WO2021261112A1 - Ejector - Google Patents

Ejector Download PDF

Info

Publication number
WO2021261112A1
WO2021261112A1 PCT/JP2021/018569 JP2021018569W WO2021261112A1 WO 2021261112 A1 WO2021261112 A1 WO 2021261112A1 JP 2021018569 W JP2021018569 W JP 2021018569W WO 2021261112 A1 WO2021261112 A1 WO 2021261112A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
drive
ejector
suction
pressure
Prior art date
Application number
PCT/JP2021/018569
Other languages
French (fr)
Japanese (ja)
Inventor
春幸 西嶋
洋 押谷
正博 伊藤
紘志 前田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021003333.6T priority Critical patent/DE112021003333T5/en
Publication of WO2021261112A1 publication Critical patent/WO2021261112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/465Arrangements of nozzles with supersonic flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/18Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for compressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to an ejector that injects a fluid in a gas-liquid two-phase state from a nozzle portion on the drive side.
  • an ejector type refrigeration cycle which is a refrigeration cycle device equipped with an ejector, is known.
  • the pressure of the refrigerant sucked into the compressor can be raised higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector.
  • the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved. Therefore, in order to improve the COP of the ejector type refrigeration cycle, it is effective to improve the boosting capacity of the ejector.
  • Patent Document 1 as an ejector applied to the ejector type refrigeration cycle, the passage shape of the mixing portion for mixing the injection refrigerant and the suction refrigerant is described, and the passage cross-sectional area is described as the direction of the refrigerant flow.
  • An ejector having a truncated cone shape to be enlarged is disclosed.
  • the ejector of Patent Document 1 attempts to suppress the energy loss of the refrigerant in the mixing portion and increase the boosting amount of the refrigerant in the diffuser portion.
  • Patent Document 2 in an industrial ejector (hereinafter, referred to as a steam ejector) applied to a vacuum exhaust device or the like, the gas phase fluid (specifically, air) is boosted by the pressure recovery action of a shock wave. It is stated that it will be done. Further, Patent Document 2 describes that the steam ejector can enhance the pressure recovery action of the shock wave by reducing the Mach number of air in the most upstream portion of the shock wave.
  • an object of the present disclosure to provide an ejector capable of exhibiting a high boosting ability by using a shock wave regardless of the load fluctuation of the applied refrigeration cycle device.
  • the ejector of the first aspect of the present disclosure is an ejector applied to a refrigeration cycle apparatus, and includes a drive side nozzle portion and a body portion.
  • the drive-side nozzle section decompresses the drive-side refrigerant and accelerates it until it reaches supersonic speed, and injects the drive-side injection refrigerant in a gas-liquid two-phase state.
  • the body section has a refrigerant suction port, a suction side nozzle section, a mixing section, and a diffuser section.
  • the refrigerant suction port sucks the suction side refrigerant.
  • the suction side nozzle portion decompresses and injects the suction side refrigerant sucked from the refrigerant suction port.
  • the mixing unit mixes the suction-side injection refrigerant injected from the suction-side nozzle unit and the drive-side injection refrigerant injected from the drive-side nozzle unit.
  • the diffuser section converts the kinetic energy of the mixed refrigerant mixed in the mixing section into pressure energy.
  • the refrigerant pressure of the drive-side injection refrigerant decompressed by the drive-side nozzle portion is higher than the refrigerant pressure of the suction-side injection refrigerant decompressed by the suction-side nozzle portion. Therefore, regardless of the load fluctuation of the refrigeration cycle device, the drive-side refrigerant can be insufficiently expanded in the drive-side nozzle portion, and a shock wave can be reliably generated in the mixing portion. As a result, the mixed refrigerant can be boosted by the pressure recovery action of the shock wave in the mixing section.
  • the flow velocity of the mixed refrigerant flowing out of the mixing section and flowing into the diffuser section is subsonic. Therefore, even if a pseudo-shock wave that may cause energy loss is generated in the mixing portion by the first shock wave generated by the drive-side injection refrigerant, the pseudo-shock wave can be quickly extinguished.
  • the drive side injection refrigerant and the suction side injection refrigerant so that the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixed refrigerant flowing out of the mixing section and flowing into the diffuser section match. And are mixed. Therefore, even if the generation range of the pseudo-shock wave changes due to the load fluctuation of the refrigeration cycle device, the pseudo-shock wave can be surely extinguished in the mixing unit.
  • the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 10.
  • the ejector 13 of the present embodiment is applied to the ejector type refrigeration cycle 10.
  • the ejector type refrigeration cycle 10 is a steam compression type refrigeration cycle apparatus including an ejector.
  • the ejector type refrigeration cycle 10 is applied to an air conditioner for a vehicle, and cools the blown air blown into the vehicle interior, which is a space to be air-conditioned.
  • the drive side inlet 31a side of the drive side nozzle portion 31 of the ejector 13 is connected to the refrigerant outlet of the radiator 12.
  • the ejector 13 is a refrigerant decompression unit that depressurizes the drive-side refrigerant flowing out of the radiator 12.
  • the ejector 13 is also a refrigerant transport unit that sucks and transports the refrigerant flowing out of the evaporator 16 described later. Further, the ejector 13 is also a refrigerant boosting unit that boosts the pressure of the refrigerant flowing into the inside.
  • the detailed configuration of the ejector 13 will be described with reference to FIG. 2 and the like.
  • the ejector 13 has a drive-side nozzle portion 31 and a body portion 32.
  • the drive side nozzle portion 31 has a tip detail 31b, a throat portion 31c, and a divergent portion 31d.
  • the detail 31b is a portion where the passage cross-sectional area of the refrigerant flowing in from the drive side inlet 31a is reduced as the refrigerant flows toward the downstream side.
  • the throat portion 31c is a portion that most reduces the passage cross-sectional area of the refrigerant.
  • the suehiro portion 31d is a portion that expands the passage cross-sectional area of the refrigerant as it goes from the throat portion 31c to the drive side injection port 31e. That is, in the ejector 13, a so-called Laval nozzle is adopted as the drive side nozzle portion 31.
  • the drive-side nozzle portion 31 is formed by subjecting a metal (in this embodiment, stainless steel) cylindrical member to plastic working.
  • the thickness of the portion forming the tip detail 31b and the divergent portion 31d of the drive-side nozzle portion 31 is substantially constant. Therefore, the appearance shapes of the tip detail 31b and the divergent portion 31d are changed in the same manner as the shape of the refrigerant passage formed inside.
  • the drive-side nozzle portion 31 may be formed by cutting a block-shaped metal member.
  • the shape of the refrigerant passage of the drive-side nozzle portion 31 is determined so that the flow velocity of the drive-side injection refrigerant injected from the drive-side injection port 31e is equal to or higher than the sound velocity of the gas-liquid two-phase refrigerant. .. Further, the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 is determined to be equal to or lower than the gas phase sound velocity which is the sound velocity of the gas phase refrigerant.
  • the relationship between the throat area Anzth and the drive-side injection port area Anzout is determined so as to satisfy the following mathematical formula F1.
  • F1 1.3 ⁇ Anzout / Anzth ⁇ 1.5 ...
  • the throat area Anzth is the passage cross-sectional area of the throat 31c.
  • the drive-side injection port area Anzout is the passage cross-sectional area of the drive-side injection port 31e.
  • the body portion 32 is formed of a tubular member made of metal (made of aluminum in this embodiment).
  • the body portion 32 forms the outer shell of the ejector 13.
  • the drive-side nozzle portion 31 is fixed to the inside of the body portion 32 on one end side in the longitudinal direction by press fitting.
  • the central axis of the drive-side nozzle portion 31 and the central axis of the body portion 32 are arranged coaxially.
  • the body portion 32 may be formed of a resin tubular member.
  • the body portion 32 has a refrigerant suction port 321, a suction side nozzle portion 322, a mixing portion 323, and a diffuser portion 324.
  • the refrigerant suction port 321 is formed on the cylindrical side surface of the body portion 32.
  • the refrigerant suction port 321 is a through hole for sucking the suction-side refrigerant flowing out of the evaporator 16 into the ejector 13 by the suction action of the drive-side injection refrigerant jetted from the drive-side nozzle portion 31.
  • the refrigerant suction port 321 communicates with the suction space 321a formed inside the body portion 32.
  • the suction space 321a is formed by coaxially arranging the tip details 31b and the divergent portion 31d of the drive-side nozzle portion 31 in the columnar space formed inside the body portion 32. Therefore, the suction space 321a is formed in an annular cross section on the outer peripheral side of the tip detail 31b and the divergent portion 31d of the drive side nozzle portion 31.
  • the suction side nozzle unit 322 decompresses the suction side refrigerant sucked into the suction space 321a through the refrigerant suction port 321 and injects it into the mixing unit 323.
  • the suction-side nozzle portion 322 is a downstream portion of the suction space 321a in the body portion 32, and is formed on the outer peripheral side of the tip end portion of the divergent portion 31d of the drive-side nozzle portion 31. Therefore, the refrigerant passage of the suction side nozzle portion 322 is formed in an annular cross section between the outer peripheral surface of the divergent portion 31d and the inner peripheral surface of the body portion 32.
  • the outer peripheral portion of the divergent portion 31d of the drive-side nozzle portion 31 is formed in a shape that increases the outer diameter toward the downstream side of the refrigerant flow, similar to the shape of the internal refrigerant passage. Therefore, the annular refrigerant passage of the suction side nozzle portion 322 has a shape in which the cross-sectional area of the passage decreases toward the downstream side of the refrigerant flow. That is, in the ejector 13, a so-called tapered nozzle is substantially adopted as the suction side nozzle portion 322.
  • the suction side injection port 322a of the suction side nozzle portion 322 is opened in an annular shape around the drive side injection port 31e.
  • the drive side injection port 31e and the suction side injection port 322a are open on the same plane.
  • the outer diameter of the suction side injection port 322a coincides with the mixing portion inlet diameter Dmix, which is the inner diameter of the inlet portion of the mixing portion 323.
  • the drive side injection refrigerant immediately after being injected from the drive side injection port 31e and the suction side injection refrigerant immediately after being injected from the suction side injection port 322a are substantially parallel to each other. It is open to flow. In other words, the drive-side injection port 31e and the suction-side injection port 322a are opened so that the injection direction of the drive-side injection refrigerant immediately after injection and the injection direction of the suction-side injection refrigerant immediately after injection are in the same direction. is doing.
  • the decompression performance of the drive-side nozzle unit 31 and the decompression performance of the suction-side nozzle unit 322 are the suction immediately after the pressure of the drive-side injection refrigerant immediately after being injected from the drive-side injection port 31e is injected from the suction-side injection port 322a. It is determined to be higher than the pressure of the side injection refrigerant.
  • the drive-side injection port area Anzout of the drive-side nozzle unit 31 and the suction-side injection port area Asnout of the suction-side nozzle unit 322 are determined to satisfy the following formula F2. 2 ⁇ Asnout / Anzout ⁇ 4... (F2)
  • the suction side injection port area Asnout is the passage cross-sectional area of the suction side injection port 322a.
  • the drive side injection port area Anzout is smaller than the suction side injection port area Asnout.
  • the drive-side refrigerant is a high-pressure refrigerant flowing out of the radiator 12, and the suction-side refrigerant is a low-pressure refrigerant flowing out of the evaporator 16. Therefore, if the suction side injection port area Asnout and the drive side injection port area Anzout are determined so as to satisfy the equation F2, the pressure of the drive side injection refrigerant can be made higher than the pressure of the suction side injection refrigerant. can.
  • the mixing unit 323 forms a mixing space 323a that mixes the drive-side injection refrigerant and the suction-side injection refrigerant.
  • the mixing unit 323 is arranged on the downstream side of the refrigerant flow of the drive side injection port 31e and the suction side injection port 322a in the body unit 32.
  • the mixed space 323a is formed in a substantially truncated cone shape that expands the cross-sectional area of the passage toward the downstream side of the refrigerant flow.
  • the drive side injection refrigerant and the suction side injection refrigerant are mixed so that the flow velocity of the gas-liquid two-phase mixed refrigerant flowing out of the mixing unit 323 and flowing into the diffuser unit 324 becomes subsonic. Let me.
  • the cross-sectional area of the passage does not decrease as the refrigerant flows toward the downstream side.
  • the passage cross-sectional area does not shrink. Therefore, in the mixing unit 323, the gas-liquid two-phase mixed refrigerant that has become subsonic at a uniform pressure is not accelerated to supersonic speed again on the downstream side of the refrigerant flow from the mixing unit 323.
  • the passage shape of the mixing unit 323 is such that the shock wave generated by the driving-side injection refrigerant injected from the driving-side nozzle unit 31 at supersonic speed is extinguished in the mixing unit 323.
  • the mixing unit distance L is determined so as to satisfy the following mathematical formula F3.
  • the relaxation distance Lv is defined below by the mathematical formula F4.
  • Lv U 0 ⁇ ( ⁇ L ⁇ D L 2 ) / (18 ⁇ ⁇ G )... (F4)
  • the mixing section distance L is an axial length from the inlet to the exit of the mixing section 323.
  • the mixing section distance L needs to be larger than the relaxation distance Lv. That is, it is necessary to satisfy the above formula F3.
  • the initial Mach number M 0, which is the Mach number of the mixed refrigerant in the most upstream part of the first shock wave is a relatively high value
  • an expansion wave may be generated on the downstream side of the first shock wave. ..
  • the refrigerant flow velocity on the central axis side of the mixing unit 323 becomes subsonic, but the refrigerant flow velocity on the turbulent boundary layer side becomes supersonic again. ..
  • FIG. 3 is an explanatory diagram schematically showing the generation mode of the pseudo-shock wave generated in the gas phase fluid flowing in the fluid passage of the circular tube 100 and the fluid pressure on the axial cross-sectional view of the circular tube 100.
  • the non-hatched region in the circular tube 100 of FIG. 3 is a region in which a supersonic fluid is mainly distributed.
  • the point hatch region is a region where subsonic fluids are mainly distributed.
  • the thick line in the circular tube 100 of FIG. 3 indicates a shock wave, and the double broken line indicates an expansion wave.
  • three shock waves and three expansion waves are schematically represented, but the number of shock waves and expansion waves is not limited to this.
  • the pseudo-shock wave is not a phenomenon that always occurs, and does not occur when the initial Mach number M 0 is a relatively low value.
  • the steam ejector is an ejector in which a vapor phase fluid flows inside and the outlet of the diffuser portion is opened to the atmosphere.
  • the steam ejector is used for a vacuum exhaust device, a smoke exhaust suction device, an aircraft air intake, and the like.
  • the present inventors confirmed that a pseudo-shock wave is generated even in the ejector in which the gas-liquid two-phase fluid flows inside. Furthermore, the present inventors have also confirmed that the mode of generation of the pseudo-shock wave generated by the steam ejector is different from the mode of generation of the pseudo-shock wave generated by the ejector through which the gas-liquid two-phase fluid flows.
  • the pseudo-shock wave generated by the steam ejector through which the gas-phase fluid flows is described as the pseudo-shock wave in the gas-phase flow.
  • a pseudo-shock wave generated by an ejector through which a gas-liquid two-phase fluid flows is described as a pseudo-shock wave in a two-phase flow.
  • the reason why the pseudo-shock wave generation mode in the gas-phase flow and the pseudo-shock wave generation mode in the two-phase flow are different is that droplets are present in the gas-liquid two-phase fluid. Specifically, the vapor phase refrigerant in the shock wave rapidly decreases the flow velocity, but the droplet has an inertial force, so that the velocity decrease becomes slower than that of the vapor phase refrigerant. Further, the gas phase refrigerant in the expansion wave rapidly increases the flow velocity, but the droplets accelerate more slowly than the gas phase refrigerant due to the drag force from the gas phase refrigerant.
  • pseudo-shock waves in two-phase flow are less likely to occur as the dryness of the drive-side injection refrigerant decreases.
  • the reason is that the droplet has the effect of attenuating the pressure wave by scattering or absorption. Therefore, the generation mode of the pseudo-shock wave in the two-phase flow changes depending on the size and number density of the droplets.
  • the present inventors have conducted a study for promptly extinguishing the pseudo-shock wave in the two-phase flow when the pseudo-shock wave in the two-phase flow is generated in the mixing unit 323 in the ejector 13.
  • the axial length required to extinguish the pseudo-shock wave in the two-phase flow increases as the initial Mach number M 0 increases. Further, it was found that the axial length required to extinguish the pseudo-shock wave in the two-phase flow increases as the dryness X of the refrigerant flowing through the mixing portion 323 increases.
  • the axial length required to extinguish the pseudo shock wave is represented by the ratio to the relaxation distance Lv.
  • the pseudo shock wave can be extinguished in the mixing section. I found it. 1 ⁇ L / Lv ⁇ 3.5 (however, 1 ⁇ M 0 ⁇ 2.5) ... (F5) Further, when the relationship shown in the formula F5 is converted into the flow path shape, if the relationship between the mixing section distance L and the mixing section inlet diameter Dmix is determined so as to satisfy the following formula F6, the pseudo shock wave is extinguished in the mixing section. I found that I could do it. 1 ⁇ L / Dmix ⁇ 10 (however, 1 ⁇ M 0 ⁇ 2.5)... (F6)
  • the mixing portion inlet diameter Dmix is the diameter of the refrigerant passage at the inlet of the mixing portion 323.
  • the mixing portion inlet diameter Dmix coincides with the outer diameter of the suction side injection port 322a of the suction side nozzle portion 322. Further, the range of the initial Mach number M 0 in the formulas F5 and F6 is a range that can be practically used in an ejector applied to a general ejector type refrigeration cycle.
  • the mixing section distance L of the mixing section 323 of the ejector 13 is determined to satisfy the above equations F3, F5, and F6. Therefore, in the mixing unit 323, not only the pressure of the mixed refrigerant is increased, but also the flow velocity of the mixed refrigerant is greatly reduced. As a result, the refrigerant on the wall surface side of the mixing unit 323 is likely to be separated from the wall surface. The peeling of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface hinders the flow of the mixed refrigerant and causes energy loss.
  • the passage shape of the mixing portion 323 is formed so that the cross-sectional area of the passage increases as the mixed refrigerant moves toward the downstream side in the flow direction.
  • the area change rate dA / dz is determined so that the passage shape of the mixing unit 323 satisfies the following mathematical formulas F7 within the range satisfying the above mathematical formulas F5 and F6. 0 ⁇ dA / dz ⁇ 0.8 (mm) ... (F7)
  • the area change rate dA / dz is the amount of change dA (mm 2 ) in the cross-sectional area of the refrigerant passage per unit length dz (mm) in the axial direction in the mixing unit 323.
  • the area change rate dA / dz is increased toward the downstream side of the refrigerant flow.
  • the diffuser unit 324 forms a step-up passage 324a that converts the kinetic energy of the mixed refrigerant mixed in the mixing unit 323 into pressure energy.
  • the inlet of the boost passage 324a is formed so as to be continuous with the outlet of the mixing portion 323.
  • the booster passage 324a is formed in a substantially truncated cone shape in which the cross-sectional area of the passage is expanded toward the downstream side of the refrigerant flow. Due to this shape, the diffuser unit 324 decelerates the mixed refrigerant and boosts the pressure of the mixed refrigerant.
  • the passage shape of the boost passage 324a is determined so that the flow velocity of the mixed refrigerant flowing out of the mixing section 323 and flowing into the diffuser section 324 is subsonic.
  • the relationship between the mixing portion outlet area Amixout and the diffuser portion outlet area Aout is determined so as to satisfy the following mathematical formula F8.
  • the mixing section outlet area Amixout is the passage cross-sectional area of the exit of the mixing section 323.
  • the mixed-section outlet area Amixout coincides with the passage cross-sectional area of the inlet of the diffuser section 324.
  • the diffuser section outlet area Aout is the passage cross-sectional area of the outlet of the diffuser section 324.
  • the refrigerant flowing out from the diffuser section has a certain flow velocity in order to reduce the power consumption of the compressor.
  • the flow velocity of the refrigerant flowing out from the diffuser portion may be a subsonic speed of about 0.1 to 0.2 times the speed of sound.
  • the passage cross-sectional area of the diffuser section 324 is expanded so as to satisfy the above formula F8, the flow velocity of the mixed refrigerant flowing out of the mixing section 323 and flowing into the diffuser section 324 does not exceed the speed of sound. ..
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 14.
  • the refrigerant inlet side of the evaporator 16 is connected to the liquid phase refrigerant outlet of the accumulator 14 via a fixed throttle 15 as a depressurizing means.
  • a fixed throttle 15 an orifice, a capillary tube, or the like can be adopted.
  • the internal air temperature sensor is an internal air temperature detection unit that detects the temperature inside the vehicle.
  • the outside air temperature sensor is an outside air temperature detection unit that detects the outside air temperature.
  • the solar radiation sensor is a solar radiation amount detection unit that detects the amount of solar radiation in the vehicle interior.
  • the evaporator temperature sensor is an evaporator temperature detection unit that detects the temperature of the blown air (evaporator temperature) of the evaporator 16.
  • the discharge pressure sensor is a discharge refrigerant pressure detection unit that detects the pressure of the refrigerant discharged from the compressor 11.
  • the control device 20 is integrally configured with a control unit that controls the operation of various controlled devices connected to the output side.
  • a configuration that is, hardware and software that controls the operation of each control target device constitutes a control unit of each control target device.
  • a configuration that controls the operation of the compressor 11 constitutes a discharge capacity control unit.
  • FIG. 1 and the like a power line or a signal line connecting the control device 20 and various controlled devices is shown, but for the sake of clarification of the illustration, the sensor group and the control device 20 and the sensor group are shown. The illustration of the signal line to be connected is omitted.
  • the control device 20 operates the compressor 11, the cooling fan 12a, the indoor blower 16a, and the like. As a result, the compressor 11 sucks in the refrigerant, compresses it, and discharges it.
  • the drive-side refrigerant that has flowed into the drive-side nozzle portion 31 reaches a critical state at the throat portion 31c, and the drive flow rate of the ejector 13 is determined.
  • the drive-side refrigerant is accelerated at the divergent portion 31d until it reaches a supersonic state. Then, it becomes a drive-side injection refrigerant in a gas-liquid two-phase state and is injected from the drive-side injection port 31e into the mixing space 323a of the mixing unit 323.
  • the drive-side injection refrigerant is a supersonic mist flow that exceeds the two-phase sound velocity.
  • the refrigerant flowing out of the evaporator 16 is sucked from the refrigerant suction port 321 into the suction space 321a as the suction side refrigerant by the suction action of the drive side injection refrigerant injected from the drive side injection port 31e to the mixing unit 323. More specifically, since the drive-side injection refrigerant is in a gas-liquid two-phase state, the injected droplets accelerate due to the action of inertial force, thereby reducing the pressure in the vicinity of the suction-side injection port 322a. As a result, the suction side refrigerant is sucked into the suction space 321a.
  • the suction-side refrigerant sucked into the suction space 321a is depressurized by the suction-side nozzle portion 322, becomes a suction-side injection refrigerant, and is injected from the suction-side injection port 322a into the mixing space 323a of the mixing section 323.
  • the refrigerant pressure of the drive-side injection refrigerant injected to the mixing unit 323 is higher than the refrigerant pressure of the suction-side injection refrigerant injected to the mixing unit 323. Therefore, in the drive-side nozzle unit 31, the drive-side refrigerant is insufficiently expanded to generate an expansion wave in the mixing unit 323.
  • the mixed refrigerant flowing out of the mixing section 323 flows into the diffuser section 324.
  • the kinetic energy of the mixed refrigerant is converted into pressure energy by expanding the cross-sectional area of the passage. As a result, the pressure of the mixed refrigerant further increases.
  • the flow velocity of the mixed refrigerant flowing out from the mixing section 323, flowing out, and flowing into the diffuser section 324 is reduced to subsonic speed.
  • the shock wave generated by the drive-side injection refrigerant can be reliably eliminated in the mixing unit 323. Therefore, it is possible to suppress the energy loss caused by the shock wave after exerting the pressure recovery action.
  • the driving side injection refrigerant so as to match the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixed refrigerant flowing out from the mixing section 323 and flowing out into the diffuser section 324. And the suction side injection refrigerant are mixed. Therefore, even if the generation range of the pseudo-shock wave in the two-phase flow changes due to the load fluctuation of the refrigeration cycle device, the pseudo-shock wave can be surely extinguished in the mixing unit 323.
  • the operating condition OP1 is the operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is minimized.
  • the operating condition OP2 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP1.
  • the operating condition OP3 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP2.
  • the operating condition OP4 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP3.
  • the refrigerant pressure at the outlet of the diffuser unit 324 increases in the order of operating condition OP1, operating condition OP2, operating condition OP3, and operating condition OP4. Further, in the graph of FIG. 5, the value obtained by subtracting the refrigerant pressure at the inlet of the mixing unit 323 from the refrigerant pressure at the outlet of the diffuser unit 324 is the boosted amount of the refrigerant as the entire ejector 13. In FIG. 5, for the sake of clarification of the illustration, the boost amount ⁇ P is shown only for the operating condition OP3.
  • the boosting amount of the ejector 13 as a whole is increased as compared with other operating conditions. Therefore, in the operating condition OP3, as shown in FIG. 8, the shock wave is rapidly extinguished in the mixing unit 323, and the relaxation distance Lv of the pseudo shock wave is reduced as compared with the other operating conditions, thereby further reducing the energy loss. It is understood that it is decreasing.
  • the pressure of the mixed refrigerant starts to rise sharply immediately after flowing into the mixing unit 323. Therefore, under the operating condition OP4, as shown in FIG. 9, it is understood that the drive-side refrigerant cannot be insufficiently expanded in the drive-side nozzle portion 31, and a shock wave is generated inside the drive-side nozzle portion 31. Will be done.
  • the pressure recovery action of the shock wave cannot be sufficiently utilized to boost the pressure of the mixed refrigerant in the mixing unit 323, and the boosting amount of the ejector 13 as a whole is larger than that of other operating conditions. It has decreased.
  • the refrigerant pressure at the inlet of the mixing unit 323 rises as in the operating condition OP4
  • the pressure of the suction side refrigerant also rises, and the refrigerant evaporation temperature in the evaporator 16 may rise.
  • Asnout / Anzout is set so that the pressure of the drive-side injection refrigerant is higher than the pressure of the suction-side injection refrigerant, as described in the mathematical formula F2.
  • the pressure of the drive side injection refrigerant can be made higher than the pressure of the suction side injection refrigerant without requiring complicated operation control or the like according to the load fluctuation. Then, the drive-side nozzle portion 31 can surely inadequately expand the drive-side refrigerant, and can surely generate an expansion wave in the drive-side injection refrigerant.
  • the flow velocity of the drive-side injection refrigerant injected from the drive-side injection port 31e becomes equal to or higher than the two-phase sound velocity, which is the sound velocity of the gas-liquid two-phase refrigerant.
  • Anzout / Anzth is set so that the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 is equal to or lower than the gas phase sound velocity which is the sound velocity of the gas phase refrigerant.
  • the drive-side injection refrigerant in the gas-liquid two-phase state can be surely set to the two-phase sound velocity or higher without requiring complicated operation control or the like according to the load fluctuation. Further, the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 can be set to be equal to or lower than the gas phase sound velocity.
  • the distance L1 from the inlet of the mixing section 323 to the generation of the first shock wave is 0.1 times or less of the mixing section inlet diameter Dmix. It has been confirmed that it will be. Therefore, as described in the operating condition OP3 of FIG. 5, the boosting amount of the ejector 13 as a whole can be increased.
  • the wall friction in the refrigerant passage of the drive-side nozzle portion 31 can be alleviated, so that the initial Mach number M 0 can be increased. Therefore, the boost amount of the mixed refrigerant can be further increased by the shock wave having high energy.
  • the mixing portion distance L is set to be longer than the relaxation distance Lv. According to this, the first shock wave generated in the mixing section 323 by the driving side injection refrigerant can be surely extinguished in the mixing section 323. Therefore, the flow velocity of the mixed refrigerant in the gas-liquid two-phase state flowing out of the mixing section 323 and flowing into the diffuser section 324 can be easily brought close to the subsonic speed.
  • the range of L / Lv or L / Dmix is set as shown in the formulas F5 and F6. According to this, even if a pseudo-shock wave in the two-phase flow is generated due to the load fluctuation of the ejector type refrigeration cycle 10, the pseudo-shock wave in the two-phase flow can be surely extinguished in the mixing unit 323.
  • the passage shape of the mixing portion 323 has a shape in which the passage cross-sectional area increases as the mixed refrigerant moves toward the downstream side in the flow direction. There is. According to this, it is possible to suppress the separation of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface and suppress the energy loss.
  • the flow velocity of the mixed refrigerant suddenly decreases in the mixing unit 323. Therefore, being able to suppress the separation of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface is effective in suppressing energy loss.
  • the present inventors make a shock wave in the ejector 13 under the following conditions. It has been confirmed that it exerts a high boosting ability by using.
  • the ejector 13 exhibits a boosting capacity four times or more that of the conventional technique, at least within the range in which the inlet pressure Pin and the outlet pressure Pout of the ejector 13 satisfy both of the following formulas F9 and F10. is doing. 0.4 ⁇ Pin ⁇ 1.7 (MPa) ... (F9) 0.3 ⁇ Pout ⁇ 0.65 (MPa) ... (F10)
  • the inlet pressure Pin is the pressure of the drive-side refrigerant flowing into the drive-side nozzle portion 31 of the ejector 13.
  • the outlet pressure Pout is the pressure of the refrigerant flowing out from the diffuser unit 324.
  • the ejector 13 exhibits a boosting capacity four times or more that of the conventional technique, at least in the range where the inlet pressure Pin and the drive side injection pressure Pnzout of the ejector 13 are in the following mathematical formula F11. 0.2 ⁇ Pnzout / Pin ⁇ 0.65 ... (F11)
  • the drive-side injection pressure Pnzout is the pressure of the drive-side injection refrigerant immediately after being injected from the drive-side injection port 31e.
  • the HFO-based refrigerant includes R1234zd and the like in addition to R1234yf.
  • the HFC-based refrigerant includes R134a, R410A, R32, R404A, R407C and the like.
  • An ejector-type refrigeration cycle that employs these refrigerants constitutes a subcritical refrigeration cycle.
  • the ejector 113 of the present embodiment is applied to the ejector type refrigeration cycle 10 having the same configuration as that of the first embodiment.
  • the ejector type refrigerating cycle 10 of the present embodiment is applied to a stationary heating / hot water supply device, and heats the blown air or hot water supplied to the room.
  • the ejector type refrigeration cycle 10 of the present embodiment uses carbon dioxide as a refrigerant, and constitutes a supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant.
  • the radiator 12 of the ejector type refrigeration cycle 10 of the present embodiment heat-exchanges the high-pressure refrigerant with the blown air blown to the air-conditioned space or the hot water supplied to the kitchen, bath, or the like to exchange heat with the high-pressure refrigerant.
  • It is a heat exchanger for heat dissipation that dissipates heat in a supercritical state.
  • the evaporator 16 of the present embodiment is an endothermic heat exchanger that exchanges heat between the low pressure refrigerant and the outside air blown by the outside air fan to evaporate the low pressure refrigerant and exert a heat absorbing action.
  • the ejector 113 of the present embodiment has a drive side nozzle portion 131, a body portion 132, a needle valve 133, and a drive mechanism 134.
  • the dimensional specifications of each portion are set so that the drive-side nozzle unit 31 described in the first embodiment has the same function.
  • a needle valve 133 is arranged in the refrigerant passage of the drive-side nozzle portion 131.
  • the needle valve 133 changes the passage cross-sectional area of the throat portion of the drive side nozzle portion 131 and the drive side injection port by being displaced in the axial direction of the drive side nozzle portion 131.
  • the needle valve 133 is made of a metal (stainless steel in this embodiment) needle-shaped member.
  • the central axis of the needle valve 133 is arranged coaxially with the central axis of the drive-side nozzle portion 131.
  • the opposite end of the drive-side injection port of the needle valve 133 is connected to the drive mechanism 134.
  • the drive mechanism 134 is a drive unit that displaces the needle valve 133 in the central axis direction.
  • a stepping motor is adopted as the drive mechanism 134.
  • the operation of the drive mechanism 134 is controlled by a control signal (that is, a control pulse) output from the control device 20.
  • the body portion 132 is formed by combining a plurality of metal (in this embodiment, aluminum) block members.
  • the dimensional specifications of each part of the body part 132 are set so as to exhibit the same function as the body part 32 described in the first embodiment.
  • the body portion 132 has the same refrigerant suction port 321 as in the first embodiment, a suction side nozzle portion 322, a mixing portion 323, and a diffuser portion 324.
  • the configuration of the other ejectors 113 is the same as that of the ejector 13 described in the first embodiment.
  • the control device 20 controls the operation of the drive mechanism 134 so that the superheat degree of the refrigerant on the outlet side of the evaporator 16 approaches a predetermined reference superheat degree KSH.
  • Other operations are the same as in the first embodiment. Therefore, the same effect as that of the first embodiment can be obtained in the ejector type refrigeration cycle 10 of the present embodiment.
  • the present inventors exhibit a high boosting ability by using a shock wave under the following conditions. I have confirmed that.
  • the ejector 13 exhibits a high boosting ability at least within a range in which the inlet pressure Pin and the outlet pressure Pout of the ejector 13 satisfy both of the following formulas F12 and F13. 6 ⁇ Pin ⁇ 14 (MPa) ... (F12) 1.5 ⁇ Pout ⁇ 7 (MPa) ... (F13) Further, it has been confirmed that the ejector 13 exhibits a high boosting ability at least within a range in which the inlet pressure Pin and the drive side injection pressure Pnzout of the ejector 13 satisfy the following formula F14. 0.3 ⁇ Pnzout / Pin ⁇ 0.7 ... (F14) In the ejector type refrigeration cycle that employs carbon dioxide or a mixed refrigerant containing carbon dioxide, a supercritical refrigeration cycle is configured.
  • the ejector type refrigeration cycle 10a is applied to an air conditioner for vehicles.
  • the ejector type refrigeration cycle 10a includes a branch portion 17, a first evaporator 161 and a second evaporator 162. Further, in the ejector type refrigeration cycle 10a, the accumulator 14 is abolished.
  • the branch portion 17 is a three-way joint that branches the flow of the refrigerant flowing out of the radiator 12.
  • the drive-side inlet 31a side of the drive-side nozzle portion 31 of the ejector 13 is connected to one of the outlets of the branch portion 17.
  • the inlet side of the fixed throttle 15 is connected to the other outlet of the branch portion 17.
  • the refrigerant inlet side of the first evaporator 161 is connected to the outlet of the diffuser portion 324 of the ejector 13.
  • the first evaporator 161 is an endothermic heat exchanger that cools the blown air by exchanging heat between the low-pressure refrigerant flowing out of the diffuser portion 324 of the ejector 13 and the blown air blown from the indoor blower 16a.
  • the suction port side of the compressor 11 is connected to the refrigerant outlet of the first evaporator 161.
  • the refrigerant inlet side of the second evaporator 162 is connected to the outlet of the fixed throttle 15.
  • the second evaporator 162 is an endothermic heat exchanger that cools the blown air by exchanging heat between the low-pressure refrigerant decompressed by the fixed throttle 15 and the blown air after passing through the first evaporator 161.
  • the refrigerant suction port 321 side of the ejector 13 is connected to the refrigerant outlet of the second evaporator 162.
  • the first evaporator 161 and the second evaporator 162 of this embodiment are integrally configured.
  • the first evaporator 161 and the second evaporator 162 are composed of a so-called tank-and-tube type heat exchanger.
  • a tank-and-tube heat exchanger is a heat exchanger having a plurality of tubes for circulating a refrigerant and a pair of collecting and distributing tanks connected to both ends of the plurality of tubes to collect or distribute the refrigerant. be.
  • the first evaporator 161 and the second evaporator 162 are integrally configured by forming the collective distribution tank with the same member.
  • the first evaporator 161 and the second evaporator 162 are arranged in series with respect to the blown air flow so that the first evaporator 161 is arranged on the upstream side of the blown air flow with respect to the second evaporator 162. It is placed in. Therefore, the blown air flows as shown by the dashed arrow in FIG. 12.
  • the operation of the ejector type refrigeration cycle 10a of the present embodiment in the above configuration will be described.
  • the control device 20 operates the compressor 11
  • the high-temperature high-pressure refrigerant discharged from the compressor 11 is condensed by the radiator 12 as in the first embodiment.
  • the refrigerant flowing out of the radiator 12 flows into the branch portion 17.
  • the flow of the refrigerant flowing out of the radiator 12 is branched.
  • One of the refrigerants branched at the branch portion 17 flows into the drive side nozzle portion 31 of the ejector 13 as the drive side refrigerant.
  • the drive-side refrigerant is issentropically depressurized as in the first embodiment. Then, the drive-side injection refrigerant in the gas-liquid two-phase state exceeding the two-phase sound velocity is injected from the drive-side injection port 31e of the drive-side nozzle unit 31 into the mixing space 323a of the mixing unit 323.
  • the suction side injection refrigerant is injected from the suction side injection port 322a of the suction side nozzle unit 322 into the mixing space 323a of the mixing unit 323, as in the first embodiment.
  • the pressure of the mixed refrigerant of the driving side injection refrigerant and the suction side injection refrigerant increases due to the pressure recovery action of the shock wave generated by the drive side injection refrigerant.
  • the mixed refrigerant flowing out of the mixing section 323 flows into the diffuser section 324.
  • the pressure of the mixed refrigerant further increases, as in the first embodiment.
  • the refrigerant flowing out of the diffuser unit 324 flows into the first evaporator 161.
  • the refrigerant flowing out from the diffuser unit 324 absorbs heat from the blown air blown by the indoor blower 16a and evaporates. As a result, the blown air is cooled.
  • the vapor phase refrigerant flowing out of the first evaporator 161 is sucked into the compressor 11 and compressed again.
  • the other refrigerant branched at the branch portion 17 flows into the fixed throttle 15 and is enthalpy depressurized.
  • the low-pressure refrigerant decompressed by the fixed throttle 15 flows into the second evaporator 162.
  • the refrigerant flowing into the second evaporator 162 absorbs heat from the blown air after passing through the first evaporator 161 and evaporates. As a result, the blown air is further cooled and blown into the vehicle interior.
  • the refrigerant flowing out of the second evaporator 162 is sucked from the refrigerant suction port 321 of the ejector 13.
  • the ejector type refrigerating cycle 10a of the present embodiment operates as described above and can cool the blown air blown into the vehicle interior.
  • the refrigerant evaporation temperature of the first evaporator 161 can be raised higher than the refrigerant evaporation temperature of the second evaporator 162 by the pressurizing action of the ejector 13. Therefore, in the ejector type refrigeration cycle 10a, the temperature difference between the refrigerant evaporation temperature of the first evaporator 161 and the blown air and the temperature difference between the refrigerant evaporation temperature of the second evaporator 162 and the blown air are ensured efficiently. Blower air can be cooled.
  • the intermediate pressure expansion valve decompresses the refrigerant flowing out of the radiator 12 in the ejector type refrigeration cycle 10 and causes the refrigerant to flow out to the drive side inlet 31a side of the drive side nozzle portion 31 of the ejector 13.
  • a variable expansion mechanism that changes the throttle opening so that the pressure of the high pressure refrigerant flowing into the intermediate pressure expansion valve becomes the target high pressure determined according to the temperature of the high pressure refrigerant can be adopted. can.
  • the intermediate pressure expansion valve decompresses the refrigerant flowing out of the radiator 12 in the ejector type refrigeration cycle 10a and causes it to flow out to the inflow port side of the branch portion 17.
  • a variable throttle mechanism that changes the throttle opening so that the superheat degree of the refrigerant flowing out of the first evaporator 161 approaches a predetermined reference superheat degree can be adopted.
  • first evaporator 161 and the second evaporator 162 of the ejector type refrigeration cycle 10a are integrally configured
  • first evaporator 161 and the second evaporator 162 have been described. May be formed separately.
  • the first evaporator 161 and the second evaporator 162 may cool the different refrigerant target fluids in different temperature zones.
  • the first evaporator 161 whose refrigerant evaporation temperature is higher than that of the second evaporator 162 is used for air conditioning to be blown to the air conditioning target space. It may be used to blow air. Then, the second evaporator 162, in which the refrigerant evaporation temperature is lower than that of the first evaporator 161 may be used to cool the blown air for the freezer that is circulated and blown into the freezer.
  • the configurations of the ejector type refrigeration cycles 10 and 10a are not limited to those disclosed in the above-described embodiment.
  • the compressor 11 is not limited to the electric compressor.
  • an engine drive type compressor driven by a rotational driving force transmitted from the engine may be adopted.
  • a variable capacity type compressor or the like whose refrigerant discharge capacity can be adjusted by changing the discharge capacity can be adopted.
  • radiator 12 of the ejector type refrigeration cycle constituting the subcritical refrigeration cycle.
  • the subcool type condenser has a condensing part, a receiver part, and a supercooling part.
  • the condensing unit exchanges heat between the refrigerant and the outside air to condense the refrigerant.
  • the receiver unit separates the gas and liquid of the refrigerant flowing out from the condensing unit, and stores a part of the separated liquid phase refrigerant as a surplus refrigerant in the cycle.
  • the supercooling unit supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant flowing out from the receiver unit and the outside air.
  • each of the above embodiments may be appropriately combined to the extent practicable.
  • the ejector 113 described in the second embodiment may be applied to the ejector type refrigeration cycle 10a described in the third embodiment.

