WO2019124174A1 - Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method - Google Patents

Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method Download PDF

Info

Publication number
WO2019124174A1
WO2019124174A1 PCT/JP2018/045590 JP2018045590W WO2019124174A1 WO 2019124174 A1 WO2019124174 A1 WO 2019124174A1 JP 2018045590 W JP2018045590 W JP 2018045590W WO 2019124174 A1 WO2019124174 A1 WO 2019124174A1
Authority
WO
WIPO (PCT)
Prior art keywords
combine
harvester
traveling
threshing
reaper
Prior art date
Application number
PCT/JP2018/045590
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017242049A external-priority patent/JP6843037B2/en
Priority claimed from JP2017245308A external-priority patent/JP7142433B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020207013086A priority Critical patent/KR20200096496A/en
Priority to CN201880074147.1A priority patent/CN111386033B/en
Publication of WO2019124174A1 publication Critical patent/WO2019124174A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/30Straw separators, i.e. straw walkers, for separating residual grain from the straw
    • A01F12/32Straw separators, i.e. straw walkers, for separating residual grain from the straw with shaker screens or sieves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/222Harvesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a combine control system for controlling a combine having a reaping device for reaping field cropping of a field and a threshing device for threshing the reaping cropping remnant harvested by the reaping device.
  • the present invention has a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank.
  • a harvester control system for controlling a harvester.
  • Patent Document 1 describes an invention of an automatic travel combine. In the harvesting operation using the combine, the operator manually operates the combine at the beginning of the harvesting operation and performs the mowing travel so as to go around the outer peripheral portion in the field.
  • the traveling direction of the harvester is recorded. Then, the automatic traveling based on the recorded direction performs the reaping travel in the uncut area in the field.
  • a collecting tank is disposed at an outer peripheral portion in a field.
  • the collection tank is configured to be able to receive and store grains discharged from the discharge cylinder of the combine.
  • the combine of patent document 1 is comprised so that reaping driving
  • region may be performed by repeating the lap
  • Patent Document 2 includes a harvesting device for harvesting crops in the field ("the harvesting unit” in Patent Document 2), and a harvest tank for storing the harvested material harvested by the harvesting device (in Invention of a harvester (“Combine” in Patent Document 2) having a grain tank ”) and a discharge device (“ grain discharge device “in Patent Document 2) for discharging the harvested material stored in the harvest tank Have been described.
  • the combine is run along the cutting travel path set in the uncut area, and when it becomes necessary to discharge grains etc., the combine is temporarily detached from the cutting travel path
  • a configuration is conceivable which controls the combine so as to make it possible.
  • the combine travels in the existing reaping area until returning to travel along the reaping travel path. That is, during this time, the combine does not reap the grain census. Therefore, after the combine leaves the reaping travel path, the amount of reaping grain fed to the threshing device decreases.
  • the threshing device continues to be driven until return to traveling along the reaping travel route after the combine leaves the reaping travel route. Nevertheless, the threshing device will continue to operate. As a result, the driving of the threshing device is wasted and the threshing efficiency is likely to be reduced. This leads to the deterioration of fuel consumption.
  • An object of the present invention is to provide a combine control system in which the fuel efficiency of the combine is improved.
  • Patent Document 2 does not describe in detail the discharge operation by the discharge device. Here, it is conceivable to stop the harvester near the transport vehicle after the transport vehicle is stopped outside the farmland, and to discharge the harvested material to the transport vehicle by the discharge device.
  • An object of the present invention is to provide a harvester control system capable of reducing the burden of operation by a worker.
  • a feature of the present invention is a combine control system for controlling a combine comprising a reaping device for reaping a field crop in the field and a threshing device for threshing the reaping crop indwelling by the reaping device, the field control system
  • a reaper traveling path calculation unit that calculates a reaper traveling path that is a traveling path for a reaper traveling at a time
  • an automatic reaper traveling control unit that controls the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path.
  • a determination unit that determines whether the threshing efficiency of the threshing device has decreased when the combine has left the harvesting travel path, and the determination unit determines that the threshing efficiency of the threshing device has decreased.
  • a threshing device stop unit for stopping the operation of the threshing device.
  • the threshing device stop unit stops driving the threshing device. Therefore, the driving of the threshing device is less likely to be wasted. Thereby, the fuel consumption of the combine is improved.
  • the threshing apparatus has a rocking and sorting unit for sorting and processing the processed product obtained by the threshing process, and the combine is a processing product which is sorted and processed by the rocking and sorting unit.
  • the determination unit determines that the threshing efficiency of the threshing device has decreased when the amount of the sorted processing detected by the sheave sensor decreases.
  • it is configured.
  • the amount of reaping grain fed to the threshing device decreases, the amount of processed material being sorted in the shaking and sorting unit decreases. At this time, the threshing efficiency of the threshing device tends to decrease.
  • the determination unit is configured to determine that the threshing efficiency of the threshing device has decreased when the period in which the reaper is not driven continues.
  • the reaper continues to be inactive, the amount of reaper supplied to the threshing device will be reduced. At this time, the threshing efficiency of the threshing device tends to decrease.
  • the driving of the threshing device is stopped by the threshing device stop unit, the driving of the threshing device is performed when the combine pivots to return to the automatic traveling along the reaping traveling path. It is preferable to provide a threshing device start unit for resuming
  • the reaping device harvests the field crop of the field. Along with this, the reaper is fed sequentially to the threshing device. Therefore, in the automatic travel along the reaping travel path, the threshing device needs to be driven.
  • the driving of the threshing device is resumed by the threshing device start unit.
  • the configuration in which the driving of the threshing device is resumed at an appropriate timing can be realized.
  • another feature of the present invention is a combine control program for controlling a combine having a reaping device for reaping field crop straw in a field, and a threshing device for threshing reaping crop straw reaped by the reaping device.
  • a reaper traveling path calculating function for calculating a reaper traveling path which is a traveling path for a reaper traveling in a field, and an automatic for controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path.
  • a threshing efficiency of the threshing device is reduced by the reaper traveling control function, a determination function of determining whether the threshing efficiency of the threshing device is reduced when the combine is separated from the reaping travel route, and the determination function And a threshing device stop function of stopping the operation of the threshing device when it is determined that the threshing device has been determined.
  • another feature of the present invention is a combine control program for controlling a combine comprising a reaping device for reaping field crop straw in a field, and a threshing device for threshing reaping crop waste remnant harvested by the reaping device.
  • a reaper traveling path calculating function for calculating a reaper traveling path which is a traveling path for a reaper traveling in a field, which is a recorded recording medium, and the above-mentioned reaper travel is performed by automatic traveling along the reaper traveling path.
  • the threshing device according to an automatic reaper traveling control function for controlling combine, a determination function for determining whether or not the threshing efficiency of the threshing device is lowered when the combine is separated from the reaping travel route, and the threshing device A threshing device stop function of stopping the operation of the threshing device when it is determined that the threshing efficiency of It lies in the fact that records Vine control program.
  • another feature of the present invention is a combine control method for controlling a combine comprising: a reaper for reaping a field crop in the field; and a threshing device for threshing the reaped reaper harvested by the reaper.
  • a reaper traveling route calculating step for calculating a reaper traveling route which is a traveling route for a reaper traveling in a field, and an automatic for controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling route
  • a determination step of determining whether the threshing efficiency of the threshing device is lowered when the combine leaves the reaping traveling route, the threshing efficiency of the threshing device is lowered by the determination step
  • a threshing device stop step of stopping the operation of the threshing device when it is determined that the threshing device has been determined.
  • the solution means corresponding to the problem [2] is as follows.
  • the features of the present invention include a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank.
  • a harvester control system for controlling a harvester, wherein the discharge operation is performed by the discharge device when the discharge operation is performed by the discharge device at a position where the harvester has moved by a manual operation.
  • a position storage unit for storing the stopping position of the harvester at the time point, a position setting unit for setting a target stopping position based on the stop position of the harvester stored in the position storage unit; And a traveling control unit configured to control traveling of the harvester so that the harvester automatically stops at the target stopping position when work is performed.
  • the stop position of the harvester at that time is stored by the position storage unit. Then, in the second and subsequent discharging operations, the harvester automatically stops at the stored stop position under the control of the travel control unit.
  • a signal output unit for outputting an instruction signal for instructing a stopping position of the harvester for the discharging operation by the discharging device is provided, and the position setting unit is the discharging device in the harvesting operation in the field.
  • the instruction signal is output by the signal output unit before the first discharging operation is performed
  • the target stopping position is set based on the instruction signal
  • the position setting unit is configured to When the discharging operation is performed by the discharging device after the harvester has moved by manual operation from the target stop position set based on the instruction signal, the stop of the harvester stored in the position storage unit It is preferable to reset the target stopping position based on the position.
  • the target stopping position is set when the signal output unit outputs the instruction signal before the first discharging operation is performed in the field of the harvesting operation.
  • the discharging operation is performed if the harvesting machine is moved by manual operation and then the discharging operation is performed.
  • the stop position of the harvester at the time is stored by the position storage unit. Then, in the discharge operation thereafter, the harvester automatically stops at the stored stop position. That is, when the instructed target stop position is inappropriate, the target stop position can be easily corrected.
  • the airframe of the harvester at the time when the discharging operation by the discharge device is performed.
  • a direction storage unit for storing a direction, and a direction setting unit for setting a target stopping direction based on the orientation of the machine body of the harvester stored in the direction storage unit, the travel control unit including the discharge device It is preferable to control traveling of the harvester so that the harvester automatically stops at the target stopping position in a state in which the harvester faces the target stopping direction when the discharging operation is performed.
  • the orientation of the harvester's fuselage at that time is stored by the direction storage unit. Then, in the second and subsequent discharge operations, the harvest machine faces the direction of the stored vehicle and stops by the control of the traveling control unit.
  • another feature of the present invention discharges the harvest stored in the harvest tank, the harvest tank for harvesting the field crop, the harvest tank for storing the harvest harvested by the harvest apparatus, and the harvest tank.
  • a position storing function for storing the stopping position of the harvester at the time when the work is performed; a position setting function for setting a target stopping position based on the stopping position of the harvester stored by the position storing function;
  • a traveling control function of controlling traveling of the harvester so that the harvester automatically stops at the target stopping position when the discharging operation is performed by the discharging device; There to be realized in the data.
  • a recording medium recording a harvester control program for controlling a harvester having a discharge device, wherein the discharge device performs a discharge operation at a position before the harvester has moved manually.
  • a position for setting a target stopping position based on the stop position of the harvester stored by the position storage function and the position storage function of storing the stop position of the harvester at the time when the discharge operation by the discharge device is performed A traveling control for controlling the traveling of the harvester so that the harvester automatically stops at the target stop position when the setting function and the discharge operation by the discharge device are performed In that recording the harvester control program for implementing the ability to computer.
  • another feature of the present invention discharges the harvest stored in the harvest tank, the harvest tank for harvesting the field crop, the harvest tank for storing the harvest harvested by the harvest apparatus, and the harvest tank.
  • FIG. 11 It is a figure which shows 1st Embodiment (following, it is the same to FIG. 11), and is a left view of a combine.
  • It is a block diagram showing composition of a combine control system. It is a vertical side view which shows the structure of a threshing apparatus. It is a figure which shows the round trip in a field. It is a figure which shows a reaping travel path and a detachment return path. It is a figure which shows mowing travel along a mowing travel path. It is a figure which shows a mode that a combine remove
  • the first embodiment will be described with reference to FIGS. 1 to 11.
  • the direction of arrow F shown in FIGS. 1 and 3 is “front”
  • the direction of arrow B is “rear”.
  • the direction of the arrow U shown in FIGS. 1 and 3 is “up”
  • the direction of the arrow D is “down”.
  • the ordinary type combine 1 has a crawler type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a conveying device 16, a grain discharging device 18, satellite positioning A module 80 is provided.
  • the traveling device 11 is provided at the lower portion of the combine 1. Combine 1 is self-propelled by traveling device 11.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11.
  • An operator who monitors the operation of the combine 1 can ride on the operation unit 12. The worker may monitor the operation of the combine 1 from the outside of the combine 1.
  • the grain discharging device 18 is provided on the upper side of the grain tank 14.
  • the satellite positioning module 80 is attached to the upper surface of the driver 12.
  • the harvesting device H is provided at the front of the combine 1.
  • the transport device 16 is provided on the rear side of the harvesting device H.
  • the harvesting device H also has a reaper 15 and a reel 17.
  • the reaper 15 reaps the field crop of the field.
  • the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. With this configuration, the harvester H harvests the grain in the field. Then, the combine 1 is capable of reaping travel traveling by the traveling device 11 while reaping the crop of the field in the field with the reaper 15.
  • the cropped rice bran that has been harvested by the harvesting device 15 is transported by the transport device 16 to the threshing device 13.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18 as needed.
  • the combine 1 has the reaper 15 for harvesting the field crop of the field and the threshing device 13 for threshing the reaper harvested by the reaper 15.
  • the communication terminal 4 is disposed in the operation unit 12.
  • the communication terminal 4 is configured to be able to display various information.
  • the communication terminal 4 is fixed to the operation unit 12.
  • the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the operation unit 12, and the communication terminal 4 may be located outside the machine of the combine 1 .
  • the combine 1 includes an engine 51, a reaper clutch C15, and a threshing clutch C13.
  • the power output from the engine 51 is distributed to the reaper clutch C15, the threshing clutch C13, and the traveling device 11.
  • the traveling device 11 is driven by the motive power from the engine 51.
  • reaper clutch C15 and the threshing clutch C13 are both configured to be changeable between an on state in which power is transmitted and a disconnected state in which no power is transmitted.
  • the reaper clutch C15 When the reaper clutch C15 is in the off state, the power output from the engine 51 is not transmitted to the reaper 15. At this time, the reaper 15 is in a non-driven state.
  • the reaper clutch C15 When the reaper clutch C15 is in the on state, the power output from the engine 51 is transmitted to the reaper 15. At this time, the reaper 15 is driven by the power from the engine 51. That is, at this time, the reaper 15 is in a driving state.
  • the threshing clutch C13 When the threshing clutch C13 is in the disengaged state, the power output from the engine 51 is not transmitted to the threshing device 13. At this time, the threshing device 13 is in a non-driven state.
  • the threshing clutch C13 When the threshing clutch C13 is in the on state, the power output from the engine 51 is transmitted to the threshing device 13. At this time, the threshing device 13 is driven by the power from the engine 51. That is, at this time, the threshing device 13 is in the driving state.
  • the threshing device 13 has a threshing processing unit 13 a and a swing sorting unit 13 b.
  • the swing sorting unit 13b is located below the threshing processing unit 13a.
  • the threshing processing unit 13a has a throttling chamber 30, a threshing cylinder 31, and a net 32. As shown in FIG. 3, the threshing cylinder 31 is located inside of the handling chamber 30. Also, the receiving net 32 is located below the threshing cylinder 31.
  • the harvesting grain crucible reaped by the harvesting device 15 is transported by the transport device 16 to the processing chamber 30. Then, the reaping grain gutter is subjected to threshing processing in the throttling chamber 30 by the threshing drum 31 which is rotated by the power from the engine 51 and the net 32. The processed material obtained by the threshing process falls from the net 32 to the rocking and sorting unit 13b.
  • the threshing processing unit 13a performs threshing processing on the reapsing grain.
  • the rocking and sorting unit 13 b includes a rocking frame 33, a grain pan 34, a sieve wire 35, a first chaff sieve 36, a grain sieve 37, a second chaff sieve 38, a tongue 39, a No. 1 collecting part 40 and a No. 2 collecting part 41. ing.
  • the swing frame 33 is configured to swing by the power from the engine 51.
  • the grain pan 34, the sieve wire 35, the first chaff sieve 36, the grain sieve 37, and the second chaff sieve 38 are supported by the swing frame 33.
  • the grain pan 34, the sieve wire portion 35, the first chaff sheave 36, the grain sheave 37, and the second chaff sheave 38 also rock in association with the rocking of the rocking frame 33.
  • the grain sieve 37 is located below the first chaff sieve 36.
  • the second chaff sieve 38 is located behind and below the first chaff sieve 36.
  • the first collecting unit 40 and the second collecting unit 41 are located below the swinging frame 33.
  • the processed material dropped from the receiving net 32 is shaken by the glen pan 34, the sieve wire 35, the first chaff sheave 36, the gren sheave 37, the second chaff sheave 38, and receives the sorted wind sent from the bales 39.
  • the processed products are sorted into grains and dust such as scraps of straw.
  • the grains dropped from the grain sieve 37 are collected by the No. 1 collecting unit 40 and transported to the grain tank 14.
  • the untreated particles dropped from the second chaff sieve 38 are collected by the No. 2 collection unit 41 and conveyed by the reduction device 42 to the front of the rocking and sorting unit 13 b.
  • the untreated particles transported to the front of the swing sorting unit 13b are sorted again by the swing sorting unit 13b.
  • the rocking and sorting unit 13b sorts and processes the processed product obtained by the threshing process.
  • the threshing apparatus 13 includes the swing sorting unit 13 b that sorts the processed product obtained by the threshing process.
  • a sheave sensor S ⁇ b> 1 is provided in the vicinity of the upper side of the first chaff sieve 36.
  • the sheave sensor S1 detects the thickness of the workpiece on the first chaff sieve 36.
  • the sheave sensor S1 detects the amount of the sorted processed material.
  • the amount of the sorting process is the amount of the process being sorted in the swing sorting unit 13b.
  • the sheave sensor S1 detects the amount of the sorted material in five stages of level 1 to level 5.
  • Level 1 corresponds to the state in which the amount of sorted processed material is the smallest
  • level 5 corresponds to the state in which the amount of sorted processed material is the largest. That is, the larger the number of levels, the larger the amount of sorted products.
  • the combine 1 has the sheave sensor S1 that detects the amount of the processing object which is the amount of the processing object being sorted by the swinging sorting unit 13b.
  • the threshing cylinder 31 When the threshing device 13 is in a driving state, the threshing cylinder 31 is rotated by the power from the engine 51, and the rocking frame 33 is rocked by the power from the engine 51. In addition, when the threshing device 13 is in a non-driven state, the threshing cylinder 31 does not rotate, and the swing frame 33 does not swing.
  • the combine 1 After the combine 1 carries out circling traveling while harvesting grains in the area on the outer peripheral side in the field as shown in FIG. 4, it then performs reaping travel in the area inside the field as shown in FIG. 6. , Are configured to harvest the grain of the field.
  • the combine 1 is controlled by the combine control system A.
  • the configuration of the combine control system A will be described below.
  • the combine control system A includes a satellite positioning module 80 and a control unit 20.
  • the control unit 20 is provided in the combine 1. Further, as described above, the satellite positioning module 80 is also provided in the combine 1.
  • Control unit 20 includes host vehicle position calculation unit 21, route calculation unit 22, travel control unit 23 (corresponding to “automatic reaping travel control unit” according to the present invention), area calculation unit 24, determination unit 25, threshing device start unit 26, the threshing device stop unit 27, the travel prohibition area storage unit 28, and the reaper clutch sensor S2. Further, the above-described sheave sensor S1 is included in the control unit 20.
  • the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 2, the satellite positioning module 80 sends positioning data indicating the vehicle position of the combine 1 to the vehicle position calculating unit 21 based on the received GPS signal.
  • GPS Global Positioning System
  • the vehicle position calculation unit 21 calculates position coordinates of the combine 1 with time based on the positioning data output by the satellite positioning module 80.
  • the calculated positional coordinates of the combine 1 with time are sent to the traveling control unit 23 and the area calculation unit 24.
  • the area calculation unit 24 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 1 received from the host vehicle position calculation unit 21.
  • the area calculation unit 24 calculates the traveling locus of the combine 1 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 1 received from the vehicle position calculation unit 21. .
  • region calculation part 24 calculates the area
  • the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the traveling path of the combine 1 for circumferential traveling on the outer circumference side of the field is indicated by an arrow.
  • the combine 1 performs three rounds.
  • the field is in the state shown in FIG.
  • the area calculation unit 24 calculates an area on the outer circumference side of the field where the combine 1 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the calculation result by the area calculation unit 24 is sent to the route calculation unit 22.
  • the route calculation unit 22 includes a cutting traveling route calculation unit 22 a and a separation / return route calculation unit 22 b.
  • the reaper traveling route calculation unit 22a calculates a reaper traveling route LI, which is a traveling route for reaper traveling in the work target area CA, based on the calculation result received from the area calculation unit 24.
  • the cutting traveling path LI is a plurality of parallel lines parallel to each other.
  • the combine control system A includes the reaping travel path calculation unit 22a that calculates the reaping travel path LI, which is a travel path for reaping travel in the field.
  • the reaper traveling route LI calculated by the reaper traveling route calculating unit 22 a is sent to the traveling control unit 23.
  • the traveling control unit 23 is configured to be able to control the traveling device 11.
  • the traveling control unit 23 controls the automatic traveling of the combine 1 based on the position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the reaper traveling route LI received from the reaper traveling route calculation unit 22a. Do. More specifically, as shown in FIG. 6, the traveling control unit 23 controls the traveling of the combine 1 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
  • the combine control system A includes the travel control unit 23 that controls the combine 1 so that the reaping travel is performed by the automatic travel along the reaping travel route LI.
  • the departure / return route calculation unit 22b calculates the departure / return route LW, which is a traveling route for non-removing travel in the outer peripheral area SA, based on the calculation result received from the area calculation unit 24. Do. As shown in FIG. 5, in the present embodiment, the separation return path LW is a line having a shape along the outer shape of the field.
  • the departure / return route LW calculated by the departure / return route calculation unit 22 b is sent to the traveling control unit 23.
  • the traveling control unit 23 controls automatic traveling of the combine 1 based on the position coordinates of the combine 1 received from the host vehicle position calculation unit 21 and the departure return route LW received from the departure return route calculation unit 22 b. More specifically, as shown in FIG. 7, when the combine 1 leaves the reaper travel route LI, the travel control unit 23 performs non-removal travel by automatic travel along the detachment return route LW. , Control the travel of Combine 1.
  • the sheave sensor S1 detects the amount of the sorting processed material in the swing sorting unit 13b of the threshing device 13. As shown in FIG. 2, the detection result by the sheave sensor S1 is sent to the determination unit 25.
  • the reaper clutch sensor S2 detects the on / off state of the reaper clutch C15. The detection result by the reaper clutch sensor S2 is sent to the determination unit 25.
  • the determination unit 25 determines whether or not the threshing efficiency of the threshing device 13 has decreased when the combine 1 has left the harvesting travel route LI. More specifically, as shown in FIG. 7, when the combine 1 leaves the reaper traveling route LI, a predetermined signal is sent from the traveling control unit 23 to the determination unit 25 as shown in FIG. This signal is a signal indicating that the combine 1 has left the reaper traveling route LI. If the amount of sorted processed products detected by the sheave sensor S1 decreases after the determination unit 25 receives this signal, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
  • the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased when the state in which the amount of sorted processed products is level 1 continues for a predetermined first period or longer. That is, continuing the state in which the amount of sorted processed products is level 1 continues for the first period or more corresponds to a decrease in the amount of sorted processed products detected by the sheave sensor S1.
  • this first period may be, for example, 10 seconds, or may be a period other than that.
  • the combine control system A includes the determination unit 25 that determines whether or not the threshing efficiency of the threshing device 13 has decreased when the combine 1 leaves the reaping travel route LI.
  • the determination unit 25 is configured to determine that the threshing efficiency of the threshing device 13 has decreased when the amount of sorted processed products detected by the sheave sensor S1 has decreased.
  • a predetermined signal is sent from the traveling control unit 23 to the determination unit 25. Then, after the determination unit 25 receives this signal, if the period in which the reaper 15 is in a non-driven state continues, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
  • the determination unit 25 causes the reaper clutch C15 to be continuously off. Count the period. Then, when the period during which the reaper clutch C15 is continuously in the OFF state reaches a predetermined second period, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. That is, the fact that the period in which the reaper clutch C15 is continuously in the OFF state reaches the second period corresponds to the continuation of the period in which the reaper 15 is in the non-driving state.
  • this second period may be, for example, 10 seconds, or may be a period other than that.
  • the determination unit 25 is configured to determine that the threshing efficiency of the threshing device 13 is reduced when the period in which the reaper 15 is in the non-driven state continues.
  • the determination result by the determination unit 25 is sent to the threshing device stop unit 27.
  • the threshing device stop unit 27 switches the threshing clutch C13 from the on state to the off state when the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. Thereby, the driving of the threshing device 13 is stopped.
  • the combine control system A includes the threshing device stop unit 27 that stops the driving of the threshing device 13 when the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
  • a predetermined signal is sent from the traveling control unit 23 to the threshing device start unit 26.
  • This signal is a signal indicating that the combine 1 turns to return to the automatic traveling along the reaper traveling route LI.
  • the threshing device starting unit 26 switches the threshing clutch C13 from the off state to the on state. Thereby, the driving of the threshing device 13 is resumed.
  • the combine control system A performs threshing when the combine 1 turns to return to the automatic traveling along the cutting traveling path LI.
  • the threshing apparatus start part 26 which restarts the drive of the apparatus 13 is provided.
  • the operator manually operates the combine 1, and as shown in FIG. 4, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border of the field.
  • the combine 1 performs three rounds. When this round trip is completed, the field is in the state shown in FIG.
  • the area calculation unit 24 calculates the traveling locus of the combine 1 in the round trip shown in FIG. 4 based on the temporal position coordinate of the combine 1 received from the host vehicle position calculation unit 21. Then, as shown in FIG. 5, the area calculation unit 24 calculates an area on the outer peripheral side of the field where the combine 1 travels while harvesting the set-up kernel based on the calculated travel locus of the combine 1. Calculated as In addition, the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the reaper traveling route calculation unit 22a sets a reaper traveling route LI in the work target area CA, as shown in FIG.
  • the departure / return route calculation unit 22 b calculates the departure / return route LW in the outer peripheral area SA based on the calculation result received from the area calculation unit 24.
  • the reaping grain remnants harvested by the reaping device 15 are transported by the transport device 16 to the threshing device 13. Then, in the threshing device 13, the reaping grain is threshed.
  • the transport vehicle CV is parked out of the field. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV. As shown in FIG. 5 and FIG. 6, the stop position PP is set at a position overlapping with the leaving return route LW.
  • the transport vehicle CV can collect and transport the grains discharged from the grain discharging device 18 by the combine 1.
  • the combine 1 stops at the stopping position PP, and discharges the grain to the transport vehicle CV by the grain discharging device 18.
  • the travel control unit 23 sets the combination 1 so as to separate from the reaping travel path LI, as shown in FIG. Control the run.
  • the reaper clutch C15 is switched from the on state to the off state.
  • the traveling control unit 23 controls the combine 1 to travel toward the separation return route LW. Then, when the combine 1 reaches the vicinity of the separation return path LW, the traveling control unit 23 controls the traveling of the combine 1 so that the non-removing travel is performed by the automatic traveling along the separation return path LW.
  • the amount of reaping grain fed to the threshing device 13 decreases.
  • the amount of the sorted material is reduced from level 5 to level 1 after the combine 1 leaves the reaping travel route LI. Then, it is assumed that the combine 1 is positioned at the position P2 shown in FIG. 7 when the state in which the amount of sorted processed products is level 1 continues for the first period.
  • the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. Therefore, at the position P2, the threshing device stopping unit 27 switches the threshing clutch C13 from the on state to the off state. Thereby, the driving of the threshing device 13 is stopped.
  • the combine 1 continues automatic traveling along the departure / return route LW and stops at the stopping position PP. Then, the grain is discharged to the transport vehicle CV by the grain discharging device 18.
  • the combine 1 After discharging the grain, as shown in FIG. 8, the combine 1 resumes the automatic traveling along the separation return route LW. Then, the combine 1 turns at the position P3 in order to return to the automatic traveling along the reaper traveling route LI. This turning is automatically performed by the control of the traveling control unit 23.
  • the threshing device starting unit 26 switches the threshing clutch C13 from the off state to the on state.
  • the driving of the threshing device 13 resumes at the position P3.
  • the reaper clutch C15 is switched from the off state to the on state. Then, the combine 1 returns to automatic travel along the reaping travel route LI at a position P4 on the reaping travel route LI.
  • the present invention is not limited to this, and the threshing clutch C13 and the reaper clutch C15 may be switched from the off state to the on state at the timing when the combine 1 approaches the uncut portion in the work target area CA.
