WO2021260896A1 - 光通信システム - Google Patents
光通信システム Download PDFInfo
- Publication number
- WO2021260896A1 WO2021260896A1 PCT/JP2020/025071 JP2020025071W WO2021260896A1 WO 2021260896 A1 WO2021260896 A1 WO 2021260896A1 JP 2020025071 W JP2020025071 W JP 2020025071W WO 2021260896 A1 WO2021260896 A1 WO 2021260896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- wavelength dispersion
- optical communication
- dispersion compensation
- communication device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
- H04B10/272—Star-type networks or tree-type networks
Definitions
- the present invention relates to an optical communication system.
- Wavelength dispersion is a phenomenon that occurs because the propagation speed of an optical signal when it propagates through an optical fiber differs for each wavelength, and the longer the optical fiber, the greater the effect of wavelength dispersion.
- Wavelength distortion due to wavelength dispersion can be compensated by using a dispersion compensating fiber (hereinafter referred to as “DCF” (Dispersion Compensation Fiber)) having a wavelength dispersion characteristic opposite to that of the optical fiber of the optical transmission line (for example, non-patented). See Document 1).
- DCF Dispersion Compensation Fiber
- FBG-DCM FBG-based continuous Dispersion Compensation Modules
- FBG fiber Bragg gratings
- DCM Chromatic Dispersion Compensation Module
- the wavelength dispersion compensation module can suppress the signal quality deterioration caused by the wavelength dispersion below a certain reference value. Therefore, the compensable wavelength dispersion range is limited to the range corresponding to the reference value (see, for example, Non-Patent Documents 1 to 3).
- An optical communication system typified by PON (Passive Optical Network) that performs branch fiber multiple access branches one path into a plurality of paths at a branch point to accommodate a plurality of optical communication devices. Therefore, there is an advantage that it is not necessary to install an optical transmission line for each of a plurality of optical communication devices.
- PON Passive Optical Network
- FIG. 10 is a block diagram showing a configuration of an optical communication system 100, which is an example of an optical communication system that performs branch fiber multiple access.
- a single optical communication device 101 installed in the central station is connected to the optical fiber transmission line 130, and the optical fiber transmission line 130 is connected to one end of the optical splitter 131.
- the optical splitter 131 is a 1: N-branched optical splitter that branches a path from one end into N paths, and a plurality of optical communication devices 110-1 to 110-N are connected to each of the N paths.
- N is an integer of 2 or more.
- the optical communication devices 101 installed in the central station are called CUs (Centralized Units), and the optical communication devices 110-1 to 110-N installed in different positions are called DUs (Distributed Units).
- the optical transmission line length between each of the optical communication device 101 which is a CU and the optical communication devices 110-1 to 110-N which are DUs. Is different for each optical communication device 110-1 to 110-N. Since the optical transmission path lengths are different, the amount of wavelength dispersion generated in the optical signal transmitted by the optical communication device 101 and received by each of the optical communication devices 110-1 to 110-N is also different. Therefore, the amount of wavelength dispersion compensation to be compensated for the optical signal propagating in the path from the optical communication device 101 to each of the optical communication devices 110-1 to 110-N is also different.
- a method of configuring the optical communication system 100a shown in FIG. 11 is conceivable. Be done.
- the wavelength dispersion compensation module 120 corresponding to each of the optical communication devices 110-1 to 110-N in the path between each of the optical communication devices 110-1 to 110-N and the optical splitter 131. -1 to 120-N are inserted.
- each of the wavelength dispersion compensation modules 120-1 to 120-N is generated in the optical signal propagating in the path to the corresponding optical communication devices 110-1 to 110-N. It becomes possible to individually compensate for the amount of wavelength dispersion.
- an object of the present invention is to provide a technique capable of improving signal quality while suppressing the cost required for system construction.
- One aspect of the present invention is a plurality of second optical communication devices arranged at different positions from the first optical communication device and communicating with the first optical communication device.
- the optical communication device, the wavelength dispersion compensating device connected to the first optical communication device, and the path connected to the wavelength dispersion compensating device and connected to the wavelength dispersion compensating device are branched into a plurality of paths at the branch point.
- Each of the branched paths includes an optical transmission path that connects to each of the plurality of second optical communication devices and transmits an optical signal through the path, and the wavelength dispersion compensating device comprises the first light.
- It is an optical communication system including a wavelength dispersion compensating unit that performs wavelength dispersion compensation according to the amount of wavelength dispersion generated in an optical signal propagating in a path between a communication device and each of the plurality of second optical communication devices.
- FIG. 1 is a block diagram showing a configuration of an optical communication system 1 according to the first embodiment.
- the solid line connection line indicates that the connection is made by an optical fiber
- the broken line connection line indicates a communication line provided separately from the solid line connection line.
- the optical communication system 1 is an optical communication system that performs branch fiber multiple access.
- the optical communication system 1 includes an optical communication device 2, N optical communication devices 3-1 to 3-i to 3-N, a wavelength dispersion compensation device 4, an optical transmission line 5, and a wavelength dispersion compensation amount setting device 6.
- N is an integer of 2 or more
- i is any value from 1 to N.
- Each of the optical communication devices 3-1 to 3-i to 3-N, which is a DU is installed in, for example, a building of a user of a communication service provided by the optical communication system 1.
- the optical communication device 2 is a CU installed in the building of the central station. As shown in FIG. 2, the optical communication device 2 includes an optical transmission unit 20 that transmits an optical signal.
- the optical transmission unit 20 includes an electric signal generation unit 21 and an optical signal generation unit 22.
- the electric signal generation unit 21 encodes transmission data, which is an information source, and converts the encoded transmission data into an electric signal waveform to generate and output an electric signal of the transmission data.
- the optical signal generation unit 22 is connected to an optical fiber and converts an electric signal of transmission data output by the electric signal generation unit 21 into an optical signal.
- the optical signal generation unit 22 sends the converted optical signal to the optical fiber.
- the optical signal generation unit 22 When the optical signal generation unit 22 receives an instruction signal instructing transmission of an optical signal for wavelength dispersion detection from the wavelength dispersion compensation amount setting device 6, the optical signal generation unit 22 generates a predetermined optical signal for wavelength dispersion detection in the optical fiber. Send out.
- FIG. 3 is a block diagram showing an internal configuration of the optical communication device 3-i.
- the optical communication device 3-i includes an optical receiving unit 30-i for receiving an optical signal.
- the optical receiving unit 30-i includes an optical signal receiving unit 31-i and an electric signal processing unit 32-i.
- the optical signal receiving unit 31-i receives an optical signal through the connected optical fiber.
- the optical signal receiving unit 31-i converts the received optical signal into an electric signal and outputs it to the electric signal processing unit 32-i.
- the electric signal processing unit 32-i decodes the electric signal output by the optical signal receiving unit 31-i and restores the transmission data.
- the electric signal processing unit 32-i transmits information about the optical signal received by the optical signal receiving unit 31-i to the wavelength dispersion compensation amount setting device 6. do.
- the information regarding the optical signal is, for example, information on the shape of the waveform of the optical signal.
- the optical transmission path 5 accommodates a plurality of optical communication devices 3-1 to 3-N by an optical fiber branched at a branch point, and the optical signal transmitted by the wavelength dispersion compensator 4 is transmitted to the optical communication device 3. Transmit from -1 to 3-N.
- the optical transmission line 5 includes an optical fiber transmission line 51, an optical amplifier 52, and an optical turnout 53 installed at a branch point.
- the optical fiber transmission line 51 is a transmission medium for optical signals, and is a transmission line having a length that causes wavelength dispersion that affects the signal quality of the optical signals to be transmitted.
- the optical amplifier 52 amplifies the optical signal.
- FIG. 1 shows an example in which the optical amplifier 52 is connected to the end of the optical fiber transmission line 51
- the optical amplifier 52 may be inserted in the middle of the optical fiber transmission line 51, or the optical amplifier 52 may be inserted in the middle of the optical fiber transmission line 51.
- a device such as an optical switch or a reproduction repeater may be connected to the optical fiber transmission line 51 or may be inserted in the middle of the optical fiber transmission line 51.
- the optical turnout 53 is a 1: N-branch optical turnout, and one end connected to the optical amplifier 52 via an optical fiber is branched into N paths. Each of the N paths to which the optical turnout 53 branches is connected to each of the optical communication devices 3-1 to 3-N via an optical fiber. As the optical turnout 53, for example, an optical splitter is applied.
- the wavelength dispersion compensating device 4 includes a wavelength dispersion compensating unit 40.
- the wavelength dispersion compensation unit 40 is provided with a plurality of wavelength dispersion compensation modules (CDCM) such as DCF and FBG-DCM in advance. Each of the plurality of wavelength dispersion compensation modules gives a different amount of wavelength dispersion compensation.
- the wavelength dispersion compensation unit 40 selects a wavelength dispersion compensation module according to the wavelength dispersion compensation amount set from the wavelength dispersion compensation amount setting device 6, and uses the selected wavelength dispersion compensation module with the optical communication device 2 and the optical fiber transmission path. Connect to 51.
- selecting the wavelength dispersion compensation module according to the wavelength dispersion compensation amount means that if there is a wavelength dispersion compensation module that performs wavelength dispersion compensation matching the wavelength dispersion compensation amount, the wavelength dispersion compensation module is selected and the said. If there is no wavelength dispersion compensation module that performs wavelength dispersion compensation that matches the wavelength dispersion compensation amount, select a wavelength dispersion compensation module that can compensate for the wavelength dispersion compensation amount that is close to the wavelength dispersion compensation amount.
- the wavelength dispersion compensation amount setting device 6 uses a communication line indicated by a broken line to connect the optical signal generation unit 22 of the optical communication device 2 and the electric signal processing unit 32-1 of the optical communication devices 3-1 to 3-N. Each of ⁇ 32-N is connected to the wavelength dispersion compensating unit 40 of the wavelength dispersion compensating device 4.
- the wavelength dispersion compensation amount setting device 6 is information on the optical signal for wavelength dispersion detection transmitted by the optical signal generation unit 22 of the optical communication device 2, that is, the optical signal for wavelength dispersion detection that is not affected by the wavelength dispersion. Information such as the shape of the waveform is stored in advance in the internal storage area.
- the wavelength dispersion compensation amount setting device 6 calculates the wavelength dispersion compensation amount set in the wavelength dispersion compensation unit 40, the wavelength dispersion compensation amount setting device 6 generates an optical signal of the optical communication device 2 instructing the transmission of an optical signal for wavelength dispersion detection. It is transmitted to the unit 22.
- the wavelength dispersion compensation amount setting device 6 has information on an optical signal affected by the wavelength dispersion received from each of the electric signal processing units 32-1 to 32-N and the influence of the wavelength dispersion stored in advance in the internal storage area.
- the amount of wavelength dispersion Dn (n 1) generated in the optical signal propagating in the path to each of the optical communication devices 3-1 to 3-N based on the information on the optical signal for detecting the wavelength dispersion that has not been received. , 2, ..., N) is calculated.
- Chromatic dispersion compensation amount setting unit 6 based on the calculated N number of chromatic dispersion D 1 ⁇ D N, and calculates the wavelength dispersion compensation amount D CDCM be set to the wavelength dispersion compensator 40.
- the wavelength dispersion compensation amount setting device 6 sets the calculated wavelength dispersion compensation amount DCDCM in the wavelength dispersion compensation unit 40.
- FIG. 4 is a flowchart showing a processing flow by the wavelength dispersion compensation amount setting device 6.
- the wavelength dispersion compensation amount setting device 6 In a state where the wavelength dispersion compensation amount is not set in the wavelength dispersion compensation unit 40 and the wavelength dispersion compensation is not performed, the wavelength dispersion compensation amount setting device 6 outputs an instruction signal instructing transmission of an optical signal for wavelength dispersion detection. It is transmitted to the optical signal generation unit 22 of the optical communication device 2 (step S1).
- the optical signal generation unit 22 of the optical communication device 2 When the optical signal generation unit 22 of the optical communication device 2 receives an instruction signal from the wavelength dispersion compensation amount setting device 6, it generates a predetermined optical signal for wavelength dispersion detection and sends it to the optical fiber.
- the optical signal transmitted by the optical signal generation unit 22 of the optical communication device 2 reaches the optical branching device 53 via the wavelength dispersion compensation unit 40, the optical fiber transmission path 51, and the optical amplifier 52.
- the optical turnout 53 branches the optical signal received at one end into N optical signals.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N receives each of the N optical signals branched by the optical turnout 53.
- the electric signal processing units 32-1 to 32-N transmit information regarding the optical signal received by each of the optical signal receiving units 31-1 to 31-N to the wavelength dispersion compensation amount setting device 6.
- the wavelength dispersion compensation amount setting device 6 transfers information on an optical signal affected by the wavelength dispersion received from the electric signal processing units 32-1 to 32-N and the influence of the wavelength dispersion stored in advance in the internal storage area.
- the amount of wavelength dispersion D generated in the optical signal propagating in the path from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N based on the information regarding the optical signal for detecting the wavelength dispersion that has not been received. 1 to DN are calculated (step S2).
- Chromatic dispersion compensation amount setting unit 6 based on the calculated N number of chromatic dispersion D 1 ⁇ D N, and calculates the wavelength dispersion compensation amount D CDCM be set to the wavelength dispersion compensator 40 (step S3).
- the wavelength dispersion compensation amount setting device 6 calculates the average value of N wavelength dispersion amounts D 1 to DN as the wavelength dispersion compensation amount DC DCM.
- the wavelength dispersion compensation amount setting device 6 sets the calculated wavelength dispersion compensation amount DCDCM in the wavelength dispersion compensation unit 40 (step S4).
- the wavelength dispersion compensation unit 40 selects a wavelength dispersion compensation module corresponding to the wavelength dispersion compensation amount DCDCM set from the wavelength dispersion compensation amount setting device 6, and uses the selected wavelength dispersion compensation module as the optical communication device 2 and the optical fiber. It connects to the transmission line 51. By this processing, the optical communication device 2 and the optical fiber transmission line 51 are connected to the wavelength dispersion compensation module suitable for compensating the wavelength dispersion compensation amount DCDCM.
- the optical communication device 2 starts transmitting transmission data to the optical communication devices 3-1 to 3-N. That is, the electric signal generation unit 21 of the optical communication device 2 encodes the transmission data as an information source and converts the encoded transmission data into the waveform of the electric signal to generate the electric signal of the transmission data and generate the optical signal. Output to unit 22.
- the optical signal generation unit 22 converts the electric signal into an optical signal.
- the optical signal generation unit 22 sends the converted optical signal to the optical fiber.
- the wavelength dispersion compensation amount DCDCM wavelength dispersion compensation is applied to the received optical signal. conduct.
- the wavelength dispersion compensating unit 40 sends an optical signal for which wavelength dispersion compensation has been performed to the optical transmission line 5.
- the optical fiber transmission line 51 of the optical transmission line 5 transmits an optical signal transmitted by the wavelength dispersion compensation unit 40, and the optical amplifier 52 amplifies the optical signal transmitted by the optical fiber transmission line 51.
- the optical branching device 53 branches the optical signal transmitted by the optical amplifier 52 into N optical signals, and sends the branched N optical signals to the optical fiber reaching each of the optical communication devices 3-1 to 3-N. do.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N receives the optical signal branched by the optical branching device 53 through the optical fiber.
- Each of the optical signal receiving units 31-1 to 31-N converts the received optical signal into an electric signal.
- Each of the optical signal receiving units 31-1 to 31-N outputs the converted electric signal to the corresponding electric signal processing units 32-1 to 32-N.
- the electric signal processing units 32-1 to 32-N take in the electric signal, decode the taken-in electric signal, and restore the transmission data.
