WO2021260295A1 - Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau - Google Patents

Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau Download PDF

Info

Publication number
WO2021260295A1
WO2021260295A1 PCT/FR2021/051081 FR2021051081W WO2021260295A1 WO 2021260295 A1 WO2021260295 A1 WO 2021260295A1 FR 2021051081 W FR2021051081 W FR 2021051081W WO 2021260295 A1 WO2021260295 A1 WO 2021260295A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zinc
zno
dielectric
functional layer
Prior art date
Application number
PCT/FR2021/051081
Other languages
English (en)
Inventor
Thomas BARRES
Denis Guimard
Matthieu ORVEN
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP21740592.7A priority Critical patent/EP4172122A1/fr
Publication of WO2021260295A1 publication Critical patent/WO2021260295A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide

Definitions

  • MATERIAL INCLUDING A FINE DIELECTRIC ZINC-BASED OXIDE UNDERLAYMENT STACK AND PROCESS FOR DEPOSITING THIS MATERIAL
  • the invention relates to a material comprising a substrate coated on one side with a stack of thin layers having reflection properties in the infrared and / or solar radiation having at least one metallic functional layer, in particular based on silver or containing metal alloy of silver and at least two antireflection coatings, said antireflection coatings each comprising at least one dielectric layer, said functional layer being placed between the two antireflection coatings.
  • the single, or each, metallic functional layer is thus placed between two antireflection coatings each generally comprising several layers which are each made of a dielectric material of the nitride type, and in particular of silicon or silicon nitride. aluminum, or oxide. From an optical point of view, the purpose of these coatings which surround the or each metallic functional layer is to "antireflect" this metallic functional layer.
  • this radiation treatment of the stack does not structurally modify the substrate.
  • the invention is based on the discovery of a particular configuration of layers surrounding a metallic functional layer which makes it possible to reduce the resistance per square at the same functional layer thickness, or even to reduce the functional layer thickness in order to obtain improved thermal properties, and this after a heat treatment of the material or a radiation treatment of the stack according to known techniques.
  • An aim of the invention is thus to achieve the development of a new type of stack of layers with one or more functional layers, a stack which has, after heat treatment of the material or treatment of the stack with radiation, a low resistance per square (and therefore low emissivity), high light transmission, as well as uniformity of appearance, both in transmission and in reflection.
  • the subject of the invention is thus, in its broadest sense, a material according to claim 1.
  • This material comprises a glass substrate coated on one side with a stack of thin layers having reflection properties in the infrared and / or solar radiation having at least one metallic functional layer, in particular based on silver or metal alloy containing silver and at least two antireflection coatings, said antireflection coatings each comprising at least one dielectric layer, said functional layer being placed between the two antireflection coatings, said material being noteworthy:
  • said underlying antireflection coating located under said functional layer in the direction of said substrate, comprises: - a zinc-based oxide sublayer, ZnO, which is located under and in contact with said functional layer, with a physical thickness of said zinc ZnO-based oxide sublayer which is between 0.3 and 4.4 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm, or even between 1.0 and 3.0 nm, or even between 1.5 and 2.4 nm; and - a silicon-based nitride dielectric sublayer, S13N4, which is located under and in contact with said zinc-based oxide sublayer ZnO, with a physical thickness of said nitride-based sublayer.
  • silicon S13N4 which is between 10.0 and 50.0 nm, or even between 22.0 and 45.0 nm, or even between 35.0 and 45.0 nm; - on the other hand in that said overlying anti-reflective coating, located above said functional layer opposite said substrate, comprises:
  • a zinc-based oxide overlayer, ZnO with a physical thickness of said zinc-based oxide overlayer ZnO which is between 2.0 and 10.0 nm, or even between 2.0 and 8.0 nm, or even between 2.5 and 5.4 nm; and a dielectric overlayer which is located on said zinc-based oxide overlayer ZnO, and preferably a silicon-based nitride dielectric overlayer, S13N 4 ;
  • a titanium-based oxide overblocking layer TiO x is located on and in contact with said functional layer and under said overlying anti-reflective coating, with a physical thickness of said titanium-based oxide blocking layer TiO x which is between 0.3 and 5.0 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm.
  • Said zinc-based oxide sublayer is the very thin layer mentioned above: it has a thickness corresponding to a minimum of a mono-molecular layer of ZniOi and a maximum thickness of only a few nanometers.
  • the zinc oxide is neither substoichiometric nor superstoichiometric, in order to have the lowest possible absorption coefficient in the visible range; this simplifies the manufacture and control of the effects of heat treatment of the material or the effects of treatment of the stack with radiation.
  • Said silicon-based nitride dielectric sublayer is a barrier layer which prevents the penetration of elements from the substrate towards the metallic functional layer during processing.
  • Said titanium-based oxide overblocking layer TiO x may in particular have a physical thickness which is between 0.3 and 4.9 nm, or even between 0.3 and 3.9 nm, or even between 0.3 and 2.9 nm; it may also have a physical thickness which is between 1.0 and 4.9 nm, or even between 1.0 and 3.9 nm, or even between 1.0 and 2.9 nm.
  • Said titanium-based oxide overblocking layer TiO x may in particular contain only the two elements: titanium and oxygen; this simplifies the manufacture and the control of the effects of the heat treatment of the material or the effects of the treatment of the stack with radiation.
  • Said stack may comprise a single metallic functional layer or may comprise two metallic functional layers, or three metallic functional layers, or four metallic functional layers; the metallic functional layers here are continuous layers.
  • said material does not include a discontinuous metallic functional layer; in fact, such a discontinuous metallic functional layer does not withstand a heat treatment of the material or a treatment of the stack by radiation without modifying its state and such a modification of state is difficult to control.
  • each functional layer is according to the previous indication, with:
  • said underlying anti-reflective coating located under and in contact with each functional layer which comprises, in the direction of said substrate:
  • a zinc-based oxide sublayer, ZnO which is located under and in contact with said functional layer, with a physical thickness of said zinc-based ZnO oxide sublayer which is between 0, 3 and 4.4 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm, or even between 1.0 and 3.0 nm, or even between 1.5 and 2.4 nm ; and
  • said overlying anti-reflective coating located above and in contact with each functional layer, which comprises, opposite said substrate:
  • each titanium based oxide blocking layer TiO x is located on and in contact with each functional layer and under each overlying anti-reflective coating, with a physical thickness of each titanium based oxide blocking layer TiO x between 0.3 and 5.0 nm , or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm.
  • each antireflection coating located between two metallic functional layers has both an overlying antireflection part, with respect to the functional layer located below and at the same time an underlying antireflection part, for example. compared to the functional layer above.
  • Said metallic functional layer, or each metallic functional preferably has a physical thickness which is between 8.0 and 22.0 nm, or even between 9.0 and 16.0 nm, or even between 9.5 and 12.4 nm .
  • a metallic functional layer preferably comprises, for the most part, at least 50% in atomic percentage, at least one of the metals chosen from the list: Ag, Au, Cu, Pt; one, more, or each, metallic functional layer is preferably silver.
  • metal layer within the meaning of the present invention, it should be understood that the layer does not contain oxygen or nitrogen.
  • dielectric layer within the meaning of the present invention, it should be understood that from the point of view of its nature, the layer is" non-metallic, that is to say that it comprises oxygen or nitrogen, or even both. In the context of the invention, this term means that the material of this layer has an n / k ratio over the entire visible wavelength range (from 380 nm to 780 nm) equal to or greater than 5.
  • n denotes the real refractive index of the material at a given wavelength and the coefficient k represents the imaginary part of the refractive index at a given wavelength, or absorption coefficient; the ratio n / k being calculated at a given wavelength identical for n and for k.
  • the term “based on” means that for the composition of this layer, the reactive elements oxygen or nitrogen, or both if they are both present, are not considered and the element is not reactive (eg silicon or zinc) which is indicated as constituting the base, is present at more than 85 atomic% of the total of the unreactive elements in the layer.
  • This expression thus includes what is commonly referred to in the technique under consideration as "doping, while the doping element, or each doping element, may be present in an amount of up to 10 atomic%, but without the total being dopant does not exceed 15 atomic% of the non-reactive elements.
  • said underlying antireflection coating located under said functional layer, and / or said underlying antireflection coating jacent, located above said functional layer, does not include any layer in the metallic state. In fact, it is not desirable for such a layer to be able to react, and in particular to oxidize, during the treatment.
  • said underlying antireflection coating, located under said functional layer, and / or said overlying antireflection coating, located above said functional layer does not include any absorbent layer;
