WO2021259314A1 - 一种雷达及交通工具 - Google Patents

一种雷达及交通工具 Download PDF

Info

Publication number
WO2021259314A1
WO2021259314A1 PCT/CN2021/101776 CN2021101776W WO2021259314A1 WO 2021259314 A1 WO2021259314 A1 WO 2021259314A1 CN 2021101776 W CN2021101776 W CN 2021101776W WO 2021259314 A1 WO2021259314 A1 WO 2021259314A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
radar
beams
beam element
diffractive
Prior art date
Application number
PCT/CN2021/101776
Other languages
English (en)
French (fr)
Inventor
费永浩
李惠萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21830251.1A priority Critical patent/EP4160260A4/en
Publication of WO2021259314A1 publication Critical patent/WO2021259314A1/zh
Priority to US18/069,799 priority patent/US20230125121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • This application relates to the field of communication technology, in particular to a radar and a vehicle.
  • the technical classification is as follows. At this stage, mechanical scanning is mainly used, but the structure is bulky, the cost is high, and the process is cumbersome. The driving mechanism has become the most competitive solution for the next generation radar with its small size and simple process.
  • MEMS Micro-Electro-Mechanical System
  • FOV Field of view, field of view
  • mechanical strength The requirements are more demanding. From the theoretical model, the above three restrict each other, and the three parameters cannot be optimized at the same time, which affects the performance of the radar.
  • This application provides a radar and a vehicle for improving the performance of the radar.
  • a radar is provided.
  • the radar is applied to a vehicle as an important detection tool when the vehicle is running. Therefore, the performance of the radar directly affects the safety of the vehicle.
  • the radar provided by this application includes a light source, a first diffractive beam element, a second diffractive beam element, a reflective component and a detector.
  • the light source is used to emit the detected light
  • the first diffractive beam element is used to diffract the light out of at least two first light beams
  • the second diffractive beam element is used to converge the at least two first light beams to a set position, Then it is reflected to the detection area by the reflective component.
  • the above-mentioned reflecting assembly includes a reflecting mirror for reflecting the at least two first light beams converged at the set position to the detection area, and a driving mechanism for driving the reflecting mirror to swing.
  • the detector is used for receiving at least two second light beams reflected back from the detection area. And pass the signal to subsequent devices.
  • the light emitted by the light source is diffracted into at least two first beams, which can be detected by the two first beams, which improves the detection
  • the range of the area can be expanded by using a light source at the same time, which simplifies the structure of the entire radar and improves the performance of the radar.
  • the first diffractive beam element is used to diffract the light into an odd number of first beams. Detection is achieved by diffracting different numbers of light rays.
  • the first diffractive beam element is a beam splitter
  • the second diffractive beam element is a beam combiner.
  • the incident angle of each first beam is different. It is ensured that each first beam can detect different areas.
  • the set position is the reflecting surface of the reflecting mirror. Improve the effect of reflection.
  • the reflector is also used to reflect at least two second light beams reflected back from the detection area;
  • the radar further includes a beam splitting reflection diaphragm, and the beam splitting reflection diaphragm is located at The optical path between the second diffractive beam element and the reflecting assembly; the beam splitting reflection diaphragm is used to transmit at least two first light beams converged by the second diffractive beam element and reflect the reflecting mirror The at least two second light beams reflected back;
  • the detector is used for receiving the at least two second light beams reflected by the beam splitting reflection diaphragm.
  • the beam splitting reflection diaphragm is set to further improve the compactness of the radar and reduce the volume of the radar.
  • the beam splitting reflection diaphragm includes: a main body provided with a light-transmitting structure for transmitting the at least two first light beams; a reflective layer provided on the main body Close to one side of the reflecting mirror and avoiding the light-transmitting structure, the reflecting layer is used for reflecting at least two second light beams. Improve the effect of light transmission and reflection.
  • the light-transmitting structure is a through hole provided on the main body; or, the light-transmitting structure is a part of the light-transmitting area of the main body. Light is transmitted through different structures.
  • an anti-reflection layer is provided on the side of the light-transmitting area close to the second diffractive beam element. Reduce the reflection of incident light.
  • the beam splitting reflection diaphragm further includes a light-absorbing layer, the light-absorbing layer is arranged on the side of the main body close to the second diffractive beam element, and the light-absorbing layer avoids the Transparent structure. Reduce the influence of stray light.
  • it further includes a receiving lens for receiving the at least two second light beams reflected by the splitting reflection diaphragm, and converging the at least two second light beams to the detection Device.
  • the second light beam is gathered by the receiving lens, so that the detector can receive it.
  • the detector directly receives the at least two second light beams reflected in the detection zone.
  • the second beam reflected from the detection area can directly illuminate the detector, simplifying the components of the radar.
  • the detector and the reflector are arranged side by side. Convenient device settings.
  • the detection regions corresponding to adjacent first light beams partially overlap. Avoid omissions and improve the accuracy of detection.
  • it further includes a collimating structure for collimating the light emitted by the light source to the first diffractive beam element. It is convenient for the first diffractive beam element to split the light.
  • a vehicle which includes an information processing module, and the radar according to any one of the foregoing connected to the information processing module.
  • the light emitted by the light source is diffracted into at least two first beams, which can be detected by the two first beams, which improves the detection
  • the range of the area can be expanded by using a light source at the same time, which simplifies the structure of the entire radar and improves the performance of the radar.
  • FIG. 1 is a schematic diagram of an application scenario of a radar provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the optical path system of the radar provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a radar provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the first grating structure provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a second type of grating structure provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a third grating structure provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a fourth type of grating structure provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a fifth grating structure provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a beam splitting reflection diaphragm provided by an embodiment of the application.
  • Fig. 10 is a schematic structural diagram of a second type of radar provided by an embodiment of the application.
  • Radar is applied to vehicles.
  • the above-mentioned vehicles include, but are not limited to, vehicles driven by non-renewable energy or new energy.
  • Vehicles driven by non-renewable energy can include those driven by gasoline, diesel, ethanol, etc.
  • Vehicles driven by new energy sources may include cars, buses, trucks, etc. driven by electrical energy.
  • FIG. 1 shows a schematic diagram of the radar when it is installed in a car.
  • the dotted line in FIG. 1 indicates the data interaction between the radar 100 and the information processing module 200, and does not represent the actual connection cable between the radar 100 and the information processing module 200.
  • the radar 100 can detect the external environment in its detection area, and feedback the detected information to the information processing module 200, and the information processing module 200 makes a judgment based on the detection data of the radar 100.
  • the information processing module 200 may be a central control computer on an automobile or other chips with signal processing functions, and the aforementioned radar 100 may be a lidar or other types of radar.
  • Lidar is an indispensable technology in automatic driving. The advantage over cameras is the accurate establishment of 3D models and night driving, which can provide richer and accurate data and make it easier to build a simulation environment. Help to judge the interaction of surrounding vehicles and objects. At the same time, Lidar is also a key component in the current traffic sign recognition, adaptive cruise control (ACC), blind spot detection, collision avoidance system and lane departure warning systems.
  • ACC adaptive cruise control
  • the laser radar FOV Field of view, field of view
  • FOV field of view
  • the present application provides a radar. The radar will be described in detail below in conjunction with specific drawings and embodiments.
  • the first beam is the detection beam
  • the second beam is the reflected beam after the first beam irradiates the detected object.
  • FIG. 2 shows a radar optical path system provided by an embodiment of the present application.
  • the radar includes a light transmitting system 10, a light scanning system 30, and a light receiving system 20.
  • the transmitting system 10 emits light to irradiate the light scanning system 30.
  • the light scanning system 30 controls the light to scan in the detection area 40.
  • the light reflected by the detected object is reflected to the light scanning system 30, and then reflected to the light receiving system 20, the light receiving system 20 Convert optical signals into electrical signals, complete the detection function of radar.
  • the radar may also include a control and data processing module 50, which is connected to the light emitting system 10 and the light receiving system 20, respectively, for controlling the light emitting system 10 to emit laser light, and can receive light from the light receiving system 20 And convert it into an electrical signal.
  • Fig. 3 shows a schematic structural diagram of a radar provided by an embodiment of the present application.
  • the radar provided by the embodiment of the present application includes: a light source 101, a first diffractive beam element 103, a second diffractive beam element 104, a reflection assembly 105, a detector 108 and other components.
  • the light source 101, the first diffractive beam element 103, and the second diffractive beam element 104 are used as a light emitting system
  • the reflective assembly 105 is used as a light scanning system
  • the detector 108 is used as a light receiving system.
  • the light source 101 is used to emit detected light, which is non-visible light, such as light with a wavelength greater than 760 nm.
  • the light source 101 can be selected from different light sources, such as LED lights, laser emitters or other light sources capable of emitting parallel light.
  • the light source 101 adopts a laser transmitter, and the emitted laser light has the advantages of good coherence, good parallelism, and high brightness, and is suitable for detection.
  • the light emission system when the light emitted by the light source 101 is a divergent light, the light emission system further includes a collimating structure 102 for collimating the light emitted by the light source 101 to the first diffractive beam element 103.
  • the collimating structure 102 is arranged on the optical path between the light source 101 and the first diffractive beam element 103. After the light emitted by the light source 101 is irradiated to the collimating structure 102, it is refracted by the collimating structure 102 into parallel light (collimating the light) and then irradiated to the first diffractive beam element 103.
  • the collimating structure 102 can be implemented in different structures.
  • the collimating structure 102 can use a single lens or a combination of lenses.
  • the collimating structure 102 may adopt a common lens that refracts divergent rays into parallel rays, such as a single-sided convex lens, a double-sided convex lens, or a prism; or, the collimating structure 102 may adopt a combination of a convex lens and a concave lens, or a combination of a convex lens and a convex lens.