  • the threshing clutch C13 and the reaper clutch C15 are switched from the off state to the on state Also good.
  • the position where the combine 1 returns to the automatic travel along the reaping travel route LI is determined to be the closest position from the stopping position PP among the uncleaved portions in the work target area CA. That is, the position where the combine 1 returns to the automatic traveling along the reaper traveling route LI is determined regardless of the position where the combine 1 has left the reaper traveling route LI. Therefore, the position P1 and the position P4 described above are different.
  • the traveling of the combine 1 is the traveling control unit until the combine 1 leaves the reaper traveling route LI and starts traveling along the separation return route LW. It is carried out by automatic traveling under control of 23.
  • the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the separation return path LW and resumes the traveling along the reaper traveling path LI. It will be.
  • the separation return route calculation unit 22b can calculate a re-calculation return route LR different from the separation return route LW.
  • the recalculation return path LR is a travel path for the combine 1 to return to automatic travel along the reaper travel path LI.
  • the recalculation return path LR will be described.
  • control unit 20 includes the non-traveling area storage unit 28.
  • the travel prohibited area storage unit 28 stores the travel prohibited area PA in the field.
  • the departure / return route calculation unit 22 b acquires, from the travel prohibited area storage unit 28, data indicating the travel prohibited area PA.
  • the travel prohibited area PA is an area where the travel of the combine 1 is prohibited due to the presence of trees and the like in the field.
  • the vehicle position calculation unit 21 sends the position coordinates of the combine 1 with time to the departure / return route calculation unit 22 b.
  • the departure / return route calculation unit 22b determines whether the work target area CA has not been completed based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the calculation result received from the area calculation unit 24.
  • the cutting area CA1 and the already cut area CA2 are calculated.
  • the departure / return route calculation unit 22 b may use the data indicating the prohibited travel area PA acquired from the prohibited travel area storage unit 28, the current position coordinates of the combine 1, the calculation result received from the area calculation unit 24, and Based on the uncut area CA1 and the already cut area CA2 calculated as described above, the recalculation return path LR is calculated.
  • the calculation of the recalculation return path LR is performed according to the following three conditions. That is, the recalculation return route LR must not be a travel route that passes through the travel prohibited area PA. In addition, the recalculation return route LR should not be a travel route passing outside the field. Further, the recalculation return route LR may be a travel route that passes through the already-cleaved area CA2.
  • FIG. 9 shows that the combine 1 returns from the state where it is stopped at the stopping position PP to the automatic traveling along the reaper traveling route LI.
  • the recalculation return route LR is calculated by the departure return route calculation unit 22b.
  • the position closest to the stop position PP is calculated.
  • the position calculated at this time is determined as the position for returning to the automatic traveling along the reaper traveling route LI.
  • the position P5 is determined as the position for returning to the automatic traveling along the reaper traveling route LI.
  • the departure / return route calculation unit 22b calculates a travel route that is a candidate for the recalculation return route LR.
  • the travel route calculated at this time is a travel route from the stop position PP to the position P5.
  • the departure / return route calculation unit 22b first calculates a first route Rt1 as a candidate for the recalculation return route LR.
  • the first route Rt1 is calculated such that the travel distance from the stopping position PP to the position P5 is relatively short.
  • the first route Rt1 crosses the no travel area PA. That is, since the first route Rt1 is a traveling route passing through the no-traveling area PA, it is excluded from the candidates for the recalculation return route LR.
  • the departure / return route calculation unit 22b calculates a second route Rt2 and a third route Rt3 as candidates for the recalculation return route LR.
  • the second route Rt2 and the third route Rt3 are calculated so as to bypass the travel prohibited area PA.
  • the lengths of the second route Rt2 and the third route Rt3 are the same as each other.
  • a part of the second route Rt2 is located outside the field. That is, since the second route Rt2 is a traveling route passing outside the farmland, it is excluded from the candidates for the recalculation return route LR.
  • the third route Rt3 is located in the already-cleaved area CA2. That is, the third route Rt3 is a traveling route passing through the already-cleaved area CA2. In addition, the third route Rt3 is not a traveling route passing through the no-traveling area PA. In addition, the third route Rt3 is not a travel route passing outside the field. Therefore, the third route Rt3 remains as a candidate for the recalculation return path LR.
  • the third route Rt3 is selected as the recalculation return path LR.
  • the departure / return route calculation unit 22 b calculates the re-calculated return route LR as described above. Then, the combine 1 travels along the recalculation return path LR by automatic travel under the control of the travel control unit 23. As a result, the combine 1 returns to automatic traveling along the reaper traveling route LI.
  • the driving of the threshing device 13 is stopped by the threshing device stop unit 27. . Therefore, the driving of the threshing device 13 is less likely to be wasted. Thereby, the fuel consumption of the combine 1 becomes favorable.
  • the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the reaper traveling route LI and starts traveling along the separation return route LW. .
  • the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the separation return path LW and resumes traveling along the reaper traveling path LI. It will be.
  • FIG.10 and FIG.11 is a figure which shows driving
  • the combine 1 when the operator manually operates the combine 1, the combine 1 leaves the reaper traveling route LI. Then, after the combine 1 leaves the reaper drive route LI, when the travel control unit 23 captures the release return route LW, automatic travel is started under the control of the travel control unit 23, and the combine 1 is along the release return route LW. Run automatically.
  • the combine 1 leaves the separation return path LW when the worker manually operates the combine 1. Then, when the travel control unit 23 captures the reaper traveling route LI after the combine 1 leaves the separation return route LW, automatic traveling is started by the control of the travel control unit 23, and the combine 1 is along the reaper traveling route LI. Run automatically.
  • the operator manually operates the combine 1 after the combine 1 leaves the reaper traveling route LI until the traveling control unit 23 captures the separation return route LW.
  • the operator manually operates the combine 1 until the traveling control unit 23 captures the reaping travel path LI.
  • the travel control unit 23 captures the separation return path LW and the reaping travel path LI.
  • the traveling control unit 23 sets a first capture area Ct1.
  • the first capture area Ct1 is a fan-shaped area that extends from the center position in the machine width direction at the front end of the combine 1 to the front side in the traveling direction. Also, the radius and central angle of this sector are radius X and central angle w1.
  • the traveling control unit 23 monitors whether the first capture area Ct1 overlaps the separation return route LW. Further, after the combine 1 leaves the reaper travel route LI, the travel control unit 23 monitors whether the angle w2 which is the inclination of the combine 1 in the forward direction with respect to the release return route LW is less than or equal to a predetermined angle WA.
  • the traveling control unit 23 is in a state of capturing the departure return route LW. That is, that the traveling control unit 23 captures the separation return route LW is equivalent to the fact that the first capture region Ct1 overlaps the separation return route LW and the angle w2 becomes equal to or less than the predetermined angle WA.
  • the traveling control unit 23 sets a second capture area Ct2.
  • the second capture area Ct2 is a fan-shaped area that extends from the center in the vehicle width direction at the front end of the combine 1 to the front side in the traveling direction. Also, the radius and central angle of this sector are radius Y and central angle r1.
  • the traveling control unit 23 monitors whether the second capture area Ct2 overlaps the reaper traveling route LI. In addition, after the combine 1 leaves the separation return path LW, the traveling control unit 23 monitors whether the angle r2 which is the inclination in the forward direction of the combine 1 with respect to the reaper traveling path LI is less than or equal to a predetermined angle RA.
  • the travel control unit 23 is in a state of capturing the cutting travel path LI. That is, that the traveling control unit 23 captures the reaper traveling route LI is synonymous with the second capture area Ct2 overlapping the reaper traveling route LI and the angle r2 being equal to or less than a predetermined angle RA.
  • the radius Y of the second capture area Ct2 is smaller than the radius X of the first capture area Ct1.
  • the central angle r1 of the second capture area Ct2 is smaller than the central angle w1 of the first capture area Ct1. That is, the second capture area Ct2 is set narrower than the first capture area Ct1.
  • the predetermined angle RA is set to an angle smaller than the predetermined angle WA.
  • the conditions for the traveling control unit 23 to capture the reaper traveling route LI are set more strictly than the conditions for the traveling control unit 23 to capture the separation return route LW. Accordingly, it is possible to avoid the situation in which the traveling control unit 23 captures the reaping traveling route LI not intended by the operator among the plurality of reaping traveling routes LI in the field. In addition, it is possible to avoid the situation where the reaper traveling route LI is captured by the traveling control unit 23 when the operator does not want traveling along the reaper traveling route LI.
  • the reaper traveling route LI and the separation return route LW are virtually set traveling routes, and are not visible to the worker in an actual field. Therefore, when the operator operates the combine 1 to cause the traveling control unit 23 to capture the separation return path LW or the reaping travel path LI, the position of the separation return path LW or the reaping travel path LI is assumed and assumed. The combine 1 is operated to be along the separation return path LW or the reaping travel path LI.
  • the traveling control unit 23 performs the separation return route LW or the reaper traveling route It becomes difficult to capture LI.
  • the reaper traveling route LI when traveling along the reaper traveling route LI is started, the reaper traveling route LI is located at the end of the uncleaved portion in the work target area CA of the field, and the uncleaved portion and the already-cut region It often extends along the boundary between the parts. Therefore, the deviation between the reaper traveling route LI assumed by the operator and the actual reaper traveling route LI tends to be relatively small.
  • the conditions for the traveling control unit 23 to capture the leaving return route LW are set looser than the conditions for the traveling control unit 23 to capture the reaper traveling route LI. Thereby, it is easy to avoid the situation where the traveling control unit 23 can not capture the separation return route LW.
  • the first capture area Ct1 and the second capture area Ct2 may be set simultaneously. That is, when the combine 1 travels at a position where there is neither a separation return route LW nor a reaper traveling route LI, the travel control unit 23 may be able to capture any of the separation return route LW and the reaper traveling route LI. . In this case, of the departure return route LW and the reaping travel route LI, automatic travel may be performed along the travel route captured by the travel control unit 23 first.
  • the traveling device 11 may be a wheel type or a semi crawler type.
  • the reaper traveling route LI calculated by the reaper traveling route calculating unit 22a is a plurality of parallel lines parallel to each other, but the present invention is not limited to this, and the reaper traveling route calculating unit
  • the crop traveling path LI calculated by 22a may not be a plurality of parallel lines parallel to each other.
  • the reaper traveling route LI calculated by the reaper traveling route calculating unit 22a may be a spiral traveling route.
  • the operator manually operates the combine 1, and as shown in FIG. 4, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border line of the field.
  • the present invention is not limited to this, and the combine 1 may be configured to automatically travel and to perform reaping travel along the border line of the field in the outer peripheral portion in the field.
  • the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased when the state in which the amount of sorted processed products is level 1 continues for a predetermined first period or longer.
  • the present invention is not limited to this.
  • the determination unit 25 may be configured to determine that the threshing efficiency of the threshing device 13 has decreased when the level of the amount of the sorting processing material has decreased. That is, a decrease in the level of the sorted process amount corresponds to a decrease in the sorted process amount detected by the sheave sensor S1.
  • the route calculation unit 22 the travel control unit 23, the area calculation unit 24, the determination unit 25, the threshing device starting unit 26, the threshing device stopping unit 27, and the travel prohibited area storage unit 28
  • a part or all of them may be provided outside the combine 1 and may be provided, for example, in a management server provided outside the combine 1.
  • the departure / return route calculation unit 22b may not be provided.
  • the travel prohibited area storage unit 28 may not be provided.
  • the threshing device start unit 26 may not be provided.
  • the sheave sensor S1 may not be provided.
  • the reaper clutch sensor S2 may not be provided.
  • the communication terminal 4 may not be provided.
  • the reaping travel path LI calculated by the reaping travel path calculating unit 22a may be a straight path or a curved path.
  • the separation return path LW calculated by the separation return path calculation unit 22b may be a linear path or a curved path.
  • the present invention may be configured as a combine control program that causes a computer to realize the function of each member in the above embodiment. Further, the present invention may be configured as a recording medium on which a combine control program that causes a computer to realize the function of each member in the above embodiment is recorded. Moreover, you may be comprised as a combine control method which performs what is performed by each member in the said embodiment by several steps.
  • FIGS. 12 to 19 a second embodiment of the present invention will be described with reference to FIGS. 12 to 19.
  • the direction of arrow F shown in FIG. 12 is “front”, and the direction of arrow B is “rear”. Further, the direction of the arrow U shown in FIG. 12 is “up”, and the direction of the arrow D is “down”.
  • the ordinary type combine 101 (corresponding to “the harvester” according to the present invention) includes a crawler-type traveling device 111, an operation unit 112, a threshing device 113, and a grain tank 114 (the present invention).
  • a harvester H, a carrier 116, a grain discharging device 118 (corresponding to the "discharging device” according to the present invention), and a satellite positioning module 180 are provided.
  • the traveling device 111 is provided at the lower part of the combine 101.
  • the combine 101 can be self-propelled by the traveling device 111.
  • the operation unit 112, the threshing device 113, and the grain tank 114 are provided on the upper side of the traveling device 111.
  • An operator who monitors the operation of the combine 101 can get on the operation unit 112. The worker may monitor the work of the combine 101 from the outside of the combine 101.
  • the grain discharging device 118 is provided on the upper side of the grain tank 114.
  • the satellite positioning module 180 is attached to the top surface of the driver 112.
  • the harvesting device H is provided at the front of the combine 101.
  • the transport device 116 is provided on the rear side of the harvesting device H.
  • the harvesting apparatus H has a reaper 115 and a reel 117.
  • the reaper 115 reaps the field crop of the field.
  • the reel 117 scrapes the cropped cereals to be harvested while being rotationally driven.
  • the harvester H harvests the field crop (corresponding to the "agricultural crop" according to the present invention). Then, the combine 101 is capable of reaping travel traveling by the traveling device 111 while reaping the crop of the field in the field with the reaper 115.
  • the cropped rice bran that has been cut by the reaper 115 is transported by the transport device 116 to the threshing device 113.
  • the reaping grain is threshed.
  • Grains (corresponding to the “harvest” according to the present invention) obtained by the threshing process are stored in a grain tank 114.
  • the grains stored in the grain tank 114 are discharged to the outside by the grain discharging device 118 as needed.
  • the combine 101 discharges the grain stored in the grain tank 114, the grain harvester H that harvests the grain in the field, the grain tank 114 that holds grains harvested by the harvester H, and the grain tank 114 And a grain discharging device 118.
  • the communication terminal 104 is disposed in the operation unit 112.
  • the communication terminal 104 is configured to be able to display various information.
  • the communication terminal 104 is fixed to the operation unit 112.
  • the present invention is not limited to this, the communication terminal 104 may be configured to be attachable to and detachable from the operation unit 112, and the communication terminal 104 may be located outside the combine 101. .
  • the combine 101 includes an engine 151 and a discharge clutch C18.
  • the power output from the engine 151 is distributed to the discharge clutch C 18 and the traveling device 111.
  • the traveling device 111 is driven by the power from the engine 151.
  • discharge clutch C18 is configured to be changeable between an on state transmitting power and a disconnected state not transmitting power.
  • the discharge clutch C18 When the discharge clutch C18 is in the disengaged state, the power output from the engine 151 is not transmitted to the grain discharge device 118. At this time, the grain discharging device 118 is in a non-driven state.
  • the discharge clutch C18 When the discharge clutch C18 is in the on state, the power output from the engine 151 is transmitted to the grain discharge device 118. At this time, the grain discharging device 118 is driven by the motive power from the engine 151. That is, at this time, the grain discharging device 118 is in the driving state.
  • the combine 101 performs circulation while harvesting grains in the area on the outer periphery side of the field as shown in FIG. 14, then the combine 101 performs reaping travel in the inner area of the field as shown in FIG. 16. , Are configured to harvest the grain of the field.
  • combine 101 is controlled by harvester control system A1.
  • harvester control system A1 the structure of harvest machine control system A1 is demonstrated.
  • the harvester control system A1 includes a satellite positioning module 180, a vehicle direction detection device 181, a control unit 120, and a communication terminal 104.
  • the vehicle orientation detection device 181 and the control unit 120 are provided in the combine 101. Further, as described above, the satellite positioning module 180 and the communication terminal 104 are also provided in the combine 101.
  • the control unit 120 includes a vehicle position calculation unit 121, a route calculation unit 122, a travel control unit 123, an area calculation unit 124, a manual operation signal transmission unit 125, a position storage unit 126, a position setting unit 127, a direction storage unit 128, and a direction.
  • the setting unit 129 has a discharge clutch sensor S11.
  • the satellite positioning module 180 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 13, the satellite positioning module 180 sends positioning data indicating the vehicle position of the combine 101 to the vehicle position calculation unit 121 based on the received GPS signal.
  • GPS Global Positioning System
  • the vehicle position calculation unit 121 calculates position coordinates of the combine 101 with time based on the positioning data output by the satellite positioning module 180.
  • the calculated positional coordinates of the combine 101 with time are sent to the traveling control unit 123 and the area calculation unit 124.
  • the area calculation unit 124 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 101 received from the host vehicle position calculation unit 121.
  • the area calculation unit 124 calculates the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 101 received from the vehicle position calculation unit 121. .
  • region calculation part 124 calculates the area
  • the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the traveling route of the combine 101 for the circumferential traveling on the outer circumference side of the field is indicated by the arrow.
  • the combine 101 performs three rounds.
  • the field is in the state shown in FIG.
  • the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the calculation result by the area calculation unit 124 is sent to the route calculation unit 122.
  • the route calculation unit 122 calculates a reaper traveling route LI, which is a traveling route for a reaper traveling in the work area CA.
  • the cutting traveling path LI is a plurality of parallel lines parallel to one another.
  • the reaping traveling route LI calculated by the route calculating unit 122 is sent to the traveling control unit 123.
  • the traveling control unit 123 is configured to be able to control the traveling device 111. Then, the traveling control unit 123 controls the automatic traveling of the combine 101 based on the position coordinates of the combine 101 received from the host vehicle position calculation unit 121 and the reaper traveling route LI received from the route calculation unit 122. More specifically, as shown in FIG. 16, the traveling control unit 123 controls the traveling of the combine 101 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
  • the manual operation signal transmission unit 125 transmits a predetermined signal to the position storage unit 126 and the direction storage unit 128 when the combine 101 is moved by the manual operation.
  • This signal is a signal indicating that the combine 101 is moved by manual operation.
  • the vehicle position calculation unit 121 sends the position coordinates of the combine 101 to the position storage unit 126.
  • the discharge clutch sensor S11 detects the on / off state of the discharge clutch C18.
  • the detection result of the discharge clutch sensor S11 is sent to the position storage unit 126 and the direction storage unit 128.
  • the position storage unit 126 When the discharge operation by the grain discharging device 118 is performed at the position where the combine 101 has moved manually, the position storage unit 126 performs the discharging operation of the combine 101 at the time when the discharging operation by the grain discharging device 118 is performed. Memorize the stop position.
  • the position storage unit 126 sets the grain at the position where the combine 101 has moved by the manual operation. It is monitored whether the discharging operation by the discharging device 118 has been performed.
  • the position storage unit 126 When the detection result indicating that the discharge clutch C18 is switched from the off state to the on state is sent from the discharge clutch sensor S11 to the position storage unit 126, the position storage unit 126 performs the discharge operation by the grain discharge device 118. Is determined to have been performed.
  • the position storage unit 126 stores the stopping position of the combine 101 at that time.
  • the discharging operation by the grain discharging device 118 is performed when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 moved by the manual operation.
  • a position storage unit 126 that stores the stop position of the combine 101 at a point of time is provided.
  • the stop position stored in the position storage unit 126 is sent to the position setting unit 127. Then, the position setting unit 127 sets the target stopping position TP based on the stopping position of the combine 101 stored in the position storage unit 126. The target stopping position TP set by the position setting unit 127 is sent to the traveling control unit 123.
  • harvest machine control system A1 is provided with position setting part 127 which sets up target stop position TP based on the stop position of combine 101 memorized by position storage part 126.
  • the vehicle orientation detection device 181 detects the orientation of the combine 101's fuselage. Then, as shown in FIG. 13, the detection result of the vehicle direction detection device 181 is sent to the direction storage unit 128.
  • the direction storage unit 128 is used when the grain discharging device 118 performs the discharging operation when the grain discharging device 118 performs the discharging operation at the position where the combine 101 has moved by the manual operation.
  • the direction storage unit 128 is used when the grain discharging device 118 performs the discharging operation when the grain discharging device 118 performs the discharging operation at the position where the combine 101 has moved by the manual operation.
  • the orientation of the aircraft is used when the grain discharging device 118 performs the discharging operation when the grain discharging device 118 performs the discharging operation at the position where the combine 101 has moved by the manual operation.
  • the direction storage unit 128 makes grains at the position where the combine 101 has moved by the manual operation. It is monitored whether the discharging operation by the discharging device 118 has been performed.
  • the direction storage unit 128 performs the discharge operation by the grain discharge device 118. Is determined to have been performed.
  • the direction storage unit 128 stores the orientation of the fuselage of the combine 101 at that time.
  • the discharging operation by the grain discharging device 118 is performed when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 moved by the manual operation.
  • the direction storage unit 128 stores the orientation of the combine 101 at the time point.
  • the orientation of the airframe stored in the direction storage unit 128 is sent to the direction setting unit 129. Then, the direction setting unit 129 sets the target stopping direction TD based on the direction of the airframe of the combine 101 stored in the direction storage unit 128. The target stopping direction TD set by the direction setting unit 129 is sent to the traveling control unit 123.
  • harvest machine control system A1 is provided with the direction setting part 129 which sets the target stop direction TD based on the direction of the body of the combine 101 memorize
  • the traveling control unit 123 travels the combine 101 so that the combine 101 automatically stops at the target stopping position TP with the combine 101 facing the target stopping direction TD when the grain discharging device 118 performs the discharging operation. Control.
  • the harvester control system A1 controls the traveling of the combine 101 so that the combine 101 automatically stops at the target stopping position TP when the grain discharging device 118 performs the discharging operation. It has 123.
  • the operator manually operates the combine 101, and as shown in FIG. 14, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border of the field.
  • the combine 101 performs three rounds. When this round trip is completed, the field is in the state shown in FIG.
  • the area calculation unit 124 calculates the traveling locus of the combine 101 in the round trip shown in FIG. 14 based on the temporal position coordinate of the combine 101 received from the host vehicle position calculation unit 121. Then, as shown in FIG. 15, the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the set-up kernel based on the calculated traveling locus of the combine 101. Calculated as In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the route calculation unit 122 sets the reaper traveling route LI in the work target area CA.
  • the combine 101 is moved to the vicinity of the transport vehicle CV by manual operation before starting the harvesting work in the work target area CA.
  • the transporter CV is stopped outside the field.
  • the grain discharging device 118 is driven to discharge the grains.
  • the transport vehicle CV can collect and transport grains discharged by the combine 101 from the grain discharging device 118.
  • the position storage unit 126 stores the stopping position of the combine 101 at the time when the grain discharging device 118 performs the discharging operation.
  • the direction storage unit 128 also stores the orientation of the combine 101 at the time when the grain discharging device 118 performs the discharging operation.
  • the position setting unit 127 sets the target stop position TP. Further, the target stopping direction TD is set by the direction setting unit 129 based on the orientation of the vehicle stored by the direction storage unit 128.
  • the travel control unit 123 separates from the reaping travel path LI as shown in FIG. The travel of the combine 101 is controlled to move to the right.
  • the combine 101 automatically stops at the target stopping position TP while facing the target stopping direction TD. Furthermore, the grain discharging device 118 is driven, and the grains are discharged to the transporter CV. When the discharging operation by the grain discharging device 118 is completed, the combine 101 returns to the reaping travel along the reaping travel path LI.
  • the position storage unit 126 stores the stopping position of the combine 101 at that time. Then, in the second and subsequent discharge operations, the combine 101 automatically stops at the stored stop position under the control of the travel control unit 123.
  • harvest machine control system A1 is constituted so that a worker can set up target stop position TP via communication terminal 104, before the first discharge work by grain discharge device 118 is performed in the field of harvest work. It is done.
  • the communication terminal 104 has an operation unit 104 a and a signal output unit 104 b.
  • the operation unit 104a is configured by a touch panel. Then, the operator can set the target stopping position TP by operating the operation unit 104a before the first discharging operation by the grain discharging device 118 is performed in the field of the harvesting operation.
  • a signal indicating a portion touched by the worker is sent from the operation unit 104 a to the signal output unit 104 b.
  • the signal output unit 104b outputs an instruction signal based on the signal received from the operation unit 104a.
  • the instruction signal is a signal indicating the stopping position of the combine 101 for the discharge operation by the grain discharging device 118. Then, the instruction signal is sent to the position setting unit 127.
  • harvest machine control system A1 is provided with the signal output part 104b which outputs the instruction
  • the position setting unit 127 sets the target stopping position TP based on the instruction signal received from the signal output unit 104 b.
  • the position setting unit 127 sets the target based on the instruction signal.
  • the stop position TP is set.
  • the operator can set the target stopping position TP by operating the operation unit 104a before the first discharging operation by the grain discharging device 118 is performed in the field of the harvesting operation.
  • the combine 101 automatically stops at the target stopping position TP set based on the instruction signal from the signal output unit 104b.
  • the target stopping position TP set based on the instruction signal from the signal output unit 104 b is set based on the touch operation by the worker. Therefore, the target stopping position TP may be located relatively far from the transport vehicle CV.
  • the operator can start from the position
  • the combine 101 can be moved by manual operation.
  • the position storage unit 126 stops the combine 101 at the time of discharging operation by the grain discharging device 118.
  • the direction storage unit 128 also stores the orientation of the combine 101 at the time when the grain discharging device 118 performs the discharging operation.
  • the position setting unit 127 resets the target stopping position TP as shown in FIG. 19 based on the stopping position stored in the position storage unit 126 at this time.
  • the direction setting unit 129 also sets the target stopping direction TD, as shown in FIG. 19, based on the orientation of the vehicle stored in the direction storage unit 128 at this time.
  • the position setting unit 127 performs the position storage unit when the discharge operation is performed by the grain discharging device 118 after the combine 101 is moved by the manual operation from the target stopping position TP set based on the instruction signal. Based on the stop position of the combine 101 stored in 126, the target stop position TP is reset.
  • the traveling device 111 may be a wheel type or a semi crawler type.
  • the cutting traveling route LI calculated by the route calculating unit 122 is a plurality of parallel lines parallel to each other, the present invention is not limited to this and the route calculating unit 122 calculates
  • the traveling path LI may not be a plurality of parallel lines parallel to one another.
  • the reaping traveling route LI calculated by the route calculating unit 122 may be a spiral traveling route.
  • the operator manually operates the combine 101, and as shown in FIG. 14, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the boundary line of the field.
  • the present invention is not limited to this, and the combine 101 may travel automatically, and may be configured to perform a reaping travel so as to go around along the boundary of the field in the outer peripheral portion in the field.
  • the reaping travel along the reaping travel path LI may be performed by the operator manually operating the combine 101.
  • Vehicle position calculation unit 121, route calculation unit 122, travel control unit 123, area calculation unit 124, manual operation signal transmission unit 125, position storage unit 126, position setting unit 127, direction storage unit 128, direction setting unit Part or all of 129 may be provided outside the combine 101, and may be provided, for example, in a management server provided outside the combine 101.
  • the direction storage unit 128 may not be provided.
  • the direction setting unit 129 may not be provided.
  • the signal output unit 104b may not be provided.
  • the communication terminal 104 may not be provided.
  • the reaping travel route LI calculated by the route calculation unit 122 may be a straight route or a curved route.
  • the harvester control program may be configured to cause a computer to realize the functions of the respective members in the above embodiment.
  • a harvester control program that causes a computer to realize the function of each member in the above embodiment may be configured as a recording medium.
  • you may be comprised as a harvester control method which performs what is performed by each member in the said embodiment by several steps.
  • the present invention can be used not only for ordinary type combine but also for self-release type combine.
  • the present invention is applicable not only to ordinary type combine but also to self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • Second Embodiment 101 combine harvesters 104b Signal output section 114 grain tank (harvest tank) 118 grain discharging device (discharging device) 123 traveling control unit 126 position storage unit 127 position setting unit 128 direction storage unit 129 direction setting unit A1 harvester machine control system H harvesting device TD target stopping direction TP target stopping position