  • absorbent layer within the meaning of the present invention, it should be understood that the layer is a material exhibiting an average k coefficient, over the entire visible wavelength range (from 380 nm to 780 nm), greater than 0, 5 and exhibiting an electrical resistivity in the bulk state (as known in the literature) which is greater than 10 5 Q.cm. In fact, it is not desirable for such a layer to be able to react, and in particular to oxidize, during the treatment.
  • said silicon-based nitride dielectric sublayer S13N4 does not include zirconium.
  • said silicon-based nitride dielectric sublayer S13N4 does not contain oxygen.
  • Said zinc-based oxide ZnO sub-layer and / or said zinc-based oxide ZnO overcoat preferably consists of zinc oxide ZnO doped with aluminum, that is to say that it does not include any element other than Zn, Al and O.
  • said underlying antireflection coating located under said functional layer, further comprises a dielectric intermediate sublayer located between said dielectric sublayer of silicon-based nitride S13N4 and said face, this dielectric intermediate sublayer being oxidized (that is to say comprising oxygen) and preferably comprising: a mixed oxide of zinc and tin or an oxide of titanium TiO x .
  • This dielectric intermediate sub-layer is preferably located in contact with the dielectric sub-layer of silicon-based nitride S13N4.
  • said overlying anti-reflective coating located above said functional layer, further comprises a dielectric intermediate overlayer situated between said zinc-based oxide ZnO overlayer and said dielectric overlayer, this dielectric intermediate overlayer being oxidized and preferably comprising: a titanium oxide TiO x or a mixed oxide of zinc and tin.
  • Said dielectric overlayer which is located on said zinc-based oxide ZnO overlayer, and which is preferably a silicon-based nitride dielectric overlayer, S1 3 N 4 may have a thickness between 5.0 and 50.0 nm, or even between 10.0 and 45.0 nm, or even between 25.0 and 45.0 nm.
  • the present invention also relates to a multiple glazing comprising a material according to the invention, and at least one other substrate, the substrates being held together by a frame structure, said glazing forming a separation between an exterior space and an interior space. , in which at least one interleaving gas blade is disposed between the two substrates.
  • Each substrate can be clear or colored. At least one of the substrates, in particular, can be made of glass colored in the mass. The choice of the type of coloring will depend on the level of light transmission and / or the colorimetric appearance desired for the glazing once its manufacture is complete.
  • a glazing substrate in particular the substrate carrying the stack, can be bent and / or toughened after the stack has been deposited. It is preferable in a multiple glazing configuration that the stack is arranged so as to be turned towards the side of the interlayer gas knife.
  • the glazing can also be a triple glazing consisting of three sheets of glass separated two by two by a gas layer.
  • the substrate carrying the stack may be on face 2 and / or on face 5, when it is considered that the incident direction of sunlight passes through the faces in increasing order of their number.
  • the present invention also relates to a process for obtaining or manufacturing a material comprising a glass substrate coated on one face with a stack of thin layers with reflection properties in the infrared and / or in the infrared.
  • solar radiation comprising at least one metallic functional layer, in particular based on silver or a metallic alloy containing silver and two anti-reflection coatings, said anti-reflection coatings each comprising at least one dielectric layer, said functional layer being arranged between the two anti-reflection coatings, said method comprising the following steps, in order: - deposition on a face of said substrate of a stack of thin layers with reflection properties in the infrared and / or in solar radiation comprising at least one metallic functional layer, in particular based on silver or on a metallic alloy containing silver and at least two anti-reflective coatings, in order to form a material according to the invention, then - the treatment of said stack of thin layers using a source producing radiation and in particular infrared radiation, in order to treat the stack of thin layers as such.
  • Said treatment is preferably carried out in an atmosphere not comprising oxygen.
  • Said ZnO zinc-based oxide sublayer is preferably deposited from a ceramic target comprising ZnO and in an atmosphere containing no oxygen or comprising at most 10.0% oxygen.
  • FIG. 1 illustrates a structure of a functional monolayer stack according to the invention, the functional layer being deposited directly on an oxide sublayer based on zinc ZnO and directly under an overblocking layer based oxide sublayer. zinc ZnO, the stack being illustrated during treatment with a radiation producing source;
  • FIG. 2 illustrates a structure of a functional bilayer stack according to the invention, each functional layer being deposited directly on an oxide sublayer based on zinc ZnO and directly under an overblocking layer an oxide sublayer based on ZnO. zinc ZnO, the stack being illustrated during treatment with a radiation producing source;
  • FIG. 3 illustrates a double glazing incorporating a stack according to the invention
  • FIG. 4 illustrates a triple glazing incorporating two stacks according to the invention
  • FIG. 5 illustrates the resistance per square of some examples of thin film stacks as a function of the thickness of a zinc oxide base ZnO 129 and without any treatment;
  • FIG. 6 illustrates the resistance per square of the same examples as in Figure 5, as a function of the thickness of a zinc-based oxide sublayer ZnO 129 and after an AHT heat treatment or after an ALT laser treatment ;
  • FIG. 1 illustrates a structure of a functional monolayer stack 14 according to the invention deposited on a face 29 of a transparent glass substrate 30, in which the single functional layer 140, in particular based on silver or an alloy metal containing silver, is disposed between two anti-reflective coatings, the underlying anti-reflective coating 120 located below the functional layer 140 towards the substrate 30 and the overlying anti-reflective coating 160 disposed above the functional layer 140 opposite the substrate 30.
  • These two antireflection coatings 120, 160 each comprise at least one dielectric layer 125, 127, 129; 161, 163, 165.
  • the antireflection coating 120 located under the functional layer 140 towards the substrate 30 comprises:
  • a zinc-based oxide sublayer, ZnO 129 which is located under and in contact with the functional layer 140, with a physical thickness of the zinc oxide-based sublayer ZnO 129 which is between 0.3 and 4.4 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm, or even between 1.0 and 3.0 nm, or even between 1.5 and 2.4 nm; and
  • the antireflection coating 160 located above the functional layer 140 opposite the substrate 30 comprises: - a zinc-based oxide overlayer, ZnO 161, with a physical thickness of the overlayer of zinc-based oxide, ZnO 161 which is between 2.0 and 10.0 nm, or even between 2.0 and 8.0 nm, or even between 2.5 and 5.4 nm; and
  • dielectric overlayer 165 which is located on the zinc-based oxide overlayer, ZnO 161 and, preferably a silicon-based nitride dielectric overlayer, S13N4;
  • an overblocking layer of titanium-based oxide TiO x 150 which is located on and in contact with the functional layer 140 and under the overlying antireflection coating 160, with a physical thickness of the blocking layer of titanium-based oxide TiO x 150 which is between 0.3 and 5.0 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm.
  • FIG. 2 illustrates a structure of a functional bilayer stack 14 according to the invention deposited on a face 29 of a transparent glass substrate 30, in which the functional layers 140, 180, in particular based on silver or on metal alloy containing silver, are disposed between two antireflection coatings, the underlying antireflection coating 120 located below the functional layer 140 closest to the face 29 of the substrate 30, the intermediate antireflection coating 160 is located between the two functional layers and the overlying antireflection coating 200 disposed above the functional layer 180 furthest from the face 29 of the substrate 30.
  • These three antireflection coatings 120, 160, 200 each comprise at least one dielectric layer 127, 129 ; 161, 167, 169; 201, 205.
  • this figure 2 :
  • the antireflection coating located under and in contact with each functional layer 140, 180 comprises, in the direction of the substrate: - a zinc-based oxide sublayer, ZnO, 129, 169 which is located under and in contact with the functional layer, with a physical thickness of the zinc-based oxide sublayer ZnO which is included between 0.3 and 4.4 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm, or even between 1.0 and 3.0 nm, or even between 1.5 and 2 , 4 nm; and
  • the anti-reflective coating located above and in contact with each functional layer 140, 180 comprises, opposite the substrate:
  • a zinc-based oxide overlayer, ZnO, 161, 201 with a physical thickness of the zinc-based oxide overlayer ZnO which is between 2.0 and 10.0 nm, or even between 2.0 and 8.0 nm, or even between 2.5 and 5.4 nm; and
  • dielectric overlayer 205 which is located on the zinc-based oxide overlayer ZnO, 201 and preferably this dielectric overlayer is of silicon-based nitride, SÎ3N4
  • an overblocking layer of titanium-based oxide TiO x 150, 190 which is located on and in contact with each functional layer 140, 180 and under each overlying anti-reflective coating 160, 200, with a physical thickness of the titanium-based oxide blocking layer TiO x 150, 190 which is between 0.3 and 5.0 nm, or even between 0.3 and 2.9 nm, or even between 0.5 and 2.4 nm.
  • the functional layer 140 is located directly over the underlying anti-reflective coating 120 and indirectly under the overlying anti-reflective coating 160, 200: there is no underlying coating located between the underlying anti-reflective coating 120 and functional layer 140 but there is an overblocking coating located between functional layer 140 and antireflection coating 160, here comprising the titanium based oxide TiO x 150 overblocking layer, 190.
  • an overblocking coating located between functional layer 140 and antireflection coating 160, here comprising the titanium based oxide TiO x 150 overblocking layer, 190.