- the optical communication system 1 of the first embodiment described above includes an optical communication device 2 which is a first optical communication device, and optical communication devices 3-1 to 3-N, each of which is a second optical communication device. It includes a wavelength dispersion compensating device 4 connected to the optical communication device 2 and an optical transmission path 5.
- the optical transmission path 5 is connected to the wavelength dispersion compensator 4, and the path connected to the wavelength dispersion compensator 4 is branched into a plurality of paths at the branch point, and each of the branched paths is an optical communication device 3-1 to 3. It connects to each of -N and transmits an optical signal through a path.
- the wavelength dispersion compensating device 4 includes one wavelength dispersion compensating unit 40, and the wavelength dispersion compensating unit 40, for example, takes a route from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N.
- the average value of the propagating light signals occurring the chromatic dispersion amount D 1 ⁇ D N compensates the wavelength dispersion compensation amount D CDCM.
- the optical communication apparatus 3-1 ⁇ 3-N of the chromatic dispersion D 1 ⁇ D N occurring in the optical signal propagating through the path to each of the optical communication apparatus 3-1 ⁇ 3-N, It becomes possible to receive an optical signal compensated for the wavelength dispersion compensation amount DCDCM.
- the wavelength dispersion compensating device 4 since the wavelength dispersion compensating device 4 is connected to the optical communication device 2 which is a CU, the wavelength dispersion compensating device 4 can be installed near the optical communication device 2, for example, in the building of the central station. .. Therefore, in the optical communication system 1, it is not necessary to dispatch a person to the installation position of the DU in order to perform wavelength dispersion compensation as in the optical communication system 100a shown in FIG.
- the wavelength dispersion compensation amount setting device 6 N pieces generated in the optical signal propagating in the path from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N without human intervention.
- the chromatic dispersion compensation amount D CDCM in accordance with the chromatic dispersion D 1 ⁇ D N can be set to the wavelength dispersion compensator 40.
- One wavelength dispersion compensation unit 40 is used instead of the wavelength dispersion compensation unit 40 for the number of optical communication devices 3-1 to 3-N, and wavelength dispersion compensation can be performed with a small number of facilities. Therefore, the optical communication system 1 in the first embodiment makes it possible to improve the signal quality by performing wavelength dispersion compensation while suppressing the cost required for system construction such as the cost required for humans and the cost required for equipment. ing.
- the wavelength dispersion compensation amount setting unit 6 is, for example, have an average value of N chromatic dispersion D 1 ⁇ D N calculated as the amount of chromatic dispersion compensation D CDCM
- an index value indicating characteristics other than the average value obtained from the N wavelength dispersion amounts D 1 to DN may be calculated as the wavelength dispersion compensation amount DCDCM.
- the wavelength dispersion compensating unit 40 can suppress the signal quality deterioration due to the wavelength dispersion to a certain reference value or less. Therefore, the compensable wavelength dispersion range is limited to the range corresponding to the reference value. Therefore, the amount of wavelength dispersion between the optical communication device 2 and each of the optical communication devices 3-1 to 3-N is within the range of the wavelength dispersion compensation amount compensated by the wavelength dispersion compensation unit 40. It is necessary that the communication device 2 and the optical communication devices 3-1 to 3-N are selected.
- FIG. 5 is a block diagram showing a configuration of the optical communication system 1a according to the second embodiment.
- the optical communication system 1a includes an optical communication device 2, an optical communication device 3-1 to 3-N, a wavelength dispersion compensation device 4a, an optical transmission line 5-1 and 5-2, and a wavelength dispersion compensation amount setting device 6a.
- the wavelength dispersion compensation amount DCDCM set in the wavelength dispersion compensation unit 40 is propagated along the path from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N. It had an average value of chromatic dispersion D 1 ⁇ D N occurring in the optical signal.
- optical communication device 2 if the state variation is not greater the difference in distance between each of the optical communication apparatus 3-1 ⁇ 3-N, since variation in the chromatic dispersion amount D 1 ⁇ D N is not large, applying the optical communication system 1 of the first embodiment, by the average value of the chromatic dispersion D 1 ⁇ D N and wavelength dispersion compensation amount D CDCM, optical communication optical communication apparatus 2 transmits device 3 Effective wavelength dispersion compensation can be performed for the optical signals received by 1 to 3-N.
- the optical communication devices 3-1 to 3-N are divided into, for example, two groups, and appropriate wavelength dispersion compensation is provided for each group. I try to do it.
- N is assumed to be an even number, and the optical communication devices 3-1 to 3-N / 2 and the optical communication device 3- (N) so that the numbers included in each group are the same. It is divided into two groups, / 2 + 1) to 3-N.
- the classification standard of the group is, for example, the distance from the optical communication device 2, and the reference distance is set in advance, and the optical communication devices 3-1 to 3-N / 2 are installed at a position equal to or less than the reference distance.
- the optical communication devices 3- (N / 2 + 1) to 3-N are groups installed at positions exceeding the reference distance.
- the wavelength dispersion compensating device 4a includes an optical turnout 41 and wavelength dispersion compensating units 40-1 and 40-2.
- the optical turnout 41 is a 1: 2 branching optical turnout, and one end connected to the optical communication device 2 via an optical fiber is branched into two paths. Each of the two paths to which the optical turnout 41 branches is connected to the wavelength dispersion compensation units 40-1 and 40-2.
- an optical splitter is applied as the optical turnout 41.
- the wavelength dispersion compensating units 40-1 and 40-2 have the same configuration as the wavelength dispersion compensating unit 40 of the first embodiment, and the wavelength dispersion compensation is set in each of the wavelength dispersion compensation amount setting device 6a. By selecting the wavelength dispersion compensating module according to the quantities D CDM # 1 and D DCMC # 2 , the wavelength dispersion compensation is performed for the optical signal received by each.
- the wavelength dispersion compensating unit 40-1 is connected to the optical transmission line 5-1 via the optical fiber
- the wavelength dispersion compensation unit 40-2 is connected to the optical transmission line 5-2 via the optical fiber.
- Each of the optical transmission lines 5-1 and 5-2 has the same configuration as the optical transmission line 5 of the first embodiment except for the following points.
- the optical turnout 53 included in the optical transmission line 5 of the first embodiment is 1: N-branch.
- the optical turnouts 53-1 and 53-2 provided in each of the optical transmission lines 5-1 and 5-2 have 1: N / 2 branching, that is, the optical amplifiers 52-1 and 52-2. It has a configuration in which one end connected via an optical fiber is branched into N / 2 paths.
- Each of the N / 2 paths to which the optical turnout 53-1 branches is connected to each of the optical communication devices 3-1 to 3-N / 2 via an optical fiber.
- Each of the N / 2 paths to which the optical turnout 53-2 branches is connected to each of the optical communication devices 3- (N / 2 + 1) to 3-N via an optical fiber.
- the wavelength dispersion compensation amount setting device 6a has the same configuration as the first wavelength dispersion compensation amount setting device 6 except for the following points.
- the first wavelength dispersion compensation amount setting device 6 is connected to the wavelength dispersion compensation unit 40 via a communication line, and the wavelength dispersion compensation amount setting device 6a is the wavelength dispersion compensation unit 40-1 and 40-2. Connect to each via a communication line.
- Chromatic dispersion compensation quantity setting device 6 of the first embodiment based on the calculated N number of chromatic dispersion D 1 ⁇ D N, and calculates the wavelength dispersion compensation amount D CDCM be set to the wavelength dispersion compensator 40.
- the wavelength dispersion compensation amount setting device 6 has set the calculated wavelength dispersion compensation amount DCDCM in the wavelength dispersion compensation unit 40.
- FIG. 6 is a flowchart showing a processing flow by the wavelength dispersion compensation amount setting device 6a.
- the wavelength dispersion compensation amount setting device 6a sends out an optical signal for wavelength dispersion detection. Is transmitted to the optical signal generation unit 22 of the optical communication device 2 (step Sa1).
- the optical signal generation unit 22 of the optical communication device 2 When the optical signal generation unit 22 of the optical communication device 2 receives an instruction signal from the wavelength dispersion compensation amount setting device 6a, the optical signal generation unit 22 generates a predetermined optical signal for wavelength dispersion detection and sends it to the optical fiber.
- the optical branching device 41 of the wavelength dispersion compensating device 4a branches the optical signal transmitted by the optical signal generation unit 22 of the optical communication device 2 into two optical signals.
- One of the optical signals branched by the optical turnout 41 reaches the optical turnout 53-1 through the wavelength dispersion compensation unit 40-1, the optical fiber transmission line 51-1, and the optical amplifier 52-1.
- the optical turnout 53-1 branches the optical signal received at one end into N / 2 optical signals.
- Each of the optical signal receiving units 31-1 to 31-N / 2 of the optical communication devices 3-1 to 3-N / 2 receives the N / 2 optical signals branched by the optical turnout 53-1.
- the electric signal processing units 32-1 to 32-N / 2 transmit information regarding the optical signal received by each of the optical signal receiving units 31-1 to 31-N / 2 to the wavelength dispersion compensation amount setting device 6a.
- the other optical signal branched by the optical turnout 41 reaches the optical turnout 53-2 through the wavelength dispersion compensation unit 40-2, the optical fiber transmission line 51-2, and the optical amplifier 52-2.
- the optical turnout 53-2 branches the optical signal received at one end into N / 2 optical signals.
- Each of the optical signal receiving units 31- (N / 2 + 1) to 31-N of the optical communication devices 3- (N / 2 + 1) to 3-N is an N / 2 optical signal branched by the optical branching device 53-2.
- the electrical signal processing units 32- (N / 2 + 1) to 32-N transmit information on the optical signals received by each of the optical signal receiving units 31- (N / 2 + 1) to 31-N to the wavelength dispersion compensation amount setting device 6a. Send.
- the wavelength dispersion compensation amount setting device 6a displays information on the optical signal affected by the wavelength dispersion received from the electric signal processing units 32-1 to 32-N and the influence of the wavelength dispersion stored in advance in the internal storage area. receiving on the basis of the information on the optical signal of wavelength dispersion detection is not, the optical communication apparatus 3-1 through the wavelength dispersion amount occurring in the optical signal propagating through the path to each of the 3-N D 1 ⁇ D N Calculate (step Sa2).
- the wavelength dispersion compensation amount D CDM # 2 to be set is calculated (step Sa3).
- the chromatic dispersion compensation amount setting unit 6a calculates the average value of chromatic dispersion D 1 ⁇ D N as a wavelength dispersion compensation amount D CDCM # 1, wavelength the average value of the chromatic dispersion amount D N / 2 + 1 ⁇ D N Calculated as the dispersion compensation amount D CDM # 2.
- the calculated wavelength dispersion compensation amount D DCMC # 1 is set in the wavelength dispersion compensation unit 40-1, and the calculated wavelength dispersion compensation amount D DCMC # 2 is set in the wavelength dispersion compensation unit 40-2.
- Set (step Sa4) The wavelength dispersion compensation unit 40-1 selects a wavelength dispersion compensation module corresponding to the wavelength dispersion compensation amount D CDM # 1 set from the wavelength dispersion compensation amount setting device 6a, and uses the selected wavelength dispersion compensation module as the optical communication device 2. And the optical fiber transmission line 51-1.
- the wavelength dispersion compensation unit 40-2 selects a wavelength dispersion compensation module corresponding to the wavelength dispersion compensation amount D CDM # 2 set from the wavelength dispersion compensation amount setting device 6a, and uses the selected wavelength dispersion compensation module as the optical communication device 2. And the optical fiber transmission line 51-2.
- the optical communication device 2 starts transmitting transmission data to the optical communication devices 3-1 to 3-N. That is, the electric signal generation unit 21 of the optical communication device 2 encodes the transmission data as an information source and converts the encoded transmission data into the waveform of the electric signal to generate the electric signal of the transmission data and generate the optical signal. Output to unit 22.
- the optical signal generation unit 22 converts the electric signal into an optical signal.
- the optical signal generation unit 22 sends the converted optical signal to the optical fiber.
- the optical branching device 41 of the wavelength dispersion compensating device 4a branches the optical signal transmitted by the optical signal generation unit 22 of the optical communication device 2 into two optical signals.
- the wavelength dispersion compensating unit 40-1 of the wavelength dispersion compensating device 4a compensates for the wavelength dispersion of the wavelength dispersion compensation amount D CDM # 1 for the received optical signal. conduct.
- the wavelength dispersion compensating unit 40-1 sends an optical signal for which wavelength dispersion compensation has been performed to the optical transmission line 5-1.
- the wavelength dispersion compensating unit 40-2 of the wavelength dispersion compensating device 4a receives the other optical signal branched by the optical branching device 41, the wavelength dispersion compensation amount D CDM # 2 wavelength dispersion compensation is applied to the received optical signal. conduct.
- the wavelength dispersion compensating unit 40-2 sends an optical signal for which wavelength dispersion compensation has been performed to the optical transmission line 5-2.
- the optical fiber transmission lines 51-1 and 51-2 of the optical transmission lines 5-1 and 5-2 transmit the optical signals transmitted by the wavelength dispersion compensating units 40-1 and 40-2 connected to each, and are optical amplifiers. 52-1 and 52-2 amplify the optical signal transmitted by the optical fiber transmission lines 51-1 and 51-2 connected to each.
- the optical branchers 53-1 and 53-2 branch the optical signal transmitted by the optical amplifiers 52-1 and 52-2 connected to each into N / 2 optical signals, and the branched N / 2 optical signals. The signal is sent to the optical fiber reaching each of the optical communication devices 3-1 to 3-N / 2,3- (N / 2 + 1) to 3-N.
- Each of the optical signal receiving units 31-1 to 31-N / 2 of the optical communication devices 3-1 to 3-N / 2 receives the optical signal branched by the optical branching device 53-1 through the optical fiber.
- the optical signal receiving units 31-1 to 31-N / 2 convert the received optical signal into an electric signal.
- the optical signal receiving units 31-1 to 31-N / 2 output the converted electric signals to the corresponding electric signal processing units 32-1 to 32-N / 2.
- the electric signal processing units 32-1 to 32-N / 2 take in the electric signal, decode the taken-in electric signal, and restore the transmission data.
- Each of the optical signal receiving units 31- (N / 2 + 1) to 31-N of the optical communication devices 3- (N / 2 + 1) to 3-N receives the optical signal branched by the optical branching device 53-2 through the optical fiber. do.
- the optical signal receiving units 31- (N / 2 + 1) to 31-N convert the received optical signal into an electric signal.
- the optical signal receiving units 31- (N / 2 + 1) to 31-N output the converted electric signals to the corresponding electric signal processing units 32- (N / 2 + 1) to 32-N.
- the electric signal processing units 32- (N / 2 + 1) to 32-N take in the electric signal, decode the taken-in electric signal, and restore the transmission data.
- the wavelength dispersion compensating device 4a includes an optical branching device 41 and wavelength dispersion compensating units 40-1 and 40-2, and the optical branching device 41 includes an optical branching device 41.
- the path connected to the optical communication device 2 is branched into a number of paths matching the number of optical transmission paths 5-1 and 5-2.
- the wavelength dispersion compensating units 40-1 and 40-2 are provided corresponding to each of the optical transmission lines 5-1 and 5-2, and each of them is one of the paths branched by the optical branching device 41.
- the optical transmission lines 5-1 and 5-2 corresponding to each are connected one-to-one.
- the wavelength dispersion compensation unit 40-1 uses the average value of the wavelength dispersion amount generated in the optical signal propagating in the path from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N / 2 as the wavelength dispersion compensation amount. Compensate.
- the wavelength dispersion compensating unit 40-2 compensates for the average value of the wavelength dispersion generated in the optical signal propagating in the path from the optical communication device 2 to each of the optical communication devices 3- (N / 2 + 1) to 3-N. Compensate as quantity.
