specifically, the state determination unit 32 determines the degree of change in the vehicle speed of the traveling device 11 according to the weed rate, which is the amount of weeds per unit area in the weed area. As the weed rate increases, the state determination unit 32 changes the vehicle speed of the traveling device 11 to the lower speed side. Further, the state determination unit 32 may have a configuration in which the vehicle speed is gradually changed to the low speed side by prioritizing the determination elements according to the type of crop, the type of weed, the weed rate, and the like.
 また、ステップ#09において状態決定部32は、選別処理部13Bに設けられたチャフシーブの漏下開度を小さくする。チャフシーブに複数のチャフリップが備えられ、チャフリップの傾斜姿勢(傾斜角度)が変更されることによって、複数のチャフリップの間の隙間が絞られる。雑草等は穀粒よりも大粒である場合が多く、チャフシーブの漏下開度が絞られることによって、チャフリップの間の隙間から雑草等が漏下し難くなり、選別精度への影響が軽減される。即ち、状態決定部32は、雑草領域で収穫された作物を選別する際に、作物の種類と雑草の種類との少なくとも一方に応じてチャフシーブの漏下開度を小さくするように構成されている。 Further, in step # 09, the state determination unit 32 reduces the leakage opening degree of the chaff sheave provided in the sorting processing unit 13B. The chaff sheave is provided with a plurality of chaflip, and the gap between the plurality of chaflip is narrowed by changing the tilting posture (tilt angle) of the chaflip. Weeds, etc. are often larger than grains, and by narrowing the leakage opening of the chaf sheave, weeds, etc. are less likely to leak from the gaps between the chaflip, and the effect on sorting accuracy is reduced. To. That is, the state determination unit 32 is configured to reduce the leakage opening degree of the chaff sheave according to at least one of the type of crop and the type of weed when selecting the crop harvested in the weed region. ..
 第一実施形態で、収穫装置15の前方に雑草領域が検出され、かつ、作物の種類が豆類であると(ステップ#08:豆類)、状態決定部32は走行装置11を停止させる(ステップ#10)。豆類には商品価値の高いものもあるため、豆類が雑草と一緒に脱穀処理されると、例えば豆粒に雑草が付着する等の要因によって、豆粒が汚れて商品価値を落としたりする虞がある。作物の種類が豆類である場合、走行装置11を停止させることによって、このような不都合を回避できる。 In the first embodiment, when the weed area is detected in front of the harvesting device 15 and the crop type is beans (step # 08: beans), the state determining unit 32 stops the traveling device 11 (step #). 10). Since some beans have high commercial value, if the beans are threshed together with weeds, the beans may become dirty and lose their commercial value due to factors such as weeds adhering to the beans. When the type of crop is beans, such inconvenience can be avoided by stopping the traveling device 11.
 例えば雑草の茎が太い場合には、横送りオーガ15Cや搬送装置16や脱穀装置13で詰まりが発生する虞がある。また、茎の太い雑草が脱穀装置13に入り込むと、脱穀装置13における選別精度が低下する虞もある。これらの不都合が発生する虞が高い場合、状態決定部32はステップ#06で『大』を判定し、走行装置11を停止させる収穫制御パターンを選択し、機体1が停車する(ステップ#10)。そして、作業者が手作業で雑草を撤去した後に、収穫装置15による収穫作業が再開される。また、状態決定部32は、雑草の種類、雑草率、等に応じて判断要素に優先順位を付けて段階的に車速を減速して走行装置11を停止させる構成であっても良い。 For example, when the stem of a weed is thick, there is a possibility that the lateral feed auger 15C, the transport device 16 and the threshing device 13 may be clogged. Further, if weeds with thick stems enter the threshing device 13, the sorting accuracy in the threshing device 13 may decrease. When there is a high possibility that these inconveniences will occur, the state determination unit 32 determines "large" in step # 06, selects a harvest control pattern for stopping the traveling device 11, and the aircraft 1 stops (step # 10). .. Then, after the worker manually removes the weeds, the harvesting work by the harvesting device 15 is restarted. Further, the state determination unit 32 may have a configuration in which the determination elements are prioritized according to the type of weed, the weed rate, etc., and the vehicle speed is gradually reduced to stop the traveling device 11.
 このように、状態決定部32は、雑草の種類に応じて走行装置11の車速の変更度合いを決定可能に構成されている。 As described above, the state determination unit 32 is configured to be able to determine the degree of change in the vehicle speed of the traveling device 11 according to the type of weeds.
 なお、上述の状態決定部32は、搬送経路の上下幅として、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の隙間の上下幅を自動的に変更するが、状態決定部32は搬送経路の上下幅を変更せず、例えば搭乗部12に設けられたモニタにガイダンスとして報知する構成であっても良い。この場合、搭乗部12に搭乗するオペレータが、例えば横送りオーガ15C等の昇降操作を促され、オペレータは当該昇降操作を手動で行える。 The above-mentioned state determining unit 32 automatically changes the vertical width of the gap between the lower end portion of the lateral feed auger 15C and the bottom plate 15u of the harvest header 15A as the vertical width of the transport path, but the state determining unit 32 The 32 may be configured to notify the monitor provided in the boarding section 12, for example, as guidance without changing the vertical width of the transport path. In this case, the operator boarding the boarding unit 12 is urged to perform an elevating operation such as the lateral feed auger 15C, and the operator can manually perform the elevating operation.
〔第一実施形態の別実施形態〕
 本発明は、上述の第一実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another Embodiment of the First Embodiment]
The present invention is not limited to the configuration exemplified in the above-mentioned first embodiment, and the following will exemplify another typical embodiment of the present invention.
(1-1)上述の第一実施形態では、第一作物検出部31A及び第二作物検出部31Bに、深層学習を用いて学習可能なニューラルネットワークが構築されているが、第一作物検出部31Aにニューラルネットワークが構築されなくても良いし、第二作物検出部31Bにニューラルネットワークが構築されなくても良い。この場合、ニューラルネットワークは管理コンピュータ2やその他の端末に構築され、第一作物検出部31Aと、管理コンピュータ2やその他の端末と、が通信をすることによってニューラルネットワークにおける入出力が行われるものであっても良い。また、第二作物検出部31Bと、管理コンピュータ2やその他の端末と、が通信をすることによってニューラルネットワークにおける入出力が行われるものであっても良い。即ち、上述の[第一解決手段]の別実施形態として、第一作物検出部31Aは、植立作物の高さを検出する構成であれば良い。また、上述の[第二解決手段]の別実施形態として、第一作物検出部31Aは、収穫装置15の作業対象である植立作物の種類を取得する構成であれば良い。加えて、上述の[第四解決手段]の別実施形態として、第二作物検出部31Bは、作業走行しながら作業後の圃場状態を検出する構成であれば良い。 (1-1) In the above-mentioned first embodiment, a neural network that can be learned by using deep learning is constructed in the first crop detection unit 31A and the second crop detection unit 31B, but the first crop detection unit It is not necessary to construct a neural network in 31A, and it is not necessary to construct a neural network in the second crop detection unit 31B. In this case, the neural network is constructed on the management computer 2 and other terminals, and the first crop detection unit 31A and the management computer 2 and other terminals communicate with each other to perform input / output in the neural network. There may be. Further, input / output in the neural network may be performed by communication between the second crop detection unit 31B and the management computer 2 or another terminal. That is, as another embodiment of the above-mentioned [first solution means], the first crop detection unit 31A may be configured to detect the height of the planted crop. Further, as another embodiment of the above-mentioned [second solution means], the first crop detection unit 31A may be configured to acquire the type of planted crop to be worked on by the harvesting device 15. In addition, as another embodiment of the above-mentioned [fourth solution means], the second crop detection unit 31B may be configured to detect the field state after the work while the work is running.
(1-2)上述の第一実施形態では、走行装置11はクローラ式に構成されているが、走行装置11はホイール式に構成されても良い。 (1-2) In the first embodiment described above, the traveling device 11 is configured as a crawler type, but the traveling device 11 may be configured as a wheel type.
(1-3)上述の第一実施形態では、収穫装置15の作業状態に、収穫装置15の対地高さH1と、掻込リール15Bの高さ位置H2と、掻込リール15Bの回転速度と、タイン15Tの回転軌跡と、が含まれるが、この実施形態に限定されない。つまり、上述の[第一解決手段]の別実施形態として、収穫装置15の作業状態に、収穫装置15の対地高さH1と、掻込リール15Bの高さ位置H2と、掻込リール15Bの回転速度と、タイン15Tの回転軌跡と、の少なくとも一つが含まれる構成であって良い。 (1-3) In the first embodiment described above, the working state of the harvesting device 15 includes the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, and the rotation speed of the scraping reel 15B. , But not limited to this embodiment. That is, as another embodiment of the above-mentioned [first solution], the working state of the harvesting device 15 includes the ground height H1 of the harvesting device 15, the height position H2 of the scraping reel 15B, and the scraping reel 15B. The configuration may include at least one of a rotation speed and a rotation locus of the tine 15T.
(1-4)上述の第一実施形態では、第一作物検出部31Aは、第一撮像装置21Aによって取得された撮像データと、測距センサ22によって取得された距離データと、に基づいて植立作物の高さを検出するが、この実施形態に限定されない。例えば、上述の[第一解決手段]の別実施形態として、測距センサ22が備えられない構成であっても良い。例えば、第一撮像装置21Aが左右一対のサラウンドカメラとして構成され、左右一対のサラウンドカメラの撮像データに基づいて、第一作物検出部31Aが植立作物の高さを検出する構成であっても良い。 (1-4) In the first embodiment described above, the first crop detection unit 31A plants based on the image pickup data acquired by the first image pickup device 21A and the distance data acquired by the distance measuring sensor 22. Detects the height of standing crops, but is not limited to this embodiment. For example, as another embodiment of the above-mentioned [first solution means], the distance measuring sensor 22 may not be provided. For example, even if the first image pickup device 21A is configured as a pair of left and right surround cameras and the first crop detection unit 31A detects the height of the planted crop based on the image pickup data of the pair of left and right surround cameras. good.
(1-5)上述の[第一解決手段]の別実施形態として、第一撮像装置21Aが備えられない構成であっても良い。この場合、第一作物検出部31Aは、一つまたは複数の測距センサ22によって取得された距離データに基づいて植立作物の高さを検出する構成であっても良い。 (1-5) As another embodiment of the above-mentioned [first solution means], the first image pickup apparatus 21A may not be provided. In this case, the first crop detection unit 31A may be configured to detect the height of the planted crop based on the distance data acquired by one or more distance measuring sensors 22.
(1-6)上述の第一実施形態では、状態決定部32は、収穫装置15の作業状態に加えて走行装置11の車速を変更可能に構成されているが、状態決定部32は走行装置11の車速を変更しない構成であっても良い。 (1-6) In the first embodiment described above, the state determining unit 32 is configured to be able to change the vehicle speed of the traveling device 11 in addition to the working state of the harvesting device 15, but the state determining unit 32 is the traveling device. The vehicle speed of 11 may not be changed.
(1-7)上述の第一実施形態では、状態決定部32は、倒伏作物が検出されたら、掻込リール15Bの位置を最も下側の領域かつ最も前側の領域に位置させるが、この実施形態に限定されない。上述の[第一解決手段]の別実施形態として、倒伏作物が検出されたら、状態決定部32は、収穫ヘッダ15Aの上下位置を下側の領域に位置させる制御と、掻込リール15Bの位置を下側の領域に移動させる制御と、掻込リール15Bの位置を前側の領域に位置させる制御と、の少なくとも一つを可能な構成であっても良い。 (1-7) In the first embodiment described above, when the collapsed crop is detected, the state determination unit 32 positions the scraping reel 15B in the lowermost region and the frontmost region. It is not limited to the form. As another embodiment of the above-mentioned [first solution], when a fallen crop is detected, the state determination unit 32 controls to position the upper and lower positions of the harvest header 15A in the lower region, and the position of the scraping reel 15B. At least one of a control for moving the reel 15B to the lower region and a control for locating the position of the suction reel 15B in the front region may be possible.
(1-8)上述の第一実施形態では、状態決定部32は、倒伏作物が検出されたら、掻込リール15Bの回転速度を上昇させ、かつ、走行装置11の車速を減速させるが、この実施形態に限定されない。上述の[第一解決手段]の別実施形態として、倒伏作物が検出されたら、状態決定部32は、掻込リール15Bの回転速度を上昇させる制御と、走行装置11の車速を減速させる制御と、の少なくとも一つを可能な構成であっても良い。 (1-8) In the first embodiment described above, when the collapsed crop is detected, the state determination unit 32 increases the rotation speed of the scraping reel 15B and decelerates the vehicle speed of the traveling device 11. It is not limited to the embodiment. As another embodiment of the above-mentioned [first solution], when a fallen crop is detected, the state determination unit 32 controls to increase the rotation speed of the suction reel 15B and controls to decrease the vehicle speed of the traveling device 11. At least one of the above may be possible.
(1-9)上述の第一実施形態では、第一作物検出部31Aは、第一撮像装置21Aによって取得された撮像データに基づいて植立作物の種類を取得するが、この実施形態に限定されない。例えば、上述の[第二解決手段]を示す別実施形態として、第一撮像装置21Aが備えられない構成であっても良い。この場合、例えば測距センサ22によって取得された距離データに基づいて、第一作物検出部31Aが作物の種類を取得する構成であっても良い。第一作物検出部31Aの内部処理として、例えば、距離データに対するフーリエ変換処理が行われ、フーリエ変換処理によって得られた周波数成分の分布に基づいて作物の種類が判定される構成であっても良い。あるいは、作物の種類は、管理コンピュータ2で管理された作物情報を取得する構成であっても良い。さらに、作物の種類が、オペレータまたは監理者によって手動入力されても良い。 (1-9) In the first embodiment described above, the first crop detection unit 31A acquires the type of planted crop based on the image pickup data acquired by the first image pickup device 21A, but is limited to this embodiment. Not done. For example, as another embodiment showing the above-mentioned [second solution], the first image pickup apparatus 21A may not be provided. In this case, for example, the first crop detection unit 31A may acquire the type of crop based on the distance data acquired by the distance measuring sensor 22. As the internal processing of the first crop detection unit 31A, for example, a Fourier transform process for distance data may be performed, and the type of crop may be determined based on the distribution of frequency components obtained by the Fourier transform process. .. Alternatively, the crop type may be configured to acquire crop information managed by the management computer 2. In addition, the crop type may be manually entered by the operator or supervisor.
(1-10)上述の第一実施形態では、横送りオーガ15Cを上下方向に昇降操作可能なアクチュエータを操作することによって、搬送経路の上下幅として、横送りオーガ15Cの下端部と、収穫ヘッダ15Aの底板15uと、の隙間の上下幅を変更するように、状態決定部32は構成されているが、この実施形態に限定されない。例えば、上述の[第二解決手段]を示す別実施形態として、リールアクチュエータ15J(本発明の『第二アクチュエータ』及び『アクチュエータ』)を操作することによって、搬送経路の上下幅として、掻込リール15Bの下端部と、収穫ヘッダ15Aの底板15uと、の隙間の上下幅を変更するように、状態決定部32は構成されても良い。 (1-10) In the first embodiment described above, by operating an actuator capable of raising and lowering the horizontal feed auger 15C in the vertical direction, the lower end portion of the horizontal feed auger 15C and the harvest header are set as the vertical width of the transport path. The state determination unit 32 is configured to change the vertical width of the gap between the bottom plate 15u of 15A and the bottom plate 15u, but is not limited to this embodiment. For example, as another embodiment showing the above-mentioned [second solution], by operating the reel actuator 15J (the "second actuator" and the "actuator" of the present invention), the vertical width of the transport path is set as the suction reel. The state determination unit 32 may be configured so as to change the vertical width of the gap between the lower end portion of the 15B and the bottom plate 15u of the harvest header 15A.
(1-11)上述の[第二解決手段]を示す実施形態では、状態決定部32は、ヘッダ用アクチュエータ15Hを操作することによって、作物の種類に応じて収穫ヘッダ15Aの対地高さH1を変更可能に構成されているが、この実施形態に限定されない。例えば、上述の[第二解決手段]を示す別実施形態として、状態決定部32は、作物の種類に応じて収穫ヘッダ15Aの対地高さH1を変更しない構成であっても良い。 (1-11) In the embodiment showing the above-mentioned [second solution], the state determination unit 32 operates the header actuator 15H to set the ground height H1 of the harvest header 15A according to the type of crop. It is configured to be modifiable, but is not limited to this embodiment. For example, as another embodiment showing the above-mentioned [second solution], the state determination unit 32 may be configured not to change the ground height H1 of the harvest header 15A according to the type of crop.
(1-12)本発明の収穫装置は、収穫装置15と搬送装置16とが一体構成されたものであっても良い。この場合、搬送経路は、搬送装置16における底板と、チェーンコンベアの下側部分と、の間の隙間であって、この隙間の上下幅が作物の種類に応じて変更されても良い。 (1-12) In the harvesting device of the present invention, the harvesting device 15 and the transport device 16 may be integrally configured. In this case, the transport path is a gap between the bottom plate of the transport device 16 and the lower portion of the chain conveyor, and the vertical width of this gap may be changed according to the type of crop.
(1-13)上述の[第二解決手段]を示す発明における『作物の種類』に、作物の量が含まれても良い。例えば、作物の量が一時的に増えて、搬送経路で詰まりが発生する虞がある場合、状態決定部32は、作物の量に応じて収穫装置15及び搬送装置16における搬送経路の上下幅を広く変更する構成であっても良い。 (1-13) The amount of crop may be included in the "type of crop" in the invention showing the above-mentioned [second solution]. For example, when the amount of crops temporarily increases and there is a risk of clogging in the transport path, the state determination unit 32 adjusts the vertical width of the transport path in the harvesting device 15 and the transport device 16 according to the amount of crops. The configuration may be widely changed.
(1-14)上述の第一実施形態では、収穫装置15の後方に残稈処理部19が備えられているが、上述の[第四解決手段]を示す別実施形態として、残稈処理部19が備えられない収穫機であっても良い。 (1-14) In the above-mentioned first embodiment, the residual culm processing unit 19 is provided behind the harvesting device 15, but as another embodiment showing the above-mentioned [fourth solution], the residual culm processing unit is provided. It may be a harvester that is not provided with 19.
(1-15)上述の第一実施形態では、状態決定部32は、第二作物検出部31Bによって倒伏作物が検出されたら、走行装置11を後退させる。さらに、走行装置11の後退が完了した後で第一作物検出部31Aによって倒伏作物が検出されたら、状態決定部32は、収穫ヘッダ15Aの上下位置を最も下側の領域に位置させるとともに掻込リール15Bの位置を最も下側の領域かつ最も前側の領域に位置させるが、この実施形態に限定されない。上述の[第四解決手段]を示す別実施形態として、状態決定部32は、第二作物検出部31B単独で倒伏作物が検出されたら、走行装置11を後退させ、更にその後、収穫ヘッダ15Aの上下位置を下側の領域に位置させるとともに掻込リール15Bの位置を下側の領域かつ前側の領域に位置させる構成であっても良い。この場合、第一作物検出部31Aが備えられない構成であっても良い。また、倒伏作物が検出され、走行装置11の後退が完了したら、状態決定部32は、収穫ヘッダ15Aの上下位置を下側の領域に位置させる制御と、掻込リール15Bの位置を下側の領域に移動させる制御と、掻込リール15Bの位置を前側の領域に位置させる制御と、の少なくとも一つを可能な構成であっても良い。 (1-15) In the first embodiment described above, the state determination unit 32 retracts the traveling device 11 when the second crop detection unit 31B detects a fallen crop. Further, when the fallen crop is detected by the first crop detection unit 31A after the retreat of the traveling device 11 is completed, the state determination unit 32 positions the vertical position of the harvest header 15A in the lowermost region and scrapes it. The position of the reel 15B is located in the lowermost region and the frontmost region, but is not limited to this embodiment. As another embodiment showing the above-mentioned [fourth solution], the state determination unit 32 retracts the traveling device 11 when a fallen crop is detected by the second crop detection unit 31B alone, and then the harvest header 15A. The upper and lower positions may be positioned in the lower region, and the position of the suction reel 15B may be positioned in the lower region and the front region. In this case, the configuration may not include the first crop detection unit 31A. Further, when the fallen crop is detected and the retreat of the traveling device 11 is completed, the state determining unit 32 controls to position the vertical position of the harvest header 15A in the lower region and the position of the scraping reel 15B on the lower side. At least one of the control of moving to the region and the control of locating the position of the suction reel 15B in the front region may be possible.
