WO2021259381A1 - 一种宽带雷达回波的去斜一比特采集方法及系统 - Google Patents

一种宽带雷达回波的去斜一比特采集方法及系统 Download PDF

Info

Publication number
WO2021259381A1
WO2021259381A1 PCT/CN2021/104109 CN2021104109W WO2021259381A1 WO 2021259381 A1 WO2021259381 A1 WO 2021259381A1 CN 2021104109 W CN2021104109 W CN 2021104109W WO 2021259381 A1 WO2021259381 A1 WO 2021259381A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
frequency
signal
spectrum
skewed
Prior art date
Application number
PCT/CN2021/104109
Other languages
English (en)
French (fr)
Inventor
黄磊
黄聪
赵博
杨广玉
查林
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021259381A1 publication Critical patent/WO2021259381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of signal processing, in particular to a method and system for de-skew one-bit acquisition of broadband radar echoes.
  • Synthetic Aperture Radar has all-weather, all-weather long-distance, high-resolution detection capabilities, and plays an important role in remote sensing mapping, regional monitoring, geological prospecting, disaster rescue and other fields.
  • SAR Synthetic Aperture Radar
  • One-bit quantization of the original echo signal can greatly reduce the amount of imaging processing data and improve work efficiency, but the traditional one-bit sampling quantization will make the data continuously jump between 1 and -1, thus introducing the original The high-order harmonics of the signal reduce the imaging quality of the radar.
  • G. Franceschetti et al. proposed a SAR imaging solution based on one-bit sampling. By performing one-bit quantization on the echo signal, the amount of imaging processing data is greatly reduced, thereby greatly simplifying the complexity of imaging processing.
  • V.Pascazio et al. proposed an over-sampling rate improvement scheme, which can improve imaging performance through a sampling rate of more than four times the bandwidth in one-bit sampling.
  • the problem of the accompanying high-order harmonics affecting imaging has not been resolved.
  • the purpose of the present invention is to provide a method and system for de-skew one-bit acquisition of broadband radar echoes, which aims to solve the problem of poor imaging quality caused by high-order harmonics caused by traditional one-bit quantization.
  • a method for one-bit de-skew acquisition of broadband radar echoes which includes the following steps:
  • Sampling processing is performed on the frequency-shifted echo signal to obtain a signal in which the high-order harmonic spectrum and the de-skewed echo spectrum are separated; wherein, the sampling frequency of the sampling process is based on the largest of the de-skewed echo signals Frequency determination;
  • One-bit quantization processing is performed on the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum to obtain echo data.
  • the high-order harmonics in the signal separated from the high-order harmonic spectrum and the de-skew echo spectrum include: 3rd harmonic and 5th harmonic.
  • the frequency deviation coefficient, the maximum frequency, and the sampling frequency satisfy the following relationship:
  • ⁇ f represents the frequency offset coefficient
  • f max represents the maximum frequency of the de-skew echo signal
  • F s represents the sampling frequency
  • the de-skew pulse pressure processing on the target echo signal to obtain the de-skew echo signal includes:
  • mixing processing is performed on the target echo signal to obtain a de-skewed echo signal.
  • the de-skew echo signal is:
  • S 3 (t) represents the de-skewed echo signal
  • S 1 (t) represents the target echo signal
  • S 2 (t) represents the reference signal
  • a 1 represents the maximum amplitude value of the target echo signal
  • a 2 represents the maximum amplitude value of the reference signal
  • t represents the time
  • represents the first time delay
  • ⁇ 0 represents the first time delay.
  • T p means pulse width
  • j means imaginary number unit
  • means circle rate
  • f 0 means center frequency
  • k means frequency of modulation
  • x means intermediate variable
  • e means base of natural logarithm
  • rect( ⁇ ) means rectangular window function.
  • the frequency-shifted echo signal is:
  • ⁇ f represents the frequency offset coefficient
  • sign( ⁇ ) represents the sign function
  • the one-bit quantization process is performed on the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum to obtain echo data, including:
  • the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is compared with a preset threshold, and if the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is greater than or equal to the preset threshold, Then the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is stored as 1, and if the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is less than the threshold value, then the high-order The signal separated from the harmonic spectrum and the de-skewed echo spectrum is stored as 0 to obtain the echo data.
  • the one-bit de-skew acquisition method for wideband radar echoes wherein, the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is subjected to a one-bit quantization process, and after the echo data is obtained,
  • the one-bit deskew acquisition method of broadband radar echo also includes:
  • the imaging processing includes at least one of the following: range migration correction, azimuth matched filtering, or coherent accumulation.
  • a deskew one-bit acquisition system for broadband radar echoes which includes:
  • Deskew pulse compression device used for deskew pulse pressure processing on the target echo signal to obtain a deskew echo signal
  • the frequency shift device is used to perform frequency shift processing on the de-skewed echo signal to obtain a frequency-shifted echo signal; wherein, the frequency offset coefficient of the frequency shift processing is based on the largest value among the de-skewed echo signals Frequency determination;
  • the sampling device is used to perform sampling processing on the frequency-shifted echo signal to obtain a signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum; wherein the sampling frequency of the sampling process is based on the de-skewed The maximum frequency in the echo signal is determined;
  • a one-bit quantization device performs one-bit quantization processing on the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum to obtain the echo data.