Abstract

This combine control system A is provided with: a reaping travel route calculating unit 22a which calculates a reaping travel route, which is a travel route for reaping travel in the field; an automatic reaping travel control unit 23 which controls a combine such that the combine travels for reaping through autonomous traveling along the reaping travel route; a determination unit 25 which determines whether the threshing efficiency of a threshing apparatus decreases or not when the combine deviates from the reaping travel route; and a threshing apparatus stopping unit 27 which stops the driving of the threshing apparatus 13 when it is determined by the determination unit 25 that the threshing efficiency of the threshing apparatus 13 decreased.

Description

コンバイン制御システム、コンバイン制御プログラム、コンバイン制御プログラムを記録した記録媒体、コンバイン制御方法、収穫機制御システム、収穫機制御プログラム、収穫機制御プログラムを記録した記録媒体、収穫機制御方法Combine control system, combine control program, recording medium recording combine control program, combine control method, harvester control system, harvester control program, recording medium record harvester control program, harvester control method
 本発明は、圃場の植立穀稈を刈り取る刈取装置と、刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御システムに関する。 The present invention relates to a combine control system for controlling a combine having a reaping device for reaping field cropping of a field and a threshing device for threshing the reaping cropping remnant harvested by the reaping device.
 また、本発明は、圃場の農作物を収穫する収穫装置と、収穫装置によって収穫された収穫物を貯留する収穫物タンクと、収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御システムに関する。 In addition, the present invention has a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank. A harvester control system for controlling a harvester.
 [1]特許文献1には、自動走行するコンバインの発明が記載されている。このコンバインを利用した収穫作業において、作業者は、収穫作業の最初にコンバインを手動で操作し、圃場内の外周部分を一周するように刈取走行を行う。 [1] Patent Document 1 describes an invention of an automatic travel combine. In the harvesting operation using the combine, the operator manually operates the combine at the beginning of the harvesting operation and performs the mowing travel so as to go around the outer peripheral portion in the field.
 この外周部分での走行において、収穫機の走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での刈取走行が行われる。 During traveling on the outer circumference, the traveling direction of the harvester is recorded. Then, the automatic traveling based on the recorded direction performs the reaping travel in the uncut area in the field.
 ここで、特許文献1に記載の発明においては、圃場内の外周部分に、収集タンクが配置される。この収集タンクは、コンバインの有する排出筒から排出された穀粒を受け、貯留することができるように構成されている。 Here, in the invention described in Patent Document 1, a collecting tank is disposed at an outer peripheral portion in a field. The collection tank is configured to be able to receive and store grains discharged from the discharge cylinder of the combine.
 そして、特許文献1に記載のコンバインは、収集タンクの近傍を通過する周回走行を繰り返すことにより、未刈領域での刈取走行を行うように構成されている。この周回走行においては、コンバインが収集タンクに近接した際、穀粒を排出する必要があれば、コンバインは収集タンクの近傍に停止する。そして、コンバインの排出筒から収集タンクへ穀粒が排出される。 And the combine of patent document 1 is comprised so that reaping driving | running | working in a non-cutting area | region may be performed by repeating the lap | rotation driving | running | working which passes the vicinity of a collection tank. In this round trip, when the combine comes close to the collection tank, the combine stops near the collection tank if it is necessary to discharge the grain. Then, the grains are discharged from the discharge cylinder of the combine into the collection tank.
 [2]特許文献2には、圃場の農作物を収穫する収穫装置(特許文献2では「刈取部」)と、収穫装置によって収穫された収穫物を貯留する収穫物タンク(特許文献2では「穀粒タンク」)と、収穫物タンクに貯留された収穫物を排出する排出装置(特許文献2では「穀粒排出装置」)と、を有する収穫機(特許文献2では「コンバイン」)の発明が記載されている。 [2] Patent Document 2 includes a harvesting device for harvesting crops in the field ("the harvesting unit" in Patent Document 2), and a harvest tank for storing the harvested material harvested by the harvesting device (in Invention of a harvester ("Combine" in Patent Document 2) having a grain tank ") and a discharge device (" grain discharge device "in Patent Document 2) for discharging the harvested material stored in the harvest tank Have been described.
日本国実開平2-107911号公報Japanese Utility Model Hei 2-107911 日本国特開2017-35017号公報Japanese Patent Application Laid-Open No. 2017-35017
 [1]背景技術[1]に対応する課題は、以下の通りである。
 特許文献1に記載のコンバインにおいては、穀粒を排出する必要がない場合にも、コンバインは、収集タンクの近傍を通過するように自動走行する。このとき、コンバインは既刈領域を走行することとなる。
[1] Background Art The problems corresponding to [1] are as follows.
In the combine described in Patent Document 1, the combine travels automatically to pass near the collection tank even when it is not necessary to discharge the grain. At this time, the combine travels in the existing area.
 即ち、特許文献1に記載のコンバインの自動走行においては、既刈領域での走行の割合が比較的大きくなる。これにより、作業効率が低くなりがちである。 That is, in the automatic travel of the combine described in Patent Document 1, the ratio of travel in the already-cut region becomes relatively large. This tends to lower the work efficiency.
 ここで、作業効率を向上させるべく、未刈領域において設定された刈取走行経路に沿ってコンバインを走行させ、穀粒排出等の必要が生じた場合には、その刈取走行経路から一時的に離脱させるようにコンバインを制御する構成が考えられる。 Here, in order to improve the working efficiency, the combine is run along the cutting travel path set in the uncut area, and when it becomes necessary to discharge grains etc., the combine is temporarily detached from the cutting travel path A configuration is conceivable which controls the combine so as to make it possible.
 この構成においては、コンバインが刈取走行経路から離脱した後、刈取走行経路に沿った走行に復帰するまでの間、コンバインは既刈領域を走行することとなる。即ち、この間、コンバインは植立穀稈の刈り取りを行わない。そのため、コンバインが刈取走行経路から離脱した後に、脱穀装置へ供給される刈取穀稈の量は減少することとなる。 In this configuration, after the combine leaves the reaping travel path, the combine travels in the existing reaping area until returning to travel along the reaping travel path. That is, during this time, the combine does not reap the grain census. Therefore, after the combine leaves the reaping travel path, the amount of reaping grain fed to the threshing device decreases.
 ここで、コンバインが刈取走行経路から離脱した後、刈取走行経路に沿った走行に復帰するまでの間、脱穀装置が駆動され続ける構成では、脱穀装置へ供給される刈取穀稈の量が減少するにもかかわらず、脱穀装置が駆動し続けることとなる。これにより、脱穀装置の駆動に無駄が生じ、脱穀効率が低下しやすくなる。これは、燃費の悪化に繋がる。 Here, in the configuration in which the threshing device continues to be driven until return to traveling along the reaping travel route after the combine leaves the reaping travel route, the amount of reaping grain fed to the threshing device decreases. Nevertheless, the threshing device will continue to operate. As a result, the driving of the threshing device is wasted and the threshing efficiency is likely to be reduced. This leads to the deterioration of fuel consumption.
 本発明の目的は、コンバインの燃費が良好となるコンバイン制御システムを提供することである。 An object of the present invention is to provide a combine control system in which the fuel efficiency of the combine is improved.
 [2]背景技術[2]に対応する課題は、以下の通りである。
 特許文献2には、排出装置による排出作業については詳述されていない。ここで、圃場外に運搬車を停車させた上で、収穫機を運搬車の近傍に停車させ、排出装置によって収穫物を運搬車へ排出することが考えられる。
[2] Background Art The problems corresponding to [2] are as follows.
Patent Document 2 does not describe in detail the discharge operation by the discharge device. Here, it is conceivable to stop the harvester near the transport vehicle after the transport vehicle is stopped outside the farmland, and to discharge the harvested material to the transport vehicle by the discharge device.
 しかしながら、このような排出作業が手動操作によって行われる場合、作業者は、排出作業の度に、収穫機を運搬車の近傍まで移動させ、停車させる必要がある。さらに、排出作業の回数が多いほど、作業者による操作の負担が増加してしまう。 However, when such a discharge operation is performed by a manual operation, the operator needs to move the harvester to the vicinity of the transport vehicle and stop it every time the discharge operation is performed. Furthermore, the more the number of discharge operations, the greater the burden on the operator's operation.
 本発明の目的は、作業者による操作の負担を軽減できる収穫機制御システムを提供することである。 An object of the present invention is to provide a harvester control system capable of reducing the burden of operation by a worker.
 [1]課題[1]に対応する解決手段は、以下の通りである。
 本発明の特徴は、圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御システムであって、圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出部と、前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御部と、前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定部と、前記判定部により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止部と、を備えることにある。
[1] The solution means corresponding to the problem [1] is as follows.
A feature of the present invention is a combine control system for controlling a combine comprising a reaping device for reaping a field crop in the field and a threshing device for threshing the reaping crop indwelling by the reaping device, the field control system A reaper traveling path calculation unit that calculates a reaper traveling path that is a traveling path for a reaper traveling at a time, and an automatic reaper traveling control unit that controls the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path. And a determination unit that determines whether the threshing efficiency of the threshing device has decreased when the combine has left the harvesting travel path, and the determination unit determines that the threshing efficiency of the threshing device has decreased. And a threshing device stop unit for stopping the operation of the threshing device.
 本発明であれば、コンバインが刈取走行経路から離脱した後、脱穀装置の脱穀効率が低下した場合には、脱穀装置停止部により、脱穀装置の駆動が停止される。従って、脱穀装置の駆動に無駄が生じにくくなる。これにより、コンバインの燃費が良好となる。 In the case of the present invention, when the threshing efficiency of the threshing device decreases after the combine leaves the cutting travel path, the threshing device stop unit stops driving the threshing device. Therefore, the driving of the threshing device is less likely to be wasted. Thereby, the fuel consumption of the combine is improved.
 さらに、本発明において、前記脱穀装置は、脱穀処理により得られた処理物を選別処理する揺動選別部を有しており、前記コンバインは、前記揺動選別部において選別処理されている処理物の量である選別処理物量を検知するシーブセンサを有しており、前記判定部は、前記シーブセンサにより検知されている前記選別処理物量が減少した場合、前記脱穀装置の脱穀効率が低下したと判定するように構成されていると好適である。 Furthermore, in the present invention, the threshing apparatus has a rocking and sorting unit for sorting and processing the processed product obtained by the threshing process, and the combine is a processing product which is sorted and processed by the rocking and sorting unit. And the determination unit determines that the threshing efficiency of the threshing device has decreased when the amount of the sorted processing detected by the sheave sensor decreases. Preferably, it is configured.
 脱穀装置へ供給される刈取穀稈の量が減少すると、揺動選別部において選別処理されている処理物の量が減少する。このとき、脱穀装置の脱穀効率は低下しがちである。 As the amount of reaping grain fed to the threshing device decreases, the amount of processed material being sorted in the shaking and sorting unit decreases. At this time, the threshing efficiency of the threshing device tends to decrease.
 ここで、上記の構成によれば、揺動選別部において選別処理されている処理物の量が減少した場合、脱穀効率が低下したと判定される。従って、上記の構成によれば、脱穀効率が低下したことを精度良く判定できる。 Here, according to the above configuration, it is determined that the threshing efficiency has decreased when the amount of the processed material being sorted in the swinging sorting unit decreases. Therefore, according to the above configuration, it can be accurately determined that the threshing efficiency has decreased.
 さらに、本発明において、
 前記判定部は、前記刈取装置が非駆動状態である期間が継続した場合、前記脱穀装置の脱穀効率が低下したと判定するように構成されていると好適である。
Furthermore, in the present invention,
Preferably, the determination unit is configured to determine that the threshing efficiency of the threshing device has decreased when the period in which the reaper is not driven continues.
 刈取装置が非駆動状態である期間が継続すると、脱穀装置へ供給される刈取穀稈の量が減少する。このとき、脱穀装置の脱穀効率は低下しがちである。 If the reaper continues to be inactive, the amount of reaper supplied to the threshing device will be reduced. At this time, the threshing efficiency of the threshing device tends to decrease.
 ここで、上記の構成によれば、刈取装置が非駆動状態である期間が継続した場合、脱穀効率が低下したと判定される。従って、上記の構成によれば、脱穀効率が低下したことを精度良く判定できる。 Here, according to the above configuration, it is determined that the threshing efficiency has decreased when the period in which the reaper is in the non-driven state continues. Therefore, according to the above configuration, it can be accurately determined that the threshing efficiency has decreased.
 さらに、本発明において、前記脱穀装置停止部により前記脱穀装置の駆動が停止された後、前記刈取走行経路に沿った自動走行へ復帰するために前記コンバインが旋回するときに、前記脱穀装置の駆動を再開させる脱穀装置開始部を備えると好適である。 Furthermore, in the present invention, after the driving of the threshing device is stopped by the threshing device stop unit, the driving of the threshing device is performed when the combine pivots to return to the automatic traveling along the reaping traveling path. It is preferable to provide a threshing device start unit for resuming
 刈取走行経路に沿った自動走行においては、刈取装置によって圃場の植立穀稈が刈り取られる。これに伴い、刈取穀稈が、順次、脱穀装置へ供給される。従って、刈取走行経路に沿った自動走行においては、脱穀装置が駆動している必要がある。 In the automatic travel along the reaping travel path, the reaping device harvests the field crop of the field. Along with this, the reaper is fed sequentially to the threshing device. Therefore, in the automatic travel along the reaping travel path, the threshing device needs to be driven.
 ここで、上記の構成によれば、コンバインが刈取走行経路に沿った自動走行へ復帰する直前に、脱穀装置開始部により、脱穀装置の駆動が再開される。これにより、適切なタイミングで脱穀装置の駆動が再開される構成を実現できる。 Here, according to the above configuration, immediately before the combine returns to the automatic traveling along the cutting travel path, the driving of the threshing device is resumed by the threshing device start unit. Thereby, the configuration in which the driving of the threshing device is resumed at an appropriate timing can be realized.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御プログラムであって、圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出機能と、前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御機能と、前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定機能と、前記判定機能により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止機能と、をコンピュータに実現させることにある。 In addition, another feature of the present invention is a combine control program for controlling a combine having a reaping device for reaping field crop straw in a field, and a threshing device for threshing reaping crop straw reaped by the reaping device. There is a reaper traveling path calculating function for calculating a reaper traveling path which is a traveling path for a reaper traveling in a field, and an automatic for controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path. A threshing efficiency of the threshing device is reduced by the reaper traveling control function, a determination function of determining whether the threshing efficiency of the threshing device is reduced when the combine is separated from the reaping travel route, and the determination function And a threshing device stop function of stopping the operation of the threshing device when it is determined that the threshing device has been determined.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御プログラムを記録した記録媒体であって、圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出機能と、前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御機能と、前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定機能と、前記判定機能により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止機能と、をコンピュータに実現させるコンバイン制御プログラムを記録していることにある。 In addition, another feature of the present invention is a combine control program for controlling a combine comprising a reaping device for reaping field crop straw in a field, and a threshing device for threshing reaping crop waste remnant harvested by the reaping device. A reaper traveling path calculating function for calculating a reaper traveling path which is a traveling path for a reaper traveling in a field, which is a recorded recording medium, and the above-mentioned reaper travel is performed by automatic traveling along the reaper traveling path. The threshing device according to an automatic reaper traveling control function for controlling combine, a determination function for determining whether or not the threshing efficiency of the threshing device is lowered when the combine is separated from the reaping travel route, and the threshing device A threshing device stop function of stopping the operation of the threshing device when it is determined that the threshing efficiency of It lies in the fact that records Vine control program.
 また、本発明の別の特徴は、圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御方法であって、圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出ステップと、前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御ステップと、前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定ステップと、前記判定ステップにより前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止ステップと、を備えることにある。 In addition, another feature of the present invention is a combine control method for controlling a combine comprising: a reaper for reaping a field crop in the field; and a threshing device for threshing the reaped reaper harvested by the reaper. A reaper traveling route calculating step for calculating a reaper traveling route which is a traveling route for a reaper traveling in a field, and an automatic for controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling route In the reaping traveling control step, a determination step of determining whether the threshing efficiency of the threshing device is lowered when the combine leaves the reaping traveling route, the threshing efficiency of the threshing device is lowered by the determination step And a threshing device stop step of stopping the operation of the threshing device when it is determined that the threshing device has been determined.
 [2]課題[2]に対応する解決手段は、以下の通りである。
 本発明の特徴は、圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御システムであって、前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶部と、前記位置記憶部に記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定部と、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御部と、を備えることにある。
[2] The solution means corresponding to the problem [2] is as follows.
The features of the present invention include a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank. A harvester control system for controlling a harvester, wherein the discharge operation is performed by the discharge device when the discharge operation is performed by the discharge device at a position where the harvester has moved by a manual operation. A position storage unit for storing the stopping position of the harvester at the time point, a position setting unit for setting a target stopping position based on the stop position of the harvester stored in the position storage unit; And a traveling control unit configured to control traveling of the harvester so that the harvester automatically stops at the target stopping position when work is performed.
 本発明であれば、圃場での収穫作業において最初の排出作業を行うと、その時点における収穫機の停車位置が位置記憶部によって記憶される。そして、2回目以降の排出作業においては、走行制御部の制御により、記憶された停車位置に収穫機が自動的に停車する。 In the case of the present invention, when the first discharging operation is performed in the field, the stop position of the harvester at that time is stored by the position storage unit. Then, in the second and subsequent discharging operations, the harvester automatically stops at the stored stop position under the control of the travel control unit.
 即ち、本発明であれば、手動操作によって収穫機を排出のための位置に停車させる必要があるのは、最初の排出作業のみである。これにより、作業者による操作の負担を軽減できる。 That is, according to the present invention, only the first discharging operation is required to stop the harvester at the position for discharging manually. Thereby, the burden of operation by a worker can be reduced.
 さらに、本発明において、前記排出装置による排出作業のための前記収穫機の停車位置を指示する指示信号を出力する信号出力部を備え、前記位置設定部は、圃場での収穫作業において前記排出装置による最初の排出作業が行われる前に前記信号出力部によって前記指示信号が出力された場合、前記指示信号に基づいて前記目標停車位置を設定するように構成されており、前記位置設定部は、前記指示信号に基づいて設定された前記目標停車位置から前記収穫機が手動操作によって移動した後で前記排出装置による排出作業が行われた場合、前記位置記憶部に記憶された前記収穫機の停車位置に基づいて前記目標停車位置を再設定すると好適である。 Furthermore, in the present invention, a signal output unit for outputting an instruction signal for instructing a stopping position of the harvester for the discharging operation by the discharging device is provided, and the position setting unit is the discharging device in the harvesting operation in the field. When the instruction signal is output by the signal output unit before the first discharging operation is performed, the target stopping position is set based on the instruction signal, and the position setting unit is configured to When the discharging operation is performed by the discharging device after the harvester has moved by manual operation from the target stop position set based on the instruction signal, the stop of the harvester stored in the position storage unit It is preferable to reset the target stopping position based on the position.
 この構成によれば、圃場での収穫作業において最初の排出作業が行われる前に、信号出力部が指示信号を出力すると、目標停車位置が設定される。これにより、2回目以降の排出作業だけでなく、最初の排出作業においても、手動操作によって収穫機を排出のための位置に停車させる必要がなくなる。従って、作業者による操作の負担を軽減できる。 According to this configuration, the target stopping position is set when the signal output unit outputs the instruction signal before the first discharging operation is performed in the field of the harvesting operation. As a result, it is not necessary to stop the harvester at a position for discharging manually by manual operation, not only in the second and subsequent discharging operations but also in the first discharging operation. Therefore, the burden of operation by the operator can be reduced.
 しかも、この構成によれば、指示信号により指示された目標停車位置が不適切であった場合には、手動操作によって収穫機を移動させた上で排出作業を行えば、排出作業が行われた時点における収穫機の停車位置が位置記憶部によって記憶される。そして、それ以降の排出作業においては、記憶された停車位置に収穫機が自動的に停車する。即ち、指示された目標停車位置が不適切であった場合に、目標停車位置の修正を容易に行うことができる。 Moreover, according to this configuration, when the target stopping position instructed by the instruction signal is inappropriate, the discharging operation is performed if the harvesting machine is moved by manual operation and then the discharging operation is performed. The stop position of the harvester at the time is stored by the position storage unit. Then, in the discharge operation thereafter, the harvester automatically stops at the stored stop position. That is, when the instructed target stop position is inappropriate, the target stop position can be easily corrected.
 さらに、本発明において、前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の機体の向きを記憶する方向記憶部と、前記方向記憶部に記憶された前記収穫機の機体の向きに基づいて目標停車方向を設定する方向設定部と、を備え、前記走行制御部は、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車方向を向いた状態で前記目標停車位置に自動的に停車するように前記収穫機の走行を制御すると好適である。 Furthermore, in the present invention, when the discharging operation by the discharging device is performed at a position before the harvesting device is moved by a manual operation, the airframe of the harvester at the time when the discharging operation by the discharge device is performed. A direction storage unit for storing a direction, and a direction setting unit for setting a target stopping direction based on the orientation of the machine body of the harvester stored in the direction storage unit, the travel control unit including the discharge device It is preferable to control traveling of the harvester so that the harvester automatically stops at the target stopping position in a state in which the harvester faces the target stopping direction when the discharging operation is performed.
 この構成によれば、圃場での収穫作業において最初の排出作業を行うと、その時点における収穫機の機体の向きが方向記憶部によって記憶される。そして、2回目以降の排出作業において、収穫機は、走行制御部の制御により、記憶された機体の向きを向いて停車する。 According to this configuration, when the first discharging operation is performed in the field, the orientation of the harvester's fuselage at that time is stored by the direction storage unit. Then, in the second and subsequent discharge operations, the harvest machine faces the direction of the stored vehicle and stops by the control of the traveling control unit.
 従って、この構成によれば、手動操作によって収穫機を排出のための位置に停車させると、それ以降の排出作業においては、手動操作での停車位置及び機体の向きが再現されることとなる。これにより、排出作業を正確に行うことができる。 Therefore, according to this configuration, when the harvester is stopped at the position for discharge by manual operation, the stop position in the manual operation and the orientation of the vehicle are reproduced in the subsequent discharging operation. Thus, the discharging operation can be performed accurately.
 また、本発明の別の特徴は、圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御プログラムであって、前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶機能と、前記位置記憶機能により記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定機能と、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御機能と、をコンピュータに実現させることにある。 In addition, another feature of the present invention discharges the harvest stored in the harvest tank, the harvest tank for harvesting the field crop, the harvest tank for storing the harvest harvested by the harvest apparatus, and the harvest tank. A harvester control program for controlling a harvester having a discharge device, wherein the discharge device discharges when the discharge device performs a discharge operation at a position after the harvester has moved manually. A position storing function for storing the stopping position of the harvester at the time when the work is performed; a position setting function for setting a target stopping position based on the stopping position of the harvester stored by the position storing function; A traveling control function of controlling traveling of the harvester so that the harvester automatically stops at the target stopping position when the discharging operation is performed by the discharging device; There to be realized in the data.
 また、本発明の別の特徴は、圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶機能と、前記位置記憶機能により記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定機能と、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御機能と、をコンピュータに実現させる収穫機制御プログラムを記録していることにある。 In addition, another feature of the present invention discharges the harvest stored in the harvest tank, the harvest tank for harvesting the field crop, the harvest tank for storing the harvest harvested by the harvest apparatus, and the harvest tank. A recording medium recording a harvester control program for controlling a harvester having a discharge device, wherein the discharge device performs a discharge operation at a position before the harvester has moved manually. A position for setting a target stopping position based on the stop position of the harvester stored by the position storage function and the position storage function of storing the stop position of the harvester at the time when the discharge operation by the discharge device is performed A traveling control for controlling the traveling of the harvester so that the harvester automatically stops at the target stop position when the setting function and the discharge operation by the discharge device are performed In that recording the harvester control program for implementing the ability to computer.
 また、本発明の別の特徴は、圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御方法であって、前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶ステップと、前記位置記憶ステップにより記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定ステップと、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御ステップと、を備えることにある。 In addition, another feature of the present invention discharges the harvest stored in the harvest tank, the harvest tank for harvesting the field crop, the harvest tank for storing the harvest harvested by the harvest apparatus, and the harvest tank. A harvester control method for controlling a harvester having a discharge device, wherein the discharge device discharges when the discharge device performs a discharge operation at a position after the harvester has moved by a manual operation. A position storing step of storing the stopping position of the harvester at the time when the work is performed; a position setting step of setting a target stopping position based on the stopping position of the harvester stored by the position storing step; A traveling control step of controlling traveling of the harvester so that the harvester automatically stops at the target stopping position when the discharging operation is performed by the discharging device; There to be provided.
第1実施形態を示す図であって(以下、図11まで同じ。)、コンバインの左側面図である。It is a figure which shows 1st Embodiment (following, it is the same to FIG. 11), and is a left view of a combine. コンバイン制御システムの構成を示すブロック図である。It is a block diagram showing composition of a combine control system. 脱穀装置の構成を示す縦断側面図である。It is a vertical side view which shows the structure of a threshing apparatus. 圃場における周回走行を示す図である。It is a figure which shows the round trip in a field. 刈取走行経路及び離脱復帰経路を示す図である。It is a figure which shows a reaping travel path and a detachment return path. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows mowing travel along a mowing travel path. コンバインが刈取走行経路から離脱する様子を示す図である。It is a figure which shows a mode that a combine remove | deviates from a reaping travel path. コンバインが刈取走行経路に沿った自動走行へ復帰する様子を示す図である。It is a figure which shows a mode that a combine returns to automatic travel along a reaper travel path. 再算出復帰経路を示す図である。It is a figure which shows a recalculation return path. 第1別実施形態において走行制御部が離脱復帰経路を捕捉した場合のコンバインの走行を示す図である。It is a figure which shows driving | running | working of a combine when a driving | running | working control part capture | acquires a detachment return path | route in 1st another embodiment. 第1別実施形態において走行制御部が刈取走行経路を捕捉した場合のコンバインの走行を示す図である。It is a figure which shows driving | running | working of a combine when a driving | running | working control part capture | acquires a reaper driving | running | working path in 1st other embodiment. 第2実施形態を示す図であって(以下、図19まで同じ。)、コンバインの左側面図である。It is a figure which shows 2nd Embodiment (following, it is the same to FIG. 19), and is a left view of a combine. 制御部に関する構成を示すブロック図である。It is a block diagram showing composition concerning a control part. 圃場における周回走行を示す図である。It is a figure which shows the round trip in a field. 外周領域及び作業対象領域を示す図である。It is a figure which shows an outer periphery area | region and a working object area | region. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows mowing travel along a mowing travel path. コンバインが目標停車位置に停車する様子を示す図である。It is a figure which shows a mode that a combine stops to a target stop position. 作業者が通信端末を介して目標停車位置を設定する様子を示す図である。It is a figure which shows a mode that an operator sets a target stop position via a communication terminal. 目標停車位置が再設定される場合の例を示す図である。It is a figure which shows the example in case a target stop position is reset.
[第1実施形態]
 以下、図1~図11を参照しながら、第1実施形態について説明する。尚、方向についての記載は、特に断りがない限り、図1及び図3に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図1及び図3に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
First Embodiment
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 11. In the description of the directions, unless otherwise noted, the direction of arrow F shown in FIGS. 1 and 3 is "front", and the direction of arrow B is "rear". Further, the direction of the arrow U shown in FIGS. 1 and 3 is “up”, and the direction of the arrow D is “down”.
 〔コンバインの全体構成〕
 図1に示すように、普通型のコンバイン1は、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、収穫装置H、搬送装置16、穀粒排出装置18、衛星測位モジュール80を備えている。
[Overall configuration of combine]
As shown in FIG. 1, the ordinary type combine 1 has a crawler type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a conveying device 16, a grain discharging device 18, satellite positioning A module 80 is provided.
 走行装置11は、コンバイン1における下部に備えられている。コンバイン1は、走行装置11によって自走可能である。 The traveling device 11 is provided at the lower portion of the combine 1. Combine 1 is self-propelled by traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン1の機外からコンバイン1の作業を監視していても良い。 The operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11. An operator who monitors the operation of the combine 1 can ride on the operation unit 12. The worker may monitor the operation of the combine 1 from the outside of the combine 1.
 穀粒排出装置18は、穀粒タンク14の上側に設けられている。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharging device 18 is provided on the upper side of the grain tank 14. In addition, the satellite positioning module 80 is attached to the upper surface of the driver 12.
 収穫装置Hは、コンバイン1における前部に備えられている。そして、搬送装置16は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取装置15及びリール17を有している。 The harvesting device H is provided at the front of the combine 1. The transport device 16 is provided on the rear side of the harvesting device H. The harvesting device H also has a reaper 15 and a reel 17.
 刈取装置15は、圃場の植立穀稈を刈り取る。また、リール17は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物を収穫する。そして、コンバイン1は、刈取装置15によって圃場の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。 The reaper 15 reaps the field crop of the field. In addition, the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. With this configuration, the harvester H harvests the grain in the field. Then, the combine 1 is capable of reaping travel traveling by the traveling device 11 while reaping the crop of the field in the field with the reaper 15.
 刈取装置15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 The cropped rice bran that has been harvested by the harvesting device 15 is transported by the transport device 16 to the threshing device 13. In the threshing device 13, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 14. The grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18 as needed.