(1-16)上述の第一実施形態では、第二撮像装置21Bは、収穫装置15の後下部に設けられているが、この実施形態に限定されない。例えば、上述の[第四解決手段]を示す別実施形態として、第二撮像装置21Bは、脱穀装置13の後端部と、穀粒タンク14の後端部と、の少なくとも一方に設けられても良い。この場合、第二作物検出部31Bは、脱穀部13Aと選別処理部13Bとの少なくとも一方から排出された収穫物を検出可能に構成されても良い。そして、排出された収穫物に含まれる作物のロスの量または割合に基づいて、状態決定部32は、脱穀部13Aと選別処理部13Bと唐箕13Cとの少なくとも一つを制御し、さらに、走行装置11の車速を制御する構成であっても良い。即ち、状態決定部32は、収穫物が第二作物検出部31Bによって検出されると、脱穀部13Aと選別処理部13Bと唐箕13Cとの少なくとも一つを制御し、かつ、走行装置11の車速を制御する構成であっても良い。状態決定部32が脱穀部13Aを制御する際、扱胴の回転速度が制御されたり、送塵弁の角度調整が行われたりしても良い。 (1-16) In the first embodiment described above, the second imaging device 21B is provided at the rear lower portion of the harvesting device 15, but is not limited to this embodiment. For example, as another embodiment showing the above-mentioned [fourth solution], the second image pickup device 21B is provided at at least one of the rear end portion of the threshing device 13 and the rear end portion of the grain tank 14. Is also good. In this case, the second crop detection unit 31B may be configured to be able to detect the harvested product discharged from at least one of the threshing unit 13A and the sorting processing unit 13B. Then, the state determination unit 32 controls at least one of the threshing unit 13A, the sorting processing unit 13B, and the wall insert 13C based on the amount or ratio of the loss of the crop contained in the discharged harvested product, and further runs. It may be configured to control the vehicle speed of the device 11. That is, when the harvested product is detected by the second crop detection unit 31B, the state determination unit 32 controls at least one of the threshing unit 13A, the sorting processing unit 13B, and the wall insert 13C, and the vehicle speed of the traveling device 11. It may be configured to control. When the state determining unit 32 controls the threshing unit 13A, the rotation speed of the handling cylinder may be controlled, or the angle of the dust feed valve may be adjusted.
(1-17)上述の第一実施形態では、第二作物検出部31Bは、第二撮像装置21Bによって取得された撮像データに基づいて、収穫装置15による収穫作業後の収穫跡を検出するが、この実施形態に限定されない。例えば、上述の[第四解決手段]を示す別実施形態として、第二撮像装置21Bが備えられない構成であっても良い。この場合、例えば測距センサ22に例示されるようなセンサによって取得された距離データに基づいて、第二作物検出部31Bが収穫作業後の収穫跡を検出する構成であっても良い。第二作物検出部31Bの内部処理として、例えば、距離データに対するフーリエ変換処理が行われ、フーリエ変換処理によって得られた周波数成分の分布に基づいて収穫跡から倒伏作物等が判定される構成であっても良い。 (1-17) In the first embodiment described above, the second crop detection unit 31B detects the harvest trace after the harvesting operation by the harvesting device 15 based on the imaging data acquired by the second imaging device 21B. , Not limited to this embodiment. For example, as another embodiment showing the above-mentioned [fourth solution], the second image pickup apparatus 21B may not be provided. In this case, for example, the second crop detection unit 31B may be configured to detect the harvest trace after the harvesting operation based on the distance data acquired by the sensor as exemplified by the distance measuring sensor 22. As an internal process of the second crop detection unit 31B, for example, a Fourier transform process is performed on the distance data, and a fallen crop or the like is determined from the harvest trace based on the distribution of the frequency component obtained by the Fourier transform process. May be.
(1-18)図8乃至図10では、倒伏作物の穂先が収穫装置15の位置する側に位置する状態で、倒伏作物が倒伏しているが、倒伏作物の穂先が収穫装置15の位置する側と反対側に位置する状態で、倒伏作物が倒伏しても良い。 (1-18) In FIGS. 8 to 10, the tip of the fallen crop is located on the side where the harvesting device 15 is located, and the tip of the fallen crop is located on the side where the harvesting device 15 is located. The fallen crop may fall down while being located on the opposite side.
 以上が第一実施形態である。以下、図11~図19に基づいて、上述の[第三解決手段]を例示する第二実施形態を説明する。 The above is the first embodiment. Hereinafter, a second embodiment illustrating the above-mentioned [third solution means] will be described with reference to FIGS. 11 to 19.
〔第二実施形態における収穫機の基本構成〕
 本発明に係る収穫機の一例としてのコンバインの第二実施形態が、図11~図19に基づいて以下に記載されている。図11乃至図13に示されるように、圃場に作物として大豆等の豆類が植えられ、収穫機の一形態である普通型のコンバインが豆類を収穫する。この普通型のコンバインに、機体1と、左右一対のクローラ式の走行装置11と、搭乗部12と、脱穀装置13と、穀粒タンク14と、収穫装置15(本発明の『収穫部』である)と、搬送装置16と、穀粒排出装置18と、衛星測位モジュール80と、が備えられている。
[Basic configuration of the harvester in the second embodiment]
A second embodiment of the combine as an example of the harvester according to the present invention is described below based on FIGS. 11 to 19. As shown in FIGS. 11 to 13, beans such as soybeans are planted in the field as crops, and a normal combine harvester, which is a form of a harvester, harvests the beans. In this ordinary combine, the aircraft 1, a pair of left and right crawler type traveling devices 11, a boarding section 12, a threshing device 13, a grain tank 14, and a harvesting device 15 (in the "harvesting section" of the present invention). A), a transport device 16, a grain ejection device 18, and a satellite positioning module 80 are provided.
 走行装置11は、コンバインの下部に備えられている。走行装置11は、上述の第一実施形態と同様の構成を有し、左右のクローラ走行機構の夫々における昇降装置が各別に昇降駆動することによって、機体1がローリングする(図19参照)。 The traveling device 11 is provided at the lower part of the combine. The traveling device 11 has the same configuration as that of the first embodiment described above, and the elevating device in each of the left and right crawler traveling mechanisms is driven up and down separately, so that the machine body 1 rolls (see FIG. 19).
 搭乗部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられ、これらは機体1の上部として構成されている。搭乗部12、脱穀装置13、穀粒タンク14、穀粒排出装置18、衛星測位モジュール80は、上述の第一実施形態と同様の構成を有する。 The boarding unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11, and these are configured as the upper part of the machine body 1. The boarding unit 12, the threshing device 13, the grain tank 14, the grain discharging device 18, and the satellite positioning module 80 have the same configurations as those in the first embodiment described above.
 収穫装置15に、収穫ヘッダ15Aと、掻込リール15Bと、横送りオーガ15Cと、バリカン状の切断刃15Dと、ヘッダ用アクチュエータ15Hと、が備えられている。収穫ヘッダ15Aと、掻込リール15Bと、横送りオーガ15Cと、切断刃15Dと、ヘッダ用アクチュエータ15Hと、は上述の第一実施形態と同様の構成を有する。 The harvesting device 15 is provided with a harvesting header 15A, a scraping reel 15B, a horizontal feed auger 15C, a hair clipper-shaped cutting blade 15D, and a header actuator 15H. The harvest header 15A, the scraping reel 15B, the lateral feed auger 15C, the cutting blade 15D, and the header actuator 15H have the same configurations as those in the first embodiment described above.
 図11乃至図13に示されるように、圃場に複数の畝Rが形成され、畝Rの上面部分は圃場の地面に対して畝高さH4だけ高い。複数の畝Rは一方向に沿って並列し、夫々の畝Rの上面部分に豆類が植えられている。普通型コンバインは、畝Rの長手方向(延び方向)に沿って走行しながら豆類を収穫装置15で収穫する。収穫装置15の下端部、即ち収穫ヘッダ15Aの底面部分が畝Rの上面部分よりも上側に位置する状態で、切断刃15Dが豆類の株元を切断するように、収穫装置15の対地高さが調節される。 As shown in FIGS. 11 to 13, a plurality of ridges R are formed in the field, and the upper surface portion of the ridge R is higher than the ground of the field by the ridge height H4. A plurality of ridges R are arranged side by side in one direction, and beans are planted on the upper surface portion of each ridge R. The ordinary combine harvests beans with the harvesting device 15 while traveling along the longitudinal direction (extending direction) of the ridge R. The height of the harvesting device 15 with respect to the ground so that the cutting blade 15D cuts the root of the beans with the lower end of the harvesting device 15, that is, the bottom surface of the harvesting header 15A located above the upper surface of the ridge R. Is adjusted.
 畝Rの上面部分の高さは畝高さH4で一定ではなく、畝Rの上面部分に凹凸がある。図11では、この凹凸が上下差ΔHとして示される。このため、収穫装置15の対地高さは、上下差ΔHに応じて調整される。上下差ΔHに応じた収穫装置15の対地高さの調整は、例えば10センチメートル以上の範囲に亘るものであっても良いし、2~3センチメートル範囲の微調整であっても良い。 The height of the upper surface portion of the ridge R is not constant at the ridge height H4, and the upper surface portion of the ridge R has irregularities. In FIG. 11, this unevenness is shown as a vertical difference ΔH. Therefore, the height of the harvesting device 15 with respect to the ground is adjusted according to the vertical difference ΔH. The adjustment of the height of the harvesting device 15 to the ground according to the vertical difference ΔH may be, for example, a fine adjustment in a range of 10 cm or more, or a fine adjustment in a range of 2 to 3 cm.
 第二実施形態の収穫機では、収穫装置15における右前端部と左前端部との夫々に光学式測距装置21C,21Dが備えられ、機体1と前方の物体(圃場の地面、作物等)との離間距離は光学式測距装置21C,21Dによって測定可能に構成されている。第二実施形態では、光学式測距装置21C,21Dは、LIDAR(例えばレーザースキャナーやレーザーレーダー)であって、LIDARが、前方、左右に加え、上下方向を三次元でスキャンできる。このため、光学式測距装置21C,21Dは、二次元でスキャンするタイプのLIDARよりも測距範囲を広範囲にすることが可能であって、離間距離の測定が精度よく行われる。 In the harvester of the second embodiment, optical distance measuring devices 21C and 21D are provided at the right front end portion and the left front end portion of the harvesting device 15, respectively, and the machine body 1 and an object in front (field ground, crops, etc.) are provided. The distance from and to is configured to be measurable by the optical distance measuring devices 21C and 21D. In the second embodiment, the optical range measuring devices 21C and 21D are LIDAR (for example, a laser scanner or a laser radar), and the LIDAR can scan in three dimensions in the vertical direction in addition to the front and the left and right. Therefore, the optical ranging devices 21C and 21D can have a wider ranging range than the two-dimensional scanning type LIDAR, and the separation distance can be measured with high accuracy.
〔第二実施形態における制御ユニットの構成〕
 図14に示される制御ユニット40は、コンバインの制御系の中核要素であり、複数のECUの集合体として示されている。制御ユニット40に、畝検出部41と、収穫高さ制御部42と、記憶部43と、走行制御部45と、作業制御部46と、が備えられている。衛星測位モジュール80は、本発明の『測位ユニット』であって、機体1の位置を示す測位データを出力する。衛星測位モジュール80から出力された測位データと、光学式測距装置21C,21Dの夫々から出力された距離データと、収穫高さ検出部26から出力された高さ位置情報と、は配線網を通じて制御ユニット40に入力される。
[Structure of control unit in the second embodiment]
The control unit 40 shown in FIG. 14 is a core element of the control system of the combine, and is shown as an aggregate of a plurality of ECUs. The control unit 40 includes a ridge detection unit 41, a harvest height control unit 42, a storage unit 43, a travel control unit 45, and a work control unit 46. The satellite positioning module 80 is the "positioning unit" of the present invention and outputs positioning data indicating the position of the aircraft 1. The positioning data output from the satellite positioning module 80, the distance data output from each of the optical ranging devices 21C and 21D, and the height position information output from the harvest height detection unit 26 are connected through the wiring network. It is input to the control unit 40.
 作業走行中において、光学式測距装置21C,21Dによる機体1と機体前方の物体との距離の測定が行われる。機体前方の物体に、作物の形状と、作物から透けて見える圃場の形状(図11乃至3では畝Rの形状)と、が含まれる。つまり、光学式測距装置21C,21Dによって距離データが経時的に遂次取得される。そして畝検出部41は、当該距離データに基づいて、特定の物体情報として、収穫装置15の前方の圃場形状及び作物形状を検出する。例えば畝検出部41は、機械学習(深層学習)されたニューラルネットワークを用いることによって、圃場における畝Rの形状及び畝高さH4を検出する。畝検出部41及び光学式測距装置21C,21Dは、本発明の『高さ検出部』であって、光学式測距装置21C,21Dによる距離情報に基づいて畝高さH4を検出する。畝検出部41は、切断刃15Dよりも前側における畝高さH4を検出し、収穫ヘッダ15Aのデバイダよりも前側における畝高さH4を検出する。畝高さH4は、本発明の『凹凸の高さ』である。即ち、高さ検出部は、凹凸の高さとして畝高さH4を検出する。 During work running, the distance between the machine 1 and the object in front of the machine is measured by the optical distance measuring devices 21C and 21D. The object in front of the machine includes the shape of the crop and the shape of the field that can be seen through the crop (the shape of the ridge R in FIGS. 11 to 3). That is, the distance data is continuously acquired over time by the optical distance measuring devices 21C and 21D. Then, the ridge detection unit 41 detects the field shape and the crop shape in front of the harvesting device 15 as specific object information based on the distance data. For example, the ridge detection unit 41 detects the shape of the ridge R and the ridge height H4 in the field by using a machine-learned (deep learning) neural network. The ridge detection unit 41 and the optical distance measuring devices 21C and 21D are "height detection units" of the present invention, and detect the ridge height H4 based on the distance information by the optical distance measuring devices 21C and 21D. The ridge detection unit 41 detects the ridge height H4 on the front side of the cutting blade 15D, and detects the ridge height H4 on the front side of the divider of the harvest header 15A. The ridge height H4 is the "height of unevenness" of the present invention. That is, the height detecting unit detects the ridge height H4 as the height of the unevenness.
 制御ユニット40に記憶部43が備えられ、記憶部43は、例えばEEPROM等の半導体の記憶素子である。畝検出部41によって検出された畝Rの形状及び畝高さH4は、衛星測位モジュール80から出力された測位データと関連付けられた状態で記憶部43に経時的に記憶される。つまり、記憶部43は、畝高さH4を測位データと関連付けて記憶可能なように構成されている。このため、記憶部43に、測位データごとの畝高さH4が記憶されている。 The control unit 40 is provided with a storage unit 43, which is a semiconductor storage element such as an EEPROM. The shape and ridge height H4 of the ridge R detected by the ridge detection unit 41 are stored in the storage unit 43 over time in a state associated with the positioning data output from the satellite positioning module 80. That is, the storage unit 43 is configured to be able to store the ridge height H4 in association with the positioning data. Therefore, the ridge height H4 for each positioning data is stored in the storage unit 43.
 収穫高さ制御部42は、測位データごとの畝高さH4を記憶部43から読み出し可能に構成されている。収穫高さ制御部42は、畝検出部41から取得した畝Rの畝高さH4と、記憶部43に記憶された所定の位置における畝高さH4と、に基づいて、収穫装置15の目標対地高さを決定する。また、収穫高さ制御部42は、測位データに基づく所定の領域に亘る複数の畝高さH4を記憶部43から読み出すことによって、当該所定の領域における畝高さH4の上下差ΔHを算出可能である。このことから、収穫高さ制御部42は、上下差ΔHに応じて収穫装置15の目標対地高さを調整する。また、収穫高さ制御部42は、畝高さH4及び上下差ΔHに応じて、走行装置11の車速と、走行装置11に対する機体1の高さ位置(いわゆる『モンローの高さ』)と、を調整可能に構成されている。 The harvest height control unit 42 is configured to be able to read the ridge height H4 for each positioning data from the storage unit 43. The harvest height control unit 42 targets the harvesting device 15 based on the ridge height H4 of the ridge R acquired from the ridge detection unit 41 and the ridge height H4 at a predetermined position stored in the storage unit 43. Determine the height to the ground. Further, the harvest height control unit 42 can calculate the vertical difference ΔH of the ridge height H4 in the predetermined region by reading a plurality of ridge heights H4 over a predetermined region based on the positioning data from the storage unit 43. Is. From this, the harvest height control unit 42 adjusts the target ground height of the harvesting device 15 according to the vertical difference ΔH. Further, the harvest height control unit 42 determines the vehicle speed of the traveling device 11 and the height position of the machine body 1 with respect to the traveling device 11 (so-called “Monroe height”) according to the ridge height H4 and the vertical difference ΔH. Is configured to be adjustable.
 収穫高さ検出部26は、搬送装置16の揺動角度と、走行装置11に対する機体1の高さ位置(モンローの高さ)と、を検出することによって、収穫装置15の対地高さを検出可能に構成されている。収穫高さ検出部26によって検出された対地高さは、高さデータとして収穫高さ制御部42へ送られる。収穫高さ制御部42は、収穫装置15の目標対地高さと、収穫高さ検出部26から取得した高さデータと、に基づいて走行制御部45及び作業制御部46に制御信号を出力する。 The harvest height detecting unit 26 detects the ground height of the harvesting device 15 by detecting the swing angle of the transport device 16 and the height position of the machine body 1 (the height of the monroe) with respect to the traveling device 11. It is configured to be possible. The ground height detected by the harvest height detection unit 26 is sent to the harvest height control unit 42 as height data. The harvest height control unit 42 outputs a control signal to the travel control unit 45 and the work control unit 46 based on the target ground height of the harvesting device 15 and the height data acquired from the harvest height detection unit 26.
 走行制御部45は、エンジン制御機能、操舵制御機能、車速制御機能、車高制御機能などを有し、操舵、車速及び車高(モンローの高さ)に関する制御を走行装置11に対して行う。走行制御部45は、車速制御部45Aと車高制御部45Bとを有する。収穫高さ制御部42から走行制御部45へ車速及び車高に関する制御信号が送られる。車速制御部45Aは、収穫高さ制御部42から取得した制御信号に基づいて、走行装置11の速度調整制御を行う。車高制御部45Bは、収穫高さ制御部42から取得した制御信号に基づいて、走行装置11の昇降機構に対する制御を行う。 The travel control unit 45 has an engine control function, a steering control function, a vehicle speed control function, a vehicle height control function, and the like, and controls steering, vehicle speed, and vehicle height (Monroe height) to the travel device 11. The travel control unit 45 includes a vehicle speed control unit 45A and a vehicle height control unit 45B. Control signals related to vehicle speed and vehicle height are sent from the harvest height control unit 42 to the travel control unit 45. The vehicle speed control unit 45A performs speed adjustment control of the traveling device 11 based on the control signal acquired from the harvest height control unit 42. The vehicle height control unit 45B controls the elevating mechanism of the traveling device 11 based on the control signal acquired from the harvest height control unit 42.
 作業制御部46は、収穫装置15、脱穀装置13等、圃場の作物の収穫や脱穀に関する装置を制御する。作業制御部46はヘッダ制御部46Aを有する。収穫高さ制御部42は、目標対地高さに基づいて、収穫ヘッダ15Aに対する昇降制御用の信号をヘッダ制御部46Aへ出力する。収穫装置15の対地高さは、ヘッダ用アクチュエータ15Hによって制御される。つまり、ヘッダ制御部46Aは、収穫高さ制御部42から取得した昇降制御用の信号に基づいてヘッダ用アクチュエータ15Hを駆動制御する。このように、収穫高さ制御部42は、畝高さH4に基づいて収穫装置15の対地高さを決定し、ヘッダ用アクチュエータ15Hの駆動を制御して収穫装置15の対地高さを自動的に変更する。また、例えば光学式測距装置21C,21Dによって計測された距離データに基づいて、作業制御部46は、掻込リール15Bの前後位置及び高さ位置と、収穫装置15用の変速装置(例えば静油圧式無段変速機)と、等を制御可能に構成されている。 The work control unit 46 controls devices related to harvesting and threshing crops in the field, such as a harvesting device 15 and a threshing device 13. The work control unit 46 has a header control unit 46A. The harvest height control unit 42 outputs a signal for elevating control to the harvest header 15A to the header control unit 46A based on the target ground height. The height of the harvesting device 15 to the ground is controlled by the header actuator 15H. That is, the header control unit 46A drives and controls the header actuator 15H based on the elevation control signal acquired from the harvest height control unit 42. In this way, the harvest height control unit 42 determines the ground height of the harvesting device 15 based on the ridge height H4, controls the drive of the header actuator 15H, and automatically adjusts the ground height of the harvesting device 15. Change to. Further, for example, based on the distance data measured by the optical distance measuring devices 21C and 21D, the work control unit 46 has a front-rear position and a height position of the suction reel 15B and a transmission device for the harvesting device 15 (for example, static). (Hydraulic continuously variable transmission), etc. can be controlled.
 第二実施形態の制御ユニット40は、通信ネットワークに接続可能に構成されている。制御ユニット40に通信部47が備えられ、通信部47は、有線または無線の通信ネットワークを介して管理コンピュータ2と通信可能である。例えば圃場における作物の倒伏情報と、圃場の地面の凹凸状態と、が衛星測位モジュール80によって測位された測位データとともに、無線通信ネットワークを介して圃場の管理コンピュータ2へ送信され、管理コンピュータ2における圃場のマップ情報に記録される。これにより、圃場の管理者は、圃場の作物の倒伏情報と、圃場の地面の凹凸状態と、を次年度の農業計画に活用できる。 The control unit 40 of the second embodiment is configured to be connectable to a communication network. The control unit 40 is provided with a communication unit 47, and the communication unit 47 can communicate with the management computer 2 via a wired or wireless communication network. For example, the lodging information of the crop in the field and the unevenness of the ground in the field are transmitted to the field management computer 2 via the wireless communication network together with the positioning data measured by the satellite positioning module 80, and the field in the management computer 2 is used. It is recorded in the map information of. As a result, the farm manager can utilize the information on the lodging of the crops in the field and the unevenness of the ground in the field for the agricultural plan for the next year.