- the optical communication apparatus 3-1 ⁇ 3-N / 2 is an optical communication device 3-1 ⁇ 3-N / amount of chromatic dispersion occurring in the optical signal 2 of the path to each propagating D 1 ⁇ D Of N / 2 , it becomes possible to receive an optical signal compensated for the wavelength dispersion compensation amount D CDM # 1.
- the optical communication devices 3- (N / 2 + 1) to 3-N have a wavelength dispersion amount DN / generated in the optical signal propagating in the path leading to each of the optical communication devices 3- (N / 2 + 1) to 3-N. Of 2 + 1 to DN , it becomes possible to receive an optical signal compensated for the wavelength dispersion compensation amount DCDCM # 2.
- the wavelength dispersion compensating device 4a since the wavelength dispersion compensating device 4a is connected to the optical communication device 2 which is a CU, the wavelength dispersion compensating device 4a can be installed near the optical communication device 2, for example, in the building of the central station. .. Therefore, in the optical communication system 1, it is not necessary to dispatch a person to the installation position of the DU in order to perform wavelength dispersion compensation as in the optical communication system 100a shown in FIG.
- the wavelength dispersion compensation amount setting device 6a By providing the wavelength dispersion compensation amount setting device 6a, N generated in the optical signal propagating in the path from the optical communication device 2 to each of the optical communication devices 3-1 to 3-N / 2 without human intervention.
- the wavelength dispersion compensation amount D CDCM # 1 in accordance with the chromatic dispersion D 1 ⁇ D N / 2 is set to the wavelength dispersion compensator 40-1, the optical communication device from the optical communication device 2 3- (N / 2 + 1) to the amount of chromatic dispersion N / 2 pieces of occurring in the optical signal propagating through the path to each of the 3-N D N / 2 + 1 ⁇ D N wavelength dispersion compensation amount of chromatic dispersion compensation D CDCM # 2 in accordance with the It can be set in the unit 40-2.
- Two wavelength dispersion compensation units 40-1 and 40-2 are used instead of the wavelength dispersion compensation unit 40 for the number of optical communication devices 3-1 to 3-N, and the wavelength dispersion compensation is performed with a small number of equipment. It can be performed. Therefore, the optical communication system 1a in the second embodiment makes it possible to improve the signal quality by performing wavelength dispersion compensation while suppressing the cost required for system construction such as the cost required for humans and the cost required for equipment. ing.
- the second embodiment is used. It is possible to perform more appropriate wavelength dispersion compensation than the optical communication system 1 of the first embodiment.
- the group of optical communication devices 3-1 to 3-N / 2 installed at a position equal to or less than the reference distance based on the distance from the optical communication device 2 and the reference distance. It is divided into groups of optical communication devices 3- (N / 2 + 1) to 3-N installed at positions exceeding.
- N / 2 pieces of variation values at a wavelength dispersion amount D 1 ⁇ D N / 2 can be reduced, N / 2 pieces of chromatic dispersion D N / 2 + 1 ⁇ D N
- the variation in the values in can also be reduced.
- wavelength dispersion is performed as in the optical communication system 1a of the second embodiment.
- a wavelength dispersion compensation amount D CDCM # 1 corresponding to the amount D 1 ⁇ D N / 2
- the wavelength dispersion compensation amount D CDCM # utilized to chromatic dispersion compensation
- 2 corresponding to the wavelength dispersion amount D N / 2 + 1 ⁇ D N It is possible to perform more appropriate wavelength dispersion compensation.
- the optical communication system 1a of the second embodiment described above includes two optical transmission lines 5-1 and 5-2, for example, the distances of the optical fiber transmission lines 51-1 and 51-2 are set to different distances. be able to. Therefore, it can be applied to an environment in which the positions where the groups of the optical communication devices 3-1 to 3-N / 2 and the groups of the optical communication devices 3- (N / 2 + 1) to 3-N exist are significantly different. It is possible.
- the distance from the optical communication device 2 is used as a reference as a classification standard for dividing the optical communication devices 3-1 to 3-N into two groups. Is not limited to the distance from the optical communication device 2, and may be based on other parameters.
- the number of optical communication devices 3-1 to 3-N for each group is the same as N / 2, but the optical communication included in one group.
- the number of devices 3-1 to 3-N may be different for each group.
- the optical communication devices 3-1 to 3-N may be divided into three or more groups. However, the number of groups should be less than N in order to maintain the advantage of the branch fiber multiple access that shares the optical fiber transmission line when accommodating a plurality of optical communication devices 3-1 to 3-N. There is a need.
- the wavelength dispersion compensation amount setting device 6a calculates , for example, the average value of N / 2 wavelength dispersion amounts D 1 to DN / 2 as the wavelength dispersion compensation amount D CDC # 1. , N / 2 wavelength dispersion amounts DN / 2 + 1 to DN are calculated as the wavelength dispersion compensation amount DCDCM # 2 .
- the chromatic dispersion compensation amount setting unit 6a is obtained from N / 2 pieces of chromatic dispersion D 1 ⁇ D N / 2, or, N / 2 pieces of chromatic dispersion D N / 2 + 1 ⁇ D N
- An index value indicating a characteristic other than the average value may be calculated as the wavelength dispersion compensation amount D DCMC # 1 or the wavelength dispersion compensation amount D DCMC # 2.
- the wavelength dispersion compensating units 40-1 and 40-2 can suppress the signal quality deterioration caused by the wavelength dispersion to a certain reference value or less. Therefore, the compensable wavelength dispersion range is limited to the range corresponding to the reference value. Therefore, the wavelength dispersion amount between the optical communication device 2 and each of the optical communication devices 3-1 to 3-N / 2 is within the range of the wavelength dispersion compensation amount compensated by the wavelength dispersion compensation unit 40-1.
- the wavelength dispersion amount between the optical communication device 2 and each of the optical communication devices 3- (N / 2 + 1) to 3-N is within the range of the wavelength dispersion compensation amount compensated by the wavelength dispersion compensation unit 40-2. As described above, it is necessary that the optical communication device 2 and the optical communication devices 3-1 to 3-N are selected.
- FIG. 7 is a block diagram showing the configuration of the optical communication system 1b according to the third embodiment.
- the optical communication system 1b includes an optical communication device 2b, an optical communication device 3-1 to 3-N, a wavelength dispersion compensation device 4b, an optical transmission line 5b, and a wavelength dispersion compensation amount setting device 6b.
- the optical communication devices 3-1 to 3-N are divided into two groups, and different wavelength dispersion compensation amounts DCDCM # 1 and DCDCM # 2 are applied to each group. I was trying to compensate for wavelength dispersion. By doing so, for example, even when the difference in the distance between the optical communication device 2 and each of the optical communication devices 3-1 to 3-N is large, for example, the optical communication device 2 By dividing the optical communication devices 3-1 to 3-N into two groups based on the distance from, it becomes possible to perform appropriate wavelength dispersion compensation for each group.
- the optical signal propagating along the path to each of the optical communication devices 3-1 to 3-N is used. It occurs it is necessary to individually perform wavelength dispersion compensation for each of the chromatic dispersion D 1 ⁇ D N are.
- a means of expanding the configuration of the optical communication system 1a of the second embodiment to divide the optical communication devices 3-1 to 3-N into N groups is conceivable, but in this case, N optical transmission lines are conceivable. Since 5-1 to 5-N are provided, the merit of the branch fiber multiple access of sharing the optical fiber transmission line when accommodating a plurality of optical communication devices 3-1 to 3-N cannot be utilized.
- wavelength division multiplexing i.e., by utilizing the technique of WDM (Wavelength Division Multiplexing), while maintaining the benefits of fiber splitter multiple access, the chromatic dispersion amount D 1 it is made possible to individually perform wavelength dispersion compensation for each of the ⁇ D N.
- the optical communication device 2b includes N optical transmission units 20-1 to 20-N and a wavelength division multiplexing unit 23.
- each of the optical transmission units 20-1 to 20-N includes an electric signal generation unit 21-1 to 21-N and an optical signal generation unit 22-1 to 22-N.
- Each of the electric signal generation units 21-1 to 21-N has the same configuration as the electric signal generation unit 21 of the first embodiment, and each of the optical signal generation units 22-1 to 22-N has the same configuration as the first. It has the same configuration as the optical signal generation unit 22 of the embodiment.
- the wavelength division multiplexing unit 23 is connected to each of the optical signal generation units 22-1 to 22-N, and each of the N optical signals output by the optical signal generation units 22-1 to 22-N is N different. Converts to an optical signal of wavelength.
- the wavelength division multiplexing unit 23 multiplexes the converted optical signals having different wavelengths and sends them to an optical fiber connected to the wavelength dispersion compensator 4b.
- Each of -N is associated with each other in a one-to-one manner in advance.
- optical transmission unit 20-1 wavelength dispersion compensation unit 40-1, optical communication device 3-1
- optical transmission unit 20-2 wavelength dispersion compensation unit 40-2, optical communication device 3-2
- N different wavelengths are assigned to each of the N combinations of "optical transmission unit 20-N, wavelength dispersion compensation unit 40-N, optical communication device 3-N".
- the wavelength dispersion compensator 4b includes an optical duplexer 42, N wavelength dispersion compensators 40-1 to 40-N, and an optical duplexer 43.
- the optical duplexers 42 and 43 are, for example, 1: N-branched WDM couplers, and N optical signals received at one end of which N wavelengths are wavelength-multiplexed are demultiplexed for each wavelength and demultiplexed. Each of the signals is branched into N different paths and transmitted from each of the other ends of the N, which are the ends of the branched paths.
- the optical duplexers 42 and 43 combine the N optical signals of different wavelengths received at each of the N other ends and transmit them from one end.
- One end of the optical duplexer 42 is connected to the optical communication device 2b via an optical fiber, and each of the other ends of the N pieces is connected to each of the wavelength dispersion compensating units 40-1 to 40-N.
- One end of the optical duplexer 43 is connected to the optical fiber transmission line 51 via an optical fiber, and each of the other ends of the N pieces is connected to each of the wavelength dispersion compensating units 40-1 to 40-N.
- Each of the wavelength dispersion compensating units 40-1 to 40-N has the same configuration as the wavelength dispersion compensating unit 40 of the first embodiment, and the wavelength set for each by the wavelength dispersion compensation amount setting device 6b.
- the wavelength dispersion compensation module By selecting the wavelength dispersion compensation module according to the dispersion compensation amount D CDM # 1 to D DCMC # N , the wavelength dispersion compensation is performed for the optical signal passing through each.
- the optical transmission line 5b includes an optical fiber transmission line 51, an optical amplifier 52, and an optical duplexer 54.
- the optical group demultiplexer 54 has the same configuration as the optical group demultiplexers 42 and 43, and for example, a 1: N branch WDM coupler is applied.
- One end of the optical duplexer 54 is connected to the optical amplifier 52 via an optical fiber, and each of the N other ends is connected to each of the optical communication devices 3-1 to 3-N.
- the optical transmission unit 20-n, the wavelength dispersion compensation unit 40-n, and the optical communication device 3-n are associated with each other in a one-to-one manner in advance, and the wavelength multiplexing unit 23 is the optical transmission unit 20.
- Different wavelengths are assigned to each of the combinations of ⁇ n, the wavelength dispersion compensating unit 40—n, and the optical communication device 3-n. Therefore, the optical signal having the wavelength assigned by the wavelength multiplexing unit 23 to the optical signal transmitted by the optical transmission unit 20-n reaches the optical communication device 3-n via the wavelength dispersion compensating unit 40-n.
- the other end of the optical duplexer 42, 43 is connected to the wavelength dispersion compensating unit 40-1
- the other end of the optical duplexer 54 is connected to the optical communication device 3-1. ..
- the wavelength dispersion compensation amount setting device 6b has the same configuration as the first wavelength dispersion compensation amount setting device 6 except for the following points.
- the first wavelength dispersion compensation amount setting device 6 is connected to the wavelength dispersion compensation unit 40 via a communication line, and the wavelength dispersion compensation amount setting device 6b is the wavelength dispersion compensation unit 40-1 to 40-N. Connect to each via a communication line.
- Chromatic dispersion compensation quantity setting device 6 of the first embodiment based on the calculated N number of chromatic dispersion D 1 ⁇ D N, and calculates the wavelength dispersion compensation amount D CDCM be set to the wavelength dispersion compensator 40, The calculated wavelength dispersion compensation amount DCDCM was set in the wavelength dispersion compensation unit 40.
- the chromatic dispersion compensation amount setting device 6b is each of the wavelength dispersion amount D n corresponding to the optical communication device 3-n and the wavelength dispersion compensation amount D CDCM # n, the wavelength dispersion compensation amount D CDCM # n Each is set in the wavelength dispersion compensation unit 40-n corresponding to each.
- FIG. 9 is a flowchart showing a processing flow by the wavelength dispersion compensation amount setting device 6b.
- the wavelength dispersion compensation amount setting device 6b sends out an optical signal for wavelength dispersion detection. Is transmitted to each of the optical signal generation units 22-1 to 22-N of the optical communication device 2b (step Sb1).
- the optical signal generation units 22-1 to 22-N of the optical communication device 2b receive an instruction signal from the wavelength dispersion compensation amount setting device 6b, they generate a predetermined optical signal for wavelength dispersion detection to generate a predetermined wavelength dispersion detection unit 23. Send to.
- the wavelength division multiplexing unit 23 converts the N optical signals transmitted by the optical signal generation units 22-1 to 22-N into N optical signals having different wavelengths.
- the wavelength division multiplexing unit 23 performs wavelength division multiplexing of converted optical signals having different wavelengths and sends them to an optical fiber.
- the optical duplexer 42 of the wavelength dispersion compensator 4b demultiplexes the wavelength-multiplexed optical signal received at one end connected to the optical communication device 2b via an optical fiber into N wavelengths.
- the optical duplexer 42 sends each of the optical signals for detecting the wavelength dispersion of the N demultiplexed wavelengths to the wavelength dispersion compensating units 40-1 to 40-N.
- the wavelength dispersion compensation units 40-1 to 40-N transmit the optical signal for wavelength dispersion detection received from the optical duplexer 42 as it is. do.
- the optical duplexer 43 combines the optical signals for wavelength dispersion detection of N different wavelengths transmitted by the wavelength dispersion compensating units 40-1 to 40-N and transmits them to the optical transmission line 5b.
- the wavelength-multiplexed optical signal transmitted by the optical duplexer 43 reaches the optical duplexer 54 through the optical fiber transmission line 51 and the optical amplifier 52.
- the optical duplexer 54 demultiplexes the wavelength-multiplexed optical signal received at one end connected to the optical amplifier 52 via an optical fiber into N wavelengths.
- the optical duplexer 54 sends out each of the N demultiplexed optical signals for wavelength dispersion detection of different wavelengths from each of the other ends of the N.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N receives the optical signal transmitted from each of the other ends of the N optical duplexers 54.
- the electric signal processing units 32-1 to 32-N transmit information regarding the optical signal received by each of the optical signal receiving units 31-1 to 31-N to the wavelength dispersion compensation amount setting device 6b.
- the wavelength dispersion compensation amount setting device 6b displays information on the optical signal affected by the wavelength dispersion received from the electric signal processing units 32-1 to 32-N and the influence of the wavelength dispersion stored in advance in the internal storage area. receiving on the basis of the information on the optical signal of wavelength dispersion detection is not, the optical communication apparatus 3-1 through the wavelength dispersion amount occurring in the optical signal propagating through the path to each of the 3-N D 1 ⁇ D N Calculate (step Sb2).
- Chromatic dispersion compensation amount setting device 6b the calculated amount of chromatic dispersion D 1 ⁇ D wavelength dispersion compensation amount of each of the N D CDCM # and 1 ⁇ D CDCM # N (step Sb3).
- the wavelength dispersion compensation amount setting device 6b sets each of the wavelength dispersion compensation amounts D CDM # 1 to D DCMC # N in the corresponding wavelength dispersion compensation units 40-1 to 40-N (step Sb4).