 このように、コンバイン1は、圃場の植立穀稈を刈り取る刈取装置15と、刈取装置15により刈り取られた刈取穀稈を脱穀処理する脱穀装置13と、を有する。 Thus, the combine 1 has the reaper 15 for harvesting the field crop of the field and the threshing device 13 for threshing the reaper harvested by the reaper 15.
 また、図1に示すように、運転部12には、通信端末4が配置されている。通信端末4は、種々の情報を表示可能に構成されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン1の機外に位置していても良い。 Further, as shown in FIG. 1, the communication terminal 4 is disposed in the operation unit 12. The communication terminal 4 is configured to be able to display various information. In the present embodiment, the communication terminal 4 is fixed to the operation unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be attachable to and detachable from the operation unit 12, and the communication terminal 4 may be located outside the machine of the combine 1 .
 また、図2に示すように、コンバイン1は、エンジン51、刈取クラッチC15、脱穀クラッチC13を備えている。 Further, as shown in FIG. 2, the combine 1 includes an engine 51, a reaper clutch C15, and a threshing clutch C13.
 エンジン51から出力された動力は、刈取クラッチC15、脱穀クラッチC13、走行装置11に分配される。走行装置11は、エンジン51からの動力により駆動する。 The power output from the engine 51 is distributed to the reaper clutch C15, the threshing clutch C13, and the traveling device 11. The traveling device 11 is driven by the motive power from the engine 51.
 また、刈取クラッチC15及び脱穀クラッチC13は、何れも、動力を伝達する入状態と、動力を伝達しない切状態と、の間で状態変更可能に構成されている。 In addition, the reaper clutch C15 and the threshing clutch C13 are both configured to be changeable between an on state in which power is transmitted and a disconnected state in which no power is transmitted.
 刈取クラッチC15が切状態であるとき、エンジン51から出力された動力は刈取装置15に伝達されない。このとき、刈取装置15は非駆動状態である。 When the reaper clutch C15 is in the off state, the power output from the engine 51 is not transmitted to the reaper 15. At this time, the reaper 15 is in a non-driven state.
 刈取クラッチC15が入状態であるとき、エンジン51から出力された動力は刈取装置15に伝達される。このとき、刈取装置15は、エンジン51からの動力により駆動する。即ち、このとき、刈取装置15は駆動状態である。 When the reaper clutch C15 is in the on state, the power output from the engine 51 is transmitted to the reaper 15. At this time, the reaper 15 is driven by the power from the engine 51. That is, at this time, the reaper 15 is in a driving state.
 脱穀クラッチC13が切状態であるとき、エンジン51から出力された動力は脱穀装置13に伝達されない。このとき、脱穀装置13は非駆動状態である。 When the threshing clutch C13 is in the disengaged state, the power output from the engine 51 is not transmitted to the threshing device 13. At this time, the threshing device 13 is in a non-driven state.
 脱穀クラッチC13が入状態であるとき、エンジン51から出力された動力は脱穀装置13に伝達される。このとき、脱穀装置13は、エンジン51からの動力により駆動する。即ち、このとき、脱穀装置13は駆動状態である。 When the threshing clutch C13 is in the on state, the power output from the engine 51 is transmitted to the threshing device 13. At this time, the threshing device 13 is driven by the power from the engine 51. That is, at this time, the threshing device 13 is in the driving state.
 〔脱穀装置の構成〕
 図3に示すように、脱穀装置13は、脱穀処理部13aと、揺動選別部13bと、を有している。揺動選別部13bは、脱穀処理部13aの下方に位置している。
[Configuration of Threshing Device]
As shown in FIG. 3, the threshing device 13 has a threshing processing unit 13 a and a swing sorting unit 13 b. The swing sorting unit 13b is located below the threshing processing unit 13a.
 脱穀処理部13aは、扱室30、扱胴31、受網32を有している。図3に示すように、扱胴31は扱室30の内側に位置している。また、受網32は、扱胴31の下方に位置している。 The threshing processing unit 13a has a throttling chamber 30, a threshing cylinder 31, and a net 32. As shown in FIG. 3, the threshing cylinder 31 is located inside of the handling chamber 30. Also, the receiving net 32 is located below the threshing cylinder 31.
 刈取装置15により刈り取られた刈取穀稈は、搬送装置16によって扱室30へ搬送される。そして、刈取穀稈は、扱室30において、エンジン51からの動力により回転する扱胴31と、受網32と、によって脱穀処理される。脱穀処理により得られた処理物は、受網32から揺動選別部13bへ落下する。 The harvesting grain crucible reaped by the harvesting device 15 is transported by the transport device 16 to the processing chamber 30. Then, the reaping grain gutter is subjected to threshing processing in the throttling chamber 30 by the threshing drum 31 which is rotated by the power from the engine 51 and the net 32. The processed material obtained by the threshing process falls from the net 32 to the rocking and sorting unit 13b.
 以上の構成により、脱穀処理部13aは、刈取穀稈を脱穀処理する。 According to the above configuration, the threshing processing unit 13a performs threshing processing on the reapsing grain.
 揺動選別部13bは、揺動フレーム33、グレンパン34、篩い線部35、第1チャフシーブ36、グレンシーブ37、第2チャフシーブ38、唐箕39、1番回収部40、2番回収部41を有している。 The rocking and sorting unit 13 b includes a rocking frame 33, a grain pan 34, a sieve wire 35, a first chaff sieve 36, a grain sieve 37, a second chaff sieve 38, a tongue 39, a No. 1 collecting part 40 and a No. 2 collecting part 41. ing.
 揺動フレーム33は、エンジン51からの動力によって揺動するように構成されている。また、グレンパン34、篩い線部35、第1チャフシーブ36、グレンシーブ37、第2チャフシーブ38は、揺動フレーム33に支持されている。 The swing frame 33 is configured to swing by the power from the engine 51. The grain pan 34, the sieve wire 35, the first chaff sieve 36, the grain sieve 37, and the second chaff sieve 38 are supported by the swing frame 33.
 この構成により、揺動フレーム33の揺動に伴って、グレンパン34、篩い線部35、第1チャフシーブ36、グレンシーブ37、第2チャフシーブ38も揺動する。 With this configuration, the grain pan 34, the sieve wire portion 35, the first chaff sheave 36, the grain sheave 37, and the second chaff sheave 38 also rock in association with the rocking of the rocking frame 33.
 図3に示すように、グレンシーブ37は、第1チャフシーブ36の下方に位置している。また、第2チャフシーブ38は、第1チャフシーブ36の後下方に位置している。1番回収部40及び2番回収部41は、揺動フレーム33の下方に位置している。 As shown in FIG. 3, the grain sieve 37 is located below the first chaff sieve 36. The second chaff sieve 38 is located behind and below the first chaff sieve 36. The first collecting unit 40 and the second collecting unit 41 are located below the swinging frame 33.
 受網32から落下した処理物は、グレンパン34、篩い線部35、第1チャフシーブ36、グレンシーブ37、第2チャフシーブ38によって揺すられると共に、唐箕39から送られる選別風を受ける。これにより、処理物は、穀粒と、ワラ屑などの塵埃と、に選別される。 The processed material dropped from the receiving net 32 is shaken by the glen pan 34, the sieve wire 35, the first chaff sheave 36, the gren sheave 37, the second chaff sheave 38, and receives the sorted wind sent from the bales 39. Thus, the processed products are sorted into grains and dust such as scraps of straw.
 グレンシーブ37から落下した穀粒は、1番回収部40によって回収され、穀粒タンク14へ搬送される。 The grains dropped from the grain sieve 37 are collected by the No. 1 collecting unit 40 and transported to the grain tank 14.
 第2チャフシーブ38から落下した未処理粒は、2番回収部41によって回収され、還元装置42によって、揺動選別部13bの前部へ搬送される。揺動選別部13bの前部へ搬送された未処理粒は、揺動選別部13bによって再び選別処理される。 The untreated particles dropped from the second chaff sieve 38 are collected by the No. 2 collection unit 41 and conveyed by the reduction device 42 to the front of the rocking and sorting unit 13 b. The untreated particles transported to the front of the swing sorting unit 13b are sorted again by the swing sorting unit 13b.
 以上の構成により、揺動選別部13bは、脱穀処理により得られた処理物を選別処理する。 According to the above configuration, the rocking and sorting unit 13b sorts and processes the processed product obtained by the threshing process.
 このように、脱穀装置13は、脱穀処理により得られた処理物を選別処理する揺動選別部13bを有している。 As described above, the threshing apparatus 13 includes the swing sorting unit 13 b that sorts the processed product obtained by the threshing process.
 また、図3に示すように、第1チャフシーブ36の上側近傍に、シーブセンサS1が設けられている。シーブセンサS1は、第1チャフシーブ36上の処理物の厚みを検出する。これにより、シーブセンサS1は、選別処理物量を検知する。尚、選別処理物量とは、揺動選別部13bにおいて選別処理されている処理物の量である。 Further, as shown in FIG. 3, a sheave sensor S <b> 1 is provided in the vicinity of the upper side of the first chaff sieve 36. The sheave sensor S1 detects the thickness of the workpiece on the first chaff sieve 36. As a result, the sheave sensor S1 detects the amount of the sorted processed material. Here, the amount of the sorting process is the amount of the process being sorted in the swing sorting unit 13b.
 本実施形態においては、シーブセンサS1は、選別処理物量を、レベル1からレベル5の5段階で検知する。尚、レベル1が選別処理物量の最も少ない状態に相当し、レベル5が選別処理物量の最も多い状態に相当する。即ち、レベル数が大きいほど、選別処理物量は多い。 In the present embodiment, the sheave sensor S1 detects the amount of the sorted material in five stages of level 1 to level 5. Level 1 corresponds to the state in which the amount of sorted processed material is the smallest, and level 5 corresponds to the state in which the amount of sorted processed material is the largest. That is, the larger the number of levels, the larger the amount of sorted products.
 このように、コンバイン1は、揺動選別部13bにおいて選別処理されている処理物の量である選別処理物量を検知するシーブセンサS1を有している。 As described above, the combine 1 has the sheave sensor S1 that detects the amount of the processing object which is the amount of the processing object being sorted by the swinging sorting unit 13b.
 尚、脱穀装置13が駆動状態であるとき、扱胴31はエンジン51からの動力により回転し、揺動フレーム33はエンジン51からの動力により揺動する。また、脱穀装置13が非駆動状態であるとき、扱胴31は回転せず、揺動フレーム33は揺動しない。 When the threshing device 13 is in a driving state, the threshing cylinder 31 is rotated by the power from the engine 51, and the rocking frame 33 is rocked by the power from the engine 51. In addition, when the threshing device 13 is in a non-driven state, the threshing cylinder 31 does not rotate, and the swing frame 33 does not swing.
 ここで、コンバイン1は、図4に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図6に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, after the combine 1 carries out circling traveling while harvesting grains in the area on the outer peripheral side in the field as shown in FIG. 4, it then performs reaping travel in the area inside the field as shown in FIG. 6. , Are configured to harvest the grain of the field.
 そして、この収穫作業において、コンバイン1は、コンバイン制御システムAによって制御される。以下では、コンバイン制御システムAの構成について説明する。 And in this harvesting operation, the combine 1 is controlled by the combine control system A. The configuration of the combine control system A will be described below.
 〔コンバイン制御システムの構成〕
 図2に示すように、コンバイン制御システムAは、衛星測位モジュール80と、制御部20と、を備えている。尚、制御部20は、コンバイン1に備えられている。また、上述の通り、衛星測位モジュール80も、コンバイン1に備えられている。
[Configuration of combine control system]
As shown in FIG. 2, the combine control system A includes a satellite positioning module 80 and a control unit 20. The control unit 20 is provided in the combine 1. Further, as described above, the satellite positioning module 80 is also provided in the combine 1.
 制御部20は、自車位置算出部21、経路算出部22、走行制御部23(本発明に係る「自動刈取走行制御部」に相当)、領域算出部24、判定部25、脱穀装置開始部26、脱穀装置停止部27、走行禁止領域記憶部28、刈取クラッチセンサS2を有している。また、上述のシーブセンサS1は、制御部20に含まれている。 Control unit 20 includes host vehicle position calculation unit 21, route calculation unit 22, travel control unit 23 (corresponding to “automatic reaping travel control unit” according to the present invention), area calculation unit 24, determination unit 25, threshing device start unit 26, the threshing device stop unit 27, the travel prohibition area storage unit 28, and the reaper clutch sensor S2. Further, the above-described sheave sensor S1 is included in the control unit 20.
 図1に示すように、衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図2に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン1の自車位置を示す測位データを自車位置算出部21へ送る。 As shown in FIG. 1, the satellite positioning module 80 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 2, the satellite positioning module 80 sends positioning data indicating the vehicle position of the combine 1 to the vehicle position calculating unit 21 based on the received GPS signal.
 自車位置算出部21は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、走行制御部23及び領域算出部24へ送られる。 The vehicle position calculation unit 21 calculates position coordinates of the combine 1 with time based on the positioning data output by the satellite positioning module 80. The calculated positional coordinates of the combine 1 with time are sent to the traveling control unit 23 and the area calculation unit 24.
 領域算出部24は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図5に示すように、外周領域SA及び作業対象領域CAを算出する。 As shown in FIG. 5, the area calculation unit 24 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 1 received from the host vehicle position calculation unit 21.
 より具体的には、領域算出部24は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン1の走行軌跡を算出する。そして、領域算出部24は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部24は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 24 calculates the traveling locus of the combine 1 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 1 received from the vehicle position calculation unit 21. . And area | region calculation part 24 calculates the area | region by the side of the outer periphery of the farmland which the combine 1 carried out circular traveling based on the calculated traveling locus of the combine 1 as outer periphery area | region SA. In addition, the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 例えば、図4においては、圃場の外周側における周回走行のためのコンバイン1の走行経路が矢印で示されている。図4に示す例では、コンバイン1は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図5に示す状態となる。 For example, in FIG. 4, the traveling path of the combine 1 for circumferential traveling on the outer circumference side of the field is indicated by an arrow. In the example shown in FIG. 4, the combine 1 performs three rounds. When the mowing travel along the traveling path is completed, the field is in the state shown in FIG.
 図5に示すように、領域算出部24は、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部24は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 As shown in FIG. 5, the area calculation unit 24 calculates an area on the outer circumference side of the field where the combine 1 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 そして、図2に示すように、領域算出部24による算出結果は、経路算出部22へ送られる。 Then, as shown in FIG. 2, the calculation result by the area calculation unit 24 is sent to the route calculation unit 22.
 図2に示すように、経路算出部22は、刈取走行経路算出部22a及び離脱復帰経路算出部22bを有している。刈取走行経路算出部22aは、領域算出部24から受け取った算出結果に基づいて、図5に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。尚、図5に示すように、本実施形態においては、刈取走行経路LIは、互いに平行な複数の平行線である。 As shown in FIG. 2, the route calculation unit 22 includes a cutting traveling route calculation unit 22 a and a separation / return route calculation unit 22 b. As shown in FIG. 5, the reaper traveling route calculation unit 22a calculates a reaper traveling route LI, which is a traveling route for reaper traveling in the work target area CA, based on the calculation result received from the area calculation unit 24. As shown in FIG. 5, in the present embodiment, the cutting traveling path LI is a plurality of parallel lines parallel to each other.
 このように、コンバイン制御システムAは、圃場における刈取走行のための走行経路である刈取走行経路LIを算出する刈取走行経路算出部22aを備えている。 As described above, the combine control system A includes the reaping travel path calculation unit 22a that calculates the reaping travel path LI, which is a travel path for reaping travel in the field.
 図2に示すように、刈取走行経路算出部22aにより算出された刈取走行経路LIは、走行制御部23へ送られる。 As shown in FIG. 2, the reaper traveling route LI calculated by the reaper traveling route calculating unit 22 a is sent to the traveling control unit 23.
 走行制御部23は、走行装置11を制御可能に構成されている。そして、走行制御部23は、自車位置算出部21から受け取ったコンバイン1の位置座標と、刈取走行経路算出部22aから受け取った刈取走行経路LIと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部23は、図6に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 The traveling control unit 23 is configured to be able to control the traveling device 11. The traveling control unit 23 controls the automatic traveling of the combine 1 based on the position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the reaper traveling route LI received from the reaper traveling route calculation unit 22a. Do. More specifically, as shown in FIG. 6, the traveling control unit 23 controls the traveling of the combine 1 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 このように、コンバイン制御システムAは、刈取走行経路LIに沿った自動走行によって刈取走行が行われるようにコンバイン1を制御する走行制御部23を備えている。 Thus, the combine control system A includes the travel control unit 23 that controls the combine 1 so that the reaping travel is performed by the automatic travel along the reaping travel route LI.
 また、離脱復帰経路算出部22bは、領域算出部24から受け取った算出結果に基づいて、図5に示すように、外周領域SAにおける非刈取走行のための走行経路である離脱復帰経路LWを算出する。尚、図5に示すように、本実施形態においては、離脱復帰経路LWは、圃場の外形に沿う形状の線である。 Further, as shown in FIG. 5, the departure / return route calculation unit 22b calculates the departure / return route LW, which is a traveling route for non-removing travel in the outer peripheral area SA, based on the calculation result received from the area calculation unit 24. Do. As shown in FIG. 5, in the present embodiment, the separation return path LW is a line having a shape along the outer shape of the field.
 図2に示すように、離脱復帰経路算出部22bにより算出された離脱復帰経路LWは、走行制御部23へ送られる。 As shown in FIG. 2, the departure / return route LW calculated by the departure / return route calculation unit 22 b is sent to the traveling control unit 23.
 走行制御部23は、自車位置算出部21から受け取ったコンバイン1の位置座標と、離脱復帰経路算出部22bから受け取った離脱復帰経路LWと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部23は、図7に示すように、コンバイン1が刈取走行経路LIから離脱した場合に、離脱復帰経路LWに沿った自動走行によって非刈取走行が行われるように、コンバイン1の走行を制御する。 The traveling control unit 23 controls automatic traveling of the combine 1 based on the position coordinates of the combine 1 received from the host vehicle position calculation unit 21 and the departure return route LW received from the departure return route calculation unit 22 b. More specifically, as shown in FIG. 7, when the combine 1 leaves the reaper travel route LI, the travel control unit 23 performs non-removal travel by automatic travel along the detachment return route LW. , Control the travel of Combine 1.
 また、シーブセンサS1は、上述の通り、脱穀装置13の揺動選別部13bにおいて、選別処理物量を検知する。図2に示すように、シーブセンサS1による検知結果は、判定部25へ送られる。 In addition, as described above, the sheave sensor S1 detects the amount of the sorting processed material in the swing sorting unit 13b of the threshing device 13. As shown in FIG. 2, the detection result by the sheave sensor S1 is sent to the determination unit 25.
 また、刈取クラッチセンサS2は、刈取クラッチC15の入切状態を検知する。刈取クラッチセンサS2による検知結果は、判定部25へ送られる。 In addition, the reaper clutch sensor S2 detects the on / off state of the reaper clutch C15. The detection result by the reaper clutch sensor S2 is sent to the determination unit 25.
 判定部25は、コンバイン1が刈取走行経路LIから離脱した場合に、脱穀装置13の脱穀効率が低下したか否かを判定する。より具体的には、図7に示すようにコンバイン1が刈取走行経路LIから離脱した場合、図2に示すように、走行制御部23から、所定の信号が判定部25へ送られる。この信号は、コンバイン1が刈取走行経路LIから離脱したことを示す信号である。判定部25がこの信号を受け取った後、シーブセンサS1により検知されている選別処理物量が減少した場合、判定部25は、脱穀装置13の脱穀効率が低下したと判定する。 The determination unit 25 determines whether or not the threshing efficiency of the threshing device 13 has decreased when the combine 1 has left the harvesting travel route LI. More specifically, as shown in FIG. 7, when the combine 1 leaves the reaper traveling route LI, a predetermined signal is sent from the traveling control unit 23 to the determination unit 25 as shown in FIG. This signal is a signal indicating that the combine 1 has left the reaper traveling route LI. If the amount of sorted processed products detected by the sheave sensor S1 decreases after the determination unit 25 receives this signal, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
 本実施形態においては、判定部25は、選別処理物量がレベル1である状態が所定の第1期間以上継続した場合、脱穀装置13の脱穀効率が低下したと判定する。即ち、選別処理物量がレベル1である状態が第1期間以上継続することは、シーブセンサS1により検知されている選別処理物量が減少することに相当する。 In the present embodiment, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased when the state in which the amount of sorted processed products is level 1 continues for a predetermined first period or longer. That is, continuing the state in which the amount of sorted processed products is level 1 continues for the first period or more corresponds to a decrease in the amount of sorted processed products detected by the sheave sensor S1.
 尚、この第1期間は、例えば10秒間であっても良いし、それ以外の長さの期間であっても良い。 Note that this first period may be, for example, 10 seconds, or may be a period other than that.
 このように、コンバイン制御システムAは、コンバイン1が刈取走行経路LIから離脱した場合に、脱穀装置13の脱穀効率が低下したか否かを判定する判定部25を備えている。また、判定部25は、シーブセンサS1により検知されている選別処理物量が減少した場合、脱穀装置13の脱穀効率が低下したと判定するように構成されている。 As described above, the combine control system A includes the determination unit 25 that determines whether or not the threshing efficiency of the threshing device 13 has decreased when the combine 1 leaves the reaping travel route LI. In addition, the determination unit 25 is configured to determine that the threshing efficiency of the threshing device 13 has decreased when the amount of sorted processed products detected by the sheave sensor S1 has decreased.
 また、上述の通り、コンバイン1が刈取走行経路LIから離脱した場合、走行制御部23から、所定の信号が判定部25へ送られる。そして、判定部25がこの信号を受け取った後、刈取装置15が非駆動状態である期間が継続した場合、判定部25は、脱穀装置13の脱穀効率が低下したと判定する。 Further, as described above, when the combine 1 leaves the reaper traveling route LI, a predetermined signal is sent from the traveling control unit 23 to the determination unit 25. Then, after the determination unit 25 receives this signal, if the period in which the reaper 15 is in a non-driven state continues, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
 より具体的には、刈取クラッチセンサS2から、刈取クラッチC15が切状態であることを示す検知結果が判定部25へ送られると、判定部25は、刈取クラッチC15が連続して切状態である期間をカウントする。そして、刈取クラッチC15が連続して切状態である期間が所定の第2期間に達した場合、判定部25は、脱穀装置13の脱穀効率が低下したと判定する。即ち、刈取クラッチC15が連続して切状態である期間が第2期間に達することは、刈取装置15が非駆動状態である期間が継続することに相当する。 More specifically, when the detection result indicating that the reaper clutch C15 is off is sent from the reaper clutch sensor S2 to the determination unit 25, the determination unit 25 causes the reaper clutch C15 to be continuously off. Count the period. Then, when the period during which the reaper clutch C15 is continuously in the OFF state reaches a predetermined second period, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. That is, the fact that the period in which the reaper clutch C15 is continuously in the OFF state reaches the second period corresponds to the continuation of the period in which the reaper 15 is in the non-driving state.
 尚、この第2期間は、例えば10秒間であっても良いし、それ以外の長さの期間であっても良い。 Note that this second period may be, for example, 10 seconds, or may be a period other than that.
 このように、判定部25は、刈取装置15が非駆動状態である期間が継続した場合、脱穀装置13の脱穀効率が低下したと判定するように構成されている。 As described above, the determination unit 25 is configured to determine that the threshing efficiency of the threshing device 13 is reduced when the period in which the reaper 15 is in the non-driven state continues.
 判定部25による判定結果は、脱穀装置停止部27へ送られる。 The determination result by the determination unit 25 is sent to the threshing device stop unit 27.
 脱穀装置停止部27は、判定部25により脱穀装置13の脱穀効率が低下したと判定された場合に、脱穀クラッチC13を入状態から切状態に切り替える。これにより、脱穀装置13の駆動は停止する。 The threshing device stop unit 27 switches the threshing clutch C13 from the on state to the off state when the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. Thereby, the driving of the threshing device 13 is stopped.
 このように、コンバイン制御システムAは、判定部25により脱穀装置13の脱穀効率が低下したと判定された場合に脱穀装置13の駆動を停止させる脱穀装置停止部27を備えている。 As described above, the combine control system A includes the threshing device stop unit 27 that stops the driving of the threshing device 13 when the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased.
 また、脱穀装置停止部27により脱穀装置13の駆動が停止された後、図8に示すように刈取走行経路LIに沿った自動走行へ復帰するためにコンバイン1が旋回するとき、図2に示すように、走行制御部23から、所定の信号が脱穀装置開始部26へ送られる。この信号は、刈取走行経路LIに沿った自動走行へ復帰するためにコンバイン1が旋回することを示す信号である。脱穀装置開始部26は、この信号を受け取ると、脱穀クラッチC13を切状態から入状態に切り替える。これにより、脱穀装置13の駆動は再開する。 Also, after the driving of the threshing device 13 is stopped by the threshing device stop unit 27, as shown in FIG. 8, when the combine 1 turns to return to the automatic traveling along the reaper traveling route LI, shown in FIG. As described above, a predetermined signal is sent from the traveling control unit 23 to the threshing device start unit 26. This signal is a signal indicating that the combine 1 turns to return to the automatic traveling along the reaper traveling route LI. Upon receiving this signal, the threshing device starting unit 26 switches the threshing clutch C13 from the off state to the on state. Thereby, the driving of the threshing device 13 is resumed.
 このように、コンバイン制御システムAは、脱穀装置停止部27により脱穀装置13の駆動が停止された後、刈取走行経路LIに沿った自動走行へ復帰するためにコンバイン1が旋回するときに、脱穀装置13の駆動を再開させる脱穀装置開始部26を備えている。 Thus, after the driving of the threshing device 13 is stopped by the threshing device stop unit 27, the combine control system A performs threshing when the combine 1 turns to return to the automatic traveling along the cutting traveling path LI. The threshing apparatus start part 26 which restarts the drive of the apparatus 13 is provided.
 〔コンバイン制御システムを利用した収穫作業の流れ〕
 以下では、コンバイン制御システムAを利用した収穫作業の例として、コンバイン1が、図4に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work using combine control system]
In the following, as an example of a harvesting operation using the combine control system A, a flow when the combine 1 performs the harvesting operation in the field shown in FIG. 4 will be described.
 最初に、作業者は、コンバイン1を手動で操作し、図4に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。図4に示す例では、コンバイン1は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図5に示す状態となる。 First, the operator manually operates the combine 1, and as shown in FIG. 4, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border of the field. In the example shown in FIG. 4, the combine 1 performs three rounds. When this round trip is completed, the field is in the state shown in FIG.
 領域算出部24は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図4に示す周回走行でのコンバイン1の走行軌跡を算出する。そして、図5に示すように、領域算出部24は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部24は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 The area calculation unit 24 calculates the traveling locus of the combine 1 in the round trip shown in FIG. 4 based on the temporal position coordinate of the combine 1 received from the host vehicle position calculation unit 21. Then, as shown in FIG. 5, the area calculation unit 24 calculates an area on the outer peripheral side of the field where the combine 1 travels while harvesting the set-up kernel based on the calculated travel locus of the combine 1. Calculated as In addition, the area calculation unit 24 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 次に、刈取走行経路算出部22aは、領域算出部24から受け取った算出結果に基づいて、図5に示すように、作業対象領域CAにおける刈取走行経路LIを設定する。また、このとき、離脱復帰経路算出部22bは、領域算出部24から受け取った算出結果に基づいて、外周領域SAにおける離脱復帰経路LWを算出する。 Next, based on the calculation result received from the area calculation unit 24, the reaper traveling route calculation unit 22a sets a reaper traveling route LI in the work target area CA, as shown in FIG. At this time, the departure / return route calculation unit 22 b calculates the departure / return route LW in the outer peripheral area SA based on the calculation result received from the area calculation unit 24.
 そして、作業者が自動走行開始ボタン(図示せず)を押すことにより、図6に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、走行制御部23は、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 Then, when the worker presses an automatic travel start button (not shown), as shown in FIG. 6, automatic travel along the reaper travel path LI is started. At this time, the traveling control unit 23 controls the traveling of the combine 1 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 コンバイン1により刈取走行が行われている間、上述の通り、刈取装置15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。そして、脱穀装置13において、刈取穀稈は脱穀処理される。 While the reaping travel is being performed by the combine 1, as described above, the reaping grain remnants harvested by the reaping device 15 are transported by the transport device 16 to the threshing device 13. Then, in the threshing device 13, the reaping grain is threshed.
 尚、本実施形態においては、図4から図6に示すように、圃場外に運搬車CVが駐車している。そして、外周領域SAにおいて、運搬車CVの近傍位置には、停車位置PPが設定されている。図5及び図6に示すように、停車位置PPは、離脱復帰経路LWに重複する位置に設定されている。 In the present embodiment, as shown in FIG. 4 to FIG. 6, the transport vehicle CV is parked out of the field. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV. As shown in FIG. 5 and FIG. 6, the stop position PP is set at a position overlapping with the leaving return route LW.
 運搬車CVは、コンバイン1が穀粒排出装置18から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバイン1は停車位置PPに停車し、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 The transport vehicle CV can collect and transport the grains discharged from the grain discharging device 18 by the combine 1. When the grain is discharged, the combine 1 stops at the stopping position PP, and discharges the grain to the transport vehicle CV by the grain discharging device 18.
 コンバイン1が刈取走行を続け、穀粒タンク14内の穀粒の量が所定量に達すると、図7に示すように、走行制御部23は、刈取走行経路LIから離脱するようにコンバイン1の走行を制御する。また、コンバイン1が刈取走行経路LIから離脱することに伴い、刈取クラッチC15は入状態から切状態へ切り替えられる。 When the combine 1 continues the reaping travel and the amount of grains in the grain tank 14 reaches a predetermined amount, the travel control unit 23 sets the combination 1 so as to separate from the reaping travel path LI, as shown in FIG. Control the run. In addition, as the combine 1 separates from the reaper traveling path LI, the reaper clutch C15 is switched from the on state to the off state.
 尚、本実施形態においては、図7に示す刈取走行経路LI上の位置P1において、コンバイン1が刈取走行経路LIから離脱するものとする。 In the present embodiment, it is assumed that the combine 1 is separated from the cutting travel path LI at a position P1 on the cutting travel path LI shown in FIG.
 図7に示すように、コンバイン1が刈取走行経路LIから離脱した後、走行制御部23は、離脱復帰経路LWへ向かって走行するようにコンバイン1を制御する。そして、コンバイン1が離脱復帰経路LWの近傍に到達すると、走行制御部23は、離脱復帰経路LWに沿った自動走行によって非刈取走行が行われるように、コンバイン1の走行を制御する。 As shown in FIG. 7, after the combine 1 leaves the reaper traveling route LI, the traveling control unit 23 controls the combine 1 to travel toward the separation return route LW. Then, when the combine 1 reaches the vicinity of the separation return path LW, the traveling control unit 23 controls the traveling of the combine 1 so that the non-removing travel is performed by the automatic traveling along the separation return path LW.
 ここで、コンバイン1が刈取走行経路LIから離脱した後、脱穀装置13へ供給される刈取穀稈の量は減少する。本実施形態においては、コンバイン1が刈取走行経路LIから離脱した後、選別処理物量がレベル5からレベル1へ低下したものとする。そして、選別処理物量がレベル1である状態が第1期間継続した時点で、コンバイン1は図7に示す位置P2に位置しているものとする。 Here, after the combine 1 leaves the reaping travel path LI, the amount of reaping grain fed to the threshing device 13 decreases. In the present embodiment, it is assumed that the amount of the sorted material is reduced from level 5 to level 1 after the combine 1 leaves the reaping travel route LI. Then, it is assumed that the combine 1 is positioned at the position P2 shown in FIG. 7 when the state in which the amount of sorted processed products is level 1 continues for the first period.
 この場合、コンバイン1が位置P2に到達した時点で、判定部25は、脱穀装置13の脱穀効率が低下したと判定することとなる。従って、位置P2において、脱穀装置停止部27は、脱穀クラッチC13を入状態から切状態に切り替える。これにより、脱穀装置13の駆動は停止する。 In this case, when the combine 1 reaches the position P2, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased. Therefore, at the position P2, the threshing device stopping unit 27 switches the threshing clutch C13 from the on state to the off state. Thereby, the driving of the threshing device 13 is stopped.
 図7に示すように、コンバイン1は、位置P2を通過した後、離脱復帰経路LWに沿った自動走行を続け、停車位置PPに停車する。そして、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 As shown in FIG. 7, after passing through the position P2, the combine 1 continues automatic traveling along the departure / return route LW and stops at the stopping position PP. Then, the grain is discharged to the transport vehicle CV by the grain discharging device 18.
 穀粒を排出した後、図8に示すように、コンバイン1は離脱復帰経路LWに沿った自動走行を再開する。そして、コンバイン1は、刈取走行経路LIに沿った自動走行へ復帰するために、位置P3において旋回する。この旋回は走行制御部23の制御によって自動的に行われる。 After discharging the grain, as shown in FIG. 8, the combine 1 resumes the automatic traveling along the separation return route LW. Then, the combine 1 turns at the position P3 in order to return to the automatic traveling along the reaper traveling route LI. This turning is automatically performed by the control of the traveling control unit 23.
 このとき、脱穀装置開始部26は、脱穀クラッチC13を切状態から入状態に切り替える。これにより、位置P3において脱穀装置13の駆動が再開する。また、これと同時に、刈取クラッチC15が切状態から入状態に切り替えられる。そして、コンバイン1は、刈取走行経路LI上の位置P4において、刈取走行経路LIに沿った自動走行へ復帰する。 At this time, the threshing device starting unit 26 switches the threshing clutch C13 from the off state to the on state. As a result, the driving of the threshing device 13 resumes at the position P3. At the same time, the reaper clutch C15 is switched from the off state to the on state. Then, the combine 1 returns to automatic travel along the reaping travel route LI at a position P4 on the reaping travel route LI.
 尚、本発明はこれに限定されず、コンバイン1が作業対象領域CAにおける未刈部分に近接したタイミングで、脱穀クラッチC13及び刈取クラッチC15が切状態から入状態に切り替えられても良い。例えば、コンバイン1の刈取装置15と、作業対象領域CAにおける未刈部分と、の間の距離が2メートルとなった時点で、脱穀クラッチC13及び刈取クラッチC15が切状態から入状態に切り替えられても良い。 The present invention is not limited to this, and the threshing clutch C13 and the reaper clutch C15 may be switched from the off state to the on state at the timing when the combine 1 approaches the uncut portion in the work target area CA. For example, when the distance between the reaper 15 of the combine 1 and the uncut part in the work area CA becomes 2 meters, the threshing clutch C13 and the reaper clutch C15 are switched from the off state to the on state Also good.