〔第二実施形態における畝情報の取得について〕
 図15乃至図17に基づいて、畝情報の取得について説明する。上述したように、収穫装置15における右前端部と左前端部との夫々に光学式測距装置21C,21Dが備えられ、畝検出部41は、光学式測距装置21C,21Dからの距離データに基づいて、圃場の畝情報を検出可能に構成されている。光学式測距装置21C,21Dからの距離データに、光学式測距装置21C,21Dと圃場の地面との距離と、光学式測距装置21C,21Dと前方の作物との距離と、が含まれる。畝検出部41は、距離データのうちの光学式測距装置21C,21Dと圃場の地面との距離を示す距離データを抽出して地面の凹凸を検出する。図15乃至図17では、収穫装置15の作業幅に亘って複数の畝R(凹凸)が並列し、畝検出部41は、複数の畝Rの畝高さH4を検出可能に構成されている。
[Acquisition of ridge information in the second embodiment]
The acquisition of the ridge information will be described with reference to FIGS. 15 to 17. As described above, the right front end portion and the left front end portion of the harvesting device 15 are provided with optical distance measuring devices 21C and 21D, respectively, and the ridge detection unit 41 is provided with distance data from the optical range measuring devices 21C and 21D. Based on the above, it is configured so that the ridge information of the field can be detected. The distance data from the optical ranging devices 21C, 21D includes the distance between the optical ranging devices 21C, 21D and the ground of the field, and the distance between the optical ranging devices 21C, 21D and the crop in front. Is done. The ridge detection unit 41 extracts the distance data indicating the distance between the optical distance measuring devices 21C and 21D and the ground of the field from the distance data, and detects the unevenness of the ground. In FIGS. 15 to 17, a plurality of ridges R (unevenness) are arranged in parallel over the working width of the harvesting device 15, and the ridge detection unit 41 is configured to be able to detect the ridge height H4 of the plurality of ridges R. ..
 図15に、圃場の地面のうち、光学式測距装置21C,21Dからの視点から圃場の作物の裏側に位置する領域が、死角領域DA1として示される。死角領域DA1は、光学式測距装置21C,21Dが圃場の地面との離間距離を計測する際に、圃場の作物に遮られて計測できずに死角となる領域である。死角領域DA1における圃場の凹凸状態が光学式測距装置21C,21Dによって計測されないままだと、収穫高さ制御部42は、上下差ΔHを精度良く算出できず、収穫装置15の対地高さを好適に調整できない虞がある。この不都合を回避するため、第二実施形態では、図16及び図17に示されるように、光学式測距装置21C,21Dが、死角領域DA1対する距離データを計測可能なように構成されている。 FIG. 15 shows a region of the ground of the field located behind the crops in the field from the viewpoint from the optical ranging devices 21C and 21D as the blind spot region DA1. The blind spot area DA1 is an area that becomes a blind spot because the optical ranging devices 21C and 21D cannot measure the distance from the ground of the field because they are blocked by the crops in the field. If the unevenness of the field in the blind spot region DA1 is not measured by the optical ranging devices 21C and 21D, the harvest height control unit 42 cannot accurately calculate the vertical difference ΔH, and the height of the harvesting device 15 to the ground is determined. It may not be possible to adjust it appropriately. In order to avoid this inconvenience, in the second embodiment, as shown in FIGS. 16 and 17, the optical distance measuring devices 21C and 21D are configured to be able to measure the distance data with respect to the blind spot region DA1. ..
 図16及び図17に、収穫装置15の収穫幅に亘るとともに畝Rの長手方向に延びる作業領域W1及び作業領域W2が示される。収穫機は、圃場を往復走行しながら作業領域W1及び作業領域W2の豆類を収穫する。第二実施形態で、往復走行とは、収穫機が、畝Rの長手方向に沿って作業走行し、かつ、畝Rの長手方向端部領域での旋回走行によって左右一方に隣接する未収穫の畝Rに移動して、当該未収穫の畝Rの長手方向に沿って再度作業走行を繰り返しながら圃場の作物を収穫することを意味する。図16に示されるように、収穫機は、作業領域W1を畝Rの長手方向に沿って走行しながら豆類を収穫する。その後、畝Rの長手方向終端箇所で、収穫機が、作業領域W1における前進方向と反対方向に旋回して、図17に示されるように、作業領域W1に隣接する作業領域W2を畝Rの長手方向に沿って走行しながら豆類を収穫する。 16 and 17 show a work area W1 and a work area W2 extending in the longitudinal direction of the ridge R as well as over the harvest width of the harvesting device 15. The harvester harvests beans in the work area W1 and the work area W2 while traveling back and forth in the field. In the second embodiment, the reciprocating run means that the harvester works along the longitudinal direction of the ridge R and is unharvested adjacent to one of the left and right by the turning run in the longitudinal end region of the ridge R. It means moving to the ridge R and harvesting the crops in the field while repeating the work run again along the longitudinal direction of the unharvested ridge R. As shown in FIG. 16, the harvester harvests beans while traveling along the longitudinal direction of the ridge R in the working area W1. Then, at the longitudinal end of the ridge R, the harvester turns in the direction opposite to the forward direction in the work area W1 and, as shown in FIG. 17, the work area W2 adjacent to the work area W1 is formed on the ridge R. Harvest beans while running along the longitudinal direction.
 収穫機が作業領域W1における豆類を収穫している間に、光学式測距装置21C,21Dによって収穫装置15の前方の距離データの取得が行われ、畝検出部41によって畝Rの形状及び畝高さH4が検出される。このとき、光学式測距装置21C,21Dは、収穫装置15の収穫幅よりも機体横外側の距離データも取得可能に構成されている。このことから、畝検出部41は、収穫装置15の収穫幅よりも機体横外側の畝Rの形状及び畝高さH4も検出可能に構成されている。 While the harvester is harvesting beans in the work area W1, the optical ranging devices 21C and 21D acquire the distance data in front of the harvesting device 15, and the ridge detection unit 41 acquires the shape of the ridge R and the ridges. Height H4 is detected. At this time, the optical distance measuring devices 21C and 21D are configured to be able to acquire distance data on the lateral side of the machine body rather than the harvesting width of the harvesting device 15. From this, the ridge detection unit 41 is configured to be able to detect the shape of the ridge R and the ridge height H4 on the lateral side of the machine body rather than the harvest width of the harvesting device 15.
 図16に示される例では、収穫機の進行方向左方に、未収穫領域として作業領域W2が存在する。このため、機体左側に位置する光学式測距装置21Cによって、作業領域W2の距離データが取得され、畝検出部41によって作業領域W2の畝Rの形状及び畝高さH4が検出される。この未収穫領域である作業領域W2における畝高さH4を『第一高さ』と称する。つまり、畝検出部41は、走行装置11が一方向へ向かって走行する際に、収穫装置15の収穫幅よりも左右外側に隣接する未収穫領域における畝高さH4である『第一高さ』を検出可能に構成されている。作業領域W1での作業走行中に計測された作業領域W2の畝高さH4は、衛星測位モジュール80によって測位された測位データと関連付けられて、記憶部43に記憶される。即ち、記憶部43は、『第一高さ』としての畝高さH4を測位データと関連付けて記憶する。このとき、記憶部43に記憶される測位データは、衛星測位モジュール80の位置を示すものではなく、作業領域W2の畝Rの検出位置を示すものであることが望ましい。このため、記憶部43に記憶される測位データは、衛星測位モジュール80の位置から予め設定された距離だけ斜前方にオフセットしたデータ、即ち作業領域W2の畝Rの検出位置を示すデータであって良い。 In the example shown in FIG. 16, the working area W2 exists as an unharvested area on the left side of the traveling direction of the harvester. Therefore, the distance data of the work area W2 is acquired by the optical distance measuring device 21C located on the left side of the machine body, and the shape and the ridge height H4 of the ridge R of the work area W2 are detected by the ridge detection unit 41. The ridge height H4 in the work area W2, which is the unharvested area, is referred to as "first height". That is, the ridge detection unit 41 is the ridge height H4 in the unharvested region adjacent to the left and right outside of the harvest width of the harvesting device 15 when the traveling device 11 travels in one direction. ] Is configured to be detectable. The ridge height H4 of the work area W2 measured during the work run in the work area W1 is associated with the positioning data measured by the satellite positioning module 80 and stored in the storage unit 43. That is, the storage unit 43 stores the ridge height H4 as the "first height" in association with the positioning data. At this time, it is desirable that the positioning data stored in the storage unit 43 does not indicate the position of the satellite positioning module 80, but indicates the detection position of the ridge R in the work area W2. Therefore, the positioning data stored in the storage unit 43 is data offset diagonally forward by a preset distance from the position of the satellite positioning module 80, that is, data indicating the detection position of the ridge R in the work area W2. good.
 図16では、作業領域W2の地面のうち、光学式測距装置21Cからの視点に対して圃場の作物の裏側に位置する領域が、死角領域DA2として示される。つまり、死角領域DA2は、作業領域W1での作業走行中に光学式測距装置21C,21Dで検出できない領域である。 In FIG. 16, of the ground of the work area W2, the area located behind the crops in the field with respect to the viewpoint from the optical ranging device 21C is shown as the blind spot area DA2. That is, the blind spot region DA2 is a region that cannot be detected by the optical ranging devices 21C and 21D during work traveling in the work region W1.
 図17に示されるように、収穫機が、作業領域W1における前進方向と反対方向に走行しながら、作業領域W2における豆類を収穫する。この間に、光学式測距装置21C,21Dによって収穫装置15の前方の距離データの取得が行われ、畝検出部41によって畝Rの形状及び畝高さH4が検出される。このとき、作業領域W2は収穫装置15の収穫幅の範囲内に位置し、死角領域DA2に対する距離データが光学式測距装置21C,21Dによってしっかりと取得され、畝検出部41によって死角領域DA2における畝高さH4が『第二高さ』として検出される。 As shown in FIG. 17, the harvester harvests beans in the work area W2 while traveling in the direction opposite to the forward direction in the work area W1. During this time, the optical distance measuring devices 21C and 21D acquire the distance data in front of the harvesting device 15, and the ridge detection unit 41 detects the shape of the ridge R and the ridge height H4. At this time, the work area W2 is located within the range of the harvest width of the harvesting device 15, and the distance data with respect to the blind spot area DA2 is firmly acquired by the optical range measuring devices 21C and 21D, and the ridge detection unit 41 in the blind spot area DA2. The ridge height H4 is detected as the "second height".
 このとき、図15で示される場合と同じように、死角領域DA1が、光学式測距装置21C,21Dからの視点に対して圃場の作物の裏側に位置し、作業領域W2での作業走行中に光学式測距装置21C,21Dで距離データを測定できない領域となる。この死角領域DA1における畝高さH4は、作業領域W1での作業走行中に、既に『第一高さ』として検出され、この第一高さは測位データと関連付けられて記憶部43に記憶されている。記憶部43に記憶された畝高さH4(第一高さ)のうち、作業領域W2を作業走行中の時点の測位データに対応した領域の畝高さH4(第一高さ)が、死角領域DA1における畝高さH4(第一高さ)として収穫高さ制御部42によって読み出される。つまり、収穫高さ制御部42は、作業領域W2を作業走行中に畝検出部41によって検出された畝高さH4(第二高さ)と、作業領域W1を作業走行中に記憶部43に記憶された畝高さH4(第一高さ)と、を合成する。 At this time, as in the case shown in FIG. 15, the blind spot area DA1 is located behind the crops in the field with respect to the viewpoint from the optical distance measuring devices 21C and 21D, and the work is being carried out in the work area W2. This is an area where distance data cannot be measured by the optical distance measuring devices 21C and 21D. The ridge height H4 in the blind spot area DA1 is already detected as the "first height" during the work running in the work area W1, and this first height is stored in the storage unit 43 in association with the positioning data. ing. Of the ridge height H4 (first height) stored in the storage unit 43, the ridge height H4 (first height) of the area corresponding to the positioning data at the time when the work area W2 is being worked is the blind spot. It is read out by the harvest height control unit 42 as the ridge height H4 (first height) in the region DA1. That is, the harvest height control unit 42 stores the ridge height H4 (second height) detected by the ridge detection unit 41 while the work area W2 is working, and the work area W1 in the storage unit 43 during the work travel. The stored ridge height H4 (first height) is synthesized.
 死角領域DA1,DA2の両方の畝高さH4が検出され、作業領域W2における畝高さH4が漏れなく検出される。これにより、収穫高さ制御部42は上下差ΔHを精度良く算出できる。そして、収穫高さ制御部42は、未収穫領域としての作業領域W2が収穫装置15の収穫幅の範囲に位置する状態で走行装置11が上述の一方向(作業領域W1で前進した方向)と反対方向へ向かって走行する際に、畝検出部41によって検出された畝高さH4である第二高さと、記憶部43に記憶された第一高さと、に基づいて収穫装置15の対地高さを決定する。 The ridge height H4 of both the blind spot areas DA1 and DA2 is detected, and the ridge height H4 in the work area W2 is detected without omission. As a result, the harvest height control unit 42 can accurately calculate the vertical difference ΔH. Then, in the harvest height control unit 42, the traveling device 11 is in the above-mentioned one direction (direction advanced in the work area W1) in a state where the work area W2 as the unharvested area is located within the range of the harvest width of the harvest device 15. The height of the harvesting device 15 with respect to the ground based on the second height, which is the ridge height H4 detected by the ridge detection unit 41, and the first height stored in the storage unit 43 when traveling in the opposite direction. Determine the.
〔第二実施形態における畝高さが異なる場合の収穫制御について〕
 図18に示されるように、収穫装置15の収穫幅の範囲内で、複数の畝Rの夫々が異なる畝高さH4を有する場合が考えられる。図18に示される例では、収穫装置15の収穫幅の範囲内に三つの畝Rが存在し、機体左側(紙面右側)の畝R1の畝高さH4は、機体右側(紙面左側)の畝R3の畝高さH4よりもΔH2だけ高い。また、機体左右中央(紙面中央)の畝R2の畝高さH4は、機体右側(紙面左側)の畝R3の畝高さH4よりもΔH1だけ高い。この場合、収穫高さ制御部42は、複数の畝R(凹凸)のうちの機体左側(紙面右側)の最も高い畝R1(凹凸)を基準に収穫装置15の対地高さを決定する。換言すると、収穫装置15の下端部、即ち収穫ヘッダ15Aの底面部分が畝R1の上面部分よりも上側に位置する状態で、切断刃15Dが豆類の株元を切断するように、収穫装置15の対地高さが調節される。
[About harvest control when the ridge heights are different in the second embodiment]
As shown in FIG. 18, it is conceivable that each of the plurality of ridges R has a different ridge height H4 within the harvest width of the harvesting apparatus 15. In the example shown in FIG. 18, there are three ridges R within the harvest width of the harvesting device 15, and the ridge height H4 of the ridge R1 on the left side of the machine (right side of the paper) is the ridge on the right side of the machine (left side of the paper). The ridge height of R3 is higher by ΔH2 than H4. Further, the ridge height H4 of the ridge R2 at the center of the left and right sides of the machine (center of the paper surface) is higher by ΔH1 than the ridge height H4 of the ridge R3 on the right side of the machine body (left side of the paper surface). In this case, the harvest height control unit 42 determines the ground height of the harvesting device 15 based on the highest ridge R1 (unevenness) on the left side of the machine body (right side of the paper surface) among the plurality of ridges R (unevenness). In other words, in a state where the lower end portion of the harvesting device 15, that is, the bottom surface portion of the harvesting header 15A is located above the upper surface portion of the ridge R1, the cutting blade 15D cuts the root of the beans so that the harvesting device 15 cuts the root of the beans. The height to the ground is adjusted.
 豆類は畝Rの上面部分に植えられるため、圃場に凹凸が形成されている。走行装置11における左右のクローラ走行機構の何れかが畝Rを踏み潰しながら前進すると、収穫装置15が機体1とともに左右一方に傾くことが考えられる。このため、機体1をできるだけ水平に保持するため、左右の昇降装置は独立的に駆動制御可能なように構成されている。例えば、衛星測位モジュール80に組み込まれた慣性航法ユニット(例えばジャイロ加速度センサや磁気方位センサ)によって機体1の傾斜角度(ピッチ角、ロール角、ヨー角)が検出される。そして、収穫高さ制御部42が、機体1の傾斜角度に基づいて機体1を水平制御する構成であっても良い。 Since beans are planted on the upper surface of the ridge R, unevenness is formed in the field. When any of the left and right crawler traveling mechanisms in the traveling device 11 advances while trampling the ridge R, it is conceivable that the harvesting device 15 tilts to the left or right together with the machine 1. Therefore, in order to hold the machine body 1 as horizontally as possible, the left and right elevating devices are configured to be independently drive-controllable. For example, the inertial navigation unit (for example, a gyro acceleration sensor or a magnetic orientation sensor) incorporated in the satellite positioning module 80 detects the tilt angle (pitch angle, roll angle, yaw angle) of the aircraft 1. Then, the harvest height control unit 42 may be configured to horizontally control the machine body 1 based on the inclination angle of the machine body 1.
 図18では、走行装置11における左側(紙面右側)のクローラ走行機構が畝R1に乗り上げ、畝R1を踏み潰しながら走行している。このため、左右のクローラ走行機構の夫々における昇降装置のうち、畝R1を踏み潰している左側(紙面右側)の昇降装置の設定高さを、右側(紙面左側)の昇降装置の設定高さよりも低く設定するように、収穫高さ制御部42は走行制御部45の車高制御部45Bに制御信号を出力する。図18では、走行装置11における左側(紙面右側)のクローラ走行機構の車高(モンローの高さ)が、右側(紙面左側)のクローラ走行機構の車高(モンローの高さ)よりも高低差ΔH3だけ低くなっている。この場合、走行装置11のうち、左右のクローラ走行機構の夫々における昇降装置が、本発明の『収穫傾斜変更機構』であって、収穫装置15をローリングさせて収穫装置15の左右の傾きを変更可能に構成されている。即ち、収穫高さ制御部42は、収穫装置15が水平姿勢となるように、左右のクローラ走行機構の夫々の昇降装置に、収穫装置15の左右の傾きを変更させる。これにより、収穫装置15が傾斜することなく水平に保持される。 In FIG. 18, the crawler traveling mechanism on the left side (right side of the paper) of the traveling device 11 rides on the ridge R1 and travels while trampling the ridge R1. Therefore, among the elevating devices in each of the left and right crawler traveling mechanisms, the set height of the elevating device on the left side (right side of the paper) that is trampling the ridge R1 is higher than the set height of the elevating device on the right side (left side of the paper). The harvest height control unit 42 outputs a control signal to the vehicle height control unit 45B of the travel control unit 45 so as to set it low. In FIG. 18, the vehicle height (height of Monroe) of the crawler traveling mechanism on the left side (right side of the paper) in the traveling device 11 is higher than the vehicle height (height of Monroe) of the crawler traveling mechanism on the right side (left side of the paper surface). It is lower by ΔH3. In this case, among the traveling devices 11, the elevating devices in each of the left and right crawler traveling mechanisms are the "harvest inclination changing mechanism" of the present invention, and the harvesting device 15 is rolled to change the left and right inclination of the harvesting device 15. It is configured to be possible. That is, the harvest height control unit 42 causes the elevating devices of the left and right crawler traveling mechanisms to change the left-right tilt of the harvest device 15 so that the harvest device 15 is in the horizontal posture. As a result, the harvesting device 15 is held horizontally without being tilted.
〔第二実施形態の別実施形態〕
 本発明は、上述の第二実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another Embodiment of the Second Embodiment]
The present invention is not limited to the configuration exemplified in the above-mentioned second embodiment, and the following will exemplify another typical embodiment of the present invention.