  • Convex lens and prism combination and other different lens combinations to refract divergent light into parallel light are examples of refract divergent light into parallel light.
  • the aforementioned collimating structure 102 is an optional component.
  • the aforementioned collimating structure 102 may not be used, and the light emitted from the light source 101 can directly irradiate the first diffractive beam element 103.
  • the first diffractive beam element 103 is used to diffract light out of at least two first beams. Exemplarily, when the light rays shown in FIG. 3 pass through the first diffractive beam element 103, they are diffracted into three first light beams. After passing through the first diffractive beam element 103, the light rays are divided into first light beams a, The first beam b and the first beam c. The first light beam a, the first light beam b, and the first light beam c can all be used as scanning light rays. When scanning through the reflective assembly 105, the first light beam a, the first light beam b, and the first light beam c can scan different areas.
  • the number of first beams diffracted by the first diffractive beam element 103 provided in the embodiment of the present application is not limited to the three shown in FIG. Number.
  • the first diffractive beam element 103 can diffract a beam of light into two, three, four, five, and other different numbers of first beams.
  • the first diffractive beam element 103 is used to diffract light into an odd number of first beams.
  • the corresponding detection area 106 is divided into an odd number of areas, and the area located in the middle of the detection area 106 can be scanned by a first beam, such as the first beam b shown in FIG. 3.
  • an odd number of first beams can be used, or an even number of first beams can be used.
  • the middle area in the detection area 106 needs to be scanned by two first beams and then spliced to form a pattern; while an odd number of first beams are used for scanning, the detection area 106 is in the middle The position of is scanned by only one first beam, which can improve the detection effect of the middle area of the detection area 106.
  • the second diffractive beam element 104 is used to converge at least two first beams to a set position so as to facilitate the reflection of the reflective component 105.
  • the incident angle of the first beam b is perpendicular to the incident surface of the second diffractive beam element 104.
  • a light beam b passes directly through without changing the propagation direction; the first light beam a and the first light beam c irradiate the incident surface of the second diffractive beam element 104 at a certain angle of incidence (less than 90°).
  • the propagation directions of the first beam a and the first beam c move closer to the first beam b, and the first beam a, the first beam b, and the first beam c converge to the setting
  • the location may be the reflective surface of the reflective component 105.
  • the first light beam a, the first light beam b, and the first light beam c are irradiated on the reflecting surface, they can be converged into a point or converged to a region.
  • the incident angle of each first beam is different.
  • the incident angle of the first beam a, the first beam b, and the first beam c upon irradiating the reflective surface They are all different to ensure that the first light beam a, the first light beam b, and the first light beam c can be reflected at different angles and irradiate different detection positions in the detection area when they are reflected by the reflective surface.
  • the reflection component 105 is used to realize radar detection and scanning, and may include a reflection mirror and a driving mechanism.
  • the reflecting mirror has a reflecting surface for reflecting at least two first light beams converged to a set position, and the reflecting surface is the reflecting surface of the reflecting assembly 105 described above.
  • the above-mentioned setting position is the reflecting surface of the reflecting mirror, and the first light beam a, the first light beam b, and the first light beam c can be converged into a point on the reflecting surface, or can be converged in a region.
  • the first light beam When the first light beam irradiates the reflective surface, it can be reflected to the detection area 106 through the reflective surface.
  • the incident angles of the first beam a, the first beam b, and the first beam c irradiate the reflective surface are different, so that the first beam a.
  • the first light beam b and the first light beam c can irradiate different areas of the detection area 106.
  • the detection area 106 is divided into three sub-areas: the first sub-areas 1061, the second sub-areas 1062, and the third sub-areas 1063.
  • the first sub-area 1061 corresponds to the first light beam a
  • the first sub-area 1061 is the area scanned by the first light beam a when the first light beam a swings on the mirror
  • the second sub-area 1062 corresponds to the first light beam b
  • the second sub-region 1062 is the area scanned by the first beam b when the first beam b swings on the mirror
  • the third sub-region 1063 corresponds to the first beam c
  • the third sub-region 1063 is the first beam c swinging on the mirror.
  • the radar scanning of the entire detection region 106 is realized.
  • the division of the detection area in FIG. 3 is only an example.
  • the corresponding detection area 106 is also divided into multiple sub-areas, and the number of sub-areas is equal to the number of sub-areas. There is a one-to-one correspondence with the number of beams.
  • the above-mentioned reflecting mirror may be a flat mirror, a concave mirror or a convex mirror, etc., and it only needs to be able to reflect the first light beam a, the first light beam b, and the first light beam c to the above-mentioned detection area 106.
  • the driving mechanism is used to provide power for the mirror to swing.
  • the driving mechanism is connected with the reflecting mirror and is located on the side of the reflecting mirror away from the reflecting surface.
  • the driving mechanism can adopt common mechanisms that can realize swing, such as four-bar linkage, cam mechanism, intermittent motion mechanism, etc., or adopt MEMS (Micro-Electro-Mechanical System, micro-mechanical system).
  • MEMS Micro-Electro-Mechanical System, micro-mechanical system
  • the driving mechanism When the driving mechanism is in use, it drives the mirror to swing along an axis in the direction of the arrow shown in Figure 3.
  • the first beam a, the first beam b, and the first beam c irradiate the incident angle of the reflective surface Constantly changing, the exit angle is also constantly changing, in order to achieve the scanning of the above three sub-regions.
  • the detection regions corresponding to any adjacent first beams partially overlap, so as to avoid omissions during scanning and improve the accuracy of detection.
  • both the first light beam a and the first light beam b scan the area where the first sub-region 1061 and the second sub-region 1062 overlap.
  • both the first beam b and the first beam c scan the area where the second sub-region 1062 and the third sub-region 1063 overlap.
  • the first sub-region 1061, the second sub-region 1062, and the third sub-region 1061, the second sub-region 1062, and the third sub-region 1061, the second sub-region 1062, and the third The information of the sub-area 1063 is spliced into a complete detection area 106 information.
  • the above-mentioned data processing can be a common image stitching processing, which will not be described in detail here.
  • the detected object in the detection area 106 reflects the light beam back.
  • the reflected light beam is the second light beam.
  • the corresponding reflected light beams are: the reflected light beam of the first light beam a is the second light beam a', and the reflected light beam of the first light beam b is the second light beam b ', the reflected light beam of the first light beam c is the second light beam c'.
  • Figure 3 illustrates the placement of detectors using coaxial reception.
  • the reflecting mirror in the reflecting component 105 is also used to reflect the at least two second light beams reflected back by the detection area 106.
  • the irradiation paths of the second beam a', the second beam b', and the second beam c' are the same as those of the first beam a, the first beam b, and the first beam c. on the contrary.
  • the second light beam a', the second light beam b', and the second light beam c' are first irradiated to the reflector in the reflection assembly 105, and are reflected by the reflector along with the first light beam a and the first light beam.
  • the beam b and the first beam c are irradiated in opposite directions. In order to prevent the second light beam a′, the second light beam b′, and the second light beam c′ from irradiating back to the second diffractive beam element 104.
  • the radar provided in the embodiment of the present application is provided with a beam splitting reflection diaphragm 107, and the beam splitting reflection diaphragm 107 is located on the optical path between the second diffractive beam element 104 and the reflection assembly 105.
  • the beam splitting reflection diaphragm 107 should not affect the propagation of the at least two first light beams mentioned above, and it should also prevent the reflected second light beam from irradiating the second diffractive beam element 104. Therefore, the beam splitting reflective diaphragm 107 provided in the embodiment of the present application can transmit at least two first light beams converged by the second diffractive beam element 104, and can reflect at least two second light beams reflected by the reflector.
  • the reflection surface of the beam splitting reflection diaphragm 107 faces the reflection mirror, and the reflection surface and the optical path (the optical path between the second diffractive beam element 104 and the reflection assembly 105) form a set angle.
  • the reflected second light beam can irradiate the detector 108.
  • the angle between the reflection surface of the beam splitting reflection diaphragm 107 and the optical path is different angles such as 60°, 45°, 30°, and the included angle between the reflection surface of the beam splitting reflection diaphragm 107 and the optical path and the detector 108 Matching, so that the light reflected by the beam splitting reflection diaphragm 107 can irradiate the detector 108.
  • the detector 108 is used to receive at least two second light beams reflected by the split-beam reflection diaphragm 107.
  • the receiving surface of the detector 108 is correspondingly divided into multiple areas, and each area receives a first light beam. Two beams. Take the second light beam a', the second light beam b', and the second light beam c'as examples.
  • the receiving surface of the detector 108 is divided into a first receiving area, a second receiving area, and a third receiving area. Among them, the first receiving area is used for receiving the second light beam a', the second receiving area is used for receiving the second light beam b', and the third receiving area is used for receiving the second light beam c'.
  • the radar further includes a receiving lens 109 for receiving at least two second light beams reflected by the beam splitting reflection diaphragm 107 and condensing the at least two second light beams to the detector 108.
  • the receiving lens 109 is arranged between the beam splitting reflection diaphragm 107 and the detector 108 and is used to adjust the second light beam irradiated into the detector 108.
  • the receiving lens 109 can be implemented with different structures, either a single lens or a combination of lenses.
  • the receiving lens 109 can be a common lens that refracts divergent light into parallel rays, such as a single-sided convex lens, a double-sided convex lens, or a prism; or, the receiving lens 109 can also be a combination of a convex lens and a concave lens, or a combination of a convex lens and a convex lens. , Convex lens and prism combination and other different lens combinations to refract divergent light into parallel light.
  • the above-mentioned receiving lens 109 is an optional component, and the above-mentioned receiving lens 109 may not be used. In this case, the second light beam reflected by the splitting reflection diaphragm 107 can directly irradiate the detector 108.
  • one light source 101 can emit multiple light beams, and multiple light beams can be realized through a reflecting component 105.
  • the scanning increases the range of the radar detection area 106.
  • the use of one light source 101 can realize the extended detection area 106, which simplifies the structure of the entire radar. Improved radar performance.