 また、コンバイン1が刈取走行経路LIに沿った自動走行へ復帰する位置は、作業対象領域CAにおける未刈部分のうち、停車位置PPから最も近い位置に決定される。即ち、コンバイン1が刈取走行経路LIに沿った自動走行へ復帰する位置は、コンバイン1が刈取走行経路LIから離脱した位置にかかわらず決定される。そのため、上述の位置P1と位置P4とは異なっている。 Further, the position where the combine 1 returns to the automatic travel along the reaping travel route LI is determined to be the closest position from the stopping position PP among the uncleaved portions in the work target area CA. That is, the position where the combine 1 returns to the automatic traveling along the reaper traveling route LI is determined regardless of the position where the combine 1 has left the reaper traveling route LI. Therefore, the position P1 and the position P4 described above are different.
 そして、作業対象領域CAにおける全ての刈取走行経路LIに沿った刈取走行が完了すると、圃場の全体が収穫済みとなる。 Then, when the mowing travel along all the mowing travel paths LI in the work target area CA is completed, the entire field becomes harvested.
 尚、以上で説明したように、本実施形態においては、コンバイン1が刈取走行経路LIから離脱して離脱復帰経路LWに沿った走行を開始するまでの間、コンバイン1の走行は、走行制御部23の制御による自動走行によって行われる。 As described above, in the present embodiment, the traveling of the combine 1 is the traveling control unit until the combine 1 leaves the reaper traveling route LI and starts traveling along the separation return route LW. It is carried out by automatic traveling under control of 23.
 また、本実施形態においては、コンバイン1が離脱復帰経路LWを離れて刈取走行経路LIに沿った走行を再開するまでの間、コンバイン1の走行は、走行制御部23の制御による自動走行によって行われる。 Further, in the present embodiment, the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the separation return path LW and resumes the traveling along the reaper traveling path LI. It will be.
 〔再算出復帰経路について〕
 ところで、コンバイン1が刈取走行経路LIに沿った自動走行へ復帰する際、離脱復帰経路算出部22bは、離脱復帰経路LWとは異なる再算出復帰経路LRを算出することができる。再算出復帰経路LRは、コンバイン1が刈取走行経路LIに沿った自動走行へ復帰するための走行経路である。以下では、再算出復帰経路LRについて説明する。
[About recalculated return route]
By the way, when the combine 1 returns to the automatic traveling along the reaper traveling route LI, the separation return route calculation unit 22b can calculate a re-calculation return route LR different from the separation return route LW. The recalculation return path LR is a travel path for the combine 1 to return to automatic travel along the reaper travel path LI. Hereinafter, the recalculation return path LR will be described.
 上述の通り、制御部20は、走行禁止領域記憶部28を有している。走行禁止領域記憶部28は、圃場における走行禁止領域PAを記憶している。図2に示すように、離脱復帰経路算出部22bは、走行禁止領域記憶部28から、走行禁止領域PAを示すデータを取得する。 As described above, the control unit 20 includes the non-traveling area storage unit 28. The travel prohibited area storage unit 28 stores the travel prohibited area PA in the field. As shown in FIG. 2, the departure / return route calculation unit 22 b acquires, from the travel prohibited area storage unit 28, data indicating the travel prohibited area PA.
 尚、走行禁止領域PAとは、圃場において、樹木が存在する等の理由により、コンバイン1の走行が禁止されている領域である。 The travel prohibited area PA is an area where the travel of the combine 1 is prohibited due to the presence of trees and the like in the field.
 また、図2に示すように、自車位置算出部21は、コンバイン1の経時的な位置座標を、離脱復帰経路算出部22bへ送る。 Further, as shown in FIG. 2, the vehicle position calculation unit 21 sends the position coordinates of the combine 1 with time to the departure / return route calculation unit 22 b.
 そして、離脱復帰経路算出部22bは、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標と、領域算出部24から受け取った算出結果と、に基づいて、作業対象領域CAにおける未刈領域CA1及び既刈領域CA2を算出する。 Then, the departure / return route calculation unit 22b determines whether the work target area CA has not been completed based on the temporal position coordinates of the combine 1 received from the vehicle position calculation unit 21 and the calculation result received from the area calculation unit 24. The cutting area CA1 and the already cut area CA2 are calculated.
 さらに、離脱復帰経路算出部22bは、走行禁止領域記憶部28から取得した走行禁止領域PAを示すデータと、コンバイン1の現在の位置座標と、領域算出部24から受け取った算出結果と、上述の通り算出された未刈領域CA1及び既刈領域CA2と、に基づいて、再算出復帰経路LRを算出する。 Furthermore, the departure / return route calculation unit 22 b may use the data indicating the prohibited travel area PA acquired from the prohibited travel area storage unit 28, the current position coordinates of the combine 1, the calculation result received from the area calculation unit 24, and Based on the uncut area CA1 and the already cut area CA2 calculated as described above, the recalculation return path LR is calculated.
 ここで、再算出復帰経路LRの算出は、次の3つの条件に従って行われる。即ち、再算出復帰経路LRは、走行禁止領域PAを通過する走行経路であってはならない。また、再算出復帰経路LRは、圃場の外部を通過する走行経路であってはならない。また、再算出復帰経路LRは、既刈領域CA2を通過する走行経路であっても良い。 Here, the calculation of the recalculation return path LR is performed according to the following three conditions. That is, the recalculation return route LR must not be a travel route that passes through the travel prohibited area PA. In addition, the recalculation return route LR should not be a travel route passing outside the field. Further, the recalculation return route LR may be a travel route that passes through the already-cleaved area CA2.
 以下では、再算出復帰経路LRの算出の例として、図9に示す圃場において再算出復帰経路LRが算出される場合の流れについて説明する。 Below, as an example of calculation of recalculation return path LR, the flow in the case where recalculation return path LR is calculated in the field shown in FIG. 9 will be described.
 図9には、コンバイン1が、停車位置PPに停車している状態から、刈取走行経路LIに沿った自動走行へ復帰する様子が示されている。 FIG. 9 shows that the combine 1 returns from the state where it is stopped at the stopping position PP to the automatic traveling along the reaper traveling route LI.
 コンバイン1が停車位置PPに停車している間に、離脱復帰経路算出部22bによる再算出復帰経路LRの算出が行われる。この算出においては、まず、作業対象領域CAにおける未刈領域CA1のうち、停車位置PPから最も近い位置が算出される。このとき算出された位置が、刈取走行経路LIに沿った自動走行へ復帰するための位置として決定される。図9に示す例では、位置P5が、刈取走行経路LIに沿った自動走行へ復帰するための位置として決定される。 While the combine 1 is stopped at the stop position PP, the recalculation return route LR is calculated by the departure return route calculation unit 22b. In this calculation, first, of the uncut area CA1 in the work target area CA, the position closest to the stop position PP is calculated. The position calculated at this time is determined as the position for returning to the automatic traveling along the reaper traveling route LI. In the example shown in FIG. 9, the position P5 is determined as the position for returning to the automatic traveling along the reaper traveling route LI.
 次に、離脱復帰経路算出部22bは、再算出復帰経路LRの候補となる走行経路を算出する。このとき算出される走行経路は、停車位置PPから位置P5までの走行経路である。 Next, the departure / return route calculation unit 22b calculates a travel route that is a candidate for the recalculation return route LR. The travel route calculated at this time is a travel route from the stop position PP to the position P5.
 詳述すると、離脱復帰経路算出部22bは、再算出復帰経路LRの候補として、まず、第1ルートRt1を算出する。第1ルートRt1は、停車位置PPから位置P5までの走行距離が比較的短くなるように算出されている。 More specifically, the departure / return route calculation unit 22b first calculates a first route Rt1 as a candidate for the recalculation return route LR. The first route Rt1 is calculated such that the travel distance from the stopping position PP to the position P5 is relatively short.
 しかしながら、第1ルートRt1は、走行禁止領域PAを横切っている。即ち、第1ルートRt1は、走行禁止領域PAを通過する走行経路であるため、再算出復帰経路LRの候補から除外される。 However, the first route Rt1 crosses the no travel area PA. That is, since the first route Rt1 is a traveling route passing through the no-traveling area PA, it is excluded from the candidates for the recalculation return route LR.
 次に、離脱復帰経路算出部22bは、再算出復帰経路LRの候補として、第2ルートRt2及び第3ルートRt3を算出する。第2ルートRt2及び第3ルートRt3は、走行禁止領域PAを迂回するように算出されている。また、第2ルートRt2及び第3ルートRt3の長さは互いに同じである。 Next, the departure / return route calculation unit 22b calculates a second route Rt2 and a third route Rt3 as candidates for the recalculation return route LR. The second route Rt2 and the third route Rt3 are calculated so as to bypass the travel prohibited area PA. In addition, the lengths of the second route Rt2 and the third route Rt3 are the same as each other.
 ここで、第2ルートRt2の一部は、圃場の外部に位置している。即ち、第2ルートRt2は、圃場の外部を通過する走行経路であるため、再算出復帰経路LRの候補から除外される。 Here, a part of the second route Rt2 is located outside the field. That is, since the second route Rt2 is a traveling route passing outside the farmland, it is excluded from the candidates for the recalculation return route LR.
 また、第3ルートRt3の一部は、既刈領域CA2に位置している。即ち、第3ルートRt3は、既刈領域CA2を通過する走行経路である。また、第3ルートRt3は、走行禁止領域PAを通過する走行経路ではない。また、第3ルートRt3は、圃場の外部を通過する走行経路ではない。従って、第3ルートRt3は、再算出復帰経路LRの候補として残る。 Further, a part of the third route Rt3 is located in the already-cleaved area CA2. That is, the third route Rt3 is a traveling route passing through the already-cleaved area CA2. In addition, the third route Rt3 is not a traveling route passing through the no-traveling area PA. In addition, the third route Rt3 is not a travel route passing outside the field. Therefore, the third route Rt3 remains as a candidate for the recalculation return path LR.
 即ち、上述の3つのルートのうち、再算出復帰経路LRの候補として残るルートは第3ルートRt3のみである。そのため、図9に示すように、第3ルートRt3が再算出復帰経路LRとして選択される。 That is, among the above three routes, only the third route Rt3 remains as a candidate for the recalculation return route LR. Therefore, as shown in FIG. 9, the third route Rt3 is selected as the recalculation return path LR.
 離脱復帰経路算出部22bは、以上で説明したように、再算出復帰経路LRを算出する。そして、コンバイン1は、走行制御部23の制御による自動走行によって、再算出復帰経路LRに沿って走行する。これにより、コンバイン1は刈取走行経路LIに沿った自動走行へ復帰する。 The departure / return route calculation unit 22 b calculates the re-calculated return route LR as described above. Then, the combine 1 travels along the recalculation return path LR by automatic travel under the control of the travel control unit 23. As a result, the combine 1 returns to automatic traveling along the reaper traveling route LI.
 以上で説明した構成であれば、コンバイン1が刈取走行経路LIから離脱した後、脱穀装置13の脱穀効率が低下した場合には、脱穀装置停止部27により、脱穀装置13の駆動が停止される。従って、脱穀装置13の駆動に無駄が生じにくくなる。これにより、コンバイン1の燃費が良好となる。 With the configuration described above, when the threshing efficiency of the threshing device 13 decreases after the combine 1 leaves the harvesting travel route LI, the driving of the threshing device 13 is stopped by the threshing device stop unit 27. . Therefore, the driving of the threshing device 13 is less likely to be wasted. Thereby, the fuel consumption of the combine 1 becomes favorable.
[第1実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another Embodiment of the First Embodiment]
Hereinafter, another embodiment in which the above-described embodiment is modified will be described. Except for the matters described in the following different embodiments, the matters are the same as the matters described in the above-described embodiment. The above-described embodiment and the other embodiments described below may be combined as appropriate as long as no contradiction arises. Note that the scope of the present invention is not limited to the above-described embodiment and the following different embodiments.
 〔第1別実施形態〕
 上記実施形態においては、コンバイン1が刈取走行経路LIから離脱して離脱復帰経路LWに沿った走行を開始するまでの間、コンバイン1の走行は、走行制御部23の制御による自動走行によって行われる。
First Embodiment
In the above embodiment, the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the reaper traveling route LI and starts traveling along the separation return route LW. .
 また、上記実施形態においては、コンバイン1が離脱復帰経路LWを離れて刈取走行経路LIに沿った走行を再開するまでの間、コンバイン1の走行は、走行制御部23の制御による自動走行によって行われる。 Further, in the above-described embodiment, the traveling of the combine 1 is performed by the automatic traveling under the control of the traveling control unit 23 until the combine 1 leaves the separation return path LW and resumes traveling along the reaper traveling path LI. It will be.
 しかしながら、本発明はこれに限定されない。以下では、第1実施形態の第1別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 However, the present invention is not limited to this. Hereinafter, a first alternative embodiment of the first embodiment will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図10及び図11は、第1実施形態の第1別実施形態におけるコンバイン1の走行を示す図である。 FIG.10 and FIG.11 is a figure which shows driving | running | working of the combine 1 in 1st another embodiment of 1st Embodiment.
 この第1別実施形態においては、作業者がコンバイン1を手動で操作することによって、コンバイン1が刈取走行経路LIから離脱する。そして、コンバイン1が刈取走行経路LIから離脱した後、走行制御部23が離脱復帰経路LWを捕捉した場合、走行制御部23の制御による自動走行が開始され、コンバイン1は離脱復帰経路LWに沿った自動走行を行う。 In the first alternative embodiment, when the operator manually operates the combine 1, the combine 1 leaves the reaper traveling route LI. Then, after the combine 1 leaves the reaper drive route LI, when the travel control unit 23 captures the release return route LW, automatic travel is started under the control of the travel control unit 23, and the combine 1 is along the release return route LW. Run automatically.
 また、この第1別実施形態においては、作業者がコンバイン1を手動で操作することによって、コンバイン1が離脱復帰経路LWを離れる。そして、コンバイン1が離脱復帰経路LWを離れた後、走行制御部23が刈取走行経路LIを捕捉した場合、走行制御部23の制御による自動走行が開始され、コンバイン1は刈取走行経路LIに沿った自動走行を行う。 Further, in the first alternative embodiment, the combine 1 leaves the separation return path LW when the worker manually operates the combine 1. Then, when the travel control unit 23 captures the reaper traveling route LI after the combine 1 leaves the separation return route LW, automatic traveling is started by the control of the travel control unit 23, and the combine 1 is along the reaper traveling route LI. Run automatically.
 即ち、この第1別実施形態においては、コンバイン1が刈取走行経路LIから離脱した後、走行制御部23が離脱復帰経路LWを捕捉するまでの間、作業者がコンバイン1を手動で操作する。同様に、コンバイン1が離脱復帰経路LWを離れた後、走行制御部23が刈取走行経路LIを捕捉するまでの間、作業者がコンバイン1を手動で操作する。 That is, in the first alternative embodiment, the operator manually operates the combine 1 after the combine 1 leaves the reaper traveling route LI until the traveling control unit 23 captures the separation return route LW. Similarly, after the combine 1 leaves the separation return path LW, the operator manually operates the combine 1 until the traveling control unit 23 captures the reaping travel path LI.
 以下では、走行制御部23が離脱復帰経路LW及び刈取走行経路LIを捕捉することについて詳述する。 In the following, it will be described in detail that the travel control unit 23 captures the separation return path LW and the reaping travel path LI.
 図10に示すように、コンバイン1が刈取走行経路LIから離脱した後、走行制御部23は、第1捕捉領域Ct1を設定する。第1捕捉領域Ct1は、コンバイン1の前端部における機体幅方向中央位置から、進行方向前側に広がる扇形の領域である。また、この扇形の半径及び中心角は、半径X及び中心角w1である。 As shown in FIG. 10, after the combine 1 leaves the reaper traveling route LI, the traveling control unit 23 sets a first capture area Ct1. The first capture area Ct1 is a fan-shaped area that extends from the center position in the machine width direction at the front end of the combine 1 to the front side in the traveling direction. Also, the radius and central angle of this sector are radius X and central angle w1.
 コンバイン1が刈取走行経路LIから離脱した後、走行制御部23は、第1捕捉領域Ct1が離脱復帰経路LWに重なるか否かを監視する。また、コンバイン1が刈取走行経路LIから離脱した後、走行制御部23は、離脱復帰経路LWに対するコンバイン1の前進方向の傾きである角度w2が所定角度WA以下であるか否かを監視する。 After the combine 1 separates from the reaper traveling route LI, the traveling control unit 23 monitors whether the first capture area Ct1 overlaps the separation return route LW. Further, after the combine 1 leaves the reaper travel route LI, the travel control unit 23 monitors whether the angle w2 which is the inclination of the combine 1 in the forward direction with respect to the release return route LW is less than or equal to a predetermined angle WA.
 そして、第1捕捉領域Ct1が離脱復帰経路LWに重なり、且つ、角度w2が所定角度WA以下となったとき、走行制御部23は離脱復帰経路LWを捕捉した状態となる。即ち、走行制御部23が離脱復帰経路LWを捕捉することは、第1捕捉領域Ct1が離脱復帰経路LWに重なり、且つ、角度w2が所定角度WA以下となることと同義である。 Then, when the first capture area Ct1 overlaps the departure return route LW and the angle w2 becomes equal to or less than the predetermined angle WA, the traveling control unit 23 is in a state of capturing the departure return route LW. That is, that the traveling control unit 23 captures the separation return route LW is equivalent to the fact that the first capture region Ct1 overlaps the separation return route LW and the angle w2 becomes equal to or less than the predetermined angle WA.
 走行制御部23が離脱復帰経路LWを捕捉すると、走行制御部23の制御による自動走行が開始され、コンバイン1は離脱復帰経路LWに沿った自動走行を行う。 When the traveling control unit 23 captures the leaving / returning route LW, automatic traveling is started by the control of the traveling control unit 23, and the combine 1 performs automatic traveling along the leaving / returning route LW.
 また、図11に示すように、コンバイン1が離脱復帰経路LWを離れた後、走行制御部23は、第2捕捉領域Ct2を設定する。第2捕捉領域Ct2は、コンバイン1の前端部における機体幅方向中央位置から、進行方向前側に広がる扇形の領域である。また、この扇形の半径及び中心角は、半径Y及び中心角r1である。 Further, as shown in FIG. 11, after the combine 1 leaves the separation return path LW, the traveling control unit 23 sets a second capture area Ct2. The second capture area Ct2 is a fan-shaped area that extends from the center in the vehicle width direction at the front end of the combine 1 to the front side in the traveling direction. Also, the radius and central angle of this sector are radius Y and central angle r1.
 コンバイン1が離脱復帰経路LWを離れた後、走行制御部23は、第2捕捉領域Ct2が刈取走行経路LIに重なるか否かを監視する。また、コンバイン1が離脱復帰経路LWを離れた後、走行制御部23は、刈取走行経路LIに対するコンバイン1の前進方向の傾きである角度r2が所定角度RA以下であるか否かを監視する。 After the combine 1 leaves the separation return route LW, the traveling control unit 23 monitors whether the second capture area Ct2 overlaps the reaper traveling route LI. In addition, after the combine 1 leaves the separation return path LW, the traveling control unit 23 monitors whether the angle r2 which is the inclination in the forward direction of the combine 1 with respect to the reaper traveling path LI is less than or equal to a predetermined angle RA.
 そして、第2捕捉領域Ct2が刈取走行経路LIに重なり、且つ、角度r2が所定角度RA以下となったとき、走行制御部23は刈取走行経路LIを捕捉した状態となる。即ち、走行制御部23が刈取走行経路LIを捕捉することは、第2捕捉領域Ct2が刈取走行経路LIに重なり、且つ、角度r2が所定角度RA以下となることと同義である。 Then, when the second capture area Ct2 overlaps the cutting travel path LI and the angle r2 becomes equal to or less than the predetermined angle RA, the travel control unit 23 is in a state of capturing the cutting travel path LI. That is, that the traveling control unit 23 captures the reaper traveling route LI is synonymous with the second capture area Ct2 overlapping the reaper traveling route LI and the angle r2 being equal to or less than a predetermined angle RA.
 走行制御部23が刈取走行経路LIを捕捉すると、走行制御部23の制御による自動走行が開始され、コンバイン1は刈取走行経路LIに沿った自動走行を行う。 When the traveling control unit 23 captures the reaper traveling route LI, automatic traveling under control of the traveling control unit 23 is started, and the combine 1 performs automatic traveling along the reaper traveling route LI.
 尚、図10及び図11に示すように、第2捕捉領域Ct2の半径Yは、第1捕捉領域Ct1の半径Xよりも小さい。また、第2捕捉領域Ct2の中心角r1は、第1捕捉領域Ct1の中心角w1よりも小さい。即ち、第2捕捉領域Ct2は、第1捕捉領域Ct1よりも狭く設定されている。 As shown in FIGS. 10 and 11, the radius Y of the second capture area Ct2 is smaller than the radius X of the first capture area Ct1. The central angle r1 of the second capture area Ct2 is smaller than the central angle w1 of the first capture area Ct1. That is, the second capture area Ct2 is set narrower than the first capture area Ct1.
 また、所定角度RAは、所定角度WAよりも小さい角度に設定されている。 The predetermined angle RA is set to an angle smaller than the predetermined angle WA.
 即ち、走行制御部23が刈取走行経路LIを捕捉するための条件は、走行制御部23が離脱復帰経路LWを捕捉するための条件よりも厳しく設定されている。これにより、圃場における複数の刈取走行経路LIのうち、作業者が意図していない刈取走行経路LIが走行制御部23によって捕捉されてしまう事態を回避しやすい。また、作業者が刈取走行経路LIに沿った走行を望んでいない場合に刈取走行経路LIが走行制御部23によって捕捉されてしまう事態を回避しやすい。 That is, the conditions for the traveling control unit 23 to capture the reaper traveling route LI are set more strictly than the conditions for the traveling control unit 23 to capture the separation return route LW. Accordingly, it is possible to avoid the situation in which the traveling control unit 23 captures the reaping traveling route LI not intended by the operator among the plurality of reaping traveling routes LI in the field. In addition, it is possible to avoid the situation where the reaper traveling route LI is captured by the traveling control unit 23 when the operator does not want traveling along the reaper traveling route LI.
 また、刈取走行経路LI及び離脱復帰経路LWは、仮想的に設定される走行経路であって、実際の圃場において作業者が目視可能なものではない。そのため、作業者は、走行制御部23に離脱復帰経路LWまたは刈取走行経路LIを捕捉させるようにコンバイン1を操作する際、離脱復帰経路LWまたは刈取走行経路LIの位置を想定し、その想定した離脱復帰経路LWまたは刈取走行経路LIに沿わせるようにコンバイン1を操作することとなる。 In addition, the reaper traveling route LI and the separation return route LW are virtually set traveling routes, and are not visible to the worker in an actual field. Therefore, when the operator operates the combine 1 to cause the traveling control unit 23 to capture the separation return path LW or the reaping travel path LI, the position of the separation return path LW or the reaping travel path LI is assumed and assumed. The combine 1 is operated to be along the separation return path LW or the reaping travel path LI.
 即ち、作業者の想定した離脱復帰経路LWまたは刈取走行経路LIと、実際の離脱復帰経路LWまたは刈取走行経路LIと、がずれている場合、走行制御部23が離脱復帰経路LWまたは刈取走行経路LIを捕捉しにくくなる。 That is, when the separation return route LW or the reaper traveling route LI assumed by the operator and the actual separation return route LW or the reaper traveling route LI deviate from each other, the traveling control unit 23 performs the separation return route LW or the reaper traveling route It becomes difficult to capture LI.
 ここで、刈取走行経路LIに沿った走行を開始する場合、その刈取走行経路LIは、圃場の作業対象領域CAにおける未刈部分の端部に位置しており、且つ、未刈部分と既刈部分との間の境界線に沿って延びていることが多い。そのため、作業者の想定した刈取走行経路LIと、実際の刈取走行経路LIと、のずれは比較的小さくなりやすい。 Here, when traveling along the reaper traveling route LI is started, the reaper traveling route LI is located at the end of the uncleaved portion in the work target area CA of the field, and the uncleaved portion and the already-cut region It often extends along the boundary between the parts. Therefore, the deviation between the reaper traveling route LI assumed by the operator and the actual reaper traveling route LI tends to be relatively small.
 これに対し、離脱復帰経路LWの近傍には、作業者が離脱復帰経路LWの位置を精度良く想定するための助けとなるような目印が存在しないことが多い。そのため、作業者の想定した離脱復帰経路LWと、実際の離脱復帰経路LWと、のずれは比較的大きくなりやすい。これにより、走行制御部23が離脱復帰経路LWを捕捉しにくくなる。 On the other hand, in the vicinity of the separation return path LW, there are often no marks that help the operator to accurately estimate the position of the separation return path LW. Therefore, the deviation between the leaving return route LW assumed by the worker and the actual leaving return route LW tends to be relatively large. This makes it difficult for the traveling control unit 23 to capture the departure / return route LW.
 そこで、上述の通り、走行制御部23が離脱復帰経路LWを捕捉するための条件は、走行制御部23が刈取走行経路LIを捕捉するための条件よりも緩く設定されている。これにより、走行制御部23が離脱復帰経路LWを捕捉できない事態を回避しやすい。 Therefore, as described above, the conditions for the traveling control unit 23 to capture the leaving return route LW are set looser than the conditions for the traveling control unit 23 to capture the reaper traveling route LI. Thereby, it is easy to avoid the situation where the traveling control unit 23 can not capture the separation return route LW.
 尚、第1捕捉領域Ct1と第2捕捉領域Ct2とは、同時に設定されていても良い。即ち、コンバイン1が離脱復帰経路LW及び刈取走行経路LIの何れでもない位置を走行しているとき、走行制御部23が離脱復帰経路LW及び刈取走行経路LIを何れも捕捉可能であっても良い。この場合、離脱復帰経路LW及び刈取走行経路LIのうち、走行制御部23が先に捕捉した方の走行経路に沿った自動走行が行われるように構成されていても良い。 The first capture area Ct1 and the second capture area Ct2 may be set simultaneously. That is, when the combine 1 travels at a position where there is neither a separation return route LW nor a reaper traveling route LI, the travel control unit 23 may be able to capture any of the separation return route LW and the reaper traveling route LI. . In this case, of the departure return route LW and the reaping travel route LI, automatic travel may be performed along the travel route captured by the travel control unit 23 first.
 〔その他の実施形態〕
 (1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。
Other Embodiments
(1) The traveling device 11 may be a wheel type or a semi crawler type.
 (2)上記実施形態においては、刈取走行経路算出部22aにより算出される刈取走行経路LIは、互いに平行な複数の平行線であるが、本発明はこれに限定されず、刈取走行経路算出部22aにより算出される刈取走行経路LIは、互いに平行な複数の平行線でなくても良い。例えば、刈取走行経路算出部22aにより算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。 (2) In the above embodiment, the reaper traveling route LI calculated by the reaper traveling route calculating unit 22a is a plurality of parallel lines parallel to each other, but the present invention is not limited to this, and the reaper traveling route calculating unit The crop traveling path LI calculated by 22a may not be a plurality of parallel lines parallel to each other. For example, the reaper traveling route LI calculated by the reaper traveling route calculating unit 22a may be a spiral traveling route.
 (3)上記実施形態においては、作業者は、コンバイン1を手動で操作し、図4に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン1が自動で走行し、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行うように構成されていても良い。 (3) In the above embodiment, the operator manually operates the combine 1, and as shown in FIG. 4, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border line of the field. . However, the present invention is not limited to this, and the combine 1 may be configured to automatically travel and to perform reaping travel along the border line of the field in the outer peripheral portion in the field.
 (4)上記実施形態においては、判定部25は、選別処理物量がレベル1である状態が所定の第1期間以上継続した場合、脱穀装置13の脱穀効率が低下したと判定する。しかしながら、本発明はこれに限定されない。例えば、判定部25は、選別処理物量のレベルが低下した場合、脱穀装置13の脱穀効率が低下したと判定するように構成されていても良い。即ち、選別処理物量のレベルが低下することは、シーブセンサS1により検知されている選別処理物量が減少することに相当する。 (4) In the above embodiment, the determination unit 25 determines that the threshing efficiency of the threshing device 13 has decreased when the state in which the amount of sorted processed products is level 1 continues for a predetermined first period or longer. However, the present invention is not limited to this. For example, the determination unit 25 may be configured to determine that the threshing efficiency of the threshing device 13 has decreased when the level of the amount of the sorting processing material has decreased. That is, a decrease in the level of the sorted process amount corresponds to a decrease in the sorted process amount detected by the sheave sensor S1.
 (5)自車位置算出部21、経路算出部22、走行制御部23、領域算出部24、判定部25、脱穀装置開始部26、脱穀装置停止部27、走行禁止領域記憶部28のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理サーバに備えられていても良い。 (5) Of the host vehicle position calculation unit 21, the route calculation unit 22, the travel control unit 23, the area calculation unit 24, the determination unit 25, the threshing device starting unit 26, the threshing device stopping unit 27, and the travel prohibited area storage unit 28 A part or all of them may be provided outside the combine 1 and may be provided, for example, in a management server provided outside the combine 1.
 (6)離脱復帰経路算出部22bは設けられていなくても良い。 (6) The departure / return route calculation unit 22b may not be provided.
 (7)走行禁止領域記憶部28は設けられていなくても良い。 (7) The travel prohibited area storage unit 28 may not be provided.
 (8)脱穀装置開始部26は設けられていなくても良い。 (8) The threshing device start unit 26 may not be provided.
 (9)シーブセンサS1は設けられていなくても良い。 (9) The sheave sensor S1 may not be provided.
 (10)刈取クラッチセンサS2は設けられていなくても良い。 (10) The reaper clutch sensor S2 may not be provided.
 (11)通信端末4は設けられていなくても良い。 (11) The communication terminal 4 may not be provided.
 (12)刈取走行経路算出部22aにより算出される刈取走行経路LIは、直線状の経路でも良いし、湾曲した経路でも良い。また、離脱復帰経路算出部22bにより算出される離脱復帰経路LWは、直線状の経路でも良いし、湾曲した経路でも良い。 (12) The reaping travel path LI calculated by the reaping travel path calculating unit 22a may be a straight path or a curved path. Further, the separation return path LW calculated by the separation return path calculation unit 22b may be a linear path or a curved path.
 (13)上記実施形態における各部材の機能をコンピュータに実現させるコンバイン制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させるコンバイン制御プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを複数のステップにより行うコンバイン制御方法として構成されていても良い。 (13) The present invention may be configured as a combine control program that causes a computer to realize the function of each member in the above embodiment. Further, the present invention may be configured as a recording medium on which a combine control program that causes a computer to realize the function of each member in the above embodiment is recorded. Moreover, you may be comprised as a combine control method which performs what is performed by each member in the said embodiment by several steps.
[第2実施形態]
 以下、図12~図19を参照しながら、本発明の第2実施形態について説明する。なお、方向についての記載は、特に断りがない限り、図12に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図12に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 12 to 19. In the description of the directions, unless otherwise noted, the direction of arrow F shown in FIG. 12 is “front”, and the direction of arrow B is “rear”. Further, the direction of the arrow U shown in FIG. 12 is “up”, and the direction of the arrow D is “down”.
 〔コンバインの全体構成〕
 図12に示すように、普通型のコンバイン101(本発明に係る「収穫機」に相当)は、クローラ式の走行装置111、運転部112、脱穀装置113、穀粒タンク114(本発明に係る「収穫物タンク」に相当)、収穫装置H、搬送装置116、穀粒排出装置118(本発明に係る「排出装置」に相当)、衛星測位モジュール180を備えている。
[Overall configuration of combine]
As shown in FIG. 12, the ordinary type combine 101 (corresponding to “the harvester” according to the present invention) includes a crawler-type traveling device 111, an operation unit 112, a threshing device 113, and a grain tank 114 (the present invention). A harvester H, a carrier 116, a grain discharging device 118 (corresponding to the "discharging device" according to the present invention), and a satellite positioning module 180 are provided.
 走行装置111は、コンバイン101における下部に備えられている。コンバイン101は、走行装置111によって自走可能である。 The traveling device 111 is provided at the lower part of the combine 101. The combine 101 can be self-propelled by the traveling device 111.
 また、運転部112、脱穀装置113、穀粒タンク114は、走行装置111の上側に備えられている。運転部112には、コンバイン101の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン101の機外からコンバイン101の作業を監視していても良い。 The operation unit 112, the threshing device 113, and the grain tank 114 are provided on the upper side of the traveling device 111. An operator who monitors the operation of the combine 101 can get on the operation unit 112. The worker may monitor the work of the combine 101 from the outside of the combine 101.
 穀粒排出装置118は、穀粒タンク114の上側に設けられている。また、衛星測位モジュール180は、運転部112の上面に取り付けられている。 The grain discharging device 118 is provided on the upper side of the grain tank 114. In addition, the satellite positioning module 180 is attached to the top surface of the driver 112.
 収穫装置Hは、コンバイン101における前部に備えられている。そして、搬送装置116は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取装置115及びリール117を有している。 The harvesting device H is provided at the front of the combine 101. The transport device 116 is provided on the rear side of the harvesting device H. In addition, the harvesting apparatus H has a reaper 115 and a reel 117.
 刈取装置115は、圃場の植立穀稈を刈り取る。また、リール117は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物(本発明に係る「農作物」に相当)を収穫する。そして、コンバイン101は、刈取装置115によって圃場の植立穀稈を刈り取りながら走行装置111によって走行する刈取走行が可能である。 The reaper 115 reaps the field crop of the field. In addition, the reel 117 scrapes the cropped cereals to be harvested while being rotationally driven. By this configuration, the harvester H harvests the field crop (corresponding to the "agricultural crop" according to the present invention). Then, the combine 101 is capable of reaping travel traveling by the traveling device 111 while reaping the crop of the field in the field with the reaper 115.
 刈取装置115により刈り取られた刈取穀稈は、搬送装置116によって脱穀装置113へ搬送される。脱穀装置113において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒(本発明に係る「収穫物」に相当)は、穀粒タンク114に貯留される。穀粒タンク114に貯留された穀粒は、必要に応じて、穀粒排出装置118によって機外に排出される。 The cropped rice bran that has been cut by the reaper 115 is transported by the transport device 116 to the threshing device 113. In the threshing device 113, the reaping grain is threshed. Grains (corresponding to the “harvest” according to the present invention) obtained by the threshing process are stored in a grain tank 114. The grains stored in the grain tank 114 are discharged to the outside by the grain discharging device 118 as needed.
 このように、コンバイン101は、圃場の穀物を収穫する収穫装置Hと、収穫装置Hによって収穫された穀粒を貯留する穀粒タンク114と、穀粒タンク114に貯留された穀粒を排出する穀粒排出装置118と、を有する。 In this way, the combine 101 discharges the grain stored in the grain tank 114, the grain harvester H that harvests the grain in the field, the grain tank 114 that holds grains harvested by the harvester H, and the grain tank 114 And a grain discharging device 118.
 また、図12に示すように、運転部112には、通信端末104が配置されている。通信端末104は、種々の情報を表示可能に構成されている。本実施形態において、通信端末104は、運転部112に固定されている。しかしながら、本発明はこれに限定されず、通信端末104は、運転部112に対して着脱可能に構成されていても良いし、通信端末104は、コンバイン101の機外に位置していても良い。 Further, as shown in FIG. 12, the communication terminal 104 is disposed in the operation unit 112. The communication terminal 104 is configured to be able to display various information. In the present embodiment, the communication terminal 104 is fixed to the operation unit 112. However, the present invention is not limited to this, the communication terminal 104 may be configured to be attachable to and detachable from the operation unit 112, and the communication terminal 104 may be located outside the combine 101. .
 また、図13に示すように、コンバイン101は、エンジン151及び排出クラッチC18を備えている。 Further, as shown in FIG. 13, the combine 101 includes an engine 151 and a discharge clutch C18.
 エンジン151から出力された動力は、排出クラッチC18及び走行装置111に分配される。走行装置111は、エンジン151からの動力により駆動する。 The power output from the engine 151 is distributed to the discharge clutch C 18 and the traveling device 111. The traveling device 111 is driven by the power from the engine 151.
 また、排出クラッチC18は、動力を伝達する入状態と、動力を伝達しない切状態と、の間で状態変更可能に構成されている。 Further, the discharge clutch C18 is configured to be changeable between an on state transmitting power and a disconnected state not transmitting power.