Abstract

This ejector is provided with: a drive-side nozzle part (31, 131); and a body part (32,132). The body part (32, 132) has a refrigerant sucking port (321), a sucking-side nozzle portion (322), a mixing portion (323), and a diffuser portion (324). A drive-side jetting port (31e) of the drive-side nozzle part (31, 131) and a sucking-side jetting port (322a) of the sucking-side nozzle portion (322) are opened so that the jetting direction of a drive-side jetted refrigerant and the jetting direction of a sucking-side jetted refrigerant are to be equivalent. The pressure of the drive-side jetted refrigerant is higher than the pressure of the sucking-side jetted refrigerant. The mixed refrigerant flowing from the mixing portion (323) to the diffuser portion (324) has a subsonic speed, and the refrigerant pressure thereof on the central axis side coincides with the refrigerant pressure on the wall surface side.

Description

エジェクタEjector 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年6月22日に出願された日本特許出願2020-107080号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-107080 filed on June 22, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、駆動側ノズル部から気液二相状態の流体を噴射するエジェクタに関する。 The present disclosure relates to an ejector that injects a fluid in a gas-liquid two-phase state from a nozzle portion on the drive side.
 従来、エジェクタを備える冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。 Conventionally, an ejector type refrigeration cycle, which is a refrigeration cycle device equipped with an ejector, is known.
 エジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)を向上させている。従って、エジェクタ式冷凍サイクルのCOPを向上させるためには、エジェクタの昇圧能力を向上させることが有効である。 In the ejector type refrigeration cycle, the pressure of the refrigerant sucked into the compressor can be raised higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector. As a result, in the ejector type refrigeration cycle, the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is improved. Therefore, in order to improve the COP of the ejector type refrigeration cycle, it is effective to improve the boosting capacity of the ejector.
 これに対して、特許文献1には、エジェクタ式冷凍サイクルに適用されるエジェクタとして、噴射冷媒と吸引冷媒とを混合させる混合部の通路形状を、冷媒流れ方向に向かうに伴って通路断面積を拡大させる円錐台形状としたエジェクタが開示されている。これにより、特許文献1のエジェクタでは、混合部における冷媒のエネルギ損失を抑制して、ディフューザ部における冷媒の昇圧量を増加させようとしている。 On the other hand, in Patent Document 1, as an ejector applied to the ejector type refrigeration cycle, the passage shape of the mixing portion for mixing the injection refrigerant and the suction refrigerant is described, and the passage cross-sectional area is described as the direction of the refrigerant flow. An ejector having a truncated cone shape to be enlarged is disclosed. As a result, the ejector of Patent Document 1 attempts to suppress the energy loss of the refrigerant in the mixing portion and increase the boosting amount of the refrigerant in the diffuser portion.
 また、特許文献2には、真空排気装置等に適用される産業用エゼクタ(以下、蒸気エジェクタと記載する。)では、衝撃波の圧力回復作用によって気相流体(具体的には、空気)を昇圧させることが記載されている。さらに、特許文献2には、蒸気エジェクタでは、衝撃波の最上流部における空気のマッハ数を低下させることで、衝撃波の圧力回復作用を高めることができると記載されている。 Further, in Patent Document 2, in an industrial ejector (hereinafter, referred to as a steam ejector) applied to a vacuum exhaust device or the like, the gas phase fluid (specifically, air) is boosted by the pressure recovery action of a shock wave. It is stated that it will be done. Further, Patent Document 2 describes that the steam ejector can enhance the pressure recovery action of the shock wave by reducing the Mach number of air in the most upstream portion of the shock wave.
米国特許第9568220号明細書U.S. Pat. No. 9,568,220 特開昭59-151000号公報Japanese Unexamined Patent Publication No. 59-151000
 ところが、特許文献1のエジェクタでは、冷媒通路の通路断面積が固定されている。このため、単に混合部の通路形状を円錐台形状にするだけでは、冷凍サイクル装置の負荷変動によらず、全ての運転条件において高い昇圧能力を得ることは難しい。 However, in the ejector of Patent Document 1, the passage cross-sectional area of the refrigerant passage is fixed. Therefore, it is difficult to obtain a high boosting capacity under all operating conditions regardless of the load fluctuation of the refrigerating cycle apparatus by simply changing the passage shape of the mixing portion to a truncated cone shape.
 また、エジェクタ式冷凍サイクルに適用されるエジェクタでは、特許文献2の蒸気エジェクタと同様の手段を採用しても、衝撃波の圧力回復作用を高めて冷媒の昇圧量を増加できるとは限らない。 Further, in the ejector applied to the ejector type refrigeration cycle, even if the same means as the steam ejector of Patent Document 2 is adopted, it is not always possible to enhance the pressure recovery action of the shock wave and increase the boosting amount of the refrigerant.
 その理由は、蒸気エジェクタでは駆動側ノズル部から気相流体を噴射しており、冷凍サイクル装置に適用されるエジェクタでは、一般的に、駆動側ノズル部から気液二相冷媒を噴射するからである。そして、駆動側ノズル部から気相流体を噴射する蒸気エジェクタにおける衝撃波の発生態様と駆動側ノズル部から気液二相流体を噴射するエジェクタにおける衝撃波の発生態様は異なっているからである。 The reason is that the steam ejector injects the gas-phase fluid from the drive-side nozzle, and the ejector applied to the refrigeration cycle device generally injects the gas-liquid two-phase refrigerant from the drive-side nozzle. be. This is because the mode of generating a shock wave in the steam ejector that injects the gas-phase fluid from the drive-side nozzle portion and the mode of generating the shock wave in the ejector that injects the gas-liquid two-phase fluid from the drive-side nozzle portion are different.
 本開示は、上記点に鑑み、適用された冷凍サイクル装置の負荷変動によらず、衝撃波を利用して高い昇圧能力を発揮可能なエジェクタを提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide an ejector capable of exhibiting a high boosting ability by using a shock wave regardless of the load fluctuation of the applied refrigeration cycle device.
 上記目的を達成するため、本開示の第1の態様のエジェクタは、冷凍サイクル装置に適用されるエジェクタであって、駆動側ノズル部と、ボデー部と、を備える。 In order to achieve the above object, the ejector of the first aspect of the present disclosure is an ejector applied to a refrigeration cycle apparatus, and includes a drive side nozzle portion and a body portion.
 駆動側ノズル部は、駆動側冷媒を減圧して超音速となるまで加速させて、気液二相状態の駆動側噴射冷媒を噴射する。 The drive-side nozzle section decompresses the drive-side refrigerant and accelerates it until it reaches supersonic speed, and injects the drive-side injection refrigerant in a gas-liquid two-phase state.
 ボデー部は、冷媒吸引口、吸引側ノズル部、混合部、およびディフューザ部を有する。冷媒吸引口は、吸引側冷媒を吸引する。吸引側ノズル部は、冷媒吸引口から吸引された吸引側冷媒を減圧して噴射する。混合部は、吸引側ノズル部から噴射された吸引側噴射冷媒と駆動側ノズル部から噴射された駆動側噴射冷媒とを混合させる。ディフューザ部は、混合部にて混合された混合冷媒の運動エネルギを圧力エネルギに変換する。 The body section has a refrigerant suction port, a suction side nozzle section, a mixing section, and a diffuser section. The refrigerant suction port sucks the suction side refrigerant. The suction side nozzle portion decompresses and injects the suction side refrigerant sucked from the refrigerant suction port. The mixing unit mixes the suction-side injection refrigerant injected from the suction-side nozzle unit and the drive-side injection refrigerant injected from the drive-side nozzle unit. The diffuser section converts the kinetic energy of the mixed refrigerant mixed in the mixing section into pressure energy.
 駆動側ノズル部の駆動側噴射口と吸引側ノズル部の吸引側噴射口は、駆動側噴射冷媒の噴射方向と吸引側噴射冷媒の噴射方向が同等の方向となるように開口している。 The drive side injection port of the drive side nozzle portion and the suction side injection port of the suction side nozzle portion are opened so that the injection direction of the drive side injection refrigerant and the injection direction of the suction side injection refrigerant are in the same direction.
 さらに、駆動側噴射冷媒の圧力は、吸引側噴射冷媒の圧力よりも高くなっており、混合部から流出してディフューザ部へ流入する混合冷媒は、中心軸側の冷媒圧力と壁面側の冷媒圧力が一致しているとともに、亜音速になっているエジェクタである。 Further, the pressure of the drive side injection refrigerant is higher than the pressure of the suction side injection refrigerant, and the mixed refrigerant flowing out of the mixing section and flowing into the diffuser section is the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side. It is an ejector that has a subsonic speed as well as matching.
 これによれば、駆動側ノズル部にて減圧された駆動側噴射冷媒の冷媒圧力が、吸引側ノズル部にて減圧された吸引側噴射冷媒の冷媒圧力よりも高くなっている。従って、冷凍サイクル装置の負荷変動によらず、駆動側ノズル部にて駆動側冷媒を不足膨張させて、混合部内に確実に衝撃波を発生させることができる。その結果、混合部にて、衝撃波の圧力回復作用によって混合冷媒を昇圧することができる。 According to this, the refrigerant pressure of the drive-side injection refrigerant decompressed by the drive-side nozzle portion is higher than the refrigerant pressure of the suction-side injection refrigerant decompressed by the suction-side nozzle portion. Therefore, regardless of the load fluctuation of the refrigeration cycle device, the drive-side refrigerant can be insufficiently expanded in the drive-side nozzle portion, and a shock wave can be reliably generated in the mixing portion. As a result, the mixed refrigerant can be boosted by the pressure recovery action of the shock wave in the mixing section.
 さらに、混合部から流出してディフューザ部へ流入する混合冷媒の流速が亜音速になっている。このため、駆動側噴射冷媒によって生じる最初の衝撃波によって、混合部内にエネルギ損失の原因となり得る疑似衝撃波が発生してしまっても、疑似衝撃波を速やかに消滅させることができる。 Furthermore, the flow velocity of the mixed refrigerant flowing out of the mixing section and flowing into the diffuser section is subsonic. Therefore, even if a pseudo-shock wave that may cause energy loss is generated in the mixing portion by the first shock wave generated by the drive-side injection refrigerant, the pseudo-shock wave can be quickly extinguished.
 これに加えて、混合部では、混合部から流出してディフューザ部へ流入する混合冷媒の中心軸側の冷媒圧力と壁面側の冷媒圧力が一致するように、駆動側噴射冷媒と吸引側噴射冷媒とを混合している。従って、冷凍サイクル装置の負荷変動によって、疑似衝撃波の発生範囲が変化しても、疑似衝撃波を混合部内で確実に消滅させることができる。 In addition to this, in the mixing section, the drive side injection refrigerant and the suction side injection refrigerant so that the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixed refrigerant flowing out of the mixing section and flowing into the diffuser section match. And are mixed. Therefore, even if the generation range of the pseudo-shock wave changes due to the load fluctuation of the refrigeration cycle device, the pseudo-shock wave can be surely extinguished in the mixing unit.
 その結果、適用された冷凍サイクル装置の負荷変動によらず、衝撃波を利用して高い昇圧能力を発揮可能なエジェクタを提供することができる。 As a result, it is possible to provide an ejector capable of exerting a high boosting ability by utilizing a shock wave regardless of the load fluctuation of the applied refrigeration cycle device.
 ここで、疑似衝撃波とは、後述する実施形態で説明するように、駆動側噴射冷媒によって生じる最初の衝撃波の下流側に膨張波が発生することによって、冷媒通路内の中心軸側の冷媒圧力と壁面側の冷媒圧力が異なる値となって、再び衝撃波が生じる現象である。 Here, the pseudo-shock wave refers to the refrigerant pressure on the central axis side in the refrigerant passage due to the generation of an expansion wave on the downstream side of the first shock wave generated by the drive-side injection refrigerant, as described in the embodiment described later. This is a phenomenon in which the refrigerant pressure on the wall surface side becomes a different value and a shock wave is generated again.
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。It is a schematic whole block diagram of the ejector type refrigeration cycle of 1st Embodiment. 第1実施形態のエジェクタの軸方向断面図である。It is sectional drawing in the axial direction of the ejector of 1st Embodiment. 疑似衝撃波を説明するための説明図である。It is explanatory drawing for demonstrating a pseudo shock wave. 初期マッハ数と疑似衝撃波を消滅させるために必要な混合部距離との関係を示すグラフである。It is a graph which shows the relationship between the initial Mach number and the mixing part distance necessary for extinguishing a pseudo shock wave. ディフューザ部出口冷媒圧力の変化に対するエジェクタの内壁面側の圧力変化を示すグラフである。It is a graph which shows the pressure change on the inner wall surface side of an ejector with respect to the change of the refrigerant pressure at the outlet of a diffuser part. 運転条件OP1におけるエジェクタの疑似衝撃波の発生態様を模式的に示した説明図である。It is explanatory drawing which schematically showed the generation mode of the pseudo-shock wave of an ejector under the operation condition OP1. 運転条件OP2におけるエジェクタの疑似衝撃波の発生態様を模式的に示した説明図である。It is explanatory drawing which schematically showed the generation mode of the pseudo-shock wave of an ejector under the operation condition OP2. 運転条件OP3におけるエジェクタの疑似衝撃波の発生態様を模式的に示した説明図である。It is explanatory drawing which schematically showed the generation mode of the pseudo-shock wave of an ejector under the operation condition OP3. 運転条件OP4におけるエジェクタの疑似衝撃波の発生態様を模式的に示した説明図である。It is explanatory drawing which schematically showed the generation mode of the pseudo-shock wave of an ejector under the operation condition OP4. 第1実施形態のエジェクタの駆動ノズル部における膨張波の発生態様を説明するための説明図である。It is explanatory drawing for demonstrating the generation mode of the expansion wave in the drive nozzle part of the ejector of 1st Embodiment. 第2実施形態のエジェクタの軸方向断面図である。It is sectional drawing in the axial direction of the ejector of 2nd Embodiment. 第3実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。It is a schematic whole block diagram of the ejector type refrigeration cycle of 3rd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 図1~図10を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタ13は、図1に示すように、エジェクタ式冷凍サイクル10に適用されている。エジェクタ式冷凍サイクル10は、エジェクタを備える蒸気圧縮式の冷凍サイクル装置である。エジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する。
(First Embodiment)
The first embodiment of the present disclosure will be described with reference to FIGS. 1 to 10. As shown in FIG. 1, the ejector 13 of the present embodiment is applied to the ejector type refrigeration cycle 10. The ejector type refrigeration cycle 10 is a steam compression type refrigeration cycle apparatus including an ejector. The ejector type refrigeration cycle 10 is applied to an air conditioner for a vehicle, and cools the blown air blown into the vehicle interior, which is a space to be air-conditioned.
 エジェクタ式冷凍サイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。エジェクタ式冷凍サイクル10は、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する。冷媒には、エジェクタ式冷凍サイクル10の圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにエジェクタ式冷凍サイクル10を循環している。 In the ejector type refrigeration cycle 10, an HFO-based refrigerant (specifically, R1234yf) is used as the refrigerant. The ejector type refrigeration cycle 10 constitutes a subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 of the ejector type refrigeration cycle 10 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the ejector type refrigerating cycle 10 together with the refrigerant.
 圧縮機11は、エジェクタ式冷凍サイクル10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置20から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 sucks in the refrigerant, compresses it, and discharges it in the ejector type refrigeration cycle 10. The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 20 described later.
 圧縮機11の吐出口には、放熱器12の冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12aにより送風される車室外空気(すなわち、外気)とを熱交換させて、高圧冷媒を放熱させて凝縮させる放熱用熱交換器である。冷却ファン12aは、制御装置20から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動式送風機である。 The refrigerant inlet side of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat exchanger for heat dissipation that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (that is, outside air) blown by the cooling fan 12a to dissipate the high-pressure refrigerant and condense it. Is. The cooling fan 12a is an electric fan whose rotation speed (that is, blowing capacity) is controlled by a control voltage output from the control device 20.
 放熱器12の冷媒出口には、エジェクタ13の駆動側ノズル部31の駆動側入口31a側が接続されている。エジェクタ13は、放熱器12から流出した駆動側冷媒を減圧させる冷媒減圧部である。エジェクタ13は、後述する蒸発器16から流出した冷媒を吸引して輸送する冷媒輸送部でもある。さらに、エジェクタ13は、内部へ流入した冷媒を昇圧させる冷媒昇圧部でもある。 The drive side inlet 31a side of the drive side nozzle portion 31 of the ejector 13 is connected to the refrigerant outlet of the radiator 12. The ejector 13 is a refrigerant decompression unit that depressurizes the drive-side refrigerant flowing out of the radiator 12. The ejector 13 is also a refrigerant transport unit that sucks and transports the refrigerant flowing out of the evaporator 16 described later. Further, the ejector 13 is also a refrigerant boosting unit that boosts the pressure of the refrigerant flowing into the inside.
 エジェクタ13の詳細構成については、図2等を用いて説明する。エジェクタ13は、駆動側ノズル部31およびボデー部32を有している。 The detailed configuration of the ejector 13 will be described with reference to FIG. 2 and the like. The ejector 13 has a drive-side nozzle portion 31 and a body portion 32.
 駆動側ノズル部31は、駆動側冷媒を等エントロピ的に減圧して、超音速となるまで加速させた気液二相状態の駆動側噴射冷媒を、ボデー部32の混合部323内へ噴射する。駆動側ノズル部の冷媒流れ最上流側には、放熱器12から流出した高圧冷媒である駆動側冷媒を流入させる駆動側入口31aが形成されている。駆動側ノズル部31の冷媒流れ最下流部には、駆動側噴射冷媒を噴射する駆動側噴射口31eが形成されている。 The drive-side nozzle unit 31 injects the drive-side injection refrigerant in a gas-liquid two-phase state in which the drive-side refrigerant is issentropically decompressed and accelerated to a supersonic speed into the mixing unit 323 of the body unit 32. .. A drive-side inlet 31a is formed on the most upstream side of the refrigerant flow of the drive-side nozzle portion to allow the drive-side refrigerant, which is a high-pressure refrigerant flowing out of the radiator 12, to flow in. A drive-side injection port 31e for injecting the drive-side injection refrigerant is formed in the most downstream portion of the refrigerant flow of the drive-side nozzle portion 31.
 駆動側ノズル部31は、先細部31b、喉部31c、末広部31dを有している。先細部31bは、駆動側入口31aから流入した冷媒の通路断面積を冷媒流れ下流側に向かうに伴って縮小させる部位である。喉部31cは、冷媒の通路断面積を最も縮小させる部位である。末広部31dは、喉部31cから駆動側噴射口31eへ向かうに伴って冷媒の通路断面積を拡大させる部位である。つまり、エジェクタ13では、駆動側ノズル部31として、いわゆるラバールノズルが採用されている。 The drive side nozzle portion 31 has a tip detail 31b, a throat portion 31c, and a divergent portion 31d. The detail 31b is a portion where the passage cross-sectional area of the refrigerant flowing in from the drive side inlet 31a is reduced as the refrigerant flows toward the downstream side. The throat portion 31c is a portion that most reduces the passage cross-sectional area of the refrigerant. The suehiro portion 31d is a portion that expands the passage cross-sectional area of the refrigerant as it goes from the throat portion 31c to the drive side injection port 31e. That is, in the ejector 13, a so-called Laval nozzle is adopted as the drive side nozzle portion 31.
 駆動側ノズル部31は、金属製(本実施形態では、ステンレス製)の円筒状部材に塑性加工を施すことによって形成されている。駆動側ノズル部31の先細部31bおよび末広部31dを形成する部位の厚みは、概ね一定になっている。このため、先細部31bおよび末広部31dの外観形状は、内部に形成された冷媒通路の形状と同様に変化している。もちろん、駆動側ノズル部31は、ブロック状の金属部材に切削加工を施すことによって形成されていてもよい。 The drive-side nozzle portion 31 is formed by subjecting a metal (in this embodiment, stainless steel) cylindrical member to plastic working. The thickness of the portion forming the tip detail 31b and the divergent portion 31d of the drive-side nozzle portion 31 is substantially constant. Therefore, the appearance shapes of the tip detail 31b and the divergent portion 31d are changed in the same manner as the shape of the refrigerant passage formed inside. Of course, the drive-side nozzle portion 31 may be formed by cutting a block-shaped metal member.
 駆動側ノズル部31の冷媒通路の形状は、駆動側噴射口31eから噴射される駆動側噴射冷媒の流速が、気液二相冷媒の音速である二相音速以上となるように決定されている。さらに、駆動側ノズル部31の冷媒通路内の気相冷媒の速度が、気相冷媒の音速である気相音速以下となるように決定されている。 The shape of the refrigerant passage of the drive-side nozzle portion 31 is determined so that the flow velocity of the drive-side injection refrigerant injected from the drive-side injection port 31e is equal to or higher than the sound velocity of the gas-liquid two-phase refrigerant. .. Further, the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 is determined to be equal to or lower than the gas phase sound velocity which is the sound velocity of the gas phase refrigerant.
 具体的には、駆動側ノズル部31の冷媒通路の形状は、以下数式F1を満足するように喉部面積Anzthと駆動側噴射口面積Anzoutとの関係が決定されている。
1.3≦Anzout/Anzth≦1.5 …(F1)
 ここで、喉部面積Anzthは、喉部31cの通路断面積である。駆動側噴射口面積Anzoutは、駆動側噴射口31eの通路断面積である。
Specifically, regarding the shape of the refrigerant passage of the drive-side nozzle portion 31, the relationship between the throat area Anzth and the drive-side injection port area Anzout is determined so as to satisfy the following mathematical formula F1.
1.3 ≤ Anzout / Anzth ≤ 1.5 ... (F1)
Here, the throat area Anzth is the passage cross-sectional area of the throat 31c. The drive-side injection port area Anzout is the passage cross-sectional area of the drive-side injection port 31e.
 次に、ボデー部32は、金属製(本実施形態では、アルミニウム製)の筒状部材で形成されている。ボデー部32は、エジェクタ13の外殻を形成している。駆動側ノズル部31は、ボデー部32の長手方向一端側の内部に圧入にて固定されている。駆動側ノズル部31の中心軸とボデー部32の中心軸は、同軸上に配置されている。ボデー部32は、樹脂製の筒状部材で形成されていてもよい。 Next, the body portion 32 is formed of a tubular member made of metal (made of aluminum in this embodiment). The body portion 32 forms the outer shell of the ejector 13. The drive-side nozzle portion 31 is fixed to the inside of the body portion 32 on one end side in the longitudinal direction by press fitting. The central axis of the drive-side nozzle portion 31 and the central axis of the body portion 32 are arranged coaxially. The body portion 32 may be formed of a resin tubular member.
 ボデー部32は、冷媒吸引口321、吸引側ノズル部322、混合部323、およびディフューザ部324を有している。 The body portion 32 has a refrigerant suction port 321, a suction side nozzle portion 322, a mixing portion 323, and a diffuser portion 324.