  • the use of the split-beam reflection diaphragm 107 to reflect the second light beam makes the structure of the entire radar more compact and reduces the area occupied by the radar.
  • the first diffractive beam element 103 and the second diffractive beam element 104 one is used for wave splitting and the other is used for wave multiplexing.
  • the first diffractive beam element 103 may be a beam splitter
  • the second diffractive beam element 104 may be a beam combiner.
  • the nature of the beam splitter and the beam combiner is a grating structure. Several specific gratings are listed below in conjunction with the drawings.
  • FIG. 4 shows the first type of grating.
  • the grating 300 is a rectangular grating, and the rectangular grating has rectangular protrusions 301 arranged in a single row.
  • the rectangular grating can be applied to the first diffractive beam element.
  • the first type of grating shown in FIG. 4 can be used.
  • the first grating shown in FIG. 4 can also be applied to the second diffractive beam element.
  • FIG. 5 shows a second type of grating.
  • the grating 300 is an isosceles trapezoidal grating, and the waist trapezoidal grating has trapezoidal protrusions 302 arranged in a single row.
  • the isosceles trapezoidal grating can be applied to the first diffractive beam element.
  • the first type of grating shown in FIG. 5 can be used.
  • the grating 300 used is not limited to the two gratings shown in FIG. 4 and FIG. 5.
  • Other symmetrically convex gratings can also be applied to the first diffractive beam element.
  • FIG. 6 shows a third type of grating.
  • the grating 300 is an oblique rectangular grating.
  • the oblique rectangular grating has a single row of oblique rectangular protrusions 303, and the oblique rectangular protrusions are symmetrical along the axis O of the grating.
  • the oblique rectangular grating can be applied to the first diffractive beam element.
  • the grating structure shown in FIG. 6 can be used.
  • gratings of other symmetrical types protrusions are symmetrical with respect to the axis O
  • FIG. 7 shows a fourth type of grating 300, which is an oblique rectangular grating.
  • the oblique rectangular grating has inclined rectangular protrusions 304 arranged in a single row, and the inclined rectangular protrusions are inclined in one direction.
  • the oblique rectangular grating 300 can be applied to the second diffractive beam element.
  • FIG. 8 shows a fifth type of grating.
  • the grating 300 is a trapezoidal grating.
  • the trapezoidal grating has trapezoidal protrusions 305 arranged in a single row, and the trapezoidal protrusions 305 may be right-angled trapezoidal protrusions.
  • the trapezoidal grating can be used in the second diffractive beam element.
  • FIGS. 4 to 8 only illustrate a few specific grating structures.
  • the first diffractive beam element and the second diffractive beam element provided in the embodiments of the present application may also use other gratings that meet their functions.
  • Fig. 9 shows the structure of the beam splitting reflection diaphragm.
  • the beam splitting reflection diaphragm 107 includes a main body 1071.
  • the main body 1071 is a plate-shaped structure and has two opposite surfaces: a first surface and a second surface.
  • the first surface faces the second diffractive beam element and is the incident surface of the first light beam
  • the second surface faces the reflective component and is the reflection surface of the second light beam.
  • the main body 1071 is provided with a light-transmitting structure 1072 for transmitting at least two first light beams, and the first light beam can pass through the main body 1071 and be emitted from the second surface through the light-transmitting structure 1072.
  • the number of the light-transmitting structures 1072 corresponds to the number of the first light beams one-to-one, or one-to-many.
  • the first light beam a, the first light beam b, and the first light beam c respectively correspond to a light-transmitting structure 1072, and the shape of each light-transmitting structure 1072 matches the shape of the first light beam, so that the first light beam can pass through ;
  • a light-transmitting structure 1072 can simultaneously transmit the first light beam a, the first light beam b and the first light beam c; or, a light-transmitting structure 1072 can transmit the first light beam a and the first light beam b, and The light-transmitting structure 1072 transmits the first light beam c and the like.
  • the specific setting can be determined according to the actual situation.
  • the light-transmitting structure 1072 can adopt different structures.
  • the main body 1071 is made of a light-transmitting material
  • the light-transmitting structure 1072 is a part of the light-transmitting area of the main body 1071.
  • the material of the main body 1071 is glass, light-transmitting resin, light-transmitting plastic and the like.
  • a light-absorbing layer 1075 is provided on the side (first surface) of the main body 1071 close to the second diffractive beam element. A part of the first surface of the main body 1071 is exposed, and the light-transmitting structure 1072 is a part of the light-transmitting area of the main body 1071, and the light-transmitting area serves as the incident area of the first light beam.
  • the first light beam can pass through the main body 1071 after irradiating the light-transmitting area.
  • the light-absorbing layer 1075 is used, stray light can be prevented from irradiating the beam splitting reflective diaphragm 107, which reduces the crosstalk of light and improves the accuracy of detection.
  • the light-absorbing layer 1075 may be made of Cr, Cr+ medium, or other materials, and the above-mentioned materials are existing materials, so they will not be described in detail in this application.
  • an anti-reflection layer 1074 is provided on the side of the light-transmitting area close to the second diffractive beam element.
  • the anti-reflective layer 1074 is used to reduce the reflection of the first light beam incident on the light-transmitting area, so that more first light beams are incident into the light-transmitting area.
  • the anti-reflective layer 1074 may be a multilayer dielectric film composed of SiO 2 , Ta 2 O 5 , Al 2 O 3, etc. materials. The above-mentioned materials are existing materials, so they will not be described in detail in this application.
  • the anti-reflective layer 1074 and the light-absorbing layer 1075 may be provided in the same layer, or may be located in different layers.
  • the light-transmitting structure 1072 may also be a through hole provided on the main body 1071.
  • the through hole penetrates the main body 1071, and the openings of the through hole are respectively located on the first surface and the second surface.
  • the main body 1071 can be made of light-transmitting materials or non-light-transmitting materials.
  • the main body 1071 When the main body 1071 is made of non-light-transmitting material, there is no need to provide a light-absorbing layer 1075, and the material of the main body 1071 can prevent the crosstalk of other light; when the main body 1071 is made of light-transmitting material, a light-absorbing layer 1075 can be provided on the first surface, a light-absorbing layer 1075 avoid through holes.
  • the first light beam When the light-transmitting structure 1072 adopts a through hole, the first light beam will not be reflected when passing through the light-transmitting structure 1072, so there is no need to provide an anti-reflection layer 1074, and the first light beam can directly pass through the light-transmitting structure 1072.
  • the beam splitting reflection diaphragm 107 further includes a reflection layer 1073, the reflection layer 1073 is disposed on the side (second surface) of the main body 1071 close to the reflection mirror, and the reflection layer 1073 is used to reflect at least two second light beams.
  • the reflective layer 1073 avoids the light-transmitting area when it is installed. Specifically, the reflective layer 1073 is provided with a through hole corresponding to the light-transmitting area. No matter what form the light-transmitting structure adopts, the reflective layer 1073 needs to be provided with a corresponding through hole to ensure that the first light beam can pass through the main body 1071 and be emitted.
  • the reflective layer 1073 may be a reflective layer made of Al, Au or other materials with good reflective effects.
  • the above-mentioned materials are existing materials, so they will not be described in detail in this application.
  • the reflective layer 1073 can adopt different structural forms.
  • the reflective layer 1073 and the main body 1071 are an integral structure.
  • the reflective layer 1073 can be a second surface. By processing the second surface into a mirror surface, the second beam can be controlled. reflection.
  • the reflective layer 1073 and the main body 1071 are independent structures, and the reflective layer 1073 can be adhered to the second surface or directly formed on the second surface.
  • Fig. 10 shows another radar provided by an embodiment of the present application.
  • Part of the reference numerals in FIG. 10 may refer to the same reference numerals in FIG. 3.
  • the same reference numerals between different figures represent the same component.
  • the difference between the radar shown in FIG. 10 and the radar shown in FIG. 3 lies in the placement of the detector 201.
  • the detector 201 directly receives at least two second light beams reflected in the detection area 106.
  • the detector 201 and the mirror are arranged side by side, and the detector 201 can receive the second light beam irradiated to other areas (area except the mirror).
  • the second light beam a', the second light beam b', and the second light beam c' are reflected from the detection area 106 and directly incident on the detector 201, without reflection by the reflection component 105, and no need to set up splitting reflection Diaphragm. Simplified the structure of the entire radar.
  • the detector 201 For the specific functions and structure of the detector 201, please refer to the related description of the detector 201 in the radar in FIG. 3, which will not be described in detail here.
  • the setting position of the detector 201 shown in FIG. 10 is only a specific example of the setting position of the detector 201, and the detector 201 in the radar provided in the embodiment of the present application can detect the position of the second beam according to the needs.
  • the position is set to the detector 201.
  • the radar shown in FIG. 10 may also include a collimating structure 102 and a receiving lens 202.
  • a collimating structure 102 may also include a collimating structure 102 and a receiving lens 202.
  • a receiving lens 202 may also include a collimating structure 102 and a receiving lens 202.
  • the second light beam reflected by the detection area 106 can directly irradiate the detector 201.
  • the receiving lens 202 is not needed, which simplifies the components of the radar.
  • the radar provided by the embodiment of the present application realizes the effect of detecting multiple areas by one light source through the cooperation of the first diffractive beam element, the second diffractive beam element, and the reflective component.
  • the detector can be set in different ways, as long as the detector can receive at least two second light beams reflected back from the detection area. As for whether the detector receives directly or indirectly, it is not specifically limited in the embodiment of the present application.
  • the embodiments of the present application also provide a vehicle.
  • the aforementioned vehicles include, but are not limited to, vehicles driven by non-renewable energy or new energy.
  • Vehicles driven by non-renewable energy may include gasoline, diesel, Cars, buses, trucks, etc. powered by ethanol and other fuels.
  • Vehicles driven by new energy sources may include cars, buses, trucks, etc. driven by electrical energy.
  • the vehicle includes an information processing module 200 and the radar 100 of any one of the above.
  • the information processing module 200 may be a central control computer on an automobile or other chips with signal processing functions.
  • the information processing module 200 is respectively connected with the light source and the detector in the radar 100 to control the operation of the radar 100.
  • the specific control method is a common control method, which will not be repeated here.
  • the light emitted by the light source is diffracted into at least two first beams, which can be detected by the two first beams, which improves the detection
  • the range of the area can be expanded by using one light source at the same time, which simplifies the structure of the entire radar 100 and improves the performance of the radar 100.

