WO2021259236A1 - 通信的方法、通信装置 - Google Patents

通信的方法、通信装置 Download PDF

Info

Publication number
WO2021259236A1
WO2021259236A1 PCT/CN2021/101457 CN2021101457W WO2021259236A1 WO 2021259236 A1 WO2021259236 A1 WO 2021259236A1 CN 2021101457 W CN2021101457 W CN 2021101457W WO 2021259236 A1 WO2021259236 A1 WO 2021259236A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frequency range
terminal device
communication
access
Prior art date
Application number
PCT/CN2021/101457
Other languages
English (en)
French (fr)
Inventor
徐凯
王宏伟
王一凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21828895.9A priority Critical patent/EP4161149A4/en
Publication of WO2021259236A1 publication Critical patent/WO2021259236A1/zh
Priority to US18/069,812 priority patent/US20230126489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and, more specifically, to methods and devices for communication.
  • the power consumption of the base station is mainly composed of power amplifier power consumption, radio frequency power consumption, and indoor baseband processing unit power consumption.
  • the link of the transceiver increases, the total power consumption of the base station increases exponentially. Therefore, the power consumption can be reduced through the symbol shutdown mode, and energy saving can be realized.
  • synchronization signal/physical broadcast channel block Synchronization signal/physical broadcast channel block, SS/PBCH block
  • system information block system information block
  • paging message It needs to be transmitted all the time, which occupies a large number of downlink transmission time slots, so that the base station cannot save energy through the symbol-off mode.
  • the present application provides a communication method and device, which can reduce the number of system broadcast messages through the cooperation of multiple cells in different frequency bands covered by the same coverage, and reserve more downlink time slots to achieve the purpose of energy saving.
  • a communication method includes: determining that the cell in the first frequency range enters the energy-saving state; when the terminal device needs to access the cell in the first frequency range, the cell in the second frequency range assists the cell in the first frequency range , Enabling the terminal device to access.
  • the cells in the first frequency range after the cells in the first frequency range enter the energy-saving state, they stop sending RMSI/OSI/Paging messages, and/or, only send SSB messages.
  • a cell in the first frequency range may represent a cell in the capacity layer; a cell in the second frequency range may represent a cell in an overlay layer.
  • the terminal device in the energy-saving state of the cell in the first frequency range, the terminal device can access the cell in the first frequency range with the assistance of the cell in the second frequency range. Therefore, the cells in the first frequency range can enter the energy-saving state, and with the assistance of the cells in the second frequency range, the effect of synergistic energy-saving can be achieved without losing normal communication capabilities.
  • the cell in the first frequency range entering the energy-saving state includes: the cell in the first frequency range does not support camping and initial access functions.
  • the camping and initial access functions when the camping and initial access functions are stripped from the cells in the first frequency range, the chance of sending some messages (such as RMSI/OSI/Paging) can be reduced. Therefore, the number of system broadcast messages can be reduced, and more downlink time slots can be reserved for symbol-off energy saving, such as enabling cells in the first frequency range to enter an energy-saving state.
  • the camping and initial access functions can be loaded by the cell in the second frequency range. After the terminal device accesses the cell in the second frequency range, it can access to the first cell with the assistance of the cell in the second frequency range. Cells within the frequency range.
  • the cell in the second frequency range assists the cell in the first frequency range so that the terminal device accesses, including: the second frequency range
  • the cell within sends a handover instruction to the terminal device, instructing the terminal device to switch to a cell within the first frequency range.
  • the cell in the second frequency range assists the cell in the first frequency range so that the terminal device accesses, including: the second frequency range A cell in the frequency range is added to the cell in the first frequency range as a secondary cell or a secondary carrier.
  • a communication method includes: the cell in the first frequency range is determined to enter the energy-saving state; when the terminal device needs to access the cell in the first frequency range, the cell in the first frequency range assists the terminal device in the second frequency range Access.
  • the cell in the first frequency range is turned off in an energy-saving state.
  • the camping and initial access functions can be carried by the cells in the second frequency range.
  • the terminal device accesses the cell in the second frequency range, it can access the cell in the first frequency range with the assistance of the cell in the second frequency range. Therefore, the cells in the first frequency range can enter the energy-saving state, and with the assistance of the cells in the second frequency range, the effect of synergistic energy-saving can be achieved without losing normal communication capabilities.
  • that the cell in the first frequency range enters an energy-saving state includes: the cell in the first frequency range does not support camping and initial access functions.
  • a communication method includes: a terminal device accesses a cell in a second frequency range; when the terminal device needs to access a cell in a first frequency range, and a cell in the first frequency range When in the energy-saving state, the terminal device accesses the cell in the first frequency range according to the assistance of the cell in the second frequency range; wherein, when the cell in the first frequency range is in the energy-saving state, the first frequency range
  • the cells inside do not support camping and initial access functions.
  • the terminal device accesses the cell in the first frequency range according to the assistance of the cell in the second frequency range, including: the terminal device receives According to the handover instruction from the cell in the second frequency range, the terminal device switches to the cell in the first frequency range according to the handover instruction.
  • a communication device configured to execute the communication methods provided in the first aspect to the third aspect.
  • the communication device may include a module for executing the communication method provided in the first aspect to the third aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the third aspect and the communication method in any one of the possible implementation manners of the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the communication method in any one of the foregoing first aspect to the second aspect, and any one of the first aspect or the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device, such as a cell in a first frequency range and/or a cell in a second frequency range, or a network device and/or a second frequency range to which a cell in the first frequency range belongs. 2. Network equipment to which the cell in the frequency range belongs.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect to the third aspect, and the first aspect to the third aspect.
  • the communication method in any possible implementation of the three aspects.
  • An eighth aspect provides a computer program product containing instructions, which when executed by a computer causes a communication device to implement the communication methods provided in the first to third aspects.
  • a communication system which includes the aforementioned cell in the first frequency range (or the network device to which the cell in the first frequency range belongs) and terminal equipment; or, includes the aforementioned cell in the first frequency range A cell (or a network device to which a cell in the first frequency range belongs) and a cell in a second frequency range (or a network device to which a cell in the second frequency range belongs); or, including the aforementioned cells in the first frequency range (Or the network device to which the cell in the first frequency range belongs), the cell in the second frequency range (or the network device to which the cell in the second frequency range belongs), and the terminal device.
  • FIG. 1 shows a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • FIG. 2 shows another schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • Figure 3 shows a system architecture diagram suitable for this application.
  • Fig. 4 shows a framework diagram of a mobile communication system suitable for this application.
  • Figure 5 shows a diagram of time domain resources occupied by PSS/SSS and PBCH.
  • Figure 6 shows a PSS/SSS and PBCH transmission mechanism diagram.
  • Fig. 7 shows a schematic diagram of a symbol turn-off principle.
  • FIG. 8 shows a schematic block diagram suitable for the communication provided in the embodiments of the present application.
  • FIG. 9 shows a schematic flowchart of a communication method applicable to an embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of a communication method applicable to another embodiment of the present application.
  • FIG. 11 shows a schematic block diagram suitable for a communication device provided in an embodiment of the present application.