 冷媒吸引口321は、ボデー部32の筒状側面に形成されている。冷媒吸引口321は、駆動側ノズル部31から噴射された駆動側噴射冷媒の吸引作用によって、蒸発器16から流出した吸引側冷媒をエジェクタ13の内部へ吸引する貫通穴である。 The refrigerant suction port 321 is formed on the cylindrical side surface of the body portion 32. The refrigerant suction port 321 is a through hole for sucking the suction-side refrigerant flowing out of the evaporator 16 into the ejector 13 by the suction action of the drive-side injection refrigerant jetted from the drive-side nozzle portion 31.
 冷媒吸引口321は、ボデー部32の内部に形成された吸引空間321aに連通している。吸引空間321aは、ボデー部32の内部に形成された円柱状空間内に、駆動側ノズル部31の先細部31bおよび末広部31dが同軸上に配置されることによって形成される。従って、吸引空間321aは、駆動側ノズル部31の先細部31bおよび末広部31dの外周側に断面円環状に形成されている。 The refrigerant suction port 321 communicates with the suction space 321a formed inside the body portion 32. The suction space 321a is formed by coaxially arranging the tip details 31b and the divergent portion 31d of the drive-side nozzle portion 31 in the columnar space formed inside the body portion 32. Therefore, the suction space 321a is formed in an annular cross section on the outer peripheral side of the tip detail 31b and the divergent portion 31d of the drive side nozzle portion 31.
 吸引側ノズル部322は、冷媒吸引口321を介して吸引空間321a内へ吸引された吸引側冷媒を減圧して混合部323内へ噴射する。吸引側ノズル部322は、ボデー部32のうち、吸引空間321aの下流部であって、駆動側ノズル部31の末広部31dの先端部の外周側に形成されている。このため、吸引側ノズル部322の冷媒通路は、末広部31dの外周面とボデー部32の内周面との間に断面円環状に形成されている。 The suction side nozzle unit 322 decompresses the suction side refrigerant sucked into the suction space 321a through the refrigerant suction port 321 and injects it into the mixing unit 323. The suction-side nozzle portion 322 is a downstream portion of the suction space 321a in the body portion 32, and is formed on the outer peripheral side of the tip end portion of the divergent portion 31d of the drive-side nozzle portion 31. Therefore, the refrigerant passage of the suction side nozzle portion 322 is formed in an annular cross section between the outer peripheral surface of the divergent portion 31d and the inner peripheral surface of the body portion 32.
 前述の如く、駆動側ノズル部31の末広部31dの外周部は、内部の冷媒通路の形状と同様に、冷媒流れ下流側に向かうに伴って外径を拡大させる形状に形成されている。このため、吸引側ノズル部322の円環状の冷媒通路は、冷媒流れ下流側に向かうに伴って通路断面積が縮小する形状になる。つまり、エジェクタ13では、実質的に、吸引側ノズル部322として、いわゆる先細ノズルが採用されている。 As described above, the outer peripheral portion of the divergent portion 31d of the drive-side nozzle portion 31 is formed in a shape that increases the outer diameter toward the downstream side of the refrigerant flow, similar to the shape of the internal refrigerant passage. Therefore, the annular refrigerant passage of the suction side nozzle portion 322 has a shape in which the cross-sectional area of the passage decreases toward the downstream side of the refrigerant flow. That is, in the ejector 13, a so-called tapered nozzle is substantially adopted as the suction side nozzle portion 322.
 吸引側ノズル部322の吸引側噴射口322aは、駆動側噴射口31eの周囲に円環状に開口している。駆動側噴射口31eと吸引側噴射口322aは、同一平面上に開口している。吸引側噴射口322aの外径は、混合部323の入口部の内径である混合部入口径Dmixと一致している。 The suction side injection port 322a of the suction side nozzle portion 322 is opened in an annular shape around the drive side injection port 31e. The drive side injection port 31e and the suction side injection port 322a are open on the same plane. The outer diameter of the suction side injection port 322a coincides with the mixing portion inlet diameter Dmix, which is the inner diameter of the inlet portion of the mixing portion 323.
 このため、駆動側噴射口31eと吸引側噴射口322aは、駆動側噴射口31eから噴射された直後の駆動側噴射冷媒と吸引側噴射口322aから噴射された直後の吸引側噴射冷媒が略平行に流れるように開口している。換言すると、駆動側噴射口31eと吸引側噴射口322aは、噴射された直後の駆動側噴射冷媒の噴射方向と噴射された直後の吸引側噴射冷媒の噴射方向が同等の方向になるように開口している。 Therefore, in the drive side injection port 31e and the suction side injection port 322a, the drive side injection refrigerant immediately after being injected from the drive side injection port 31e and the suction side injection refrigerant immediately after being injected from the suction side injection port 322a are substantially parallel to each other. It is open to flow. In other words, the drive-side injection port 31e and the suction-side injection port 322a are opened so that the injection direction of the drive-side injection refrigerant immediately after injection and the injection direction of the suction-side injection refrigerant immediately after injection are in the same direction. is doing.
 駆動側ノズル部31の減圧性能および吸引側ノズル部322の減圧性能は、駆動側噴射口31eから噴射された直後の駆動側噴射冷媒の圧力が、吸引側噴射口322aから噴射された直後の吸引側噴射冷媒の圧力よりも高くなるように決定されている。 The decompression performance of the drive-side nozzle unit 31 and the decompression performance of the suction-side nozzle unit 322 are the suction immediately after the pressure of the drive-side injection refrigerant immediately after being injected from the drive-side injection port 31e is injected from the suction-side injection port 322a. It is determined to be higher than the pressure of the side injection refrigerant.
 具体的には、駆動側ノズル部31の駆動側噴射口面積Anzoutと吸引側ノズル部322の吸引側噴射口面積Asnoutが、以下数式F2を満足するように決定されている。
2≦Asnout/Anzout≦4 …(F2)
 ここで、吸引側噴射口面積Asnoutは、吸引側噴射口322aの通路断面積である。
Specifically, the drive-side injection port area Anzout of the drive-side nozzle unit 31 and the suction-side injection port area Asnout of the suction-side nozzle unit 322 are determined to satisfy the following formula F2.
2 ≦ Asnout / Anzout ≦ 4… (F2)
Here, the suction side injection port area Asnout is the passage cross-sectional area of the suction side injection port 322a.
 上記数式F2によれば、駆動側噴射口面積Anzoutが吸引側噴射口面積Asnoutよりも小さくなる。ところが、駆動側冷媒は、放熱器12から流出した高圧冷媒であり、吸引側冷媒は、蒸発器16から流出した低圧冷媒である。このため、数式F2を満足するように、吸引側噴射口面積Asnoutと駆動側噴射口面積Anzoutとを決定すれば、駆動側噴射冷媒の圧力を、吸引側噴射冷媒の圧力よりも高くすることができる。 According to the above formula F2, the drive side injection port area Anzout is smaller than the suction side injection port area Asnout. However, the drive-side refrigerant is a high-pressure refrigerant flowing out of the radiator 12, and the suction-side refrigerant is a low-pressure refrigerant flowing out of the evaporator 16. Therefore, if the suction side injection port area Asnout and the drive side injection port area Anzout are determined so as to satisfy the equation F2, the pressure of the drive side injection refrigerant can be made higher than the pressure of the suction side injection refrigerant. can.
 混合部323は、駆動側噴射冷媒と吸引側噴射冷媒とを混合させる混合空間323aを形成する。混合部323は、ボデー部32のうち、駆動側噴射口31eおよび吸引側噴射口322aの冷媒流れ下流側に配置されている。混合空間323aは、冷媒流れ下流側に向かうに伴って、通路断面積を拡大させる略円錐台形状に形成されている。 The mixing unit 323 forms a mixing space 323a that mixes the drive-side injection refrigerant and the suction-side injection refrigerant. The mixing unit 323 is arranged on the downstream side of the refrigerant flow of the drive side injection port 31e and the suction side injection port 322a in the body unit 32. The mixed space 323a is formed in a substantially truncated cone shape that expands the cross-sectional area of the passage toward the downstream side of the refrigerant flow.
 混合部323では、混合部323から流出する混合冷媒の中心軸側の冷媒圧力と壁面側の冷媒圧力が一致するように、駆動側噴射冷媒と吸引側噴射冷媒とを混合させる。混合部323では、混合部323から流出する混合冷媒に圧力分布が生じておらず、一様の圧力となるように、駆動側噴射冷媒と吸引側噴射冷媒とを混合させる。さらに、混合部323では、混合部323から流出してディフューザ部324へ流入する気液二相状態の混合冷媒の流速が、亜音速となるように駆動側噴射冷媒と吸引側噴射冷媒とを混合させる。 In the mixing unit 323, the drive side injection refrigerant and the suction side injection refrigerant are mixed so that the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixed refrigerant flowing out from the mixing unit 323 match. In the mixing unit 323, the drive side injection refrigerant and the suction side injection refrigerant are mixed so that the mixed refrigerant flowing out from the mixing unit 323 does not have a pressure distribution and the pressure is uniform. Further, in the mixing unit 323, the drive side injection refrigerant and the suction side injection refrigerant are mixed so that the flow velocity of the gas-liquid two-phase mixed refrigerant flowing out of the mixing unit 323 and flowing into the diffuser unit 324 becomes subsonic. Let me.
 ここで、エジェクタ13の混合部323よりも冷媒流れ下流側では、冷媒流れ下流側に向かうに伴って、通路断面積が縮小することがない。通路断面積が縮小しない。従って、混合部323にて、一様の圧力で亜音速となった気液二相状態の混合冷媒は、混合部323よりも冷媒流れ下流側で再び超音速に加速されることはない。 Here, on the downstream side of the refrigerant flow from the mixing portion 323 of the ejector 13, the cross-sectional area of the passage does not decrease as the refrigerant flows toward the downstream side. The passage cross-sectional area does not shrink. Therefore, in the mixing unit 323, the gas-liquid two-phase mixed refrigerant that has become subsonic at a uniform pressure is not accelerated to supersonic speed again on the downstream side of the refrigerant flow from the mixing unit 323.
 従って、混合部323よりも冷媒流れ下流側では衝撃波が発生することはない。つまり、混合部323の通路形状は、駆動側ノズル部31から超音速で噴射される駆動側噴射冷媒によって生じた衝撃波を、混合部323内で消滅させる形状になっている。 Therefore, no shock wave is generated on the downstream side of the refrigerant flow than the mixing unit 323. That is, the passage shape of the mixing unit 323 is such that the shock wave generated by the driving-side injection refrigerant injected from the driving-side nozzle unit 31 at supersonic speed is extinguished in the mixing unit 323.
 具体的には、混合部323の通路形状は、以下数式F3を満足するように、混合部距離Lが決定されている。緩和距離Lvは、以下数式F4で定義される。
Lv<L …(F3)
Lv=U0×(ρL×DL 2)/(18×μG) …(F4)
 ここで、混合部距離Lは、混合部323の入口から出口へ至る軸方向長さである。
Specifically, for the passage shape of the mixing unit 323, the mixing unit distance L is determined so as to satisfy the following mathematical formula F3. The relaxation distance Lv is defined below by the mathematical formula F4.
Lv <L ... (F3)
Lv = U 0 × (ρ L × D L 2 ) / (18 × μ G )… (F4)
Here, the mixing section distance L is an axial length from the inlet to the exit of the mixing section 323.
 また、数式F4のU0は、駆動側噴射冷媒によって混合部323内に生じる最初の衝撃波の最上流部における混合冷媒の平均質量流速である。ρLは、最初の衝撃波の最上流部における混合冷媒中の液相冷媒の粒(以下、液滴と記載する。)の密度である。DLは、最初の衝撃波の最上流部における混合冷媒中の液滴の平均的な直径である。μGは、最初の衝撃波の最上流部における混合冷媒中の気相冷媒の粘度である。 Further, U 0 of the equation F4 is the average mass flow velocity of the mixed refrigerant in the most upstream portion of the first shock wave generated in the mixing portion 323 by the driving side injection refrigerant. ρ L is the density of the particles (hereinafter referred to as droplets) of the liquid phase refrigerant in the mixed refrigerant in the uppermost stream portion of the first shock wave. DL is the average diameter of the droplets in the mixed refrigerant at the most upstream part of the first shock wave. μ G is the viscosity of the gas phase refrigerant in the mixed refrigerant at the most upstream part of the first shock wave.
 数式F4に示されるように、緩和距離Lvは、最初の衝撃波の最上流部における混合冷媒の平均質量流速U0に、液滴の慣性力と粘性の比で表される無時間緩和時間を積算した距離に対応する値である。緩和距離Lvは、衝撃波の最上流部における混合冷媒の初速に、混合冷媒中の気相冷媒の流速と液滴の流速が同等となるまでの時間を積算した距離を表している。 As shown in Equation F4, the relaxation distance Lv integrates the timeless relaxation time expressed by the ratio of the inertial force and the viscosity of the droplet to the average mass flow velocity U 0 of the mixed refrigerant in the most upstream part of the first shock wave. It is a value corresponding to the distance. The relaxation distance Lv represents the distance obtained by integrating the initial speed of the mixed refrigerant in the most upstream portion of the shock wave and the time until the flow velocity of the gas phase refrigerant in the mixed refrigerant and the flow velocity of the droplet become equal.
 従って、駆動側噴射冷媒によって混合部323内で最初の衝撃波を消滅させるためには、少なくとも混合部距離Lが緩和距離Lvよりも大きくなっている必要がある。すなわち、上記数式F3を満足する必要がある。 Therefore, in order to eliminate the first shock wave in the mixing section 323 by the driving side injection refrigerant, at least the mixing section distance L needs to be larger than the relaxation distance Lv. That is, it is necessary to satisfy the above formula F3.
 ところで、最初の衝撃波の最上流部における混合冷媒のマッハ数である初期マッハ数M0が比較的高い値になっていると、最初の衝撃波の下流側に膨張波が発生してしまうことがある。そして、最初の衝撃波の下流側に膨張波が発生することによって、混合部323の中心軸側の冷媒流速が亜音速となるものの、乱流境界層側の冷媒流速が再び超音速になってしまう。 By the way, if the initial Mach number M 0, which is the Mach number of the mixed refrigerant in the most upstream part of the first shock wave, is a relatively high value, an expansion wave may be generated on the downstream side of the first shock wave. .. Then, due to the expansion wave generated on the downstream side of the first shock wave, the refrigerant flow velocity on the central axis side of the mixing unit 323 becomes subsonic, but the refrigerant flow velocity on the turbulent boundary layer side becomes supersonic again. ..
 その結果、混合部323の中心軸側の冷媒圧力と壁面側の冷媒圧力が異なる値で変化して、再び衝撃波が生じる疑似衝撃波と呼ばれる現象が生じることがある。疑似衝撃波では、一般的に、膨張波の下流側の流体が亜音速になるまで、複数の衝撃波が発生する。疑似衝撃波は、衝撃波によるエントロピ生成と膨張波による冷媒の摩擦損失の増加によって、エジェクタ内部を流れる冷媒のエネルギ損失を招く原因となる。 As a result, the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixing unit 323 change at different values, and a phenomenon called a pseudo-shock wave may occur in which a shock wave is generated again. In a pseudo-shock wave, a plurality of shock waves are generally generated until the fluid on the downstream side of the expansion wave becomes subsonic. The pseudo-shock wave causes an energy loss of the refrigerant flowing inside the ejector due to the entropy generation by the shock wave and the increase in the friction loss of the refrigerant due to the expansion wave.
 疑似衝撃波は、図3に模式的に示すように、ショックトレイン領域(shock train region)およびミキシング領域(mixing region)に大別される。ショックトレイン領域は、流体通路の中心軸側の流体圧力Pmiと壁面側の流体圧力Pmoとの高低関係が周期的に変化する領域である。また、ミキシング領域は、混合部の中心軸側の流体圧力Pmiと壁面側の流体圧力Pmoが略同等となって変化する領域である。 Pseudo-shock waves are roughly classified into a shock train region (shock train region) and a mixing region (mixing region), as schematically shown in FIG. The shock train region is a region in which the height relationship between the fluid pressure Pmi on the central axis side of the fluid passage and the fluid pressure Pmo on the wall surface side changes periodically. Further, the mixing region is a region in which the fluid pressure Pmi on the central axis side of the mixing portion and the fluid pressure Pmo on the wall surface side are substantially equivalent and change.
 なお、図3は、円管100の軸方向断面図上に、円管100の流体通路内を流れる気相流体に生じた疑似衝撃波の発生態様、および流体圧力を模式的に示した説明図である。図3の円管100内の無ハッチング領域は、主に超音速の流体が分布している領域である。点ハッチング領域は、主に亜音速の流体が分布している領域である。 Note that FIG. 3 is an explanatory diagram schematically showing the generation mode of the pseudo-shock wave generated in the gas phase fluid flowing in the fluid passage of the circular tube 100 and the fluid pressure on the axial cross-sectional view of the circular tube 100. be. The non-hatched region in the circular tube 100 of FIG. 3 is a region in which a supersonic fluid is mainly distributed. The point hatch region is a region where subsonic fluids are mainly distributed.
 図3の円管100内の太線は衝撃波を示しており、二重破線は膨張波を示している。図3では、模式的に、3つの衝撃波および3つの膨張波を表しているが、衝撃波および膨張波の数は、これに限定されない。また、疑似衝撃波は、必ず生じる現象ではなく、初期マッハ数M0が比較的低い値になっている際には生じない。 The thick line in the circular tube 100 of FIG. 3 indicates a shock wave, and the double broken line indicates an expansion wave. In FIG. 3, three shock waves and three expansion waves are schematically represented, but the number of shock waves and expansion waves is not limited to this. Further, the pseudo-shock wave is not a phenomenon that always occurs, and does not occur when the initial Mach number M 0 is a relatively low value.
 ところで、疑似衝撃波は、一般的に、蒸気エジェクタにて確認される現象と認識されている。蒸気エジェクタは、内部に気相流体が流れ、ディフューザ部の出口が大気に開放されたエジェクタである。蒸気エジェクタは、真空排気装置、排煙吸引装置、航空機のエアインテーク等に用いられる。 By the way, the pseudo-shock wave is generally recognized as a phenomenon confirmed by the steam ejector. The steam ejector is an ejector in which a vapor phase fluid flows inside and the outlet of the diffuser portion is opened to the atmosphere. The steam ejector is used for a vacuum exhaust device, a smoke exhaust suction device, an aircraft air intake, and the like.
 これに対して、本発明者らは、試験検討の結果、内部に気液二相流体が流れるエジェクタにおいても疑似衝撃波が生じることを確認した。さらに、本発明者らは、蒸気エジェクタにて発生する疑似衝撃波の発生態様と気液二相流体が流れるエジェクタで発生する疑似衝撃波の発生態様が異なっていることも確認した。 On the other hand, as a result of the test study, the present inventors confirmed that a pseudo-shock wave is generated even in the ejector in which the gas-liquid two-phase fluid flows inside. Furthermore, the present inventors have also confirmed that the mode of generation of the pseudo-shock wave generated by the steam ejector is different from the mode of generation of the pseudo-shock wave generated by the ejector through which the gas-liquid two-phase fluid flows.
 以下の説明では、説明の明確化のため、気相流体が流れる蒸気エジェクタで発生する疑似衝撃波を、気相流における疑似衝撃波と記載する。また、気液二相流体が流れるエジェクタで発生する疑似衝撃波を、二相流における疑似衝撃波と記載する。 In the following explanation, for the sake of clarification, the pseudo-shock wave generated by the steam ejector through which the gas-phase fluid flows is described as the pseudo-shock wave in the gas-phase flow. Further, a pseudo-shock wave generated by an ejector through which a gas-liquid two-phase fluid flows is described as a pseudo-shock wave in a two-phase flow.
 気相流における疑似衝撃波の発生態様と二相流における疑似衝撃波の発生態様が異なっている理由は、気液二相流体には、液滴が存在しているからである。具体的には、衝撃波中の気相冷媒は急速に流速を低下させるが、液滴は慣性力を有するために速度低下が気相冷媒よりも緩やかになる。また、膨張波中の気相冷媒は急速に流速を増加させるが、液滴は気相冷媒のからの抗力によって気相冷媒よりも緩やかに増速する。 The reason why the pseudo-shock wave generation mode in the gas-phase flow and the pseudo-shock wave generation mode in the two-phase flow are different is that droplets are present in the gas-liquid two-phase fluid. Specifically, the vapor phase refrigerant in the shock wave rapidly decreases the flow velocity, but the droplet has an inertial force, so that the velocity decrease becomes slower than that of the vapor phase refrigerant. Further, the gas phase refrigerant in the expansion wave rapidly increases the flow velocity, but the droplets accelerate more slowly than the gas phase refrigerant due to the drag force from the gas phase refrigerant.
 さらに、二相流における疑似衝撃波は、駆動側噴射冷媒の乾き度が低くなるに伴って発生しにくくなることが判っている。その理由は、液滴には、圧力波を散乱や吸収によって減衰させる作用があるからである。従って、二相流における疑似衝撃波は、液滴の大きさや数密度に応じて発生態様が変化する。 Furthermore, it has been found that pseudo-shock waves in two-phase flow are less likely to occur as the dryness of the drive-side injection refrigerant decreases. The reason is that the droplet has the effect of attenuating the pressure wave by scattering or absorption. Therefore, the generation mode of the pseudo-shock wave in the two-phase flow changes depending on the size and number density of the droplets.
 そこで、本発明者らは、エジェクタ13において、混合部323内で二相流における疑似衝撃波が発生した際に、二相流における疑似衝撃波を速やかに消滅させるための検討を行った。 Therefore, the present inventors have conducted a study for promptly extinguishing the pseudo-shock wave in the two-phase flow when the pseudo-shock wave in the two-phase flow is generated in the mixing unit 323 in the ejector 13.
 その結果、図4に示すように、二相流における疑似衝撃波を消滅させるために必要な軸方向長さは、初期マッハ数M0の増加に伴って長くなることが判った。さらに、二相流における疑似衝撃波を消滅させるために必要な軸方向長さは、混合部323を流れる冷媒の乾き度Xの上昇に伴って長くなることが判った。なお、図4では、疑似衝撃波を消滅させるために必要な軸方向長さを、緩和距離Lvに対する比で表している。 As a result, as shown in FIG. 4, it was found that the axial length required to extinguish the pseudo-shock wave in the two-phase flow increases as the initial Mach number M 0 increases. Further, it was found that the axial length required to extinguish the pseudo-shock wave in the two-phase flow increases as the dryness X of the refrigerant flowing through the mixing portion 323 increases. In FIG. 4, the axial length required to extinguish the pseudo shock wave is represented by the ratio to the relaxation distance Lv.
 そして、エジェクタ式冷凍サイクルに適用されるエジェクタでは、以下数式F5を満足するように、混合部距離Lと緩和距離Lvとの関係を決定すれば、疑似衝撃波を混合部内で消滅させることができることを見出した。
1<L/Lv≦3.5(但し、1<M0<2.5) …(F5)
 さらに、数式F5に示す関係を流路形状に換算すると、以下数式F6を満足するように、混合部距離Lと混合部入口径Dmixとの関係を決定すれば、疑似衝撃波を混合部内で消滅させることができることを見出した。
1<L/Dmix≦10(但し、1<M0<2.5) …(F6)
 ここで、混合部入口径Dmixは、混合部323の入口における冷媒通路の径である。
Then, in the ejector applied to the ejector type refrigeration cycle, if the relationship between the mixing section distance L and the relaxation distance Lv is determined so as to satisfy the following mathematical formula F5, the pseudo shock wave can be extinguished in the mixing section. I found it.
1 <L / Lv≤3.5 (however, 1 <M 0 <2.5) ... (F5)
Further, when the relationship shown in the formula F5 is converted into the flow path shape, if the relationship between the mixing section distance L and the mixing section inlet diameter Dmix is determined so as to satisfy the following formula F6, the pseudo shock wave is extinguished in the mixing section. I found that I could do it.
1 <L / Dmix ≦ 10 (however, 1 <M 0 <2.5)… (F6)
Here, the mixing portion inlet diameter Dmix is the diameter of the refrigerant passage at the inlet of the mixing portion 323.
 混合部入口径Dmixは、吸引側ノズル部322の吸引側噴射口322aの外径と一致している。また、数式F5、F6における初期マッハ数M0の範囲は、一般的なエジェクタ式冷凍サイクルに適用されるエジェクタにおいて、実使用上取り得る範囲である。 The mixing portion inlet diameter Dmix coincides with the outer diameter of the suction side injection port 322a of the suction side nozzle portion 322. Further, the range of the initial Mach number M 0 in the formulas F5 and F6 is a range that can be practically used in an ejector applied to a general ejector type refrigeration cycle.