Abstract

一种雷达(100)及交通工具,雷达(100)包括光源(101)、第一衍射光束元件(103)、第二衍射光束元件(104)、反射组件(105)及探测器(108);第一衍射光束元件(103)用于将光源(101)发射的光线衍射出至少两个第一光束(a,b,c),第二衍射光束元件(104)用于将至少两个第一光束(a,b,c)汇集到设定位置,之后通过反射组件(105)反射到探测区(106);反射组件(105)包括用于将反射汇集到设定位置的至少两个第一光束(a,b,c)反射到探测区(106)的反射镜,以及用于驱动反射镜摆动的驱动机构;探测器(108)用于接收探测区(106)反射回的至少两个第二光束(a',b',c');通过采用第一衍射光束元件(103)和第二衍射光束元件(104)的配合,将光源(101)发射的光线衍射出至少两个第一光束(a,b,c),并可通过两个第一光束(a,b,c)进行探测,提高了探测区(106)的范围,同时采用一个光源(101)即可实现扩展探测区(106),简化了整个雷达(100)的结构。

Description

一种雷达及交通工具
相关申请的交叉引用
本申请要求在2020年06月24日提交中国专利局、申请号为202010592268.4、申请名称为“一种雷达及交通工具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种雷达及交通工具。
背景技术
随着物联网和5G的发展,自动驾驶成为了未来的发展趋势,现阶段自动驾驶主要分为5个等级,如图1所示,其中长距扫描雷达是L3以上的必要手段,测试距离可以达到200米以上,且精度很高。
针对现有的激光雷达,技术分类如下所示,现阶段以机械扫描为主,但是结构笨重,成本高,工艺繁琐。而驱动机构以尺寸小,工艺简单成为下一代雷达最有竞争力的方案。
MEMS雷达的核心扫描组件为MEMS(Micro-Electro-Mechanical System,微机械系统)转镜,相对于传统的通信应用的MEMS,其通光面积,FOV(Field of view,视场角)及机械强度的要求都更为苛刻。从理论模型上,以上三者互相制约,无法做到三个参数同时最优,造成雷达的性能受到影响。
发明内容
本申请提供了一种雷达及交通工具,旨在改善雷达的性能。
第一方面,提供了一种雷达,该雷达应用于交通工具上,作为交通工具行驶时重要的探测工具,因此雷达的性能直接影响到交通工具的安全。本申请提供的雷达包括光源、第一衍射光束元件、第二衍射光束元件、反射组件及探测器。其中,光源用于发射探测的光线,第一衍射光束元件用于将光线衍射出至少两个第一光束,第二衍射光束元件用于将所述至少两个第一光束汇集到设定位置,之后通过反射组件反射到探测区。上述的反射组件包括用于将汇集到所述设定位置的至少两个第一光束反射到探测区的反射镜,以及用于驱动所述反射镜摆动的驱动机构。探测器用于接收从所述探测区反射回的至少两个第二光束。并将信号传递到后续的器件。在上述技术方案中,通过采用第一衍射光束元件和第二衍射光束元件的配合,将光源发射的光线衍射出至少两个第一光束,并可通过两个第一光束进行探测,提高了探测区的范围,同时采用一个光源即可实现扩展探测区,简化了整个雷达的结构,提高了雷达的性能。
在一个具体的可实施方案中,所述第一衍射光束元件用于将所述光线衍射出奇数个第一光束。通过衍射出不同个数的光线实现探测。
在一个具体的可实施方案中,所述第一衍射光束元件为分束器,所述第二衍射光束元件为合束器。通过采用分束器和合束器实现对光线的分散以及聚拢,方便反射组件进行反 射。
在一个具体的可实施方案中,所述第二衍射光束元件在将所述至少两个第一光束汇集到所述设定位置时,每个第一光束的入射角不同。保证了每个第一光束可探测不同区域。
在一个具体的可实施方案中,所述设定位置为所述反射镜的反射面。提高了反射的效果。
在一个具体的可实施方案中,所述反射镜还用于反射所述探测区反射回的至少两个第二光束;所述雷达还包括分束反射光阑,所述分束反射光阑位于所述第二衍射光束元件到所述反射组件之间的光路;所述分束反射光阑用于透过所述第二衍射光束元件汇聚的至少两个第一光束,且反射所述反射镜反射回的所述至少两个第二光束;
所述探测器用于接收所述分束反射光阑反射的所述至少两个第二光束。通过设置的分束反射光阑进一步提高了雷达的紧凑性,降低雷达的体积。
在一个具体的可实施方案中,所述分束反射光阑包括:主体,所述主体上设置有用于透过所述至少两个第一光束的透光结构;反射层,设置在所述主体靠近所述反射镜的一侧,且避让所述透光结构,所述反射层用于反射至少两个第二光束。提高了透光以及反光的效果。
在一个具体的可实施方案中,所述透光结构为设置在所述主体上的通孔;或,所述透光结构为所述主体的一部分透光区域。通过不同的结构透光。
在一个具体的可实施方案中,在所述透光结构为所述主体的部分透光区域时,所述透光区域靠近所述第二衍射光束元件的一侧设置有抗反层。降低入射光线的反射。
在一个具体的可实施方案中,所述分束反射光阑还包括吸光层,所述吸光层设置在所述主体靠近所述第二衍射光束元件的一侧,且所述吸光层避让所述透光结构。降低杂光的影响。
在一个具体的可实施方案中,还包括接收透镜,用于接收所述分束反射光阑反射的所述至少两个第二光束,并将所述至少两个第二光束汇聚到所述探测器。通过接收透镜实现对第二光束的聚拢,以便于探测器接收。
在一个具体的可实施方案中,所述探测器直接接收所述探测区中反射的所述至少两个第二光束。探测区反射的第二光束可直接照射到探测器,简化了雷达的器件。
在一个具体的可实施方案中,所述探测器与所述反射镜并排设置。方便器件设置。
在一个具体的可实施方案中,所述至少两个第一光束中,相邻的第一光束对应的探测区域部分重叠。避免出现遗漏,提高了探测的准确性。
在一个具体的可实施方案中,还包括准直结构,所述准直结构用于准直所述光源发射到所述第一衍射光束元件的光线。方便了第一衍射光束元件对光线进行分束。
第二方面,提供了一种交通工具,该交通工具包括信息处理模块,以及与所述信息处理模块连接的上述任一项所述的雷达。在上述技术方案中,通过采用第一衍射光束元件和第二衍射光束元件的配合,将光源发射的光线衍射出至少两个第一光束,并可通过两个第一光束进行探测,提高了探测区的范围,同时采用一个光源即可实现扩展探测区,简化了整个雷达的结构,提高了雷达的性能。
附图说明
图1为本申请实施例提供的雷达的应用场景示意图;
图2为本申请实施例提供的雷达的光路系统示意图;
图3为本申请实施例提供的雷达的结构示意图;
图4为本申请实施例提供的第一种光栅结构示意图;
图5为本申请实施例提供的第二种光栅结构示意图;
图6为本申请实施例提供的第三种光栅结构示意图;
图7为本申请实施例提供的第四种光栅结构示意图;
图8为本申请实施例提供的第五种光栅结构示意图;
图9为本申请实施例提供的分束反射光阑的结构示意图;
图10为本申请实施例提供的第二种雷达的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步描述。
雷达应用于交通工具上,上述的交通工具包括但不限定以非可再生能源或新能源作为驱动的交通工具,其中非可再生能源驱动的交通工具可以包括以汽油、柴油、乙醇等燃料驱动的汽车、公交车、卡车等。新能源作为驱动的交通工具可以包括以电能作为驱动的汽车、公交车、卡车等。
雷达用于探测交通工具周边环境,并将探测的数据反馈给交通工具的中控电脑,以给中控电脑提供判断信息的数据。如图1示出了雷达在设置在汽车时的示意图,图1中的虚线示意的是雷达100与信息处理模块200的数据交互,并不代表雷达100与信息处理模块200的实际连接线缆。在汽车行驶过程中,雷达100可探测其探测区域内的外界环境,并将探测的信息反馈给信息处理模块200,信息处理模块200通过雷达100探测数据进行判断。信息处理模块200可为汽车上的中控电脑或者其他具有信号处理功能的芯片,上述的雷达100可为激光雷达或其他类型的雷达。激光雷达是自动驾驶中不可缺少的技术,相对于摄像头的优势在于3D模型的准确建立及夜间行驶,可提供更丰富且准确的数据,更轻松建造模拟环境。帮助判断周围车辆及物体的互动。同时,激光雷达也是当前交通标志识别、自适应巡航控制(Adaptive Cruise Control,简称ACC)、盲点检测、防撞系统和车道偏离警告等系统中的关键组件。目前市场的激光雷达FOV(Field of view,视场角)相对较小,而相对大的FOV通常是用多个光源堆叠实现,工艺复杂,造价高,在竞争力上很难做到性能与成本的平衡。为此本申请实施例提供了一种雷达。下面结合具体的附图以及实施例对雷达进行详细的说明。