  • FIG. 12 shows a schematic architecture diagram suitable for the communication device provided by the embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of a communication device applicable to an embodiment of the present application.
  • FIG. 14 shows a schematic architecture diagram suitable for the communication device provided by the embodiment of the present application.
  • 5G 5th generation
  • NR NR
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • Fig. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1, and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. To terminal equipment 123.
  • Both network equipment and terminal equipment can be configured with multiple antennas, and the network equipment and terminal equipment can communicate using multiple antenna technology.
  • the network device when a network device communicates with a terminal device, the network device may manage one or more cells, and there may be an integer number of terminal devices in a cell.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system.
  • the cell is denoted as cell #1.
  • the network device 111 may be a network device in the cell #1, or in other words, the network device 111 may serve a terminal device (for example, the terminal device 121) in the cell #1.
  • a cell can be understood as an area covered by a wireless signal of a network device.
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application.
  • the wireless communication system 200 may include one terminal device, such as the terminal device 221 in FIG. 2; the wireless communication system 200 may also include multiple network devices, such as the network device 211 and the network device 212 in FIG. .
  • the terminal device 221 in FIG. 2 can communicate with the network device 221 and the network device 212 at the same time; in other words, the network device 211 and the network device 212 can jointly provide services for the terminal device 221.
  • FIG. 3 is a system architecture diagram suitable for this application.
  • the architecture may include, for example, an indoor baseband processing unit (building baseband unit, BBU) and an active antenna processing unit (active antenna unit, AAU).
  • BBU building baseband unit
  • AAU active antenna unit
  • Fig. 4 is a frame diagram of a mobile communication system suitable for this application.
  • the power consumption of network equipment such as base station power consumption
  • PA power amplifier
  • RF radio frequency
  • BBU BBU power consumption
  • the transceiver (TRX) link increases, the total power consumption of the base station increases exponentially.
  • Massive MIMO Massive MIMO
  • each antenna element has a PA and RF unit
  • the TRX link increases, and the calculation power consumption of the BBU also increases with the increase of the TRX link, so the total base station The power consumption rises accordingly.
  • FIGS. 1 to 4 are only exemplary illustrations, and the present application is not limited thereto.
  • the embodiments of this application can also be applied to random access scenarios (such as 5G NR random access procedures).
  • the cells in the first frequency range and the cells in the second frequency range may both be cells in one network device, for example, both are cells in the network device 111 in FIG. 1.
  • the cells in the first frequency range and the cells in the second frequency range may be cells in different network devices.
  • the cell in the first frequency range is the network device 112 in FIG. 2
  • the cell in the second frequency range is The cell of the network device 113 in FIG. 2.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP), or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU for short).
  • CU realizes part of the functions of gNB
  • DU realizes part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU , Or, sent by DU+AAU.
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • the downlink common channel in the fifth-generation mobile communication technology (5th-Generation, 5G) new radio (NR) system can be divided into: synchronization signal and physical broadcast channel block (Synchronization Signal and PBCH block, SSB), paging Information (paging) and system information block (system information block, SIB).
  • the SIB may include remaining minimum system information (RMSI) and other system information (other system information, OSI).
  • the primary synchronization signal (primary synchronization signal, PSS)/secondary synchronization signal (secondary synchronization signal, SSS) and PBCH are combined together, occupying 4 consecutive symbols in the time domain and 20 RB in the frequency domain to form an SSB.
  • the same SSB uses the same beam transmission mode. It can be understood that in the time domain, one SSB may be composed of, for example, 4 OFDM symbols, and in the frequency domain, one SSB may be composed of, for example, 240 continuous subcarriers, that is, 20 continuous RBs.
  • Figure 5 shows a schematic diagram of time domain resources occupied by PSS/SSS and PBCH.
  • the locations of the synchronization sequences PSS, SSS and PBCH on the time-frequency resources are more discrete and different.
  • NR redesigned the location of the time-frequency resources of PSS, SSS and PBCH to make them more compact and form One, called SSB. It occupies 4 OFDM symbols in the time domain and 240 sub-carriers in the frequency domain.
  • This compact structure makes it possible to de-broadcast once the synchronization sequence is detected, which speeds up the access speed of the terminal and reduces the network delay of the system.
  • Fig. 6 shows a schematic diagram of the transmission mechanism of PSS/SSS and PBCH.
  • PBCH period PBCH period
  • an SS burst set Tx window is 5ms, that is, 10 time slots (slots).
  • a Slot includes the control resource set of the corresponding remaining minimum system message, SSB, corresponding RMSI PDCCH, and free-fill time domain resources.
  • the time domain resources of PSS, SSS and PBCH are compactly connected to form an SSB.
  • the cell is described by the high-level from the perspective of resource management or mobility management or service unit.
  • the coverage area of each network device can be divided into one or more cells, and the cell can be regarded as composed of certain frequency domain resources.
  • the cell may be an area within the coverage of the wireless network of the network device.
  • different cells may correspond to different network devices.
  • the network equipment in cell #1 and the network equipment in cell #2 may be different network equipment, such as a base station.
  • the cell #1 and the cell #2 can be managed by different base stations.
  • it can be called the cell #1 and the cell #2 co-site, or in other words, the same site.
  • the network equipment in cell #1 and the network equipment in cell #2 can also be different radio frequency processing units of the same base station, for example, a radio remote unit (RRU), that is, cell #1 and cell #2 can be managed by the same base station, with the same baseband processing unit and intermediate frequency processing unit, but with different radio frequency processing units.
  • RRU radio remote unit
  • the cell #1 may be a cell in the first frequency range
  • the cell #2 may be a cell in the second frequency range.
  • Dual-connectivity A terminal device can communicate with two network devices at the same time and can send and receive data, which can be called dual-connectivity.
  • the two network devices such as base stations
  • one network device may be responsible for interacting radio resource control messages with the terminal device and for interacting with the core network control plane entity.
  • the network device may be called the master node (master node, MN), for example, the master node may be MeNB or MgNB, but is not limited to this; then another network device may be called a secondary node (secondary node, SN), for example, the secondary node may be SeNB or SgNB. Limited to this.
  • the master node is the control plane anchor point, that is, the terminal device establishes an RRC connection with the master node, and the master node establishes a control plane connection with the core network.
  • multiple serving cells in the master node form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more secondary cells (primary cell, PCell) .
  • Multiple serving cells in the secondary node form a secondary cell group (SCG), including a primary secondary cell (PSCell, or, also called a special cell) and optional one or more SCells .
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • the cell in the first frequency range and the cell in the second frequency range may serve the terminal device in a DC manner.
  • CA Carrier aggregation
  • Carrier aggregation In order to efficiently use fragmented spectrum, the system supports aggregation between different carrier units. The technique of aggregating two or more carriers to support a larger transmission bandwidth can be called carrier aggregation.
  • the terminal equipment can be configured with multiple carrier units (component carrier, CC, or component carrier, component carrier, carrier, etc.), and each CC can correspond to an independent cell.
  • One CC can be equivalent to one cell.
  • the primary cell corresponds to the primary CC (or called primary carrier), which can be a cell for initial connection establishment for the terminal, or a cell for RRC connection reestablishment, or a designated primary cell during a handover (handover) process.