  • each one is in contact direct from the anti-reflective coating located directly below and an overlock layer is interposed between it and the anti-reflective coating located above.
  • the antireflection coating 160 located above the single metallic functional layer in Figure 1 may end with an end protective layer (not illustrated), called "overcoat in English, which is the layer of the stack which is furthest from the face 29.
  • an end protective layer not illustrated
  • overcoat in English which is the layer of the stack which is furthest from the face 29.
  • Such a stack of thin layers can be used in a multiple glazing 100 producing a separation between an exterior space ES and an interior space IS; this glazing may have a structure:
  • this glazing is then made up of two substrates 10, 30 which are held together by a frame structure 90 and which are separated from each other by an intermediate gas layer 15 ;
  • this glazing then consists of three substrates 10, 20, 30, separated two by two by an intermediate gas layer 15, 25, the whole being held together by a frame structure 90 .
  • the stack 14 of thin layers can be positioned on face 3 (on the innermost sheet of the building, considering the incident direction of the sunlight entering the building and on its face facing the strip. gas), that is to say on an interior face 29 of the substrate 30 in contact with the intermediate gas sheet 15, the other face 31 of the substrate 30 being in contact with the interior space IS.
  • one of the substrates has a laminated structure.
  • FIG. 4 there are two stacks of thin layers, preferably identical:
  • a stack 14 of thin layers is positioned on face 2 (on the outermost sheet of the building, considering the incident direction of light solar entering the building and on its face turned towards the gas layer), that is to say on an interior face 11 of the substrate 10 in contact with the intermediate gas sheet 15, the other face 9 of the substrate 10 being in contact with the external space ES;
  • - and a stack 26 of thin layers is positioned on face 5 (on the innermost sheet of the building considering the incident direction of sunlight entering the building and on its face facing the gas layer), that is to say on an interior face 29 of the substrate 30 in contact with the intermediate gas layer 25, the other face 31 of the substrate 30 being in contact with the interior space IS.
  • a first series of examples was produced on the basis of the stacking structure illustrated in FIG. 1 with, starting from surface 29, only the following layers, in this order: a dielectric sub-layer of nitride based on of silicon, S1 3 N 4 127 with a physical thickness of 20 nm, deposited from a silicon target doped with aluminum, 92% by weight of silicon and 8% by weight of aluminum in an atmosphere at 45% nitrogen on the total nitrogen and argon and under a pressure of 1, 5.10 3 mbar; - a zinc-based oxide sublayer, ZnO 129, of variable physical thickness, varying from 1.0 nm to more than 7.0 nm, deposited from a ceramic target consisting of 49 atomic% of zinc and 49 atomic% oxygen and doped with 2% aluminum, in an argon atmosphere and under a pressure of 2.10 3 mbar; a functional metallic layer 140 based on silver, and more precisely here in silver, with a physical thickness of 12 nm, deposited from a metallic target in silver, in
  • an oxide overblocking layer based on titanium TiO x 150 which is located on the functional layer 140, with a physical thickness of 0.7 nm, deposited from a target in titanium dioxide in an atmosphere at 5% oxygen out of the total oxygen and argon and under a pressure of 2.10 3 mbar;
  • a zinc-based oxide overcoat ZnO 161, with a physical thickness of 5 nm, deposited from a ceramic target consisting of 49 atomic% of zinc and 49 atomic% oxygen and doped with 2% aluminum>, in an argon atmosphere and under a pressure of 2.10 3 mbar;
  • FIG. 5 illustrates on the ordinate the resistance per square, Rsq, in ohms per square of the stacks thus deposited as a function of the thickness, ti29, in nanometers of the zinc-based oxide sublayer, ZnO 129 on the abscissa, this resistance per square being measured immediately after the deposition of the stacks, that is to say without any heat treatment.
  • This curve shows that there is, a priori, no advantage in using a zinc-based oxide sublayer ZnO 129 having a thickness less than 5 nm because the resistance per square of the stack tends to be higher. in this thickness range.
  • Figure 6 illustrates on the ordinate the resistance per square, Rsq, in ohms per square of these stacks as a function of the thickness, ti29, in nanometers of the zinc-based oxide sublayer, ZnO 129 on the abscissa, this resistance per square being measured after one or the other of these treatments:
  • annealing heat treatment consisting of heating at a temperature of 650 ° C for 10 minutes then cooling by simply leaving the sample in an atmosphere at 20 ° C, in order to simulate quenching; the measurements are illustrated by the top curve, AHT;
  • a laser treatment consisting here of a scrolling of the substrate 30 at a speed of 4 m / min under a laser line 20 of 0.08 mm wide, 11.6 mm long and of total power of 433 W with the laser line oriented perpendicular to face 29 and in the direction of stack 14, that is to say by placing the laser line above the stack, as visible in FIG. 1 (the right black arrow illustrating the orientation of the emitted light); the measurements are illustrated by the bottom curve, ALT.
  • top curve, AHT, and the bottom curve, ALT shows that, with the exception of a few artifacts, the resistance per square is even lower after a laser treatment than after a heat-quenching treatment, for an underlayer thickness of zinc-based oxide ZnO 129 between 1.0 and 5.0 nm. There is even a particularly favorable zone, with a particularly low resistance per square, for a sub-layer thickness of zinc-based oxide ZnO 129 between 1.0 and 3.0 nm, or even between 1.5 and 2. , 4 nm. The improvement is between 5 and 10% compared to the quench heat treatment.
  • a silicon-based nitride dielectric sublayer S1 3 N 4 127 with a physical thickness of 43.2 nm to 37.3 nm, deposited from a silicon target doped with aluminum, at 92% by weight of silicon and 8% by weight of aluminum in an atmosphere at 45% nitrogen on the total nitrogen and argon and under a pressure of 1, 5.10 3 mbar;
  • a zinc-based oxide sublayer ZnO 129 of variable physical thickness, varying from 1.0 nm to 6.0 nm, deposited from a ceramic target consisting of 49 atomic% of zinc and 49 atomic% oxygen and doped with 2% aluminum, in an argon atmosphere and under a pressure of 2.10 3 mbar;
  • a zinc-based oxide overcoat ZnO 161 with a physical thickness of 5 nm, deposited from a ceramic target consisting of 49 atomic% zinc and 49 atomic% oxygen and doped with 2% aluminum, in an argon atmosphere and under a pressure of 2.10 3 mbar;
  • the table in FIG. 7 summarizes the thicknesses of the layers 127, 129 and 165 of the five examples of this second series.
  • the two outer substrates 10, 30 of this triple glazing are each coated on its inner face 11, 29 facing the intermediate gas layer 15, 25, with an insulating coating 14, 26 consisting of the functional single-layer stack described. above: the functional monolayer stacks are thus on faces called "face 2 and" face 5).
  • the central substrate 20 of this triple glazing the one whose two faces 19, 21 are in contact respectively with the intermediate gas sheets 15 and
  • the last line of the table of figure 7, as well as figure 8 illustrate the evolution, on the y-axis in figure 8, of the solar factor, g, in percent, as a function of the thickness, ti29, in nanometers of the sub- oxide layer based on zinc ZnO 129 on the abscissa, this solar factor being measured immediately after the laser treatment of the two substrates 10, 30, then their integration to form the triple glazing.
  • the solar factor is thus improved when the zinc oxide ZnO 129 sublayer is between 0.3 and 5.0 nm.
  • the postman solar is particularly favorable for a thickness of this sub-layer of oxide based on zinc ZnO 129 between 1.0 and 3.0 nm, or even between 1.5 and 2.4 nm.
  • the thickness of the functional layer 140 of the two stacks 14, 26 By reducing the thickness of the functional layer 140 of the two stacks 14, 26 from 12.0 to 9.6 nm and by keeping the thickness of the zinc-based oxide sublayer ZnO 129 at 1.0 nm, it was thus possible to produce two stacks having substantially the same resistance per square as with 5.0 nm for the zinc-based oxide sublayer ZnO 129 and 12.0 nm for the functional layer 140 (3, 80 ohms per square). However, for a resistance per square retained, it was then observed that the triple glazing had a much higher solar factor, at 58.2%.
  • a third set of examples was then performed based on the second set of examples with a higher functional layer thickness of 15.0nm, keeping the titanium based oxide overblock layer TiO x 150 with a physical thickness of 0.7 nm and the zinc-based oxide overlay ZnO 161 with a physical thickness of 5.0 nm.
  • the table in FIG. 9 summarizes the thicknesses of the layers 127, 129 and 165 of the five examples of this third series.
  • the last line of the table of figure 9, as well as figure 10 illustrate the evolution, on the y-axis in figure 8, of the solar factor, g, in percent, as a function of the thickness, ti29, in nanometers of the sub- oxide layer based on zinc ZnO 129 on the abscissa, this solar factor being measured immediately after the laser treatment of the two substrates 10, 30, then their integration to form the triple glazing.
  • the solar factor is thus improved when the zinc oxide ZnO 129 sublayer is between 0.3 and 5.0 nm.
  • the postman solar is particularly favorable for a thickness of this zinc-based oxide ZnO 129 sublayer between 1.0 and 3.0 nm, or even between 1.5 and 2.4 nm.
  • the examples all exhibit good mechanical resistance to the EBT test, both without heat treatment and after laser treatment.
  • the antireflection coating 120 located under a functional layer 140 further comprises a dielectric intermediate sublayer 125 located between the silicon-based nitride dielectric sublayer, S13N4 I27 and the face 29, this dielectric intermediate sublayer 125 preferably being oxidized and preferably comprising a mixed oxide of zinc and tin.
  • the antireflection coating 160 located above a functional layer 140 further comprises a dielectric intermediate overlayer 163 located between the zinc-based oxide overlayer, ZnO 161 and the dielectric overlayer 165 which is located above, this dielectric intermediate overlayer 163 preferably being oxidized and preferably comprising a titanium oxide.

