JPS59151000A - Ejector - Google Patents

Ejector

Info

Publication number
JPS59151000A
JPS59151000A JP2268483A JP2268483A JPS59151000A JP S59151000 A JPS59151000 A JP S59151000A JP 2268483 A JP2268483 A JP 2268483A JP 2268483 A JP2268483 A JP 2268483A JP S59151000 A JPS59151000 A JP S59151000A
Authority
JP
Japan
Prior art keywords
flow
ejector
throat
driven
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268483A
Other languages
Japanese (ja)
Inventor
Kiyoshi Suzuki
潔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2268483A priority Critical patent/JPS59151000A/en
Publication of JPS59151000A publication Critical patent/JPS59151000A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To stabilize the operation and prevent the vibration of the device by a method wherein a parallel mixing part is provided between the inlet port of fluid to be driven and a second throat and the adhering point of the free expanding stream of the driven fluid to the inner wall of the ejector is generated in said mixing part to make the sectional area at said adhering point constant. CONSTITUTION:The parallel mixing part 4 is provided between the inlet port 1 of the fluid to be driven and the second throat 6. According to this constitution, even if the estimation of the streamline condition of the free expanding stream is not correct or there is an error or the like in the attachment of a supersonic nozzle 3, there will never affect to the performance of the device. Even if the adhering point 12 of the free expanding stream 11 is deviated to forward or backward directions, the sectional area at the adhering point 12 is constant and, accordingly, a suction pressure may be estimated and designed very correctly. The pressure recovery, effected by a diffuser 7, becomes constant and a regulation of a back pressure with respect to the pressure recovery becomes the same as the estimation and design thereof, therefore, the ejector may be operated in stable manner and vibration or the like may be prevented.

Description

【発明の詳細な説明】 本発明はロケットエンジン高空燃焼試験設備に使用され
るエゼクタあるいは製鉄所用等の産業用エゼクタに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ejector used in rocket engine high-altitude combustion test equipment or an industrial ejector for use in steel plants.

ロケットエンジン高空燃焼試験設備は、ロケットエンジ
ンの燃焼排気ガスをエゼクタで真空排気することによシ
、高空(=真空)での燃焼状態を模擬するが、この場合
、被駆動流の流量力i゛所定値だけでなく、零の時にも
安定した作動と吸込圧(到達真空度)とを要求される。
The rocket engine high-altitude combustion test facility simulates combustion conditions at high altitude (vacuum) by evacuating rocket engine combustion exhaust gas with an ejector, but in this case, the flow force of the driven flow i Stable operation and suction pressure (achieved vacuum) are required not only at a predetermined value but also at zero.

従来のエゼクタは第1図に示されるように入口部1と、
筒内の流れの方向に細くなつ【いる漸縮混合部5と、セ
カンドスロート6と、筒内の流れの方向に広がっている
ディフューザ7と、出口8とから構成される円筒で、内
部には超音速ノズル3、およびこれに駆動流Pを供給す
るための貫通管2が漸縮混合部5の中間に設けられてい
る。この構造においては、超音速ノズル3かもの駆動流
Pは超音速ノズル3から吹出して超音速で膨張し入口部
1から入った被駆動流Sと漸縮混合部内で混合して一様
な超音速混合流となる。この超音速混合流はセカンドス
ロート6で絞られてからディフューザ7内で衝撃波15
により圧力を回復して、亜音速流M/どなって出口8か
ら排出される。ところが入口部1とセカンドスロート6
との間の漸縮混合部5の形状が漸縮テーパ管の形であり
、入口部1から吸込まれる被駆動流Sの流量が零あるい
は少ない場合、後述のようにその吸込圧の予測、設計が
難しく、またひどい場合は超音速エゼクタとして作動し
なかったり、あるいは吸込圧の振動を生ずるなどの不具
合があった。したがって、従来のエゼクタは被駆動流S
の流量が設計値付近でのみ稼動され、零あるいは少い流
量での使用を避けていた。
As shown in FIG. 1, a conventional ejector has an inlet section 1;
It is a cylinder consisting of a gradual mixing part 5 that tapers in the direction of the flow inside the cylinder, a second throat 6, a diffuser 7 that widens in the direction of the flow inside the cylinder, and an outlet 8. A supersonic nozzle 3 and a through pipe 2 for supplying the driving flow P to the supersonic nozzle 3 are provided in the middle of the gradual mixing section 5. In this structure, the driving flow P from the supersonic nozzle 3 is blown out from the supersonic nozzle 3, expands at supersonic speed, and mixes with the driven flow S entering from the inlet section 1 in the gradual contraction mixing section to form a uniform supersonic flow. It becomes a sonic mixed flow. This supersonic mixed flow is throttled by the second throat 6 and then generated by a shock wave 15 in the diffuser 7.
The subsonic flow M/is discharged from the outlet 8 with a roar. However, the entrance part 1 and the second throat 6
If the shape of the gradual contraction mixing section 5 between the It is difficult to design, and in severe cases, it may not work as a supersonic ejector, or it may cause vibrations in the suction pressure. Therefore, the conventional ejector has a driven flow S
The system was operated only when the flow rate was close to the design value, and use at zero or low flow rates was avoided.