  • the secondary cell corresponds to the secondary CC (or secondary carrier), which may be added during RRC reconfiguration to provide additional radio resources.
  • the terminal device For a terminal device in a connected state, if carrier aggregation is not configured, the terminal device has one serving cell; if carrier aggregation is configured, the terminal device can have multiple serving cells (serving cells), which can be called serving Community collection.
  • serving cells serving cells
  • the primary cell and the secondary cell described above constitute a serving cell set of the terminal device.
  • the serving cell set includes at least one primary cell and at least one secondary cell.
  • a terminal device configured with carrier aggregation can perform data transmission with one PCell and multiple SCells.
  • the cell in the first frequency range and the cell in the second frequency range may serve the terminal device in the manner of CA.
  • Fig. 7 is a schematic diagram of a symbol turn-off principle. As shown in the figure, in the high-load working mode, when the base station's downlink transmission content is reference symbols and data symbols, the PA has been kept on; in the low-load working mode, when the base station's downlink transmission content is the reference symbol When the symbol is in the open state, the PA is in the closed state when it is an idle symbol. Therefore, an important means for base station energy saving is to reserve more idle time without downlink transmission, which can obtain greater energy-saving benefits.
  • the base station's SSB, SIB, and Paging message transmission occupies a large number of downlink transmission time slots, resulting in the base station being unable to save energy through the symbol-off mode. This will be explained in detail below.
  • the master information block (MIB) transmitted in the broadcast channel (broadcast channel, BCH) only contains very limited system information, and more system information is passed on the downlink shared channel (DL-SCH).
  • the SIB message transmitted in) is used to inform the terminal equipment (user equipment, UE).
  • the information in the radio resource control (RRC) message is all the information it wants to tell the UE.
  • SIB1 and SI messages are transmitted on the physical downlink shared channel (PDSCH), and the RB (location in the frequency domain) of the PDSCH occupied by the SIB1 and SI messages and their transmission formats are It is dynamically scheduled and indicated by the physical downlink control channel (PDCCH) scrambled by the radio network temporary identifier (system information-radio network temporary identity, SI-RNTI) of the system message.
  • the pdcch-ConfigSIB1 field in the MIB message is used to indicate the PDCCH time-frequency resource of SIB1.
  • the UE needs to perform blind detection on the PDCCH using SI-RNTI scrambling on the subframe indicated by pdcch-ConfigSIB1 before it can know whether there is an SI message in the subframe.
  • Table 1 compares the message content of NR and long term evolution (long term evolution, LTE) systems:
  • the mobility management entity When it is necessary to send downlink data to a UE in an idle state, the mobility management entity (MME) will report to all the evolved base stations (evolved node B, eNB) in all the tracking areas (Tracking Area, TA) registered by the UE. ) Send a paging message (MME to eNB), and then the eNB will send a paging message through the air interface to page the UE. After receiving the Paging message, the UE in the idle state may initiate an RRC connection establishment process in order to receive the call.
  • the paging function is as follows:
  • the content of the paging message is sent to the UE through the PDSCH resource location, and the PDSCH resource is indicated by scrambling the PDCCH through the paging-radio network temporary identity (P-RNTI) of the paging message. That is, to obtain the Paging message, the UE must first wake up periodically to monitor the PDCCH channel scrambled by the P-RNTI, and then analyze the downlink control information (DCI) to further obtain the time-frequency position of the PDSCH channel. Finally, the UE analyzes the content of Paging at the position of the corresponding PDSCH channel.
  • P-RNTI paging-radio network temporary identity
  • the present application provides a solution to reduce the number of broadcast messages sent by the system through the cooperation of multiple cells in different frequency bands with the same coverage, and reserve more downlink time slots for symbol turn-off energy saving.
  • FIG. 8 is a schematic block diagram of a communication method applicable to an embodiment of the present application.
  • the method 800 may include the following steps.
  • a cell in the first frequency range is determined to enter an energy-saving state
  • the terminal device accesses a cell in the second frequency range.
  • S803 The cell in the second frequency range assists the cell in the first frequency range, so that the terminal device can access.
  • a cell in the first frequency range can enter an energy-saving state.
  • the cell accesses terminal equipment or provides services for terminal equipment, it can be based on the assistance of the cell in the second frequency range to enable the terminal equipment to access Enter the cell in the first frequency range. Therefore, not only energy saving can be achieved, but also communication performance can be ensured and user experience can be improved.
  • cell A is used to represent a cell in the first frequency range
  • cell B is used to represent a cell in the second frequency range. It should be understood that in the following, cell A can be replaced with a network device to which cell A belongs, and cell B can be replaced with a network device to which cell B belongs.
  • a cell in the first frequency range may represent a cell in the capacity layer, that is, cell A represents a cell in the capacity layer;
  • a cell in the second frequency range may represent a cell in an overlay layer, that is, cell B represents a cell in an overlay layer.
  • the current base station network structure is a multi-band network, and the networking mode can be LTE and NR same coverage networking or new radio-time division duplexing (NR-TDD) and new radio-time division duplexing (NR-TDD) Industrial (new radio-Frequency division Duplex, NR-FDD) same coverage networking.
  • NR-TDD new radio-time division duplexing
  • NR-TDD new radio-time division duplexing
  • NR-TDD new radio-time division duplexing
  • Industrial new radio-Frequency division Duplex
  • cell A is a cell in gNB TDD
  • cell B is a cell in gNB FDD.
  • cell A is a cell in gNB SA/NSA
  • cell B is a cell in eNB.
  • cell A and cell B may also have other forms, which are not limited here.
  • SSB has the functions of camping, initial access, handover, and connected state.
  • RMSI has the functions of camping, initial access, and system message update in the connected state.
  • OSI has the functions of initial access to the system in the connected state.
  • the function of message update, Paging has the function of only sending PDCCH in resident and connected state.
  • the number of system broadcast messages can be reduced, and more downlink time slots are reserved for symbol turn-off energy saving.
  • the camping and initial access functions can be loaded by cell B (such as an overlay cell).
  • cell B such as an overlay cell
  • the terminal device accesses cell B, it can access cell A with the assistance of cell B.
  • assistance is mentioned many times in the embodiments of this application, and assistance means that when cell A entering the energy-saving state wants to access terminal equipment, it can be assisted by other cells (ie, cell B, such as a cell in the overlay), so that The terminal equipment accesses the cell A.
  • cell A may enter an energy-saving state in any of the following situations: the load of the network equipment (such as a base station) to which cell A belongs is less than the preset first threshold, access to cell A or the network equipment to which cell A belongs The number of users (such as a base station) is less than the preset second threshold.
  • the preset first threshold and second threshold may be predetermined, such as defined by a protocol, or configured by a network device; or, may also be empirical values determined according to historical communication conditions.
  • FIG. 9 is a schematic flowchart of a communication method applicable to the embodiment of the present application.
  • the method 900 may include the following steps.
  • the cell A enters an energy-saving state.
  • cell A represents a cell of the capacity layer
  • cell B represents a cell of the coverage layer
  • cell A is a cell in gNB TDD
  • cell B is a cell in gNB FDD.