Abstract

L'invention concerne un matériau comprenant un substrat (30) revêtu sur une face (29) d'un empilement de couches minces (14) comportant au moins une couche fonctionnelle métallique (140) et comportant : - une sous-couche d'oxyde à base de zinc, ZnO (129) entre 0,3 et 4,4 nm; - une sous-couche diélectrique de nitrure à base de silicium, Si3N4 (127) entre 10,0 et 50,0 nm; - une surcouche d'oxyde à base de zinc, ZnO (161) entre 2,0 et 10,0 nm; - une surcouche diélectrique (165); - une couche de surblocage d'oxyde à base de titane TiOx (150) située sur et au contact de ladite couche fonctionnelle (140).

Description

DESCRIPTION
MATERIAU COMPORTANT UN EMPILEMENT A SOUS-COUCHE DIELECTRIQUE FINE D’OXIDE A BASE DE ZINC ET PROCEDE DE DEPOT DE CE MATERIAU
L’invention concerne un matériau comprenant un substrat revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements antireflet. Dans ce type d’empilement, l’unique, ou chaque, couche fonctionnelle métallique se trouve ainsi disposée entre deux revêtements antireflet comportant chacun en général plusieurs couches qui sont chacune en un matériau diélectrique du type nitrure, et notamment nitrure de silicium ou d’aluminium, ou oxyde. Du point de vu optique, le but de ces revêtements qui encadrent la ou chaque couche fonctionnelle métallique est « d’antirefléter >> cette couche fonctionnelle métallique.
Il est connu de la demande de brevet européen N° EP 718 250 une configuration antérieure dans laquelle d’une part une couche à base d’oxyde de zinc est située juste sous et au contact de la couche fonctionnelle métallique, en direction du substrat, puis une couche à base de nitrure de silicium sous et au contact cette couche à base d’oxyde de zinc et dans laquelle d’autre part une couche à base d’oxyde de zinc est située au-dessus, à l’opposé du substrat, puis une couche diélectrique, par exemple à base de nitrure de silicium, est située sur et au contact de cette couche à base d’oxyde de zinc. Ce document enseigne en particulier que le matériau comprenant cet empilement de couches minces et le substrat sur une face duquel il est situé peut subir un traitement thermique sollicitant, du type bombage, trempe ou recuit, qui conduit à une modification structurelle du substrat sans dégrader les propriétés optiques et thermiques de l’empilement. Il est connu par ailleurs de la demande internationale de brevet N° WO 2010/142926 d’appliquer un traitement par rayonnement après le dépôt d’un empilement comportant une couche fonctionnelle pour diminuer l’émissivité ou améliorer les propriétés optiques de cet empilement, en prévoyant en particulier une couche absorbante en couche terminale de l’empilement. L’utilisation d’une couche terminale absorbante permet d’accroître l’absorption du rayonnement par l’empilement et de diminuer la puissance nécessaire au traitement. Comme la couche terminale s’oxyde lors du traitement et devient transparente, les caractéristiques optiques de l’empilement après traitement sont intéressantes (une transmission lumineuse élevée peut notamment être obtenue).
A la différence du traitement thermique évoqué précédemment, ce traitement par rayonnement de l’empilement ne modifie pas structurellement le substrat.
L’invention repose sur la découverte d’une configuration particulière de couches encadrant une couche fonctionnelle métallique qui permet de diminuer la résistance par carré à épaisseur de couche fonctionnelle identique, voire de diminuer l’épaisseur de couche fonctionnelle pour obtenir des propriétés thermiques améliorées, et cela après un traitement thermique du matériau ou un traitement par rayonnement de l’empilement selon les techniques connues.
Un but de l’invention est ainsi de parvenir à mettre au point un nouveau type d’empilement de couches à une ou plusieurs couches fonctionnelles, empilement qui présente, après traitement thermique du matériau ou traitement de l’empilement par un rayonnement, une faible résistance par carré (et donc une faible émissivité), une transmission lumineuse élevée, ainsi qu’une homogénéité d’aspect, tant en transmission qu’en réflexion.
Dans la configuration particulière selon l’invention, il est proposé d’une part de disposer une couche très fine d’oxyde à base de zinc juste sous et au contact de la couche fonctionnelle métallique, en direction du substrat, puis de disposer, en direction du substrat une couche à base de nitrure de silicium sous et au contact de cette couche très fine d’oxyde à base de zinc et d’autre part de disposer une couche fine d’oxyde à base de zinc juste au-dessus de la couche fonctionnelle métallique, à l’opposé du substrat, puis de disposer une couche diélectrique, par exemple de nitrure à base de silicium, sur (au contact ou non) cette couche fine d’oxyde à base de zinc.
L’invention a ainsi pour objet, dans son acception la plus large, un matériau selon la revendication 1 . Ce matériau comprend un substrat verrier revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements anti reflet, ledit matériau étant remarquable :
- d’une part en ce que ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle en direction dudit substrat, comporte : - une sous-couche d’oxyde à base de zinc, ZnO, qui est située sous et au contact de ladite couche fonctionnelle, avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et - une sous-couche diélectrique de nitrure à base de silicium, S13N4, qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc ZnO, avec une épaisseur physique de ladite sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ; - d’autre part en ce que ledit revêtement antireflet sus-jacent, situé au-dessus ladite couche fonctionnelle à l’opposé dudit substrat, comporte :
- une surcouche d’oxyde à base de zinc, ZnO, avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc ZnO qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et - une surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 ;
- et en outre en ce que une couche de surblocage d’oxyde à base de titane TiOx est située sur et au contact de ladite couche fonctionnelle et sous ledit revêtement antireflet sus-jacent, avec une épaisseur physique de ladite couche de blocage d’oxyde à base de titane TiOx qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.
Ladite sous-couche d’oxyde à base de zinc est la couche très fine évoquée précédemment : elle présente une épaisseur correspondant au minium à une couche mono-moléculaire de ZniOi et une épaisseur maximum de quelques nanomètres seulement. Dans cette couche, de préférence, l’oxyde de zinc n’est ni sous-stœchiométrique, ni sur-stœchiométrique, afin de présenter un coefficient d’absorption le plus bas possible dans le domaine du visible ; cela simplifie la fabrication et la maîtrise des effets du traitement thermique du matériau ou des effets du traitement de l’empilement par un rayonnement.
Ladite sous-couche diélectrique de nitrure à base de silicium est une couche barrière qui empêche la pénétration d’éléments provenant du substrat en direction de la couche fonctionnelle métallique lors du traitement. Ladite couche de surblocage d’oxyde à base de titane TiOx peut en particulier présenter une épaisseur physique qui est comprise entre 0,3 et 4,9 nm, voire entre 0,3 et 3,9 nm, voire entre 0,3 et 2,9 nm ; elle peut par ailleurs présenter une épaisseur physique qui est comprise entre 1,0 et 4,9 nm, voire entre 1,0 et 3,9 nm, voire entre 1,0 et 2,9 nm. Ladite couche de surblocage d’oxyde à base de titane TiOx peut en particulier ne comporter que les deux éléments : titane et oxygène ; cela simplifie la fabrication et la maîtrise des effets du traitement thermique du matériau ou des effets du traitement de l’empilement par un rayonnement.
Ledit empilement peut comporter une seule couche fonctionnelle métallique ou peut comporter deux couches fonctionnelles métalliques, ou trois couches fonctionnelles métalliques, ou quatre couches fonctionnelles métalliques ; les couches fonctionnelles métalliques dont il s’agit ici sont des couches continues.
De préférence, ledit matériau ne comporte pas de couche fonctionnelle métallique discontinue ; en effet, une telle couche fonctionnelle métallique discontinue ne supporte pas un traitement thermique du matériau ou un traitement de l’empilement par un rayonnement sans modification de son état et une telle modification d’état est difficile à maîtriser. De préférence, lorsque l’empilement comporte plusieurs couches fonctionnelles métalliques, chaque couche fonctionnelle est selon l’indication précédente, avec :
- d’une part ledit revêtement antireflet sous-jacent, situé sous et au contact de chaque couche fonctionnelle qui comporte, en direction dudit substrat :
- une sous-couche d’oxyde à base de zinc, ZnO, qui est située sous et au contact de ladite couche fonctionnelle, avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et
- une sous-couche diélectrique de nitrure à base de silicium, S13N4, qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc ZnO, avec une épaisseur physique de ladite sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;
- d’autre part ledit revêtement antireflet sus-jacent, situé au-dessus et au contact de chaque couche fonctionnelle, qui comporte à l’opposé dudit substrat :
- une surcouche d’oxyde à base de zinc, ZnO, avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc ZnO qui est comprise entre
2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et
- une surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 - et en outre une couche de surblocage d’oxyde à base de titane TiOx qui est située sur et au contact de chaque couche fonctionnelle et sous chaque revêtement antireflet sus-jacent, avec une épaisseur physique de chaque couche de blocage d’oxyde à base de titane TiOx qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm. Pour un empilement à plusieurs couches fonctionnelles métalliques, chaque revêtement antireflet situé entre deux couches fonctionnelles métalliques comporte à la fois une partie antireflet sus-jacent, par rapport à la couche fonctionnelle située en dessous et à la fois une partie antireflet sous- jacent, par rapport à la couche fonctionnelle située au-dessus. Ladite couche fonctionnelle métallique, ou chaque fonctionnelle métallique, présente de préférence une épaisseur physique qui est comprise entre 8,0 et 22,0 nm, voire entre 9,0 et 16,0 nm, voire entre 9,5 et 12,4 nm.