  • the present invention performs frequency shift processing on the de-skew echo signal processed by the de-skew pulse pressure, and then samples the frequency-shifted echo signal, the frequency offset coefficient of the frequency shift processing and the sampling of the sampling processing
  • the frequency is determined according to the maximum frequency of the de-skew echo signal, so that the frequency band of the de-skew echo signal can be effectively separated from the frequency band of higher harmonics, which reduces the influence of higher harmonics on the imaging quality and improves This improves the imaging quality of the radar, and at the same time reduces a large number of post-processing algorithms to improve the imaging quality, reduces the amount of data processing and hardware costs, and improves work efficiency.
  • FIG. 1 is a schematic flowchart of a preferred embodiment of a method for deskewing one-bit acquisition of broadband radar echoes according to the present invention.
  • Fig. 2 is a schematic diagram of the frequency band of the de-skew echo signal of the present invention.
  • Fig. 3 is a schematic diagram of the frequency band of the mixing of the de-skew echo signal and the higher harmonics according to the present invention.
  • Fig. 4 is a schematic diagram of frequency band separation between the de-skew echo signal and the higher harmonics according to the present invention.
  • Fig. 5 is a schematic diagram of determining the sampling frequency of the sampling process of the present invention.
  • Fig. 6 is a one-dimensional compression diagram of one-bit quantization of an echo signal that has not undergone frequency shift processing.
  • Fig. 7 is a one-dimensional compression diagram in which the echo signal after frequency shift processing is further quantized by one bit.
  • Figure 8 is a one-bit quantized radar imaging diagram without frequency shift processing.
  • Figure 9 is a one-bit quantized radar imaging map after frequency shift processing.
  • Figure 10 is a 16-bit quantized high-precision radar imaging diagram.
  • the present invention provides a method and system for de-skew one-bit acquisition of broadband radar echoes.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention.
  • Fig. 1 is a schematic flowchart of a method for de-skew one-bit acquisition of broadband radar echoes according to this embodiment.
  • the steps of the one-bit deskew acquisition method for broadband radar echoes include:
  • the imaging radar transmits chirps to the detected target scene through the antenna. After the chirps propagate to the detected target, they are reflected by the detected target and are received by the imaging radar to obtain the target echo signal. Furthermore, it is necessary to perform de-slope pulse compression processing on the obtained target echo signal, so that the system can select a lower sampling frequency and avoid the use of high-precision and high-speed digital-to-analog converters.
  • the step S10 includes:
  • the target echo signal is an echo signal that is reflected by the chirp transmitted by the radar after the first time delay ⁇ .
  • the reference signal is the same type of signal as the target echo signal, and is the echo signal reflected by the chirp pulse transmitted by the radar after the second time delay ⁇ 0.
  • the target echo signal and reference signal are respectively expressed as:
  • rect( ⁇ ) represents the rectangular window function
  • x represents the intermediate variable
  • S 1 (t) represents the target echo signal
  • S 2 (t) represents the reference signal
  • a 1 represents the maximum amplitude of the target echo signal
  • a 2 represents the reference signal
  • the maximum amplitude value, t represents time
  • represents the first time delay
  • ⁇ 0 represents the second time delay
  • T p represents the pulse width
  • j represents the imaginary unit
  • represents the circumference of the circle
  • f 0 represents the center frequency
  • k represents the frequency of modulation
  • x represents the intermediate variable
  • e represents the base of the natural logarithm.
  • the reference signal S 2 (t) is subjected to conjugate processing, that is, to perform convolution processing, to obtain the conjugate reference signal
  • conjugate processing that is, to perform convolution processing
  • target echo signal S 1 (t) is mixed to obtain a de-skewed echo signal S 3 (t).
  • the calculation formula of the de-skewed echo signal S 3 (t) is:
  • means product
  • * means taking conjugate
  • 2 ⁇ f 0 (t- ⁇ 0 )+ ⁇ k(t- ⁇ 0 ) 2 .
  • the frequency band of the de-skew echo signal is 0 to f max , as shown in FIG. 2, which is a schematic diagram of the frequency band of the de-skew echo signal of the present invention.
  • FIG. 3 is a schematic diagram of the frequency band of the de-skew echo signal of the present invention.
  • Performing frequency shift processing on the de-skew echo signal is to separate the frequency band of the de-skew echo signal from the frequency band of the higher harmonics. Since the third harmonic and the fifth harmonic have the strongest interference to the echo signal among the high-order harmonics, the main consideration is to separate the de-skew echo signal from the frequency bands of the third and fifth harmonics.
  • the frequency-shifted echo signal is sampled.
  • the sampling space is F s represents the sampling rate, when the sampling rate According to the sampling theorem, the unsampled 5th harmonic will be folded to the negative half axis Where, aliasing occurs with the third harmonic.
  • the sampling rate can be obtained: F s ⁇ 6f max .
  • the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is compared with a preset threshold, and if the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is greater than or equal to the predetermined threshold, If the threshold is set, the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is stored as 1. If the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is less than the threshold, then all The signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is stored as 0, so that one-bit quantized echo data composed of 0 and 1 can be obtained. It should be noted that the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum has a real part and an imaginary part. During the quantization process, the real part and the imaginary part need to be quantized separately.
  • step S40 the method further includes:
  • S53 Perform imaging processing according to the discarded frequency spectrum, and output an imaging result.