  • cell A may enter the energy-saving state: the load of the network equipment (such as the base station) to which cell A belongs is less than the preset first threshold, access to cell A or the network equipment to which cell A belongs ( For example, the number of users of the base station is less than the preset second threshold.
  • the load of the network equipment such as the base station
  • access to cell A or the network equipment to which cell A belongs For example, the number of users of the base station is less than the preset second threshold.
  • the preset first threshold and second threshold may be predetermined, such as defined by a protocol, or configured by a network device; or, may also be empirical values determined according to historical communication conditions.
  • the number of system broadcast messages can be reduced, and more downlink time slots are reserved for symbol turn-off energy saving.
  • the camping and initial access functions can be loaded by cell B (such as an overlay cell). After a terminal device accesses cell B, it can access cell A with the assistance of cell B.
  • cell B such as an overlay cell
  • the terminal device selects a cell.
  • the terminal device performs access selection on a cell in an idle state.
  • Cell A is in an energy-saving state, so the terminal device reads the SSB message of the network device where cell A is located and finds that cell A cannot camp on.
  • S903 The terminal device accesses cell B.
  • cell A enters the energy-saving state. If a terminal device wants to access cell A, the terminal device can access cell A with the assistance of cell B.
  • Cell B sends inter-frequency measurement indication information to the terminal device, and accordingly, the terminal device receives the inter-frequency measurement indication information.
  • the terminal equipment can perform inter-frequency measurement according to the indication of cell B.
  • S905 The terminal device performs inter-frequency measurement and sends the inter-frequency measurement result to cell B.
  • S906 The cell B sends handover information to the terminal device.
  • Cell B can determine whether the terminal device needs to switch to cell A according to the inter-frequency measurement result reported by the terminal device.
  • cell B may send a handover instruction to the terminal device, such as inter-frequency handover or adding a secondary carrier.
  • cell B may also determine whether to send handover information to the terminal device according to the amount of data to be transmitted by the terminal device. For example, when the data amount of the terminal device is greater than a preset threshold, cell B may send a handover instruction to the terminal device, such as inter-frequency handover or adding a secondary carrier.
  • a terminal device wants to access cell A, it can use the terminal device’s serving cell (ie, cell B) to assist, such as receiving a handover instruction from cell B, and then according to cell B The handover indicates access to cell A.
  • serving cell ie, cell B
  • S907 The terminal device is handed over to cell A.
  • the terminal device can switch to cell A by activating the secondary carrier.
  • both cell A and cell B can provide services for terminal devices.
  • cell A After cell A receives the terminal equipment, it can exit the energy-saving state. Or cell A can also determine whether to exit the energy-saving state according to the actual communication situation. For example, in any of the following situations, cell A may exit the energy-saving state: the load of the network equipment (such as base station) of cell A is greater than the preset third threshold, access to cell A or the network equipment of cell A (such as The number of users of the base station is greater than the preset fourth threshold.
  • the load of the network equipment (such as base station) of cell A is greater than the preset third threshold
  • access to cell A or the network equipment of cell A such as The number of users of the base station is greater than the preset fourth threshold.
  • the preset third threshold and fourth threshold may be predetermined, such as defined by a protocol, or configured by a network device; or, may also be empirical values determined according to historical communication conditions.
  • cell A after cell A exits the energy-saving state, it resumes sending the RMSI/OSI/Paging message, and the terminal device can access the cell.
  • the transmission of SSB, SIB, and Paging messages in cell A occupies a large number of downlink transmission time slots, which causes the base station to be unable to save energy through the symbol-off mode.
  • the sending of SSB, SIB, and Paging messages in cell A can be turned off, and the principle of symbol turn-off is used, and with the cooperation of cell B, the effect of coordinated energy saving can be achieved.
  • FIG. 10 is a schematic flowchart of a communication method applicable to the embodiment of the present application.
  • the method 1000 includes the following steps.
  • the cell A enters the energy-saving state.
  • cell A represents a cell of the capacity layer
  • cell B represents a cell of the coverage layer
  • cell A is a cell in gNB SA/NSA
  • cell B is a cell in eNB.
  • cell A may enter the energy-saving state: the load of the network equipment (such as the base station) to which cell A belongs is less than the preset first threshold, access to cell A or the network equipment to which cell A belongs ( For example, the number of users of the base station is less than the preset second threshold.
  • the load of the network equipment such as the base station
  • access to cell A or the network equipment to which cell A belongs For example, the number of users of the base station is less than the preset second threshold.
  • the preset first threshold and second threshold may be predetermined, such as defined by a protocol, or configured by a network device; or, may also be empirical values determined according to historical communication conditions.
  • SSB message cycle is lengthened and the beam is halved.
  • the camping and initial access functions can be loaded by cell B (such as an overlay cell). After a terminal device accesses cell B, it can access cell A with the assistance of cell B.
  • cell B such as an overlay cell
  • the terminal device selects a cell.
  • a terminal device selects a cell for access in an idle state, and cell A is in an energy-saving state. Therefore, the terminal device reads the SSB message of the network device where cell A is located and finds that cell A cannot camp on.
  • the terminal device accesses cell B.
  • cell A enters the energy-saving state. If a terminal device wants to access cell A, the terminal device can access cell A with the assistance of cell B.
  • the cell B sends the different system measurement instruction information to the terminal device, and accordingly, the terminal device receives the different system measurement instruction information.
  • the terminal equipment can perform different system measurements according to the instructions of cell B.
  • the terminal device performs measurement of the different system, and sends the measurement result of the different system to cell B.
  • the cell B sends handover information to the terminal device.
  • Cell B can determine whether the terminal device needs to switch to cell A according to the measurement results of the different system reported by the terminal device.
  • cell B may send a handover instruction to the terminal device, such as handover of the different system or adding a secondary station.
  • cell B may also determine whether to send handover information to the terminal device according to the amount of data to be transmitted by the terminal device. For example, when the data size of the terminal device is greater than a preset threshold, cell B may send a handover instruction to the terminal device, such as switching between different systems or adding a secondary station.
  • a terminal device wants to access cell A, it can use the terminal device’s serving cell (ie, cell B) to assist, such as receiving a handover instruction from cell B, and then according to cell B The handover indicates access to cell A.
  • serving cell ie, cell B
  • the terminal device is switched to cell A.
  • the terminal device can switch to cell A by activating the auxiliary station.
  • cell A and cell B can both provide services for terminal equipment.
  • the cell A exits the energy-saving state.
  • cell A After cell A receives the terminal equipment, it can exit the energy-saving state. Or cell A can also determine whether to exit the energy-saving state according to the actual communication situation. For example, in any of the following situations, cell A may exit the energy-saving state: the load of the network equipment (such as base station) of cell A is greater than the preset seventh threshold, access to cell A or the network equipment of cell A (such as The number of users of the base station is greater than the preset eighth threshold.
  • the load of the network equipment (such as base station) of cell A is greater than the preset seventh threshold
  • access to cell A or the network equipment of cell A such as The number of users of the base station is greater than the preset eighth threshold.