首先说明本申请实施例设计到的“第一光束”和“第二光束”,第一光束为探测光线,第二光束为第一光束照射到被探测物后反射后的光线。
图2示出了本申请实施例提供的一种雷达的光路系统。雷达包含光发射系统10、光扫描系统30及光接收系统20。
发射系统10发射出光线照射到光扫描系统30,光扫描系统30控制光线在探测区40内扫描,被探测物反射的光线反射到光扫描系统30,再反射到光接收系统20,光接收系统20将光信号转换成电信号,完整雷达的探测功能。雷达还可包括控制及数据处理模块50,控制及数据处理模块50分别与光发射系统10及光接收系统20连接,用于控制光发射系统10发射激光,并可接收光接收系统20中的光线并将其转换成的电信号。
图3示出了本申请实施例提供的一种雷达的结构示意图。本申请实施例提供的雷达包 括:光源101、第一衍射光束元件103、第二衍射光束元件104、反射组件105及探测器108等部件。其中,光源101、第一衍射光束元件103、第二衍射光束元件104作为光发射系统,反射组件105作为光扫描系统,探测器108作为光接收系统。
光源101用于发射探测的光线,该光线为非可见光,如波长大于760nm的光线。光源101可选用不同的光源,如LED灯、激光发射器或其他可发射平行光的光源件。在一个可选的方案中,光源101采用激光发射器,发射的激光具有相干性好、平行度好以及亮度高等优点,适合进行探测。
作为一个可选的方案,在光源101发射的光线是发散光线时,光发射系统还包括一个准直结构102,用于准直光源101发射到第一衍射光束元件103的光线。准直结构102设置在光源101与第一衍射光束元件103之间的光路上。光源101发射的光线照射到准直结构102后,通过准直结构102折射成平行的光线(对光线进行准直)后再照射到第一衍射光束元件103。准直结构102可采用不同的结构实现,示例性的,准直结构102可以采用单一的透镜,也可采用透镜组合。具体的,准直结构102可采用单面凸透镜、双面凸透镜或者棱镜等常见的将发散光线折射成平行光线的透镜;或者,准直结构102可采用凸透镜与凹透镜的组合、凸透镜与凸透镜的组合、凸透镜与棱镜的组合等不同的透镜组合,以将发散的光线折射成平行的光线。
上述的准直结构102作为一个可选的部件,在光源101发射的光线为平行光线时,可不采用上述的准直结构102,光源101发射的光线可直接照射到第一衍射光束元件103。
第一衍射光束元件103用于将光线衍射出至少两个第一光束。示例性的,如图3中所示的光线在穿过第一衍射光束元件103时,被衍射成三个第一光束,光线在经过第一衍射光束元件103后被分为第一光束a、第一光束b及第一光束c。第一光束a、第一光束b及第一光束c均可作为扫描的光线。在通过反射组件105进行扫描时,第一光束a、第一光束b及第一光束c可扫描不同的区域。
应当理解的是,本申请实施例提供的第一衍射光束元件103衍射的第一光束的个数不仅限于图3中所示的三个,可根据具体的实际情况选择需要衍射的第一光束的个数。示例性的,可通过第一衍射光束元件103将一束光线衍射成两个、三个、四个、五个等不同个数的第一光束。
在一个可选的方案中,第一衍射光束元件103用于将光线衍射出奇数个第一光束。在采用奇数个第一光束时,对应的探测区106划分为奇数个区域,位于探测区106中间的区域,可通过一个第一光束进行扫描,如图3中所示的第一光束b。
在具体对探测区106进行扫描时,可采用奇数个第一光束,也可采用偶数个第一光束。两者相比,采用偶数个的第一光束进行扫描,对探测区106中的中间区域需要两个第一光束扫描后拼接形成图形;而采用奇数个第一光束扫描时,探测区106正中间的位置仅通过一个第一光束扫描,可改善对探测区106的中间区域探测的效果。
第二衍射光束元件104用于将至少两个第一光束汇集到设定位置,以便于反射组件105进行反射。如图3中示例,第一光束a、第一光束b及第一光束c在经过第二衍射光束元件104时,第一光束b的入射角度垂直于第二衍射光束元件104的入射面,第一光束b直接穿过,传播方向未变;第一光束a和第一光束c以一定的入射角(小于90°)照射到第二衍射光束元件104的入射面。在从第二衍射光束元件104中射出时,第一光束a和第一光束c的传播方向朝向第一光束b靠拢,第一光束a、第一光束b和第一光束c汇聚到的 设定位置可为反射组件105的反射面。第一光束a、第一光束b及第一光束c照射到反射面时,可汇聚成一个点,或者汇聚到一个区域。
第二衍射光束元件104在将至少两个第一光束汇集到设定位置时,每个第一光束的入射角不同。如图3中所示,第一光束a、第一光束b及第一光束c在照射到反射面时,第一光束a、第一光束b及第一光束c照射到反射面时的入射角均不相同,以保证第一光束a、第一光束b及第一光束c在经反射面反射时,可以以不同的角度反射,并照射到探测区中不同的探测位置。
反射组件105用于实现雷达探测扫描,可包含反射镜以及驱动机构。反射镜具有用于反射汇集到设定位置的至少两个第一光束的反射面,反射面即为上述描述的反射组件105的反射面。上述的设定位置即为反射镜的反射面,第一光束a、第一光束b及第一光束c可在反射面上汇聚成一个点,或者汇聚在一个区域内。
第一光束照射到反射面时,可通过反射面反射到探测区106。以图3中所示的第一光束a、第一光束b及第一光束c为例。第一光束a、第一光束b及第一光束c照射到反射面时,第一光束a、第一光束b及第一光束c照射到反射面时的入射角不相同,以使得第一光束a、第一光束b及第一光束c可以照射到探测区106的不同区域。为方便描述将探测区106划分成三个子区:第一子区1061、第二子区1062、第三子区1063。其中,第一子区1061与第一光束a对应,第一子区1061为第一光束a在反射镜摆动时,第一光束a扫描的区域;第二子区1062与第一光束b对应,第二子区1062为第一光束b在反射镜摆动时,第一光束b扫描的区域;第三子区1063与第一光束c对应,第三子区1063为第一光束c在反射镜摆动时,第一光束c扫描的区域。通过第一光束a、第一光束b及第一光束c在对应的第一子区1061、第二子区1062及第三子区1063中扫描,实现了雷达对整个探测区106的扫描。
图3中的探测区的划分仅为一个示例,在第一衍射光束元件103分束出多个第一光束时,对应的探测区106也划分为多个子区,且子区的个数与第一光束的个数一一对应。
上述的反射镜可为平面镜、凹面镜或者凸面镜等不同的反射镜,只需可满足将第一光束a、第一光束b及第一光束c反射到上述的探测区106即可。
驱动机构用于提供反射镜摆动的动力。驱动机构与反射镜连接,并位于反射镜背离反射面的一侧。驱动机构可采用常见的可实现摆动的机构,如四连杆机构、凸轮机构、间歇运动机构等,或者采用MEMS(Micro-Electro-Mechanical System,微机械系统)。驱动机构在使用时,驱动反射镜绕一轴线沿图3中所示的箭头方向摆动,反射镜在摆动时,第一光束a、第一光束b及第一光束c照射到反射面的入射角不断改变,出射角也不断改变,以实现对上述三个子区的扫描。
在一个可选的方案中,至少两个第一光束中,任意相邻的第一光束对应的探测区域部分重叠,以避免扫描时出现遗漏,提高了探测的准确性。示例性的,第一光束a扫描的第一子区1061和第一光束b扫描的第二子区1062之间具有重叠的区域。在第一光束a与第一光束b扫描时,第一光束a和第一光束b均扫描第一子区1061和第二子区1062重叠的区域。第一光束b扫描的第二子区1062和第一光束c扫描的第三子区1063之间具有重叠区域。在第一光束b和第一光束c扫描时,第一光束b和第一光束c均扫描第二子区1062和第三子区1063重叠的区域。在采用上述方案时,避免子区之间的边界处被遗漏,通过重复扫描子区边界的重叠区域,之后再通过后期数据处理,可将第一子区1061、第二子区 1062和第三子区1063的信息拼接成完整的探测区106信息。上述数据处理可为常见的图像拼接处理,在此不再详细赘述。