本発明は上述の欠点を排除して安定に作動するエゼクタ
を提供することを目的としている。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide an ejector that operates stably.

以下本発明を第2図〜第5図の実施例について説明する
The present invention will be described below with reference to the embodiments shown in FIGS. 2 to 5.

第2図においては、エゼクタ本体は、入口部1、平行混
合部4、漸縮混合部5、セカンドスロート6、ディフュ
ーザ7およびその出口8から構成される円筒で、内部に
は超音速ノズル3およびこれに駆動流Pを供給するため
の貫通管2が設けられている。この場合には従来のもの
と異なり、超音速ノズル3の出口付近で平行混合部4を
有していることである。
In FIG. 2, the ejector body is a cylinder consisting of an inlet part 1, a parallel mixing part 4, a gradual mixing part 5, a second throat 6, a diffuser 7 and its outlet 8, and a supersonic nozzle 3 and a supersonic nozzle 3 inside. A through pipe 2 for supplying a driving flow P to this is provided. This case differs from the conventional one in that it has a parallel mixing section 4 near the exit of the supersonic nozzle 3.

駆動流(以後−送流と称す)Pは貫通管2を通り、超音
速ノズル3の出口から平行混合部4内へ噴き出し超音速
膨張流11’となる。入口部1から入った被駆動流(以
後二次流と称す)Sは平行混合部4内で一次流の膨張流
11′により加速されや・り;て臨界点14で音速に達
し、その後平行混合部4の後半及び漸縮混合部5内で一
次流Pと二次流Sは混合して一様な超音速混合流Mとな
る。混合3、流Mはセカンドスロート6で絞られマツハ
数が小さく(ただし1より内きい)なってからディフュ
ーザ7内で衝撃波15により圧力回復し亜音速流M’と
なって出口8から排出する。
The driving flow (hereinafter referred to as "feeding flow") P passes through the through pipe 2 and is ejected from the outlet of the supersonic nozzle 3 into the parallel mixing section 4 to become a supersonic expansion flow 11'. The driven flow (hereinafter referred to as secondary flow) S entering from the inlet part 1 is accelerated by the expansion flow 11' of the primary flow in the parallel mixing part 4; it reaches the sonic speed at the critical point 14, and then the parallel The primary flow P and the secondary flow S are mixed in the latter half of the mixing section 4 and within the gradual contraction mixing section 5 to form a uniform supersonic mixed flow M. The mixture 3, the flow M, is throttled by the second throat 6 and the Matsuha number becomes small (but less than 1), and then the pressure is recovered by the shock wave 15 in the diffuser 7, and it becomes a subsonic flow M' and is discharged from the outlet 8.

零二送流時(二次流Sの流量が零)は、超音速ノズル3
から噴出した二次流Sは自由膨張流11となって平行混
合部4の内壁の自由膨張流の付着点12に付着し、斜め
衝撃波13を生ずる。その後超音速一次流Mはセカンド
スロート6で絞られディフューザ7内で衝撃波15によ
り圧力回復する。
During zero flow flow (the flow rate of the secondary flow S is zero), the supersonic nozzle 3
The secondary flow S jetted out becomes a free expansion flow 11 and adheres to an attachment point 12 of the free expansion flow on the inner wall of the parallel mixing section 4, generating an oblique shock wave 13. Thereafter, the supersonic primary flow M is throttled by the second throat 6 and the pressure is restored in the diffuser 7 by the shock wave 15.