  • the preset seventh threshold and eighth threshold may be predetermined, such as defined by a protocol, or configured by a network device; or, may also be empirical values determined according to historical communication conditions.
  • cell A after cell A exits the energy-saving state, it resumes sending the RMSI/OSI/Paging message, and the terminal device can access the cell.
  • the transmission of SSB, SIB, and Paging messages in cell A occupies a large number of downlink transmission time slots, which makes it impossible for the base station to save energy through the symbol-off mode.
  • the sending of SSB, SIB, and Paging messages in cell A can be turned off, and the principle of symbol turn-off is used, and under the cooperation of cell B, the effect of synergistic energy saving can be achieved.
  • step 901 and step 902 there is no strict sequence between step 901 and step 902, or step 1001 and step 1002.
  • the methods and operations implemented by the terminal device can also be implemented by the components (such as chips or circuits) that can be used for the terminal device, and are implemented by the network device (such as cell A or cell A to which cell A belongs).
  • the methods and operations implemented by the network device can also be implemented by components (such as chips or circuits) that can be used in the network device.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1100 includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit 1110 can implement corresponding communication functions, and the processing unit 1110 is used for data processing.
  • the transceiver unit 1110 may also be referred to as a communication interface or a communication unit.
  • the communication device 1100 may further include a storage unit, the storage unit may be used to store instructions and/or data, and the processing unit 1120 may read the instructions and/or data in the storage unit, so that the communication device implements the aforementioned method Examples.
  • the communication device 1100 may be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 1100 may be a terminal device or a component configurable in the terminal device, and the transceiver unit 1110 is used to perform the above method
  • the processing unit 1120 is configured to perform the processing-related operations on the terminal device side in the above method embodiment for the operations related to receiving and sending on the terminal device side.
  • the communication device 1100 may be used to perform the actions performed by the cell A (or the network device to which cell A belongs) in the above method embodiment.
  • the communication device 1100 may be the cell A (or the network to which cell A belongs).
  • Device or a component configurable in cell A (or a network device to which cell A belongs)
  • the transceiving unit 1110 is used to perform the transceiving-related operations on the side of cell A (or the network device to which cell A belongs) in the above method embodiment
  • the processing unit 1120 is configured to perform processing-related operations on the cell A (or a network device to which cell A belongs) in the above method embodiment.
  • the communication device 1100 may be used to perform the actions performed by the cell A (or the network device to which cell A belongs) and the cell B (or the network device to which cell B belongs) in the above method embodiment, and the transceiver unit 1110 is used to perform
  • the processing unit 1120 is used to execute cell A in the above method embodiment (Or the network device to which cell A belongs) and processing-related operations on the side of cell B (or the network device to which cell B belongs).
  • the communication device 1100 is used to perform the actions performed by the terminal device in the above method embodiments.
  • the processing unit 1120 is configured to enable the communication device 1100 to access a cell in the second frequency range; the communication device 1100 needs to access a cell in the first frequency range, and the cell in the first frequency range
  • the processing unit 1120 is configured to enable the communication device 1100 to access the cell in the first frequency range according to the assistance of the cell in the second frequency range; wherein, when the cell in the first frequency range is in the energy-saving state, Cells within a frequency range do not support camping and initial access functions.
  • the transceiver unit 1110 is configured to receive a handover instruction from a cell in the second frequency range, and the processing unit 1120 is configured to switch to a cell in the first frequency range according to the handover instruction.
  • the communication device 1100 can implement the steps or processes performed by the terminal device in the method 800, the method 900, and the method 1000 according to the embodiments of the present application.
  • the communication device 1100 can include methods for executing the method 800 and The unit of the method executed by the terminal device in the method 900 in and the method 1000 in FIG. 10.
  • the units in the communication device 1100 and other operations and/or functions described above are used to implement the corresponding processes of the method 800 in FIG. 8, the method 900 in FIG. 9, and the method 1000 in FIG. 10, respectively.
  • the transceiver unit 1110 can be used to execute step S803 in the method 800, and the processing unit 1120 can be used to execute step S802 in the method 800.
  • the transceiver unit 1110 can be used to execute steps S904-S906 in the method 900, and the processing unit 1120 can be used to execute steps S902, S903, and S907 in the method 900.
  • the transceiver unit 1110 can be used to execute steps S1004-S1006 in the method 1000, and the processing unit 1120 can be used to execute steps S1002, S1003, and S1107 in the method 1000.
  • the communication device 1100 is configured to perform actions performed by cell A (or a network device to which cell A belongs) in the above method embodiment.
  • the processing unit 1120 is used to determine to enter the energy-saving state; when the terminal device needs to access the communication device 1100, the communication device 1100 assists the terminal device to access through a cell in the second frequency range.
  • the communication device 1100 after the communication device 1100 enters the energy-saving state, the communication device 1100 does not support the residency and initial access functions.
  • the communication device 1100 can implement the steps or processes performed by the cell A (or the network device to which cell A belongs) in the method 800, the method 900, and the method 1100 according to the embodiments of the present application.
  • the communication device 1100 may include The method 800 in FIG. 8, the method 900 in FIG. 9, and the method 1000 in FIG.
  • the units in the communication device 1100 and other operations and/or functions described above are used to implement the corresponding processes of the method 800 in FIG. 8, the method 900 in FIG. 9, and the method 1000 in FIG. 10, respectively.
  • the processing unit 1120 may be used to execute steps S801 and S803 in the method 800.
  • the processing unit 1120 may be used to execute steps S901, S907, and S908 in the method 900.
  • the processing unit 1020 may be used to execute steps S1001, S1007, and S1008 in the method 1000.
  • the communication device 1100 is configured to perform the actions performed by the cell A (or the network equipment to which the cell A belongs) and the cell B (or the network equipment to which the cell B belongs) in the above method embodiment.
  • the processing unit 1120 is used to determine that cell A (or a network device to which cell A belongs) enters an energy-saving state; when a terminal device needs to access cell A (or a network device to which cell A belongs), cell A (Or the network equipment to which the cell A belongs) assists in enabling the terminal equipment to access through the cell B (or the network equipment to which the cell B belongs).
  • the processing unit 1120 determines that the cell A (or the network device to which the cell A belongs) enters the energy-saving state, including: the cell A (or the network device to which the cell A belongs) does not support the camping and initial access functions.
  • the transceiver unit 1110 is configured to send a handover instruction to the terminal device to instruct the terminal device to switch to a cell in the first frequency range.
  • a cell in the second frequency range is added to a cell in the first frequency range as a secondary cell or a secondary carrier.
  • the transceiver unit 1110 can be used to execute step S803 in the method 800, and the processing unit 1120 can be used to execute steps S801 and S802 in the method 1100.
  • the transceiver unit 1110 can be used to execute steps S904-S906 in the method 900, and the processing unit 1120 can be used to execute steps S901, S903, S907, and S908 in the method 900.
  • the transceiver unit 1110 can be used to execute steps S1004-S1006 in the method 1100, and the processing unit 1120 can be used to execute steps S1001, S1003, S1007, and S1008 in the method 1000.
  • the processing unit 1120 in the above embodiment may be implemented by at least one processor or processor-related circuit.