(2-1)上述の第二実施形態では、図18に示されるように、収穫高さ制御部42は、複数の畝R(凹凸)のうちの最も高い畝R(凹凸)を基準に収穫装置15の対地高さを決定するが、この実施形態に限定されない。例えば、図19に示されるように収穫装置15をローリングさせる構成であっても良い。図19では、収穫装置15の収穫幅の範囲内に三つの畝Rが存在し、機体左側(紙面右側)の畝R1の畝高さH4は、機体右側(紙面左側)の畝R3の畝高さH4よりもΔH2だけ高い。また、機体左右中央(紙面中央)の畝R2の畝高さH4は、機体右側(紙面左側)の畝R3の畝高さH4よりもΔH1だけ高い。この場合、収穫高さ制御部42は、畝R1と畝R3との夫々の畝高さH4の差と、畝R1と畝R3との夫々の機体横方向における離間距離と、に基づいて収穫装置15をローリングさせる角度を算出する。そして、収穫装置15のうち、左右一方側の部分の対地高さを左右他方側の部分の対地高さよりも高くするように、走行制御部45の車高制御部45Bに制御信号を出力する構成であっても良い。図19では、収穫装置15が傾斜し、収穫装置15のうちの機体左側(紙面右側)の畝R1の上方に位置する部分が、収穫装置15のうちの機体右側(紙面左側)の畝R3の上方に位置する部分よりもΔH2だけ高い。また、収穫装置15のうちの機体左右中央(紙面中央)の畝R2の上方に位置する部分が、収穫装置15のうちの機体右側(紙面左側)の畝R3の上方に位置する部分よりもΔH1だけ高い。このことから、収穫装置15の下端部、即ち収穫ヘッダ15Aの底面部分と、畝R1,R2,R3の夫々の上面部分と、の上下方向における離間距離が夫々等しい状態で、切断刃15Dが豆類の株元を切断する。このように、収穫高さ制御部42は、左右のクローラ走行機構の夫々の昇降装置に収穫装置15の左右の傾きを変更させる構成であっても良い。 (2-1) In the second embodiment described above, as shown in FIG. 18, the harvest height control unit 42 harvests based on the highest ridge R (unevenness) among the plurality of ridges R (unevenness). The height of the device 15 to ground is determined, but is not limited to this embodiment. For example, the harvesting apparatus 15 may be rolled as shown in FIG. In FIG. 19, three ridges R exist within the range of the harvest width of the harvesting apparatus 15, and the ridge height H4 of the ridge R1 on the left side of the machine (right side of the paper) is the ridge height R3 of the ridge R3 on the right side of the machine (left side of the paper). It is higher by ΔH2 than H4. Further, the ridge height H4 of the ridge R2 at the center of the left and right sides of the machine (center of the paper surface) is higher by ΔH1 than the ridge height H4 of the ridge R3 on the right side of the machine body (left side of the paper surface). In this case, the harvest height control unit 42 is a harvesting device based on the difference in the ridge height H4 between the ridges R1 and the ridges R3 and the separation distance between the ridges R1 and the ridges R3 in the lateral direction of the aircraft. Calculate the angle at which 15 is rolled. Then, a control signal is output to the vehicle height control unit 45B of the travel control unit 45 so that the ground clearance of the left and right one side portion of the harvesting device 15 is higher than the ground clearance of the left and right other side portions. It may be. In FIG. 19, the harvesting device 15 is tilted, and the portion of the harvesting device 15 located above the ridge R1 on the left side of the machine (on the right side of the paper) is the ridge R3 on the right side of the machine (on the left side of the paper) in the harvesting device 15. It is higher by ΔH2 than the portion located above. Further, the portion of the harvesting device 15 located above the ridge R2 in the center of the left and right sides of the machine (center of the paper) is ΔH1 more than the portion of the harvesting device 15 located above the ridge R3 on the right side of the machine (left side of the paper). Only expensive. From this, the cutting blade 15D is used for beans with the lower end portion of the harvesting device 15, that is, the bottom surface portion of the harvesting header 15A and the upper surface portions of the ridges R1, R2, and R3 having the same separation distance in the vertical direction. Cut off the stock of. As described above, the harvest height control unit 42 may be configured to cause the elevating devices of the left and right crawler traveling mechanisms to change the left-right inclination of the harvest device 15.
(2-2)上述した第二実施形態では、畝検出部41に、深層学習を用いて学習可能なニューラルネットワークが構築されているが、畝検出部41にニューラルネットワークが構築されなくても良い。この場合、ニューラルネットワークは他のコンピュータや端末CTに構築され、畝検出部41と、他のコンピュータや端末CTと、が通信をすることによってニューラルネットワークにおける入出力が行われるものであっても良い。即ち、畝検出部41は、収穫装置15の前方における圃場の凹凸の高さを検出するものであれば良い。 (2-2) In the second embodiment described above, a neural network that can be learned by using deep learning is constructed in the ridge detection unit 41, but the neural network may not be constructed in the ridge detection unit 41. .. In this case, the neural network may be constructed on another computer or terminal CT, and input / output in the neural network may be performed by communication between the ridge detection unit 41 and the other computer or terminal CT. .. That is, the ridge detection unit 41 may detect the height of the unevenness of the field in front of the harvesting device 15.
(2-3)上述の高さ検出部は畝検出部41及び光学式測距装置21C,21Dであるが、高さ検出部は、光学式測距装置21C,21Dと畝検出部41とが一体的に構成されたものであっても良い。 (2-3) The height detection unit described above includes the ridge detection unit 41 and the optical distance measuring devices 21C and 21D, but the height detection unit includes the optical distance measuring devices 21C and 21D and the ridge detection unit 41. It may be integrally configured.
(2-4)高さ検出部は、必ずしも光学式測距装置21C,21D(LIDAR)で構成される必要は無い。高さ検出部は、ソナーであっても良いし、レーダー(ミリ波)であっても良い。高さ検出部がソナーであればコスト面で有利である。高さ検出部がミリ波レーダーであれば、天候に左右され難い測定が可能であって、コスト面で有利である。ミリ波レーダーが、前方、左右に加え、上下方向を三次元でスキャンできる構成であれば、二次元でスキャンするタイプのミリ波レーダーよりも測距範囲を広範囲にすることが可能となる。要するに、収穫装置15の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部が備えられればよい。 (2-4) The height detection unit does not necessarily have to be composed of optical distance measuring devices 21C and 21D (LIDAR). The height detection unit may be a sonar or a radar (millimeter wave). If the height detector is sonar, it is advantageous in terms of cost. If the height detection unit is a millimeter-wave radar, measurement that is not easily affected by the weather is possible, which is advantageous in terms of cost. If the millimeter-wave radar is configured to be able to scan in three dimensions in the vertical direction in addition to the front and left and right, it is possible to have a wider range of range than the millimeter-wave radar of the type that scans in two dimensions. In short, a non-contact height detecting unit that detects the height of the unevenness of the field in front of the harvesting device 15 may be provided.
(2-5)高さ検出部は、必ずしも光学式測距装置21C,21D(LIDAR)で構成される必要は無い。高さ検出部に撮像装置が備えられ、高さ検出部は撮像装置による撮像画像に基づいて畝高さH4を検出する構成であっても良い。撮像装置は、単眼カメラであっても良いし、ステレオカメラであっても良い。 (2-5) The height detection unit does not necessarily have to be composed of optical distance measuring devices 21C and 21D (LIDAR). The height detection unit may be provided with an image pickup device, and the height detection section may be configured to detect the ridge height H4 based on the image captured by the image pickup device. The image pickup apparatus may be a monocular camera or a stereo camera.
(2-6)畝検出部41は、圃場における凹凸の高さとして畝高さH4を検出するが、この実施形態に限定されない。例えば畝検出部41は、稲または麦が植えられた畝Rのない圃場で、圃場の凹凸(上下差ΔH)を検出する構成であっても良い。 (2-6) The ridge detection unit 41 detects the ridge height H4 as the height of the unevenness in the field, but is not limited to this embodiment. For example, the ridge detection unit 41 may be configured to detect unevenness (vertical difference ΔH) in the field in a field without ridges R in which rice or wheat is planted.
 以上が第二実施形態である。以下、図20~図32に基づいて、上述の[第五解決手段]を例示する第三実施形態を説明する。 The above is the second embodiment. Hereinafter, a third embodiment illustrating the above-mentioned [fifth solution means] will be described with reference to FIGS. 20 to 32.
〔第三実施形態におけるコンバインの全体構成〕
 図20に示すように、普通型のコンバイン101(本発明に係る「収穫機」に相当)は、収穫部110、クローラ式の走行装置11、搭乗部12、脱穀装置13、穀粒タンク14、搬送装置16、穀粒排出装置18、衛星測位モジュール80、エンジンEを備えている。
[Overall configuration of the combine in the third embodiment]
As shown in FIG. 20, the ordinary combine 101 (corresponding to the “harvester” according to the present invention) includes a harvesting section 110, a crawler-type traveling device 11, a boarding section 12, a threshing device 13, and a grain tank 14. It is equipped with a transport device 16, a grain discharge device 18, a satellite positioning module 80, and an engine E.
 走行装置11は、コンバイン101における下部に備えられている。また、走行装置11は、エンジンEからの動力によって駆動する。そして、コンバイン101は、走行装置11によって自走可能である。 The traveling device 11 is provided at the lower part of the combine 101. Further, the traveling device 11 is driven by the power from the engine E. The combine 101 can be self-propelled by the traveling device 11.
 また、搭乗部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。搭乗部12、脱穀装置13、穀粒タンク14、穀粒排出装置18は、衛星測位モジュール80は、第一実施形態及び第二実施形態で上述した構成を有する。なお、搭乗部12には、主変速レバー119が設けられている。主変速レバー119は、人為操作される。コンバイン101が手動走行しているとき、オペレータが主変速レバー119を操作すると、コンバイン101の車速が変化する。即ち、コンバイン101が手動走行しているとき、オペレータは、主変速レバー119を操作することにより、コンバイン101の車速を変更できる。 Further, the boarding unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. The boarding unit 12, the threshing device 13, the grain tank 14, and the grain discharging device 18 have the satellite positioning module 80 having the above-described configurations in the first embodiment and the second embodiment. The boarding unit 12 is provided with a main shift lever 119. The main shift lever 119 is artificially operated. When the operator operates the main shift lever 119 while the combine 101 is manually traveling, the vehicle speed of the combine 101 changes. That is, when the combine 101 is manually traveling, the operator can change the vehicle speed of the combine 101 by operating the main shift lever 119.
 収穫部110は、コンバイン101における前部に備えられている。そして、搬送装置16は、収穫部110の後側に設けられている。また、収穫部110は、刈取装置115及びリール117を含んでいる。 The harvesting section 110 is provided in the front portion of the combine 101. The transport device 16 is provided on the rear side of the harvesting section 110. Further, the harvesting unit 110 includes a cutting device 115 and a reel 117.
 刈取装置115は、圃場5(図21参照)の植立穀稈を刈り取る。また、リール117は、機体左右方向に沿うリール軸芯117b周りに回転駆動しながら収穫対象の植立穀稈を掻き込む。刈取装置115により刈り取られた刈取穀稈は、搬送装置16へ送られる。 The reaping device 115 cuts the planted culm in the field 5 (see FIG. 21). Further, the reel 117 is driven to rotate around the reel axis 117b along the left-right direction of the machine body to scrape the planted grain culm to be harvested. The cut grain culm cut by the cutting device 115 is sent to the transport device 16.
 収穫部110により収穫された刈取穀稈は、搬送装置16によって機体後方へ搬送される。これにより、刈取穀稈は脱穀装置13へ搬送される。 The harvested grain culm harvested by the harvesting unit 110 is transported to the rear of the machine by the transport device 16. As a result, the harvested grain culm is transported to the threshing device 13.
 この構成により、収穫部110は、圃場5の穀物(本発明に係る「作物」に相当)を収穫する。そして、コンバイン101は、刈取装置115によって圃場5の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。 With this configuration, the harvesting unit 110 harvests the grain of the field 5 (corresponding to the "crop" according to the present invention). Then, the combine 101 can be cut and run by the running device 11 while cutting the planted culm in the field 5 by the cutting device 115.
 また、図20に示すように、搭乗部12には、通信端末4が配置されている。通信端末4は、種々の情報を表示可能に構成されている。第三実施形態において、通信端末4は、搭乗部12に固定されている。しかし、本発明はこれに限定されず、通信端末4は、搭乗部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン101の機外に位置していても良い。 Further, as shown in FIG. 20, a communication terminal 4 is arranged in the boarding unit 12. The communication terminal 4 is configured to be able to display various information. In the third embodiment, the communication terminal 4 is fixed to the boarding unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the boarding unit 12, and the communication terminal 4 may be located outside the combine 101. ..
 ここで、コンバイン101は、図21~図23に示すように、圃場外縁部6の内側に位置する圃場5において、穀物を収穫するように構成されている。なお、圃場外縁部6は、圃場5を囲む状態で設けられている。圃場外縁部6には、例えば、畦畔61や給排水ポンプ62(図26参照)等が含まれている。 Here, as shown in FIGS. 21 to 23, the combine 101 is configured to harvest grains in the field 5 located inside the field outer edge portion 6. The field outer edge 6 is provided so as to surround the field 5. The field outer edge 6 includes, for example, a ridge 61, a water supply / drainage pump 62 (see FIG. 26), and the like.
 より具体的には、コンバイン101は、図21に示すように、周囲収穫走行を実行可能に構成されている。周囲収穫走行とは、圃場5内の最外周部において圃場外縁部6に沿って行われる走行である。 More specifically, as shown in FIG. 21, the combine 101 is configured to be capable of performing a peripheral harvesting run. The peripheral harvesting run is a run performed along the outer edge portion 6 of the field at the outermost peripheral portion in the field 5.
 なお、第三実施形態において、周囲収穫走行での周回数は一回である。しかし、本発明はこれに限定されず、周囲収穫走行での周回数は、二回以上のいかなる回数であっても良い。 In the third embodiment, the number of laps in the surrounding harvesting run is one. However, the present invention is not limited to this, and the number of laps in the surrounding harvesting run may be any number of times of two or more.
 そして、コンバイン101は、周囲収穫走行を行った後、図22及び図23に示すように、圃場5における内側の領域で刈取走行を行うことにより、圃場5の穀物を収穫するように構成されている。 Then, the combine 101 is configured to harvest the grain of the field 5 by performing a peripheral harvesting run and then performing a cutting run in the inner region of the field 5 as shown in FIGS. 22 and 23. There is.
 即ち、コンバイン101は、圃場5内の最外周部において圃場外縁部6に沿って行われる走行である周囲収穫走行を実行可能に構成されている。 That is, the combine 101 is configured to be capable of performing a peripheral harvesting run, which is a run along the outer edge of the field 6 at the outermost periphery of the field 5.
 第三実施形態においては、図21に示す周囲収穫走行は手動走行により行われる。また、図22及び図23に示す内側の領域での刈取走行は、自動走行により行われる。即ち、コンバイン101は、自動走行が可能である。 In the third embodiment, the surrounding harvesting run shown in FIG. 21 is performed by manual running. Further, the cutting run in the inner region shown in FIGS. 22 and 23 is performed by automatic running. That is, the combine 101 is capable of automatic traveling.
 なお、本発明はこれに限定されず、図21に示す周囲収穫走行は自動走行により行われても良い。 The present invention is not limited to this, and the surrounding harvesting running shown in FIG. 21 may be performed by automatic running.
 なお、オペレータは、通信端末4を操作することにより、エンジンEの回転速度を変更できる。 The operator can change the rotation speed of the engine E by operating the communication terminal 4.
 作物の種類によって、脱粒しやすさや倒伏しやすさ等の生育特性は異なる。従って、作物の種類によって、適切な作業速度は異なる。オペレータが通信端末4を操作し、エンジンEの回転速度を適切な回転速度に設定すれば、作物の種類に適した作業速度で作業を行うことができる。 Growth characteristics such as ease of threshing and ease of lodging differ depending on the type of crop. Therefore, the appropriate working speed differs depending on the type of crop. If the operator operates the communication terminal 4 and sets the rotation speed of the engine E to an appropriate rotation speed, the work can be performed at a work speed suitable for the type of crop.
〔第三実施形態における制御部に関する構成〕
 図24に示すように、コンバイン101は、制御部120を備えている。制御部120は、自車位置算出部121、領域算出部122、経路算出部123、自動走行制御部124を有している。自動走行制御部124は、コンバイン101の自動走行を制御する。また、自動走行制御部124は、経路選択部125及び走行制御部126を含んでいる。
[Structure relating to the control unit in the third embodiment]
As shown in FIG. 24, the combine 101 includes a control unit 120. The control unit 120 includes a vehicle position calculation unit 121, an area calculation unit 122, a route calculation unit 123, and an automatic driving control unit 124. The automatic traveling control unit 124 controls the automatic traveling of the combine 101. Further, the automatic travel control unit 124 includes a route selection unit 125 and a travel control unit 126.
 図24に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン101の自車位置を示す測位データを自車位置算出部121へ送る。自車位置算出部121は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン101の位置座標を経時的に算出する。算出されたコンバイン101の経時的な位置座標は、領域算出部122及び自動走行制御部124へ送られる。 As shown in FIG. 24, the satellite positioning module 80 sends positioning data indicating the own vehicle position of the combine 101 to the own vehicle position calculation unit 121 based on the received GPS signal. The own vehicle position calculation unit 121 calculates the position coordinates of the combine 101 over time based on the positioning data output by the satellite positioning module 80. The calculated position coordinates of the combine 101 over time are sent to the area calculation unit 122 and the automatic traveling control unit 124.
 領域算出部122は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、図22に示すように、既刈領域SA及び未刈領域CAを算出する。なお、既刈領域SAは、圃場5内において穀物が収穫済みの領域である。また、未刈領域CAは、圃場5内において穀物がまだ収穫されていない領域である。 The area calculation unit 122 calculates the cut area SA and the uncut area CA as shown in FIG. 22 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121. The cut area SA is an area in which grains have been harvested in the field 5. Further, the uncut area CA is an area in the field 5 where grains have not been harvested yet.
 より具体的には、領域算出部122は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、圃場5における周囲収穫走行でのコンバイン101の走行軌跡を算出する。そして、領域算出部122は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が周囲収穫走行を行った領域を既刈領域SAとして算出する。また、領域算出部122は、算出された既刈領域SAにより囲まれた領域を、未刈領域CAとして算出する。 More specifically, the area calculation unit 122 calculates the travel locus of the combine 101 in the surrounding harvesting operation in the field 5 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121. Then, the area calculation unit 122 calculates the area where the combine 101 has performed the surrounding harvesting as the cut area SA based on the calculated travel locus of the combine 101. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
 例えば、図21においては、圃場5における周囲収穫走行でのコンバイン101の走行経路が矢印で示されている。この走行経路に沿った刈取走行が完了すると、圃場5は、図22に示す状態となる。 For example, in FIG. 21, the traveling path of the combine 101 in the surrounding harvesting traveling in the field 5 is indicated by an arrow. When the cutting run along this running path is completed, the field 5 is in the state shown in FIG. 22.
 図22に示すように、領域算出部122は、コンバイン101が周囲収穫走行を行った領域を既刈領域SAとして算出する。また、領域算出部122は、算出された既刈領域SAにより囲まれた領域を、未刈領域CAとして算出する。 As shown in FIG. 22, the area calculation unit 122 calculates the area where the combine 101 has performed the surrounding harvesting run as the already-cut area SA. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
 そして、図24に示すように、領域算出部122による算出結果は、経路算出部123へ送られる。 Then, as shown in FIG. 24, the calculation result by the area calculation unit 122 is sent to the route calculation unit 123.
 経路算出部123は、領域算出部122から受け取った算出結果に基づいて、図22に示すように、未刈領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。なお、図22に示すように、第三実施形態においては、刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。また、複数のメッシュ線は直線でなくても良く、湾曲していても良い。 The route calculation unit 123 calculates the mowing travel route LI, which is a travel route for the mowing operation in the uncut area CA, as shown in FIG. 22, based on the calculation result received from the area calculation unit 122. As shown in FIG. 22, in the third embodiment, the cutting travel path LI is a plurality of mesh lines extending in the vertical and horizontal directions. Further, the plurality of mesh lines do not have to be straight lines and may be curved.
 図24に示すように、経路算出部123により算出された複数の刈取走行経路LIは、自動走行制御部124へ送られる。 As shown in FIG. 24, the plurality of mowing travel path LIs calculated by the route calculation unit 123 are sent to the automatic travel control unit 124.
 自動走行制御部124における経路選択部125は、自車位置算出部121から受け取ったコンバイン101の位置座標と、経路算出部123から受け取った複数の刈取走行経路LIと、に基づいて、コンバイン101が次に走行するべき刈取走行経路LIを選択する。経路選択部125により選択された刈取走行経路LIを示す情報は、走行制御部126へ送られる。 The route selection unit 125 in the automatic travel control unit 124 determines the combine 101 based on the position coordinates of the combine 101 received from the own vehicle position calculation unit 121 and the plurality of cutting travel routes LI received from the route calculation unit 123. Next, the harvesting route LI to be traveled is selected. Information indicating the cutting travel route LI selected by the route selection unit 125 is sent to the travel control unit 126.
 走行制御部126は、走行装置11を制御可能に構成されている。そして、走行制御部126は、自車位置算出部121から受け取ったコンバイン101の位置座標と、経路選択部125により選択された刈取走行経路LIを示す情報と、に基づいて、コンバイン101の自動走行を制御する。より具体的には、走行制御部126は、図22に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン101の走行を制御する。 The travel control unit 126 is configured to be able to control the travel device 11. Then, the travel control unit 126 automatically travels the combine 101 based on the position coordinates of the combine 101 received from the own vehicle position calculation unit 121 and the information indicating the cutting travel route LI selected by the route selection unit 125. To control. More specifically, as shown in FIG. 22, the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI.
 この自動走行において、走行制御部126は、現在走行している刈取走行経路LIの次に、経路選択部125により選択された刈取走行経路LIに沿った刈取走行が行われるように、コンバイン101の走行を制御する。 In this automatic traveling, the traveling control unit 126 of the combine 101 so that the harvesting traveling along the cutting traveling route LI selected by the route selection unit 125 is performed next to the cutting traveling route LI currently being traveled. Control driving.