- Each of the wavelength dispersion compensating units 40-1 to 40-N selects a wavelength dispersion compensation module corresponding to the wavelength dispersion compensation amount D CCDM # 1 to D DCMC # N set from the wavelength dispersion compensation amount setting device 6b.
- the selected wavelength dispersion compensation module is connected to the optical communication device 2b and the optical fiber transmission line 51.
- the optical communication device 2b starts transmitting transmission data to each of the optical communication devices 3-1 to 3-N. Since the optical communication device 2 of the first and second embodiments transmits an optical signal having a single wavelength, the same transmission data is transmitted to the optical communication devices 3-1 to 3-N. However, since the optical communication device 2b of the third embodiment transmits optical signals having N wavelengths, different transmission data is transmitted to each of the optical communication devices 3-1 to 3-N. It differs from the first and second embodiments in that it can be done. Therefore, the transmission data that are the information sources captured by each of the electric signal generation units 21-1 to 21-N of the optical communication device 2b may be different or may be the same transmission data.
- Each of the electric signal generation units 21-1 to 21-N generates an electric signal of the transmission data by encoding the captured transmission data and converting the encoded transmission data into an electric signal waveform, and the generated electricity.
- the signal is output to the corresponding optical signal generation units 22-1 to 22-N.
- Each of the optical signal generation units 22-1 to 22-N converts the electric signal output by the corresponding electric signal generation units 21-1 to 21-N into an optical signal.
- Each of the optical signal generation units 22-1 to 22-N sends the converted optical signal to the wavelength division multiplexing unit 23.
- the wavelength division multiplexing unit 23 converts the N optical signals transmitted by the optical signal generation units 22-1 to 22-N into N optical signals having different wavelengths.
- the wavelength division multiplexing unit 23 performs wavelength division multiplexing of converted optical signals having different wavelengths and sends them to an optical fiber.
- the optical duplexer 42 of the wavelength dispersion compensator 4b demultiplexes the wavelength-multiplexed optical signal received at one end connected to the optical communication device 2b via an optical fiber into N wavelengths.
- the optical duplexer 42 sends each of the demultiplexed optical signals having N wavelengths to the wavelength dispersion compensating units 40-1 to 40-N.
- Each of the wavelength dispersion compensating units 40-1 to 40-N has a wavelength dispersion compensation amount D CDM # 1 to D DCMC # set for each of the optical signals transmitted by the optical duplexer 42 received by each. N wavelength dispersion compensation is performed.
- Each of the wavelength dispersion compensating units 40-1 to 40-N sends an optical signal for which wavelength dispersion compensation has been performed to the optical duplexer 43.
- the optical duplexer 43 combines N optical signals of different wavelengths transmitted by the wavelength dispersion compensating units 40-1 to 40-N and transmits them to the optical transmission line 5b.
- the optical fiber transmission line 51 of the optical transmission line 5b transmits an optical signal transmitted by the optical duplexer 43, and the optical amplifier 52 amplifies the optical signal transmitted by the optical fiber transmission line 51.
- the optical duplexer 54 demultiplexes the wavelength-multiplexed optical signal received at one end connected to the optical amplifier 52 via an optical fiber into N wavelengths.
- the optical duplexer 54 transmits each of the demultiplexed optical signals having N wavelengths from the other end of the N wavelengths.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N receives the optical signal transmitted from the other end of the N optical duplexers 54.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N converts the received optical signal into an electric signal.
- Each of the optical signal receiving units 31-1 to 31-N of the optical communication devices 3-1 to 3-N outputs the converted electric signal to the corresponding electric signal processing units 32-1 to 32-N.
- the electric signal processing units 32-1 to 32-N take in the electric signal, decode the taken-in electric signal, and restore the transmission data transmitted by the corresponding electric signal generation units 21-1 to 21-N. ..
- the wavelength dispersion compensator 4b has an optical duplexer 42 having one end connected to the optical communication apparatus 2b and an optical duplexer 42 having one end connected to the optical transmission line 5b.
- a wavelength dispersion compensating unit 40-1 to 40-N for connecting 43, each of the other ends of the optical duplexer 42, and each of the other ends of the optical duplexer 43 on a one-to-one basis is provided.
- An optical duplexer 54 is applied to the branch point of the optical transmission line 5b, and each of the different wavelengths, each of the wavelength dispersion compensating units 40-1 to 40-N, and the optical communication devices 3-1 to 3 are applied.
- Each of -N is associated one-to-one.
- Each of the wavelength dispersion compensating units 40-1 to 40-N is the amount of wavelength dispersion generated in the optical signal propagating in the path between the optical communication devices 3-1 to 3-N corresponding to each and the optical communication device 2b. Is compensated as the wavelength dispersion compensation amount.
- optical communication devices 3-1 to 3-N are optical communication devices 3-1 to wavelength dispersion amount occurring in the optical signal propagating through the path to each of the 3-N D 1 ⁇ D N and the same amount It becomes possible to receive an optical signal compensated based on the wavelength dispersion compensation amounts D CDM # 1 to D CDM # N.
- the wavelength dispersion compensating device 4b since the wavelength dispersion compensating device 4b is connected to the optical communication device 2b which is a CU, the wavelength dispersion compensating device 4b can be installed near the optical communication device 2b, for example, in the building of the central station. .. Therefore, in the optical communication system 1, it is not necessary to dispatch a person to the installation position of the DU in order to perform wavelength dispersion compensation as in the optical communication system 100a shown in FIG.
- the wavelength dispersion compensation amount setting device 6b By providing the wavelength dispersion compensation amount setting device 6b, N pieces generated in the optical signal propagating in the path from the optical communication device 2b to each of the optical communication devices 3-1 to 3-N without human intervention.
- the wavelength dispersion amounts D 1 to DN can be set as the wavelength dispersion compensation amounts D DCMC # 1 to DC DCM # N in the wavelength dispersion compensation units 40-1 to 40-N. Therefore, the optical communication system 1b in the third embodiment makes it possible to improve the signal quality by performing wavelength dispersion compensation while suppressing the cost required for constructing the system such as the cost required for humans.
- the optical communication system 1b has the same number of wavelength dispersion compensation units 40-1 to 40- as the optical communication devices 3-1 to 3-N. using N, optical communication devices 3-1 ⁇ 3-N for individually compensating the chromatic dispersion amount D 1 ⁇ D N occurring in the optical signal propagating through the path to each of the first and second It is possible to perform wavelength dispersion compensation with higher accuracy than the optical communication system 1, 1a of the embodiment, and it is possible to perform wavelength dispersion compensation with the same accuracy as the optical communication system 100a shown in FIG.
- the wavelength dispersion compensating units 40-1 to 40-N can suppress the signal quality deterioration caused by the wavelength dispersion to a certain reference value or less. Therefore, the compensable wavelength dispersion range is limited to the range corresponding to the reference value. Therefore, the amount of wavelength dispersion between each of the optical transmission units 20-1 to 20-N of the optical communication device 2b and the optical communication devices 3-1 to 3-N corresponding to each is the wavelength dispersion corresponding to each. It is necessary that the optical communication device 2 and the optical communication devices 3-1 to 3-N are selected so as to be within the range of the wavelength dispersion compensation amount compensated by the compensation units 40-1 to 40-N.
- the optical communication devices 2 and 2b only transmit optical signals, and the optical communication devices 3-1 to 3-N only receive optical signals.
- the present invention is not limited to the embodiment.
- the optical communication device 2 includes an optical reception unit 30 corresponding to the optical reception unit 30-i shown in FIG. 3, and each of the optical communication devices 3-1 to 3-N , The optical transmission units 20-1 to 20-N corresponding to the optical transmission unit 20 shown in FIG. 2 are provided, and the optical communication device 2 and the optical communication devices 3-1 to 3-N transmit and receive optical signals. You may do so.
- the optical communication device 2b includes optical receiving units 30-1 to 30-N corresponding to the optical receiving units 30-i shown in FIG. 3, and the optical communication devices 3-1 to 3-N. Each is provided with optical transmission units 20-1 to 20-N corresponding to the optical transmission unit 20 shown in FIG. 2, and the optical communication device 2b and the optical communication devices 3-1 to 3-N transmit and receive optical signals. May be done.
- the optical transmission units 20-1 to 20-N included in the optical communication devices 3-1 to 3-N must be provided with a configuration for generating and transmitting optical signals having different wavelengths, and accordingly.
- the optical duplexer 42, 43, 54 needs to have a configuration in which optical signals of different wavelengths transmitted by the optical transmitters 20-1 to 20-N are combined and demultiplexed.
- the wavelength dispersion compensation amount setting devices 6, 6a and 6b are paths in the opposite directions, that is, the optical communication devices. It is necessary to calculate the amount of wavelength dispersion generated in the optical signal propagating in the path from 3-1 to 3-N to the optical communication devices 2 and 2b.
- the wavelength dispersion compensation amount setting devices 6, 6a, 6b send an optical signal for wavelength dispersion detection to the optical communication devices 3-1 to 3-N to the optical communication devices 2, 2b, and the optical communication device. Receives information about the optical signal affected by the wavelength dispersion received by each of the electric signal processing units 32, 32-1 to 32-N provided in 2, 2b, and determines the amount of N wavelength dispersions in the opposite direction. It may be calculated.
- the same wavelength is used in both the path from the optical communication devices 2 and 2b to the optical communication devices 3-1 to 3-N and the path from the optical communication devices 3-1 to 3-N to the optical communication devices 2 and 2b.
- the wavelength dispersion amount in one of the paths is calculated, and the calculated wavelength dispersion amount is used in the other direction. It may be the amount of wavelength dispersion in the path.
- the optical splitter is applied as the optical turnouts 53, 41, 53-1, 53-2, the configuration for branching the optical power of the same optical signal, that is,
- the optical communication device 2 is configured to transmit the same transmission data to the optical communication devices 3-1 to 3-N at a single wavelength, but the configuration of the present invention is not limited to the embodiment. ..
- the optical communication device 2b of the third embodiment is applied instead of the optical communication device 2, and the optical turnout 53 is replaced with 1: N branching.
- An optical duplexer specifically a 1: N-branched WDM coupler, may be applied.
- the optical communication device 2b of the third embodiment is applied instead of the optical communication device 2, and the optical branching device 41 is replaced with a 1: 2 branch optical division.
- a wave device specifically, a 1: 2 branch WDM coupler is applied, and instead of the optical branch 53-1 and 53-2, a 1: N / 2 branch optical demultiplexer, specifically, a 1: 2 branch optical demultiplexer.
- a 1: N / 2 branch WDM coupler may be applied.
- the wavelength dispersion compensating units 40, 40-1 to 40-N included in the wavelength dispersion compensating devices 4, 4a, 4b are provided with a plurality of wavelength dispersion compensating modules in advance.
- the wavelength dispersion compensation module corresponding to the wavelength dispersion compensation amount set from the wavelength dispersion compensation amount setting devices 6, 6a, 6b is selected. If a variable wavelength dispersion compensation module capable of arbitrarily changing the wavelength dispersion compensation amount becomes available in the future, such a variable wavelength dispersion compensation module will be used in the wavelength dispersion compensation units 40, 40-1 to It may be applied as 40-N.
- a wavelength dispersion compensation module for manually adjusting the wavelength dispersion compensation amount may be used.
- the wavelength dispersion compensation amount setting devices 6, 6a, 6b are installed in the building of the central station, and the administrator of the optical communication systems 1, 1a, 1b can set the wavelength dispersion compensation amount setting devices 6, 6a.
- 6b refers to the wavelength dispersion amount of each path calculated, and adjusts the wavelength dispersion compensation module so that an appropriate wavelength dispersion compensation amount can be obtained.
- the wavelength dispersion compensation amount setting devices 6, 6a, 6b calculate the wavelength dispersion amount of each path, the wavelength dispersion compensation units 40, 40-1 to 40-N are directly connected by an optical fiber. Will be.
- the administrator inserts the adjusted wavelength dispersion compensation module as the wavelength dispersion compensation unit 40, 40-1 to 40-N. If the position where the wavelength dispersion compensating units 40, 40-1 to 40-N are inserted is in the building of the central station, all the work by the administrator can be performed in the building of the central station. Therefore, in the first to third embodiments, even when the wavelength dispersion compensation module for manually adjusting the wavelength dispersion compensation amount is used, it is not necessary to dispatch a person to the installation position of the DU, and the person is required. It is possible to improve the signal quality by performing wavelength dispersion compensation while suppressing the cost required for constructing the system such as cost.
- the wavelength dispersion compensation amount setting devices 6, 6a, 6b, the optical communication devices 2, 2b, and the optical communication devices 3-1 to 3-N in the above-described embodiment may be realized by a computer.
- a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
- the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
- the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
- a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
- FPGA Field Programmable Gate Array
- Optical communication system 1 ... Optical communication system, 2 ... Optical communication device, 3-1 to 3-N ... Optical communication device, 4 ... Wavelength dispersion compensation device, 5 ... Optical transmission line, 6 ... Wavelength dispersion compensation amount setting device, 40 ... Wavelength dispersion Compensation unit, 51 ... Optical fiber transmission line, 52 ... Optical amplifier, 53 ... Optical branching device
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Optical Communication System (AREA)
Abstract
1つの第1の光通信装置と、第1の光通信装置と異なる位置に配置され、第1の光通信装置との間で通信を行う複数の第2の光通信装置と、第1の光通信装置に接続する波長分散補償装置と、波長分散補償装置に接続し、波長分散補償装置に接続する経路が分岐点において複数の経路に分岐し、分岐した経路の各々が、複数の第2の光通信装置の各々に接続し、経路を通じて光信号を伝送する光伝送路と、を備え、波長分散補償装置は、第1の光通信装置と、複数の第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量に応じた波長分散補償を行う波長分散補償部を備える。
Description
本発明は、光通信システムに関する。
光ファイバ通信において、光信号が光ファイバ中を伝搬する際、光ファイバが有する波長分散効果により波形歪みが生じる。波長分散は、光信号が光ファイバ中を伝搬する際の伝搬速度が波長ごとに異なるために生じる現象であり、光ファイバが長いほど波長分散の影響は大きくなる。
波長分散による波形歪みは、光伝送路の光ファイバと逆の波長分散特性を有する分散補償ファイバ(以下「DCF」(Dispersion Compensation Fiber)という)を用いることで補償することができる(例えば、非特許文献1参照)。
近年、ファイバーブラッググレーティング(以下「FBG」(Fiber Bragg Gratings)という)を利用したFBG-DCM(FBG-based continuous Dispersion Compensation Modules)が新たな波長分散補償デバイスとして注目されている(例えば、非特許文献2,3参照)。FBG-DCMは、DCFと比較すると小型である。以下、DCFやFBG-DCMなどの波長分散補償に用いられる光学デバイスを波長分散補償モジュール(Chromatic Dispersion Compensation Module(CDCM))という。
波長分散補償モジュールは、波長分散に起因する信号品質劣化を、ある基準値以下に抑圧可能である。したがって、補償可能な波長分散範囲は、その基準値に対応する範囲に限定されることになる(例えば、非特許文献1~3参照)。
Lars Gruner-Nielsen, Marie Wandel, Poul Kristensen, Carsten Jorgensen, Lene Vilbrad Jorgensen, Bent Edvold, Bera Palsdottir, and Dan Jakobsen, "Dispersion-Compensating Fibers", Journal of Lightwave Technology, Vol.23, No.11, pp.3566-3579, November 2005
"Dispersion Compensation", Proximation AB,[令和2年6月4日検索]、インターネット(URL: https://www.proximion.com/dispersion-compensation/)
D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, "Cost-effective 10.7-Gbit/s Long-Haul Transmission using Fiber Bragg Gratings for In-line Dispersion Compensation", in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThS5.