  • the transceiver unit 1110 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 1110 may also be referred to as a communication unit or a communication interface.
  • the storage unit may be realized by at least one memory.
  • an embodiment of the present application also provides a communication device 1200.
  • the communication device 1200 includes a processor 1210, which is coupled with a memory 1220, the memory 1220 is used to store computer programs or instructions and/or data, and the processor 1210 is used to execute the computer programs or instructions and/or data stored in the memory 1220, This causes the method in the above method embodiment to be executed.
  • the communication device 1200 includes one or more processors 1210.
  • the communication device 1200 may further include a memory 1220.
  • the memory 1220 included in the communication device 1200 may be one or more.
  • the memory 1220 may be integrated with the processor 1210 or provided separately.
  • the communication device 1200 may further include a transceiver 1230, and the transceiver 1230 is used for signal reception and/or transmission.
  • the processor 1210 is configured to control the transceiver 1230 to receive and/or send signals.
  • the communication device 1200 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 1210 is used to implement the processing-related operations performed by the terminal device in the foregoing method embodiment
  • the transceiver 1230 is used to implement the transceiving-related operations performed by the terminal device in the foregoing method embodiment.
  • the communication device 1200 is used to implement the operations performed by the network device in the foregoing method embodiments.
  • the processor 1210 is used to implement the processing-related operations performed by the network device in the foregoing method embodiment
  • the transceiver 1230 is used to implement the transceiving-related operations performed by the network device in the foregoing method embodiment.
  • the embodiment of the present application further provides a communication device 1300, and the communication device 1300 may be a terminal device or a chip.
  • the communication device 1300 may be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 13 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 13 only one memory and processor are shown in FIG. 13. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiving unit 1310 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1320 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1310 as the sending unit, that is, the transceiving unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1320 is configured to perform processing actions on the terminal device side in FIG. 8.
  • the processing unit 1320 is used to perform the processing steps in step S802 in FIG. 8; the transceiving unit 1310 is used to perform the transceiving operations in step S803 in FIG. 8.
  • FIG. 13 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 13.
  • the chip When the communication device 1300 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • An embodiment of the present application also provides a communication device 1400, which may be a network device (cell A (or a network device to which cell A belongs) or cell B (or a network device to which cell B belongs)) or a chip.
  • the communication device 1400 can be used to perform operations performed by a network device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the base station architecture.
  • the base station includes part 1410 and part 1420.
  • the 1410 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1420 part is mainly used for baseband processing and controlling the base station.
  • the 1410 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1420 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1410 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 1410 can be regarded as the receiving unit, and the device used to implement the sending function as the sending unit, that is, the part 1410 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1420 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 1410 is used to perform the steps related to receiving and sending performed by the network device in the embodiment shown in FIG. 8; the part 1420 is used to perform the steps performed by the network device in the embodiment shown in FIG. 8 The processing related steps.
  • the transceiving unit of part 1410 is used to perform the steps related to transceiving and receiving performed by the network device in the embodiment shown in FIG. 9; The processing-related steps performed.
  • the transceiving unit of part 1410 is used to perform the steps related to transceiving performed by the network device in the embodiment shown in FIG. 10; the part 1420 is used to perform the steps performed by the network device in the embodiment shown in FIG. The processing-related steps performed.