 エジェクタ13の混合部323の混合部距離Lは、上記数式F3、F5、F6を満足するように決定されている。このため、混合部323では、混合冷媒の圧力を上昇させるだけでなく、混合冷媒の流速を大きく低下させる。その結果、混合部323の壁面側の冷媒が、壁面から剥離しやすくなる。混合部323の壁面側の冷媒の壁面からの剥離は、混合冷媒の流れを妨げ、エネルギ損失を招く原因となる。 The mixing section distance L of the mixing section 323 of the ejector 13 is determined to satisfy the above equations F3, F5, and F6. Therefore, in the mixing unit 323, not only the pressure of the mixed refrigerant is increased, but also the flow velocity of the mixed refrigerant is greatly reduced. As a result, the refrigerant on the wall surface side of the mixing unit 323 is likely to be separated from the wall surface. The peeling of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface hinders the flow of the mixed refrigerant and causes energy loss.
 そこで、混合部323の通路形状は、混合冷媒の流れ方向下流側へ向かうに伴って、通路断面積が増加する形状に形成されている。具体的には、混合部323の通路形状は、上記数式F5、F6を満たす範囲で、以下数式F7を満足するように、面積変化率dA/dzが決定されている。
0<dA/dz≦0.8(mm) …(F7)
 ここで、面積変化率dA/dzは、混合部323における軸方向の単位長さdz(mm)あたりの冷媒通路断面積の変化量dA(mm2)である。さらに、混合部323では、冷媒流れ下流側へ向かうに伴って、面積変化率dA/dzを増加させている。
Therefore, the passage shape of the mixing portion 323 is formed so that the cross-sectional area of the passage increases as the mixed refrigerant moves toward the downstream side in the flow direction. Specifically, the area change rate dA / dz is determined so that the passage shape of the mixing unit 323 satisfies the following mathematical formulas F7 within the range satisfying the above mathematical formulas F5 and F6.
0 <dA / dz≤0.8 (mm) ... (F7)
Here, the area change rate dA / dz is the amount of change dA (mm 2 ) in the cross-sectional area of the refrigerant passage per unit length dz (mm) in the axial direction in the mixing unit 323. Further, in the mixing unit 323, the area change rate dA / dz is increased toward the downstream side of the refrigerant flow.
 ディフューザ部324は、混合部323にて混合された混合冷媒の運動エネルギを圧力エネルギへ変換する昇圧通路324aを形成する。昇圧通路324aの入口は、混合部323の出口に連続するように形成されている。昇圧通路324aは、冷媒流れ下流側に向かうに伴って通路断面積を拡大させる略円錐台形状に形成されている。この形状により、ディフューザ部324では、混合冷媒を減速させて、混合冷媒を昇圧させる。 The diffuser unit 324 forms a step-up passage 324a that converts the kinetic energy of the mixed refrigerant mixed in the mixing unit 323 into pressure energy. The inlet of the boost passage 324a is formed so as to be continuous with the outlet of the mixing portion 323. The booster passage 324a is formed in a substantially truncated cone shape in which the cross-sectional area of the passage is expanded toward the downstream side of the refrigerant flow. Due to this shape, the diffuser unit 324 decelerates the mixed refrigerant and boosts the pressure of the mixed refrigerant.
 さらに、昇圧通路324aの通路形状は、混合部323から流出してディフューザ部324へ流入する混合冷媒の流速が亜音速となるように決定されている。 Further, the passage shape of the boost passage 324a is determined so that the flow velocity of the mixed refrigerant flowing out of the mixing section 323 and flowing into the diffuser section 324 is subsonic.
 具体的には、ディフューザ部324の通路形状は、以下数式F8を満足するように、混合部出口面積Amixoutとディフューザ部出口面積Aoutとの関係が決定されている。
0.3≦Amixout/Aout≦0.6 …(F8)
 ここで、混合部出口面積Amixoutは、混合部323の出口の通路断面積である。混合部出口面積Amixoutは、ディフューザ部324の入口の通路断面積と一致している。また、ディフューザ部出口面積Aoutは、ディフューザ部324の出口の通路断面積である。
Specifically, in the passage shape of the diffuser portion 324, the relationship between the mixing portion outlet area Amixout and the diffuser portion outlet area Aout is determined so as to satisfy the following mathematical formula F8.
0.3 ≤ Amixout / Aout ≤ 0.6 ... (F8)
Here, the mixing section outlet area Amixout is the passage cross-sectional area of the exit of the mixing section 323. The mixed-section outlet area Amixout coincides with the passage cross-sectional area of the inlet of the diffuser section 324. Further, the diffuser section outlet area Aout is the passage cross-sectional area of the outlet of the diffuser section 324.
 エジェクタ式冷凍サイクルに適用されるエジェクタでは、圧縮機の消費動力を低減するために、ディフューザ部から流出する冷媒がある程度の流速を有している。一般的なエジェクタ式冷凍サイクルでは、ディフューザ部から流出する冷媒の流速は、音速の0.1倍から0.2倍程度の亜音速となっていればよい。 In the ejector applied to the ejector type refrigeration cycle, the refrigerant flowing out from the diffuser section has a certain flow velocity in order to reduce the power consumption of the compressor. In a general ejector type refrigeration cycle, the flow velocity of the refrigerant flowing out from the diffuser portion may be a subsonic speed of about 0.1 to 0.2 times the speed of sound.
 従って、上記数式F8を満足するようにディフューザ部324の通路断面積が拡大してれば、混合部323から流出してディフューザ部324へ流入する混合冷媒の流速が音速を超えてしまうことはない。 Therefore, if the passage cross-sectional area of the diffuser section 324 is expanded so as to satisfy the above formula F8, the flow velocity of the mixed refrigerant flowing out of the mixing section 323 and flowing into the diffuser section 324 does not exceed the speed of sound. ..
 ディフューザ部324の出口には、図1に示すように、アキュムレータ14の入口側が接続されている。アキュムレータ14は、ディフューザ部324から流出した冷媒の気液を分離する気液分離部である。さらに、アキュムレータ14は、分離された液相冷媒の一部をサイクル内の余剰冷媒として蓄える貯液部である。 As shown in FIG. 1, the inlet side of the accumulator 14 is connected to the outlet of the diffuser portion 324. The accumulator 14 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant flowing out of the diffuser unit 324. Further, the accumulator 14 is a liquid storage unit that stores a part of the separated liquid phase refrigerant as a surplus refrigerant in the cycle.
 アキュムレータ14の気相冷媒流出口には、圧縮機11の吸入口側が接続されている。一方、アキュムレータ14の液相冷媒流出口には、減圧手段としての固定絞り15を介して、蒸発器16の冷媒入口側が接続されている。固定絞り15としては、オリフィス、キャピラリーチューブ等を採用することができる。 The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 14. On the other hand, the refrigerant inlet side of the evaporator 16 is connected to the liquid phase refrigerant outlet of the accumulator 14 via a fixed throttle 15 as a depressurizing means. As the fixed throttle 15, an orifice, a capillary tube, or the like can be adopted.
 蒸発器16は、固定絞り15にて減圧された低圧冷媒と室内送風機16aから車室内へ向けて送風される送風空気とを熱交換させて、低圧冷媒を蒸発させて送風空気を冷却する吸熱用熱交換器である。室内送風機16aは、制御装置20から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動式送風機である。蒸発器16の冷媒出口は、エジェクタ13の冷媒吸引口321側に接続されている。 The evaporator 16 is for heat absorption to cool the blown air by evaporating the low pressure refrigerant by exchanging heat between the low pressure refrigerant decompressed by the fixed throttle 15 and the blown air blown from the indoor blower 16a toward the vehicle interior. It is a heat exchanger. The indoor blower 16a is an electric blower whose rotation speed (that is, blower capacity) is controlled by a control voltage output from the control device 20. The refrigerant outlet of the evaporator 16 is connected to the refrigerant suction port 321 side of the ejector 13.
 次に、エジェクタ式冷凍サイクル10の電気制御部について説明する。制御装置20は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置20は、ROM内に記憶された空調制御プログラムに基づいて、各種演算、処理を行い、出力側に接続された各種制御対象機器11、12a、16a等の作動を制御する。 Next, the electric control unit of the ejector type refrigeration cycle 10 will be described. The control device 20 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The control device 20 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls the operation of various controlled target devices 11, 12a, 16a, etc. connected to the output side.
 また、制御装置20の入力側には、内気温センサ、外気温センサ、日射センサ、蒸発器温度センサ、吐出圧力センサ等の複数の空調制御用のセンサ群が接続されている。制御装置20には、これらのセンサ群の検出値が入力される。 Further, a plurality of sensors for air conditioning control such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, and a discharge pressure sensor are connected to the input side of the control device 20. The detection values of these sensor groups are input to the control device 20.
 より具体的には、内気温センサは、車室内温度を検出する内気温検出部である。外気温センサは、外気温を検出する外気温検出部である。日射センサは、車室内の日射量を検出する日射量検出部である。蒸発器温度センサは、蒸発器16の吹出空気温度(蒸発器温度)を検出する蒸発器温度検出部である。吐出圧力センサは、圧縮機11から吐出された冷媒の圧力を検出する吐出冷媒圧力検出部である。 More specifically, the internal air temperature sensor is an internal air temperature detection unit that detects the temperature inside the vehicle. The outside air temperature sensor is an outside air temperature detection unit that detects the outside air temperature. The solar radiation sensor is a solar radiation amount detection unit that detects the amount of solar radiation in the vehicle interior. The evaporator temperature sensor is an evaporator temperature detection unit that detects the temperature of the blown air (evaporator temperature) of the evaporator 16. The discharge pressure sensor is a discharge refrigerant pressure detection unit that detects the pressure of the refrigerant discharged from the compressor 11.
 さらに、制御装置20の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続されている。制御装置20には、操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Further, an operation panel (not shown) arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 20. In the control device 20, operation signals from various operation switches provided on the operation panel are input to the control device. As various operation switches provided on the operation panel, an air conditioning operation switch that requires air conditioning in the vehicle interior, a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
 制御装置20は、出力側に接続された各種制御対象機器の作動を制御する制御部が一体に構成されたものである。制御装置20のうち、各制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、圧縮機11の作動を制御する構成が、吐出能力制御部を構成している。 The control device 20 is integrally configured with a control unit that controls the operation of various controlled devices connected to the output side. Among the control devices 20, a configuration (that is, hardware and software) that controls the operation of each control target device constitutes a control unit of each control target device. For example, a configuration that controls the operation of the compressor 11 constitutes a discharge capacity control unit.
 また、図1等では、制御装置20と各種制御対象機器とを接続する電力線あるいは信号線を図示しているが、図示の明確化のために、センサ群、および制御装置20とセンサ群とを接続する信号線の図示を省略している。 Further, in FIG. 1 and the like, a power line or a signal line connecting the control device 20 and various controlled devices is shown, but for the sake of clarification of the illustration, the sensor group and the control device 20 and the sensor group are shown. The illustration of the signal line to be connected is omitted.
 次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。操作パネルの空調作動スイッチが投入(ON)されると、制御装置20が圧縮機11、冷却ファン12a、室内送風機16a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。 Next, the operation of the ejector type refrigeration cycle 10 of the present embodiment in the above configuration will be described. When the air conditioning operation switch on the operation panel is turned on (ON), the control device 20 operates the compressor 11, the cooling fan 12a, the indoor blower 16a, and the like. As a result, the compressor 11 sucks in the refrigerant, compresses it, and discharges it.
 圧縮機11から吐出された高温高圧冷媒は、放熱器12へ流入する。放熱器12へ流入した高圧冷媒は、冷却ファン12aから送風された外気と熱交換して凝縮する。放熱器12にて凝縮した冷媒は、駆動側冷媒としてエジェクタ13の駆動側ノズル部31の駆動側入口31aへ流入する。駆動側ノズル部31では、駆動側冷媒が等エントロピ的に減圧される。 The high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. The high-pressure refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a and condenses. The refrigerant condensed by the radiator 12 flows into the drive-side inlet 31a of the drive-side nozzle portion 31 of the ejector 13 as the drive-side refrigerant. In the drive-side nozzle unit 31, the drive-side refrigerant is issentropically depressurized.
 駆動側ノズル部31へ流入した駆動側冷媒は、喉部31cにて臨界状態に至り、エジェクタ13の駆動流量が決定される。駆動側冷媒は、末広部31dにて超音速状態となるまで加速される。そして、気液二相状態の駆動側噴射冷媒となって駆動側噴射口31eから混合部323の混合空間323aへ噴射される。駆動側噴射冷媒は、二相音速を超えた超音速ミスト流となる。 The drive-side refrigerant that has flowed into the drive-side nozzle portion 31 reaches a critical state at the throat portion 31c, and the drive flow rate of the ejector 13 is determined. The drive-side refrigerant is accelerated at the divergent portion 31d until it reaches a supersonic state. Then, it becomes a drive-side injection refrigerant in a gas-liquid two-phase state and is injected from the drive-side injection port 31e into the mixing space 323a of the mixing unit 323. The drive-side injection refrigerant is a supersonic mist flow that exceeds the two-phase sound velocity.
 さらに、駆動側噴射口31eから混合部323へ噴射された駆動側噴射冷媒の吸引作用によって、蒸発器16から流出した冷媒が、吸引側冷媒として冷媒吸引口321から吸引空間321aへ吸引される。より詳細には、駆動側噴射冷媒は気液二相状態となっているので、噴射された液滴が慣性力の作用で加速することによって、吸引側噴射口322a近傍の圧力を低下させる。その結果、吸引側冷媒が吸引空間321aへ吸引される。 Further, the refrigerant flowing out of the evaporator 16 is sucked from the refrigerant suction port 321 into the suction space 321a as the suction side refrigerant by the suction action of the drive side injection refrigerant injected from the drive side injection port 31e to the mixing unit 323. More specifically, since the drive-side injection refrigerant is in a gas-liquid two-phase state, the injected droplets accelerate due to the action of inertial force, thereby reducing the pressure in the vicinity of the suction-side injection port 322a. As a result, the suction side refrigerant is sucked into the suction space 321a.
 吸引空間321aへ吸引された吸引側冷媒は、吸引側ノズル部322にて減圧されて、吸引側噴射冷媒となって吸引側噴射口322aから混合部323の混合空間323aへ噴射される。混合部323へ噴射される駆動側噴射冷媒の冷媒圧力は、混合部323へ噴射される吸引側噴射冷媒の冷媒圧力よりも高くなる。このため、駆動側ノズル部31では駆動側冷媒を不足膨張させて、混合部323内に膨張波を発生させる。 The suction-side refrigerant sucked into the suction space 321a is depressurized by the suction-side nozzle portion 322, becomes a suction-side injection refrigerant, and is injected from the suction-side injection port 322a into the mixing space 323a of the mixing section 323. The refrigerant pressure of the drive-side injection refrigerant injected to the mixing unit 323 is higher than the refrigerant pressure of the suction-side injection refrigerant injected to the mixing unit 323. Therefore, in the drive-side nozzle unit 31, the drive-side refrigerant is insufficiently expanded to generate an expansion wave in the mixing unit 323.
 駆動側噴射冷媒が発生させた膨張波は、混合部323の壁面や乱流境界層に反射して混合部323内に衝撃波を発生させる。混合部323では、駆動側噴射冷媒が発生させた衝撃波の圧力回復作用によって、駆動側噴射冷媒と吸引側噴射冷媒との混合冷媒の圧力が上昇する。さらに、混合部323では、一様の圧力で亜音速となった気液二相状態の混合冷媒となるように、駆動側噴射冷媒と吸引側噴射冷媒とを混合させる。 The expansion wave generated by the drive-side injection refrigerant is reflected on the wall surface of the mixing section 323 and the turbulent boundary layer to generate a shock wave in the mixing section 323. In the mixing unit 323, the pressure of the mixed refrigerant of the driving side injection refrigerant and the suction side injection refrigerant increases due to the pressure recovery action of the shock wave generated by the drive side injection refrigerant. Further, in the mixing unit 323, the drive side injection refrigerant and the suction side injection refrigerant are mixed so as to be a gas-liquid two-phase mixed refrigerant having a subsonic speed at a uniform pressure.
 混合部323から流出した混合冷媒は、ディフューザ部324へ流入する。ディフューザ部324では通路断面積の拡大により、混合冷媒の運動エネルギが圧力エネルギに変換される。これにより、混合冷媒の圧力がさらに上昇する。 The mixed refrigerant flowing out of the mixing section 323 flows into the diffuser section 324. In the diffuser section 324, the kinetic energy of the mixed refrigerant is converted into pressure energy by expanding the cross-sectional area of the passage. As a result, the pressure of the mixed refrigerant further increases.
 ディフューザ部324から流出した冷媒は、アキュムレータ14へ流入して、気液分離される。アキュムレータ14にて分離された液相冷媒は、固定絞り15にて減圧されて蒸発器16へ流入する。蒸発器16へ流入した冷媒は、室内送風機16aによって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。 The refrigerant flowing out of the diffuser unit 324 flows into the accumulator 14 and is gas-liquid separated. The liquid phase refrigerant separated by the accumulator 14 is depressurized by the fixed throttle 15 and flows into the evaporator 16. The refrigerant flowing into the evaporator 16 absorbs heat from the blown air blown by the indoor blower 16a and evaporates. As a result, the blown air is cooled.
 蒸発器16から流出した冷媒は、前述の如く、吸引側冷媒となってエジェクタ13の冷媒吸引口321から吸引される。一方、アキュムレータ14にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される。 As described above, the refrigerant flowing out of the evaporator 16 becomes a suction side refrigerant and is sucked from the refrigerant suction port 321 of the ejector 13. On the other hand, the gas phase refrigerant separated by the accumulator 14 is sucked into the compressor 11 and compressed again.
 エジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。 The ejector type refrigeration cycle 10 operates as described above and can cool the blown air blown into the vehicle interior.
 エジェクタ式冷凍サイクル10では、エジェクタ13にて昇圧された冷媒を圧縮機11へ吸入させている。これにより、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と圧縮機の吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11へ吸入される吸入冷媒の圧力を上昇させることができる。従って、エジェクタ式冷凍サイクル10では、通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。 In the ejector type refrigeration cycle 10, the refrigerant boosted by the ejector 13 is sucked into the compressor 11. As a result, in the ejector type refrigeration cycle 10, the pressure of the suction refrigerant sucked into the compressor 11 is higher than that of the normal refrigeration cycle device in which the refrigerant evaporation pressure in the evaporator and the pressure of the suction refrigerant of the compressor are substantially equal to each other. Can be made to. Therefore, in the ejector type refrigeration cycle 10, the consumption power of the compressor 11 can be reduced and the coefficient of performance (COP) of the cycle can be improved as compared with the normal refrigeration cycle apparatus.
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタ13を備えているので、負荷変動によらず、高いCOPを発揮することができる。つまり、本実施形態のエジェクタ13では、負荷変動によらず、高い昇圧能力を発揮することができる。 Further, since the ejector type refrigeration cycle 10 of the present embodiment is provided with the ejector 13, high COP can be exhibited regardless of the load fluctuation. That is, the ejector 13 of the present embodiment can exhibit a high boosting ability regardless of the load fluctuation.
 より詳細には、エジェクタ13では、混合部323へ噴射される駆動側噴射冷媒の冷媒圧力が、吸引側噴射冷媒の冷媒圧力よりも高くなっている。従って、エジェクタ式冷凍サイクル10の負荷変動によらず、駆動側ノズル部31にて駆動側冷媒を不足膨張させて、混合部323内に確実に衝撃波を発生させることができる。これにより、混合部323にて、衝撃波の圧力回復作用によって混合冷媒を昇圧することができる。 More specifically, in the ejector 13, the refrigerant pressure of the drive-side injection refrigerant injected to the mixing unit 323 is higher than the refrigerant pressure of the suction-side injection refrigerant. Therefore, regardless of the load fluctuation of the ejector type refrigeration cycle 10, the drive-side refrigerant can be insufficiently expanded by the drive-side nozzle unit 31 to surely generate a shock wave in the mixing unit 323. As a result, the mixing refrigerant can be boosted by the pressure recovery action of the shock wave in the mixing unit 323.
 さらに、エジェクタ13では、混合部323から流出して流出してディフューザ部324へ流入する混合冷媒の流速を亜音速に低下させている。これにより、駆動側噴射冷媒によって発生させた衝撃波を、混合部323内で確実に消滅させることができる。従って、圧力回復作用を発揮した後の衝撃波によって生じるエネルギ損失を抑制することができる。 Further, in the ejector 13, the flow velocity of the mixed refrigerant flowing out from the mixing section 323, flowing out, and flowing into the diffuser section 324 is reduced to subsonic speed. As a result, the shock wave generated by the drive-side injection refrigerant can be reliably eliminated in the mixing unit 323. Therefore, it is possible to suppress the energy loss caused by the shock wave after exerting the pressure recovery action.
 換言すると、エジェクタ式冷凍サイクル10の負荷変動によって、混合部323内に二相流における疑似衝撃波が発生してしまっても、疑似衝撃波を速やかに消滅させて、疑似衝撃波のエントロピ生成によるエネルギ損失を抑制することができる。 In other words, even if a pseudo-shock wave in a two-phase flow is generated in the mixing unit 323 due to the load fluctuation of the ejector type refrigeration cycle 10, the pseudo-shock wave is quickly extinguished and the energy loss due to the entropy generation of the pseudo-shock wave is reduced. It can be suppressed.
 これに加えて、混合部323では、混合部323から流出して流出してディフューザ部324へ流入する混合冷媒の中心軸側の冷媒圧力と壁面側の冷媒圧力を一致させるように駆動側噴射冷媒と吸引側噴射冷媒とを混合させている。従って、冷凍サイクル装置の負荷変動によって、二相流における疑似衝撃波の発生範囲が変化しても、混合部323内で疑似衝撃波を確実に消滅させることができる。 In addition to this, in the mixing section 323, the driving side injection refrigerant so as to match the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side of the mixed refrigerant flowing out from the mixing section 323 and flowing out into the diffuser section 324. And the suction side injection refrigerant are mixed. Therefore, even if the generation range of the pseudo-shock wave in the two-phase flow changes due to the load fluctuation of the refrigeration cycle device, the pseudo-shock wave can be surely extinguished in the mixing unit 323.
 その結果、本実施形態のエジェクタ13によれば、適用された冷凍サイクル装置の負荷変動によらず、衝撃波を利用して高い昇圧能力を発揮させることができる。さらに、内部に気液二相冷媒が流れるエジェクタ13では、気液二相冷媒に含まれる液滴によって圧力波を減衰させることができる。従って、衝撃波を利用して高い昇圧能力を発揮させても、騒音や振動の発生を抑制することができる。 As a result, according to the ejector 13 of the present embodiment, it is possible to exert a high boosting ability by utilizing a shock wave regardless of the load fluctuation of the applied refrigerating cycle apparatus. Further, in the ejector 13 in which the gas-liquid two-phase refrigerant flows inside, the pressure wave can be attenuated by the droplets contained in the gas-liquid two-phase refrigerant. Therefore, it is possible to suppress the generation of noise and vibration even if the shock wave is used to exert a high boosting ability.