Une couche fonctionnelle métallique comporte, de préférence, majoritairement, à au moins 50 % en pourcentage atomique, au moins un des métaux choisi dans la liste : Ag, Au, Cu, Pt ; une, plusieurs, ou chaque, couche fonctionnelle métallique est de préférence en argent.
Par « couche métallique au sens de la présente invention, il faut comprendre que la couche ne comporte pas d’oxygène, ni d’azote.
Comme habituellement, par « couche diélectrique au sens de la présente invention, il faut comprendre que du point de vue de sa nature, la couche est « non métallique , c’est-à-dire qu’elle comporte de l’oxygène ou de l’azote, voire les deux. Dans le contexte de l’invention, ce terme signifie que le matériau de cette couche présente un rapport n/k sur toute la plage de longueur d’onde du visible (de 380 nm à 780 nm) égal ou supérieur à 5.
Il est rappelé que n désigne l’indice de réfraction réel du matériau à une longueur d’onde donnée et le coefficient k représente la partie imaginaire de l’indice de réfraction à une longueur d’onde donnée, ou coefficient d’absorption ; le rapport n/k étant calculé à une longueur d’onde donnée identique pour n et pour k.
Par « au contact on entend au sens de l’invention qu’aucune couche n’est interposée entre les deux couches considérées.
Par « à base de on entend au sens de l’invention que pour la composition de cette couche, les éléments réactifs oxygène, ou azote, ou les deux s’ils sont présents tous les deux, ne sont pas considérés et l’élément non réactif (par exemple le silicium ou le zinc) qui est indiqué comme constituant la base, est présent à plus de 85 % atomique du total des éléments non réactifs dans la couche. Cette expression inclut ainsi ce qu’il est courant de nommer dans la technique considérée du « dopage , alors que l’élément dopant, ou chaque élément dopant, peut être présent en quantité allant jusqu’à 10 % atomique, mais sans que le total de dopant ne dépasse 15 % atomique des éléments non- réactifs.
Dans une variante particulière, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, et/ou ledit revêtement antireflet sus- jacent, situé au-dessus ladite couche fonctionnelle, ne comporte aucune couche à l’état métallique. En effet, il n’est pas souhaité qu’une telle couche puisse réagir, et en particulier s’oxyder, lors du traitement.
Dans une variante particulière, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, et/ou ledit revêtement antireflet sus- jacent, situé au-dessus ladite couche fonctionnelle, ne comporte aucune couche absorbante ; Par « couche absorbante au sens de la présente invention, il faut comprendre que la couche est un matériau présentant un coefficient k moyen, sur toute la plage de longueur d’onde du visible (de 380 nm à 780 nm), supérieur à 0,5 et présentant une résistivité électrique à l’état massif (telle que connue dans la littérature) qui est supérieure à 105 Q.cm. En effet, il n’est pas souhaité qu’une telle couche puisse réagir, et en particulier s’oxyder, lors du traitement.
Il est d’autant plus surprenant d’atteindre les propriétés visées par l’invention pour ces deux variantes précédentes car des propriétés similaires sont parfois obtenues dans l’art antérieur avec ces deux variantes précédentes.
De préférence, ladite sous-couche diélectrique de nitrure à base de silicium S13N4 ne comporte pas de zirconium.
De préférence par ailleurs, ladite sous-couche diélectrique de nitrure à base de silicium S13N4 ne comporte pas d’oxygène.
Ladite sous-couche d’oxyde à base de zinc ZnO et/ou ladite surcouche d’oxyde à base de zinc ZnO est, de préférence, constituée d’oxyde de zinc ZnO dopé à l’aluminium, c’est-à-dire qu’elle ne comporte aucun autre élément que Zn, Al et O. Dans une variante spécifique, ledit revêtement antireflet sous-jacent, situé sous ladite couche fonctionnelle, comporte en outre une sous-couche intermédiaire diélectrique située entre ladite sous-couche diélectrique de nitrure à base de silicium S13N4 et ladite face, cette sous-couche intermédiaire diélectrique étant oxydée (c’est-à-dire comportant de l’oxygène) et comprenant de préférence : un oxyde mixte de zinc et d’étain ou un oxyde de titane TiOx. Cette sous-couche intermédiaire diélectrique est de préférence située au contact de la sous-couche diélectrique de nitrure à base de silicium S13N4. Dans une variante spécifique, ledit revêtement antireflet sus-jacent, situé au-dessus de ladite couche fonctionnelle, comporte en outre une surcouche intermédiaire diélectrique située entre ladite surcouche d’oxyde à base de zinc ZnO et ladite surcouche diélectrique, cette surcouche intermédiaire diélectrique étant oxydée et comprenant de préférence : un oxyde de titane TiOx ou un oxyde mixte de zinc et d’étain.
Ladite surcouche diélectrique qui est située sur ladite surcouche d’oxyde à base de zinc ZnO, et qui est de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 peut présenter une épaisseur comprise entre 5,0 et 50,0 nm, voire entre 10,0 et 45,0 nm, voire entre 25,0 et 45,0 nm.
La présente invention se rapporte par ailleurs à un vitrage multiple comportant un matériau selon l’invention, et au moins un autre substrat, les substrats étant maintenus ensemble par une structure de châssis, ledit vitrage réalisant une séparation entre un espace extérieur et un espace intérieur, dans lequel au moins une lame de gaz intercalaire est disposée entre les deux substrats.
Chaque substrat peut être clair ou coloré. Un des substrats au moins notamment peut être en verre coloré dans la masse. Le choix du type de coloration va dépendre du niveau de transmission lumineuse et/ou de l’aspect colorimétrique recherchés pour le vitrage une fois sa fabrication achevée.
Un substrat du vitrage, notamment le substrat porteur de l’empilement peut être bombé et/ou trempé après le dépôt de l’empilement. Il est préférable dans une configuration de vitrage multiple que l’empilement soit disposé de manière à être tourné du côté de la lame de gaz intercalaire. Le vitrage peut aussi être un triple vitrage constitué de trois feuilles de verre séparées deux par deux par une lame de gaz. Dans une structure en triple vitrage, le substrat porteur de l’empilement peut être en face 2 et/ou en face 5, lorsque l’on considère que le sens incident de la lumière solaire traverse les faces dans l’ordre croissant de leur numéro. La présente invention se rapporte par ailleurs à un procédé d’obtention, ou de fabrication, d’un matériau comportant un substrat verrier revêtu sur une face d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et deux revêtements anti reflet, lesdits revêtements antireflet comportant chacun au moins une couche diélectrique, ladite couche fonctionnelle étant disposée entre les deux revêtements antireflet, ledit procédé comprenant les étapes suivantes, dans l’ordre : - le dépôt sur une face dudit substrat d’un empilement de couches minces à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet, afin de former un matériau selon l’invention, puis - le traitement dudit empilement de couches minces à l’aide d’une source produisant un rayonnement et notamment un rayonnement infrarouge, afin de traiter l’empilement de couches minces en tant que tel.
Ledit traitement est, de préférence, opéré dans une atmosphère ne comprenant pas d’oxygène. Ladite sous-couche d’oxyde à base de zinc ZnO est, de préférence, déposée à partir d’une cible céramique comprenant du ZnO et dans une atmosphère ne comportant pas d’oxygène ou comportant au plus 10,0 % d’oxygène. Les détails et caractéristiques avantageuses de l’invention ressortent des exemples non limitatifs suivants, illustrés à l’aide des figures ci-jointes :
- [fig. 1] illustre une structure d’un empilement monocouche fonctionnelle selon l’invention, la couche fonctionnelle étant déposée directement sur une sous-couche d’oxyde à base de zinc ZnO et directement sous une couche de surblocage sous-couche d’oxyde à base de zinc ZnO, l’empilement étant illustré pendant le traitement à l’aide d’une source produisant un rayonnement ;
- [fig. 2] illustre une structure d’un empilement bicouche fonctionnelle selon l’invention, chaque couche fonctionnelle étant déposée directement sur une sous-couche d’oxyde à base de zinc ZnO et directement sous couche de surblocage une sous-couche d’oxyde à base de zinc ZnO, l’empilement étant illustré pendant le traitement à l’aide d’une source produisant un rayonnement ;
- [fig. 3] illustre un double vitrage incorporant un empilement selon l’invention ; - [fig. 4] illustre un triple vitrage incorporant deux empilements selon l’invention ;
- [fig. 5] illustre la résistance par carré de certains exemples d’empilements de couches minces en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 et sans aucun traitement ;
- [fig. 6] illustre la résistance par carré des mêmes exemples qu’en figure 5, en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 et après un traitement thermique AHT ou après un traitement par laser ALT ;
- [fig. 7] et [fig. 8] illustrent le facteur solaire de certains exemples de vitrages en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 après un traitement par laser ; et
- [fig. 9] et [fig. 10] illustrent le facteur solaire de certains autres exemples de vitrages en fonction de l’épaisseur d’une sous-couche d’oxyde à base de zinc ZnO 129 après un traitement par laser.