〔第三実施形態におけるコンバインによる収穫作業の流れ〕
 以下では、コンバイン101による収穫作業の例として、コンバイン101が、図21に示す圃場5で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work by combine in the third embodiment]
In the following, as an example of the harvesting work by the combine 101, the flow when the combine 101 performs the harvesting work in the field 5 shown in FIG. 21 will be described.
 最初に、オペレータは、コンバイン101を手動で操作し、図21に示すように、周囲収穫走行を行う。この周囲収穫走行が完了すると、圃場5は、図22に示す状態となる。 First, the operator manually operates the combine 101 to perform a surrounding harvesting run as shown in FIG. 21. When this surrounding harvesting run is completed, the field 5 is in the state shown in FIG. 22.
 領域算出部122は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、図21に示す周囲収穫走行でのコンバイン101の走行軌跡を算出する。そして、図22に示すように、領域算出部122は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が植立穀稈を刈り取りながら走行した圃場5の外周側の領域を既刈領域SAとして算出する。また、領域算出部122は、算出された既刈領域SAにより囲まれた領域を、未刈領域CAとして算出する。 The area calculation unit 122 calculates the travel locus of the combine 101 in the surrounding harvesting travel shown in FIG. 21 based on the temporal position coordinates of the combine 101 received from the own vehicle position calculation unit 121. Then, as shown in FIG. 22, the region calculation unit 122 sets the region on the outer peripheral side of the field 5 in which the combine 101 travels while cutting the planted culm, based on the calculated travel locus of the combine 101, as a pre-cut region. Calculated as SA. Further, the area calculation unit 122 calculates the area surrounded by the calculated uncut area SA as the uncut area CA.
 次に、経路算出部123は、領域算出部122から受け取った算出結果に基づいて、図22に示すように、未刈領域CAにおける刈取走行経路LIを設定する。 Next, the route calculation unit 123 sets the cutting travel route LI in the uncut area CA as shown in FIG. 22 based on the calculation result received from the area calculation unit 122.
 そして、オペレータが自動走行開始ボタン(図示せず)を押すことにより、図22に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、走行制御部126は、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン101の走行を制御する。また、走行制御部126は、現在走行している刈取走行経路LIの次に、経路選択部125により選択された刈取走行経路LIに沿った刈取走行が行われるように、コンバイン101の走行を制御する。 Then, when the operator presses the automatic running start button (not shown), automatic running along the cutting running path LI is started as shown in FIG. 22. At this time, the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling is performed by the automatic traveling along the cutting traveling path LI. Further, the traveling control unit 126 controls the traveling of the combine 101 so that the harvesting traveling along the cutting traveling route LI selected by the route selecting unit 125 is performed next to the cutting traveling route LI currently traveling. do.
 未刈領域CAにおける自動走行が開始されると、図22に示すように、コンバイン101は、刈取走行経路LIに沿った走行と、αターンによる方向転換と、を繰り返すことにより、未刈領域CAにおける外周部分での刈取走行を行う。これにより、未刈領域CAは縮小していくとともに、既刈領域SAは拡大していく。 When the automatic running in the uncut area CA is started, as shown in FIG. 22, the combine 101 repeats running along the cutting running path LI and changing the direction by the α turn, thereby repeating the uncut area CA. The harvesting run is performed on the outer peripheral part of the combine harvester. As a result, the uncut area CA shrinks and the already cut area SA expands.
 なお、第三実施形態において、領域算出部122は、圃場5における刈取走行の実行中に、既刈領域SA及び未刈領域CAを経時的に算出するように構成されている。 In the third embodiment, the area calculation unit 122 is configured to calculate the already-cut area SA and the uncut area CA over time during the cutting run in the field 5.
 そして、図23に示すように、Uターンによる方向転換が可能な程度まで既刈領域SAが拡大すると、コンバイン101は、刈取走行経路LIに沿った走行と、Uターンによる方向転換と、を繰り返すことにより、未刈領域CAの全体を網羅するように刈取走行を行う。 Then, as shown in FIG. 23, when the cut area SA is expanded to the extent that the direction can be changed by the U-turn, the combine 101 repeats traveling along the cutting travel path LI and changing the direction by the U-turn. As a result, the cutting run is performed so as to cover the entire uncut area CA.
 なお、第三実施形態においては、図21~図23に示すように、圃場外縁部6に運搬車CVが駐車している。そして、既刈領域SAにおいて、運搬車CVの近傍位置には、停車位置PPが設定されている。 In the third embodiment, as shown in FIGS. 21 to 23, the carrier CV is parked at the outer edge portion 6 of the field. Then, in the mowed area SA, a stop position PP is set at a position near the carrier CV.
 運搬車CVは、コンバイン101が穀粒排出装置18から排出した穀粒を収集し、運搬する。穀粒排出の際、コンバイン101は停車位置PPに停車し、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 The carrier CV collects and transports the grains discharged from the grain discharge device 18 by the combine 101. At the time of grain discharge, the combine 101 stops at the stop position PP, and the grain is discharged to the carrier CV by the grain discharge device 18.
 そして、未刈領域CAにおける全ての刈取走行経路LIに沿った刈取走行が完了すると、圃場5の全体が収穫済みとなる。 Then, when the cutting run along all the cutting running paths LI in the uncut area CA is completed, the entire field 5 is harvested.
〔第三実施形態における収穫部の昇降制御に関する構成〕
 図20及び図24に示すように、コンバイン101は、刈取シリンダ115Aを備えている。また、図24に示すように、自動走行制御部124は、昇降制御部127を有している。
[Structure relating to elevating control of the harvesting section in the third embodiment]
As shown in FIGS. 20 and 24, the combine 101 includes a cutting cylinder 115A. Further, as shown in FIG. 24, the automatic traveling control unit 124 has an elevating control unit 127.
 昇降制御部127は、刈取シリンダ115Aを制御可能に構成されている。昇降制御部127が刈取シリンダ115Aを伸び方向に制御すると、搬送装置16及び収穫部110は、一体的に、収穫部110が上昇する方向に揺動する。これにより、収穫部110は、機体に対して上昇する。 The elevating control unit 127 is configured to be able to control the cutting cylinder 115A. When the elevating control unit 127 controls the cutting cylinder 115A in the extending direction, the transport device 16 and the harvesting unit 110 integrally swing in the direction in which the harvesting unit 110 rises. As a result, the harvesting unit 110 rises with respect to the aircraft.
 また、昇降制御部127が刈取シリンダ115Aを縮み方向に制御すると、搬送装置16及び収穫部110は、一体的に、収穫部110が下降する方向に揺動する。これにより、収穫部110は、機体に対して下降する。 Further, when the elevating control unit 127 controls the cutting cylinder 115A in the contraction direction, the transport device 16 and the harvesting unit 110 integrally swing in the direction in which the harvesting unit 110 descends. As a result, the harvesting unit 110 descends with respect to the airframe.
 この構成により、昇降制御部127は、収穫部110の機体に対する昇降を制御可能である。
また、収穫部110は、機体に対して昇降可能である。
With this configuration, the elevating control unit 127 can control the elevating of the harvesting unit 110 with respect to the machine body.
Further, the harvesting unit 110 can be raised and lowered with respect to the machine body.
 即ち、コンバイン101は、機体に対して昇降可能に構成されるとともに圃場5の穀物を収穫する収穫部110を備えている。 That is, the combine 101 is configured to be able to move up and down with respect to the machine body, and is provided with a harvesting section 110 for harvesting grains in the field 5.
〔第三実施形態における外縁部マップの取得に関する構成〕
 図24に示すように、制御部120は、マップ生成部128及び取得部129を有している。また、図24及び図25に示すように、コンバイン101は、検知部130を備えている。
[Structure relating to acquisition of outer edge map in the third embodiment]
As shown in FIG. 24, the control unit 120 has a map generation unit 128 and an acquisition unit 129. Further, as shown in FIGS. 24 and 25, the combine 101 includes a detection unit 130.
 第三実施形態において、検知部130は、カメラ(例えばCCDカメラやCMOSカメラや赤外線カメラ)である。図25に示すように、検知部130は、コンバイン101の機体後端部に設けられている。また、検知部130は、機体右後方へ向けられている。 In the third embodiment, the detection unit 130 is a camera (for example, a CCD camera, a CMOS camera, or an infrared camera). As shown in FIG. 25, the detection unit 130 is provided at the rear end of the combine 101. Further, the detection unit 130 is directed to the rear right of the machine body.
 図25において、コンバイン101は、周囲収穫走行を実行中である。また、図21に示すように、第三実施形態において、周囲収穫走行の方向は、平面視で反時計回りである。そのため、図25に示すように、周囲収穫走行が実行されているとき、検知部130は、圃場外縁部6のうち、既刈領域SAに隣接する部分を撮像する。これにより、検知部130は、圃場外縁部6のうち、既刈領域SAに隣接する部分の立体形状を検知する。 In FIG. 25, the combine 101 is executing a peripheral harvesting run. Further, as shown in FIG. 21, in the third embodiment, the direction of the surrounding harvesting run is counterclockwise in a plan view. Therefore, as shown in FIG. 25, when the surrounding harvesting run is being executed, the detection unit 130 takes an image of the portion of the field outer edge portion 6 adjacent to the cut area SA. As a result, the detection unit 130 detects the three-dimensional shape of the portion of the field outer edge portion 6 adjacent to the cut area SA.
 即ち、コンバイン101は、周囲収穫走行の実行中に、圃場外縁部6のうち、圃場5内において穀物が収穫済みである領域に隣接する部分の立体形状を検知する検知部130を備えている。 That is, the combine 101 is provided with a detection unit 130 that detects the three-dimensional shape of the portion of the field outer edge 6 adjacent to the region where the grain has been harvested in the field 5 during the execution of the surrounding harvesting run.
 図24に示すように、検知部130による検知結果は、マップ生成部128へ送られる。 As shown in FIG. 24, the detection result by the detection unit 130 is sent to the map generation unit 128.
 マップ生成部128は、検知部130の検知結果に基づいて、外縁部マップを生成する。外縁部マップとは、圃場外縁部6の立体形状の分布を示すマップである。また、外縁部マップは、本発明に係る「外縁部情報」に相当する。そして、取得部129は、マップ生成部128から外縁部マップを取得する。 The map generation unit 128 generates an outer edge map based on the detection result of the detection unit 130. The outer edge map is a map showing the distribution of the three-dimensional shape of the field outer edge 6. Further, the outer edge map corresponds to the "outer edge information" according to the present invention. Then, the acquisition unit 129 acquires the outer edge portion map from the map generation unit 128.
 即ち、コンバイン101は、検知部130の検知結果に基づいて圃場外縁部6の立体形状の分布を示す外縁部マップを生成するマップ生成部128を備えている。また、取得部129は、外縁部マップを取得する。また、コンバイン101は、圃場5を囲む状態で設けられた圃場外縁部6の立体形状を示す外縁部情報を取得する取得部129を備えている。 That is, the combine 101 includes a map generation unit 128 that generates an outer edge map showing the distribution of the three-dimensional shape of the field outer edge 6 based on the detection result of the detection unit 130. Further, the acquisition unit 129 acquires the outer edge portion map. Further, the combine 101 includes an acquisition unit 129 for acquiring information on the outer edge portion indicating the three-dimensional shape of the outer edge portion 6 of the field provided so as to surround the field 5.
 なお、周囲収穫走行の開始から完了までの間で、検知部130は、圃場外縁部6の全周を撮像することとなる。これにより、検知部130は、圃場外縁部6の全周に亘って、圃場外縁部6の立体形状を検知できる。その結果、マップ生成部128は、圃場外縁部6の全周に対応する外縁部マップを生成できる。 From the start to the end of the surrounding harvesting run, the detection unit 130 will take an image of the entire circumference of the field outer edge portion 6. As a result, the detection unit 130 can detect the three-dimensional shape of the field outer edge portion 6 over the entire circumference of the field outer edge portion 6. As a result, the map generation unit 128 can generate an outer edge portion map corresponding to the entire circumference of the field outer edge portion 6.
 図26には、マップ生成部128により生成される外縁部マップの一例が示されている。図26に示す外縁部マップには、畦畔61の側面部61aの位置及び立体形状と、畦畔61の上面部61bの位置及び立体形状と、給排水ポンプ62の位置及び立体形状と、が含まれている。なお、図27に示すように、側面部61aは、外側ほど(圃場5から離れるほど)高くなるように傾斜している。また、上面部61bは水平である。 FIG. 26 shows an example of the outer edge map generated by the map generator 128. The outer edge map shown in FIG. 26 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61, the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61, and the position and three-dimensional shape of the water supply / drainage pump 62. It has been. As shown in FIG. 27, the side surface portion 61a is inclined so as to be higher toward the outside (the farther from the field 5). Further, the upper surface portion 61b is horizontal.
〔第三実施形態における外縁部マップに基づく収穫部の昇降制御について〕
 図24に示すように、取得部129により取得された外縁部マップは、自動走行制御部124へ送られる。そして、昇降制御部127は、外縁部マップに基づいて収穫部110の昇降を制御する。
[Regarding the elevation control of the harvesting portion based on the outer edge portion map in the third embodiment]
As shown in FIG. 24, the outer edge map acquired by the acquisition unit 129 is sent to the automatic traveling control unit 124. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the outer edge map.
 以下では、外縁部マップに基づく収穫部110の昇降制御について詳述する。 Below, the elevating control of the harvesting section 110 based on the outer edge map will be described in detail.
 図27では、コンバイン101が圃場外縁部6の近傍で方向転換をする例が示されている。この例では、周囲収穫走行が既に完了している。そして、マップ生成部128により、外縁部マップが既に生成されている。また、コンバイン101は、自動走行を行っている。 FIG. 27 shows an example in which the combine 101 changes direction in the vicinity of the outer edge portion 6 of the field. In this example, the surrounding harvest run has already been completed. Then, the outer edge map has already been generated by the map generation unit 128. Further, the combine 101 is automatically traveling.
 図27に示す例では、コンバイン101は、まず、未刈領域CAにおいて刈取走行を行いながら直進する。そして、収穫部110が未刈領域CAから既刈領域SAに進入すると、コンバイン101は、αターンによって方向転換を行う。 In the example shown in FIG. 27, the combine 101 first goes straight while performing a mowing run in the uncut area CA. Then, when the harvesting unit 110 enters the uncut area SA from the uncut area CA, the combine 101 changes direction by an α turn.
 より具体的には、収穫部110が未刈領域CAから既刈領域SAに進入すると、走行制御部126の制御により、コンバイン101は、減速しながら機体左側へ旋回する。そして、コンバイン101は、収穫部110が平面視で圃場外縁部6に重複する状態で、一旦停止する。 More specifically, when the harvesting unit 110 enters the uncut area SA from the uncut area CA, the combine 101 turns to the left side of the machine while decelerating under the control of the traveling control unit 126. Then, the combine 101 is temporarily stopped in a state where the harvesting portion 110 overlaps the field outer edge portion 6 in a plan view.
 その後、コンバイン101は後進及び前進を行いながら、機体の向きを変更する。これにより、コンバイン101の方向転換が完了する。 After that, the combine 101 changes the direction of the aircraft while moving backward and forward. This completes the change of direction of the combine 101.
 ここで、収穫部110が未刈領域CAから既刈領域SAに進入する前に、走行制御部126は、経路選択部125により選択された刈取走行経路LIを示す情報と、取得部129から受け取った外縁部マップと、に基づいて、方向転換の際のコンバイン101の目標経路を算出する。なお、図27では、刈取走行経路LIの図示を省略している。 Here, before the harvesting unit 110 enters the uncut area SA from the uncut area CA, the traveling control unit 126 receives information indicating the cutting traveling route LI selected by the route selection unit 125 and the acquisition unit 129. Based on the outer edge map and the target route of the combine 101 at the time of turning. In addition, in FIG. 27, the illustration of the cutting travel path LI is omitted.
 そして、走行制御部126は、算出された目標経路に沿ってコンバイン101が方向転換を行うように、コンバイン101の走行を制御する。また、走行制御部126は、算出された目標経路を、収穫部110が未刈領域CAから既刈領域SAに進入する前に、昇降制御部127へ送る。 Then, the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route. Further, the traveling control unit 126 sends the calculated target route to the elevating control unit 127 before the harvesting unit 110 enters the uncut area SA from the uncut area CA.
 昇降制御部127は、走行制御部126から受け取った目標経路と、取得部129から受け取った外縁部マップと、に基づいて、収穫部110の昇降制御の予定を示す昇降予定情報を生成する。そして、昇降制御部127は、生成された昇降予定情報に従って、収穫部110の昇降を制御する。 The elevating control unit 127 generates elevating schedule information indicating the elevating control schedule of the harvesting unit 110 based on the target route received from the traveling control unit 126 and the outer edge portion map received from the acquisition unit 129. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 according to the generated elevating schedule information.
 このとき、昇降制御部127は、収穫部110が平面視で圃場外縁部6に重複する状態となる際に収穫部110が圃場外縁部6に干渉しないように、昇降予定情報を生成する。これにより、収穫部110が平面視で圃場外縁部6に重複する状態となる際、収穫部110が圃場外縁部6に干渉しないように、収穫部110の昇降が自動的に制御される。 At this time, the elevating control unit 127 generates elevating schedule information so that the harvesting unit 110 does not interfere with the field outer edge portion 6 when the harvesting unit 110 overlaps with the field outer edge portion 6 in a plan view. As a result, when the harvesting section 110 overlaps the field outer edge portion 6 in a plan view, the raising and lowering of the harvesting section 110 is automatically controlled so that the harvesting section 110 does not interfere with the field outer edge portion 6.
 即ち、コンバイン101は、機体の走行に伴って収穫部110が平面視で圃場外縁部6に重複する状態となる際、外縁部情報に基づいて、収穫部110が圃場外縁部6に干渉しないように収穫部110の昇降を自動的に制御する昇降制御部127を備えている。 That is, in the combine 101, when the harvesting portion 110 overlaps with the field outer edge portion 6 in a plan view as the aircraft travels, the harvesting portion 110 does not interfere with the field outer edge portion 6 based on the outer edge portion information. The harvesting unit 110 is provided with an elevating control unit 127 that automatically controls the elevating and lowering of the harvesting unit 110.
 なお、第三実施形態において、昇降予定情報には、収穫部110の上昇を開始する機体位置と、収穫部110の上昇を終了する機体位置と、収穫部110の下降を開始する機体位置と、収穫部110の下降を終了する機体位置と、を示す情報が含まれている。 In the third embodiment, the ascending / descending schedule information includes the aircraft position where the harvesting unit 110 starts to rise, the aircraft position where the harvesting unit 110 ends ascending, and the aircraft position where the harvesting unit 110 starts descending. It contains information indicating the position of the aircraft to end the descent of the harvesting unit 110.
 また、図28に示すように、昇降制御部127は、圃場外縁部6の地上高さが低いほど、収穫部110の上昇を開始する機体位置が圃場外縁部6に近くなるように、昇降予定情報を生成する。これにより、圃場外縁部6の地上高さが低いほど、収穫部110が平面視で圃場外縁部6に重複する状態となる際に収穫部110の到達する地上高さが低くなる。 Further, as shown in FIG. 28, the elevating control unit 127 is scheduled to move up and down so that the lower the ground height of the field outer edge portion 6, the closer the position of the machine body at which the harvesting portion 110 starts to rise is to the field outer edge portion 6. Generate information. As a result, the lower the ground clearance of the field outer edge portion 6, the lower the ground clearance reached by the harvesting portion 110 when the harvesting portion 110 overlaps with the field outer edge portion 6 in a plan view.
 即ち、昇降制御部127は、圃場外縁部6の地上高さが低いほど、収穫部110の地上高さが低くなるように、収穫部110の昇降を制御する。 That is, the elevating control unit 127 controls the elevating of the harvesting unit 110 so that the lower the above-ground height of the field outer edge portion 6 is, the lower the above-ground height of the harvesting unit 110 is.
 例えば、図28においては、圃場外縁部6の地上高さが第一高さT1である場合と、圃場外縁部6の地上高さが第二高さT2である場合と、が示されている。第二高さT2は、第一高さT1よりも低い。 For example, FIG. 28 shows a case where the above-ground height of the field outer edge portion 6 is the first height T1 and a case where the above-ground height of the field outer edge portion 6 is the second height T2. .. The second height T2 is lower than the first height T1.
 圃場外縁部6の地上高さが第一高さT1である場合、収穫部110の前下端が位置P1に到達した時点で、収穫部110の上昇が開始される。また、圃場外縁部6の地上高さが第二高さT2である場合、収穫部110の前下端が位置P2に到達した時点で、収穫部110の上昇が開始される。そして、位置P2と圃場外縁部6との距離は、位置P1と圃場外縁部6との距離よりも短い。 When the ground height of the field outer edge portion 6 is the first height T1, the ascending of the harvesting portion 110 is started when the front lower end of the harvesting portion 110 reaches the position P1. Further, when the above-ground height of the field outer edge portion 6 is the second height T2, the ascending of the harvesting portion 110 is started when the front lower end of the harvesting portion 110 reaches the position P2. The distance between the position P2 and the field outer edge 6 is shorter than the distance between the position P1 and the field outer edge 6.