雰二送流時のエゼクタの吸込圧は一次流自由膨張流11
の付着点12における断面積(Aと呼ぶ)と超音速ノズ
ル3のスロート3*の断面積(A*と呼ぶ)の膨張比A
/A*によって決まる。ところが、自由膨張流11の流
線状況の計算予測は難しくまた予測し得たとしても超音
速ノズル3の取付誤差、漸縮混合部5の製作誤差等によ
り、従来のエゼクタ(第1図参照)では自由膨張流11
の付着点12の位置が不明確であった。この場合、例え
ば付着点12が予測より下流にずれれば膨張比A/A*
が小さくなり吸込圧は高く(到達真空度が悪()なる。
The suction pressure of the ejector during atmosphere flow is the primary flow free expansion flow 11
The expansion ratio A of the cross-sectional area at the attachment point 12 of the supersonic nozzle 3 (referred to as A) and the cross-sectional area of the throat 3* of the supersonic nozzle 3 (referred to as A*)
/A*. However, it is difficult to calculate and predict the streamline situation of the free expansion flow 11, and even if it were possible to predict it, due to installation errors of the supersonic nozzle 3, manufacturing errors of the gradual contraction mixing section 5, etc., it is difficult to predict the flow line state of the free expansion flow 11. Now, the free expansion flow 11
The position of the attachment point 12 was unclear. In this case, for example, if the attachment point 12 shifts downstream than predicted, the expansion ratio A/A*
becomes smaller and the suction pressure becomes higher (the ultimate degree of vacuum becomes worse).

逆に予測より上流にずれると膨張比A、/A*が太き(
なって吸込圧は低くなるものの、ディフューザ7の出口
8での回復圧力は低(なり、ひどい時には背圧との整合
が不亘能となりついには自由膨張流11が漸縮混合部5
の内壁に付着せずば(離を生ずる。こうなると超音速エ
ゼクタとして作動しないか、あるいは、何着、はく離を
くり返してディフューザ7内のガスが入口部1に逆流し
て振動し設備を危険な状態にすることもある。
Conversely, if it deviates upstream from the prediction, the expansion ratio A, /A* becomes thicker (
Although the suction pressure becomes low, the recovery pressure at the outlet 8 of the diffuser 7 becomes low (in severe cases, it becomes impossible to match with the back pressure, and the free expansion flow 11 eventually flows into the gradual contraction mixing section 5).
If it does not adhere to the inner wall of the diffuser 7, it will cause separation. If this happens, the supersonic ejector will not work, or the gas in the diffuser 7 will flow back into the inlet 1 and vibrate, causing dangerous equipment. It can also be a state.

これに対し、本発明のエゼクタ(第2図参照)では、平
行混合部4が有るので、自由膨張流11の流線状況予測
が正確でなくても、また超音波ノズル3の取刊誤差等が
有っても、それらに影響されない。即ち、自由膨張流1
1の付着点12が前後にずれユも、付着点12における
断面積A!ま一定であり、A/A*で決まる吸込圧(到
達真空度)はきわめて正確に予測・設計できる。またこ
れにより、ディフューザ7による圧力回復も一定するこ
とになり、背圧との整合も予測・設計どおりとなって安
定に作動し、振動等の不具合から解放される。
In contrast, in the ejector of the present invention (see FIG. 2), since there is a parallel mixing section 4, even if the prediction of the streamline situation of the free expansion flow 11 is not accurate, the handling error of the ultrasonic nozzle 3 etc. Even if there are, it is not affected by them. That is, the free expanding flow 1
Even if the attachment point 12 of 1 shifts back and forth, the cross-sectional area at the attachment point 12 is A! The suction pressure (achieved vacuum) determined by A/A* can be predicted and designed extremely accurately. Moreover, as a result, the pressure recovery by the diffuser 7 is also constant, and the matching with the back pressure is as predicted and designed, resulting in stable operation and freedom from problems such as vibration.