 排出クラッチC18が切状態であるとき、エンジン151から出力された動力は穀粒排出装置118に伝達されない。このとき、穀粒排出装置118は非駆動状態である。 When the discharge clutch C18 is in the disengaged state, the power output from the engine 151 is not transmitted to the grain discharge device 118. At this time, the grain discharging device 118 is in a non-driven state.
 排出クラッチC18が入状態であるとき、エンジン151から出力された動力は穀粒排出装置118に伝達される。このとき、穀粒排出装置118は、エンジン151からの動力により駆動する。即ち、このとき、穀粒排出装置118は駆動状態である。 When the discharge clutch C18 is in the on state, the power output from the engine 151 is transmitted to the grain discharge device 118. At this time, the grain discharging device 118 is driven by the motive power from the engine 151. That is, at this time, the grain discharging device 118 is in the driving state.
 ここで、コンバイン101は、図14に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図16に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, after the combine 101 performs circulation while harvesting grains in the area on the outer periphery side of the field as shown in FIG. 14, then the combine 101 performs reaping travel in the inner area of the field as shown in FIG. 16. , Are configured to harvest the grain of the field.
 そして、この収穫作業において、コンバイン101は、収穫機制御システムA1によって制御される。以下では、収穫機制御システムA1の構成について説明する。 And in this harvesting operation, combine 101 is controlled by harvester control system A1. Below, the structure of harvest machine control system A1 is demonstrated.
 〔収穫機制御システムの構成〕
 図13に示すように、収穫機制御システムA1は、衛星測位モジュール180、自車方位検出装置181、制御部120、通信端末104を備えている。尚、自車方位検出装置181及び制御部120は、コンバイン101に備えられている。また、上述の通り、衛星測位モジュール180及び通信端末104も、コンバイン101に備えられている。
[Configuration of harvester control system]
As shown in FIG. 13, the harvester control system A1 includes a satellite positioning module 180, a vehicle direction detection device 181, a control unit 120, and a communication terminal 104. The vehicle orientation detection device 181 and the control unit 120 are provided in the combine 101. Further, as described above, the satellite positioning module 180 and the communication terminal 104 are also provided in the combine 101.
 制御部120は、自車位置算出部121、経路算出部122、走行制御部123、領域算出部124、手動操作信号送信部125、位置記憶部126、位置設定部127、方向記憶部128、方向設定部129、排出クラッチセンサS11を有している。 The control unit 120 includes a vehicle position calculation unit 121, a route calculation unit 122, a travel control unit 123, an area calculation unit 124, a manual operation signal transmission unit 125, a position storage unit 126, a position setting unit 127, a direction storage unit 128, and a direction. The setting unit 129 has a discharge clutch sensor S11.
 図12に示すように、衛星測位モジュール180は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図13に示すように、衛星測位モジュール180は、受信したGPS信号に基づいて、コンバイン101の自車位置を示す測位データを自車位置算出部121へ送る。 As shown in FIG. 12, the satellite positioning module 180 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 13, the satellite positioning module 180 sends positioning data indicating the vehicle position of the combine 101 to the vehicle position calculation unit 121 based on the received GPS signal.
 自車位置算出部121は、衛星測位モジュール180により出力された測位データに基づいて、コンバイン101の位置座標を経時的に算出する。算出されたコンバイン101の経時的な位置座標は、走行制御部123及び領域算出部124へ送られる。 The vehicle position calculation unit 121 calculates position coordinates of the combine 101 with time based on the positioning data output by the satellite positioning module 180. The calculated positional coordinates of the combine 101 with time are sent to the traveling control unit 123 and the area calculation unit 124.
 領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、図15に示すように、外周領域SA及び作業対象領域CAを算出する。 As shown in FIG. 15, the area calculation unit 124 calculates the outer peripheral area SA and the work target area CA based on the temporal position coordinates of the combine 101 received from the host vehicle position calculation unit 121.
 より具体的には、領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン101の走行軌跡を算出する。そして、領域算出部124は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 124 calculates the traveling locus of the combine 101 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 101 received from the vehicle position calculation unit 121. . And the area | region calculation part 124 calculates the area | region by the side of the outer periphery of the farmland which the combine 101 traveled while harvesting the grain as the outer periphery area SA based on the calculated traveling locus of the combine 101. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 例えば、図14においては、圃場の外周側における周回走行のためのコンバイン101の走行経路が矢印で示されている。図14に示す例では、コンバイン101は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図15に示す状態となる。 For example, in FIG. 14, the traveling route of the combine 101 for the circumferential traveling on the outer circumference side of the field is indicated by the arrow. In the example shown in FIG. 14, the combine 101 performs three rounds. When the mowing travel along the travel route is completed, the field is in the state shown in FIG.
 図15に示すように、領域算出部124は、コンバイン101が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 As shown in FIG. 15, the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the grain as the outer circumference area SA. In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 そして、図13に示すように、領域算出部124による算出結果は、経路算出部122へ送られる。 Then, as shown in FIG. 13, the calculation result by the area calculation unit 124 is sent to the route calculation unit 122.
 経路算出部122は、領域算出部124から受け取った算出結果に基づいて、図15に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。尚、図15に示すように、本実施形態において、刈取走行経路LIは、互いに平行な複数の平行線である。 Based on the calculation result received from the area calculation unit 124, as illustrated in FIG. 15, the route calculation unit 122 calculates a reaper traveling route LI, which is a traveling route for a reaper traveling in the work area CA. As shown in FIG. 15, in the present embodiment, the cutting traveling path LI is a plurality of parallel lines parallel to one another.
 図13に示すように、経路算出部122により算出された刈取走行経路LIは、走行制御部123へ送られる。 As shown in FIG. 13, the reaping traveling route LI calculated by the route calculating unit 122 is sent to the traveling control unit 123.
 走行制御部123は、走行装置111を制御可能に構成されている。そして、走行制御部123は、自車位置算出部121から受け取ったコンバイン101の位置座標と、経路算出部122から受け取った刈取走行経路LIと、に基づいて、コンバイン101の自動走行を制御する。より具体的には、走行制御部123は、図16に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン101の走行を制御する。 The traveling control unit 123 is configured to be able to control the traveling device 111. Then, the traveling control unit 123 controls the automatic traveling of the combine 101 based on the position coordinates of the combine 101 received from the host vehicle position calculation unit 121 and the reaper traveling route LI received from the route calculation unit 122. More specifically, as shown in FIG. 16, the traveling control unit 123 controls the traveling of the combine 101 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 手動操作信号送信部125は、コンバイン101が手動操作によって移動している場合に、所定の信号を、位置記憶部126及び方向記憶部128へ送信する。この信号は、コンバイン101が手動操作によって移動していることを示す信号である。 The manual operation signal transmission unit 125 transmits a predetermined signal to the position storage unit 126 and the direction storage unit 128 when the combine 101 is moved by the manual operation. This signal is a signal indicating that the combine 101 is moved by manual operation.
 また、自車位置算出部121は、コンバイン101の位置座標を位置記憶部126へ送る。 In addition, the vehicle position calculation unit 121 sends the position coordinates of the combine 101 to the position storage unit 126.
 また、排出クラッチセンサS11は、排出クラッチC18の入切状態を検知する。排出クラッチセンサS11による検知結果は、位置記憶部126及び方向記憶部128へ送られる。 Further, the discharge clutch sensor S11 detects the on / off state of the discharge clutch C18. The detection result of the discharge clutch sensor S11 is sent to the position storage unit 126 and the direction storage unit 128.
 位置記憶部126は、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合に、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の停車位置を記憶する。 When the discharge operation by the grain discharging device 118 is performed at the position where the combine 101 has moved manually, the position storage unit 126 performs the discharging operation of the combine 101 at the time when the discharging operation by the grain discharging device 118 is performed. Memorize the stop position.
 より具体的には、位置記憶部126は、手動操作信号送信部125からの信号と、排出クラッチセンサS11による検知結果と、に基づいて、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われたか否かを監視する。 More specifically, based on the signal from the manual operation signal transmission unit 125 and the detection result by the discharge clutch sensor S11, the position storage unit 126 sets the grain at the position where the combine 101 has moved by the manual operation. It is monitored whether the discharging operation by the discharging device 118 has been performed.
 尚、排出クラッチセンサS11から、排出クラッチC18が切状態から入状態へ切り替わったことを示す検知結果が位置記憶部126へ送られた場合、位置記憶部126は、穀粒排出装置118による排出作業が行われたと判定する。 When the detection result indicating that the discharge clutch C18 is switched from the off state to the on state is sent from the discharge clutch sensor S11 to the position storage unit 126, the position storage unit 126 performs the discharge operation by the grain discharge device 118. Is determined to have been performed.
 そして、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合、位置記憶部126は、その時点でのコンバイン101の停車位置を記憶する。 Then, when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 has moved by the manual operation, the position storage unit 126 stores the stopping position of the combine 101 at that time.
 このように、収穫機制御システムA1は、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合に、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の停車位置を記憶する位置記憶部126を備えている。 Thus, in the harvester control system A1, the discharging operation by the grain discharging device 118 is performed when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 moved by the manual operation. A position storage unit 126 that stores the stop position of the combine 101 at a point of time is provided.
 位置記憶部126に記憶された停車位置は、位置設定部127へ送られる。そして、位置設定部127は、位置記憶部126に記憶されたコンバイン101の停車位置に基づいて目標停車位置TPを設定する。位置設定部127により設定された目標停車位置TPは、走行制御部123へ送られる。 The stop position stored in the position storage unit 126 is sent to the position setting unit 127. Then, the position setting unit 127 sets the target stopping position TP based on the stopping position of the combine 101 stored in the position storage unit 126. The target stopping position TP set by the position setting unit 127 is sent to the traveling control unit 123.
 このように、収穫機制御システムA1は、位置記憶部126に記憶されたコンバイン101の停車位置に基づいて目標停車位置TPを設定する位置設定部127を備えている。 Thus, harvest machine control system A1 is provided with position setting part 127 which sets up target stop position TP based on the stop position of combine 101 memorized by position storage part 126.
 自車方位検出装置181は、コンバイン101の機体の向きを検出する。そして、図13に示すように、自車方位検出装置181による検出結果は、方向記憶部128へ送られる。 The vehicle orientation detection device 181 detects the orientation of the combine 101's fuselage. Then, as shown in FIG. 13, the detection result of the vehicle direction detection device 181 is sent to the direction storage unit 128.
 方向記憶部128は、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合に、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の機体の向きを記憶する。 The direction storage unit 128 is used when the grain discharging device 118 performs the discharging operation when the grain discharging device 118 performs the discharging operation at the position where the combine 101 has moved by the manual operation. Remember the orientation of the aircraft.
 より具体的には、方向記憶部128は、手動操作信号送信部125からの信号と、排出クラッチセンサS11による検知結果と、に基づいて、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われたか否かを監視する。 More specifically, based on the signal from the manual operation signal transmission unit 125 and the detection result by the discharge clutch sensor S11, the direction storage unit 128 makes grains at the position where the combine 101 has moved by the manual operation. It is monitored whether the discharging operation by the discharging device 118 has been performed.
 尚、排出クラッチセンサS11から、排出クラッチC18が切状態から入状態へ切り替わったことを示す検知結果が方向記憶部128へ送られた場合、方向記憶部128は、穀粒排出装置118による排出作業が行われたと判定する。 When the detection result indicating that the discharge clutch C18 has switched from the off state to the on state is sent from the discharge clutch sensor S11 to the direction storage unit 128, the direction storage unit 128 performs the discharge operation by the grain discharge device 118. Is determined to have been performed.
 そして、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合、方向記憶部128は、その時点でのコンバイン101の機体の向きを記憶する。 Then, when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 has been moved by the manual operation, the direction storage unit 128 stores the orientation of the fuselage of the combine 101 at that time.
 このように、収穫機制御システムA1は、コンバイン101が手動操作によって移動した先の位置で穀粒排出装置118による排出作業が行われた場合に、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の機体の向きを記憶する方向記憶部128を備えている。 Thus, in the harvester control system A1, the discharging operation by the grain discharging device 118 is performed when the discharging operation by the grain discharging device 118 is performed at the position where the combine 101 moved by the manual operation. The direction storage unit 128 stores the orientation of the combine 101 at the time point.
 方向記憶部128に記憶された機体の向きは、方向設定部129へ送られる。そして、方向設定部129は、方向記憶部128に記憶されたコンバイン101の機体の向きに基づいて目標停車方向TDを設定する。方向設定部129により設定された目標停車方向TDは、走行制御部123へ送られる。 The orientation of the airframe stored in the direction storage unit 128 is sent to the direction setting unit 129. Then, the direction setting unit 129 sets the target stopping direction TD based on the direction of the airframe of the combine 101 stored in the direction storage unit 128. The target stopping direction TD set by the direction setting unit 129 is sent to the traveling control unit 123.
 このように、収穫機制御システムA1は、方向記憶部128に記憶されたコンバイン101の機体の向きに基づいて目標停車方向TDを設定する方向設定部129を備えている。 Thus, harvest machine control system A1 is provided with the direction setting part 129 which sets the target stop direction TD based on the direction of the body of the combine 101 memorize | stored in the direction memory | storage part 128. FIG.
 そして、走行制御部123は、穀粒排出装置118による排出作業が行われる場合に、コンバイン101が目標停車方向TDを向いた状態で目標停車位置TPに自動的に停車するようにコンバイン101の走行を制御する。 The traveling control unit 123 travels the combine 101 so that the combine 101 automatically stops at the target stopping position TP with the combine 101 facing the target stopping direction TD when the grain discharging device 118 performs the discharging operation. Control.
 このように、収穫機制御システムA1は、穀粒排出装置118による排出作業が行われる場合に、コンバイン101が目標停車位置TPに自動的に停車するようにコンバイン101の走行を制御する走行制御部123を備えている。 Thus, the harvester control system A1 controls the traveling of the combine 101 so that the combine 101 automatically stops at the target stopping position TP when the grain discharging device 118 performs the discharging operation. It has 123.
 〔コンバイン制御システムを利用した収穫作業の流れ〕
 以下では、収穫機制御システムA1を利用した収穫作業の例として、コンバイン101が、図14に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work using combine control system]
In the following, as an example of a harvesting operation using the harvester control system A1, a flow in the case where the combine 101 performs the harvesting operation in the field shown in FIG. 14 will be described.
 最初に、作業者は、コンバイン101を手動で操作し、図14に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。図14に示す例では、コンバイン101は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図15に示す状態となる。 First, the operator manually operates the combine 101, and as shown in FIG. 14, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the border of the field. In the example shown in FIG. 14, the combine 101 performs three rounds. When this round trip is completed, the field is in the state shown in FIG.
 領域算出部124は、自車位置算出部121から受け取ったコンバイン101の経時的な位置座標に基づいて、図14に示す周回走行でのコンバイン101の走行軌跡を算出する。そして、図15に示すように、領域算出部124は、算出されたコンバイン101の走行軌跡に基づいて、コンバイン101が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部124は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 The area calculation unit 124 calculates the traveling locus of the combine 101 in the round trip shown in FIG. 14 based on the temporal position coordinate of the combine 101 received from the host vehicle position calculation unit 121. Then, as shown in FIG. 15, the area calculation unit 124 calculates an area on the outer circumference side of the field where the combine 101 travels while harvesting the set-up kernel based on the calculated traveling locus of the combine 101. Calculated as In addition, the area calculation unit 124 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 次に、経路算出部122は、領域算出部124から受け取った算出結果に基づいて、図15に示すように、作業対象領域CAにおける刈取走行経路LIを設定する。 Next, based on the calculation result received from the area calculation unit 124, as shown in FIG. 15, the route calculation unit 122 sets the reaper traveling route LI in the work target area CA.
 図15に示す例では、作業対象領域CAにおける収穫作業を開始する前に、コンバイン101は、手動操作により運搬車CVの近傍へ移動する。尚、本実施形態においては、運搬車CVは圃場外に停車している。 In the example shown in FIG. 15, the combine 101 is moved to the vicinity of the transport vehicle CV by manual operation before starting the harvesting work in the work target area CA. In the present embodiment, the transporter CV is stopped outside the field.
 そして、コンバイン101が運搬車CVの近傍に停車した後、穀粒排出装置118が駆動され、穀粒が排出される。運搬車CVは、コンバイン101が穀粒排出装置118から排出した穀粒を収集し、運搬することができる。 Then, after the combine 101 is stopped in the vicinity of the transport vehicle CV, the grain discharging device 118 is driven to discharge the grains. The transport vehicle CV can collect and transport grains discharged by the combine 101 from the grain discharging device 118.
 このとき、位置記憶部126は、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の停車位置を記憶する。また、方向記憶部128は、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の機体の向きを記憶する。 At this time, the position storage unit 126 stores the stopping position of the combine 101 at the time when the grain discharging device 118 performs the discharging operation. The direction storage unit 128 also stores the orientation of the combine 101 at the time when the grain discharging device 118 performs the discharging operation.
 そして、図16に示すように、位置記憶部126により記憶された停車位置に基づいて、位置設定部127によって目標停車位置TPが設定される。また、方向記憶部128により記憶された機体の向きに基づいて、方向設定部129によって目標停車方向TDが設定される。 Then, as shown in FIG. 16, based on the stop position stored by the position storage unit 126, the position setting unit 127 sets the target stop position TP. Further, the target stopping direction TD is set by the direction setting unit 129 based on the orientation of the vehicle stored by the direction storage unit 128.
 そして、作業者が自動走行開始ボタン(図示せず)を押すことにより、図16に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、走行制御部123は、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン101の走行を制御する。 Then, when the worker presses an automatic travel start button (not shown), as shown in FIG. 16, automatic travel along the reaper travel path LI is started. At this time, the traveling control unit 123 controls the traveling of the combine 101 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 コンバイン101が刈取走行を続け、穀粒タンク114内の穀粒の量が所定量に達すると、図17に示すように、走行制御部123は、刈取走行経路LIから離脱して目標停車位置TPへ移動するようにコンバイン101の走行を制御する。 When the combine 101 continues the reaping travel and the amount of grains in the grain tank 114 reaches a predetermined amount, the travel control unit 123 separates from the reaping travel path LI as shown in FIG. The travel of the combine 101 is controlled to move to the right.
 そして、走行制御部123の制御により、コンバイン101は、目標停車方向TDを向いた状態で目標停車位置TPに自動的に停車する。さらに、穀粒排出装置118が駆動され、穀粒が運搬車CVへ排出される。穀粒排出装置118による排出作業が完了すると、コンバイン101は、刈取走行経路LIに沿った刈取走行へ復帰する。 Then, under the control of the traveling control unit 123, the combine 101 automatically stops at the target stopping position TP while facing the target stopping direction TD. Furthermore, the grain discharging device 118 is driven, and the grains are discharged to the transporter CV. When the discharging operation by the grain discharging device 118 is completed, the combine 101 returns to the reaping travel along the reaping travel path LI.
 そして、作業対象領域CAにおける全ての刈取走行経路LIに沿った刈取走行が完了すると、圃場の全体が収穫済みとなる。 Then, when the mowing travel along all the mowing travel paths LI in the work target area CA is completed, the entire field becomes harvested.
 以上で説明した構成であれば、圃場での収穫作業において最初の排出作業を行うと、その時点におけるコンバイン101の停車位置が位置記憶部126によって記憶される。そして、2回目以降の排出作業においては、走行制御部123の制御により、記憶された停車位置にコンバイン101が自動的に停車する。 In the configuration described above, when the first discharging operation is performed in the field, the position storage unit 126 stores the stopping position of the combine 101 at that time. Then, in the second and subsequent discharge operations, the combine 101 automatically stops at the stored stop position under the control of the travel control unit 123.
 即ち、以上で説明した構成であれば、手動操作によってコンバイン101を排出のための位置に停車させる必要があるのは、最初の排出作業のみである。これにより、作業者による操作の負担を軽減できる。 That is, with the configuration described above, it is only the first discharging operation that it is necessary to stop the combine 101 at the position for discharging manually. Thereby, the burden of operation by a worker can be reduced.
 〔通信端末を介した目標停車位置の設定について〕
 ところで、収穫機制御システムA1は、圃場での収穫作業において穀粒排出装置118による最初の排出作業が行われる前に、作業者が通信端末104を介して目標停車位置TPを設定できるように構成されている。
[About setting of target stop position via communication terminal]
By the way, harvest machine control system A1 is constituted so that a worker can set up target stop position TP via communication terminal 104, before the first discharge work by grain discharge device 118 is performed in the field of harvest work. It is done.
 以下では、通信端末104を介した目標停車位置TPの設定について説明する。 Hereinafter, setting of the target stopping position TP via the communication terminal 104 will be described.
 図13に示すように、通信端末104は、操作部104a及び信号出力部104bを有している。図18に示すように、操作部104aはタッチパネルにより構成されている。そして、作業者は、圃場での収穫作業において穀粒排出装置118による最初の排出作業が行われる前に、操作部104aを操作することにより、目標停車位置TPを設定できる。 As shown in FIG. 13, the communication terminal 104 has an operation unit 104 a and a signal output unit 104 b. As shown in FIG. 18, the operation unit 104a is configured by a touch panel. Then, the operator can set the target stopping position TP by operating the operation unit 104a before the first discharging operation by the grain discharging device 118 is performed in the field of the harvesting operation.
 詳述すると、図18に示すように、操作部104aには、圃場の全体図が表示されている。そして、作業者が操作部104aの任意の箇所をタッチすることにより、タッチされた箇所に、目標停車位置TPを示すシンボルが表示される。 If it explains in full detail, as shown in Drawing 18, the whole view of a field is displayed on operation part 104a. Then, when the operator touches an arbitrary part of the operation unit 104a, a symbol indicating the target stopping position TP is displayed at the touched part.
 そして、図13に示すように、作業者によりタッチされた箇所を示す信号が、操作部104aから信号出力部104bへ送られる。信号出力部104bは、操作部104aから受け取った信号に基づいて、指示信号を出力する。 Then, as shown in FIG. 13, a signal indicating a portion touched by the worker is sent from the operation unit 104 a to the signal output unit 104 b. The signal output unit 104b outputs an instruction signal based on the signal received from the operation unit 104a.
 この指示信号は、穀粒排出装置118による排出作業のためのコンバイン101の停車位置を指示する信号である。そして、この指示信号は、位置設定部127へ送られる。 The instruction signal is a signal indicating the stopping position of the combine 101 for the discharge operation by the grain discharging device 118. Then, the instruction signal is sent to the position setting unit 127.
 このように、収穫機制御システムA1は、穀粒排出装置118による排出作業のためのコンバイン101の停車位置を指示する指示信号を出力する信号出力部104bを備えている。 Thus, harvest machine control system A1 is provided with the signal output part 104b which outputs the instruction | indication signal which instruct | indicates the stop position of the combine 101 for the discharge | emission operation | work by the grain discharge device 118. FIG.
 そして、このとき、位置設定部127は、信号出力部104bから受け取った指示信号に基づいて、目標停車位置TPを設定する。 At this time, the position setting unit 127 sets the target stopping position TP based on the instruction signal received from the signal output unit 104 b.
 このように、位置設定部127は、圃場での収穫作業において穀粒排出装置118による最初の排出作業が行われる前に信号出力部104bによって指示信号が出力された場合、指示信号に基づいて目標停車位置TPを設定するように構成されている。 As described above, when the signal output unit 104 b outputs the instruction signal before the first discharging operation by the grain discharging device 118 is performed in the field, the position setting unit 127 sets the target based on the instruction signal. The stop position TP is set.
 以上の構成により、作業者は、圃場での収穫作業において穀粒排出装置118による最初の排出作業が行われる前に、操作部104aを操作することにより、目標停車位置TPを設定できる。そして、排出作業が行われる場合、コンバイン101は、信号出力部104bからの指示信号に基づいて設定された目標停車位置TPに自動的に停車することとなる。 With the above configuration, the operator can set the target stopping position TP by operating the operation unit 104a before the first discharging operation by the grain discharging device 118 is performed in the field of the harvesting operation. When the discharging operation is performed, the combine 101 automatically stops at the target stopping position TP set based on the instruction signal from the signal output unit 104b.
 ここで、信号出力部104bからの指示信号に基づいて設定された目標停車位置TPは、作業者によるタッチ操作に基づいて設定されている。そのため、目標停車位置TPが、運搬車CVから比較的遠く離れた位置となってしまうことがある。 Here, the target stopping position TP set based on the instruction signal from the signal output unit 104 b is set based on the touch operation by the worker. Therefore, the target stopping position TP may be located relatively far from the transport vehicle CV.
 この場合には、図19に示すように、コンバイン101が、信号出力部104bからの指示信号に基づいて設定された目標停車位置TPに自動的に停車した後、作業者は、その位置から、手動操作によってコンバイン101を移動させることができる。 In this case, as shown in FIG. 19, after the combine 101 automatically stops at the target stop position TP set based on the instruction signal from the signal output unit 104b, the operator can start from the position The combine 101 can be moved by manual operation.
 そして、コンバイン101が手動操作によって移動した後で穀粒排出装置118による排出作業が行われた場合、位置記憶部126は、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の停車位置を記憶する。また、方向記憶部128は、穀粒排出装置118による排出作業が行われた時点におけるコンバイン101の機体の向きを記憶する。 Then, when discharge operation is performed by the grain discharging device 118 after the combine 101 is moved by manual operation, the position storage unit 126 stops the combine 101 at the time of discharging operation by the grain discharging device 118. Remember the position. The direction storage unit 128 also stores the orientation of the combine 101 at the time when the grain discharging device 118 performs the discharging operation.
 位置設定部127は、このとき位置記憶部126に記憶された停車位置に基づいて、図19に示すように、目標停車位置TPを再設定する。また、方向設定部129は、このとき方向記憶部128に記憶された機体の向きに基づいて、図19に示すように、目標停車方向TDを設定する。 The position setting unit 127 resets the target stopping position TP as shown in FIG. 19 based on the stopping position stored in the position storage unit 126 at this time. The direction setting unit 129 also sets the target stopping direction TD, as shown in FIG. 19, based on the orientation of the vehicle stored in the direction storage unit 128 at this time.
 このように、位置設定部127は、指示信号に基づいて設定された目標停車位置TPからコンバイン101が手動操作によって移動した後で穀粒排出装置118による排出作業が行われた場合、位置記憶部126に記憶されたコンバイン101の停車位置に基づいて目標停車位置TPを再設定する。 As described above, the position setting unit 127 performs the position storage unit when the discharge operation is performed by the grain discharging device 118 after the combine 101 is moved by the manual operation from the target stopping position TP set based on the instruction signal. Based on the stop position of the combine 101 stored in 126, the target stop position TP is reset.
[第2実施形態の別実施形態]
 以下、上記した実施形態を変更した別実施形態について説明する。以下の各別実施形態で説明している事項以外は、上記した実施形態で説明している事項と同様である。上記した実施形態及び以下の各別実施形態は、矛盾が生じない範囲で、適宜組み合わせてもよい。なお、本発明の範囲は、上記した実施形態及び以下の各別実施形態に限定されるものではない。
[Another embodiment of the second embodiment]
Hereinafter, another embodiment in which the above-described embodiment is modified will be described. Except for the matters described in the following different embodiments, the matters are the same as the matters described in the above-described embodiment. The above-described embodiment and the other embodiments described below may be combined as appropriate as long as no contradiction arises. Note that the scope of the present invention is not limited to the above-described embodiment and the following different embodiments.
 (1)走行装置111は、ホイール式であっても良いし、セミクローラ式であっても良い。 (1) The traveling device 111 may be a wheel type or a semi crawler type.
 (2)上記実施形態においては、経路算出部122により算出される刈取走行経路LIは、互いに平行な複数の平行線であるが、本発明はこれに限定されず、経路算出部122により算出される刈取走行経路LIは、互いに平行な複数の平行線でなくても良い。例えば、経路算出部122により算出される刈取走行経路LIは、渦巻き状の走行経路であっても良い。 (2) In the above embodiment, although the cutting traveling route LI calculated by the route calculating unit 122 is a plurality of parallel lines parallel to each other, the present invention is not limited to this and the route calculating unit 122 calculates The traveling path LI may not be a plurality of parallel lines parallel to one another. For example, the reaping traveling route LI calculated by the route calculating unit 122 may be a spiral traveling route.
 (3)上記実施形態においては、作業者は、コンバイン101を手動で操作し、図14に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン101が自動で走行し、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行うように構成されていても良い。 (3) In the above embodiment, the operator manually operates the combine 101, and as shown in FIG. 14, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the boundary line of the field. . However, the present invention is not limited to this, and the combine 101 may travel automatically, and may be configured to perform a reaping travel so as to go around along the boundary of the field in the outer peripheral portion in the field.
 (4)刈取走行経路LIに沿った刈取走行は、作業者がコンバイン101を手動操作することによって行われても良い。 (4) The reaping travel along the reaping travel path LI may be performed by the operator manually operating the combine 101.
 (5)自車位置算出部121、経路算出部122、走行制御部123、領域算出部124、手動操作信号送信部125、位置記憶部126、位置設定部127、方向記憶部128、方向設定部129のうち、一部または全てがコンバイン101の外部に備えられていても良いのであって、例えば、コンバイン101の外部に設けられた管理サーバに備えられていても良い。 (5) Vehicle position calculation unit 121, route calculation unit 122, travel control unit 123, area calculation unit 124, manual operation signal transmission unit 125, position storage unit 126, position setting unit 127, direction storage unit 128, direction setting unit Part or all of 129 may be provided outside the combine 101, and may be provided, for example, in a management server provided outside the combine 101.
 (6)方向記憶部128は設けられていなくても良い。 (6) The direction storage unit 128 may not be provided.
 (7)方向設定部129は設けられていなくても良い。 (7) The direction setting unit 129 may not be provided.
 (8)信号出力部104bは設けられていなくても良い。 (8) The signal output unit 104b may not be provided.
 (9)通信端末104は設けられていなくても良い。 (9) The communication terminal 104 may not be provided.
 (10)経路算出部122により算出される刈取走行経路LIは、直線状の経路でも良いし、湾曲した経路でも良い。 (10) The reaping travel route LI calculated by the route calculation unit 122 may be a straight route or a curved route.
 (11)上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムとして構成されていても良い。また、上記実施形態における各部材の機能をコンピュータに実現させる収穫機制御プログラムが記録された記録媒体として構成されていても良い。また、上記実施形態において各部材により行われることを複数のステップにより行う収穫機制御方法として構成されていても良い。 (11) The harvester control program may be configured to cause a computer to realize the functions of the respective members in the above embodiment. In addition, a harvester control program that causes a computer to realize the function of each member in the above embodiment may be configured as a recording medium. Moreover, you may be comprised as a harvester control method which performs what is performed by each member in the said embodiment by several steps.
 本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。 The present invention can be used not only for ordinary type combine but also for self-release type combine.
 また、本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 Furthermore, the present invention is applicable not only to ordinary type combine but also to self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
 (第1実施形態)
 1   コンバイン
 13  脱穀装置
 13b 揺動選別部
 15  刈取装置
 20  制御部
 22  経路算出部
 22a 刈取走行経路算出部
 23  走行制御部(自動刈取走行制御部)
 25  判定部
 26  脱穀装置開始部
 27  脱穀装置停止部
 A   コンバイン制御システム
 LI  刈取走行経路
 S1  シーブセンサ
First Embodiment
DESCRIPTION OF SYMBOLS 1 Combine 13 Threshing device 13 b Swing sorting unit 15 Reaping device 20 Control unit 22 Route calculating unit 22 a Reaping traveling route calculating unit 23 Traveling control unit (automatic reaping traveling control unit)
25 Judgment part 26 Threshing device start part 27 Threshing device stop part A Combine control system LI Reaping traveling path S1 Sheave sensor
 (第2実施形態)
 101   コンバイン(収穫機)
 104b  信号出力部
 114   穀粒タンク(収穫物タンク)
 118   穀粒排出装置(排出装置)
 123   走行制御部
 126   位置記憶部
 127   位置設定部
 128   方向記憶部
 129   方向設定部
 A1    収穫機制御システム
 H     収穫装置
 TD    目標停車方向
 TP    目標停車位置
Second Embodiment
101 combine harvesters
104b Signal output section 114 grain tank (harvest tank)
118 grain discharging device (discharging device)
123 traveling control unit 126 position storage unit 127 position setting unit 128 direction storage unit 129 direction setting unit A1 harvester machine control system H harvesting device TD target stopping direction TP target stopping position