第一光束a、第一光束b及第一光束c照射到探测区106后,探测区106中的被探测物将光束反射回。反射的光束为第二光束,以上述三个第一光束为例,对应的反射光束为:第一光束a的反射光束为第二光束a',第一光束b的反射光束为第二光束b',第一光束c的反射光束为第二光束c'。在光束照射到被探测物时,可以在不同方向进行反射,因此每个第一光束均对应多个第二光束。探测器108只需接收到一个方向的第二光束即可实现对被探测物的探测。
图3中示例了出了在采用同轴接收的探测器放置方式。反射组件105中的反射镜还用于反射探测区106反射回的至少两个第二光束。以图3中所示的三个第二光束为例,第二光束a'、第二光束b'、第二光束c'的照射路径与第一光束a、第一光束b及第一光束c相反。第二光束a'、第二光束b'、第二光束c'从探测区106后射出后,先照射到反射组件105中的反射镜,通过反射镜反射后沿与第一光束a、第一光束b及第一光束c照射方向相反的方向照射。为避免第二光束a'、第二光束b'及第二光束c'照射回第二衍射光束元件104。本申请实施例提供的雷达设置了一个分束反射光阑107,分束反射光阑107位于第二衍射光束元件104到反射组件105之间的光路。在设置到该位置时,分束反射光阑107应不影响上述的至少两个第一光束的传播,同时也应该避免反射回的第二光束照射到第二衍射光束元件104。因此本申请实施例提供的分束反射光阑107可透过第二衍射光束元件104汇聚的至少两个第一光束,同时可反射反射镜反射回的至少两个第二光束。
在一个可选的方案中,分束反射光阑107的反射面朝向反射镜,且反射面与光路(第二衍射光束元件104与反射组件105之间的光路)之间呈设定夹角。以改变第二光束的传播路径,使反射后的第二光束可照射到探测器108。示例性的,分束反射光阑107的反射面与光路的夹角为60°、45°、30°等不同的角度,分束反射光阑107的反射面与光路的夹角与探测器108相匹配,以使得分束反射光阑107反射的光线可照射到探测器108。
探测器108用于接收分束反射光阑107反射的至少两个第二光束,为接收所有的第二光束,探测器108的接收面也对应划分了多个区域,每个区域对应接收一个第二光束。以第二光束a'、第二光束b'及第二光束c'为例。探测器108的接收面划分为第一接收区、第二接收区及第三接收区。其中,第一接收区用于接收第二光束a',第二接收区用于接收第二光束b',第三接收区用于接收第二光束c'。
在一个可选的方案中,雷达还包括接收透镜109,用于接收分束反射光阑107反射的至少两个第二光束,并将至少两个第二光束汇聚到探测器108。接收透镜109设置在分束反射光阑107与探测器108之间,并用于调整照射到探测器108内的第二光束。接收透镜109可采用不同的结构实现,既可以采用单一的透镜,也可采用透镜组合。示例性的,接收透镜109可采用单面凸透镜、双面凸透镜或者棱镜等常见的将发散光线折射成平行光线的透镜;或者,接收透镜109还可采用凸透镜与凹透镜的组合、凸透镜与凸透镜的组合、凸透镜与棱镜的组合等不同的透镜组合,以将发散的光线折射成平行的光线。
上述的接收透镜109作为一个可选的部件,可不采用上述的接收透镜109,此时,分束反射光阑107反射的第二光束可直接照射到探测器108。
由上述描述可看出,在本申请通过采用第一衍射光束元件103和第二衍射光束元件104,实现了将一个光源101发射出多个光束,并通过一个反射组件105即可实现多个光束的扫 描,增大了雷达的探测区106范围。同时,采用一个光源101即可实现扩展探测区106,简化了整个雷达的结构。提高了雷达的性能。另外,采用分束反射光阑107反射第二光束,使得整个雷达的结构可更佳紧凑,减少雷达的占用面积。
上述第一衍射光束元件103和第二衍射光束元件104,一个用于分波,一个用于合波。作为一个具体的示例,第一衍射光束元件103可为分束器,第二衍射光束元件104可为合束器。分束器和合束器的本质都是光栅结构,下面结合附图列举几种具体的光栅。
图4示出了第一种光栅,该光栅300为矩形光栅,矩形光栅具有单排排列的矩形凸起301。矩形光栅可应用于第一衍射光束元件中,在第一衍射光束元件衍射出奇数个第一光束时,可采用图4所示的第一种光栅。图4所示的第一种光栅还可应用于第二衍射光束元件中。
图5示出了第二种光栅,该光栅300为等腰梯形光栅,腰梯形光栅具有单排排列的梯形凸起302。等腰梯形光栅可应用于第一衍射光束元件中,在第一衍射光束元件衍射出奇数个第一光束时,可采用图5所示的第一种光栅。
第一衍射光束元件在衍射奇数个第一光束时,采用的光栅300不仅限于图4级图5所示的两种光栅。其他的对称凸起的光栅也可应用到第一衍射光束元件中。
图6示出了第三种光栅,该光栅300为斜矩形光栅,斜矩形光栅具有单排排列的倾斜的矩形凸起303,且倾斜的矩形凸起沿光栅的轴线O对称。斜矩形光栅可应用于第一衍射光束元件中,在第一衍射光束元件衍射出偶数个第一光束时,可采用图6所示的光栅结构。当然其他对称类型(凸起相对轴线O对称)的光栅也可以应用在第一衍射光束元件。
图7示出了第四种光栅300,该光栅为斜矩形光栅,斜矩形光栅具有单排排列的倾斜的矩形凸起304,且倾斜的矩形凸起朝一个方向倾斜。斜矩形光栅300可应用于第二衍射光束元件中。
图8示出了第五种光栅,该光栅300为梯形光栅,梯形光栅具有单排排列的梯形凸起305,梯形凸起305可为直角梯形凸起。梯形光栅可应用于第二衍射光束元件中。
上述图4~图8仅仅示例出了几种具体的光栅结构,本申请实施例提供的第一衍射光束元件和第二衍射光束元件还可采用其他满足其功能的光栅。
图9示出了分束反射光阑的结构。分束反射光阑107包括一个主体1071,主体1071为板状结构,具有相背的两个表面:第一表面和第二表面。第一表面朝向第二衍射光束元件并为第一光束的入射面,第二表面朝向反射组件并为第二光束的反射面。
主体1071上设置有用于透过至少两个第一光束的透光结构1072,第一光束通过透光结构1072可穿过主体1071从第二表面射出。透光结构1072的个数与第一光束的个数一一对应,或者一对多。示例性的,第一光束a、第一光束b及第一光束c分别对应一个透光结构1072,每个透光结构1072的形状与第一光束的形状匹配,以使得第一光束可穿过;或者,采用一个透光结构1072可同时透过第一光束a、第一光束b及第一光束c;或者,采用一个透光结构1072透过第一光束a和第一光束b,另一个透光结构1072透过第一光束c等情况。在具体设置时可根据实际的情况而定。
透光结构1072可采用不同的结构,示例性的,在主体1071为透光材质制备而成时,透光结构1072即为主体1071的部分透光区域。如主体1071的材质为玻璃、透光树脂、透光塑料等材质。
在一个可选的方案中,在主体1071靠近第二衍射光束元件的一侧(第一表面)设置 吸光层1075,该吸光层1075避让透光结构1072,即在吸光层1075上挖孔,使得主体1071的第一表面外露部分区域,透光结构1072即为主体1071的一部分透光区域,该透光区域作为第一光束的入射区域。第一光束照射到透光区域后即可透过主体1071。在采用吸光层1075时,可避免杂光照射入分束反射光阑107,减少了光线的串扰,提高了检测的准确性。
示例性的,吸光层1075可以采用Cr,Cr+介质,或者其他材料而成,上述材质为已有的材质,因此在本申请不再详细赘述。
在一个可选的方案中,透光区域靠近第二衍射光束元件的一侧设置有抗反层1074。抗反层1074用于降低入射到透光区域的第一光束的反射,以使得更多的第一光束入射到透光区域中。示例性的,抗反层1074可采用SiO 2、Ta 2O 5、Al 2O 3等材料构成的多层介质膜。上述材质为已有的材质,因此在本申请不再详细赘述。
在具体设置抗反层1074和吸光层1075时,抗反层1074和吸光层1075可同层设置,也可位于不同层。