以上の効果は零二送流時のみではな(少二送流時にも発
揮される。すなわち、第2図に示されるように二次流S
の臨界点14が平行混合部4内に有るので、臨界点14
の位置が前後しても、臨界点14における二次流Sの断
面積(iと呼ぶ)、および−送流Pの断面積(A′と呼
ぶ)の和A′十へ“=Aは一定である。よっである二次
流量Sに対する吸込圧は一定となり、また混合流Mの回
復圧も一定となる。
The above effect is exerted not only when the secondary flow S
Since the critical point 14 of is located in the parallel mixing section 4, the critical point 14
Even if the position of is changed, the sum of the cross-sectional area of the secondary flow S at the critical point 14 (referred to as i) and the cross-sectional area of the − sending flow P (referred to as A') = A is constant. Therefore, the suction pressure for a certain secondary flow rate S becomes constant, and the recovery pressure of the mixed flow M also becomes constant.

尚、ここでセカンドスロート6の効果を参考までに説明
しておく。セカンドスロートと言う名称は超音速ノズル
3のスロート3*を1番目のスロートとみなした場合の
第二のスロートという意味から付けられている。混合流
M(零二送流時は−送流のみ)はセカンドスロート6で
絞られることにより、衝撃波15の直前マツハ数を小さ
くし、このため衝撃波15による全圧の損失を抑えるこ
とができディフューザ7の出口8での回復圧力を高める
ことができるのである。
Here, the effect of the second throat 6 will be explained for reference. The name "second throat" comes from the meaning of the second throat when the throat 3* of the supersonic nozzle 3 is regarded as the first throat. By narrowing the mixed flow M (only - flow when sending zero two flows) by the second throat 6, the Matsuha number just before the shock wave 15 is reduced, and therefore the loss of total pressure due to the shock wave 15 can be suppressed. This makes it possible to increase the recovery pressure at the outlet 8 of 7.

第2図においては、入口部1での二次流Sの圧力損失を
抑えるため入口部10ロ径を平行混合部40口径より大
きくしであるが、との圧損が問題にならない場合は第3
図に示すように、入口部1と平行混合部40口径を同じ
にしても良い。これと図1に示される従来のものを混同
してはならない。
In Fig. 2, in order to suppress the pressure loss of the secondary flow S at the inlet part 1, the diameter of the inlet part 10 is made larger than the diameter of the parallel mixing part 40, but if the pressure loss between the
As shown in the figure, the diameters of the inlet section 1 and the parallel mixing section 40 may be the same. This should not be confused with the conventional one shown in FIG.

また、−送流Pの超音速ノズル3はエゼクタ本体の中心
に設けなくても第4図に示すように本体の縁に設けても
良い。方式はアニユラ−(環状)ノズルと呼ばれる。
Moreover, the supersonic nozzle 3 for the -flow P does not have to be provided at the center of the ejector body, but may be provided at the edge of the ejector body as shown in FIG. The system is called an annular nozzle.

二次流の入口部1は第5図に示すように曲げても良い。The secondary flow inlet section 1 may be bent as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエゼクタの断面図、および第2図〜第5
図は本発明によるエゼクタの異なった実施例の断面図で
ある。 1・・入口部、2・・貫通管、13・・超音速ノズル、
3*拳・超音速ノズルのスロート、4・φ平行混合部、
5・・漸縮混合部、6・・セカンドスロート、7・中テ
ィフユーザ、8φ申出口、11・・自由膨張流、11!
・・超音速膨張流、12φ・自由膨張流の付着点、13
・・斜め、糟、!波、14・・臨界点、15・・衝撃波
。 第1 図 yf、Z図 第3図 第4図 、       第5図
Figure 1 is a sectional view of a conventional ejector, and Figures 2 to 5.
The figures are sectional views of different embodiments of ejectors according to the invention. 1. Inlet part, 2. Penetration pipe, 13. Supersonic nozzle,
3*Fist/supersonic nozzle throat, 4/φ parallel mixing part,
5. Gradual contraction mixing section, 6. Second throat, 7. Medium tiff user, 8φ outlet, 11. Free expansion flow, 11!
・Supersonic expansion flow, 12φ・Attachment point of free expansion flow, 13
...Diagonally, Kasu! Wave, 14...critical point, 15...shock wave. Fig. 1 yf, Z Fig. 3 Fig. 4, Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 被駆動流体の入口部とセカンドスロートとの間に平行混
合部を設け、駆動流の自由膨張流の内壁付着点あるいは
被駆動流の臨界点をこの平行混合部内に生じさせるよう
にしたことを特徴とするエゼクタ。
A parallel mixing section is provided between the inlet of the driven fluid and the second throat, and an inner wall attachment point of the free expansion flow of the driving flow or a critical point of the driven flow is generated in this parallel mixing section. ejector.
JP2268483A 1983-02-16 1983-02-16 Ejector Pending JPS59151000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268483A JPS59151000A (en) 1983-02-16 1983-02-16 Ejector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268483A JPS59151000A (en) 1983-02-16 1983-02-16 Ejector