 そのため、圃場外縁部6の地上高さが第二高さT2である場合は、圃場外縁部6の地上高さが第一高さT1である場合に比べて、収穫部110の上昇が開始される機体位置が圃場外縁部6に近くなる。これにより、圃場外縁部6の地上高さが第二高さT2である場合は、圃場外縁部6の地上高さが第一高さT1である場合に比べて、収穫部110が平面視で圃場外縁部6に重複する状態となる際に収穫部110の到達する地上高さが低くなる。 Therefore, when the above-ground height of the field outer edge 6 is the second height T2, the harvesting portion 110 starts to rise as compared with the case where the above-ground height of the field outer edge 6 is the first height T1. The position of the machine is close to the outer edge of the field 6. As a result, when the ground clearance of the field outer edge portion 6 is the second height T2, the harvesting portion 110 is viewed in a plan view as compared with the case where the ground clearance of the field outer edge portion 6 is the first height T1. The ground clearance reached by the harvesting section 110 becomes low when the field overlaps with the field outer edge portion 6.
 また、図27に示すように、昇降制御部127は、収穫部110と圃場外縁部6との間の離間距離D1が所定値よりも広い状態が維持されるように、昇降予定情報を生成する。これにより、収穫部110と圃場外縁部6との間の離間距離D1が所定値よりも広い状態が維持されるように、収穫部110の昇降が制御される。 Further, as shown in FIG. 27, the elevating control unit 127 generates elevating schedule information so that the separation distance D1 between the harvesting unit 110 and the field outer edge portion 6 is maintained wider than a predetermined value. .. As a result, the raising and lowering of the harvesting section 110 is controlled so that the separation distance D1 between the harvesting section 110 and the field outer edge portion 6 is maintained to be wider than a predetermined value.
 即ち、昇降制御部127は、収穫部110と圃場外縁部6との間の離間距離D1が所定値よりも広い状態が維持されるように、収穫部110の昇降を制御する。 That is, the elevating control unit 127 controls the elevating of the harvesting unit 110 so that the separation distance D1 between the harvesting unit 110 and the field outer edge portion 6 is maintained wider than a predetermined value.
 なお、この所定値は、任意に設定可能である。 Note that this predetermined value can be set arbitrarily.
〔第三実施形態における圃場外縁部の地上高さに応じた走行制御について〕
 上述のように、自動走行中のコンバイン101が方向転換を行う際、収穫部110が未刈領域CAから既刈領域SAに進入する前に、走行制御部126は、経路選択部125により選択された刈取走行経路LIを示す情報と、取得部129から受け取った外縁部マップと、に基づいて、方向転換の際のコンバイン101の目標経路を算出する。そして、走行制御部126は、算出された目標経路に沿ってコンバイン101が方向転換を行うように、コンバイン101の走行を制御する。
[About running control according to the ground height of the outer edge of the field in the third embodiment]
As described above, when the combine 101 during automatic traveling changes direction, the traveling control unit 126 is selected by the route selection unit 125 before the harvesting unit 110 enters the uncut area SA from the uncut area CA. The target route of the combine 101 at the time of turning is calculated based on the information indicating the harvesting travel route LI and the outer edge map received from the acquisition unit 129. Then, the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route.
 ここで、図27に示す例では、コンバイン101は、収穫部110が平面視で圃場外縁部6に重複する状態となる位置まで前進する。 Here, in the example shown in FIG. 27, the combine 101 advances to a position where the harvesting portion 110 overlaps with the field outer edge portion 6 in a plan view.
 しかし、第三実施形態におけるコンバイン101は、圃場外縁部6の地上高さが所定高さよりも高い場合には、図27に示す例とは異なり、収穫部110が平面視で圃場外縁部6に重複しないように走行するように構成されている。 However, in the combine 101 in the third embodiment, when the ground height of the field outer edge portion 6 is higher than the predetermined height, unlike the example shown in FIG. 27, the harvesting portion 110 is on the field outer edge portion 6 in a plan view. It is configured to run so that it does not overlap.
 詳述すると、圃場外縁部6の地上高さが所定高さよりも高い場合、自動走行中のコンバイン101が方向転換を行う際、走行制御部126は、図29に示すようなαターンの目標経路ではなく、図30に示すような目標経路を算出する。そして、走行制御部126は、算出された目標経路に沿ってコンバイン101が方向転換を行うように、コンバイン101の走行を制御する。 More specifically, when the ground height of the field outer edge portion 6 is higher than the predetermined height, the travel control unit 126 performs the α-turn target route as shown in FIG. 29 when the combine 101 during automatic traveling changes direction. Instead, the target route as shown in FIG. 30 is calculated. Then, the travel control unit 126 controls the travel of the combine 101 so that the combine 101 changes direction along the calculated target route.
 図30に示す例では、コンバイン101は、まず、未刈領域CAにおいて刈取走行を行いながら直進する。そして、収穫部110が未刈領域CAから既刈領域SAに進入した後、コンバイン101は、収穫部110が平面視で圃場外縁部6に重複しない状態で、一旦停止する。 In the example shown in FIG. 30, the combine 101 first goes straight while performing a mowing run in the uncut area CA. Then, after the harvesting section 110 enters the cutting zone SA from the uncut region CA, the combine 101 temporarily stops in a state where the harvesting portion 110 does not overlap the field outer edge portion 6 in a plan view.
 その後、コンバイン101は後進及び前進を繰り返しながら、機体の向きを変更する。これにより、コンバイン101の方向転換が完了する。この方向転換を行っている間、走行制御部126は、収穫部110が平面視で圃場外縁部6に重複しないように機体の走行を制御する。 After that, the combine 101 changes the direction of the aircraft while repeating backward and forward movements. This completes the change of direction of the combine 101. During this direction change, the traveling control unit 126 controls the traveling of the aircraft so that the harvesting unit 110 does not overlap the field outer edge portion 6 in a plan view.
 即ち、コンバイン101は、圃場外縁部6の地上高さが所定高さよりも高い場合に収穫部110が平面視で圃場外縁部6に重複しないように機体の走行を制御する走行制御部126を備えている。 That is, the combine 101 includes a traveling control unit 126 that controls the traveling of the machine body so that the harvesting unit 110 does not overlap the field outer edge portion 6 in a plan view when the ground clearance of the field outer edge portion 6 is higher than a predetermined height. ing.
 なお、この所定高さは、任意に設定可能である。また、図29及び図30では、刈取走行経路LIの図示を省略している。 Note that this predetermined height can be set arbitrarily. Further, in FIGS. 29 and 30, the illustration of the cutting travel path LI is omitted.
 以上で説明した構成であれば、圃場外縁部6の立体形状に応じて、収穫部110が圃場外縁部6に干渉しないように、収穫部110の昇降が自動的に制御される。これにより、収穫部110が圃場外縁部6に干渉することを回避できるコンバイン101を実現できる。 With the configuration described above, the raising and lowering of the harvesting section 110 is automatically controlled so that the harvesting section 110 does not interfere with the field outer edge portion 6 according to the three-dimensional shape of the field outer edge portion 6. As a result, it is possible to realize a combine 101 that can prevent the harvesting portion 110 from interfering with the field outer edge portion 6.
〔第三実施形態の別実施形態〕
(3-1)上記第三実施形態においては、取得部129は、マップ生成部128により生成された外縁部マップを取得する。しかし、本発明はこれに限定されない。以下では、本発明に係る第三実施形態の別実施形態について、上記第三実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記第三実施形態と同様である。また、上記第三実施形態と同様の構成については、同じ符号を付している。
[Another Embodiment of the Third Embodiment]
(3-1) In the third embodiment, the acquisition unit 129 acquires the outer edge portion map generated by the map generation unit 128. However, the present invention is not limited to this. Hereinafter, another embodiment of the third embodiment according to the present invention will be described focusing on the differences from the third embodiment. The configuration other than the parts described below is the same as that of the third embodiment. Further, the same reference numerals are given to the same configurations as those of the third embodiment.
 図31に示すように、第三実施形態の別実施形態における制御部120は、マップ更新部132及び取得部229を備えている。 As shown in FIG. 31, the control unit 120 in another embodiment of the third embodiment includes a map update unit 132 and an acquisition unit 229.
 取得部229は、コンバイン101の外部に配置された管理サーバ131から、外縁部マップを取得する。なお、管理サーバ131には、過去に圃場5において実施された収穫作業において、検知部130の検知結果に基づいて生成された外縁部マップが格納されている。ただし、本発明はこれに限定されず、管理サーバ131に格納されている外縁部マップは、トラクタや田植機等の作業車により実施された作業において圃場外縁部6の立体形状を検知することにより生成されたものであっても良いし、オペレータの操作入力により生成されたものであっても良い。 The acquisition unit 229 acquires the outer edge map from the management server 131 located outside the combine 101. The management server 131 stores an outer edge map generated based on the detection result of the detection unit 130 in the harvesting work performed in the field 5 in the past. However, the present invention is not limited to this, and the outer edge map stored in the management server 131 detects the three-dimensional shape of the field outer edge 6 in the work carried out by a work vehicle such as a tractor or a rice transplanter. It may be generated, or it may be generated by the operation input of the operator.
 即ち、取得部229は、圃場外縁部6の立体形状の分布を示す外縁部マップを取得する。 That is, the acquisition unit 229 acquires an outer edge map showing the distribution of the three-dimensional shape of the field outer edge 6.
 図32には、管理サーバ131から取得される外縁部マップの一例が示されている。図32に示す外縁部マップには、畦畔61の側面部61aの位置及び立体形状と、畦畔61の上面部61bの位置及び立体形状と、が含まれている。 FIG. 32 shows an example of the outer edge map acquired from the management server 131. The outer edge map shown in FIG. 32 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61 and the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61.
 取得部229は、取得した外縁部マップをマップ更新部132へ送る。また、検知部130による検知結果は、マップ更新部132へ送られる。 The acquisition unit 229 sends the acquired outer edge map to the map update unit 132. Further, the detection result by the detection unit 130 is sent to the map update unit 132.
 マップ更新部132は、取得部229から受け取った外縁部マップを、検知部130の検知結果に基づいて更新する。 The map update unit 132 updates the outer edge map received from the acquisition unit 229 based on the detection result of the detection unit 130.
 即ち、コンバイン101は、検知部130の検知結果に基づいて外縁部マップを更新するマップ更新部132を備えている。 That is, the combine 101 includes a map update unit 132 that updates the outer edge map based on the detection result of the detection unit 130.
 なお、周囲収穫走行の開始から完了までの間で、検知部130は、圃場外縁部6の全周を撮像することとなる。これにより、検知部130は、圃場外縁部6の全周に亘って、圃場外縁部6の立体形状を検知できる。その結果、マップ更新部132は、外縁部マップの全体を更新できる。 From the start to the end of the surrounding harvesting run, the detection unit 130 will take an image of the entire circumference of the field outer edge portion 6. As a result, the detection unit 130 can detect the three-dimensional shape of the field outer edge portion 6 over the entire circumference of the field outer edge portion 6. As a result, the map update unit 132 can update the entire outer edge map.
 図32には、マップ更新部132により更新される前の外縁部マップの一例が示されている。図32に示す外縁部マップには、畦畔61の側面部61aの位置及び立体形状と、畦畔61の上面部61bの位置及び立体形状と、が含まれている。 FIG. 32 shows an example of the outer edge map before being updated by the map update unit 132. The outer edge map shown in FIG. 32 includes the position and three-dimensional shape of the side surface portion 61a of the ridge shore 61 and the position and three-dimensional shape of the upper surface portion 61b of the ridge shore 61.
 ここで、マップ更新部132により更新される前の外縁部マップには、給排水ポンプ62の存在を示す情報は含まれていないが、実際には、圃場外縁部6に給排水ポンプ62が含まれているものとする。その場合、周囲収穫走行の実行中に、検知部130により、給排水ポンプ62の立体形状が検知される。その結果、マップ更新部132により更新された外縁部マップには、給排水ポンプ62の位置及び立体形状が含まれることとなる。即ち、例えば、図32に示す外縁部マップが、マップ更新部132により更新されることによって、給排水ポンプ62の存在が反映され、図26に示すような外縁部マップとなる。 Here, the outer edge map before being updated by the map update unit 132 does not include information indicating the existence of the water supply / drainage pump 62, but actually, the field outer edge portion 6 includes the water supply / drainage pump 62. It is assumed that there is. In that case, the three-dimensional shape of the water supply / drainage pump 62 is detected by the detection unit 130 during the execution of the surrounding harvesting run. As a result, the outer edge map updated by the map update unit 132 includes the position and the three-dimensional shape of the water supply / drainage pump 62. That is, for example, when the outer edge map shown in FIG. 32 is updated by the map updating unit 132, the existence of the water supply / drainage pump 62 is reflected, and the outer edge map as shown in FIG. 26 is obtained.
 図31に示すように、マップ更新部132により更新された外縁部マップは、自動走行制御部124へ送られる。そして、昇降制御部127は、更新された外縁部マップに基づいて収穫部110の昇降を制御する。なお、収穫部110の昇降制御については、上記実施形態と同様である。 As shown in FIG. 31, the outer edge map updated by the map updating unit 132 is sent to the automatic traveling control unit 124. Then, the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the updated outer edge map. The elevating control of the harvesting unit 110 is the same as that of the above embodiment.
 即ち、昇降制御部127は、マップ更新部132により更新された外縁部マップに基づいて収穫部110の昇降を制御する。 That is, the elevating control unit 127 controls the elevating of the harvesting unit 110 based on the outer edge portion map updated by the map updating unit 132.
 なお、更新された外縁部マップがマップ更新部132から管理サーバ131へ送られる構成であっても良い。この場合、管理サーバ131に格納されている更新前の外縁部マップが、マップ更新部132から送られた外縁部マップに置き換えられることにより、管理サーバ131に格納されている外縁部マップが更新される構成であっても良い。 The updated outer edge map may be sent from the map update unit 132 to the management server 131. In this case, the outer edge map stored in the management server 131 is updated by replacing the outer edge map before the update stored in the management server 131 with the outer edge map sent from the map update unit 132. May be configured.
(3-2)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。 (3-2) The traveling device 11 may be a wheel type or a semi-crawler type.
(3-3)上記実施形態においては、経路算出部123により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線である。しかし、本発明はこれに限定されず、経路算出部123により算出される刈取走行経路LIは、縦横方向に延びる複数のメッシュ線でなくても良い。例えば、経路算出部123により算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。また、刈取走行経路LIは、別の刈取走行経路LIと直交していなくても良い。また、経路算出部123により算出される刈取走行経路LIは、互いに平行な複数の平行線であっても良い。 (3-3) In the above embodiment, the cutting travel path LI calculated by the route calculation unit 123 is a plurality of mesh lines extending in the vertical and horizontal directions. However, the present invention is not limited to this, and the cutting travel path LI calculated by the route calculation unit 123 does not have to be a plurality of mesh lines extending in the vertical and horizontal directions. For example, the cutting travel path LI calculated by the route calculation unit 123 may be a spiral travel route. Further, the cutting travel path LI does not have to be orthogonal to another cutting travel route LI. Further, the cutting travel path LI calculated by the route calculation unit 123 may be a plurality of parallel lines parallel to each other.
(3-4)自車位置算出部121、領域算出部122、経路算出部123、自動走行制御部124、経路選択部125、走行制御部126、昇降制御部127、マップ生成部128、取得部129、129、マップ更新部132のうち、一部または全てがコンバイン101の外部に備えられていても良いのであって、例えば、コンバイン101の外部に設けられた管理施設や管理サーバ131に備えられていても良い。 (3-4) Own vehicle position calculation unit 121, area calculation unit 122, route calculation unit 123, automatic travel control unit 124, route selection unit 125, travel control unit 126, elevation control unit 127, map generation unit 128, acquisition unit. A part or all of the 129, 129 and the map update unit 132 may be provided outside the combine 101, for example, in a management facility or a management server 131 provided outside the combine 101. You may have.
(3-5)検知部130は、カメラ以外であっても良い。例えば、検知部130は、レーダーであっても良いし、LIDAR(レーザーレーダー)であっても良い。 (3-5) The detection unit 130 may be other than the camera. For example, the detection unit 130 may be a radar or a LIDAR (laser radar).
(3-6)コンバイン101は、自動走行ができないように構成されていても良い。その場合、例えば、車速及び操向が手動操作によって制御され、収穫部110の昇降が昇降制御部127により自動的に制御される構成であっても良い。 (3-6) The combine 101 may be configured so that it cannot run automatically. In that case, for example, the vehicle speed and steering may be controlled by manual operation, and the elevating and lowering of the harvesting unit 110 may be automatically controlled by the elevating control unit 127.
(3-7)昇降制御部127が、圃場外縁部6の地上高さとは無関係に収穫部110の昇降を制御するように構成されていても良い。 (3-7) The elevating control unit 127 may be configured to control the elevating of the harvesting unit 110 regardless of the ground clearance of the field outer edge portion 6.
(3-8)上記実施形態においては、昇降制御部127は、収穫部110と圃場外縁部6との間の離間距離D1が所定値よりも広い状態が維持されるように、収穫部110の昇降を制御する。しかし、本発明はこれに限定されず、このような所定値が設定されていなくても良い。 (3-8) In the above embodiment, the elevating control unit 127 of the harvesting unit 110 keeps the distance D1 between the harvesting unit 110 and the field outer edge portion 6 wider than a predetermined value. Control the ascent and descent. However, the present invention is not limited to this, and such a predetermined value may not be set.
(3-9)検知部130は、コンバイン101に設けられていなくても良い。例えば、検知部130は、飛行可能なマルチコプターに設けられていても良い。 (3-9) The detection unit 130 may not be provided on the combine 101. For example, the detection unit 130 may be provided on a flyable multicopter.
(3-10)マップ生成部128は、検知部130の検知結果以外の情報に基づいて、外縁部マップを生成しても良い。例えば、マップ生成部128は、手動操作によって収穫部110が昇降したときの収穫部110の軌跡に基づいて、外縁部マップを生成しても良い。 (3-10) The map generation unit 128 may generate an outer edge portion map based on information other than the detection result of the detection unit 130. For example, the map generation unit 128 may generate an outer edge map based on the locus of the harvesting unit 110 when the harvesting unit 110 moves up and down manually.
(3-11)外縁部マップは、畦畔61の側面部61aにおける最も低い部分の位置及び高さと、畦畔61の側面部61aにおける最も高い部分の位置及び高さと、を示すものであっても良い。 (3-11) The outer edge map shows the position and height of the lowest portion of the side surface portion 61a of the ridge shore 61 and the position and height of the highest portion of the side surface portion 61a of the ridge shore 61. Is also good.
 なお、上述の第一実施形態~第三実施形態(夫々の実施形態の別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configurations disclosed in the above-mentioned first to third embodiments (including different embodiments of each embodiment, the same shall apply hereinafter) are disclosed in other embodiments as long as there is no contradiction. It can be applied in combination with. Moreover, the embodiment disclosed in the present specification is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.
 本発明は、普通型コンバインのみならず、自脱型コンバイン等、作物を収穫する収穫機全般(例えばトウモロコシ収穫機やニンジン収穫機)に適用可能である。また、本発明の収穫機の技術的特徴は、制御システムにも適用可能である。このため、本発明は制御システムも権利の対象とすることができる。加えて、本発明の収穫機の技術的特徴は、制御方法にも適用可能である。このため、本発明は制御方法も権利の対象とすることができる。加えて、本発明の収穫機の技術的特徴は、制御プログラムにも適用可能である。そのため、本発明は制御プログラムも権利の対象とすることができる。さらに、この技術的特徴を有する制御プログラムが記録された光ディスクや磁気ディスク、半導体メモリ等の記録媒体も権利の対象とすることができる。 The present invention is applicable not only to ordinary combine harvesters but also to general harvesters for harvesting crops such as head-feeding combine harvesters (for example, corn harvesters and carrot harvesters). Further, the technical features of the harvester of the present invention can also be applied to a control system. Therefore, the present invention can also be subject to control systems. In addition, the technical features of the harvester of the present invention are also applicable to control methods. Therefore, the present invention can also be subject to the control method. In addition, the technical features of the harvester of the present invention are also applicable to control programs. Therefore, the present invention can also be subject to control programs. Further, a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory in which a control program having this technical feature is recorded can also be subject to the right.