  • the obtained echo data is processed to obtain range information, and each echo data undergoes a one-dimensional fast Fourier transform to the frequency domain to obtain a frequency spectrum, which has frequency point information corresponding to the target distance . Since the foregoing steps have performed frequency shift processing on the de-skewed echo signal, the echo data in the frequency range of 0 to ⁇ f does not contain the target data after the fast Fourier transform, so the frequency spectrum needs to be processed Discard processing, discard the spectrum in the frequency range from 0 to ⁇ f. Finally, perform imaging processing based on the discarded spectrum.
  • the imaging processing includes but is not limited to at least one of distance migration correction, azimuth matched filtering, or coherent accumulation.
  • the present invention uses MATLAB software to perform simulation experiments for comparison.
  • the parameters of the simulation data are as follows: the radar is moving at a speed of 4m/s with a direction of 180°, and the echo is reflected by a stationary vehicle with a direction of 45°.
  • Figure 6 is a one-dimensional compression diagram of one-bit quantization of the echo without frequency shift processing
  • Figure 7 is a one-dimensional compression of the echo signal after frequency shift processing and then one-bit quantization
  • the one-bit quantized echo that has not undergone frequency shift processing is mixed with high-order harmonics, while the one-bit quantized echo that has undergone frequency shift processing is separated from the high-order harmonics.
  • the echo does not contain high-order harmonics
  • Figure 8 is a one-bit quantization radar imaging map without frequency shift processing
  • Figure 9 is a one-bit quantization after frequency shift processing Radar imaging map
  • Figure 10 is a 16-bit quantized high-precision radar imaging map. It can be seen from the figure that the area of the clutter in the one-bit quantized radar imaging without frequency shift processing is larger, while the area of the clutter in the one-bit quantized radar imaging image with frequency shift processing is reduced a lot.
  • This embodiment also provides a de-skew one-bit acquisition system for broadband radar echoes, including:
  • Deskew pulse compression device used for deskew pulse pressure processing on the target echo signal to obtain a deskew echo signal
  • the frequency shift device is used to perform frequency shift processing on the de-skewed echo signal to obtain a frequency-shifted echo signal; wherein, the frequency offset coefficient of the frequency shift processing is based on the largest value among the de-skewed echo signals Frequency determination;
  • the sampling device is used to perform sampling processing on the frequency-shifted echo signal to obtain a signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum; wherein the sampling frequency of the sampling process is based on the de-skewed The maximum frequency in the echo signal is determined;
  • a one-bit quantization device performs one-bit quantization processing on the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum to obtain the echo data.
  • the one-bit de-skew acquisition system for wideband radar echoes wherein the high-order harmonics in the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum include: 3rd harmonic and 5th harmonic Wave.