 さらに、本発明者らは、エジェクタ13における衝撃波の圧力回復作用によって効果的に混合冷媒を昇圧するための検討も行っている。図5は、検討結果を示すグラフである。 Furthermore, the present inventors are also studying to effectively boost the pressure of the mixed refrigerant by the pressure recovery action of the shock wave in the ejector 13. FIG. 5 is a graph showing the examination results.
 図5では、エジェクタ13へ流入する駆動側冷媒の入口圧力Pin、駆動側冷媒の乾き度X、および吸引側冷媒の吸引流量を一定として、ディフューザ部324の出口における冷媒圧力を変化させた際のエジェクタ13内部の圧力変化を示している。より具体的には、図5では、以下の運転条件OP1~運転条件OP4の4つについて、エジェクタ13の内壁面近傍の静圧分布を示している。 In FIG. 5, when the inlet pressure Pin of the drive-side refrigerant flowing into the ejector 13, the dryness X of the drive-side refrigerant, and the suction flow rate of the suction-side refrigerant are constant, and the refrigerant pressure at the outlet of the diffuser unit 324 is changed. It shows the pressure change inside the ejector 13. More specifically, FIG. 5 shows the static pressure distribution in the vicinity of the inner wall surface of the ejector 13 for the following four operating conditions OP1 to OP4.
 運転条件OP1は、ディフューザ部324の出口における冷媒圧力を最も低くした運転条件である。運転条件OP2は、運転条件OP1よりもディフューザ部324の出口における冷媒圧力を高くした運転条件である。運転条件OP3は、運転条件OP2よりもディフューザ部324の出口における冷媒圧力を高くした運転条件である。運転条件OP4は、運転条件OP3よりもディフューザ部324の出口における冷媒圧力を高くした運転条件である。 The operating condition OP1 is the operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is minimized. The operating condition OP2 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP1. The operating condition OP3 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP2. The operating condition OP4 is an operating condition in which the refrigerant pressure at the outlet of the diffuser unit 324 is higher than that of the operating condition OP3.
 従って、ディフューザ部324の出口における冷媒圧力は、運転条件OP1、運転条件OP2、運転条件OP3、運転条件OP4の順に高くなっている。また、図5のグラフにおいて、ディフューザ部324の出口における冷媒圧力から混合部323の入口における冷媒圧力を減算した値が、エジェクタ13全体としての冷媒の昇圧量となる。図5では、図示の明確化のため、運転条件OP3についてのみ昇圧量ΔPを示している。 Therefore, the refrigerant pressure at the outlet of the diffuser unit 324 increases in the order of operating condition OP1, operating condition OP2, operating condition OP3, and operating condition OP4. Further, in the graph of FIG. 5, the value obtained by subtracting the refrigerant pressure at the inlet of the mixing unit 323 from the refrigerant pressure at the outlet of the diffuser unit 324 is the boosted amount of the refrigerant as the entire ejector 13. In FIG. 5, for the sake of clarification of the illustration, the boost amount ΔP is shown only for the operating condition OP3.
 まず、運転条件OP1では、図5のグラフに太破線で示すように、ディフューザ部324の入口側で混合冷媒の圧力低下が生じている。従って、運転条件OP1では、図6に示すように、超音速の混合冷媒がディフューザ部324内に進入して、ディフューザ部324の通路断面積の拡大によって、超音速冷媒の圧力低下が生じていることが理解される。 First, under the operating condition OP1, as shown by the thick broken line in the graph of FIG. 5, the pressure of the mixed refrigerant drops on the inlet side of the diffuser portion 324. Therefore, under the operating condition OP1, as shown in FIG. 6, the supersonic mixed refrigerant enters the diffuser section 324, and the pressure of the supersonic refrigerant drops due to the expansion of the passage cross-sectional area of the diffuser section 324. Is understood.
 さらに、運転条件OP1では、エジェクタ13全体としての昇圧量が他の運転条件よりも少ない。従って、二相流における疑似衝撃波が発生し、ショックトレイン領域がディフューザ部324の内部まで延びて、エネルギ損失を増加させていることが理解される。 Further, under the operating condition OP1, the boosting amount of the ejector 13 as a whole is smaller than that of other operating conditions. Therefore, it is understood that a pseudo-shock wave in the two-phase flow is generated, the shock train region extends to the inside of the diffuser portion 324, and the energy loss is increased.
 なお、図6は、エジェクタ13の軸方向断面図上に、エジェクタ13内を流れる冷媒に生じた衝撃波の発生態様を、図3と同様に模式的に示した説明図である。従って、図6のエジェクタ13内の無ハッチング領域は、主に超音速の流体が分布している領域である。点ハッチング領域は、主に亜音速の流体が分布している領域である。また、エジェクタ13内の太線は衝撃波を示しており、二重破線は膨張波を示している。このことは、図7~図9においても同様である。 Note that FIG. 6 is an explanatory diagram schematically showing the generation mode of the shock wave generated in the refrigerant flowing in the ejector 13 on the axial cross-sectional view of the ejector 13 in the same manner as in FIG. Therefore, the non-hatched region in the ejector 13 of FIG. 6 is a region in which a supersonic fluid is mainly distributed. The point hatch region is a region where subsonic fluids are mainly distributed. The thick line in the ejector 13 indicates a shock wave, and the double broken line indicates an expansion wave. This also applies to FIGS. 7 to 9.
 次に、運転条件OP2では、図5のグラフに太一点鎖線で示すように、混合部323の下流側で混合冷媒の急峻な圧力上昇が始まっている。従って、運転条件OP2では、運転条件OP1よりもショックトレイン領域が短くなり、混合部323の下流側で、衝撃波による圧力回復作用が始まっていることが理解される。 Next, in the operating condition OP2, as shown by the alternate long and short dash line in the graph of FIG. 5, a steep pressure increase of the mixed refrigerant has started on the downstream side of the mixing unit 323. Therefore, it is understood that in the operating condition OP2, the shock train region is shorter than that in the operating condition OP1, and the pressure recovery action by the shock wave is started on the downstream side of the mixing unit 323.
 さらに、運転条件OP2では、運転条件OP1よりもエジェクタ13全体としての昇圧量が増加している。従って、運転条件OP2では、図7に示すように、混合部323内で衝撃波を消滅させて、運転条件OP1よりも疑似衝撃波の緩和距離Lvを縮小させることによって、エネルギ損失を減少させていることが理解される。 Further, in the operating condition OP2, the boosting amount of the ejector 13 as a whole is increased as compared with the operating condition OP1. Therefore, in the operating condition OP2, as shown in FIG. 7, the shock wave is extinguished in the mixing unit 323, and the relaxation distance Lv of the pseudo shock wave is reduced as compared with the operating condition OP1 to reduce the energy loss. Is understood.
 次に、運転条件OP3では、図5のグラフに太実線で示すように、混合部323の入口近傍で混合冷媒の急峻な圧力上昇が始まっている。つまり、急峻な圧力上昇が開始される位置が、運転条件OP2よりも冷媒流れ上流側に移動している。従って、運転条件OP3では、運転条件OP2よりもショックトレイン領域が短くなり、混合部323の入口近傍で、衝撃波による圧力回復作用が始まっていることが理解される。 Next, in the operating condition OP3, as shown by the thick solid line in the graph of FIG. 5, a steep pressure increase of the mixed refrigerant has started near the inlet of the mixing unit 323. That is, the position where the steep pressure rise starts moves to the upstream side of the refrigerant flow from the operating condition OP2. Therefore, it is understood that in the operating condition OP3, the shock train region is shorter than that in the operating condition OP2, and the pressure recovery action by the shock wave starts in the vicinity of the inlet of the mixing unit 323.
 さらに、運転条件OP3では、他の運転条件よりもエジェクタ13全体としての昇圧量が増加している。従って、運転条件OP3では、図8に示すように、混合部323内で衝撃波を速やかに消滅させて、他の運転条件よりも疑似衝撃波の緩和距離Lvを縮小させることによって、より一層エネルギ損失を減少させていることが理解される。 Further, in the operating condition OP3, the boosting amount of the ejector 13 as a whole is increased as compared with other operating conditions. Therefore, in the operating condition OP3, as shown in FIG. 8, the shock wave is rapidly extinguished in the mixing unit 323, and the relaxation distance Lv of the pseudo shock wave is reduced as compared with the other operating conditions, thereby further reducing the energy loss. It is understood that it is decreasing.
 次に、運転条件OP4では、図5の太二点鎖線図に示すように、他の運転条件よりも、混合部323の入口における冷媒圧力が上昇している。つまり、図5の細破線に示すように、駆動側噴射冷媒の圧力が上昇している。図5の細破線は、駆動側ノズル部31内の静圧分布を示している。 Next, in the operating condition OP4, as shown in the two-dot chain diagram of FIG. 5, the refrigerant pressure at the inlet of the mixing unit 323 is higher than in the other operating conditions. That is, as shown by the broken line in FIG. 5, the pressure of the drive-side injection refrigerant is increasing. The dashed line in FIG. 5 shows the static pressure distribution in the drive-side nozzle portion 31.
 さらに、混合部323へ流入した直後から混合冷媒の急峻な圧力上昇が始まっている。従って、運転条件OP4では、図9に示すように、駆動側ノズル部31にて駆動側冷媒を不足膨張させることができず、駆動側ノズル部31の内部で衝撃波が発生していることが理解される。 Further, the pressure of the mixed refrigerant starts to rise sharply immediately after flowing into the mixing unit 323. Therefore, under the operating condition OP4, as shown in FIG. 9, it is understood that the drive-side refrigerant cannot be insufficiently expanded in the drive-side nozzle portion 31, and a shock wave is generated inside the drive-side nozzle portion 31. Will be done.
 このため、運転条件OP4では、衝撃波の圧力回復作用を、混合部323内にて混合冷媒の昇圧するために充分に利用できておらず、他の運転条件よりもエジェクタ13全体としての昇圧量も減少してしまっている。運転条件OP4のように、混合部323の入口における冷媒圧力が上昇すると、吸引側冷媒の圧力も上昇して、蒸発器16における冷媒蒸発温度が上昇してしまう可能性がある。 Therefore, in the operating condition OP4, the pressure recovery action of the shock wave cannot be sufficiently utilized to boost the pressure of the mixed refrigerant in the mixing unit 323, and the boosting amount of the ejector 13 as a whole is larger than that of other operating conditions. It has decreased. When the refrigerant pressure at the inlet of the mixing unit 323 rises as in the operating condition OP4, the pressure of the suction side refrigerant also rises, and the refrigerant evaporation temperature in the evaporator 16 may rise.
 以上のことから、混合部323における衝撃波の圧力回復作用によって混合冷媒を効果的に昇圧するためには、駆動側ノズル部31にて駆動側冷媒を確実に不足膨張させることが有効であることが判った。さらに、駆動側噴射冷媒によって生じる最初の衝撃波を混合部323の入口近傍で発生させることが有効であることが判った。さらに、混合部323内で発生した衝撃波を速やかに消滅させることが有効であることが判った。すなわち、ショックトレイン領域を短くすることが有効であると判った。 From the above, in order to effectively boost the pressure of the mixed refrigerant by the pressure recovery action of the shock wave in the mixing unit 323, it is effective to surely insufficiently expand the driving side refrigerant in the driving side nozzle unit 31. understood. Further, it has been found that it is effective to generate the first shock wave generated by the drive-side injection refrigerant in the vicinity of the inlet of the mixing unit 323. Further, it was found that it is effective to quickly extinguish the shock wave generated in the mixing unit 323. That is, it was found that shortening the shock train area is effective.
 そこで、本実施形態のエジェクタ13では、数式F2で説明したように、駆動側噴射冷媒の圧力が吸引側噴射冷媒の圧力よりも高くなるように、Asnout/Anzoutが設定されている。 Therefore, in the ejector 13 of the present embodiment, Asnout / Anzout is set so that the pressure of the drive-side injection refrigerant is higher than the pressure of the suction-side injection refrigerant, as described in the mathematical formula F2.
 これによれば、負荷変動に応じた複雑な運転制御等を必要とすることなく、駆動側噴射冷媒の圧力を吸引側噴射冷媒の圧力よりも高くすることができる。そして、駆動側ノズル部31にて駆動側冷媒を確実に不足膨張させて、駆動側噴射冷媒に確実に膨張波を発生させることができる。 According to this, the pressure of the drive side injection refrigerant can be made higher than the pressure of the suction side injection refrigerant without requiring complicated operation control or the like according to the load fluctuation. Then, the drive-side nozzle portion 31 can surely inadequately expand the drive-side refrigerant, and can surely generate an expansion wave in the drive-side injection refrigerant.
 また、本実施形態のエジェクタ13では、数式F1で説明したように、駆動側噴射口31eから噴射される駆動側噴射冷媒の流速が、気液二相冷媒の音速である二相音速以上となり、かつ、駆動側ノズル部31の冷媒通路内の気相冷媒の速度が、気相冷媒の音速である気相音速以下となるように、Anzout/Anzthが設定されている。 Further, in the ejector 13 of the present embodiment, as described by the mathematical formula F1, the flow velocity of the drive-side injection refrigerant injected from the drive-side injection port 31e becomes equal to or higher than the two-phase sound velocity, which is the sound velocity of the gas-liquid two-phase refrigerant. And, Anzout / Anzth is set so that the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 is equal to or lower than the gas phase sound velocity which is the sound velocity of the gas phase refrigerant.
 これによれば、負荷変動に応じた複雑な運転制御等を必要とすることなく、気液二相状態の駆動側噴射冷媒を、確実に二相音速以上とすることができる。さらに、駆動側ノズル部31の冷媒通路内の気相冷媒の速度を、気相音速以下とすることができる。 According to this, the drive-side injection refrigerant in the gas-liquid two-phase state can be surely set to the two-phase sound velocity or higher without requiring complicated operation control or the like according to the load fluctuation. Further, the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 can be set to be equal to or lower than the gas phase sound velocity.
 そして、駆動側ノズル部31の冷媒通路内の気相冷媒の速度を気相音速以下とすることで、図10に示すように、駆動側ノズル部31の内部から膨張波を発生させることができる。これは、膨張波による加速流が、外周側の気相音速以下の気相冷媒を駆動側ノズル部31内に引き込むからである。その結果、駆動側噴射冷媒によって混合部323内に生じる最初の衝撃波を混合部323の入口近傍に近づけることができる。 Then, by setting the speed of the gas phase refrigerant in the refrigerant passage of the drive side nozzle portion 31 to be equal to or lower than the gas phase sound velocity, an expansion wave can be generated from the inside of the drive side nozzle portion 31 as shown in FIG. .. This is because the accelerated flow due to the expansion wave draws the gas phase refrigerant having a gas phase sound velocity or less on the outer peripheral side into the drive side nozzle portion 31. As a result, the first shock wave generated in the mixing unit 323 by the drive-side injection refrigerant can be brought close to the vicinity of the inlet of the mixing unit 323.
 本発明者の試験検討によれば、エジェクタ式冷凍サイクル10の通常運転時には、混合部323の入口から最初の衝撃波が発生するまでの距離L1が、混合部入口径Dmixの0.1倍以下となることが確認されている。従って、図5の運転条件OP3で説明したように、エジェクタ13全体としての昇圧量を増加させることができる。 According to the test study by the present inventor, during normal operation of the ejector type refrigeration cycle 10, the distance L1 from the inlet of the mixing section 323 to the generation of the first shock wave is 0.1 times or less of the mixing section inlet diameter Dmix. It has been confirmed that it will be. Therefore, as described in the operating condition OP3 of FIG. 5, the boosting amount of the ejector 13 as a whole can be increased.
 これに加えて、駆動側ノズル部31の冷媒通路内の壁面摩擦を緩和させることができるので、初期マッハ数M0を上昇させることができる。従って、高いエネルギを有する衝撃波によって、混合冷媒の昇圧量をより一層増加させることができる。 In addition to this, the wall friction in the refrigerant passage of the drive-side nozzle portion 31 can be alleviated, so that the initial Mach number M 0 can be increased. Therefore, the boost amount of the mixed refrigerant can be further increased by the shock wave having high energy.
 また、本実施形態のエジェクタ13では、数式F3で説明したように、混合部距離Lが緩和距離Lvよりも長くなるように設定されている。これによれば、駆動側噴射冷媒によって混合部323内に生じる最初の衝撃波を、確実に、混合部323内で消滅させることができる。従って、混合部323から流出してディフューザ部324へ流入する気液二相状態の混合冷媒の流速を、亜音速に近づけやすい。 Further, in the ejector 13 of the present embodiment, as described by the mathematical formula F3, the mixing portion distance L is set to be longer than the relaxation distance Lv. According to this, the first shock wave generated in the mixing section 323 by the driving side injection refrigerant can be surely extinguished in the mixing section 323. Therefore, the flow velocity of the mixed refrigerant in the gas-liquid two-phase state flowing out of the mixing section 323 and flowing into the diffuser section 324 can be easily brought close to the subsonic speed.
 さらに、本実施形態のエジェクタ13では、数式F5、F6に示したように、L/LvあるいはL/Dmixの範囲を設定している。これによれば、エジェクタ式冷凍サイクル10の負荷変動によって、二相流における疑似衝撃波が発生したとしても、二相流における疑似衝撃波を、確実に、混合部323内で消滅させることができる。 Further, in the ejector 13 of the present embodiment, the range of L / Lv or L / Dmix is set as shown in the formulas F5 and F6. According to this, even if a pseudo-shock wave in the two-phase flow is generated due to the load fluctuation of the ejector type refrigeration cycle 10, the pseudo-shock wave in the two-phase flow can be surely extinguished in the mixing unit 323.
 ここで、二相流における疑似衝撃波を、混合部323内で消滅させるためには、単に混合部距離Lを長く設定することが考えられる。ところが、混合部距離Lを長く設定してしまうと、エジェクタ13全体としての体格も大きくなってしまう。これに対して、数式F5、F6では、実使用上実現可能な範囲で混合部距離Lの上限値を示している点で、極めて有効である。 Here, in order to eliminate the pseudo-shock wave in the two-phase flow in the mixing section 323, it is conceivable to simply set the mixing section distance L long. However, if the mixing portion distance L is set long, the physique of the ejector 13 as a whole also becomes large. On the other hand, the mathematical formulas F5 and F6 are extremely effective in that the upper limit value of the mixing unit distance L is shown within the range feasible in actual use.
 また、本実施形態のエジェクタ13では、数式F7で説明したように、混合部323の通路形状が、混合冷媒の流れ方向下流側へ向かうに伴って、通路断面積が増加する形状を有している。これによれば、混合部323の壁面側の冷媒の壁面からの剥離を抑制して、エネルギ損失を抑制することができる。 Further, in the ejector 13 of the present embodiment, as described by the mathematical formula F7, the passage shape of the mixing portion 323 has a shape in which the passage cross-sectional area increases as the mixed refrigerant moves toward the downstream side in the flow direction. There is. According to this, it is possible to suppress the separation of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface and suppress the energy loss.
 本実施形態のように、混合部323にて、衝撃波の圧力回復作用によって混合冷媒の圧力を急上昇させることのできるエジェクタ13では、混合部323にて混合冷媒の流速が急低下する。このため、混合部323の壁面側の冷媒の壁面からの剥離を抑制できることは、エネルギ損失の抑制に有効である。 In the ejector 13 capable of rapidly increasing the pressure of the mixed refrigerant by the pressure recovery action of the shock wave in the mixing unit 323 as in the present embodiment, the flow velocity of the mixed refrigerant suddenly decreases in the mixing unit 323. Therefore, being able to suppress the separation of the refrigerant on the wall surface side of the mixing unit 323 from the wall surface is effective in suppressing energy loss.
 また、本発明者らは、冷媒として、HFO系冷媒、HFC系冷媒、これらの冷媒の複数種を混合させた混合冷媒を採用するエジェクタ式冷凍サイクル10において、以下の条件で、エジェクタ13が衝撃波を利用して高い昇圧能力を発揮することを確認している。 Further, in the ejector type refrigerating cycle 10 that employs an HFO-based refrigerant, an HFC-based refrigerant, and a mixed refrigerant in which a plurality of types of these refrigerants are mixed as the refrigerant, the present inventors make a shock wave in the ejector 13 under the following conditions. It has been confirmed that it exerts a high boosting ability by using.
 具体的には、少なくともエジェクタ13の入口圧力Pinおよび出口圧力Poutが、以下数式F9、F10の双方を満足する範囲で、エジェクタ13が、従来技術の4倍以上の昇圧能力を発揮することを確認している。
0.4≦Pin≦1.7(MPa) …(F9)
0.3≦Pout≦0.65(MPa) …(F10)
 ここで、入口圧力Pinは、エジェクタ13の駆動側ノズル部31へ流入する駆動側冷媒の圧力である。出口圧力Poutは、ディフューザ部324から流出する冷媒の圧力である。
Specifically, it has been confirmed that the ejector 13 exhibits a boosting capacity four times or more that of the conventional technique, at least within the range in which the inlet pressure Pin and the outlet pressure Pout of the ejector 13 satisfy both of the following formulas F9 and F10. is doing.
0.4 ≤ Pin ≤ 1.7 (MPa) ... (F9)
0.3 ≤ Pout ≤ 0.65 (MPa) ... (F10)
Here, the inlet pressure Pin is the pressure of the drive-side refrigerant flowing into the drive-side nozzle portion 31 of the ejector 13. The outlet pressure Pout is the pressure of the refrigerant flowing out from the diffuser unit 324.
 さらに、少なくともエジェクタ13の入口圧力Pinおよび駆動側噴射圧力Pnzoutが、以下数式F11となる範囲で、エジェクタ13が、従来技術の4倍以上の昇圧能力を発揮することを確認している。
0.2≦Pnzout/Pin≦0.65 …(F11)
 ここで、駆動側噴射圧力Pnzoutは、駆動側噴射口31eから噴射された直後の駆動側噴射冷媒の圧力である。
Further, it has been confirmed that the ejector 13 exhibits a boosting capacity four times or more that of the conventional technique, at least in the range where the inlet pressure Pin and the drive side injection pressure Pnzout of the ejector 13 are in the following mathematical formula F11.
0.2 ≤ Pnzout / Pin ≤ 0.65 ... (F11)
Here, the drive-side injection pressure Pnzout is the pressure of the drive-side injection refrigerant immediately after being injected from the drive-side injection port 31e.
 また、HFO系冷媒には、R1234yfの他に、R1234zd等が含まれる。HFC系冷媒には、R134a、R410A、R32、R404A,R407C等が含まれる。これら冷媒を採用するエジェクタ式冷凍サイクルでは、亜臨界冷凍サイクルが構成される。 Further, the HFO-based refrigerant includes R1234zd and the like in addition to R1234yf. The HFC-based refrigerant includes R134a, R410A, R32, R404A, R407C and the like. An ejector-type refrigeration cycle that employs these refrigerants constitutes a subcritical refrigeration cycle.
 (第2実施形態)
 本実施形態のエジェクタ113は、第1実施形態と同様の構成のエジェクタ式冷凍サイクル10に適用されている。本実施形態のエジェクタ式冷凍サイクル10は、据置用の暖房給湯装置に適用されており、室内へ送風される送風空気あるいは給湯水の加熱をする。本実施形態のエジェクタ式冷凍サイクル10は、冷媒として二酸化炭素を採用しており、高圧側の冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成している。
(Second Embodiment)
The ejector 113 of the present embodiment is applied to the ejector type refrigeration cycle 10 having the same configuration as that of the first embodiment. The ejector type refrigerating cycle 10 of the present embodiment is applied to a stationary heating / hot water supply device, and heats the blown air or hot water supplied to the room. The ejector type refrigeration cycle 10 of the present embodiment uses carbon dioxide as a refrigerant, and constitutes a supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side exceeds the critical pressure of the refrigerant.
 このため、本実施形態のエジェクタ式冷凍サイクル10の放熱器12は、高圧冷媒と空調対象空間へ送風される送風空気あるいは台所や風呂等へ供給される給湯水とを熱交換させて、高圧冷媒を超臨界状態のまま放熱させる放熱用熱交換器となる。また、本実施形態の蒸発器16は、低圧冷媒と外気ファンにより送風された外気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器となる。 Therefore, the radiator 12 of the ejector type refrigeration cycle 10 of the present embodiment heat-exchanges the high-pressure refrigerant with the blown air blown to the air-conditioned space or the hot water supplied to the kitchen, bath, or the like to exchange heat with the high-pressure refrigerant. It is a heat exchanger for heat dissipation that dissipates heat in a supercritical state. Further, the evaporator 16 of the present embodiment is an endothermic heat exchanger that exchanges heat between the low pressure refrigerant and the outside air blown by the outside air fan to evaporate the low pressure refrigerant and exert a heat absorbing action.