Dans les figures 1 à 4, les proportions entre les épaisseurs des différentes couches ou des différents éléments ne sont pas rigoureusement respectées afin de faciliter leur lecture. La figure 1 illustre une structure d’un empilement 14 monocouche fonctionnelle selon l’invention déposé sur une face 29 d’un substrat 30 verrier, transparent, dans laquelle la couche fonctionnelle 140 unique, en particulier à base d’argent ou d’alliage métallique contenant de l'argent, est disposée entre deux revêtements antireflet, le revêtement antireflet 120 sous-jacent situé en dessous de la couche fonctionnelle 140 en direction du substrat 30 et le revêtement antireflet 160 sus-jacent disposé au-dessus de la couche fonctionnelle 140 à l’opposé du substrat 30. Ces deux revêtements antireflet 120, 160, comportent chacun au moins une couche diélectrique 125, 127, 129 ; 161, 163, 165. En figure 1 : - d’une part le revêtement antireflet 120 situé sous la couche fonctionnelle 140 en direction du substrat 30 comporte :
- une sous-couche d’oxyde à base de zinc, ZnO 129 qui est située sous et au contact de la couche fonctionnelle 140, avec une épaisseur physique de la sous- couche à base d’oxyde de zinc ZnO 129 qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1,0 et 3,0 nm, voire entre 1,5 et 2,4 nm ; et
- une sous-couche diélectrique de nitrure à base de silicium, S13N4 127 qui est située sous et au contact de la sous-couche d’oxyde à base de zinc, ZnO 129, avec une épaisseur physique de la sous-couche diélectrique de nitrure à base de silicium S13N4 127 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;
- et d’autre part le revêtement antireflet 160 situé au-dessus la couche fonctionnelle 140 à l’opposé du substrat 30 comporte : - une surcouche d’oxyde à base de zinc, ZnO 161, avec une épaisseur physique de la surcouche d’oxyde à base de zinc, ZnO 161 qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et
- une surcouche diélectrique 165 qui est située sur la surcouche d’oxyde à base de zinc, ZnO 161 et, de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 ;
- avec en outre une couche de surblocage d’oxyde à base de titane TiOx 150 qui est située sur et au contact de la couche fonctionnelle 140 et sous le revêtement antireflet 160 sus-jacent, avec une épaisseur physique de la couche de blocage d’oxyde à base de titane TiOx 150 qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.
La figure 2 illustre une structure d’un empilement 14 bicouche fonctionnelle selon l’invention déposé sur une face 29 d’un substrat 30 verrier, transparent, dans laquelle les couches fonctionnelles 140, 180, en particulier à base d’argent ou d’alliage métallique contenant de l'argent, sont disposée entre deux revêtements antireflet, le revêtement antireflet 120 sous-jacent situé en dessous de la couche fonctionnelle 140 la plus proche de la face 29 du substrat 30, le revêtement antireflet 160 intermédiaire est située entre les deux couches fonctionnelles et le revêtement antireflet 200 sus-jacent disposé au-dessus de la couche fonctionnelle 180 la plus éloignée de la face 29 du substrat 30. Ces trois revêtements antireflet 120, 160, 200 comportent chacun au moins une couche diélectrique 127, 129 ; 161, 167, 169 ; 201, 205. Sur cette figure 2 :
- d’une part le revêtement antireflet situé sous et au contact de chaque couche fonctionnelle 140, 180 comporte, en direction du substrat : - une sous-couche d’oxyde à base de zinc, ZnO, 129, 169 qui est située sous et au contact de la couche fonctionnelle, avec une épaisseur physique de la sous-couche d’oxyde à base de zinc ZnO qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm, voire entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm ; et
- une sous-couche diélectrique de nitrure à base de silicium, S13N4, 127, 167, qui est située sous et au contact de la sous-couche d’oxyde à base de zinc ZnO, respectivement 129, 169, avec une épaisseur physique de la sous-couche de nitrure à base de silicium S13N4 qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ;
- d’autre part le revêtement antireflet situé au-dessus et au contact de chaque couche fonctionnelle 140, 180 comporte à l’opposé du substrat :
- une surcouche d’oxyde à base de zinc, ZnO, 161 , 201 , avec une épaisseur physique de la surcouche d’oxyde à base de zinc ZnO qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et
- une surcouche diélectrique 205 qui est située sur la surcouche d’oxyde à base de zinc ZnO, 201 et de préférence cette surcouche diélectrique est de nitrure à base de silicium ,SÎ3N4
- avec en outre une couche de surblocage d’oxyde à base de titane TiOx 150, 190 qui est située sur et au contact de chaque couche fonctionnelle 140, 180 et sous chaque revêtement antireflet 160, 200 sus-jacent, avec une épaisseur physique de la couche de blocage d’oxyde à base de titane TiOx 150, 190 qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.
La couche fonctionnelle 140 est située directement sur le revêtement antireflet 120 sous-jacent et indirectement sous le revêtement antireflet 160, 200 sus-jacent : il n’y a pas de revêtement de sous-blocage situé entre le revêtement antireflet 120 sous-jacent et la couche fonctionnelle 140 mais il y a un revêtement de sur-blocage située entre la couche fonctionnelle 140 et le revêtement antireflet 160, comprenant ici la couche de surblocage d’oxyde à base de titane TiOx 150, 190. Il en est de préférence de même pour les autres couches fonctionnelles éventuellement présentes : chacune est au contact direct du revêtement antireflet situé directement dessous et une couche de surblocage est interposée entre elle et le revêtement antireflet situé au-dessus.
Le revêtement antireflet 160 situé au-dessus de l’unique couche fonctionnelle métallique en figure 1 (ou qui est situé au-dessus de la couche fonctionnelle métallique la plus éloignée du substrat lorsqu’il y a plusieurs couches fonctionnelles métalliques) peut se terminer par une couche de protection terminale (non illustrée), appelée « overcoat en anglais, qui est la couche de l’empilement qui est la plus éloignée de la face 29. Un tel empilement de couches minces peut être utilisé dans un vitrage multiple 100 réalisant une séparation entre un espace extérieur ES et un espace intérieur IS ; ce vitrage peut présenter une structure :
- de double vitrage, comme illustré en figure 3 : ce vitrage est alors constitué de deux substrats 10, 30 qui sont maintenus ensemble par une structure de châssis 90 et qui sont séparés l’un de l’autre par une lame de gaz intercalaire 15 ; ou
- de triple vitrage, comme illustré en figure 4 : ce vitrage est alors constitué de trois substrats 10, 20, 30, séparée deux par deux par une lame de gaz intermédiaire 15, 25, le tout étant maintenu ensemble par une structure de châssis 90.
Dans les figures 3 et 4, le sens incident de la lumière solaire entrant dans le bâtiment est illustré par la double flèche, à gauche.
En figure 3, l’empilement 14 de couches minces peut être positionné en face 3 (sur la feuille la plus à l’intérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 29 du substrat 30 en contact avec la lame de gaz intercalaire 15, l’autre face 31 du substrat 30 étant en contact avec l’espace intérieur IS.
Toutefois, il peut aussi être envisagé que dans cette structure de double vitrage, l’un des substrats présente une structure feuilletée.
En figure 4, il y a deux empilements de couches minces, de préférence identiques :
- un empilement 14 de couches minces est positionné en face 2 (sur la feuille la plus à l’extérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 11 du substrat 10 en contact avec la lame de gaz intercalaire 15, l’autre face 9 du substrat 10 étant en contact avec l’espace extérieur ES ; - et un empilement 26 de couches minces est positionné en face 5 (sur la feuille la plus à l’intérieur du bâtiment en considérant le sens incident de la lumière solaire entrant dans le bâtiment et sur sa face tournée vers la lame de gaz), c’est-à-dire sur une face intérieure 29 du substrat 30 en contact avec la lame de gaz intercalaire 25, l’autre face 31 du substrat 30 étant en contact avec l’espace intérieur IS.
Une première série d’exemples a été réalisée sur la base de la structure d’empilement illustrée en figure 1 avec, en partant de la surface 29, uniquement les couches suivantes, dans cet ordre : - une sous-couche diélectrique de nitrure à base de silicium, S13N4 127 d’une épaisseur physique de 20 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92 % en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 1 ,5.103 mbar ; - une sous-couche d’oxyde à base de zinc, ZnO 129, d’une épaisseur physique variable, variant de 1 ,0 nm à plus de 7,0 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %, dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ; - une couche fonctionnelle métallique 140 à base d’argent, et plus précisément ici en argent, d’une épaisseur physique de 12 nm, déposée à partir d’une cible métallique en argent, dans une atmosphère d’argon et sous une pression de 8.10 3 mbar ;
- une couche de surblocage d’oxyde à base de titane TiOx 150 qui est située sur la couche fonctionnelle 140, d’une épaisseur physique de 0,7 nm, déposée à partir d’une cible en dioxyde de titane dans une atmosphère à 5 % d’oxygène sur le total d’oxygène et d’argon et sous une pression de 2.103 mbar ;
- une surcouche d’oxyde à base de zinc, ZnO 161 , d’une épaisseur physique de 5 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %>, dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ;
- une surcouche diélectrique 165 de nitrure à base de silicium, S13N4, d’une épaisseur physique de 30 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92 % en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 2.10 3 mbar.
La figure 5 illustre en ordonnée la résistance par carré, Rsq, en ohms par carré des empilements ainsi déposés en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc, ZnO 129 en abscisse, cette résistance par carrée étant mesurée immédiatement après le dépôt des empilements, c’est-à-dire sans aucun traitement thermique. Cette courbe montre qu’il y a, a priori, aucun intérêt à utiliser une sous-couche d’oxyde à base de zinc ZnO 129 présentant une épaisseur inférieure à 5 nm car la résistance par carré de l’empilement tend à être plus élevée dans cette gamme d’épaisseur.