  • the de-oblique pulse compression device includes: a signal acquisition unit for acquiring a reference signal corresponding to the target echo signal; a conjugation unit for performing conjugate processing on the reference signal to obtain a conjugate Reference signal; a mixing unit for mixing the target echo signal based on the conjugate reference signal to obtain a de-skewed echo signal.
  • the one-bit quantization device is used to compare the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum with a preset threshold, if the high-order harmonic spectrum and the de-skewed echo spectrum are If the separated signal is greater than or equal to the preset threshold, the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is stored as 1. If the high-order harmonic spectrum is separated from the de-skewed echo spectrum If the signal is less than the threshold, the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum is stored as 0 to obtain echo data.
  • the one-bit de-skew acquisition system for broadband radar echoes further includes an imaging device for performing fast Fourier transform of the echo data into the frequency domain to obtain a frequency spectrum with frequency point information; The spectrum of the frequency point information is discarded to obtain a discarded spectrum; wherein the discarded spectrum is determined according to the frequency offset coefficient; imaging processing is performed according to the discarded spectrum, and an imaging result is output.
  • the present invention obtains a de-skewed echo signal by performing de-skew pulse pressure processing on the target echo signal; performs frequency shift processing on the de-skewed echo signal to obtain a frequency-shifted echo signal; Perform sampling processing on the frequency-shifted echo signal to obtain a signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum; perform a process on the signal separated from the high-order harmonic spectrum and the de-skewed echo spectrum Bit quantization processing to obtain echo data, wherein the frequency offset coefficient of the frequency shift processing and the sampling frequency of the sampling processing are both determined according to the maximum frequency in the de-skewed echo signal, so that the de-skew echo signal and
  • the frequency bands of high-order harmonics can be effectively separated, which reduces the impact of high-order harmonics on the imaging quality, improves the imaging quality of the radar, and at the same time reduces the number of post-processing algorithms for improving the imaging quality. Reduce the amount of data processing and hardware costs, and improve work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种宽带雷达回波的去斜一比特采集方法及系统,该方法包括:对目标回波信号进行去斜脉压处理,得到去斜的回波信号(S10);对去斜的回波信号进行频移处理,得到频移的回波信号(S20);对频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号(S30);对高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据(S40)。其中,频移处理的频偏系数和采样处理的采样频率均根据去斜的回波信号中最大频率确定,使得去斜回波信号的频带与高次谐波的频带能够有效分离,减小了由于高次谐波对的成像质量的影响,提高了雷达的成像质量,同时也降低了数据的处理量和硬件成本,提高了工作效率。

Description

一种宽带雷达回波的去斜一比特采集方法及系统 技术领域
本发明涉及信号处理技术领域,尤其涉及一种宽带雷达回波的去斜一比特采集方法及系统。
背景技术
合成孔径雷达(Synthetic Aperture Radar,SAR)具有全天候、全天时的远距离、高分辨探测能力,在遥感测绘、区域监测、地质勘探、灾难救援等多领域发挥着重要的作用。但随着雷达信号的带宽的不断增加,SAR的数据采集、传输、处理的负担也在不断地加大。对原始回波信号进行一比特量化能够大幅度降低成像处理的数据量并提升工作效率,但是传统的一比特采样量化,会使得数据在1与-1之间不断跳变,由此引入了原始信号的高次谐波,降低了雷达的成像质量。
G.Franceschetti等提出了基于一比特采样的SAR成像解决方案,通过对回波信号进行一比特量化,大大降低了成像处理的数据量,从而很大程度上简化了成像处理实现复杂度。V.Pascazio等人提出了过采样率提升性能的方案,在一比特采样时通过四倍带宽以上的采样率能提高成像性能。但伴随的高次谐波影响成像的问题没有解决。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供宽带雷达回波的去斜一比特采集方法及系统,旨在解决传统一比特量化带来的高次谐波,导致成像质量差的问题。
本发明的技术方案如下:
一种宽带雷达回波的去斜一比特采集方法,其中,包括步骤:
对目标回波信号进行去斜脉压处理,得到去斜的回波信号;
对所述去斜的回波信号进行频移处理,得到频移的回波信号;其中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定;
对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定;
对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波 数据。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述高次谐波频谱与去斜的回波频谱分离的信号中高次谐波包括:3次谐波和5次谐波。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述频偏系数、所述最大频率以及所述采样频率满足如下关系:
Figure PCTCN2021104109-appb-000001
其中,Δf表示频偏系数,f max表示去斜回波信号最大频率,F s表示采样频率。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述对目标回波信号进行去斜脉压处理,得到去斜的回波信号,包括:
获取所述目标回波信号对应的参考信号;
对所述参考信号进行取共轭处理,得到共轭参考信号;
基于所述共轭参考信号,对所述目标回波信号进行混频处理得到去斜的回波信号。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述去斜的回波信号为:
Figure PCTCN2021104109-appb-000002
Figure PCTCN2021104109-appb-000003
Figure PCTCN2021104109-appb-000004
Figure PCTCN2021104109-appb-000005
其中,S 3(t)表示去斜的回波信号,S 1(t)表示目标回波信号,
Figure PCTCN2021104109-appb-000006
表示共轭参考信号,S 2(t)表示参考信号,A 1表示目标回波信号最大幅度值,A 2表示参考信号最大幅度值,t表示时间,τ表示第一时延,τ 0表示第二时延,T p表示脉宽,j表示虚数单位,π表示圆周率,f 0表示中心频率,k表示调频率,x表示中间变量,e表示自然对数的底数,rect(·)表示矩形窗函数。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述频移的回波信号为:
S 4(t)=sign(S 3(t)e j2πΔf)
其中,Δf表示频偏系数,sign(·)表示符号函数。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述对所述高次谐波频谱与去 斜的回波频谱分离的信号进行一比特量化处理,得到回波数据,包括:
将所述高次谐波频谱与去斜的回波频谱分离的信号与预设阈值进行比较,若所述高次谐波频谱与去斜的回波频谱分离的信号大于或等于预设阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为1,若所述高次谐波频谱与去斜的回波频谱分离的信号小于阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为0,以得到回波数据。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据之后,所述宽带雷达回波的去斜一比特采集方法还包括:
将所述回波数据进行快速傅里叶变换到频域,得到具有频点信息的频谱;
对所述具有频点信息的频谱进行舍弃处理,得到舍弃后的频谱;其中,所述舍弃处理的频谱根据所述频偏系数确定;
根据所述舍弃后的频谱进行成像处理,输出成像结果。
所述的宽带雷达回波的去斜一比特采集方法,其中,所述成像处理包括以下至少一种:距离徙动校正、方位匹配滤波或相干积累。
一种宽带雷达回波的去斜一比特采集系统,其中,包括:
去斜脉压装置,用于对目标回波信号进行去斜脉压处理,得到去斜的回波信号;
频移装置,用于对所述去斜的回波信号进行频移处理,得到频移的回波信号;其中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定;
采样装置,用于对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定;
一比特量化装置,将所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到所述回波数据。
有益效果:本发明通过对经去斜脉压处理的去斜回波信号进行频移处理后,再对频移的回波信号进行采样,所述频移处理的频偏系数和采样处理的采样频率均根据所述去斜回波信号的最大频率确定,使得去斜回波信号的频带与高次谐波的频带能够有效分离,减小了由于高次谐波对的成像质量的影响,提高了雷达的成像质量,同时也减少了为提高成像质量而进行的大量后期处理的算法的,降低了数据的处理量和硬件成本,提高了工作效率。
附图说明
图1为本发明一种宽带雷达回波的去斜一比特采集方法的较佳实施例流程示意图。
图2为为本发明的去斜回波信号的频带示意图。
图3为本发明的去斜回波信号与高次谐波混频的频带示意图。
图4为本发明的去斜回波信号与高次谐波的频带分离示意图。
图5为本发明的采样处理的采样频率确定示意图。
图6为未经过频移处理的回波信号进行一比特量化的一维压缩图。
图7为经过频移处理后的回波信号再进行一比特量化的一维压缩图。
图8为未经过频移处理的一比特量化雷达成像图。
图9为经过频移处理后的一比特量化雷达成像图。
图10为16比特量化高精度雷达成像图。
具体实施方式
本发明提供一种宽带雷达回波的去斜一比特采集方法及系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
图1为本实施例的一种宽带雷达回波的去斜一比特采集方法的流程示意图。如图1所示,宽带雷达回波的去斜一比特采集方法的步骤包括:
S10、对目标回波信号进行去斜脉压处理,得到去斜的回波信号。
具体的,成像雷达通过天线向被探测目标场景发射线性调频脉冲,线性调频脉冲传播到被探测目标后,经过被探测目标反射后被成像雷达接收,得到目标回波信号。进一步,要对得到的目标回波信号进行去斜率脉冲压缩处理,使系统能够选用较低的采样频率,避免使用高精度和高速数模转换器。所述步骤S10包括:
S11、获取所述目标回波信号对应的参考信号;
S12、对所述参考信号进行取共轭处理,得到共轭参考信号;
S13、基于所述共轭参考信号,对所述目标回波信号进行混频处理得到去斜的回波信号。
具体的,所述目标回波信号是雷达发射线性调频脉冲经过第一时延τ反射回来的回波信号。所述参考信号是与目标回波信号是同类型信号,是雷达发射线性调频脉冲经过第二时延τ 0反射回来的回波信号。目标回波信号和参考信号分别表示为:
Figure PCTCN2021104109-appb-000007
Figure PCTCN2021104109-appb-000008
其中,
Figure PCTCN2021104109-appb-000009
rect(·)表示矩形窗函数,x表示中间变量,S 1(t)表示目标回波信号,S 2(t)表示参考信号,A 1表示目标回波信号最大幅度值,A 2表示参考信号最大幅度值,t表示时间,τ表示第一时延,τ 0表示第二时延,T p表示脉宽,j表示虚数单位,π表示圆周率,f 0表示中心频率,k表示调频率,x表示中间变量,e表示自然对数的底数。
再将参考信号S 2(t)进行共轭处理,也就是进行卷积处理,得到共轭参考信号
Figure PCTCN2021104109-appb-000010
共轭参考信号与目标回波信号S 1(t)进行混频处理,得到去斜的回波信号S 3(t)。去斜的回波信号S 3(t)的计算公式为:
Figure PCTCN2021104109-appb-000011
其中,“·”表示乘积,“*”表示取共轭,ψ=2πf 0(t-τ 0)+πk(t-τ 0) 2