透光结构1072还可为设置在主体1071上的通孔。通孔贯穿主体1071,通孔的开口分别位于第一表面和第二表面。在透光结构1072采用通孔时,无需对主体1071的材质做限定,主体1071既可以采用透光材料,也可以采用非透光材料。在主体1071采用非透光材料时,无需设置吸光层1075,通过主体1071的材质即可防止其他光线的串扰;在主体1071采用透光材料时,可在第一表面设置吸光层1075,吸光层1075避让通孔。
在透光结构1072采用通孔时,第一光束在穿过透光结构1072时,不会产生反射,因此无需设置抗反层1074,第一光束可直接穿过透光结构1072。
分束反射光阑107还包括反射层1073,反射层1073设置在主体1071靠近反射镜的一侧(第二表面),反射层1073用于反射至少两个第二光束。反射层1073在设置时避让透光区域,具体的,反射层1073上设置有与透光区域对应的通孔。无论透光结构采用任何形式,反射层1073均需要设置与其对应的通孔,以保证第一光束可穿过主体1071后射出。
示例性的,反射层1073可采用Al、Au或其他具有良好反射效果的材质制备的反射层。上述材质为已有的材质,因此在本申请不再详细赘述。
反射层1073可采用不同的结构形式,示例性的,反射层1073与主体1071为一体结构,此时反射层1073可以为第二表面,通过将第二表面加工成镜面,实现对第二光束的反射。或者反射层1073与主体1071为独立的结构,反射层1073可粘接在第二表面或者直接形成在第二表面。
图10示出了本申请实施例提供的另一种雷达。图10中的部分标号可参考图3中的相同标号。在本申请中不同图示之间的相同标号代表同一部件。
图10中的光源101、第一衍射光束元件103、第二衍射光束元件104、反射组件105的结构以及连接关系可参考上述关于第一种雷达的相关描述,在此不再详细赘述。
图10所示的雷达与图3中所示的雷达的区别在于探测器201的摆放位置。在图10所示的雷达中,探测器201直接接收探测区106中反射的至少两个第二光束。设置时,探测器201与反射镜并排设置,探测器201可接收照射到其他区域(除反射镜外的区域)的第二光束。如图10所示的,第二光束a'、第二光束b'及第二光束c'从探测区106反射后直接入射到探测器201中,无需反射组件105反射,也无需设置分束反射光阑。简化了整个雷达的结构。
探测器201的具体功能以及结构可参考图3中的雷达中关于探测器201的相关描述, 在此不再详细赘述。
应当理解的是,图10所示的探测器201的设置位置,仅仅为探测器201设置位置的一个具体示例,本申请实施例提供的雷达中的探测器201可根据需要检测的第二光束的位置设置探测器201。
在一个可选的方案中,图10所示的雷达也可包括准直结构102以及接收透镜202,其具体结构可参考上述关于第一种雷达的描述,在此不再详细赘述。
在一个具体的可实施方案中,探测区106反射的第二光束可直接照射到探测器201,此时,无需接收透镜202,简化了雷达的器件。
通过上述图3及图10所示的雷达可看出,本申请实施例提供的雷达通过第一衍射光束元件、第二衍射光束元件及反射组件的配合实现了一个光源对多个区域探测的效果。对于探测器,可采用不同的方式设置,只需满足探测器可接收探测区反射回的至少两个第二光束即可。至于探测器是直接接收,还是间接接收,在本申请实施例中不做具体限定。
本申请实施例还提供了一种交通工具,上述的交通工具包括但不限定以非可再生能源或新能源作为驱动的交通工具,其中非可再生能源驱动的交通工具可以包括以汽油、柴油、乙醇等燃料驱动的汽车、公交车、卡车等。新能源作为驱动的交通工具可以包括以电能作为驱动的汽车、公交车、卡车等。
如1所示,交通工具包括信息处理模块200,以及上述任一项的雷达100。信息处理模块200可为汽车上的中控电脑或者其他具有信号处理功能的芯片。信息处理模块200分别与雷达100中的光源以及探测器连接,以控制雷达100工作,具体的控制方式为常见的控制方式,在此不再赘述。在上述技术方案中,通过采用第一衍射光束元件和第二衍射光束元件的配合,将光源发射的光线衍射出至少两个第一光束,并可通过两个第一光束进行探测,提高了探测区的范围,同时采用一个光源即可实现扩展探测区,简化了整个雷达100的结构,提高了雷达100的性能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种雷达,其特征在于,包括:
    光源,用于发射探测的光线;
    第一衍射光束元件,用于将所述光线衍射出至少两个第一光束;
    第二衍射光束元件,用于将所述至少两个第一光束汇集到设定位置;
    反射组件,包括用于将汇集到所述设定位置的至少两个第一光束反射到探测区的反射镜,以及用于驱动所述反射镜摆动的驱动机构;
    探测器,用于接收所述探测区反射回的至少两个第二光束。
  2. 如权利要求1所述的雷达,其特征在于,所述第一衍射光束元件用于将所述光线衍射出奇数个第一光束。
  3. 如权利要求1或2所述的雷达,其特征在于,所述第一衍射光束元件为分束器,所述第二衍射光束元件为合束器。
  4. 如权利要求1~3任一项所述的雷达,其特征在于,所述第二衍射光束元件在将所述至少两个第一光束汇集到所述设定位置时,每个第一光束的入射角不同。
  5. 如权利要求1~4任一项所述的雷达,其特征在于,所述设定位置为所述反射镜的反射面。
  6. 如权利要求1~5任一项所述的雷达,其特征在于,
    所述反射镜还用于反射所述探测区反射回的至少两个第二光束;
    所述雷达还包括分束反射光阑,所述分束反射光阑位于所述第二衍射光束元件到所述反射组件之间的光路上;所述分束反射光阑用于透过所述第二衍射光束元件汇聚的至少两个第一光束,并反射所述反射镜反射回的所述至少两个第二光束;
    所述探测器用于接收所述分束反射光阑反射的所述至少两个第二光束。
  7. 如权利要求6所述的雷达,其特征在于,所述分束反射光阑包括:
    主体,所述主体上设置有用于透过所述至少两个第一光束的透光结构;
    反射层,设置在所述主体靠近所述反射镜的一侧,且避让所述透光结构;所述反射层用于反射至少两个第二光束。
  8. 如权利要求7所述的雷达,其特征在于,所述透光结构为设置在所述主体上的通孔;
    或,
    所述透光结构为所述主体的部分透光区域。
  9. 如权利要求7所述的雷达,其特征在于,在所述透光结构为所述主体的部分透光区域时,
    所述透光区域靠近所述第二衍射光束元件的一侧设置有抗反层。
  10. 如权利要求7~9任一项所述的雷达,其特征在于,所述分束反射光阑还包括吸光层,所述吸光层设置在所述主体靠近所述第二衍射光束元件的一侧,且所述吸光层避让所述透光结构。
  11. 如权利要求6~10任一项所述的雷达,其特征在于,还包括接收透镜,用于接收所述分束反射光阑反射的所述至少两个第二光束,并将所述至少两个第二光束汇聚到所述探测器。
  12. 如权利要求1~5任一项所述的雷达,其特征在于,还包括准直结构,所述准直结构 用于准直所述光源发射到所述第一衍射光束元件的光线。
  13. 一种交通工具,其特征在于,包括信息处理模块,以及与所述信息处理模块连接的如权利要求1~12任一项所述的雷达。
PCT/CN2021/101776 2020-06-24 2021-06-23 一种雷达及交通工具 WO2021259314A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21830251.1A EP4160260A4 (en) 2020-06-24 2021-06-23 RADAR AND VEHICLE
US18/069,799 US20230125121A1 (en) 2020-06-24 2022-12-21 Radar and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010592268.4 2020-06-24
CN202010592268.4A CN113835080A (zh) 2020-06-24 2020-06-24 一种雷达及交通工具