Publications (1)

Publication Number Publication Date
JPS59151000A true JPS59151000A (en) 1984-08-29

Family

ID=12089687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268483A Pending JPS59151000A (en) 1983-02-16 1983-02-16 Ejector

Country Status (1)

Country Link
JP (1) JPS59151000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940392A (en) * 1986-08-07 1990-07-10 British Aerospace Plc Jet pump with stabilized mixing of primary and secondary flows
JPH0526100U (en) * 1991-09-13 1993-04-06 吉村精機株式会社 Clothes wrinkle remover
JP2016200088A (en) * 2015-04-13 2016-12-01 三菱重工メカトロシステムズ株式会社 Ejector, and high-altitude combustion test exhaust equipment having the ejector
CN109186927A (en) * 2018-08-17 2019-01-11 中国科学技术大学 A kind of low stagnation pressure cold medium secondary-throat diffuser of injection
EP4052749A1 (en) * 2021-03-05 2022-09-07 Honeywell International Inc. Mixture entrainment device
DE112021003333T5 (en) 2020-06-22 2023-04-06 Denso Corporation ejector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940392A (en) * 1986-08-07 1990-07-10 British Aerospace Plc Jet pump with stabilized mixing of primary and secondary flows
JPH0526100U (en) * 1991-09-13 1993-04-06 吉村精機株式会社 Clothes wrinkle remover
JP2016200088A (en) * 2015-04-13 2016-12-01 三菱重工メカトロシステムズ株式会社 Ejector, and high-altitude combustion test exhaust equipment having the ejector
CN109186927A (en) * 2018-08-17 2019-01-11 中国科学技术大学 A kind of low stagnation pressure cold medium secondary-throat diffuser of injection
DE112021003333T5 (en) 2020-06-22 2023-04-06 Denso Corporation ejector
EP4052749A1 (en) * 2021-03-05 2022-09-07 Honeywell International Inc. Mixture entrainment device

Similar Documents

Publication Publication Date Title
US6877960B1 (en) Lobed convergent/divergent supersonic nozzle ejector system
EP0257834B1 (en) Jet pump
ATE248025T1 (en) NOZZLE FOR ULTRASONIC GAS FLOW AND INERTIAL SEPARATOR
US7581482B1 (en) Supersonic turning vane
NO20011893L (en) Swirl tubes for liquefying and separating components in a gas mixture
US6295805B1 (en) Exhaust induced ejector nozzle system and method
JP4613061B2 (en) Apparatus for reducing jet engine exhaust noise using a vibrating jet
JPS59151000A (en) Ejector
JP6005884B2 (en) Internal / external single expansion inclined nozzle with integrated tertiary flow
US4388045A (en) Apparatus and method for mixing and pumping fluids
US5202525A (en) Scramjet engine having improved fuel/air mixing
US9295952B2 (en) Venturi tube fluid mixer with at least two inflection points in the divergent section
US11905978B2 (en) Jet pump
US8870122B2 (en) Method and apparatus for controlling flow about a turret
JPH10141299A (en) Ejector for ejecting powder
JP6736553B2 (en) System and method for regulating the flow of a wet gas stream
US5362150A (en) Fluid mixer
US5325661A (en) Jet mixer noise suppressor using acoustic feedback
JP3938394B2 (en) Ejector
US6900246B2 (en) Method and device for generating an aerosol
JP2665386B2 (en) Coanda nozzle
RU2151920C1 (en) Gas injector
JP2023533328A (en) Nozzle device for jet pump and jet pump
JP2001289123A (en) Pressure reducing device for high-altitude test
EP0979951A1 (en) Liquid-gas jet apparatus