S20、对所述去斜的回波信号进行频移处理,得到频移的回波信号;其中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定。
具体的,去斜的回波信号的频带为0~f max,如图2所示,图2是本发明的去斜回波信号的频带示意图。如果直接对所述去斜的回波信号进行一比特量化,会产生高次谐波对回波信号进行干扰,如图3所示。对所述去斜的回波信号进行频移处理,就是将去斜回波信号的频带与高次谐波的频带分开。由于高次谐波中,主要是3次谐波和5次谐波对回波信号干扰最强烈,因此主要是考虑将去斜回波信号与3次谐波和5次谐波的频带分开,如图4所示,偏频系数需要满足关系式:5Δf≥Δf+f max,从而得到偏频系数为:
Figure PCTCN2021104109-appb-000012
其中,Δf表示偏频系数,f max表示去斜回波信号最大频率。f max与雷达探测场景最大距离直接相关,从而可以设置好频偏系数Δf,对去斜的回波信号进行频偏,得到频移的回波信号表示为:S 4(t)=sign(S 3(t)e j2πΔf),其中,sign(·)表示符号函数,由于通常对信号进行IQ采样,得到的是复信号,因此分别对频移的回波信号的实部和虚部进行取符号操作。
S30、对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定。
具体的,将去斜回波信号进行频移后,对所述频移的回波信号进行采样处理,如图5所示,采样空间为
Figure PCTCN2021104109-appb-000013
F s表示采样率,当采样率
Figure PCTCN2021104109-appb-000014
时,根据采样定理,未采样到的5次谐波,会翻折到负半轴
Figure PCTCN2021104109-appb-000015
处,与三次谐波发生混叠。而混叠的谐波也有可能会与去斜的回波发生混叠。设a是翻折后的5次谐波的最大频率,则a满足关系式:
Figure PCTCN2021104109-appb-000016
得到a=5(Δf+f max)-F s。要使混叠的谐波与去斜的回波不发生混叠,那么采样率要满足关系式为:
Figure PCTCN2021104109-appb-000017
那么可以得到采样率为:F s≥6f max。采用采样频率F s对频移的回波信号进行采样后,得到高次谐波频谱与去斜的回波频谱分离的信号。
S40、对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据。
具体的,将所述高次谐波频谱与去斜的回波频谱分离的信号与预设阈值进行比较,若所述高次谐波频谱与去斜的回波频谱分离的信号大于或等于预设阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为1,若所述高次谐波频谱与去斜的回波频谱分离的信号小于阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为0,从而可以得到由0和1组成的一比特量化回波数据。需要注意的是,所述高次谐波频谱与去斜的回波频谱分离的信号中有实部和虚部,在进行量化的过程中,需要对所述实部和虚部分别量化。
进一步,步骤S40之后还包括:
S51、将所述回波数据进行快速傅里叶变换到频域,得到具有频点信息的频谱;
S52、对所述具有频点信息的频谱进行舍弃处理,得到舍弃后的频谱;其中,所述舍弃处理的频谱根据所述频偏系数确定;
S53、根据所述舍弃后的频谱进行成像处理,输出成像结果。
具体的,将得到的回波数据进行处理得到距离向信息,每个回波数据经过一维的快速傅里叶转换到频域,得到频谱,所述频谱内具有与目标距离对应的频点信息。由于前述步骤对去斜的回波信号进行了频移处理,使得在0~Δf的频率范围内的回波数据经过快速傅里叶变换后是不包含目标数据的,因此需要对所述频谱进行舍弃处理,将0~Δf 的频率范围内的频谱舍弃。最后根据舍弃后的频谱进行成像处理。所述成像处理包括但不限于距离徙动校正、方位匹配滤波或相干积累中的至少一种方式。
本发明的有益效果在于:
(1)在数据采集方面:如果要对回波数据进行十六比特量化,所需要的模数转换器(ADC)的复杂度、成本要远远高于将其量化为一比特的复杂度和成本。同时,由于一比特的复杂度和成本更低,采样率也可以比十六比特的高出很多,这是在数据采集方面的优势。
(2)在数据存储方面:因为雷达需要采集一段时间的回波再进行方位向的处理,故回波数据缓存的量是很大的,若都是高精度量化存储,存储资源的开销是比较大的。而一比特量化回波后,将大大降低存储上的开销。与十六比特量化数据对比,理论上一比特量化的存储量仅是其1/16。
(3)在数据处理方面:雷达信号处理的过程中往往需要进行大量的乘法、加法运算,因为传统一比特量化带来的高次谐波问题影响成像,我们直接对去斜回波信号进行处理,省去了原本后期处理成像质量的大量算法,节省了数据处理量,降低了硬件复杂度。
为进一步说明采用本发明的方法所采集的回波数据的成像质量优于未进行频移处理采集的回波数据的成像质量,本发明采用MATLAB软件进行仿真实验进行比对。仿真数据的参数如下:雷达以4m/s的速度运动,方向为180°,回波是由一辆方向为45°的静止车辆反射而得到。如图6和图7所示,图6为未经过频移处理的回波一比特量化的一维压缩图,图7为经过频移处理后的回波信号再进行一比特量化的一维压缩图,从图中可以看到,未经过频移处理的一比特量化后的回波中夹杂着高次谐波,而经过频移处理的一比特量化后的回波与高次谐波分离,回波中不含有高次谐波;如图8、图9和图10所示,图8为未经过频移处理的一比特量化雷达成像图,图9为经过频移处理后的一比特量化雷达成像图,图10为十六比特量化高精度雷达成像图。从图中可以看到未经过频移处理的一比特量化雷达成像图中出现杂像的面积较大,而经过频移处理的一比特量化雷达成像图中出现杂像的面积减小了很多。
本实施例还提供了一种宽带雷达回波的去斜一比特采集系统,包括:
去斜脉压装置,用于对目标回波信号进行去斜脉压处理,得到去斜的回波信号;
频移装置,用于对所述去斜的回波信号进行频移处理,得到频移的回波信号;其 中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定;
采样装置,用于对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定;
一比特量化装置,将所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到所述回波数据。
所述的宽带雷达回波的去斜一比特采集系统,其中,所述所述高次谐波频谱与去斜的回波频谱分离的信号中高次谐波包括:3次谐波和5次谐波。
进一步,所述去斜脉压装置包括:信号获取单元,用于获取所述目标回波信号对应的参考信号;共轭处单元,用于对所述参考信号进行取共轭处理,得到共轭参考信号;混频单元,用于基于所述共轭参考信号,对所述目标回波信号进行混频处理得到去斜的回波信号。
进一步,所述一比特量化装置用于将所述高次谐波频谱与去斜的回波频谱分离的信号与预设阈值进行比较,若所述高次谐波频谱与去斜的回波频谱分离的信号大于或等于预设阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为1,若所述高次谐波频谱与去斜的回波频谱分离的信号小于阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为0,以得到回波数据。
进一步,所述宽带雷达回波的去斜一比特采集系统还包括成像装置,用于将所述回波数据进行快速傅里叶变换得频域,得到具有频点信息的频谱;对所述具有频点信息的频谱进行舍弃处理,得到舍弃后的频谱;其中,所述舍弃处理的频谱根据所述频偏系数确定;根据所述舍弃后的频谱进行成像处理,输出成像结果。
综上所述,本发明通过对目标回波信号进行去斜脉压处理,得到去斜的回波信号;对所述去斜的回波信号进行频移处理,得到频移的回波信号;对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据,其中,所述频移处理的频偏系数和所述采样处理的采样频率均根据所述去斜的回波信号中最大频率确定,使得去斜回波信号与高次谐波的频带能够有效分离,减小了由于高次谐波对的成像质量的影响,提高了雷达的成像质量,同时,减少了为提高成像质量而进行的大量后期处理的 算法的,降低了数据的处理量和硬件成本,提高了工作效率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种宽带雷达回波的去斜一比特采集方法,其特征在于,包括步骤:
    对目标回波信号进行去斜脉压处理,得到去斜的回波信号;
    对所述去斜的回波信号进行频移处理,得到频移的回波信号;其中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定;
    对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定;
    对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据。
  2. 根据权利要求1所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述高次谐波频谱与去斜的回波频谱分离的信号中高次谐波包括:3次谐波和5次谐波。
  3. 根据权利要求2所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述频偏系数、所述最大频率以及所述采样频率满足如下关系:
    Figure PCTCN2021104109-appb-100001
    其中,Δf表示频偏系数,f max表示去斜回波信号最大频率,F s表示采样频率。
  4. 根据权利要求1所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述对目标回波信号进行去斜脉压处理,得到去斜的回波信号,包括:
    获取所述目标回波信号对应的参考信号;
    对所述参考信号进行取共轭处理,得到共轭参考信号;
    基于所述共轭参考信号,对所述目标回波信号进行混频处理得到去斜的回波信号。
  5. 根据权利要求4所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述去斜的回波信号为:
    Figure PCTCN2021104109-appb-100002
    Figure PCTCN2021104109-appb-100003
    Figure PCTCN2021104109-appb-100004
    Figure PCTCN2021104109-appb-100005
    其中,S 3(t)表示去斜的回波信号,S 1(t)表示目标回波信号,
    Figure PCTCN2021104109-appb-100006
    表示共轭参考信号,S 2(t)表示参考信号,A 1表示目标回波信号最大幅度值,A 2表示参考信号最大幅度值,t表示时间,τ表示第一时延,τ 0表示第二时延,T p表示脉宽,j表示虚数单位,π表示圆周率,f 0表示中心频率,k表示调频率,x表示中间变量,e表示自然对数的底数,rect(·)表示矩形窗函数。
  6. 根据权利要求5所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述频移的回波信号为:
    S 4(t)=sign(S 3(t)e j2πΔf)
    其中,Δf表示频偏系数,sign(·)表示符号函数。
  7. 根据权利要求1所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据,包括:
    将所述高次谐波频谱与去斜的回波频谱分离的信号与预设阈值进行比较,若所述高次谐波频谱与去斜的回波频谱分离的信号大于或等于预设阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为1,若所述高次谐波频谱与去斜的回波频谱分离的信号小于阈值,则将所述高次谐波频谱与去斜的回波频谱分离的信号存储为0,以得到回波数据。
  8. 根据权利要求1所述的宽带雷达回波的去斜一比特采集方法,其特征在于,对所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到回波数据之后,所述宽带雷达回波的去斜一比特采集方法还包括:
    将所述回波数据进行快速傅里叶变换到频域,得到具有频点信息的频谱;
    对所述具有频点信息的频谱进行舍弃处理,得到舍弃后的频谱;其中,所述舍弃处理的频谱根据所述频偏系数确定;
    根据所述舍弃后的频谱进行成像处理,输出成像结果。
  9. 根据权利要求8所述的宽带雷达回波的去斜一比特采集方法,其特征在于,所述成像处理包括以下至少一种:距离徙动校正、方位匹配滤波或相干积累。
  10. 一种宽带雷达回波的去斜一比特采集系统,其特征在于,包括:
    去斜脉压装置,用于对目标回波信号进行去斜脉压处理,得到去斜的回波信号;
    频移装置,用于对所述去斜的回波信号进行频移处理,得到频移的回波信号;其中,所述频移处理的频偏系数根据所述去斜的回波信号中最大频率确定;
    采样装置,用于对所述频移的回波信号进行采样处理,得到高次谐波频谱与去斜的回波频谱分离的信号;其中,所述采样处理的采样频率根据所述去斜的回波信号中最大频率确定;
    一比特量化装置,将所述高次谐波频谱与去斜的回波频谱分离的信号进行一比特量化处理,得到所述回波数据。
PCT/CN2021/104109 2020-06-24 2021-07-01 一种宽带雷达回波的去斜一比特采集方法及系统 WO2021259381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010587048.2A CN111505640B (zh) 2020-06-24 2020-06-24 一种宽带雷达回波的去斜一比特采集方法及系统
CN202010587048.2 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259381A1 true WO2021259381A1 (zh) 2021-12-30

Family

ID=71878840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104109 WO2021259381A1 (zh) 2020-06-24 2021-07-01 一种宽带雷达回波的去斜一比特采集方法及系统

Country Status (2)

Country Link
CN (1) CN111505640B (zh)
WO (1) WO2021259381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359871A (zh) * 2023-03-24 2023-06-30 上海毫微太科技有限公司 一种信号处理方法和图像采集设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505640B (zh) * 2020-06-24 2021-04-13 深圳大学 一种宽带雷达回波的去斜一比特采集方法及系统
CN111999725B (zh) * 2020-09-01 2023-07-11 中国电子科技集团公司第三十八研究所 窄带信号引导下的宽带多项式相位信号去斜方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400349B1 (en) * 2010-06-09 2013-03-19 Sandia Corporation Radar echo processing with partitioned de-ramp
CN104237857A (zh) * 2014-10-16 2014-12-24 中国科学院电子学研究所 雷达回波信号的去斜接收方法
CN105807278A (zh) * 2016-03-02 2016-07-27 中国科学院电子学研究所 一种sar回波信号去斜方法
CN106054183A (zh) * 2016-04-29 2016-10-26 深圳市太赫兹科技创新研究院有限公司 基于合成孔径雷达成像的三维图像重建方法及装置