  • FIG. 14 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 14.
  • the chip When the communication device 1400 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiment.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • An embodiment of the present application also provides a communication system, which includes the network device and the terminal device in the above embodiment.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • Usable media may include, but are not limited to, magnetic media or magnetic storage devices (for example, floppy disks, hard disks (such as mobile hard disks), magnetic tapes), optical media (for example, optical disks, compact discs).
  • CD compact disc
  • DVD digital versatile disc
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.)
  • semiconductor media such as solid state disks (SSD), USB flash drives, read-only memory (ROM), random access memory (RAM), etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to: wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the processor mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM can include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer can be a personal computer, a server, or a network device.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信的方法和装置。该方法可以包括:第一频率范围内的小区确定进入节能状态,终端设备经过小区选择接入第二频率范围内的小区,当终端设备需要进入第一频率范围内的小区时,第二频率范围内的小区协助终端设备接入第一频率范围内的小区。在本申请中,通过多个小区之间的协助既可以实现节能,如第一频率范围内的小区可以进入节能状态;又可以保证通信性能,如第二频率范围内的小区可以协助终端设备接入至处于节能状态的第一频率范围内的小区。

Description

通信的方法、通信装置
本申请要求于2020年6月24日提交中国专利局、申请号为202010589129.6、申请名称为“通信的方法、通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及通信的方法和装置。
背景技术
在通信过程中,基站的功耗主要由功放功耗、射频功耗以及室内基带处理单元的功耗组成。随着收发信机的链路增加,基站总功耗成倍增加。因此可以通过符号关断方式来降低功耗,实现节能。
然而,在一些场景下,如新无线(New radio,NR)系统,考虑到同步信号/物理广播信道块(Synchronization signal/physical broadcast channel block,SS/PBCH block)消息、系统信息块、寻呼消息等需要一直传输,占据了大量的下行发送时隙,因此导致基站无法通过符号关断方式进行节能。
发明内容
本申请提供一种通信的方法和装置,能够通过多个同覆盖的不同频段小区的协作配合,减小系统广播消息发送的数量,预留更多下行时隙以达到节能的目的。
第一方面,提供了一种通信的方法。该方法包括:第一频率范围内的小区确定进入节能状态;在终端设备需要接入所述第一频率范围内的小区时,第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入。
示例地,第一频率范围内的小区进入节能状态后,停止发送RMSI/OSI/Paging消息,和/或,只发送SSB消息。
示例地,第一频率范围内的小区可以表示容量层的小区;第二频率范围内的小区可以表示覆盖层的小区。
基于上述技术方案,在第一频率范围内的小区节能状态下,终端设备可以在第二频率范围内的小区的协助下接入第一频率范围内的小区。因此,第一频率范围内的小区既可以进入节能状态,而且也可以在第二频率范围内的小区的协助下,不失正常通信能力的同时,能够达到协同节能的效果。
结合第一方面,在第一方面的某些实现方式中,所述第一频率范围内的小区进入节能状态,包括:所述第一频率范围内的小区不支持驻留和初始接入功能。
基于上述技术方案,当把驻留和初始接入功能从第一频率范围内的小区中剥离,可以减少一些消息(如RMSI/OSI/Paging)的发送机会。因此,可以减少系统广播消息发送的 数量,预留更多下行时隙用于符号关断节能,如使得第一频率范围内的小区可以进入节能状态。此外,驻留和初始接入功能可以由第二频率范围内的小区负载,终端设备接入到第二频率范围内的小区后,可以通过第二频率范围内的小区的协助接入到第一频率范围内的小区。
结合第一方面,在第一方面的某些实现方式中,所述第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入,包括:第二频率范围内的小区向所述终端设备发送切换指示,指示所述终端设备切换至所述第一频率范围内的小区。
结合第一方面,在第一方面的某些实现方式中,所述第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入,包括:所述第二频率范围内的小区添加所述第一频率范围内的小区为辅小区或辅载波。
第二方面,提供了一种通信的方法。该方法包括:第一频率范围内的小区确定进入节能状态;在终端设备需要接入第一频率范围内的小区时,第一频率范围内的小区通过第二频率范围内的小区协助使得终端设备接入。
示例地,在终端设备接入第一频率范围内的小区之后,第一频率范围内的小区关闭节能状态。
基于上述技术方案,驻留和初始接入功能可以由第二频率范围内的小区负载。终端设备接入到第二频率范围内的小区后,可以通过第二频率范围内的小区的协助接入到第一频率范围内的小区。因此,第一频率范围内的小区既可以进入节能状态,而且也可以在第二频率范围内的小区的协助下,不失正常通信能力的同时,能够达到协同节能的效果。
结合第二方面,在第二方面的某些实现方式中,所述第一频率范围内的小区进入节能状态,包括:所述第一频率范围内的小区不支持驻留和初始接入功能。
第三方面,提供了一种通信的方法,该方法包括:终端设备接入第二频率范围内的小区;在终端设备需要接入第一频率范围内的小区,且第一频率范围内的小区处于节能状态时,终端设备根据所述第二频率范围内的小区的协助,接入所述第一频率范围内的小区;其中,第一频率范围内的小区处于节能状态时,第一频率范围内的小区不支持驻留和初始接入功能。
结合第三方面,在第三方面的某些实现方式中,所述终端设备根据所述第二频率范围内的小区的协助,接入所述第一频率范围内的小区,包括:终端设备接收来自第二频率范围内的小区的切换指示,根据切换指示,终端设备切换至所述第一频率范围内的小区。
第四方面,提供一种通信装置,通信装置用于执行上述第一方面至第三方面提供的通信方法。具体地,通信装置可以包括用于执行第一方面至第三方面提供的通信方法的模块。
第五方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面以及第三方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系 统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第二方面以及第一方面或第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备,如第一频率范围内的小区和/或第二频率范围内的小区,或者,第一频率范围内的小区所属的网络设备和/或第二频率范围内的小区所属的网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面至第三方面,以及第一方面至第三方面的任一可能的实现方式中的通信方法。
第八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面至第三方面提供的通信方法。
第九方面,提供了一种通信系统,包括前述的第一频率范围内的小区(或第一频率范围内的小区所属的网络设备)和终端设备;或者,包括前述的第一频率范围内的小区(或第一频率范围内的小区所属的网络设备)和第二频率范围内的小区(或第二频率范围内的小区所属的网络设备);或者,包括前述的第一频率范围内的小区(或第一频率范围内的小区所属的网络设备)、第二频率范围内的小区(或第二频率范围内的小区所属的网络设备)以及终端设备。
附图说明
图1示出了一种适用于本申请实施例的无线通信系统100的一示意图。
图2示出了一种适用于本申请实施例的无线通信系统100的另一示意图。
图3示出了一种适用于本申请的一种系统架构图。
图4示出了一种适用于本申请的一种移动通信系统框架图。
图5示出了一种PSS/SSS以及PBCH占用的时域资源图。
图6示出了一种PSS/SSS以及PBCH的发送机制图。
图7示出了一种符号关断原理的示意图。
图8示出了一种适用于本申请实施例提供的通示意性框图。
图9示出了一种适用于本申请一实施例提供的通信的方法的示意性流程图。
图10示出了一种适用于本申请又一实施例提供的通信的方法的示意性流程图。
图11示出了一种适用于本申请实施例提供的通信装置的一种示意性框图。
图12示出了一种适用于本申请实施例提供的通信装置的一种示意性架构图。
图13示出了一种适用于本申请实施例提供的通信装置的一种示意性结构图。
图14示出了一种适用于本申请实施例提供的通信装置的一种示意性架构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或NR系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如图2所示,该无线通信系统200可以包括一个终端设备,例如图2中的终端设备221;该无线通信系统200还可以多个网络设备,例如图2中的网络设备211和网络设备212。图2中的终端设备221可以同时与网络设备221和网络设备212进行通信;或者说,网络设备211和网络设备212可以联合为终端设备221提供服务。
图3为适用于本申请的一种系统架构图。其中,该架构例如可以包括室内基带处理单元(building base band unite,BBU)和有源天线处理单元(active antenna unit,AAU)组成。