PON(Passive Optical Network)に代表される分岐ファイバ多元接続を行う光通信システムは、分岐点において1つの経路を複数の経路に分岐して複数の光通信装置を収容する。そのため、複数の光通信装置ごとに光伝送路を設置しなくてもよいというメリットがある。
図10は、分岐ファイバ多元接続を行う光通信システムの一例である光通信システム100の構成を示すブロック図である。光通信システム100では、中央局に設置される単一の光通信装置101が光ファイバ伝送路130に接続し、光ファイバ伝送路130が光スプリッタ131の一端に接続する。光スプリッタ131は、一端からの経路をN個の経路に分岐する1:N分岐の光スプリッタであり、N個の経路の各々に複数の光通信装置110-1~110-Nが接続する。ここで、Nは、2以上の整数である。中央局に設置される光通信装置101は、CU(Centralized Unit)と呼ばれ、異なる位置に分散して設置される光通信装置110-1~110-Nは、DU(Distributed Unit)と呼ばれる。
光通信システム100のような分岐ファイバ多元接続を行う光通信システムでは、CUである光通信装置101と、DUである光通信装置110-1~110-Nの各々との間の光伝送路長は、光通信装置110-1~110-Nごとに異なる。光伝送路長が異なることから、光通信装置101が送信して光通信装置110-1~110-Nの各々が受信する光信号に生じる波長分散量もそれぞれ異なることになる。そのため、光通信装置101から光通信装置110-1~110-Nの各々に至る経路を伝搬する光信号に対して補償すべき波長分散補償量も異なることになる。
光通信装置110-1~110-Nの各々に至る経路を伝搬する光信号に対して個別に波長分散補償を行うために、例えば、図11に示す光通信システム100aの構成にする手法が考えられる。光通信システム100aでは、光通信装置110-1~110-Nの各々と、光スプリッタ131との間の経路に、光通信装置110-1~110-Nの各々に対応する波長分散補償モジュール120-1~120-Nが挿入される。
光通信システム100aの構成にすることにより、波長分散補償モジュール120-1~120-Nの各々が、各々に対応する光通信装置110-1~110-Nに至る経路を伝搬する光信号に生じる波長分散量の補償を個別に行うことが可能になる。しかしながら、光通信システム100aの構成では、遠方に位置し、かつ各々の位置が分散しているDU側に波長分散補償モジュール120-1~120-Nを設置する必要がある。そのため、設置に要する人件費などのコストが増加し、光通信システム100aを構築する全体的なコストを高めてしまうという問題がある。
上記事情に鑑み、本発明は、システムの構築に要するコストを抑えつつ信号品質を向上させることができる技術の提供を目的としている。
本発明の一態様は、1つの第1の光通信装置と、前記第1の光通信装置と異なる位置に配置され、前記第1の光通信装置との間で通信を行う複数の第2の光通信装置と、前記第1の光通信装置に接続する波長分散補償装置と、前記波長分散補償装置に接続し、前記波長分散補償装置に接続する経路が分岐点において複数の経路に分岐し、分岐した経路の各々が、複数の前記第2の光通信装置の各々に接続し、前記経路を通じて光信号を伝送する光伝送路と、を備え、前記波長分散補償装置は、前記第1の光通信装置と、複数の前記第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量に応じた波長分散補償を行う波長分散補償部を備える光通信システムである。
本発明により、システムの構築に要するコストを抑えつつ信号品質を向上させることが可能になる。
(第1の実施形態)
以下、本発明の実施形態について図面を参照して説明する。図1は、第1の実施形態における光通信システム1の構成を示すブロック図である。図1において、実線の接続線は、光ファイバによる接続であることを示しており、破線の接続線は、実線の接続線とは別に設けられる通信回線を示している。
以下、本発明の実施形態について図面を参照して説明する。図1は、第1の実施形態における光通信システム1の構成を示すブロック図である。図1において、実線の接続線は、光ファイバによる接続であることを示しており、破線の接続線は、実線の接続線とは別に設けられる通信回線を示している。
光通信システム1は、分岐ファイバ多元接続を行う光通信システムである。光通信システム1は、光通信装置2、N個の光通信装置3-1~3-i~3-N、波長分散補償装置4、光伝送路5及び波長分散補償量設定装置6を備える。ここで、Nは、2以上の整数であり、iは1~Nの中のいずれかの値である。DUである光通信装置3-1~3-i~3-Nの各々は、例えば、光通信システム1が提供する通信サービスの利用者の建物内に設置される。
光通信装置2は、中央局の建物内に設置されるCUである。光通信装置2は、図2に示すように、光信号を送信する光送信部20を備えている。光送信部20は、電気信号生成部21と光信号生成部22を備える。電気信号生成部21は、情報源である送信データを符号化し、符号化した送信データを電気信号の波形に変換することにより送信データの電気信号を生成して出力する。光信号生成部22は、光ファイバに接続しており、電気信号生成部21が出力する送信データの電気信号を光信号に変換する。光信号生成部22は、変換した光信号を光ファイバに送出する。光信号生成部22は、波長分散補償量設定装置6から波長分散検出用の光信号の送出を指示する指示信号を受けると、予め定められる波長分散検出用の光信号を生成して光ファイバに送出する。
光通信装置3-1~3-i~3-Nは、異なる位置に分散して設置されるDUである。光通信装置3-1~3-i~3-Nの各々は、同一の構成を有している。図3は、光通信装置3-iの内部構成を示すブロック図である。光通信装置3-iは、光信号を受信する光受信部30-iを備えている。光受信部30-iは、光信号受信部31-iと電気信号処理部32-iを備える。光信号受信部31-iは、接続する光ファイバを通じて光信号を受信する。光信号受信部31-iは、受信した光信号を電気信号に変換して電気信号処理部32-iに出力する。電気信号処理部32-iは、光信号受信部31-iが出力する電気信号を復号して送信データを復元する。また、電気信号処理部32-iは、光信号受信部31-iが光信号を受信した場合、光信号受信部31-iが受信した光信号に関する情報を波長分散補償量設定装置6に送信する。ここで、光信号に関する情報とは、例えば、光信号の波形の形状の情報等である。
図1に戻り、光伝送路5は、分岐点において分岐する光ファイバにより複数の光通信装置3-1~3-Nを収容し、波長分散補償装置4が送出する光信号を光通信装置3-1~3-Nまで伝送する。光伝送路5は、光ファイバ伝送路51、光増幅器52及び分岐点に設置される光分岐器53を備える。光ファイバ伝送路51は、光信号の伝送媒体であり、伝送する光信号の信号品質に影響を与える波長分散を生じさせる長さの伝送路である。
光増幅器52は、光信号の増幅を行う。なお、図1では、光ファイバ伝送路51の端に光増幅器52が接続される例を示しているが、光ファイバ伝送路51の途中に光増幅器52が挿入されていてもよいし、光増幅器52以外に光スイッチや再生中継機などのデバイスが光ファイバ伝送路51に接続されたり、光ファイバ伝送路51の途中に挿入されていたりしていてもよい。
光分岐器53は、1:N分岐の光分岐器であり、光増幅器52に光ファイバを介して接続する一端をN個の経路に分岐する。光分岐器53が分岐するN個の経路の各々は、光ファイバを介して光通信装置3-1~3-Nの各々に接続する。光分岐器53としては、例えば、光スプリッタが適用される。
波長分散補償装置4は、波長分散補償部40を備える。波長分散補償部40は、例えば、DCFやFBG-DCM等の波長分散補償モジュール(CDCM)を予め複数備えている。複数の波長分散補償モジュールの各々は、異なる波長分散補償量を与える。波長分散補償部40は、波長分散補償量設定装置6から設定される波長分散補償量に応じた波長分散補償モジュールを選択し、選択した波長分散補償モジュールを光通信装置2と、光ファイバ伝送路51とに接続する。ここで、波長分散補償量に応じた波長分散補償モジュールを選択とは、当該波長分散補償量に一致する波長分散補償を行う波長分散補償モジュールがあれば、当該波長分散補償モジュールを選択し、当該波長分散補償量に一致する波長分散補償を行う波長分散補償モジュールがなければ、波長分散補償量に近い波長分散補償量を補償できる波長分散補償モジュールを選択することである。
波長分散補償量設定装置6は、破線の接続線で示される通信回線により、光通信装置2の光信号生成部22と、光通信装置3-1~3-Nの電気信号処理部32-1~32-Nの各々と、波長分散補償装置4の波長分散補償部40とに接続する。波長分散補償量設定装置6は、光通信装置2の光信号生成部22が送出する波長分散検出用の光信号に関する情報、すなわち、波長分散の影響を受けていない波長分散検出用の光信号の波形の形状の情報等を内部の記憶領域に予め記憶させている。
波長分散補償量設定装置6は、波長分散補償部40に設定する波長分散補償量の算出を行う際、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2の光信号生成部22に送信する。
波長分散補償量設定装置6は、光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々が光信号を受信した際に、電気信号処理部32-1~32-Nが送信する光信号に関する情報を受信する。波長分散補償量設定装置6は電気信号処理部32-1~32-Nの各々から受信した波長分散の影響を受けている光信号に関する情報と、内部の記憶領域が予め記憶する波長分散の影響を受けていない波長分散検出用の光信号に関する情報とに基づいて、光通信装置3-1~3-Nの各々に至る経路において伝搬する光信号に生じている波長分散量Dn(n=1,2,…,N)を算出する。
波長分散補償量設定装置6は、算出したN個の波長分散量D1~DNに基づいて、波長分散補償部40に設定する波長分散補償量DCDCMを算出する。波長分散補償量設定装置6は、算出した波長分散補償量DCDCMを波長分散補償部40に設定する。
(第1の実施形態の光通信システムによる処理)
図4は、波長分散補償量設定装置6による処理の流れを示すフローチャートである。波長分散補償部40において波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6は、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2の光信号生成部22に送信する(ステップS1)。
図4は、波長分散補償量設定装置6による処理の流れを示すフローチャートである。波長分散補償部40において波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6は、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2の光信号生成部22に送信する(ステップS1)。
光通信装置2の光信号生成部22は、波長分散補償量設定装置6から指示信号を受けると、予め定められる波長分散検出用の光信号を生成して光ファイバに送出する。光通信装置2の光信号生成部22が送出した光信号は、波長分散補償部40、光ファイバ伝送路51、光増幅器52を経由して光分岐器53に到達する。光分岐器53は、一端で受けた光信号をN個の光信号に分岐する。光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、光分岐器53が分岐したN個の光信号の各々を受信する。電気信号処理部32-1~32-Nは、光信号受信部31-1~31-Nの各々が受信した光信号に関する情報を波長分散補償量設定装置6に送信する。
波長分散補償量設定装置6は、電気信号処理部32-1~32-Nから受信する波長分散の影響を受けている光信号に関する情報と、内部の記憶領域が予め記憶する波長分散の影響を受けていない波長分散検出用の光信号に関する情報とに基づいて、光通信装置2から光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNを算出する(ステップS2)。
波長分散補償量設定装置6は、算出したN個の波長分散量D1~DNに基づいて、波長分散補償部40に設定する波長分散補償量DCDCMを算出する(ステップS3)。例えば、波長分散補償量設定装置6は、N個の波長分散量D1~DNの平均値を波長分散補償量DCDCMとして算出する。波長分散補償量設定装置6は、算出した波長分散補償量DCDCMを波長分散補償部40に設定する(ステップS4)。波長分散補償部40は、波長分散補償量設定装置6から設定された波長分散補償量DCDCMに応じた波長分散補償モジュールを選択し、選択した波長分散補償モジュールを光通信装置2と、光ファイバ伝送路51とに接続する。この処理により、波長分散補償量DCDCMを補償するのに適切な波長分散補償モジュールが、光通信装置2と、光ファイバ伝送路51とが接続される。
この状態において、光通信装置2が、光通信装置3-1~3-Nに対して送信データの送信を開始する。すなわち、光通信装置2の電気信号生成部21が情報源である送信データを符号化し、符号化した送信データを電気信号の波形に変換することにより送信データの電気信号を生成して光信号生成部22に出力する。光信号生成部22は、当該電気信号を光信号に変換する。光信号生成部22は、変換した光信号を光ファイバに送出する。
波長分散補償装置4の波長分散補償部40は、光通信装置2の光信号生成部22が送出した光信号を受信すると、受信した光信号に対して波長分散補償量DCDCMの波長分散補償を行う。波長分散補償部40は、波長分散補償を行った光信号を光伝送路5に送出する。光伝送路5の光ファイバ伝送路51は、波長分散補償部40が送出した光信号を伝送し、光増幅器52は、光ファイバ伝送路51が伝送した光信号を増幅する。光分岐器53は、光増幅器52が送出する光信号をN個の光信号に分岐し、分岐したN個の光信号を光通信装置3-1~3-Nの各々に至る光ファイバに送出する。
光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、光ファイバを通じて光分岐器53が分岐した光信号を受信する。光信号受信部31-1~31-Nの各々は、受信した光信号を電気信号に変換する。光信号受信部31-1~31-Nの各々は、変換した電気信号を各々に対応する電気信号処理部32-1~32-Nに出力する。電気信号処理部32-1~32-Nは、電気信号を取り込み、取り込んだ電気信号を復号して送信データを復元する。
上記の第1の実施形態の光通信システム1は、第1の光通信装置である光通信装置2と、各々が第2の光通信装置である光通信装置3-1~3-Nと、光通信装置2に接続する波長分散補償装置4と、光伝送路5とを備えている。光伝送路5は、波長分散補償装置4に接続し、波長分散補償装置4に接続する経路が分岐点において複数の経路に分岐し、分岐した経路の各々が、光通信装置3-1~3-Nの各々に接続し、経路を通じて光信号を伝送する。波長分散補償装置4は、1個の波長分散補償部40を備えており、波長分散補償部40は、例えば、光通信装置2から光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じる波長分散量D1~DNの平均値を波長分散補償量DCDCMとして補償する。
これにより、光通信装置3-1~3-Nは、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNのうち、波長分散補償量DCDCMの分が補償された光信号を受信することが可能になる。光通信システム1では、CUである光通信装置2に波長分散補償装置4を接続するため、光通信装置2の近く、例えば、中央局の建物内に波長分散補償装置4を設置することができる。そのため、光通信システム1では、図11に示した光通信システム100aのように、波長分散補償を行うために、人をDUの設置位置まで派遣する必要がない。
波長分散補償量設定装置6を備えることにより、人手を介さずに、光通信装置2から光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じているN個の波長分散量D1~DNに応じた波長分散補償量DCDCMを波長分散補償部40に設定することができる。
光通信装置3-1~3-Nの台数分、波長分散補償部40を備えるのではなく、1個の波長分散補償部40を用いており、少ない設備で波長分散補償を行うことができる。したがって、第1の実施形態における光通信システム1は、人に要するコスト及び設備に要するコスト等のシステムの構築に要するコストを抑えつつ波長分散補償を行うことにより信号品質を向上させることを可能にしている。
なお、上記の第1の実施形態では、波長分散補償量設定装置6は、例えば、N個の波長分散量D1~DNの平均値を波長分散補償量DCDCMとして算出するようにしているが、N個の波長分散量D1~DNから得られる平均値以外の他の特性を示す指標値を波長分散補償量DCDCMとして算出するようにしてもよい。
上記したように、波長分散補償部40は、波長分散に起因する信号品質劣化をある基準値以下に抑圧可能である。したがって、補償可能な波長分散範囲は、その基準値に対応する範囲に限定されることになる。そのため、光通信装置2と、光通信装置3-1~3-Nの各々との間の波長分散量が、波長分散補償部40が補償する波長分散補償量の範囲内となるように、光通信装置2と、光通信装置3-1~3-Nとが選定されている必要がある。
(第2の実施形態)
図5は、第2の実施形態における光通信システム1aの構成を示すブロック図である。図5において、第1の実施形態と同一の構成については同一の符号を付し、以下、異なる構成について説明する。光通信システム1aは、光通信装置2、光通信装置3-1~3-N、波長分散補償装置4a、光伝送路5-1,5-2及び波長分散補償量設定装置6aを備える。