Claims (13)

  1.  圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御システムであって、
     圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出部と、
     前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御部と、
     前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定部と、
     前記判定部により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止部と、を備えるコンバイン制御システム。
    A combine control system for controlling a combine comprising a reaping device for reaping a field planted grain weir and a threshing device for threshing a reaping grain weed harvested by the reaping device,
    A reaper traveling route calculation unit that calculates a reaper traveling route that is a traveling route for reaper traveling in a field;
    An automatic reaper traveling control unit that controls the combine so that reaper traveling is performed by automatic traveling along the reaper traveling path;
    A determination unit that determines whether the threshing efficiency of the threshing device has decreased when the combine has left the harvesting travel route;
    And a threshing device stop unit configured to stop driving of the threshing device when it is determined by the determination unit that the threshing efficiency of the threshing device has decreased.
  2.  前記脱穀装置は、脱穀処理により得られた処理物を選別処理する揺動選別部を有しており、
     前記コンバインは、前記揺動選別部において選別処理されている処理物の量である選別処理物量を検知するシーブセンサを有しており、
     前記判定部は、前記シーブセンサにより検知されている前記選別処理物量が減少した場合、前記脱穀装置の脱穀効率が低下したと判定するように構成されている請求項1に記載のコンバイン制御システム。
    The above-mentioned threshing apparatus has a rocking and sorting unit for sorting and processing the processed material obtained by the threshing process,
    The combine has a sheave sensor that detects the amount of the processing object which is the amount of the processing object being sorted in the swinging sorting unit,
    The combine control system according to claim 1, wherein the determination unit is configured to determine that the threshing efficiency of the threshing device has decreased when the amount of the sorted process detected by the sheave sensor has decreased.
  3.  前記判定部は、前記刈取装置が非駆動状態である期間が継続した場合、前記脱穀装置の脱穀効率が低下したと判定するように構成されている請求項1に記載のコンバイン制御システム。 The combine control system according to claim 1, wherein the determination unit is configured to determine that the threshing efficiency of the threshing device has decreased when the period in which the reaper is not driven continues.
  4.  前記脱穀装置停止部により前記脱穀装置の駆動が停止された後、前記刈取走行経路に沿った自動走行へ復帰するために前記コンバインが旋回するときに、前記脱穀装置の駆動を再開させる脱穀装置開始部を備える請求項1から3の何れか一項に記載のコンバイン制御システム。 After the driving of the threshing device is stopped by the threshing device stop unit, the threshing device starts resuming the driving of the threshing device when the combine turns to return to the automatic traveling along the cutting travel path The combine control system according to any one of claims 1 to 3, further comprising:
  5.  圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御プログラムであって、
     圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出機能と、
     前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御機能と、
     前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定機能と、
     前記判定機能により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止機能と、をコンピュータに実現させるコンバイン制御プログラム。
    A combine control program for controlling a combine comprising a reaping device for reaping a field planted grain weir and a threshing device for threshing a reaping grain weed harvested by the reaping device,
    A reaper traveling route calculating function that calculates a reaper traveling route which is a traveling route for reaper traveling in a field;
    An automatic reaper traveling control function of controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path;
    A determination function of determining whether or not the threshing efficiency of the threshing device has decreased when the combine leaves the cutting travel path;
    A combine control program that causes a computer to realize a threshing device stop function of stopping the operation of the threshing device when it is determined by the determination function that the threshing efficiency of the threshing device has decreased.
  6.  圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御プログラムを記録した記録媒体であって、
     圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出機能と、
     前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御機能と、
     前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定機能と、
     前記判定機能により前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止機能と、をコンピュータに実現させるコンバイン制御プログラムを記録した記録媒体。
    A recording medium recording a combine control program for controlling a combine comprising a reaping device for reaping a field planted grain weir and a threshing device for threshing a reaping grain weed harvested by the reaping device,
    A reaper traveling route calculating function that calculates a reaper traveling route which is a traveling route for reaper traveling in a field;
    An automatic reaper traveling control function of controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path;
    A determination function of determining whether or not the threshing efficiency of the threshing device has decreased when the combine leaves the cutting travel path;
    A recording medium recording a combine control program for causing a computer to realize a threshing device stop function of stopping the driving of the threshing device when it is determined by the determination function that the threshing efficiency of the threshing device has decreased.
  7.  圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、を有するコンバインを制御するコンバイン制御方法であって、
     圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出ステップと、
     前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する自動刈取走行制御ステップと、
     前記コンバインが前記刈取走行経路から離脱した場合に、前記脱穀装置の脱穀効率が低下したか否かを判定する判定ステップと、
     前記判定ステップにより前記脱穀装置の脱穀効率が低下したと判定された場合に前記脱穀装置の駆動を停止させる脱穀装置停止ステップと、を備えるコンバイン制御方法。
    A combine control method for controlling a combine comprising: a reaper for reaping a field planted grain weir; and a threshing device for threshing a reaping grain weed harvested by the reaper;
    A reaper traveling route calculating step for calculating a reaper traveling route which is a traveling route for reaper traveling in a field;
    An automatic reaper traveling control step of controlling the combine so that a reaper traveling is performed by an automatic traveling along the reaper traveling path;
    A determination step of determining whether or not the threshing efficiency of the threshing device has decreased when the combine has left the harvesting travel path;
    And a threshing device stop step of stopping driving of the threshing device when it is determined in the determination step that the threshing efficiency of the threshing device has decreased.
  8.  圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御システムであって、
     前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶部と、
     前記位置記憶部に記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定部と、
     前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御部と、を備える収穫機制御システム。
    Control a harvester having a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank Harvester control system,
    A position storage unit that stores the stopping position of the harvester at the time when the discharge operation by the discharge device is performed when the discharge operation by the discharge device is performed at the position ahead of the harvester by the manual operation When,
    A position setting unit configured to set a target stopping position based on the stopping position of the harvester stored in the position storage unit;
    And a traveling control unit configured to control traveling of the harvester such that the harvester automatically stops at the target stopping position when the discharge operation is performed by the discharge device.
  9.  前記排出装置による排出作業のための前記収穫機の停車位置を指示する指示信号を出力する信号出力部を備え、
     前記位置設定部は、圃場での収穫作業において前記排出装置による最初の排出作業が行われる前に前記信号出力部によって前記指示信号が出力された場合、前記指示信号に基づいて前記目標停車位置を設定するように構成されており、
     前記位置設定部は、前記指示信号に基づいて設定された前記目標停車位置から前記収穫機が手動操作によって移動した後で前記排出装置による排出作業が行われた場合、前記位置記憶部に記憶された前記収穫機の停車位置に基づいて前記目標停車位置を再設定する請求項8に記載の収穫機制御システム。
    The signal output unit outputs an instruction signal indicating the stopping position of the harvester for the discharge operation by the discharge device.
    The position setting unit is configured to set the target stopping position based on the instruction signal when the instruction signal is output by the signal output unit before the first discharging operation by the discharging device is performed in a field harvesting operation. Configured to configure,
    The position setting unit is stored in the position storage unit when the discharging operation is performed by the discharging device after the harvester has moved by manual operation from the target stopping position set based on the instruction signal. The harvester control system according to claim 8, wherein the target stop position is reset based on the stop position of the harvester.
  10.  前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の機体の向きを記憶する方向記憶部と、
     前記方向記憶部に記憶された前記収穫機の機体の向きに基づいて目標停車方向を設定する方向設定部と、を備え、
     前記走行制御部は、前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車方向を向いた状態で前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する請求項8または9に記載の収穫機制御システム。
    A direction memory for storing the orientation of the machine body of the harvester at the time the discharge operation by the discharge device is performed when the discharge operation by the discharge device is performed at a position ahead of the harvester by a manual operation Department,
    A direction setting unit for setting a target stopping direction based on the orientation of the harvester aircraft stored in the direction storage unit;
    The traveling control unit controls traveling of the harvester so that the harvester automatically stops at the target stopping position with the harvester facing the target stopping direction when the discharging operation is performed by the discharging device. The harvester control system according to claim 8 or 9.
  11.  圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御プログラムであって、
     前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶機能と、
     前記位置記憶機能により記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定機能と、
     前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御機能と、をコンピュータに実現させる収穫機制御プログラム。
    Control a harvester having a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank Harvester control program that
    A position storage function for storing the stopping position of the harvester at the time when the discharge operation by the discharge device is performed when the discharge operation by the discharge device is performed at the position ahead of the harvester by the manual operation When,
    A position setting function of setting a target stopping position based on the stopping position of the harvester stored by the position storing function;
    A harvester control program that causes a computer to realize a traveling control function of controlling traveling of the harvester so that the harvester automatically stops at the target stopping position when the discharge operation is performed by the discharger. .
  12.  圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御プログラムを記録した記録媒体であって、
     前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶機能と、
     前記位置記憶機能により記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定機能と、
     前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御機能と、をコンピュータに実現させる収穫機制御プログラムを記録した記録媒体。
    Control a harvester having a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank Recording medium recording the harvester control program
    A position storage function for storing the stopping position of the harvester at the time when the discharge operation by the discharge device is performed when the discharge operation by the discharge device is performed at the position ahead of the harvester by the manual operation When,
    A position setting function of setting a target stopping position based on the stopping position of the harvester stored by the position storing function;
    A harvester control program that causes a computer to realize a traveling control function of controlling traveling of the harvester so that the harvester automatically stops at the target stopping position when the discharge operation is performed by the discharger. Recording media.
  13.  圃場の農作物を収穫する収穫装置と、前記収穫装置によって収穫された収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物を排出する排出装置と、を有する収穫機を制御する収穫機制御方法であって、
     前記収穫機が手動操作によって移動した先の位置で前記排出装置による排出作業が行われた場合に、前記排出装置による排出作業が行われた時点における前記収穫機の停車位置を記憶する位置記憶ステップと、
     前記位置記憶ステップにより記憶された前記収穫機の停車位置に基づいて目標停車位置を設定する位置設定ステップと、
     前記排出装置による排出作業が行われる場合に、前記収穫機が前記目標停車位置に自動的に停車するように前記収穫機の走行を制御する走行制御ステップと、を備える収穫機制御方法。
    Control a harvester having a harvester for harvesting crops in a field, a harvest tank for storing the harvest harvested by the harvester, and a discharger for discharging the harvest stored in the harvest tank Harvester control method, and
    A position storing step of storing the stopping position of the harvester at the time when the discharge operation by the discharge device is performed when the discharge operation by the discharge device is performed at the position ahead of the harvester by the manual operation When,
    A position setting step of setting a target stopping position based on the stopping position of the harvester stored in the position storing step;
    A traveling control step of controlling traveling of the harvester such that the harvester automatically stops at the target stopping position when the discharge operation is performed by the discharge device.
PCT/JP2018/045590 2017-12-18 2018-12-12 Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method WO2019124174A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207013086A KR20200096496A (en) 2017-12-18 2018-12-12 Combine control system, combine control program, recording medium recording the combine control program, combine control method, harvester control system, harvester control program, recording medium recording harvester control program, harvester control method
CN201880074147.1A CN111386033B (en) 2017-12-18 2018-12-12 Combine harvester control system, program, method and storage medium thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017242049A JP6843037B2 (en) 2017-12-18 2017-12-18 Combine control system
JP2017-242049 2017-12-18
JP2017-245308 2017-12-21
JP2017245308A JP7142433B2 (en) 2017-12-21 2017-12-21 harvester control system