 本実施形態のエジェクタ113は、図11に示すように、駆動側ノズル部131、ボデー部132、ニードル弁133、および駆動機構134を有している。駆動側ノズル部131は、第1実施形態で説明した駆動側ノズル部31を同様の機能を発揮するように各部位の寸法諸元が設定されている。駆動側ノズル部131の冷媒通路内には、ニードル弁133が配置されている。 As shown in FIG. 11, the ejector 113 of the present embodiment has a drive side nozzle portion 131, a body portion 132, a needle valve 133, and a drive mechanism 134. In the drive-side nozzle unit 131, the dimensional specifications of each portion are set so that the drive-side nozzle unit 31 described in the first embodiment has the same function. A needle valve 133 is arranged in the refrigerant passage of the drive-side nozzle portion 131.
 ニードル弁133は、駆動側ノズル部131の軸方向に変位することによって、駆動側ノズル部131の喉部や駆動側噴射口の通路断面積を変化させる。ニードル弁133は、金属製(本実施形態では、ステンレス製)の針状部材で形成されている。ニードル弁133の中心軸は、駆動側ノズル部131の中心軸と同軸上に配置されている。ニードル弁133の駆動側噴射口の反対側の端部は、駆動機構134に連結されている。 The needle valve 133 changes the passage cross-sectional area of the throat portion of the drive side nozzle portion 131 and the drive side injection port by being displaced in the axial direction of the drive side nozzle portion 131. The needle valve 133 is made of a metal (stainless steel in this embodiment) needle-shaped member. The central axis of the needle valve 133 is arranged coaxially with the central axis of the drive-side nozzle portion 131. The opposite end of the drive-side injection port of the needle valve 133 is connected to the drive mechanism 134.
 駆動機構134は、ニードル弁133を中心軸方向へ変位させる駆動部である。本実施形態では、駆動機構134として、ステッピングモータが採用されている。駆動機構134は、制御装置20から出力される制御信号(すなわち、制御パルス)によって、作動が制御される。 The drive mechanism 134 is a drive unit that displaces the needle valve 133 in the central axis direction. In this embodiment, a stepping motor is adopted as the drive mechanism 134. The operation of the drive mechanism 134 is controlled by a control signal (that is, a control pulse) output from the control device 20.
 ボデー部132は、複数の金属製(本実施形態では、アルミニウム製)のブロック部材を組み合わせることによって形成されている。ボデー部132は、第1実施形態で説明したボデー部32と同様の機能を発揮するように各部位の寸法諸元が設定されている。ボデー部132は、第1実施形態と同様の冷媒吸引口321、吸引側ノズル部322、混合部323、およびディフューザ部324を有している。 The body portion 132 is formed by combining a plurality of metal (in this embodiment, aluminum) block members. The dimensional specifications of each part of the body part 132 are set so as to exhibit the same function as the body part 32 described in the first embodiment. The body portion 132 has the same refrigerant suction port 321 as in the first embodiment, a suction side nozzle portion 322, a mixing portion 323, and a diffuser portion 324.
 その他のエジェクタ113の構成は、第1実施形態で説明したエジェクタ13と同様である。 The configuration of the other ejectors 113 is the same as that of the ejector 13 described in the first embodiment.
 次に、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。本実施形態では、制御装置20が、蒸発器16出口側冷媒の過熱度が予め定めた基準過熱度KSHに近づくように、駆動機構134の作動を制御する。その他の作動は第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。 Next, the operation of the ejector type refrigeration cycle 10 of the present embodiment will be described. In the present embodiment, the control device 20 controls the operation of the drive mechanism 134 so that the superheat degree of the refrigerant on the outlet side of the evaporator 16 approaches a predetermined reference superheat degree KSH. Other operations are the same as in the first embodiment. Therefore, the same effect as that of the first embodiment can be obtained in the ejector type refrigeration cycle 10 of the present embodiment.
 すなわち、本実施形態のエジェクタ113によれば、負荷変動によらず、高い昇圧能力を発揮することができる。その結果、本実施形態のエジェクタ式冷凍サイクル10においても、負荷変動によらず、高いCOPを発揮することができる。 That is, according to the ejector 113 of the present embodiment, high boosting ability can be exhibited regardless of load fluctuation. As a result, even in the ejector type refrigeration cycle 10 of the present embodiment, high COP can be exhibited regardless of the load fluctuation.
 また、本発明者らは、冷媒として二酸化炭素、あるいは、二酸化炭素を含む混合冷媒を採用するエジェクタ式冷凍サイクル10において、以下の条件で、エジェクタ113が衝撃波を利用して高い昇圧能力を発揮することを確認している。 Further, in the ejector type refrigeration cycle 10 in which carbon dioxide or a mixed refrigerant containing carbon dioxide is used as the refrigerant, the present inventors exhibit a high boosting ability by using a shock wave under the following conditions. I have confirmed that.
 具体的には、少なくともエジェクタ13の入口圧力Pinおよび出口圧力Poutが、以下数式F12、F13の双方を満足する範囲で、エジェクタ13が、高い昇圧能力を発揮することを確認している。
6≦Pin≦14(MPa) …(F12)
1.5≦Pout≦7(MPa) …(F13)
 さらに、少なくともエジェクタ13の入口圧力Pinおよび駆動側噴射圧力Pnzoutが、以下数式F14を満足する範囲で、エジェクタ13が、高い昇圧能力を発揮することを確認している。
0.3≦Pnzout/Pin≦0.7 …(F14)
 なお、二酸化炭素、あるいは、二酸化炭素を含む混合冷媒を採用するエジェクタ式冷凍サイクルでは、超臨界冷凍サイクルが構成される。
Specifically, it has been confirmed that the ejector 13 exhibits a high boosting ability at least within a range in which the inlet pressure Pin and the outlet pressure Pout of the ejector 13 satisfy both of the following formulas F12 and F13.
6 ≤ Pin ≤ 14 (MPa) ... (F12)
1.5 ≤ Pout ≤ 7 (MPa) ... (F13)
Further, it has been confirmed that the ejector 13 exhibits a high boosting ability at least within a range in which the inlet pressure Pin and the drive side injection pressure Pnzout of the ejector 13 satisfy the following formula F14.
0.3 ≤ Pnzout / Pin ≤ 0.7 ... (F14)
In the ejector type refrigeration cycle that employs carbon dioxide or a mixed refrigerant containing carbon dioxide, a supercritical refrigeration cycle is configured.
 (第3実施形態)
 本実施形態では、エジェクタ13を、図12に示すように、エジェクタ式冷凍サイクル10aに適用した例を説明する。エジェクタ式冷凍サイクル10aは、車両用空調装置に適用に適用されている。エジェクタ式冷凍サイクル10aは、分岐部17、第1蒸発器161、第2蒸発器162を備えている。また、エジェクタ式冷凍サイクル10aでは、アキュムレータ14が廃止されている。
(Third Embodiment)
In this embodiment, as shown in FIG. 12, an example in which the ejector 13 is applied to the ejector type refrigeration cycle 10a will be described. The ejector type refrigeration cycle 10a is applied to an air conditioner for vehicles. The ejector type refrigeration cycle 10a includes a branch portion 17, a first evaporator 161 and a second evaporator 162. Further, in the ejector type refrigeration cycle 10a, the accumulator 14 is abolished.
 分岐部17は、放熱器12から流出した冷媒の流れを分岐する三方継手である。分岐部17の一方の流出口には、エジェクタ13の駆動側ノズル部31の駆動側入口31a側が接続されている。分岐部17の他方の流出口には、固定絞り15の入口側が接続されている。 The branch portion 17 is a three-way joint that branches the flow of the refrigerant flowing out of the radiator 12. The drive-side inlet 31a side of the drive-side nozzle portion 31 of the ejector 13 is connected to one of the outlets of the branch portion 17. The inlet side of the fixed throttle 15 is connected to the other outlet of the branch portion 17.
 エジェクタ13のディフューザ部324の出口には、第1蒸発器161の冷媒入口側が接続されている。第1蒸発器161は、エジェクタ13のディフューザ部324が流出した低圧冷媒と室内送風機16aから送風された送風空気とを熱交換させて、送風空気を冷却する吸熱用熱交換器である。第1蒸発器161の冷媒出口には、圧縮機11の吸入口側が接続されている。 The refrigerant inlet side of the first evaporator 161 is connected to the outlet of the diffuser portion 324 of the ejector 13. The first evaporator 161 is an endothermic heat exchanger that cools the blown air by exchanging heat between the low-pressure refrigerant flowing out of the diffuser portion 324 of the ejector 13 and the blown air blown from the indoor blower 16a. The suction port side of the compressor 11 is connected to the refrigerant outlet of the first evaporator 161.
 固定絞り15の出口には、第2蒸発器162の冷媒入口側が接続されている。第2蒸発器162は、固定絞り15にて減圧された低圧冷媒と第1蒸発器161通過後の送風空気とを熱交換させて、送風空気を冷却する吸熱用熱交換器である。第2蒸発器162の冷媒出口には、エジェクタ13の冷媒吸引口321側が接続されている。 The refrigerant inlet side of the second evaporator 162 is connected to the outlet of the fixed throttle 15. The second evaporator 162 is an endothermic heat exchanger that cools the blown air by exchanging heat between the low-pressure refrigerant decompressed by the fixed throttle 15 and the blown air after passing through the first evaporator 161. The refrigerant suction port 321 side of the ejector 13 is connected to the refrigerant outlet of the second evaporator 162.
 本実施形態の第1蒸発器161および第2蒸発器162は、一体的に構成されている。具体的には、第1蒸発器161および第2蒸発器162は、いわゆるタンクアンドチューブ型の熱交換器で構成されている。タンクアンドチューブ型の熱交換器は、冷媒を流通させる複数本のチューブ、および複数のチューブの両端部に接続されて冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する熱交換器である。 The first evaporator 161 and the second evaporator 162 of this embodiment are integrally configured. Specifically, the first evaporator 161 and the second evaporator 162 are composed of a so-called tank-and-tube type heat exchanger. A tank-and-tube heat exchanger is a heat exchanger having a plurality of tubes for circulating a refrigerant and a pair of collecting and distributing tanks connected to both ends of the plurality of tubes to collect or distribute the refrigerant. be.
 そして、第1蒸発器161および第2蒸発器162は、集合分配用タンクを同一部材にて形成することによって、一体的に構成されている。本実施形態では、第1蒸発器161が第2蒸発器162に対して送風空気流れ上流側に配置されるように、第1蒸発器161および第2蒸発器162を送風空気流れに対して直列に配置している。従って、送風空気は図12の細破線矢印で示すように流れる。 The first evaporator 161 and the second evaporator 162 are integrally configured by forming the collective distribution tank with the same member. In the present embodiment, the first evaporator 161 and the second evaporator 162 are arranged in series with respect to the blown air flow so that the first evaporator 161 is arranged on the upstream side of the blown air flow with respect to the second evaporator 162. It is placed in. Therefore, the blown air flows as shown by the dashed arrow in FIG. 12.
 その他のエジェクタ式冷凍サイクル10aおよびエジェクタ13の構成は、第1実施形態と同様である。 The configurations of the other ejector type refrigeration cycle 10a and the ejector 13 are the same as those of the first embodiment.
 次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10aの作動について説明する。エジェクタ式冷凍サイクル10aでは、制御装置20が、圧縮機11を作動させると、第1実施形態と同様に、圧縮機11から吐出された高温高圧冷媒が、放熱器12にて凝縮する。放熱器12から流出した冷媒は、分岐部17へ流入する。分岐部17では、放熱器12から流出した冷媒の流れが分岐される。 Next, the operation of the ejector type refrigeration cycle 10a of the present embodiment in the above configuration will be described. In the ejector type refrigeration cycle 10a, when the control device 20 operates the compressor 11, the high-temperature high-pressure refrigerant discharged from the compressor 11 is condensed by the radiator 12 as in the first embodiment. The refrigerant flowing out of the radiator 12 flows into the branch portion 17. At the branch portion 17, the flow of the refrigerant flowing out of the radiator 12 is branched.
 分岐部17にて分岐された一方の冷媒は、駆動側冷媒としてエジェクタ13の駆動側ノズル部31へ流入する。駆動側ノズル部31では、第1実施形態と同様に、駆動側冷媒が等エントロピ的に減圧される。そして、駆動側ノズル部31の駆動側噴射口31eから、二相音速を超える気液二相状態の駆動側噴射冷媒が混合部323の混合空間323aへ噴射される。 One of the refrigerants branched at the branch portion 17 flows into the drive side nozzle portion 31 of the ejector 13 as the drive side refrigerant. In the drive-side nozzle unit 31, the drive-side refrigerant is issentropically depressurized as in the first embodiment. Then, the drive-side injection refrigerant in the gas-liquid two-phase state exceeding the two-phase sound velocity is injected from the drive-side injection port 31e of the drive-side nozzle unit 31 into the mixing space 323a of the mixing unit 323.
 さらに、駆動側噴射冷媒の吸引作用によって、第2蒸発器162から流出した冷媒が、吸引側冷媒として冷媒吸引口321から吸引空間321aへ吸引される。吸引空間321aへ吸引された吸引側冷媒は、吸引側ノズル部322へ流入する。吸引側ノズル部322では、第1実施形態と同様に、吸引側ノズル部322の吸引側噴射口322aから、吸引側噴射冷媒が混合部323の混合空間323aへ噴射される。 Further, due to the suction action of the drive-side injection refrigerant, the refrigerant flowing out from the second evaporator 162 is sucked into the suction space 321a from the refrigerant suction port 321 as the suction-side refrigerant. The suction side refrigerant sucked into the suction space 321a flows into the suction side nozzle portion 322. In the suction side nozzle unit 322, the suction side injection refrigerant is injected from the suction side injection port 322a of the suction side nozzle unit 322 into the mixing space 323a of the mixing unit 323, as in the first embodiment.
 混合部323では、駆動側噴射冷媒が発生させた衝撃波の圧力回復作用によって、駆動側噴射冷媒と吸引側噴射冷媒との混合冷媒の圧力が上昇する。混合部323から流出した混合冷媒は、ディフューザ部324へ流入する。ディフューザ部324では、第1実施形態と同様に、混合冷媒の圧力がさらに上昇する。 In the mixing unit 323, the pressure of the mixed refrigerant of the driving side injection refrigerant and the suction side injection refrigerant increases due to the pressure recovery action of the shock wave generated by the drive side injection refrigerant. The mixed refrigerant flowing out of the mixing section 323 flows into the diffuser section 324. In the diffuser unit 324, the pressure of the mixed refrigerant further increases, as in the first embodiment.
 ディフューザ部324から流出した冷媒は、第1蒸発器161へ流入する。第1蒸発器161では、ディフューザ部324から流出した冷媒が室内送風機16aによって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。第1蒸発器161から流出した気相冷媒は、圧縮機11に吸入されて、再び圧縮される。 The refrigerant flowing out of the diffuser unit 324 flows into the first evaporator 161. In the first evaporator 161 the refrigerant flowing out from the diffuser unit 324 absorbs heat from the blown air blown by the indoor blower 16a and evaporates. As a result, the blown air is cooled. The vapor phase refrigerant flowing out of the first evaporator 161 is sucked into the compressor 11 and compressed again.
 一方、分岐部17にて分岐された他方の冷媒は、固定絞り15へ流入して等エンタルピ的に減圧される。固定絞り15にて減圧された低圧冷媒は、第2蒸発器162へ流入する。第2蒸発器162へ流入した冷媒は、第1蒸発器161通過後の送風空気から吸熱して蒸発する。これにより、送風空気がさらに冷却されて車室内へ送風される。第2蒸発器162から流出した冷媒は、エジェクタ13の冷媒吸引口321から吸引される。 On the other hand, the other refrigerant branched at the branch portion 17 flows into the fixed throttle 15 and is enthalpy depressurized. The low-pressure refrigerant decompressed by the fixed throttle 15 flows into the second evaporator 162. The refrigerant flowing into the second evaporator 162 absorbs heat from the blown air after passing through the first evaporator 161 and evaporates. As a result, the blown air is further cooled and blown into the vehicle interior. The refrigerant flowing out of the second evaporator 162 is sucked from the refrigerant suction port 321 of the ejector 13.
 本実施形態のエジェクタ式冷凍サイクル10aは、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。 The ejector type refrigerating cycle 10a of the present embodiment operates as described above and can cool the blown air blown into the vehicle interior.
 エジェクタ式冷凍サイクル10aでは、エジェクタ13の昇圧作用によって、第1蒸発器161の冷媒蒸発温度を、第2蒸発器162の冷媒蒸発温度よりも上昇させることができる。従って、エジェクタ式冷凍サイクル10aでは、第1蒸発器161の冷媒蒸発温度と送風空気の温度差、および第2蒸発器162の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却できる。 In the ejector type refrigeration cycle 10a, the refrigerant evaporation temperature of the first evaporator 161 can be raised higher than the refrigerant evaporation temperature of the second evaporator 162 by the pressurizing action of the ejector 13. Therefore, in the ejector type refrigeration cycle 10a, the temperature difference between the refrigerant evaporation temperature of the first evaporator 161 and the blown air and the temperature difference between the refrigerant evaporation temperature of the second evaporator 162 and the blown air are ensured efficiently. Blower air can be cooled.
 さらに、本実施形態のエジェクタ式冷凍サイクル10aでは、エジェクタ13を採用しているので、負荷変動によらず、高いCOPを発揮することができる。 Further, in the ejector type refrigeration cycle 10a of the present embodiment, since the ejector 13 is adopted, high COP can be exhibited regardless of the load fluctuation.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係るエジェクタ13、113を、エジェクタ式冷凍サイクル10、10aに適用した例を説明したが、エジェクタ13、113を適用可能なサイクルは、これに限定されない。例えば、エジェクタ式冷凍サイクル10に、中間圧膨張弁を追加したサイクルに適用してもよい。 In the above-described embodiment, an example in which the ejectors 13 and 113 according to the present disclosure are applied to the ejector type refrigeration cycles 10 and 10a has been described, but the cycles to which the ejectors 13 and 113 can be applied are not limited to this. For example, it may be applied to a cycle in which an intermediate pressure expansion valve is added to the ejector type refrigeration cycle 10.
 中間圧膨張弁は、エジェクタ式冷凍サイクル10において、放熱器12から流出した冷媒を減圧させて、エジェクタ13の駆動側ノズル部31の駆動側入口31a側へ流出させる。中間圧膨張弁としては、中間圧膨張弁へ流入する高圧冷媒の圧力が、高圧冷媒の温度に応じて決定される目標高圧となるように絞り開度を変化させる可変絞り機構を採用することができる。 The intermediate pressure expansion valve decompresses the refrigerant flowing out of the radiator 12 in the ejector type refrigeration cycle 10 and causes the refrigerant to flow out to the drive side inlet 31a side of the drive side nozzle portion 31 of the ejector 13. As the intermediate pressure expansion valve, a variable expansion mechanism that changes the throttle opening so that the pressure of the high pressure refrigerant flowing into the intermediate pressure expansion valve becomes the target high pressure determined according to the temperature of the high pressure refrigerant can be adopted. can.
 また、エジェクタ式冷凍サイクル10aに、中間圧膨張弁を追加したサイクルに適用してもよい。 Further, it may be applied to a cycle in which an intermediate pressure expansion valve is added to the ejector type refrigeration cycle 10a.
 中間圧膨張弁は、エジェクタ式冷凍サイクル10aにおいて、放熱器12から流出した冷媒を減圧させて、分岐部17の流入口側へ流出させる。中間圧膨張弁としては、第1蒸発器161から流出した冷媒の過熱度が、予め定めた基準過熱度に近づくように絞り開度を変化させる可変絞り機構を採用することができる。 The intermediate pressure expansion valve decompresses the refrigerant flowing out of the radiator 12 in the ejector type refrigeration cycle 10a and causes it to flow out to the inflow port side of the branch portion 17. As the intermediate pressure expansion valve, a variable throttle mechanism that changes the throttle opening so that the superheat degree of the refrigerant flowing out of the first evaporator 161 approaches a predetermined reference superheat degree can be adopted.
 また、上述の第3実施形態では、エジェクタ式冷凍サイクル10aの第1蒸発器161および第2蒸発器162を一体的に構成した例を説明したが、第1蒸発器161および第2蒸発器162を別体で形成してもよい。そして、第1蒸発器161および第2蒸発器162にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。 Further, in the above-mentioned third embodiment, an example in which the first evaporator 161 and the second evaporator 162 of the ejector type refrigeration cycle 10a are integrally configured has been described, but the first evaporator 161 and the second evaporator 162 have been described. May be formed separately. Then, the first evaporator 161 and the second evaporator 162 may cool the different refrigerant target fluids in different temperature zones.
 エジェクタ13、113では、負荷変動によらず高い昇圧能力を発揮するので、例えば、冷媒蒸発温度が第2蒸発器162よりも高くなる第1蒸発器161を、空調対象空間へ送風される空調用の送風空気をするために用いてもよい。そして、冷媒蒸発温度が第1蒸発器161よりも低くなる第2蒸発器162を、冷凍庫内へ循環送風される冷凍庫用の送風空気を冷却するために用いてもよい。 Since the ejectors 13 and 113 exhibit high boosting ability regardless of load fluctuations, for example, the first evaporator 161 whose refrigerant evaporation temperature is higher than that of the second evaporator 162 is used for air conditioning to be blown to the air conditioning target space. It may be used to blow air. Then, the second evaporator 162, in which the refrigerant evaporation temperature is lower than that of the first evaporator 161 may be used to cool the blown air for the freezer that is circulated and blown into the freezer.
 エジェクタ式冷凍サイクル10、10aの各構成については、上述の実施形態に開示されたものに限定されない。 The configurations of the ejector type refrigeration cycles 10 and 10a are not limited to those disclosed in the above-described embodiment.
 例えば、圧縮機11は、電動圧縮機に限定されない。例えば、エジェクタ式冷凍サイクル10、10aが、エンジンを搭載する車両に適用される場合等は、エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。エジェクタ式冷凍サイクルでは、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機等を採用することができる。 For example, the compressor 11 is not limited to the electric compressor. For example, when the ejector type refrigeration cycles 10 and 10a are applied to a vehicle equipped with an engine, an engine drive type compressor driven by a rotational driving force transmitted from the engine may be adopted. In the ejector type refrigeration cycle, as the engine drive type compressor, a variable capacity type compressor or the like whose refrigerant discharge capacity can be adjusted by changing the discharge capacity can be adopted.
 また、亜臨界冷凍サイクルを構成するエジェクタ式冷凍サイクルの放熱器12として、いわゆるサブクール型の凝縮器を採用してもよい。 Further, a so-called subcool type condenser may be adopted as the radiator 12 of the ejector type refrigeration cycle constituting the subcritical refrigeration cycle.
 サブクール型の凝縮器は、凝縮部、レシーバ部、および過冷却部を有している。凝縮部は、冷媒と外気とを熱交換させて、冷媒を凝縮させる。レシーバ部は、凝縮部から流出した冷媒の気液を分離して、分離された液相冷媒の一部をサイクルの余剰冷媒として蓄える。過冷却部は、レシーバ部から流出した液相冷媒と外気とを熱交換させて、液相冷媒を過冷却する。 The subcool type condenser has a condensing part, a receiver part, and a supercooling part. The condensing unit exchanges heat between the refrigerant and the outside air to condense the refrigerant. The receiver unit separates the gas and liquid of the refrigerant flowing out from the condensing unit, and stores a part of the separated liquid phase refrigerant as a surplus refrigerant in the cycle. The supercooling unit supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant flowing out from the receiver unit and the outside air.
 また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2実施形態で説明したエジェクタ113を、第3実施形態で説明したエジェクタ式冷凍サイクル10aに適用してもよい。 Further, the means disclosed in each of the above embodiments may be appropriately combined to the extent practicable. For example, the ejector 113 described in the second embodiment may be applied to the ejector type refrigeration cycle 10a described in the third embodiment.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (9)