図5は、第2の実施形態における光通信システム1aの構成を示すブロック図である。図5において、第1の実施形態と同一の構成については同一の符号を付し、以下、異なる構成について説明する。光通信システム1aは、光通信装置2、光通信装置3-1~3-N、波長分散補償装置4a、光伝送路5-1,5-2及び波長分散補償量設定装置6aを備える。
第1の実施形態の光通信システム1では、波長分散補償部40に設定する波長分散補償量DCDCMを、光通信装置2から光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNの平均値としていた。光通信装置2と、光通信装置3-1~3-Nの各々との間の距離の差のバラツキが大きくない状態であれば、波長分散量D1~DNのバラツキが大きくないため、第1の実施形態の光通信システム1を適用し、波長分散量D1~DNの平均値を波長分散補償量DCDCMとすることで、光通信装置2が送信して光通信装置3-1~3-Nが受信する光信号に対して有効な波長分散補償を行うことができる。
これに対して、例えば、光通信装置2と、光通信装置3-1~3-Nの各々との間の距離の差のバラツキが大きい場合、1個の波長分散補償部40を備えるだけでは十分な波長分散補償を行うことができない場合が想定される。
このような場合を想定して、第2の実施形態の光通信システム1aでは、光通信装置3-1~3-Nを、例えば、2つのグループに分けてグループごとに適切な波長分散補償を行うようにしている。図5に示す例では、Nは、偶数であるものとし、各グループに含まれる数が同数になるように、光通信装置3-1~3-N/2と、光通信装置3-(N/2+1)~3-Nという2つのグループに分けている。グループの分類基準は、例えば、光通信装置2からの距離であり、予め基準となる距離を設定し、光通信装置3-1~3-N/2は、基準となる距離以下の位置に設置されているグループであり、光通信装置3-(N/2+1)~3-Nは、基準となる距離を超える位置に設置されているグループである。
波長分散補償装置4aは、光分岐器41と、波長分散補償部40-1,40-2とを備えている。光分岐器41は、1:2分岐の光分岐器であり、光通信装置2に光ファイバを介して接続する一端を、2個の経路に分岐する。光分岐器41が分岐する2個の経路の各々は、波長分散補償部40-1,40-2に接続する。光分岐器41としては、例えば、光スプリッタが適用される。
波長分散補償部40-1,40-2は、第1の実施形態の波長分散補償部40と同一の構成を有しており、波長分散補償量設定装置6aによって各々に設定される波長分散補償量DCDCM#1,DCDCM#2に応じた波長分散補償モジュールを選択することにより、各々が受信する光信号に対して波長分散補償を行う。波長分散補償部40-1は、光ファイバを介して光伝送路5-1に接続し、波長分散補償部40-2は、光ファイバを介して光伝送路5-2に接続する。
光伝送路5-1,5-2の各々は、以下の点を除き、第1の実施形態の光伝送路5と同一の構成を有している。第1の実施形態の光伝送路5が備える光分岐器53は、1:N分岐である。これに対して、光伝送路5-1,5-2の各々が備える光分岐器53-1,53-2は、1:N/2分岐、すなわち、光増幅器52-1,52-2に光ファイバを介して接続する一端をN/2個の経路に分岐する構成を有している。光分岐器53-1が分岐するN/2個の経路の各々は、光ファイバを介して光通信装置3-1~3-N/2の各々に接続する。光分岐器53-2が分岐するN/2個の経路の各々は、光ファイバを介して光通信装置3-(N/2+1)~3-Nの各々に接続する。
波長分散補償量設定装置6aは、以下の点を除いて、第1の波長分散補償量設定装置6と同一の構成を有している。第1の波長分散補償量設定装置6は、波長分散補償部40に通信回線を介して接続しているが、波長分散補償量設定装置6aは、波長分散補償部40-1,40-2の各々に通信回線を介して接続する。
第1の実施形態の波長分散補償量設定装置6は、算出したN個の波長分散量D1~DNに基づいて、波長分散補償部40に設定する波長分散補償量DCDCMを算出する。波長分散補償量設定装置6は、算出した波長分散補償量DCDCMを波長分散補償部40に設定していた。これに対して、波長分散補償量設定装置6aは、N/2個の波長分散量Dn(n=1,2,…,N/2)に基づいて、波長分散補償部40-1に設定する波長分散補償量DCDCM#1を算出する。波長分散補償量設定装置6aは、N/2個の波長分散量Dn(n=(N/2+1),(N/2+2),…,N)に基づいて、波長分散補償部40-2に設定する波長分散補償量DCDCM#2を算出する。
(第2の実施形態の光通信システムによる処理)
図6は、波長分散補償量設定装置6aによる処理の流れを示すフローチャートである。波長分散補償部40-1,40-2において波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6aは、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2の光信号生成部22に送信する(ステップSa1)。
図6は、波長分散補償量設定装置6aによる処理の流れを示すフローチャートである。波長分散補償部40-1,40-2において波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6aは、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2の光信号生成部22に送信する(ステップSa1)。
光通信装置2の光信号生成部22は、波長分散補償量設定装置6aから指示信号を受けると、予め定められる波長分散検出用の光信号を生成して光ファイバに送出する。波長分散補償装置4aの光分岐器41は、光通信装置2の光信号生成部22が送出した光信号を2個の光信号に分岐する。
光分岐器41が分岐した一方の光信号は、波長分散補償部40-1、光ファイバ伝送路51-1、光増幅器52-1を通じて光分岐器53-1に到達する。光分岐器53-1は、一端で受けた光信号をN/2個の光信号に分岐する。光通信装置3-1~3-N/2の光信号受信部31-1~31-N/2の各々は、光分岐器53-1が分岐したN/2個の光信号を受信する。電気信号処理部32-1~32-N/2は、光信号受信部31-1~31-N/2の各々が受信した光信号に関する情報を波長分散補償量設定装置6aに送信する。
光分岐器41が分岐した他方の光信号は、波長分散補償部40-2、光ファイバ伝送路51-2、光増幅器52-2を通じて光分岐器53-2に到達する。光分岐器53-2は、一端で受けた光信号をN/2個の光信号に分岐する。光通信装置3-(N/2+1)~3-Nの光信号受信部31-(N/2+1)~31-Nの各々は、光分岐器53-2が分岐したN/2個の光信号を受信する。電気信号処理部32-(N/2+1)~32-Nは、光信号受信部31-(N/2+1)~31-Nの各々が受信した光信号に関する情報を波長分散補償量設定装置6aに送信する。
波長分散補償量設定装置6aは、電気信号処理部32-1~32-Nから受信する波長分散の影響を受けている光信号に関する情報と、内部の記憶領域が予め記憶する波長分散の影響を受けていない波長分散検出用の光信号に関する情報とに基づいて、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNを算出する(ステップSa2)。
波長分散補償量設定装置6aは、N/2個の波長分散量Dn(n=1,2,…,N/2)に基づいて、波長分散補償部40-1に設定する波長分散補償量DCDCM#1を算出する。波長分散補償量設定装置6aは、N/2個の波長分散量Dn(n=(N/2+1),(N/2+2),…,N)に基づいて、波長分散補償部40-2に設定する波長分散補償量DCDCM#2を算出する(ステップSa3)。例えば、波長分散補償量設定装置6aは、波長分散量D1~DNの平均値を波長分散補償量DCDCM#1として算出し、波長分散量DN/2+1~DNの平均値を波長分散補償量DCDCM#2として算出する。
波長分散補償量設定装置6aは、算出した波長分散補償量DCDCM#1を波長分散補償部40-1に設定し、算出した波長分散補償量DCDCM#2を波長分散補償部40-2に設定する(ステップSa4)。波長分散補償部40-1は、波長分散補償量設定装置6aから設定された波長分散補償量DCDCM#1に応じた波長分散補償モジュールを選択し、選択した波長分散補償モジュールを光通信装置2と、光ファイバ伝送路51-1とに接続する。波長分散補償部40-2は、波長分散補償量設定装置6aから設定された波長分散補償量DCDCM#2に応じた波長分散補償モジュールを選択し、選択した波長分散補償モジュールを光通信装置2と、光ファイバ伝送路51-2とに接続する。
この状態において、光通信装置2が、光通信装置3-1~3-Nに対して送信データの送信を開始する。すなわち、光通信装置2の電気信号生成部21が情報源である送信データを符号化し、符号化した送信データを電気信号の波形に変換することにより送信データの電気信号を生成して光信号生成部22に出力する。光信号生成部22は、当該電気信号を光信号に変換する。光信号生成部22は、変換した光信号を光ファイバに送出する。波長分散補償装置4aの光分岐器41は、光通信装置2の光信号生成部22が送出した光信号を2個の光信号に分岐する。
波長分散補償装置4aの波長分散補償部40-1は、光分岐器41が分岐した一方の光信号を受信すると、受信した光信号に対して波長分散補償量DCDCM#1の波長分散補償を行う。波長分散補償部40-1は、波長分散補償を行った光信号を光伝送路5-1に送出する。
波長分散補償装置4aの波長分散補償部40-2は、光分岐器41が分岐した他方の光信号を受信すると、受信した光信号に対して波長分散補償量DCDCM#2の波長分散補償を行う。波長分散補償部40-2は、波長分散補償を行った光信号を光伝送路5-2に送出する。
光伝送路5-1,5-2の光ファイバ伝送路51-1,51-2は、各々に接続する波長分散補償部40-1,40-2が送出した光信号を伝送し、光増幅器52-1,52-2は、各々に接続する光ファイバ伝送路51-1,51-2が伝送した光信号を増幅する。光分岐器53-1,53-2は、各々に接続する光増幅器52-1,52-2が送出する光信号をN/2個の光信号に分岐し、分岐したN/2個の光信号を光通信装置3-1~3-N/2,3-(N/2+1)~3-Nの各々に至る光ファイバに送出する。
光通信装置3-1~3-N/2の光信号受信部31-1~31-N/2の各々は、光ファイバを通じて光分岐器53-1が分岐した光信号を受信する。光信号受信部31-1~31-N/2は、受信した光信号を電気信号に変換する。光信号受信部31-1~31-N/2は、変換した電気信号を各々に対応する電気信号処理部32-1~32-N/2に出力する。電気信号処理部32-1~32-N/2は、電気信号を取り込み、取り込んだ電気信号を復号して送信データを復元する。
光通信装置3-(N/2+1)~3-Nの光信号受信部31-(N/2+1)~31-Nの各々は、光ファイバを通じて光分岐器53-2が分岐した光信号を受信する。光信号受信部31-(N/2+1)~31-Nは、受信した光信号を電気信号に変換する。光信号受信部31-(N/2+1)~31-Nは、変換した電気信号を各々に対応する電気信号処理部32-(N/2+1)~32-Nに出力する。電気信号処理部32-(N/2+1)~32-Nは、電気信号を取り込み、取り込んだ電気信号を復号して送信データを復元する。
上記の第2の実施形態の光通信システム1aにおいて、波長分散補償装置4aは、光分岐器41と、波長分散補償部40-1,40-2とを備えており、光分岐器41は、光通信装置2に接続する経路を光伝送路5-1,5-2の数に一致する数の経路に分岐する。波長分散補償部40-1,40-2は、光伝送路5-1,5-2の各々に対応して備えられており、各々が、光分岐器41が分岐した経路のいずれか1つと、各々に対応する光伝送路5-1,5-2とを一対一に接続する。波長分散補償部40-1は、光通信装置2から光通信装置3-1~3-N/2の各々に至る経路を伝搬する光信号に生じる波長分散量の平均値を波長分散補償量として補償する。波長分散補償部40-2は、光通信装置2から光通信装置3-(N/2+1)~3-Nの各々に至る経路を伝搬する光信号に生じる波長分散量の平均値を波長分散補償量として補償する。
これにより、光通信装置3-1~3-N/2は、光通信装置3-1~3-N/2の各々に至る経路を伝搬する光信号に生じている波長分散量D1~DN/2のうち、波長分散補償量DCDCM#1の分が補償された光信号を受信することが可能になる。光通信装置3-(N/2+1)~3-Nは、光通信装置3-(N/2+1)~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量DN/2+1~DNのうち、波長分散補償量DCDCM#2の分が補償された光信号を受信することが可能になる。
光通信システム1aでは、CUである光通信装置2に波長分散補償装置4aを接続するため、光通信装置2の近く、例えば、中央局の建物内に波長分散補償装置4aを設置することができる。そのため、光通信システム1では、図11に示した光通信システム100aのように、波長分散補償を行うために、人をDUの設置位置まで派遣する必要がない。
波長分散補償量設定装置6aを備えることにより、人手を介さずに、光通信装置2から光通信装置3-1~3-N/2の各々に至る経路を伝搬する光信号に生じているN/2個の波長分散量D1~DN/2に応じた波長分散補償量DCDCM#1を波長分散補償部40-1に設定し、光通信装置2から光通信装置3-(N/2+1)~3-Nの各々に至る経路を伝搬する光信号に生じているN/2個の波長分散量DN/2+1~DNに応じた波長分散補償量DCDCM#2を波長分散補償部40-2に設定することができる。
光通信装置3-1~3-Nの台数分、波長分散補償部40を備えるのではなく、2個の波長分散補償部40-1,40-2を用いており、少ない設備で波長分散補償を行うことができる。したがって、第2の実施形態における光通信システム1aは、人に要するコスト及び設備に要するコスト等のシステムの構築に要するコストを抑えつつ波長分散補償を行うことにより信号品質を向上させることを可能にしている。
第2の実施形態の光通信システム1aでは、例えば、光通信装置2と、光通信装置3-1~3-Nの各々との間の距離の差のバラツキが大きい場合であっても、第1の実施形態の光通信システム1よりも適切な波長分散補償を行うことを可能にしている。例えば、上記したように、光通信装置2からの距離を基準として、基準となる距離以下の位置に設置されている光通信装置3-1~3-N/2のグループと、基準となる距離を超える位置に設置されている光通信装置3-(N/2+1)~3-Nのグループとに分けるようにする。このようにグループ分けすることにより、N/2個の波長分散量D1~DN/2における値のバラツキを小さくすることができ、N/2個の波長分散量DN/2+1~DNにおける値のバラツキも小さくすることができる。
そのため、第1の実施形態の光通信システム1のように1つの波長分散補償量DCDCMを利用して波長分散補償を行うよりも、第2の実施形態の光通信システム1aのように波長分散量D1~DN/2に対応する波長分散補償量DCDCM#1と、波長分散量DN/2+1~DNに対応する波長分散補償量DCDCM#2とを利用して波長分散補償を行う方が、より適切な波長分散補償を行うことができることになる。
上記の第2の実施形態の光通信システム1aは、2つの光伝送路5-1,5-2を備えるため、例えば、光ファイバ伝送路51-1,51-2の距離を異なる距離にすることができる。そのため、光通信装置3-1~3-N/2のグループと、光通信装置3-(N/2+1)~3-Nのグループとが存在する位置が大きく異なるような環境に適用することが可能である。
なお、上記の第2の実施形態の光通信システム1aでは、光通信装置3-1~3-Nを2つのグループに分ける分類基準として、光通信装置2からの距離を基準としているが、基準は、光通信装置2からの距離に限られるものではなく、それ以外のパラメータを基準としてもよい。
上記の第2の実施形態の光通信システム1aでは、グループごとの光通信装置3-1~3-Nの数をN/2個ずつの同数にしているが、1つのグループに含まれる光通信装置3-1~3-Nの数をグループごとに異なる数にしてもよい。光通信装置3-1~3-Nを3つ以上のグループに分けるようにしてもよい。ただし、グループの数は、複数の光通信装置3-1~3-Nを収容する際に光ファイバ伝送路を共有するという分岐ファイバ多元接続のメリットを維持するために、N未満の数にする必要がある。
上記の第2の実施形態では、波長分散補償量設定装置6aは、例えば、N/2個の波長分散量D1~DN/2の平均値を波長分散補償量DCDCM#1として算出し、N/2個の波長分散量DN/2+1~DNの平均値を波長分散補償量DCDCM#2として算出するようにしている。これに対して、波長分散補償量設定装置6aは、N/2個の波長分散量D1~DN/2、または、N/2個の波長分散量DN/2+1~DNから得られる平均値以外の他の特性を示す指標値を波長分散補償量DCDCM#1、または、波長分散補償量DCDCM#2として算出するようにしてもよい。
上記したように、波長分散補償部40-1,40-2は、波長分散に起因する信号品質劣化をある基準値以下に抑圧可能である。したがって、補償可能な波長分散範囲は、その基準値に対応する範囲に限定されることになる。そのため、光通信装置2と、光通信装置3-1~3-N/2の各々との間の波長分散量が、波長分散補償部40-1が補償する波長分散補償量の範囲内となり、光通信装置2と、光通信装置3-(N/2+1)~3-Nの各々との間の波長分散量が、波長分散補償部40-2が補償する波長分散補償量の範囲内となるように光通信装置2と、光通信装置3-1~3-Nとが選定されている必要がある。
(第3の実施形態)
図7は、第3の実施形態における光通信システム1bの構成を示すブロック図である。図7において、第1の実施形態と同一の構成については同一の符号を付し、以下、異なる構成について説明する。光通信システム1bは、光通信装置2b、光通信装置3-1~3-N、波長分散補償装置4b、光伝送路5b及び波長分散補償量設定装置6bを備える。