CN106338731A (zh) * 2016-08-22 2017-01-18 西安电子科技大学 一种多子带并发的mimo‑sar雷达成像方法
CN107238818A (zh) * 2017-05-25 2017-10-10 中国科学院国家空间科学中心 一种线性调频混沌噪声波形及其去斜处理方法
CN107247254A (zh) * 2017-05-27 2017-10-13 中国科学院国家空间科学中心 一种非线性调频信号去斜处理方法
CN108008369A (zh) * 2017-11-30 2018-05-08 中国科学院国家空间科学中心 一种非线性调频信号欠采样处理方法
CN108508438A (zh) * 2018-04-09 2018-09-07 深圳大学 一种基于单频时变阈值的一比特回波数据采集方法及系统
CN110850384A (zh) * 2019-11-04 2020-02-28 北京航空航天大学 一种基于扫频数据产生宽带去斜回波的方法
CN111505640A (zh) * 2020-06-24 2020-08-07 深圳大学 一种宽带雷达回波的去斜一比特采集方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742152B2 (en) * 2006-06-23 2010-06-22 University Of Kansas Coherent detection scheme for FM chirped laser radar
CN106154265B (zh) * 2016-06-23 2018-12-21 西安空间无线电技术研究所 一种基于频域移位的去斜体制雷达isar包络对齐方法
EP3639055A4 (en) * 2017-06-14 2021-03-10 BAE SYSTEMS Information and Electronic Systems Integration Inc. SATELLITE TOMOGRAPHY OF RAIN AND MOVEMENT VIA SYNTHETIC OPENING

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400349B1 (en) * 2010-06-09 2013-03-19 Sandia Corporation Radar echo processing with partitioned de-ramp
CN104237857A (zh) * 2014-10-16 2014-12-24 中国科学院电子学研究所 雷达回波信号的去斜接收方法
CN105807278A (zh) * 2016-03-02 2016-07-27 中国科学院电子学研究所 一种sar回波信号去斜方法
CN106054183A (zh) * 2016-04-29 2016-10-26 深圳市太赫兹科技创新研究院有限公司 基于合成孔径雷达成像的三维图像重建方法及装置
CN106338731A (zh) * 2016-08-22 2017-01-18 西安电子科技大学 一种多子带并发的mimo‑sar雷达成像方法
CN107238818A (zh) * 2017-05-25 2017-10-10 中国科学院国家空间科学中心 一种线性调频混沌噪声波形及其去斜处理方法
CN107247254A (zh) * 2017-05-27 2017-10-13 中国科学院国家空间科学中心 一种非线性调频信号去斜处理方法
CN108008369A (zh) * 2017-11-30 2018-05-08 中国科学院国家空间科学中心 一种非线性调频信号欠采样处理方法
CN108508438A (zh) * 2018-04-09 2018-09-07 深圳大学 一种基于单频时变阈值的一比特回波数据采集方法及系统
CN110850384A (zh) * 2019-11-04 2020-02-28 北京航空航天大学 一种基于扫频数据产生宽带去斜回波的方法
CN111505640A (zh) * 2020-06-24 2020-08-07 深圳大学 一种宽带雷达回波的去斜一比特采集方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359871A (zh) * 2023-03-24 2023-06-30 上海毫微太科技有限公司 一种信号处理方法和图像采集设备
CN116359871B (zh) * 2023-03-24 2024-01-19 上海毫微太科技有限公司 一种信号处理方法和图像采集设备

Also Published As

Publication number Publication date
CN111505640A (zh) 2020-08-07
CN111505640B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2021259381A1 (zh) 一种宽带雷达回波的去斜一比特采集方法及系统
CN111142105B (zh) 复杂运动目标isar成像方法
US6522290B2 (en) Transmit phase removal in FM homodyne radars
CN111736131B (zh) 一种剔除一比特信号谐波虚假目标的方法及相关组件
WO2024061206A1 (zh) 一种线性调频脉冲雷达的目标探测方法
Yang et al. Integration of rotation estimation and high-order compensation for ultrahigh-resolution microwave photonic ISAR imagery
WO2014106907A1 (ja) レーダ装置
CN1819496A (zh) 利用高频雷达接收机实现频率监测功能的方法
EP3771921B1 (en) Method for processing non-interrupted phase synchronization signal of bistatic sar based on coded signal
CN106872967B (zh) 一种基于双基地雷达的动目标检测系统及方法
CN104698459A (zh) 一种应用于缺失数据的条带sar压缩感知成像方法
CN112462336B (zh) 一种fmcw异物检测雷达泄漏信号的自适应消除方法
CN111413675A (zh) 一种信号采集设备及其采集方法
JP2019007872A (ja) クラッタ除去装置及びクラッタ除去プログラム
CN108020834B (zh) 基于改进edpca的运动目标检测方法、装置及电子设备
CN110770598A (zh) 微波雷达及其数据处理方法、无人机
CN106054145B (zh) 一种星载合成孔径雷达工作模式的侦察鉴别方法
JP2008249373A (ja) パルスドップラレーダ装置
CN112630737A (zh) 对雷达中频回波信号的预处理方法
CN109884597B (zh) 一种vhf频段目标特性测量方法和装置
JP2005017143A (ja) 気象レーダ信号処理装置
Geng et al. Vehicle-mounted 1-bit SAR imaging based on frequency shifted dechirping echo
EP4194894A1 (en) Signal processing method and apparatus
JP3226466B2 (ja) レーダ装置及びそのレーダ信号処理方法
CN112578381B (zh) 一种基于干涉逆合成孔径雷达的目标三维转动矢量估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 29/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21828606

Country of ref document: EP

Kind code of ref document: A1