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/069,799 Continuation US20230125121A1 (en) 2020-06-24 2022-12-21 Radar and vehicle

Publications (1)

Publication Number Publication Date
WO2021259314A1 true WO2021259314A1 (zh) 2021-12-30

Family

ID=78964997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101776 WO2021259314A1 (zh) 2020-06-24 2021-06-23 一种雷达及交通工具

Country Status (4)

Country Link
US (1) US20230125121A1 (zh)
EP (1) EP4160260A4 (zh)
CN (1) CN113835080A (zh)
WO (1) WO2021259314A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202433172U (zh) * 2012-01-04 2012-09-12 西北工业大学 一种利用抛物面反射镜测量透射式光栅衍射效率的装置
US20170026633A1 (en) * 2015-05-28 2017-01-26 University College Cork - National University Of Ireland, Cork Coded access optical sensor
CN207602979U (zh) * 2017-10-24 2018-07-10 苏州朝光光电有限公司 littman结构光注入波长可调谐半导体激光器
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达系统和激光测距方法
CN109827523A (zh) * 2019-03-08 2019-05-31 中国科学院光电技术研究所 基于点衍射波的干涉测量系统的系统误差标定装置和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915572A (en) * 1974-02-27 1975-10-28 Nasa Combined dual scatter, local oscillator laser doppler velocimeter
US4515471A (en) * 1981-08-25 1985-05-07 Ltv Aerospace And Defense Company Scanning laser radar
KR100826341B1 (ko) * 2004-12-02 2008-05-02 삼성전기주식회사 회절광과 조명광을 분리한 칼라 디스플레이 장치
US9905992B1 (en) * 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
CN109343033A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于衍射分束元件的时间复用激光雷达发射系统
CN110133615A (zh) * 2019-04-17 2019-08-16 深圳市速腾聚创科技有限公司 一种激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202433172U (zh) * 2012-01-04 2012-09-12 西北工业大学 一种利用抛物面反射镜测量透射式光栅衍射效率的装置
US20170026633A1 (en) * 2015-05-28 2017-01-26 University College Cork - National University Of Ireland, Cork Coded access optical sensor
CN207602979U (zh) * 2017-10-24 2018-07-10 苏州朝光光电有限公司 littman结构光注入波长可调谐半导体激光器
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达系统和激光测距方法
CN109827523A (zh) * 2019-03-08 2019-05-31 中国科学院光电技术研究所 基于点衍射波的干涉测量系统的系统误差标定装置和方法

Also Published As

Publication number Publication date
EP4160260A4 (en) 2023-10-18
US20230125121A1 (en) 2023-04-27
EP4160260A1 (en) 2023-04-05
CN113835080A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
KR102235710B1 (ko) 송수광 단일렌즈 광학계 구조를 가지는 스캐닝 라이다
US8269202B2 (en) Optical sensor device
CN210015229U (zh) 一种距离探测装置
TWI742448B (zh) 雷射偵測裝置
WO2021168832A1 (zh) 一种激光探测系统及车辆
CN113156401B (zh) 一种收发分置激光雷达光学系统
US20210341610A1 (en) Ranging device
JP2019144072A (ja) 対象物検出装置
CN110531369B (zh) 一种固态激光雷达
WO2021259314A1 (zh) 一种雷达及交通工具
WO2022110210A1 (zh) 一种激光雷达及移动平台
KR20170105665A (ko) 차량용 조명 장치
CN116974053A (zh) 基于空间光调制器的光发射装置及固态激光雷达
WO2022110062A1 (zh) 光学测距装置及其光学窗口、可移动设备
CN114488080A (zh) 匀光片、可用于激光雷达的光发射单元和激光雷达
CN115047428A (zh) 激光雷达
CN218158327U (zh) 多波长的扫描装置、发射模块和激光雷达
US20240045072A1 (en) Laser detection system and vehicle having same
CN115825917B (zh) 一种光学接收装置及光学传感装置
CN219417730U (zh) 非同轴激光雷达和终端设备
CN216526270U (zh) 投射模组、深度相机及电子设备
WO2022141347A1 (zh) 激光测量装置及可移动平台
KR20180089352A (ko) 오목 반사 미러를 가지는 스캐닝 라이다
WO2023072022A1 (zh) 一种激光雷达系统及电子设备
US20230017619A1 (en) Structured-light projector, camera assembly, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021830251

Country of ref document: EP

Effective date: 20221229

NENP Non-entry into the national phase

Ref country code: DE