  1.  冷凍サイクル装置に適用されるエジェクタであって、
     駆動側冷媒を減圧して超音速となるまで加速させて、気液二相状態の駆動側噴射冷媒を噴射する駆動側ノズル部(31、131)と、
     吸引側冷媒を吸引する冷媒吸引口(321)、前記冷媒吸引口から吸引された前記吸引側冷媒を減圧して噴射する吸引側ノズル部(322)、前記吸引側ノズル部から噴射された吸引側噴射冷媒と前記駆動側噴射冷媒とを混合させる混合部(323)、および前記混合部にて混合された混合冷媒の運動エネルギを圧力エネルギに変換するディフューザ部(324)を有するボデー部(32、132)と、を備え、
     前記駆動側ノズル部の駆動側噴射口(31e)と前記吸引側ノズル部の吸引側噴射口(322a)は、前記駆動側噴射冷媒の噴射方向と前記吸引側噴射冷媒の噴射方向が同等の方向となるように開口しており、
     前記駆動側噴射冷媒の圧力は、前記吸引側噴射冷媒の圧力よりも高くなっており、
     前記混合部から流出して前記ディフューザ部へ流入する前記混合冷媒は、中心軸側の冷媒圧力と壁面側の冷媒圧力が一致しているとともに、亜音速になっているエジェクタ。
    An ejector applied to refrigeration cycle equipment.
    The drive-side nozzles (31, 131) that inject the drive-side injection refrigerant in a gas-liquid two-phase state by decompressing the drive-side refrigerant and accelerating it to supersonic speed.
    A refrigerant suction port (321) that sucks the suction side refrigerant, a suction side nozzle portion (322) that depressurizes and injects the suction side refrigerant sucked from the refrigerant suction port, and a suction side ejected from the suction side nozzle portion. A body unit (32,) having a mixing unit (323) for mixing the injection refrigerant and the drive-side injection refrigerant, and a diffuser unit (324) for converting the kinetic energy of the mixed refrigerant mixed in the mixing unit into pressure energy. 132) and
    The drive-side injection port (31e) of the drive-side nozzle portion and the suction-side injection port (322a) of the suction-side nozzle portion have directions in which the injection direction of the drive-side injection refrigerant and the injection direction of the suction-side injection refrigerant are the same. It is open so that
    The pressure of the drive-side injection refrigerant is higher than the pressure of the suction-side injection refrigerant.
    The mixed refrigerant flowing out of the mixing section and flowing into the diffuser section is an ejector in which the refrigerant pressure on the central axis side and the refrigerant pressure on the wall surface side match and are subsonic.
  2.  前記混合部の出口の通路断面積を混合部出口面積Amixoutと定義し、前記ディフューザ部の出口の通路断面積をディフューザ部出口面積Aoutと定義したときに、
     前記ディフューザ部へ流入する前記混合冷媒の流速が亜音速となるように、
     Amixout/Aout
    が設定されている請求項1に記載のエジェクタ。
    When the passage cross-sectional area of the outlet of the mixing portion is defined as the mixing portion outlet area Augustout, and the passage cross-sectional area of the outlet of the diffuser portion is defined as the diffuser portion outlet area Aout,
    The flow velocity of the mixed refrigerant flowing into the diffuser section is subsonic.
    Amixout / Aout
    The ejector according to claim 1, wherein is set.
  3.  前記混合部の入口から出口へ至る軸方向の長さを混合部距離Lと定義し、前記駆動側噴射冷媒が前記混合部内で発生させた衝撃波を消滅させるために必要な軸方向の長さを緩和距離Lvと定義したときに、
     Lv<L
    となっている請求項1または2に記載のエジェクタ。
     但し、緩和距離Lvは、以下の数式で定義される。
     Lv=U0×(ρL×DL 2)/(18×μG
     U0:前記衝撃波の最上流部における前記混合冷媒の平均質量流速
     ρL:前記衝撃波の最上流部における前記混合冷媒中の液滴の密度
     DL:前記衝撃波の最上流部における前記混合冷媒中の液滴の直径
     μG:前記衝撃波の最上流部における前記混合冷媒中の気相冷媒の粘度
    The axial length from the inlet to the outlet of the mixing section is defined as the mixing section distance L, and the axial length required for the drive-side injection refrigerant to extinguish the shock wave generated in the mixing section is defined as the mixing section distance L. When defined as relaxation distance Lv,
    Lv <L
    The ejector according to claim 1 or 2.
    However, the relaxation distance Lv is defined by the following mathematical formula.
    Lv = U 0 × (ρ L × D L 2 ) / (18 × μ G )
    U 0: average mass flow rate [rho L of the mixed refrigerant in the most upstream portion of the shock wave: Density D of the droplet of the mixed refrigerant at the most upstream portion of the shock waves L: the mixed refrigerant at the most upstream portion of the shockwave Droplet diameter μ G : Viscosity of the gas phase refrigerant in the mixed refrigerant at the most upstream part of the shock wave.
  4.  前記衝撃波の最上流部における前記混合冷媒のマッハ数を初期マッハ数M0と定義したときに、
     1<M0<2.5
     1<L/Lv≦3.5
    となっている請求項3に記載のエジェクタ。
    When the Mach number of the mixed refrigerant in the most upstream part of the shock wave is defined as the initial Mach number M 0,
    1 <M 0 <2.5
    1 <L / Lv ≦ 3.5
    The ejector according to claim 3.
  5.  前記衝撃波の最上流部における前記混合冷媒のマッハ数を初期マッハ数M0と定義し、前記混合部の冷媒入口の径を混合部入口径Dmixと定義したときに、
     1<M0<2.5
     1<L/Dmix≦10
    となっている請求項3に記載のエジェクタ。
    When the Mach number of the mixed refrigerant in the most upstream portion of the shock wave is defined as the initial Mach number M 0, and the diameter of the refrigerant inlet of the mixing portion is defined as the mixing portion inlet diameter Dmix,
    1 <M 0 <2.5
    1 <L / Dmix ≦ 10
    The ejector according to claim 3.
  6.  前記混合部は、前記混合冷媒の流れ方向下流側へ向かうに伴って通路断面積が増加する形状に形成されている請求項4または5に記載のエジェクタ。 The ejector according to claim 4 or 5, wherein the mixing portion is formed in a shape in which the cross-sectional area of the passage increases as the mixed refrigerant moves toward the downstream side in the flow direction.
  7.  前記駆動側ノズル部は、内部に形成された冷媒通路内の気相冷媒が気相音速以下となるように加速する請求項1ないし6のいずれか1つに記載のエジェクタ。 The ejector according to any one of claims 1 to 6, wherein the drive-side nozzle portion accelerates so that the gas phase refrigerant in the refrigerant passage formed inside accelerates to be equal to or lower than the gas phase sound velocity.
  8.  前記駆動側ノズル部は、冷媒通路断面積を最も縮小させる喉部(31c)、および前記喉部から前記駆動側噴射口へ向かうに伴って通路断面積を拡大させる末広部(31d)を有し、
     前記喉部の通路断面積を喉部面積Anzthと定義し、前記駆動側噴射口の通路断面積を駆動側噴射口面積Anzoutと定義したときに、
     前記冷媒通路内の気相冷媒の速度が気相音速以下となるように、
     Anzout/Anzth
     が設定されている請求項7に記載のエジェクタ。
    The drive-side nozzle portion has a throat portion (31c) that reduces the refrigerant passage cross-sectional area most, and a divergent portion (31d) that expands the passage cross-sectional area as it goes from the throat portion to the drive-side injection port. ,
    When the passage cross-sectional area of the throat is defined as the throat area Anzth and the passage cross-sectional area of the drive-side injection port is defined as the drive-side injection port area Anzout,
    The speed of the gas phase refrigerant in the refrigerant passage is set to be equal to or lower than the gas phase sound velocity.
    Anzout / Anzth
    The ejector according to claim 7, wherein is set.
  9.  前記駆動側噴射口の通路断面積を駆動側噴射口面積Anzoutと定義し、前記吸引側噴射口の通路断面積を吸引側噴射口面積Asnoutと定義したときに、
     前記駆動側噴射冷媒の冷媒圧力が前記吸引側噴射冷媒の冷媒圧力よりも高くなるように、
     Asnout/Anzout
     が設定されている請求項1ないし8のいずれか1つに記載のエジェクタ。
    When the passage cross-sectional area of the drive-side injection port is defined as the drive-side injection port area Anzout, and the passage cross-sectional area of the suction-side injection port is defined as the suction-side injection port area Asnout,
    The refrigerant pressure of the drive-side injection refrigerant is higher than the refrigerant pressure of the suction-side injection refrigerant.
    Asnout / Anzout
    The ejector according to any one of claims 1 to 8, wherein is set.
PCT/JP2021/018569 2020-06-22 2021-05-17 Ejector WO2021261112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021003333.6T DE112021003333T5 (en) 2020-06-22 2021-05-17 ejector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-107080 2020-06-22
JP2020107080A JP7472675B2 (en) 2020-06-22 2020-06-22 Ejector