Publications (1)

Publication Number Publication Date
WO2019124174A1 true WO2019124174A1 (en) 2019-06-27

Family

ID=66994215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045590 WO2019124174A1 (en) 2017-12-18 2018-12-12 Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method

Country Status (3)

Country Link
KR (1) KR20200096496A (en)
CN (1) CN111386033B (en)
WO (1) WO2019124174A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
WO2022138071A1 (en) * 2020-12-22 2022-06-30 ヤンマーホールディングス株式会社 Route setting method, autonomous traveling method, route setting device, autonomous traveling system, and storage medium
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110305A (en) * 2010-11-27 2012-06-14 Iseki & Co Ltd Combine harvester
JP2013048605A (en) * 2011-08-31 2013-03-14 Iseki & Co Ltd Controller for harvesting, threshing, and driving of combine harvester
JP2016086668A (en) * 2014-10-30 2016-05-23 井関農機株式会社 combine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706676B2 (en) 1988-10-15 1998-01-28 株式会社フジクラ Tilt monitoring system
JPH11137062A (en) * 1997-11-10 1999-05-25 Yanmar Agricult Equip Co Ltd Control device of conventional combine harvester
CN1737501A (en) * 2004-08-20 2006-02-22 爱信精机株式会社 Parking auxiliary device for vehicle and parking auxiliary method
US8437901B2 (en) * 2008-10-15 2013-05-07 Deere & Company High integrity coordination for multiple off-road vehicles
JP2012025378A (en) * 2010-06-25 2012-02-09 Nissan Motor Co Ltd Control device and control method for parking support
KR20160134705A (en) * 2014-03-07 2016-11-23 얀마 가부시키가이샤 Crop-harvesting apparatus
US9693502B2 (en) * 2014-10-24 2017-07-04 Agco Corporation Active header control
JP2017035017A (en) 2015-08-07 2017-02-16 株式会社クボタ Combine-harvester
CN105573338A (en) * 2015-12-25 2016-05-11 广东美嘉欣创新科技股份有限公司 Targeted staying and return voyage control system of unmanned aerial vehicle
JP2017124659A (en) * 2016-01-12 2017-07-20 三菱重工業株式会社 Parking assisting system, parking assisting method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110305A (en) * 2010-11-27 2012-06-14 Iseki & Co Ltd Combine harvester
JP2013048605A (en) * 2011-08-31 2013-03-14 Iseki & Co Ltd Controller for harvesting, threshing, and driving of combine harvester
JP2016086668A (en) * 2014-10-30 2016-05-23 井関農機株式会社 combine

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
WO2022138071A1 (en) * 2020-12-22 2022-06-30 ヤンマーホールディングス株式会社 Route setting method, autonomous traveling method, route setting device, autonomous traveling system, and storage medium

Also Published As

Publication number Publication date
KR20200096496A (en) 2020-08-12
CN111386033B (en) 2023-05-23
CN111386033A (en) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2019124174A1 (en) Combine control system, combine control program, recording medium with combine control program recorded therein, combine control method, harvester control system, harvester control program, recording medium with harvester control program recorded therein, and harvester control method
CN111386030B (en) Automatic travel system, automatic travel management program and method, and recording medium
KR20210039398A (en) Harvester, surrounding situation detection system, surrounding situation detection program, recording medium recording the surrounding situation detection program, and surrounding situation detection method
JP2019110790A (en) Combine control system
JP2019110782A (en) Travel route calculation system
JP6843037B2 (en) Combine control system
JP7142433B2 (en) harvester control system
JP7018747B2 (en) Harvester
US20220382278A1 (en) Autonomous Operation Method, Work Vehicle, And Autonomous Operation System
JP2008220326A (en) Harvesting machine
WO2021246384A1 (en) Combine, system, program, storage medium, method, traveling path management system, and harvester
JP7378282B2 (en) combine
JP7156246B2 (en) combine
WO2022196116A1 (en) Autonomous driving method, combine, and autonomous driving system
WO2019103089A1 (en) Harvesting machine, travel distance limit calculation program, recording medium having travel distance limit calculation program recorded thereon, travel distance limit calculation method, agricultural work vehicle, turning control program, recording medium having turning control program recorded thereon, turning control method, combine control system, combine control program, recording medium having combine control program recorded thereon, and combine control method
JP7195247B2 (en) harvester
JP7423442B2 (en) harvester
JP2020087196A (en) Automatic travel control system
US20230176583A1 (en) Automatic Traveling Method, Work Vehicle, And Automatic Traveling System
WO2022185792A1 (en) Autonomous driving method, combine, and autonomous driving system
US20240040947A1 (en) Autonomous Travel Method, Work Vehicle, And Autonomous Travel System
US20240016089A1 (en) Combine and self-driving method
WO2021261415A1 (en) Harvester, harvester control program, recording medium in which harvester control program is stored, and harvester control method
JP6860860B2 (en) combine
WO2022118566A1 (en) Combine and travel control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890131

Country of ref document: EP

Kind code of ref document: A1