図7は、第3の実施形態における光通信システム1bの構成を示すブロック図である。図7において、第1の実施形態と同一の構成については同一の符号を付し、以下、異なる構成について説明する。光通信システム1bは、光通信装置2b、光通信装置3-1~3-N、波長分散補償装置4b、光伝送路5b及び波長分散補償量設定装置6bを備える。
第2の実施形態の光通信システム1aでは、光通信装置3-1~3-Nを2つのグループに分けてグループごとに異なる波長分散補償量DCDCM#1,DCDCM#2を適用して波長分散補償を行うようにしていた。このようにすることで、例えば、光通信装置2と、光通信装置3-1~3-Nの各々との間の距離の差のバラツキが大きい場合であっても、例えば、光通信装置2からの距離に基づいて、光通信装置3-1~3-Nを2つのグループに分けることで、グループごとに適切な波長分散補償を行うことが可能になる。
これに対して、図11に示した光通信システム100aと同程度の精度で波長分散補償を行うためには、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNの各々に対して個別に波長分散補償を行う必要がある。第2の実施形態の光通信システム1aの構成を拡張して、光通信装置3-1~3-NをN個のグループに分けるという手段も考えられるが、この場合、N個の光伝送路5-1~5-Nを備えることになり、複数の光通信装置3-1~3-Nを収容する際に光ファイバ伝送路を共有するという分岐ファイバ多元接続のメリットを生かせなくなってしまう。
そこで、第3の実施形態の光通信システム1bでは、波長分割多重、すなわち、WDM(Wavelength Division Multiplexing)の技術を利用することで、 分岐ファイバ多元接続のメリットを維持しつつ、波長分散量D1~DNの各々に対して個別に波長分散補償を行うことを可能としている。
光通信装置2bは、図8に示すようにN個の光送信部20-1~20-Nと、波長多重部23とを備えている。光通信装置2bにおいて、光送信部20-1~20-Nの各々は、電気信号生成部21-1~21-Nと、光信号生成部22-1~22-Nとを備える。電気信号生成部21-1~21-Nの各々は、第1の実施形態の電気信号生成部21と同一の構成であり、光信号生成部22-1~22-Nの各々は、第1の実施形態の光信号生成部22と同一の構成である。
波長多重部23は、光信号生成部22-1~22-Nの各々に接続し、光信号生成部22-1~22-Nが出力するN個の光信号の各々を、N個の異なる波長の光信号に変換する。波長多重部23は、変換した異なる波長の光信号を多重化し、波長分散補償装置4bに接続する光ファイバに送出する。
なお、光通信装置2bの光送信部20-1~20-Nの各々と、波長分散補償装置4bの波長分散補償部40-1~40-Nの各々と、光通信装置3-1~3-Nの各々とは、予め一対一に対応付けられている。ここでは、枝番号「-n」が一致する光送信部20-n、波長分散補償部40-n、光通信装置3-nが一対一に対応付けられているものとする(ただし、n=1,2,…,Nである)。この場合、「光送信部20-1、波長分散補償部40-1、光通信装置3-1」,「光送信部20-2、波長分散補償部40-2、光通信装置3-2」,…,「光送信部20-N、波長分散補償部40-N、光通信装置3-N」というN通りの組み合わせの各々に対して、N個の異なる波長が割り当てられることになる。
図7に戻り、波長分散補償装置4bは、光合分波器42、N個の波長分散補償部40-1~40-N及び光合分波器43を備える。光合分波器42,43は、例えば、1:N分岐のWDMカプラであり、一端において受けるN個の波長が波長多重された光信号を波長ごとに分波し、分波したN個の光信号の各々をN個の異なる経路に分岐し、分岐した経路の端であるN個の他端の各々から送出する。光合分波器42,43は、N個の他端の各々において受けるN個の異なる波長の光信号を合波して一端から送出する。
光合分波器42の一端は、光通信装置2bに光ファイバを介して接続し、N個の他端の各々は、波長分散補償部40-1~40-Nの各々に接続する。光合分波器43の一端は、光ファイバ伝送路51に光ファイバを介して接続し、N個の他端の各々は、波長分散補償部40-1~40-Nの各々に接続する。
波長分散補償部40-1~40-Nの各々は、第1の実施形態の波長分散補償部40と同一の構成を有しており、波長分散補償量設定装置6bによって各々に設定される波長分散補償量DCDCM#1~DCDCM#Nに応じた波長分散補償モジュールを選択することにより、各々を通過する光信号に対して波長分散補償を行う。
光伝送路5bは、光ファイバ伝送路51、光増幅器52及び光合分波器54を備える。光合分波器54は、光合分波器42,43と同様の構成を有しており、例えば、1:N分岐のWDMカプラが適用される。光合分波器54の一端は、光ファイバを介して光増幅器52に接続し、N個の他端の各々は、光通信装置3-1~3-Nの各々に接続する。
上記したように、光送信部20-nと、波長分散補償部40-nと、光通信装置3-nとは予め一対一に対応付けられており、波長多重部23は、光送信部20-nと、波長分散補償部40-nと、光通信装置3-nとの組み合わせの各々に対して、異なる波長を割り当てる。したがって、光送信部20-nが送出した光信号に対して波長多重部23が割り当てた波長の光信号が、波長分散補償部40-nを経由して、光通信装置3-nに到達するように、光合分波器42,43の他端が、波長分散補償部40-1に接続され、光合分波器54の他端が、光通信装置3-1に接続されているものとする。
波長分散補償量設定装置6bは、以下の点を除いて、第1の波長分散補償量設定装置6と同一の構成を有している。第1の波長分散補償量設定装置6は、波長分散補償部40に通信回線を介して接続しているが、波長分散補償量設定装置6bは、波長分散補償部40-1~40-Nの各々に通信回線を介して接続する。
第1の実施形態の波長分散補償量設定装置6は、算出したN個の波長分散量D1~DNに基づいて、波長分散補償部40に設定する波長分散補償量DCDCMを算出し、算出した波長分散補償量DCDCMを波長分散補償部40に設定していた。これに対して、波長分散補償量設定装置6bは、光通信装置3-nに対応する波長分散量Dnの各々を波長分散補償量DCDCM#nとし、波長分散補償量DCDCM#nの各々を、各々に対応する波長分散補償部40-nに設定する。
(第3の実施形態の光通信システムによる処理)
図9は、波長分散補償量設定装置6bによる処理の流れを示すフローチャートである。波長分散補償部40-1~40-Nにおいて波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6bは、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2bの光信号生成部22-1~22-Nの各々に送信する(ステップSb1)。
図9は、波長分散補償量設定装置6bによる処理の流れを示すフローチャートである。波長分散補償部40-1~40-Nにおいて波長分散補償量が設定されておらず、波長分散補償を行わない状態において、波長分散補償量設定装置6bは、波長分散検出用の光信号の送出を指示する指示信号を光通信装置2bの光信号生成部22-1~22-Nの各々に送信する(ステップSb1)。
光通信装置2bの光信号生成部22-1~22-Nは、波長分散補償量設定装置6bから指示信号を受けると、予め定められる波長分散検出用の光信号を生成して波長多重部23に送出する。波長多重部23は、光信号生成部22-1~22-Nが送出するN個の光信号を、N個の異なる波長の光信号に変換する。波長多重部23は、変換した異なる波長の光信号を波長多重して光ファイバに送出する。
波長分散補償装置4bの光合分波器42は、光通信装置2bに光ファイバを介して接続する一端で受けた波長多重されている光信号をN個の波長に分波する。光合分波器42は、分波したN個の波長の波長分散検出用の光信号の各々を波長分散補償部40-1~40-Nに送出する。
波長分散補償部40-1~40-Nは、波長分散補償量が波長分散補償量設定装置6bによって設定されていないため、光合分波器42から受けた波長分散検出用の光信号をそのまま送出する。光合分波器43は、波長分散補償部40-1~40-Nが送出するN個の異なる波長の波長分散検出用の光信号を合波して光伝送路5bに送出する。
光合分波器43が送出する波長多重されている光信号は、光ファイバ伝送路51、光増幅器52を通じて光合分波器54に到達する。光合分波器54は、光増幅器52に光ファイバを介して接続する一端で受けた波長多重されている光信号をN個の波長に分波する。光合分波器54は、分波したN個の異なる波長の波長分散検出用の光信号の各々をN個の他端の各々から送出する。
光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、光合分波器54がN個の他端の各々から送出した光信号を受信する。電気信号処理部32-1~32-Nは、光信号受信部31-1~31-Nの各々が受信した光信号に関する情報を波長分散補償量設定装置6bに送信する。
波長分散補償量設定装置6bは、電気信号処理部32-1~32-Nから受信する波長分散の影響を受けている光信号に関する情報と、内部の記憶領域が予め記憶する波長分散の影響を受けていない波長分散検出用の光信号に関する情報とに基づいて、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNを算出する(ステップSb2)。
波長分散補償量設定装置6bは、算出した波長分散量D1~DNの各々を波長分散補償量DCDCM#1~DCDCM#Nとする(ステップSb3)。波長分散補償量設定装置6bは、波長分散補償量DCDCM#1~DCDCM#Nの各々を、対応する波長分散補償部40-1~40-Nに設定する(ステップSb4)。波長分散補償部40-1~40-Nの各々は、波長分散補償量設定装置6bから設定された波長分散補償量DCDCM#1~DCDCM#Nに応じた波長分散補償モジュールを選択し、選択した波長分散補償モジュールを光通信装置2bと、光ファイバ伝送路51とに接続する。
この状態において、光通信装置2bが、光通信装置3-1~3-Nの各々に対して送信データの送信を開始する。なお、第1及び第2の実施形態の光通信装置2は、単一の波長の光信号を送信するため、光通信装置3-1~3-Nに対して同一の送信データを送信する構成になっているが、第3の実施形態の光通信装置2bは、N個の波長の光信号を送信するため、光通信装置3-1~3-Nの各々に対して異なる送信データを送信することができる点で、第1及び第2の実施形態とは異なる。そのため、光通信装置2bの電気信号生成部21-1~21-Nの各々が取り込む情報源である送信データは、異なっていてもよいし、同一の送信データであってもよい。
電気信号生成部21-1~21-Nの各々は、取り込んだ送信データを符号化し、符号化した送信データを電気信号の波形に変換することにより送信データの電気信号を生成し、生成した電気信号を各々に対応する光信号生成部22-1~22-Nに出力する。光信号生成部22-1~22-Nの各々は、各々に対応する電気信号生成部21-1~21-Nが出力する電気信号を光信号に変換する。光信号生成部22-1~22-Nの各々は、変換した光信号を波長多重部23に送出する。
波長多重部23は、光信号生成部22-1~22-Nが送出するN個の光信号を、N個の異なる波長の光信号に変換する。波長多重部23は、変換した異なる波長の光信号を波長多重して光ファイバに送出する。
波長分散補償装置4bの光合分波器42は、光通信装置2bに光ファイバを介して接続する一端で受けた波長多重されている光信号をN個の波長に分波する。光合分波器42は、分波したN個の波長の光信号の各々を波長分散補償部40-1~40-Nに送出する。
波長分散補償部40-1~40-Nの各々は、各々が受信する光合分波器42が送出した光信号に対して、各々に設定された波長分散補償量DCDCM#1~DCDCM#Nの波長分散補償を行う。波長分散補償部40-1~40-Nの各々は、波長分散補償を行った光信号を光合分波器43に送出する。光合分波器43は、波長分散補償部40-1~40-Nが送出するN個の異なる波長の光信号を合波して光伝送路5bに送出する。
光伝送路5bの光ファイバ伝送路51は、光合分波器43が送出した光信号を伝送し、光増幅器52は、光ファイバ伝送路51が伝送した光信号を増幅する。光合分波器54は、光増幅器52に光ファイバを介して接続する一端で受けた波長多重されている光信号をN個の波長に分波する。光合分波器54は、分波したN個の波長の光信号の各々をN個の他端より送出する。
光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、光合分波器54がN個の他端より送出した光信号を受信する。光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、受信した光信号を電気信号に変換する。光通信装置3-1~3-Nの光信号受信部31-1~31-Nの各々は、変換した電気信号を各々に対応する電気信号処理部32-1~32-Nに出力する。電気信号処理部32-1~32-Nは、電気信号を取り込み、取り込んだ電気信号を復号して、各々に対応する電気信号生成部21-1~21-Nが送信した送信データを復元する。
上記の第3の実施形態の光通信システム1bにおいて、波長分散補償装置4bは、一端が光通信装置2bに接続する光合分波器42と、一端が光伝送路5bに接続する光合分波器43と、光合分波器42の他端の各々と、光合分波器43の他端の各々とを一対一に接続する波長分散補償部40-1~40-Nと、を備える。光伝送路5bの分岐点には、光合分波器54が適用されており、異なる波長の各々と、波長分散補償部40-1~40-Nの各々と、光通信装置3-1~3-Nの各々とは一対一に対応付けられている。波長分散補償部40-1~40-Nの各々は、各々に対応する光通信装置3-1~3-Nと、光通信装置2bとの間の経路を伝搬する光信号に生じる波長分散量を波長分散補償量として補償する。
これにより、光通信装置3-1~3-Nは、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNと同一量の波長分散補償量DCDCM#1~DCDCM#Nに基づいて補償された光信号を受信することが可能になる。
光通信システム1bでは、CUである光通信装置2bに波長分散補償装置4bを接続するため、光通信装置2bの近く、例えば、中央局の建物内に波長分散補償装置4bを設置することができる。そのため、光通信システム1では、図11に示した光通信システム100aのように、波長分散補償を行うために、人をDUの設置位置まで派遣する必要がない。
波長分散補償量設定装置6bを備えることにより、人手を介さずに、光通信装置2bから光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じているN個の波長分散量D1~DNを波長分散補償量DCDCM#1~DCDCM#Nとして波長分散補償部40-1~40-Nに設定することができる。したがって、第3の実施形態における光通信システム1bは、人に要するコスト等のシステムの構築に要するコストを抑えつつ波長分散補償を行うことにより信号品質を向上させることを可能にしている。
光通信システム1bは、第1及び第2の実施形態の光通信システム1,1aとは異なり、光通信装置3-1~3-Nと同一の数の波長分散補償部40-1~40-Nを用いて、光通信装置3-1~3-Nの各々に至る経路を伝搬する光信号に生じている波長分散量D1~DNを個別に補償するため、第1及び第2の実施形態の光通信システム1,1aよりも精度の高い波長分散補償を行うことができ、図11に示した光通信システム100aと同程度の精度で波長分散補償を行うことが可能になる。
上記したように、波長分散補償部40-1~40-Nは、波長分散に起因する信号品質劣化をある基準値以下に抑圧可能である。したがって、補償可能な波長分散範囲は、その基準値に対応する範囲に限定されることになる。そのため、光通信装置2bの光送信部20-1~20-Nの各々と、各々に対応する光通信装置3-1~3-Nとの間の波長分散量が、各々に対応する波長分散補償部40-1~40-Nが補償する波長分散補償量の範囲内となるように、光通信装置2と、光通信装置3-1~3-Nとが選定されている必要がある。
なお、上記の第1から第3の実施形態では、光通信装置2,2bは、光信号の送信のみを行い、光通信装置3-1~3-Nは、光信号の受信のみを行うようにしているが、本発明は、当該実施の形態に限られない。例えば、光通信システム1,1aにおいて、光通信装置2が、図3に示した光受信部30-iに相当する光受信部30を備え、光通信装置3-1~3-Nの各々が、図2に示した光送信部20に相当する光送信部20-1~20-Nを備えて、光通信装置2と光通信装置3-1~3-Nとが光信号の送受信を行うようにしてもよい。
光通信システム1bにおいて、光通信装置2bが、図3に示した光受信部30-iに相当する光受信部30-1~30-Nを備え、光通信装置3-1~3-Nの各々が、図2に示した光送信部20に相当する光送信部20-1~20-Nを備えて、光通信装置2bと光通信装置3-1~3-Nとが光信号の送受信を行うようにしてもよい。ただし、この場合、光通信装置3-1~3-Nが備える光送信部20-1~20-Nは、それぞれ異なる波長の光信号を生成して送出する構成を備える必要があり、それに伴い、光合分波器42,43,54は、光送信部20-1~20-Nが送出する異なる波長の光信号を合分波する構成を有する必要がある。
光通信装置2,2bと光通信装置3-1~3-Nとが光信号の送受信を行う場合、波長分散補償量設定装置6,6a,6bは、逆方向の経路、すなわち、光通信装置3-1~3-Nから光通信装置2,2bに至る経路を伝搬する光信号に生じている波長分散量を算出する必要がある。例えば、波長分散補償量設定装置6,6a,6bは、光通信装置3-1~3-Nに波長分散検出用の光信号を光通信装置2,2bに対して送出させて、光通信装置2,2bが備える電気信号処理部32,32-1~32-Nから、各々が受信した波長分散の影響を受けている光信号に関する情報を受けて、逆方向におけるN個の波長分散量を算出するようにしてもよい。