La figure 6 illustre en ordonnée la résistance par carré, Rsq, en ohms par carré de ces empilements en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc, ZnO 129 en abscisse, cette résistance par carrée étant mesurée après l’un ou l’autre de ces traitements :
- soit un traitement thermique de recuit, consistant en un chauffage à une température de 650 °C pendant 10 minutes puis un refroidissement en laissant simplement l’échantillon dans une ambiance à 20° C, afin de simuler une trempe ; les mesures sont illustrées par la courbe du haut, AHT ;
- soit un traitement de laser consistant ici en un défilement du substrat 30 à une vitesse de 4 m/min sous une ligne laser 20 de 0,08 mm de large, 11 ,6 mm de long et de puissance totale de 433 W avec la ligne laser orientée perpendiculairement à la face 29 et en direction de l’empilement 14, c’est-à- dire en disposant la ligne laser au-dessus de l’empilement, comme visible en figure 1 (la flèche noire droite illustrant l’orientation de la lumière émise) ; les mesures sont illustrées par la courbe du bas, ALT.
La comparaison entre la courbe en haut, AHT, et la courbe en bas, ALT, montre que, à l’exception de quelques artéfacts, la résistance par carré est encore plus faible après un traitement laser qu’après un traitement thermique de trempe, pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 5,0 nm. Il y a même une zone particulièrement favorable, avec une résistance par carré particulièrement faible, pour une épaisseur de sous- couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm. L’amélioration est comprise entre 5 et 10 % par rapport au traitement thermique de trempe.
Une telle situation permet dans une première approche d’augmenter le facteur solaire à épaisseur de couche fonctionnelle constante, voire dans une seconde approche de diminuer l’épaisseur de la couche fonctionnelle pour augmenter encore plus le facteur solaire sans modifier la résistance par carrée précédemment obtenue.
Pour confirmer cet effet, une seconde série d’exemples a été réalisée sur la base de la structure d’empilement illustrée en figure 1 avec, en partant de la surface 29, uniquement les couches suivantes, dans cet ordre :
- une sous-couche diélectrique de nitrure à base de silicium, S13N4 127 d’une épaisseur physique de 43,2 nm à 37,3 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92% en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 1 ,5.10 3 mbar ;
- une sous-couche d’oxyde à base de zinc ZnO 129, d’une épaisseur physique variable, variant de 1 ,0 nm à 6,0 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 % , dans une atmosphère d’argon et sous une pression de 2.10 3 mbar ;
- une couche fonctionnelle métallique 140 à base d’argent, et même précisément ici en argent, d’une épaisseur physique de 12 nm, déposée à partir d’une cible métallique en argent, dans une atmosphère d’argon et sous une pression de 8.103 mbar ; - une couche de surblocage d’oxyde à base de titane TiOx 150 qui est située sur la couche fonctionnelle 140, d’une épaisseur physique de 0,7 nm, déposée à partir d’une cible en dioxyde de titane dans une atmosphère à 5 % d’oxygène sur le total d’oxygène et d’argon et sous une pression de 2.103 mbar
- une surcouche d’oxyde à base de zinc ZnO 161 , d’une épaisseur physique de 5 nm, déposée à partir d’une cible céramique constituée de 49 % atomique de zinc et 49 % atomique d’oxygène et dopée à l’aluminium à 2 %, dans une atmosphère d’argon et sous une pression de 2.103 mbar ;
- une surcouche diélectrique 165 de nitrure à base de silicium, S13N4, d’une épaisseur physique de 31 ,0 nm à 30,6 nm, déposée à partir d’une cible en silicium dopé à l’aluminium, à 92% en poids de silicium et 8 % en poids d’aluminium dans une atmosphère à 45 % d’azote sur le total d’azote et d’argon et sous une pression de 2.103 mbar.
Le tableau de la figure 7 récapitule les épaisseurs des couches 127, 129 et 165 des cinq exemples de cette seconde série.
Tous ces exemples ont fait l’objet du même traitement par laser que précédemment, puis ont été monté en triple vitrage dans une structure du type de celle illustrée en figure 4. Il s’agit pour ces exemples d’une configuration : 4-16 (Ar 90%)-4-16 (Ar 90%)-4, c’est-à-dire qu’elle est constituée de trois feuilles de verre transparent de 4 mm, réalisant chacune un substrat 10, 20, 30, séparées deux par deux par une lame de gaz intermédiaire 15, 25 à 90 % d’argon et 10 % d’air d’une épaisseur chacune de 16 mm, le tout étant maintenus ensemble par une structure de châssis 90.
Les deux substrats 10, 30 extérieurs de ce triple vitrage sont revêtus, chacun, sur sa face intérieure 11 , 29 tournée vers la lame de gaz intermédiaire 15, 25, d’un revêtement isolant 14, 26 constitué de l’empilement monocouche fonctionnelle décrit ci-avant : les empilements monocouche fonctionnelle sont ainsi en faces dites « face 2 et « face 5 ).
Le substrat 20 central de ce triple vitrage, celui dont les deux faces 19, 21 sont en contact respectivement avec les lames de gaz intermédiaire 15 et
25, n’est revêtu d’aucun revêtement sur aucune de ces faces.
La dernière ligne du tableau de la figure 7, ainsi que la figure 8 illustrent l’évolution, en ordonnée en figure 8, du facteur solaire, g, en pourcent, en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc ZnO 129 en abscisse, ce facteur solaire étant mesurée immédiatement après le traitement laser des deux substrats 10, 30, puis leur intégration pour former le triple vitrage. Le facteur solaire est ainsi amélioré lorsque la sous- couche d’oxyde à base de zinc ZnO 129 est entre 0, 3 et 5,0 nm. Le facteur solaire est particulièrement favorable pour une épaisseur de cette sous-couche d’oxyde à base de zinc ZnO 129 entre 1 ,0 et 3,0 nm, voire entre 1 ,5 et 2,4 nm.
Il a été mesuré que pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 de 5,0 nm et une épaisseur de la couche fonctionnelle 140 de 10,0 nm pour les deux empilements 14, 26, la résistance par carré est de 3,78 ohms par carré et le facteur solaire du triple vitrage de 56,9 %
Il a été constaté avec surprise que pour une épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 de 1 ,0 nm et une épaisseur de la couche fonctionnelle 140 de 10,0 nm pour les deux empilements 14, 26, la résistance par carré est descendue à 3,59 ohms par carré et le facteur solaire du triple vitrage est monté à 57,2 %.
En baissant l’épaisseur de la couche fonctionnelle 140 des deux empilements 14, 26 de 12,0 à 9,6 nm et en conservant l’épaisseur de sous- couche d’oxyde à base de zinc ZnO 129 à 1 ,0 nm, il a été ainsi possible de réaliser deux empilements présentant sensiblement la même résistance par carré qu’avec 5,0 nm pour la sous-couche d’oxyde à base de zinc ZnO 129 et 12,0 nm pour la couche fonctionnelle 140 (3,80 ohms par carré). Toutefois, pour une résistance par carré conservée, il a alors été constaté que le triple vitrage présentait un facteur solaire bien supérieur, à 58,2 %.
Une troisième série d’exemples a ensuite été réalisée sur la base de la seconde série d’exemple avec une épaisseur de couche fonctionnelle plus élevée, de 15,0 nm, en conservant la couche de surblocage d’oxyde à base de titane TiOx 150 d’une épaisseur physique de 0,7 nm et la surcouche d’oxyde à base de zinc ZnO 161 , d’une épaisseur physique de 5,0 nm.
Le tableau de la figure 9 récapitule les épaisseurs des couches 127, 129 et 165 des cinq exemples de cette troisième série.
La dernière ligne du tableau de la figure 9, ainsi que la figure 10 illustrent l’évolution, en ordonnée en figure 8, du facteur solaire, g, en pourcent, en fonction de l’épaisseur, ti29, en nanomètres de la sous-couche d’oxyde à base de zinc ZnO 129 en abscisse, ce facteur solaire étant mesurée immédiatement après le traitement laser des deux substrats 10, 30, puis leur intégration pour former le triple vitrage. Le facteur solaire est ainsi amélioré lorsque la sous- couche d’oxyde à base de zinc ZnO 129 est entre 0,3 et 5,0 nm. Le facteur solaire est particulièrement favorable pour une épaisseur de cette sous-couche d’oxyde à base de zinc ZnO 129 entre 1,0 et 3,0 nm, voire entre 1,5 et 2,4 nm.
Comme pour la série précédente, en baissant l’épaisseur de la couche fonctionnelle 140 des deux empilements 14, 26 de 15,0 à 14,4 nm et en conservant l’épaisseur de sous-couche d’oxyde à base de zinc ZnO 129 à 1,0 nm, il a été ainsi possible de réaliser deux empilements présentant sensiblement la même résistance par carré qu’avec 5,0 nm pour la sous-couche d’oxyde à base de zinc ZnO 129 et 15,0 nm pour la couche fonctionnelle 140 (2,15 ohms par carré). Toutefois, pour une résistance par carré conservée, il a alors été constaté que le triple vitrage présentait un facteur solaire bien supérieur, à 57,6 %.
Les exemples présentent tous une bonne résistance mécanique au test EBT, tant sans traitement thermique qu’après traitement laser.
Dans une variante, il est possible que le revêtement antireflet 120 situé sous une couche fonctionnelle 140 comporte en outre une sous-couche intermédiaire diélectrique 125 située entre la sous-couche diélectrique de nitrure à base de silicium, S13N4 I27 et la face 29, cette sous-couche intermédiaire diélectrique 125 étant de préférence oxydée et comprenant de préférence un oxyde mixte de zinc et d’étain.
Dans une variante, il est possible que le revêtement antireflet 160 situé au-dessus d’une couche fonctionnelle 140 comporte en outre une surcouche intermédiaire diélectrique 163 située entre la surcouche d’oxyde à base de zinc, ZnO 161 et la surcouche diélectrique 165 qui est située au-dessus, cette surcouche intermédiaire diélectrique 163 étant de préférence oxydée et comprenant de préférence un oxyde de titane.
La présente invention est décrite dans ce qui précède à titre d’exemple. Il est entendu que l’homme du métier est à même de réaliser différentes variantes de l’invention sans pour autant sortir du cadre du brevet tel que défini par les revendications.