Publications (1)

Publication Number Publication Date
WO2021261112A1 true WO2021261112A1 (en) 2021-12-30

Family

ID=79244304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018569 WO2021261112A1 (en) 2020-06-22 2021-05-17 Ejector

Country Status (3)

Country Link
JP (1) JP7472675B2 (en)
DE (1) DE112021003333T5 (en)
WO (1) WO2021261112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157716A1 (en) * 2022-02-21 2023-08-24 株式会社デンソー Heat pump cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017946A (en) * 2010-07-09 2012-01-26 Denso Corp Refrigeration cycle device and control method of the same
JP2014115069A (en) * 2012-11-16 2014-06-26 Denso Corp Ejector
JP2015521703A (en) * 2012-06-12 2015-07-30 エンドレス ソーラー コーポレイション リミテッド Ejector and its operation method
WO2017135092A1 (en) * 2016-02-02 2017-08-10 株式会社デンソー Ejector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151000A (en) 1983-02-16 1984-08-29 Mitsubishi Heavy Ind Ltd Ejector
DK2691706T3 (en) 2011-06-27 2018-03-19 Carrier Corp Ejector mixer.
JP7088000B2 (en) 2018-12-27 2022-06-21 トヨタ自動車株式会社 Traffic information processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017946A (en) * 2010-07-09 2012-01-26 Denso Corp Refrigeration cycle device and control method of the same
JP2015521703A (en) * 2012-06-12 2015-07-30 エンドレス ソーラー コーポレイション リミテッド Ejector and its operation method
JP2014115069A (en) * 2012-11-16 2014-06-26 Denso Corp Ejector
WO2017135092A1 (en) * 2016-02-02 2017-08-10 株式会社デンソー Ejector

Also Published As

Publication number Publication date
JP2022001815A (en) 2022-01-06
DE112021003333T5 (en) 2023-04-06
JP7472675B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP6115344B2 (en) Ejector
JP4506877B2 (en) Ejector
JP6384374B2 (en) Ejector refrigeration cycle
JP6299495B2 (en) Ejector refrigeration cycle
US6966199B2 (en) Ejector with throttle controllable nozzle and ejector cycle using the same
JP6056596B2 (en) Ejector
JP6277869B2 (en) Ejector refrigeration cycle
JP6115345B2 (en) Ejector
JP6589537B2 (en) Refrigeration cycle equipment
JP6287890B2 (en) Liquid jet ejector and ejector refrigeration cycle
WO2018198609A1 (en) Ejector refrigeration cycle
WO2021261112A1 (en) Ejector
JP2018119542A (en) Ejector
JP6720933B2 (en) Ejector type refrigeration cycle
WO2018159322A1 (en) Ejector module and ejector-type refrigeration cycle
WO2019208428A1 (en) Ejector-type refrigeration cycle
JP5962596B2 (en) Ejector refrigeration cycle
JP4888050B2 (en) Refrigeration cycle equipment
JP4666078B2 (en) Ejector
JP6511873B2 (en) Ejector and ejector-type refrigeration cycle
WO2018139417A1 (en) Ejector
JP2017161214A (en) Evaporator unit
WO2017154603A1 (en) Evaporator unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828094

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21828094

Country of ref document: EP

Kind code of ref document: A1