ただし、光通信装置2,2bから光通信装置3-1~3-Nに至る経路と、光通信装置3-1~3-Nから光通信装置2,2bに至る経路の両方において同一の波長分散が生じているとみなせる場合には、両方の経路についての波長分散量を算出するのではなく、いずれか一方向の経路における波長分散量を算出し、算出した波長分散量を他の方向の経路における波長分散量としてもよい。
上記の第1及び第2の実施形態では、光分岐器53,41,53-1,53-2として光スプリッタを適用するとしているので、同一の光信号の光パワーを分岐する構成、すなわち、光通信装置2は、単一の波長で同一の送信データを光通信装置3-1~3-Nに送信する構成になっているが、本発明の構成は、当該実施の形態に限られない。例えば、第1の実施形態の光通信システム1の場合、光通信装置2に替えて、第3の実施形態の光通信装置2bを適用し、光分岐器53に替えて、1:N分岐の光合分波器、具体的には、1:N分岐のWDMカプラを適用するようにしてもよい。第2の実施形態の光通信システム1aの場合、光通信装置2に替えて、第3の実施形態の光通信装置2bを適用し、光分岐器41に替えて、1:2分岐の光合分波器、具体的には、1:2分岐のWDMカプラを適用し、光分岐器53-1,53-2に替えて、1:N/2分岐の光合分波器、具体的には、1:N/2分岐のWDMカプラを適用するようにしてもよい。このような構成にすることで、第1及び第2の実施形態において、光通信装置2bは、光通信装置3-1~3-Nに対して、異なる送信データを送信することが可能になる。
上記の第1から第3の実施形態では、波長分散補償装置4,4a,4bが備える波長分散補償部40,40-1~40-Nは、予め複数の波長分散補償モジュールを備えており、波長分散補償量設定装置6,6a,6bから設定される波長分散補償量に応じた波長分散補償モジュールを選択するようにしている。なお、将来的に、波長分散補償量を任意に変更することができる可変波長分散補償モジュールが入手できるようになれば、そのような可変波長分散補償モジュールを波長分散補償部40,40-1~40-Nとして適用してもよい。また、本発明の構成として、人手によって波長分散補償量を調整する波長分散補償モジュールを利用するようにしてもよい。この場合、例えば、波長分散補償量設定装置6,6a,6bを中央局の建物内に設置しておき、光通信システム1,1a,1bの管理者が、波長分散補償量設定装置6,6a,6bが算出する各経路の波長分散量を参照して、適切な波長分散補償量が得られるように波長分散補償モジュールを調整する。なお、波長分散補償量設定装置6,6a,6bが各経路の波長分散量を算出する場合、波長分散補償部40,40-1~40-Nの箇所は、光ファイバによって直結されている状態となる。管理者は、調整した波長分散補償モジュールを波長分散補償部40,40-1~40-Nとして挿入する。波長分散補償部40,40-1~40-Nを挿入する位置が、中央局の建物内であれば、管理者による全ての作業は中央局の建物内において行うことができる。そのため、第1から第3の実施形態において、人手によって波長分散補償量を調整する波長分散補償モジュールを利用する場合であっても、人をDUの設置位置まで派遣する必要はなく、人に要するコスト等のシステムの構築に要するコストを抑えつつ波長分散補償を行うことにより信号品質を向上させることが可能になる。
上述した実施形態における波長分散補償量設定装置6,6a,6b、光通信装置2,2b、光通信装置3-1~3-Nをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
波長分散が生じる長距離の光ファイバ通信に適用することができる。
1…光通信システム、2…光通信装置、3-1~3-N…光通信装置、4…波長分散補償装置、5…光伝送路、6…波長分散補償量設定装置、40…波長分散補償部、51…光ファイバ伝送路、52…光増幅器、53…光分岐器
Claims (8)
- 1つの第1の光通信装置と、
前記第1の光通信装置と異なる位置に配置され、前記第1の光通信装置との間で通信を行う複数の第2の光通信装置と、
前記第1の光通信装置に接続する波長分散補償装置と、
前記波長分散補償装置に接続し、前記波長分散補償装置に接続する経路が分岐点において複数の経路に分岐し、分岐した経路の各々が、複数の前記第2の光通信装置の各々に接続し、前記経路を通じて光信号を伝送する光伝送路と、を備え、
前記波長分散補償装置は、
前記第1の光通信装置と、複数の前記第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量に応じた波長分散補償を行う波長分散補償部
を備える光通信システム。 - 前記光伝送路の数は、1つであり、
前記波長分散補償装置は、1つの前記波長分散補償部を備えており、
前記波長分散補償部は、
前記第1の光通信装置と、複数の前記第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量の平均値を波長分散補償量として補償する、
請求項1に記載の光通信システム。 - 前記光伝送路が、複数が存在し、
前記波長分散補償装置は、
前記第1の光通信装置に接続する経路を前記光伝送路の数に一致する数の経路に分岐する光分岐器と、
複数の前記光伝送路の各々に対応して備えられる複数の波長分散補償部であって、各々が、前記光分岐器が分岐した経路のいずれか1つと、各々に対応する前記光伝送路とを一対一に接続する複数の波長分散補償部と、を備え、
複数の前記波長分散補償部の各々は、
各々に対応する前記光伝送路を介して接続する前記第2の光通信装置の各々と、前記第1の光通信装置との間の経路を伝搬する光信号に生じる波長分散量の平均値を波長分散補償量として補償する、
請求項1に記載の光通信システム。 - 一端において受ける波長多重された光信号を波長ごとに分波し、分波した光信号の各々を異なる経路に分岐し、分岐した経路の端である複数の他端の各々から送出し、複数の前記他端の各々において受ける異なる波長の光信号を合波して前記一端から送出する第1の光合分波器、第2の光合分波器及び第3の光合分波器を備えており、
前記光伝送路の数は、1つであり、
前記波長分散補償装置は、
一端が前記第1の光通信装置に接続する前記第1の光合分波器と、
一端が前記光伝送路に接続する前記第2の光合分波器と、
前記第2の光通信装置の数に一致する数の複数の前記波長分散補償部であって前記第1の光合分波器の複数の他端の各々と、前記第2の光合分波器の複数の他端の各々とを一対一に接続する前記波長分散補償部と、を備え、
前記光伝送路の前記分岐点には、第3の光合分波器が適用されており、
異なる波長の各々と、複数の前記波長分散補償部の各々と、複数の前記第2の光通信装置の各々とは一対一に対応付けられており、
複数の前記波長分散補償部の各々は、
各々に対応する前記第2の光通信装置と、前記第1の光通信装置との間の経路を伝搬する光信号に生じる波長分散量を波長分散補償量として補償する、
請求項1に記載の光通信システム。 - 前記波長分散補償部には、DCF、または、FBG-DCMが適用される、
請求項1から4のいずれか1つに記載の光通信システム。 - 前記第1の光通信装置と、複数の前記第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量が、前記波長分散補償部が補償する波長分散補償量の範囲内となるように、前記第1の光通信装置と、複数の前記第2の光通信装置とが予め選定される、
請求項1から5のいずれか1つに記載の光通信システム。 - 前記第1の光通信装置と、複数の前記第2の光通信装置の各々との間の経路を伝搬する光信号に生じる波長分散量を、前記光伝送路が伝送する光信号に基づいて算出し、算出した前記波長分散量に基づいて、前記波長分散補償部が補償する波長分散補償量を求め、求めた前記波長分散補償量を前記波長分散補償部に設定する波長分散補償量設定装置
を備える請求項1から6のいずれか1つに記載の光通信システム。 - 前記第1の光通信装置は、光信号の送信のみを行い、前記第2の光通信装置は、前記第1の光通信装置が送信する前記光信号の受信のみを行うか、または、前記第1の光通信装置及び前記第2の光通信装置は、光信号の送受信を行う、
請求項1から7のいずれか1つに記載の光通信システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025071 WO2021260896A1 (ja) | 2020-06-25 | 2020-06-25 | 光通信システム |
JP2022532188A JP7410440B2 (ja) | 2020-06-25 | 2020-06-25 | 光通信システム |
US18/009,600 US20230216586A1 (en) | 2020-06-25 | 2020-06-25 | Optical communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025071 WO2021260896A1 (ja) | 2020-06-25 | 2020-06-25 | 光通信システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021260896A1 true WO2021260896A1 (ja) | 2021-12-30 |
Family
ID=79282129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025071 WO2021260896A1 (ja) | 2020-06-25 | 2020-06-25 | 光通信システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230216586A1 (ja) |
JP (1) | JP7410440B2 (ja) |
WO (1) | WO2021260896A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240111702A1 (en) * | 2022-09-30 | 2024-04-04 | Mellanox Technologies, Ltd. | Virtual wire protocol for transmitting side band channels |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070189769A1 (en) * | 2006-02-16 | 2007-08-16 | Mauro John C | Optical fiber with low second order distortion |
WO2020004215A1 (ja) * | 2018-06-29 | 2020-01-02 | 日本電信電話株式会社 | 分散補償システム、および、分散補償方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1188260A (ja) * | 1997-09-09 | 1999-03-30 | Fujitsu Ltd | 光伝送路の分散補償装置 |
US6606430B2 (en) * | 2000-09-05 | 2003-08-12 | Optical Zonu Corporation | Passive optical network with analog distribution |
JP4551280B2 (ja) * | 2005-06-08 | 2010-09-22 | 株式会社日立製作所 | 光アクセス網システム |
DE102006010147A1 (de) * | 2006-03-06 | 2007-09-13 | Siemens Ag | Bidirektionale optische Verstärkeranordnung |
US7474823B2 (en) * | 2006-10-12 | 2009-01-06 | Hewlett-Packard Development Company, L.P. | Tunable dispersion compensation |
US20120328294A1 (en) * | 2011-06-23 | 2012-12-27 | Verizon Patent And Licensing Inc. | High speed passive optical network architecture |
JP6376211B2 (ja) * | 2016-11-30 | 2018-08-22 | Nttエレクトロニクス株式会社 | 波長分散補償装置、波長分散補償方法及び通信装置 |
-
2020
- 2020-06-25 WO PCT/JP2020/025071 patent/WO2021260896A1/ja active Application Filing
- 2020-06-25 US US18/009,600 patent/US20230216586A1/en active Pending
- 2020-06-25 JP JP2022532188A patent/JP7410440B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070189769A1 (en) * | 2006-02-16 | 2007-08-16 | Mauro John C | Optical fiber with low second order distortion |
WO2020004215A1 (ja) * | 2018-06-29 | 2020-01-02 | 日本電信電話株式会社 | 分散補償システム、および、分散補償方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230216586A1 (en) | 2023-07-06 |
JPWO2021260896A1 (ja) | 2021-12-30 |
JP7410440B2 (ja) | 2024-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7200333B2 (en) | Optical communication apparatus, system, and method that properly compensate for chromatic dispersion | |
EP2725729A1 (en) | Optical data transmission method and system | |
US10193619B2 (en) | Mode division multiplexed passive optical network | |
EP1439648A2 (en) | Dispersion-managed optical transmission system | |
JPWO2011132312A1 (ja) | 光通信システム | |
JP2010004251A (ja) | 光伝送装置および光伝送方法 | |
WO2021260896A1 (ja) | 光通信システム | |
US10567081B2 (en) | Transmission system and transmission method | |
US8380068B2 (en) | Distinct dispersion compensation for coherent channels | |
JP2006304170A (ja) | Ponシステムおよびponシステムの分散補償方法 | |
US20040028319A1 (en) | Optical communication system and method | |
JP5316643B2 (ja) | 通信システム,分散スロープ付与器および通信方法 | |
JP6155803B2 (ja) | 光波長多重通信システム、光波長多重通信方法、及び光合分波装置 | |
JP2001136125A (ja) | 光伝送システム | |
US6026204A (en) | Matching apparatus for an optical communications network | |
JPWO2009008042A1 (ja) | 通信ネットワークおよび設計方法 | |
WO2021234776A1 (ja) | 光伝送システム及び光伝送方法 | |
JP2004254018A (ja) | 分散補償装置及びそれを用いた波長分割多重通信システム | |
US20120219292A1 (en) | Optical switch for implementing wave division multiplexing networks | |
WO2017045440A1 (zh) | 一种无源光网络的时延补偿装置、方法以及无源光网络 | |
JP2006033248A (ja) | 光伝送システム制御方法及び光伝送システム | |
US7809227B2 (en) | Optical fiber, and optical access network, local area network and optical parts for communication, which use the optical fiber | |
CN106464381A (zh) | 具有远程光学泵浦式放大器的多区段光通信链路 | |
JP3937141B2 (ja) | 波長分割多重光伝送システム、及び光通信方法 | |
WO2023148879A1 (ja) | 光通信システム、張出局及び通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20941568 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022532188 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20941568 Country of ref document: EP Kind code of ref document: A1 |