Claims

REVENDICATIONS
1. Matériau comprenant un substrat (30) verrier revêtu sur une face (29) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet (120, 160), lesdits revêtements antireflet comportant chacun au moins une couche diélectrique (127, 165), ladite couche fonctionnelle (140) étant disposée entre les deux revêtements antireflet (120, 160), caractérisé en ce que ledit revêtement antireflet (120) sous-jacent, situé sous ladite couche fonctionnelle (140) en direction dudit substrat (30), comporte :
- une sous-couche d’oxyde à base de zinc, ZnO (129) qui est située sous et au contact de ladite couche fonctionnelle (140), avec une épaisseur physique de ladite sous-couche d’oxyde à base de zinc ZnO (129) qui est comprise entre 0,3 et 4,4 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm ; et
- une sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) qui est située sous et au contact de ladite sous-couche d’oxyde à base de zinc, ZnO (129), avec une épaisseur physique de ladite sous-couche diélectrique de nitrure à base de silicium S13N4 (127) qui est comprise entre 10,0 et 50,0 nm, voire entre 22,0 et 45,0 nm, voire entre 35,0 et 45,0 nm ; en ce que ledit revêtement antireflet (160) sus-jacent, situé au-dessus ladite couche fonctionnelle (140) à l’opposé dudit substrat (30), comporte :
- une surcouche d’oxyde à base de zinc, ZnO (161 ), avec une épaisseur physique de ladite surcouche d’oxyde à base de zinc, ZnO (161) qui est comprise entre 2,0 et 10,0 nm, voire entre 2,0 et 8,0 nm, voire entre 2,5 et 5,4 nm ; et
- une surcouche diélectrique (165) qui est située sur ladite surcouche d’oxyde à base de zinc, ZnO (161) et, de préférence une surcouche diélectrique de nitrure à base de silicium, S13N4 ; et en ce qu'une couche de surblocage d’oxyde à base de titane TiOx (150) est située sur et au contact de ladite couche fonctionnelle (140) et sous ledit revêtement antireflet (160) sus-jacent, avec une épaisseur physique de ladite couche de blocage d’oxyde à base de titane TiOx (150) qui est comprise entre 0,3 et 5,0 nm, voire entre 0,3 et 2,9 nm, voire entre 0,5 et 2,4 nm.
2. Matériau selon la revendication 1, dans lequel ladite couche fonctionnelle métallique (140), ou chaque fonctionnelle métallique, présente une épaisseur physique qui est comprise entre 8,0 et 22,0 nm, voire entre 9,0 et 16,0 nm, voire entre 9,5 et 12,4 nm.
3. Matériau selon la revendication 1 ou 2, dans lequel ledit revêtement antireflet (120) sous-jacent, situé sous ladite couche fonctionnelle métallique (140), et/ou ledit revêtement antireflet (160) sus-jacent, situé au- dessus ladite couche fonctionnelle métallique (140), ne comporte aucune couche à l’état métallique.
4. Matériau selon une quelconque des revendications 1 à 3, dans lequel ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) ne comporte pas de zirconium.
5. Matériau selon une quelconque des revendications 1 à 4, dans lequel ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) ne comporte pas d’oxygène.
6. Matériau selon une quelconque des revendications 1 à 5, dans lequel ladite sous-couche d’oxyde à base de zinc, ZnO (129) et/ou ladite surcouche d’oxyde à base de zinc, ZnO (161 ) est constituée d’oxyde de zinc ZnO dopé à l’aluminium.
7. Matériau selon une quelconque des revendications 1 à 6, dans lequel ledit revêtement antireflet (120) situé sous ladite couche fonctionnelle (140) comporte en outre une sous-couche intermédiaire diélectrique (121 ) située entre ladite sous-couche diélectrique de nitrure à base de silicium, S13N4 (127) et ladite face (29), cette sous-couche intermédiaire diélectrique (121 ) étant oxydée et comprenant de préférence : un oxyde mixte de zinc et d’étain ou un oxyde de titane TiOx.
8. Matériau selon une quelconque des revendications 1 à 7, dans lequel ledit revêtement antireflet (160) situé au-dessus de ladite couche fonctionnelle (140) comporte en outre une surcouche intermédiaire diélectrique (163) située entre ladite surcouche d’oxyde à base de zinc, ZnO (161 ) et ladite surcouche diélectrique (165), cette surcouche intermédiaire diélectrique (163) étant oxydée et comprenant de préférence : un oxyde de titane TiOx ou un oxyde mixte de zinc et d’étain.
9. Vitrage multiple comportant un matériau selon l’une quelconque des revendications 1 à 8, et au moins un autre substrat (10), les substrats (10, 30) étant maintenus ensemble par une structure de châssis (90), ledit vitrage réalisant une séparation entre un espace extérieur (ES) et un espace intérieur (IS), dans lequel au moins une lame de gaz intercalaire (15) est disposée entre les deux substrats.
10. Procédé d’obtention d’un matériau comportant un substrat (30) verrier revêtu sur une face (29) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et deux revêtements anti reflet (120, 160), lesdits revêtements antireflet comportant chacun au moins une couche diélectrique (127, 165), ladite couche fonctionnelle (140) étant disposée entre les deux revêtements antireflet (120, 160), ledit procédé comprenant les étapes suivantes, dans l’ordre :
- le dépôt sur une face (29) dudit substrat (30) d’un empilement de couches minces (14) à propriétés de réflexion dans l'infrarouge et/ou dans le rayonnement solaire comportant au moins une couche fonctionnelle métallique (140), en particulier à base d’argent ou d’alliage métallique contenant de l'argent et au moins deux revêtements antireflet (120, 160), afin de former un matériau selon l’une quelconque des revendications 1 à 8, puis
- le traitement dudit empilement de couches minces (14) à l’aide d’une source produisant un rayonnement et notamment un rayonnement infrarouge.
11. Procédé selon la revendication 10, dans lequel ledit traitement est opéré dans une atmosphère ne comprenant pas d’oxygène.
12. Procédé selon la revendication 10 ou 11, dans lequel ladite sous- couche d’oxyde à base de zinc, ZnO (129) est déposée à partir d’une cible céramique comprenant du ZnO et dans une atmosphère ne comportant pas d’oxygène ou comportant au plus 10,0 % d’oxygène.
PCT/FR2021/051081 2020-06-24 2021-06-16 Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau WO2021260295A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21740592.7A EP4172122A1 (fr) 2020-06-24 2021-06-16 Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006607A FR3111892B1 (fr) 2020-06-24 2020-06-24 Materiau comportant un empilement a sous-couche dielectrique fine d’oxide a base de zinc et procede de depot de ce materiau
FR2006607 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021260295A1 true WO2021260295A1 (fr) 2021-12-30

Family

ID=72644408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051081 WO2021260295A1 (fr) 2020-06-24 2021-06-16 Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau

Country Status (3)

Country Link
EP (1) EP4172122A1 (fr)
FR (1) FR3111892B1 (fr)
WO (1) WO2021260295A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107587A1 (en) * 2005-11-08 2012-05-03 Saint-Gobain Glass France Substrate which is equipped with a stack having thermal properties
EP2699523A1 (fr) * 2011-04-21 2014-02-26 Pilkington Group Limited Carreau de vitre revêtu pouvant être traité thermiquement
US20140106088A1 (en) * 2011-03-08 2014-04-17 Saint-Gobain Glass France Method for obtaining a substrate provided with a coating
EP3036352A1 (fr) * 2013-08-20 2016-06-29 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
US20170190612A1 (en) * 2011-02-17 2017-07-06 Pilkington Group Limited Heat treatable coated glass pane
EP3319916A1 (fr) * 2015-07-08 2018-05-16 Saint-Gobain Glass France Materiau muni d'un empilement a proprietes thermiques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728559B1 (fr) 1994-12-23 1997-01-31 Saint Gobain Vitrage Substrats en verre revetus d'un empilement de couches minces a proprietes de reflexion dans l'infrarouge et/ou dans le domaine du rayonnement solaire
FR2946639B1 (fr) 2009-06-12 2011-07-15 Saint Gobain Procede de depot de couche mince et produit obtenu.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107587A1 (en) * 2005-11-08 2012-05-03 Saint-Gobain Glass France Substrate which is equipped with a stack having thermal properties
US20170190612A1 (en) * 2011-02-17 2017-07-06 Pilkington Group Limited Heat treatable coated glass pane
US20140106088A1 (en) * 2011-03-08 2014-04-17 Saint-Gobain Glass France Method for obtaining a substrate provided with a coating
EP2699523A1 (fr) * 2011-04-21 2014-02-26 Pilkington Group Limited Carreau de vitre revêtu pouvant être traité thermiquement
EP3036352A1 (fr) * 2013-08-20 2016-06-29 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
EP3319916A1 (fr) * 2015-07-08 2018-05-16 Saint-Gobain Glass France Materiau muni d'un empilement a proprietes thermiques

Also Published As

Publication number Publication date
FR3111892A1 (fr) 2021-12-31
FR3111892B1 (fr) 2022-07-22
EP4172122A1 (fr) 2023-05-03

Similar Documents

Publication Publication Date Title
EP3494420B1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche comprenant du nitrure de silicium-zirconium enrichi en zirconium, son utilisation et sa fabrication
WO2021105424A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
EP3303242A1 (fr) Substrat muni d'un empilement a proprietes thermiques a couche terminale metallique et a couche preterminale oxydee.
EP3148949A1 (fr) Materiau comprenant une couche fonctionnelle a base d'argent cristallisee sur une couche d'oxyde de nickel
EP3201150B1 (fr) Substrat muni d'un empilement a proprietes thermiques et a couche intermediaire sous stoechiometrique
CA3006338A1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche en oxyde de nickel
WO2021260295A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
EP4229017A1 (fr) Materiau comportant un empilement a couche absorbante metallique encadree et procede de depot de ce materiau
CA3006870A1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche en oxyde de nickel
EP4172123A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
EP4172124A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
EP4143143A1 (fr) Matériau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procédé de depôt de ce materiau
WO2021105374A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
WO2022129797A1 (fr) Matériau comportant un empilement à sous-couche diéléctrique fine d'oxide à base de zinc et procédé de dépot de ce matériau
EP4263456A1 (fr) Materiau comportant un empilement a sous-couche dielectrique fine d'oxide a base de zinc et procede de depot de ce materiau
WO2024056765A1 (fr) Materiau comportant un empilement comprenant un module de six couches
WO2023180127A1 (fr) Materiau comportant un empilement a couche absorbante metallique et procede de depot de ce materiau
CA3006339A1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche en oxyde de nickel
FR3114264A1 (fr) Materiau comportant un empilement a couche metallique absorbante et surcouche dielectrique et procede de depot de ce materiau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740592

Country of ref document: EP

Effective date: 20230124