〔第一実施形態〕
 1   :機体
 11  :走行装置
 13  :脱穀装置
 13A :脱穀部
 13B :選別処理部
 13C :唐箕
 15  :収穫装置
 15u :底板
 15A :収穫ヘッダ
 15B :掻込リール
 15C :横送りオーガ
 15H :ヘッダ用アクチュエータ(第三アクチュエータ、アクチュエータ)
 15J :リールアクチュエータ(第二アクチュエータ、アクチュエータ)
 15T :タイン
 21A :第一撮像装置(撮像装置)
 21B :第二撮像装置(撮像装置)
 31A :第一作物検出部(作物検出部)
 31B :第二作物検出部(圃場状態検出部)
 32  :状態決定部(状態変更部)
 H1  :対地高さ(収穫装置の収穫高さ、収穫ヘッダの作業高さ)
 H2  :掻込リールの高さ位置
〔第二実施形態〕
 11  :走行装置
 15  :収穫装置(収穫部)
 15A :収穫ヘッダ
 15D :切断刃
 15H :ヘッダ用アクチュエータ(第三アクチュエータ)
 21C :光学式測距装置(高さ検出部)
 21D :光学式測距装置(高さ検出部)
 41  :畝検出部(高さ検出部)
 42  :収穫高さ制御部
 43  :記憶部
 80  :衛星測位モジュール(測位ユニット)
 H4  :畝高さ(凹凸の高さ)
 W2  :作業領域(未収穫領域)
〔第三実施形態〕
 105     圃場
 106     圃場外縁部
 101     コンバイン(収穫機)
 110     収穫部
 126     走行制御部
 127     昇降制御部
 128     マップ生成部
 129、229 取得部
 130     検知部
 132     マップ更新部
 D1      離間距離
[First Embodiment]
1: Aircraft 11: Traveling device 13: Threshing device 13A: Threshing section 13B: Sorting processing section 13C: Wall insert 15: Harvesting device 15u: Bottom plate 15A: Harvest header 15B: Scraping reel 15C: Horizontal feed auger 15H: Header actuator Third actuator, actuator)
15J: Reel actuator (second actuator, actuator)
15T: Tyne 21A: First imaging device (imaging device)
21B: Second image pickup device (imaging device)
31A: First crop detection unit (crop detection unit)
31B: Second crop detection unit (field condition detection unit)
32: Status determination unit (status change unit)
H1: Ground height (harvest height of harvesting equipment, working height of harvest header)
H2: Height position of scraping reel [second embodiment]
11: Traveling device 15: Harvesting device (harvesting section)
15A: Harvest header 15D: Cutting blade 15H: Header actuator (third actuator)
21C: Optical ranging device (height detector)
21D: Optical ranging device (height detector)
41: Ridge detection unit (height detection unit)
42: Harvest height control unit 43: Storage unit 80: Satellite positioning module (positioning unit)
H4: Ridge height (height of unevenness)
W2: Work area (unharvested area)
[Third Embodiment]
105 Field 106 Field outer edge 101 Combine (harvester)
110 Harvesting unit 126 Driving control unit 127 Elevating control unit 128 Map generation unit 129, 229 Acquisition unit 130 Detection unit 132 Map update unit D1 Separation distance

Claims (59)

  1.  圃場を走行可能な走行装置と、
     機体に上下昇降可能に支持され、前方の植立作物を受け入れる収穫ヘッダ、及び、回転駆動によって植立作物を掻き込む掻込リールを有し、圃場の作物を収穫する収穫装置と、
     前記収穫装置を操作するアクチュエータと、
     植立作物の高さを検出する作物検出部と、
     植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更可能な状態変更部と、が備えられている収穫機。
    A traveling device that can travel in the field and
    A harvesting device that is supported by the aircraft so that it can be moved up and down and has a harvesting header that accepts the planted crops in front, and a scraping reel that scrapes the planted crops by rotary drive, and harvests the crops in the field.
    The actuator that operates the harvesting device and
    A crop detector that detects the height of planted crops,
    A harvester provided with a state changing unit capable of changing the working state of the harvesting device by operating the actuator according to the height of the planted crop.
  2.  前記作業状態に、前記収穫装置の収穫高さが含まれる請求項1に記載の収穫機。 The harvester according to claim 1, wherein the working state includes the harvest height of the harvester.
  3.  前記作業状態に、前記掻込リールの高さ位置が含まれる請求項1または2に記載の収穫機。 The harvester according to claim 1 or 2, wherein the working state includes the height position of the suction reel.
  4.  前記作業状態に、前記掻込リールの前後位置が含まれる請求項3に記載の収穫機。 The harvester according to claim 3, wherein the working state includes the front and rear positions of the scraping reel.
  5.  前記作業状態に、前記掻込リールの回転速度が含まれる請求項1から4の何れか一項に記載の収穫機。 The harvester according to any one of claims 1 to 4, wherein the working state includes the rotation speed of the suction reel.
  6.  前記作業状態に、前記収穫ヘッダの作業高さが含まれる請求項1から5の何れか一項に記載の収穫機。 The harvester according to any one of claims 1 to 5, wherein the working state includes the working height of the harvest header.
  7.  前記掻込リールに、植立作物に掻込作用するタインが備えられ、
     前記作業状態に、前記タインの回転軌跡が含まれる請求項1から6の何れか一項に記載の収穫機。
    The scraping reel is provided with a tine that scrapes the planted crop.
    The harvester according to any one of claims 1 to 6, wherein the working state includes a rotation locus of the tine.
  8.  前記作物検出部は、撮像装置によって撮像された撮像データに基づいて植立作物の高さを検出する請求項1から7の何れか一項に記載の収穫機。 The harvester according to any one of claims 1 to 7, wherein the crop detection unit detects the height of the planted crop based on the image pickup data captured by the image pickup device.
  9.  前記状態変更部は、前記収穫装置の作業状態に加えて前記走行装置の車速を変更可能に構成されている請求項1から8の何れか一項に記載の収穫機。 The harvester according to any one of claims 1 to 8, wherein the state changing unit is configured to be able to change the vehicle speed of the traveling device in addition to the working state of the harvesting device.
  10.  前記作物検出部は、植立作物の高さに基づいて倒伏作物を検出可能に構成されている請求項1から9の何れか一項に記載の収穫機。 The harvester according to any one of claims 1 to 9, wherein the crop detection unit is configured to be able to detect a fallen crop based on the height of the planted crop.
  11.  前記作物検出部は、植立作物の高さと、植立作物が同じ高さで広がる領域の広さと、に基づいて倒伏作物を検出するように構成されている請求項1から10の何れか一項に記載の収穫機。 One of claims 1 to 10, wherein the crop detection unit is configured to detect a fallen crop based on the height of the planted crop and the size of the area where the planted crop spreads at the same height. Harvester described in section.
  12.  前記状態変更部は、前記倒伏作物が検出されたら、前記掻込リールの位置を最も下側の領域かつ最も前側の領域に位置させる請求項10または11に記載の収穫機。 The harvester according to claim 10 or 11, wherein the state changing unit positions the suction reel in the lowermost region and the frontmost region when the collapsed crop is detected.
  13.  前記状態変更部は、前記倒伏作物が検出されたら、前記掻込リールの回転速度を上昇させ、かつ、前記走行装置の車速を減速させる請求項10から12の何れか一項に記載の収穫機。 The harvester according to any one of claims 10 to 12, wherein the state changing unit increases the rotation speed of the suction reel and decelerates the vehicle speed of the traveling device when the fallen crop is detected. ..
  14.  圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御システムであって、
     植立作物の高さを検出する作物検出部と、
     植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更可能な状態変更部と、が備えられている制御システム。
    It is a control system of a harvester having a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device. hand,
    A crop detector that detects the height of planted crops,
    A control system including a state changing unit capable of changing the working state of the harvesting apparatus by operating the actuator according to the height of the planted crop.
  15.  圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御方法であって、
     植立作物の高さを検出する作物検出ステップと、
     植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更する状態変更ステップと、を備える制御方法。
    It is a control method of a harvester having a traveling device capable of traveling in the field, a harvesting device for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and an actuator for operating the harvesting device. hand,
    A crop detection step that detects the height of the planted crop,
    A control method comprising a state change step of changing the working state of the harvesting apparatus by operating the actuator according to the height of the planted crop.
  16.  圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御プログラムにおいて、
     植立作物の高さを検出する作物検出機能と、
     植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更する状態変更機能と、をコンピュータに実行させる制御プログラム。
    In a control program of a harvester having a traveling device capable of traveling in a field, a harvesting device for harvesting crops in the field while being supported by an aircraft so as to be able to move up and down, and an actuator for operating the harvesting device.
    A crop detection function that detects the height of planted crops,
    A control program that causes a computer to execute a state change function that changes the working state of the harvesting device by operating the actuator according to the height of the planted crop.
  17.  圃場を走行可能な走行装置と、上下昇降可能なように機体に支持された状態で圃場の作物を収穫する収穫装置と、前記収穫装置を操作するアクチュエータと、を有する収穫機の制御プログラムが記録されている記録媒体において、
     植立作物の高さを検出する作物検出機能と、
     植立作物の高さに応じて前記アクチュエータを操作することによって前記収穫装置の作業状態を変更する状態変更機能と、をコンピュータに実行させる制御プログラムが記録されている記録媒体。
    A control program of a harvester having a traveling device capable of traveling in a field, a harvesting device for harvesting crops in the field while being supported by an aircraft so as to be able to move up and down, and an actuator for operating the harvesting device is recorded. In the recording medium
    A crop detection function that detects the height of planted crops,
    A recording medium in which a control program for causing a computer to execute a state change function for changing the working state of the harvesting device by operating the actuator according to the height of the planted crop is recorded.
  18.  機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置と、
     前記収穫装置の作業対象の作物の種類を取得する作物検出部と、
     前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更部と、が備えられている収穫機。
    A harvesting device that is supported by the aircraft so that it can be moved up and down to harvest crops in the field.
    A crop detection unit that acquires the type of crop to be worked on by the harvesting device, and
    A harvester provided with a state changing unit that changes the vertical width of a transport path in the harvesting apparatus according to the type of the crop.
  19.  前記収穫装置に、作物を受け入れる収穫ヘッダと、回転駆動するとともに収穫された作物を左右方向中央領域に寄せ集めて後方の搬送装置へ送り出す横送りオーガと、前記横送りオーガを昇降操作する第一アクチュエータと、が備えられ、
     前記状態変更部は、前記第一アクチュエータを操作することによって、前記搬送経路の上下幅として、前記横送りオーガの下端部と、前記収穫ヘッダの底板と、の隙間の上下幅を変更する請求項18に記載の収穫機。
    The harvesting device includes a harvesting header that receives crops, a horizontal feed auger that is rotationally driven and gathers the harvested crops in the central region in the left-right direction and sends them to a rear transport device, and a first that raises and lowers the horizontal feed auger. With an actuator,
    The claim that the state changing portion changes the vertical width of the gap between the lower end portion of the horizontal feed auger and the bottom plate of the harvest header as the vertical width of the transport path by operating the first actuator. 18. The harvester according to 18.
  20.  前記収穫装置に、作物を受け入れる収穫ヘッダと、回転駆動するとともに作物を前記収穫ヘッダに掻き込む掻込リールと、前記掻込リールを昇降操作する第二アクチュエータと、が備えられ、
     前記状態変更部は、前記第二アクチュエータを操作することによって、前記搬送経路の上下幅として、前記掻込リールの下端部と、前記収穫ヘッダの底板と、の隙間の上下幅を変更する請求項18または19に記載の収穫機。
    The harvesting apparatus is provided with a harvesting header for receiving crops, a scraping reel for rotationally driving and scraping crops into the harvesting header, and a second actuator for raising and lowering the scraping reel.
    The claim that the state changing portion changes the vertical width of the gap between the lower end portion of the scraping reel and the bottom plate of the harvest header as the vertical width of the transport path by operating the second actuator. The harvester according to 18 or 19.
  21.  前記収穫装置を昇降操作する第三アクチュエータが備えられ、
     前記状態変更部は、前記第三アクチュエータを操作することによって、前記作物の種類に応じて前記収穫装置の収穫高さを変更可能に構成されている請求項18から20の何れか一項に記載の収穫機。
    A third actuator for raising and lowering the harvesting device is provided.
    The invention according to any one of claims 18 to 20, wherein the state changing unit is configured to be able to change the harvest height of the harvesting apparatus according to the type of the crop by operating the third actuator. Harvester.
  22.  機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御システムであって、
     前記収穫装置の作業対象の作物の種類を取得する作物検出部と、
     前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更部と、が備えられている制御システム。
    It is a control system of a harvester that is supported by the machine so that it can be moved up and down and has a harvesting device for harvesting crops in the field.
    A crop detection unit that acquires the type of crop to be worked on by the harvesting device, and
    A control system including a state changing unit that changes the vertical width of a transport path in the harvesting apparatus according to the type of the crop.
  23.  機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御方法であって、
     前記収穫装置の作業対象の作物の種類を取得する作物検出ステップと、
     前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更ステップと、を備える制御方法。
    It is a control method of a harvester that is supported by the machine so that it can be moved up and down and has a harvesting device for harvesting crops in the field.
    A crop detection step for acquiring the type of crop to be worked on by the harvesting device, and
    A control method comprising a state change step of changing the vertical width of a transport path in the harvesting apparatus according to the type of the crop.
  24.  機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御プログラムにおいて、
     前記収穫装置の作業対象の作物の種類を取得する作物検出機能と、
     前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更機能と、をコンピュータに実行させる制御プログラム。
    In a control program of a harvester that is supported by the aircraft so that it can be raised and lowered and has a harvesting device that harvests crops in the field.
    A crop detection function that acquires the type of crop to be worked on by the harvesting device, and
    A control program for causing a computer to execute a state changing function of changing the vertical width of a transport path in the harvesting device according to the type of the crop.
  25.  機体に上下昇降可能に支持され、圃場の作物を収穫する収穫装置を有する収穫機の制御プログラムが記録されている記録媒体において、
     前記収穫装置の作業対象の作物の種類を取得する作物検出機能と、
     前記作物の種類に応じて前記収穫装置における搬送経路の上下幅を変更する状態変更機能と、をコンピュータに実行させる制御プログラムが記録されている記録媒体。
    In a recording medium in which a control program for a harvester, which is supported by the machine so as to be able to move up and down and has a harvesting device for harvesting crops in the field, is recorded.
    A crop detection function that acquires the type of crop to be worked on by the harvesting device, and
    A recording medium in which a control program for causing a computer to execute a state changing function of changing the vertical width of a transport path in the harvesting apparatus according to the type of the crop is recorded.
  26.  圃場を走行可能な走行装置と、
     機体に上下昇降可能に支持され、圃場の作物を収穫する収穫部と、
     前記収穫部を昇降操作する第三アクチュエータと、
     前記収穫部の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部と、
     前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御部と、が備えられている収穫機。
    A traveling device that can travel in the field and
    A harvesting section that is supported by the aircraft so that it can be moved up and down and harvests crops in the field.
    A third actuator that raises and lowers the harvesting section,
    A non-contact height detection unit that detects the height of unevenness in the field in front of the harvesting unit, and
    A harvest height control unit that determines the ground height of the harvesting portion based on the height of the unevenness and controls the drive of the third actuator to automatically change the ground height of the harvesting portion. Harvester equipped.
  27.  前記高さ検出部は、撮像装置による撮像画像に基づいて前記凹凸の高さを検出する請求項26に記載の収穫機。 The harvester according to claim 26, wherein the height detection unit detects the height of the unevenness based on an image captured by an image pickup device.
  28.  前記高さ検出部は、光学式測距装置による距離情報に基づいて前記凹凸の高さを検出する請求項26に記載の収穫機。 The harvester according to claim 26, wherein the height detecting unit detects the height of the unevenness based on the distance information obtained by the optical distance measuring device.
  29.  前記収穫部に、前方の植立作物を受け入れる収穫ヘッダと、前記収穫ヘッダに支持されるとともに前記植立作物を切断する切断刃と、が備えられ、
     前記高さ検出部は、前記切断刃よりも前側における前記凹凸の高さを検出する請求項26から28の何れか一項に記載の収穫機。
    The harvesting section is provided with a harvesting header that accepts the planted crop in front and a cutting blade that is supported by the harvesting header and cuts the planted crop.
    The harvester according to any one of claims 26 to 28, wherein the height detecting unit detects the height of the unevenness on the front side of the cutting blade.
  30.  前記収穫ヘッダの先端部の収穫幅方向における端部位置にデバイダが設けられ、
     前記高さ検出部は、前記デバイダよりも前側における前記凹凸の高さを検出する請求項29に記載の収穫機。
    A divider is provided at the end position of the tip of the harvest header in the harvest width direction.
    29. The harvester according to claim 29, wherein the height detecting unit detects the height of the unevenness on the front side of the divider.
  31.  前記高さ検出部は、前記凹凸の高さとして畝高さを検出する請求項26から30の何れか一項に記載の収穫機。 The harvester according to any one of claims 26 to 30, wherein the height detecting unit detects the ridge height as the height of the unevenness.
  32.  前記収穫部の作業幅に亘って複数の前記凹凸が並列し、
     前記高さ検出部は、前記複数の凹凸の高さを検出可能に構成され、
     前記収穫高さ制御部は、前記複数の凹凸のうちの最も高い前記凹凸を基準に前記収穫部の対地高さを決定する請求項26から31の何れか一項に記載の収穫機。
    A plurality of the unevennesses are arranged in parallel over the working width of the harvesting portion.
    The height detection unit is configured to be able to detect the height of the plurality of irregularities.
    The harvester according to any one of claims 26 to 31, wherein the harvest height control unit determines the ground height of the harvest unit based on the highest unevenness among the plurality of irregularities.
  33.  前記収穫部をローリングさせて前記収穫部の左右の傾きを変更可能な収穫傾斜変更機構が備えられ、
     前記収穫高さ制御部は、前記収穫部の収穫幅の範囲内において、前記複数の凹凸のうちの左右一方側の領域の前記凹凸の高さが前記複数の凹凸のうちの左右他方側の領域の前記凹凸の高さよりも高い場合、前記収穫部のうちの前記左右一方側の部分の対地高さを前記収穫部のうちの前記左右他方側の部分の対地高さよりも高くするように、前記収穫傾斜変更機構に前記収穫部の左右の傾きを変更させる請求項32に記載の収穫機。
    A harvest tilt changing mechanism that can change the left-right tilt of the harvest section by rolling the harvest section is provided.
    In the harvest height control unit, within the range of the harvest width of the harvesting unit, the height of the unevenness in the left and right one-sided regions of the plurality of irregularities is the left and right other-side regions of the plurality of irregularities. When it is higher than the height of the unevenness, the height of the left and right one side of the harvesting portion is higher than the ground height of the left and right other side of the harvesting portion. The harvesting machine according to claim 32, wherein the harvesting inclination changing mechanism changes the left-right inclination of the harvesting portion.
  34.  前記収穫部をローリングさせて前記収穫部の左右の傾きを変更可能な収穫傾斜変更機構が備えられ、
     前記収穫高さ制御部は、前記収穫部が水平姿勢となるように、前記収穫傾斜変更機構に前記収穫部の左右の傾きを変更させる請求項26から33の何れか一項に記載の収穫機。
    A harvest tilt changing mechanism that can change the left-right tilt of the harvest section by rolling the harvest section is provided.
    The harvester according to any one of claims 26 to 33, wherein the harvest height control unit causes the harvest inclination changing mechanism to change the left-right inclination of the harvest portion so that the harvest portion is in a horizontal posture. ..
  35.  機体の位置を示す測位データを出力する測位ユニットと、
     前記凹凸の高さを前記測位データと関連付けて記憶可能な記憶部と、が備えられ、
     前記高さ検出部は、走行装置が一方向へ向かって走行する際に、前記収穫部の収穫幅よりも左右外側に隣接する未収穫領域における前記凹凸の高さである第一高さを検出可能に構成され、
     前記記憶部は、前記第一高さを前記測位データと関連付けて記憶し、
     前記収穫高さ制御部は、前記未収穫領域が前記収穫幅の範囲に位置する状態で走行装置が前記一方向と反対方向へ向かって走行する際に前記高さ検出部によって検出された前記凹凸の高さである第二高さと、前記記憶部に記憶された前記第一高さと、に基づいて前記収穫部の対地高さを決定する請求項26から34の何れか一項に記載の収穫機。
    A positioning unit that outputs positioning data that indicates the position of the aircraft, and a positioning unit that outputs positioning data.
    A storage unit that can store the height of the unevenness in association with the positioning data is provided.
    When the traveling device travels in one direction, the height detecting unit detects the first height, which is the height of the unevenness in the unharvested region adjacent to the left and right outer sides of the harvesting width of the harvesting unit. Possible to be configured,
    The storage unit stores the first height in association with the positioning data.
    The harvest height control unit is the unevenness detected by the height detection unit when the traveling device travels in the direction opposite to the one direction in a state where the unharvested region is located within the harvest width range. The harvest according to any one of claims 26 to 34, which determines the height of the harvesting section to the ground based on the second height, which is the height of the harvesting section, and the first height stored in the storage section. Machine.
  36.  圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御システムであって、
     前記収穫部の前方における圃場の凹凸の高さを検出する非接触式の高さ検出部と、
     前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御部と、が備えられている制御システム。
    A control system for a harvester that has a traveling device that can travel in the field, a harvesting section that harvests crops in the field while being supported up and down by the machine, and a third actuator that raises and lowers the harvesting section. There,
    A non-contact height detection unit that detects the height of unevenness in the field in front of the harvesting unit, and
    A harvest height control unit that determines the ground height of the harvesting portion based on the height of the unevenness and controls the drive of the third actuator to automatically change the ground height of the harvesting portion. The control system provided.
  37.  圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御方法であって、
     前記収穫部の前方における圃場の凹凸の高さを非接触式の高さ検出部で検出する高さ検出ステップと、
     前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御ステップと、を備える制御方法。
    A control method for a harvester having a traveling device capable of traveling in a field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. There,
    A height detection step in which the height of the unevenness of the field in front of the harvesting part is detected by a non-contact height detecting part, and
    A harvest height control step that determines the ground height of the harvesting portion based on the height of the unevenness and controls the drive of the third actuator to automatically change the ground height of the harvesting portion. Control method to prepare.
  38.  圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御プログラムにおいて、
     前記収穫部の前方における圃場の凹凸の高さを非接触式の高さ検出部で検出する高さ検出機能と、
     前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御機能と、をコンピュータに実行させる制御プログラム。
    In a control program of a harvester having a traveling device capable of traveling in a field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. ,
    A height detection function that detects the height of the unevenness of the field in front of the harvesting part with a non-contact height detecting part, and
    A harvest height control function that determines the ground height of the harvesting portion based on the height of the unevenness and controls the drive of the third actuator to automatically change the ground height of the harvesting portion. A control program that lets a computer run.
  39.  圃場を走行可能な走行装置と、機体に上下昇降可能に支持された状態で圃場の作物を収穫する収穫部と、前記収穫部を昇降操作する第三アクチュエータと、を有する収穫機の制御プログラムが記録されている記録媒体において、
     前記収穫部の前方における圃場の凹凸の高さを非接触式の高さ検出部で検出する高さ検出機能と、
     前記凹凸の高さに基づいて前記収穫部の対地高さを決定し、前記第三アクチュエータの駆動を制御して前記収穫部の対地高さを自動的に変更する収穫高さ制御機能と、をコンピュータに実行させる制御プログラムが記録されている記録媒体。
    A control program for a harvester having a traveling device capable of traveling in a field, a harvesting section for harvesting crops in the field while being supported by the machine body so as to be able to move up and down, and a third actuator for raising and lowering the harvesting section. In the recording medium on which it is recorded,
    A height detection function that detects the height of the unevenness of the field in front of the harvesting part with a non-contact height detecting part, and
    A harvest height control function that determines the ground height of the harvesting portion based on the height of the unevenness and controls the drive of the third actuator to automatically change the ground height of the harvesting portion. A recording medium on which a control program to be executed by a computer is recorded.
  40.  圃場を走行可能な走行装置と、
     圃場の作物を収穫する収穫装置と、
     作業走行しながら作業後の圃場状態を検出する圃場状態検出部と、
     前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更可能な状態変更部と、が備えられている収穫機。
    A traveling device that can travel in the field and
    A harvesting device that harvests crops in the field,
    A field condition detection unit that detects the field condition after work while running,
    A harvester provided with a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state after the work.
  41.  前記圃場状態検出部は、前記収穫装置による収穫作業後の収穫跡を検出し、
     前記状態変更部は、前記収穫跡に基づいて前記収穫装置の対地高さが高すぎると判定すると、前記収穫装置の対地高さを低く変更する請求項40に記載の収穫機。
    The field condition detection unit detects the harvest trace after the harvesting operation by the harvesting device, and detects the harvest trace.
    The harvester according to claim 40, wherein the state changing unit determines that the ground height of the harvesting device is too high based on the harvest trace, and changes the ground height of the harvesting device to a low level.
  42.  前記収穫装置に、前方の植立作物を受け入れる収穫ヘッダと、植立作物を掻き込む掻込リールと、が備えられ、
     前記圃場状態検出部は、前記収穫装置による収穫作業後に収穫されずに残された残作物を検出可能に構成され、
     前記状態変更部は、前記残作物が前記圃場状態検出部によって検出されると、前記走行装置をあらかじめ設定された距離だけ後進させ、前記収穫ヘッダの上下位置を最も下側の領域に位置させるとともに前記掻込リールの位置を最も下側の領域かつ最も前側の領域に位置させ、前記後進の完了後に前記走行装置の車速を前記残作物が検出される前の車速よりも減速させた状態で前記走行装置を前進させる請求項40または41に記載の収穫機。
    The harvesting device is provided with a harvesting header for receiving the planted crop in front and a scraping reel for scraping the planted crop.
    The field condition detection unit is configured to be able to detect residual crops left unharvested after the harvesting operation by the harvesting device.
    When the residual crop is detected by the field condition detection unit, the state change unit moves the traveling device backward by a preset distance, and positions the upper and lower positions of the harvest header in the lowermost region. The position of the scraping reel is positioned in the lowermost region and the frontmost region, and the vehicle speed of the traveling device is decelerated from the vehicle speed before the residual crop is detected after the completion of the reverse movement. The harvester according to claim 40 or 41, which advances the traveling device.
  43.  前記圃場状態検出部は、前記作業後の圃場状態として、前記収穫装置が作業した直後の圃場状態を検出する請求項40から42の何れか一項に記載の収穫機。 The harvester according to any one of claims 40 to 42, wherein the field state detection unit detects the field state immediately after the harvesting apparatus has worked as the field state after the work.
  44.  前記収穫装置によって収穫された処理作物を後方へ案内する送塵弁を有し、前記処理作物を脱穀処理する脱穀部と、
     前記脱穀部の下方に設けられるとともに、前記脱穀処理された前記処理作物を受け止めて後方へ揺動搬送しながら前記処理作物を収穫物と非収穫物とに選別する選別処理部と、
     前記処理作物を前記収穫物と前記非収穫物とに選別するための選別風を前記選別処理部に供給する唐箕と、が備えられ、
     前記圃場状態検出部は、前記脱穀部と前記選別処理部との少なくとも一方から排出された前記収穫物を検出可能に構成され、
     前記状態変更部は、前記収穫物が前記圃場状態検出部によって検出されると、前記脱穀部と前記選別処理部と前記唐箕との少なくとも一つを制御し、かつ、前記走行装置の車速を制御する請求項40または41に記載の収穫機。
    A threshing section that has a dust valve that guides the processed crops harvested by the harvesting device to the rear and threshs the processed crops.
    A sorting processing unit provided below the threshing unit and sorting the processed crop into harvested and non-harvested crops while receiving the threshed processed crop and rocking it backward.
    A wall insert that supplies a sorting wind for sorting the processed crop into the harvested product and the non-harvested product to the sorting processing unit is provided.
    The field condition detection unit is configured to be able to detect the harvested product discharged from at least one of the threshing unit and the sorting processing unit.
    When the harvested product is detected by the field condition detection unit, the state changing unit controls at least one of the threshing unit, the sorting processing unit, and the wall insert, and controls the vehicle speed of the traveling device. The harvester according to claim 40 or 41.
  45.  前記圃場状態検出部は、前記作業後の圃場状態を撮像する撮像装置である請求項40から44の何れか一項に記載の収穫機。 The harvester according to any one of claims 40 to 44, wherein the field state detection unit is an image pickup device that captures an image of the field state after the work.
  46.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御システムであって、
     前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出部と、
     前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更可能な状態変更部と、が備えられている制御システム。
    It is a control system of a harvester having a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    A field condition detection unit that detects the field condition after the work while running the work on the harvester,
    A control system including a state changing unit capable of changing the working state of at least one of the traveling device and the harvesting device according to the field state after the work.
  47.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御方法であって、
     前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出ステップと、
     前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更する状態変更ステップと、を備える制御方法。
    It is a control method of a harvester having a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    The field condition detection step of detecting the field condition after the work while running the work on the harvester,
    A control method comprising a state change step of changing at least one work state of the traveling device and the harvesting device according to the field state after the work.
  48.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御プログラムにおいて、
     前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出機能と、
     前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更する状態変更機能と、をコンピュータに実行させる制御プログラム。
    In a control program of a harvester having a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field.
    A field condition detection function that detects the field condition after work while running the work on the harvester,
    A control program for causing a computer to execute a state change function for changing at least one work state of the traveling device and the harvesting device according to the field state after the work.
  49.  圃場を走行可能な走行装置と、圃場の作物を収穫する収穫装置と、を有する収穫機の制御プログラムが記録されている記録媒体において、
     前記収穫機に作業走行させながら作業後の圃場状態を検出する圃場状態検出機能と、
     前記作業後の圃場状態に応じて前記走行装置と前記収穫装置との少なくとも一方の作業状態を変更する状態変更機能と、をコンピュータに実行させる制御プログラムが記録されている記録媒体。
    In a recording medium in which a control program of a harvester having a traveling device capable of traveling in a field and a harvesting device for harvesting crops in the field is recorded.
    A field condition detection function that detects the field condition after work while running the work on the harvester,
    A recording medium in which a control program for causing a computer to execute a state change function for changing at least one work state of the traveling device and the harvesting device according to the field state after the work is recorded.
  50.  機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部と、
     圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得部と、
     機体の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御部と、が備えられている収穫機。
    A harvesting section that can be raised and lowered with respect to the aircraft and harvests crops in the field,
    An acquisition unit that acquires outer edge information indicating the three-dimensional shape of the outer edge of the field provided so as to surround the field, and an acquisition unit.
    When the harvesting part overlaps with the outer edge of the field in a plan view as the machine travels, the harvesting part of the harvesting part is based on the information of the outer edge so that the harvesting part does not interfere with the outer edge of the field. A harvester equipped with an elevating control unit that automatically controls elevating and elevating.
  51.  前記昇降制御部は、前記圃場外縁部の地上高さが低いほど、前記収穫部の地上高さが低くなるように、前記収穫部の昇降を制御する請求項50に記載の収穫機。 The harvester according to claim 50, wherein the elevating control unit controls the elevating and lowering of the harvesting unit so that the lower the above-ground height of the field outer edge is, the lower the above-ground height of the harvesting unit is.
  52.  前記昇降制御部は、前記収穫部と前記圃場外縁部との間の離間距離が所定値よりも広い状態が維持されるように、前記収穫部の昇降を制御する請求項50または51に記載の収穫機。 The 50 or 51. Harvester.
  53.  前記圃場外縁部の地上高さが所定高さよりも高い場合に前記収穫部が平面視で前記圃場外縁部に重複しないように前記機体の走行を制御する走行制御部を備える請求項50から52の何れか一項に記載の収穫機。 50. The harvester described in any one of the items.
  54.  圃場内の最外周部において前記圃場外縁部に沿って行われる走行である周囲収穫走行を実行可能に構成されており、
     前記周囲収穫走行の実行中に、前記圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する検知部と、
     前記検知部の検知結果に基づいて前記圃場外縁部の立体形状の分布を示す外縁部マップを生成するマップ生成部と、を備え、
     前記取得部は、前記外縁部マップを取得し、
     前記昇降制御部は、前記外縁部マップに基づいて前記収穫部の昇降を制御する請求項50から53の何れか一項に記載の収穫機。
    It is configured to enable the surrounding harvesting run, which is the run along the outer edge of the field, at the outermost periphery of the field.
    A detection unit that detects the three-dimensional shape of the portion of the outer edge of the field adjacent to the area where the crop has been harvested during the surrounding harvesting run.
    A map generation unit that generates an outer edge map showing the distribution of the three-dimensional shape of the field outer edge based on the detection result of the detection unit is provided.
    The acquisition unit acquires the outer edge map and obtains the outer edge map.
    The harvester according to any one of claims 50 to 53, wherein the elevating control unit controls the elevating of the harvesting unit based on the outer edge map.
  55.  圃場内の最外周部において前記圃場外縁部に沿って行われる走行である周囲収穫走行を実行可能に構成されており、
     前記取得部は、前記圃場外縁部の立体形状の分布を示す外縁部マップを取得し、
     前記周囲収穫走行の実行中に、前記圃場外縁部のうち、圃場内において作物が収穫済みである領域に隣接する部分の立体形状を検知する検知部と、
     前記検知部の検知結果に基づいて前記外縁部マップを更新するマップ更新部と、を備え、
     前記昇降制御部は、前記マップ更新部により更新された前記外縁部マップに基づいて前記収穫部の昇降を制御する請求項50から53の何れか一項に記載の収穫機。
    It is configured to enable the surrounding harvesting run, which is the run along the outer edge of the field, at the outermost periphery of the field.
    The acquisition unit acquires an outer edge map showing the distribution of the three-dimensional shape of the outer edge of the field.
    A detection unit that detects the three-dimensional shape of the portion of the outer edge of the field adjacent to the area where the crop has been harvested during the surrounding harvesting run.
    A map update unit that updates the outer edge map based on the detection result of the detection unit is provided.
    The harvester according to any one of claims 50 to 53, wherein the elevating control unit controls the elevating of the harvesting unit based on the outer edge map updated by the map updating unit.
  56.  機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御システムであって、
     圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得部と、
     前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御部と、が備えられている制御システム。
    It is a control system of a harvester that is configured to be able to move up and down with respect to the aircraft and has a harvesting section for harvesting crops in the field.
    An acquisition unit that acquires outer edge information indicating the three-dimensional shape of the outer edge of the field provided so as to surround the field, and an acquisition unit.
    When the harvesting part overlaps with the outer edge of the field in a plan view as the harvester runs, the harvesting part is based on the outer edge information so that the harvesting part does not interfere with the outer edge of the field. A control system equipped with an elevating control unit that automatically controls the elevating of the unit.
  57.  機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御方法であって、
     圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得ステップと、
     前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御ステップと、を備える制御方法。
    It is a control method of a harvester that is configured to be able to move up and down with respect to the aircraft and has a harvesting section for harvesting crops in the field.
    An acquisition step for acquiring outer edge information indicating the three-dimensional shape of the outer edge of the field provided so as to surround the field, and
    When the harvesting part overlaps with the outer edge of the field in a plan view as the harvester runs, the harvesting part is based on the outer edge information so that the harvesting part does not interfere with the outer edge of the field. A control method including an elevating control step that automatically controls the elevating and lowering of a unit.
  58.  機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御プログラムにおいて、
     圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得機能と、
     前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御機能と、をコンピュータに実行させる制御プログラム。
    In the control program of a harvester that is configured to be able to move up and down with respect to the aircraft and has a harvester that harvests crops in the field.
    An acquisition function for acquiring information on the outer edge of the field, which is provided to surround the field and indicates the three-dimensional shape of the outer edge of the field.
    When the harvesting portion overlaps with the outer edge portion of the field in a plan view as the harvester runs, the harvesting portion is harvested so as not to interfere with the outer edge portion of the field based on the information on the outer edge portion. A control program that causes a computer to execute an elevating control function that automatically controls the elevating and lowering of parts.
  59.  機体に対して昇降可能に構成されるとともに圃場の作物を収穫する収穫部を有する収穫機の制御プログラムが記録されている記録媒体において、
     圃場を囲む状態で設けられた圃場外縁部の立体形状を示す外縁部情報を取得する取得機能と、
     前記収穫機の走行に伴って前記収穫部が平面視で前記圃場外縁部に重複する状態となる際、前記外縁部情報に基づいて、前記収穫部が前記圃場外縁部に干渉しないように前記収穫部の昇降を自動的に制御する昇降制御機能と、をコンピュータに実行させる制御プログラムが記録されている記録媒体。
    In a recording medium in which a control program for a harvester, which is configured to be able to move up and down with respect to the aircraft and has a harvesting section for harvesting crops in the field, is recorded.
    An acquisition function for acquiring information on the outer edge of the field, which is provided to surround the field and indicates the three-dimensional shape of the outer edge of the field.
    When the harvesting portion overlaps with the outer edge portion of the field in a plan view as the harvester runs, the harvesting portion is harvested so as not to interfere with the outer edge portion of the field based on the information on the outer edge portion. A recording medium in which a control program that causes a computer to execute an elevating control function that automatically controls the elevating and lowering of a unit is recorded.
PCT/JP2021/022768 2020-06-23 2021-06-16 Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium WO2021261343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180024574.0A CN115334867A (en) 2020-06-23 2021-06-16 Harvester, control system for harvester, control method for harvester, control program for harvester, and recording medium

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2020107946A JP2022002478A (en) 2020-06-23 2020-06-23 Harvester
JP2020107944A JP7433145B2 (en) 2020-06-23 2020-06-23 harvester
JP2020-107946 2020-06-23
JP2020-107943 2020-06-23
JP2020107943A JP2022002475A (en) 2020-06-23 2020-06-23 Harvester
JP2020-107949 2020-06-23
JP2020-107944 2020-06-23
JP2020107949A JP7423443B2 (en) 2020-06-23 2020-06-23 harvester
JP2020107947A JP7423441B2 (en) 2020-06-23 2020-06-23 harvester
JP2020-107947 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261343A1 true WO2021261343A1 (en) 2021-12-30

Family

ID=79281275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022768 WO2021261343A1 (en) 2020-06-23 2021-06-16 Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium

Country Status (2)

Country Link
CN (1) CN115334867A (en)
WO (1) WO2021261343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223386A (en) * 2022-02-25 2022-03-25 农业农村部南京农业机械化研究所 Regulation and control method of combined harvester reel operation parameter regulation and control system
CN115586538A (en) * 2022-10-17 2023-01-10 南通大学 Spike head feeding depth control method of semi-feeding combine harvester based on laser radar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121409A (en) * 1980-02-26 1981-09-24 Kubota Ltd Combined harvester
JPH02117303A (en) * 1988-10-27 1990-05-01 Yanmar Agricult Equip Co Ltd Control device of pretreating device of reaping in combine
JP2016010371A (en) * 2014-06-30 2016-01-21 井関農機株式会社 Combine-harvester
JP2016086668A (en) * 2014-10-30 2016-05-23 井関農機株式会社 combine
JP2019080496A (en) * 2017-10-27 2019-05-30 井関農機株式会社 Assist device for combine steering
JP2019129760A (en) * 2018-01-31 2019-08-08 井関農機株式会社 Combine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083433A (en) * 1998-09-08 2000-03-28 Kubota Corp Farm working vehicle
DE10129136A1 (en) * 2001-06-16 2002-12-19 Deere & Co Device for the automatic steering of an agricultural work vehicle
TW201034560A (en) * 2009-03-17 2010-10-01 Iseki Agricult Mach Combined harvester
JP6748869B2 (en) * 2015-12-03 2020-09-02 三菱マヒンドラ農機株式会社 combine
CN108777938B (en) * 2016-03-29 2022-04-29 洋马动力科技有限公司 Combine harvester
JP6851222B2 (en) * 2017-02-28 2021-03-31 株式会社クボタ Harvester
JP6854713B2 (en) * 2017-06-23 2021-04-07 株式会社クボタ combine
JP6917883B2 (en) * 2017-12-25 2021-08-11 株式会社クボタ Field work machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121409A (en) * 1980-02-26 1981-09-24 Kubota Ltd Combined harvester
JPH02117303A (en) * 1988-10-27 1990-05-01 Yanmar Agricult Equip Co Ltd Control device of pretreating device of reaping in combine
JP2016010371A (en) * 2014-06-30 2016-01-21 井関農機株式会社 Combine-harvester
JP2016086668A (en) * 2014-10-30 2016-05-23 井関農機株式会社 combine
JP2019080496A (en) * 2017-10-27 2019-05-30 井関農機株式会社 Assist device for combine steering
JP2019129760A (en) * 2018-01-31 2019-08-08 井関農機株式会社 Combine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223386A (en) * 2022-02-25 2022-03-25 农业农村部南京农业机械化研究所 Regulation and control method of combined harvester reel operation parameter regulation and control system
CN114223386B (en) * 2022-02-25 2022-05-17 农业农村部南京农业机械化研究所 Regulation and control method of combined harvester reel operation parameter regulation and control system
CN115586538A (en) * 2022-10-17 2023-01-10 南通大学 Spike head feeding depth control method of semi-feeding combine harvester based on laser radar

Also Published As

Publication number Publication date
CN115334867A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
US11044847B2 (en) Cutter head with automatic setting of the reel finger orientation
RU2747303C2 (en) System for controlling the working parameter of a harvester
WO2021261343A1 (en) Harvester, system for controlling harvester, method for controlling harvester, program for controlling harvester, and storage medium
WO2014093814A1 (en) Predictive load estimation through forward vision
US11758847B2 (en) Residue quality assessment and performance system for a harvester
EP3939404A1 (en) System and method of assisted or automated grain unload synchronization
WO2020218464A1 (en) Harvester, obstacle determination program, recording medium on which obstacle determination program is recorded, obstacle determination method, agricultural work machine, control program, recording medium on which control program is recorded, and control method
CN109716917A (en) Harvester with holder photographic device
WO2022123889A1 (en) Work vehicle, object state detection system, object state detection method, object state detection program, and recording medium in which object state detection program is recorded
JP7423441B2 (en) harvester
JP7433145B2 (en) harvester
JP7423440B2 (en) harvester
WO2021261415A1 (en) Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method
JP2022002475A (en) Harvester
JP6919678B2 (en) Work route creation system and combine
JP7423443B2 (en) harvester
JP2022002478A (en) Harvester
WO2022124001A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
EP3646700B1 (en) Agricultural harvester biomass estimating system
EP4295661A1 (en) Controllable end dividers
US20240074356A1 (en) Method and control device for operating an agricultural harvester and agricultural harvester
KR20230074717A (en) harvest
EP3939409A1 (en) System and method of assisted or automated grain unload synchronization
EP3939403A1 (en) System and method of assisted or automated unload synchronization
US20240000010A1 (en) Combine Automation Regime-based Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830060

Country of ref document: EP

Kind code of ref document: A1