图4为适用于本申请的一种移动通信系统框架图。如图所示,在移动通信系统中,网络设备功耗,如基站功耗,由功率放大器(power amplifier,PA)功耗、射频(radio frequency,RF)功耗和BBU功耗组成,并随着收发信机(transceiver,TRX)链路增加,基站总功耗成倍增加。比如,大规模天线(Massive MIMO)的天线单元越多,每个天线单元都有PA和RF单元,TRX链路增加,同时BBU的计算功耗也随着TRX链路增加而上升,因此基站总功耗随之上升。通过符号关断原理可以解决上述问题,具体的下文说明。
应理解,上述图1至图4仅是示例性说明,本申请并未限定于此。例如,本申请实施 例还可以应用于随机接入场景(如5G NR随机接入过程)。
在本申请实施例,第一频率范围内的小区和第二频率范围内的小区可以都为一个网络设备中的小区,比如都为图1中网络设备111中的小区。或者,第一频率范围内的小区和第二频率范围内的小区可以为不同网络设备中的小区,比如第一频率范围内的小区为图2中网络设备112,第二频率范围内的小区为图2中网络设备113的小区。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
第五代移动通信技术(5th-Generation,5G)新空口(new radio,NR)系统中的下行公共信道可以分为:同步信号和物理广播信道块(Synchronization Signal and PBCH block, SSB)、寻呼信息(paging)和系统信息块(system information block,SIB)。SIB可以包括剩余最小系统信息(remaining minimum system information,RMSI)与其他系统信息(other system information,OSI)。
1、SSB
NR中,主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS)和PBCH组合一起,时域上占用4个连续的符号,频域上占用20RB,形成SSB。同一个SSB采用相同的波束发送方式。可以理解,在时域上,一个SSB例如可由4个OFDM符号组成,在频域上,一个SSB例如可由240个连续的子载波组成,即,20个连续的RB。
图5示出了PSS/SSS以及PBCH占用的时域资源的一示意图。如图所示,相对于LTE系统中,同步序列PSS、SSS和PBCH在时频资源上的位置较为离散不同,NR重新设计了PSS、SSS和PBCH时频资源位置,使得它们更为紧凑,形成一体,称之为SSB。在时域上占据4个OFDM符号,频域占240个子载波。这种紧凑的结构,使得一经检测到同步序列之后,就可以进行解广播,加快了终端接入的速度,降低了系统的网络时延。
图6示出了PSS/SSS以及PBCH的发送机制的一示意图。如图所示,假设一个PBCH周期(PBCH period)为80ms,一个SS脉冲集发送窗(SS burst set Tx window)为5ms,即10个时隙(slots)。从图4可以看出,PSS、PBCH、SSS等所占的时域资源的位置。一个Slot中,包括了对应的剩余最小系统消息的控制资源集、SSB、对应的RMSI PDCCH以及自由填充时域资源。PSS、SSS和PBCH时域资源紧凑的连为一体,构成SSB。
2、小区(cell)
小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且该小区可以看作由一定频域资源组成。小区可以为网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应不同的网络设备。例如,小区#1中的网络设备和小区#2中的网络设备可以是不同的网络设备,如,基站。也就是说,小区#1和小区#2可以由不同的基站来管理,这种情况下,可以称为小区#1和小区#2共站,或者说,同站。小区#1中的网络设备和小区#2中的网络设备也可以是同一基站的不同的射频处理单元,例如,射频拉远单元(radio remote unit,RRU),也就是说,小区#1和小区#2可以由同一基站管理,具有相同的基带处理单元和中频处理单元,但具有不同的射频处理单元。本申请对此不做特别限定。
在本申请实施例中,小区#1可以为第一频率范围内的小区,小区#2可以为第二频率范围内的小区。
3、双连接(dual-connectivity,DC)
双连接(dual-connectivity,DC):终端设备可以同时与两个网络设备存在通信连接并可收发数据,可以称之为双连接。该两个网络设备(例如基站)之中,可以有一个网络设备负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备可以称之为主节点(master node,MN),例如,主节点可以是MeNB或者MgNB,不限定于此;则另一个网络设备可以称之为辅节点(secondary node,SN),例如,辅节点可以是SeNB或者SgNB,不限定于此。其中,主节点为控制面锚点,即终端设备与主节点建立RRC连接,且主节点与核心网之间建立控制面连接。在DC中,主节 点中的多个服务小区组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个辅小区(primary cell,PCell)。辅节点中的多个服务小区组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell,或者,也可以称为特殊小区)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
在本申请实施例中,第一频率范围内的小区和第二频率范围内的小区,可以通过DC的方式为终端设备进行服务。
4、载波聚合(carrier aggregation,CA)
载波聚合(carrier aggregation,CA):为了高效地利用零碎的频谱,系统支持不同载波单元之间的聚合。将2个或2个以上的载波聚合在一起以支持更大的传输带宽的技术可以称为载波聚合。
载波聚合技术中,终端设备可以配置多个载波单元(component carrier,CC,或者称,成员载波、组成载波、载波等),每个CC可以对应于一个独立的小区。可以将一个CC等同于一个小区。例如,主小区对应主CC(或者称,主载波),可以是为终端进行初始连接建立的小区,或进行RRC连接重建的小区,或是在切换(handover)过程中指定的主小区。辅小区对应辅CC(或者称,辅载波),可以是在RRC重配置时添加的,用于提供额外的无线资源的小区。
对于处于连接态的终端设备来说,若未配置载波聚合,则该终端设备有一个服务小区;若配置了载波聚合,则该终端设备可以有多个服务小区(serving cell),可以称为服务小区集合。例如,上文所述的主小区和辅小区组成了该终端设备的服务小区(serving cell)集合。换句话说,配置载波聚合的场景下,服务小区集合包括至少一个主小区和至少一个辅小区。或者说,配置了载波聚合的终端设备可与1个PCell和多个SCell进行数据传输。
在本申请实施例中,第一频率范围内的小区和第二频率范围内的小区,可以通过CA的方式为终端设备进行服务。
5、符号关断原理
在无有效数据发射时刻,关闭功放电源达到节能目的。在实际通信过程中,基站不是任何时候都处于流量最大状态,所以对于子帧中的符号,不是任何时刻都填满了有效信息。开启符号关断后,可以在在剩余的无有效信息传输的符号时间,关闭功放电源,达到节能目的。
图7为一种符号关断原理的示意图。如图所示,在高负荷工作模式下,当基站做下行传输的内容为参考符号和数据符号时,PA一直保持开启状态;在低负荷工作模式下,当基站做下行传输的内容为参考符号时,PA为开启状态,当为空闲符号时,PA为关闭状态。所以,基站节能的重要手段为预留更多的空闲时刻不做下行传输,可以获得更大的节能收益。
然后,在低载场景下,基站的SSB、SIB、Paging消息发送占据了大量的下行发送时隙,导致基站无法通过符号关断方式进行节能。下面具体说明。
在广播信道(broadcast channel,BCH)中传输的主系统模块(master information block,MIB)只包含非常有限的系统信息,而更多的系统信息是通过在下行共享信道(downlink shared channel,DL-SCH)中传输的SIB消息来告诉终端设备(user equipment,UE)的。对 于各类SIB而言,无线资源控制(radio resource control,RRC)消息中的信息就是其要告诉UE的所有信息。
SIB1和系统消息(system information,SI)都在物理下行共享信道(physical downlink shared channel,PDSCH)上传输,且SIB1和SI消息所占PDSCH的RB(频域上的位置)及其传输格式等是动态调度的,并由系统消息的无线网络临时标识符(system information-radio network temporary identity,SI-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)来指示。MIB消息中的pdcch-ConfigSIB1字段就是用来指示SIB1的PDCCH时频资源。也就是说,UE需要先在pdcch-ConfigSIB1指示子帧上使用SI-RNTI加扰对PDCCH进行盲检,才能知道该子帧是否存在SI消息。表1为NR和长期演进(long term evolution,LTE)系统消息内容对比:
表1
Figure PCTCN2021101457-appb-000001
6、寻呼消息
当需要向处于空闲状态的UE发送下行数据时,移动管理节点(mobility management entity,MME)会向UE所注册的所有跟踪区(Tracking Area,TA)内的所有演进型基站(evolved node B,eNB)发送一条寻呼(paging)消息(MME发往eNB),然后eNB会通过空口发送一条Paging消息(paging message)以寻呼UE。处于空闲状态的UE收到Paging消息后,可能会发起一个RRC连接建立过程以便接收呼叫。寻呼功能如下所述:
(1)向处于RRC_IDLE态的UE发送呼叫请求,由MME触发,后续UE将发起随 机接入,取得上行时间同步。
(2)通知所有UE,系统消息变更,由eNB触发。UE并不是一直在解析系统消息,而是在接收到系统消息变更信息时,再去重新解读系统消息;
(3)通知UE接收ETWS(地震海啸预警系统)通知(SIB10,SIB11);
(4)通知UE接收CMAS(商用移动预警系统)通知(SIB12);
Paging消息的内容是通过PDSCH资源位置发给UE的,而PDSCH资源是通过寻呼消息的无线网络临时标识符(paging-radio network temporary identity,P-RNTI)加扰PDCCH指示的。也就是UE要获得Paging消息,首先要周期性地醒来监视P-RNTI加扰的PDCCH信道,然后解析下行控制信息(downlink control information,DCI),进一步得到PDSCH信道的时频位置。最后UE在对应的PDSCH信道的位置解析Paging的内容。
应理解,上述列举的各个消息的内容,仅是示例性说明,对此本申请实施例不作限定。
由上可知,网络设备发送的SSB、SIB、Paging消息发送占据了大量的下行发送时隙,导致网络设备无法通过符号关断方式进行节能。
有鉴于,本申请提供一种方案,通过多个同覆盖的不同频段小区协作配合,减少系统广播消息发送的数量,预留更多下行时隙用于符号关断节能。
图8为适用于本申请实施例提供的通信的方法的一种示意性框图。方法800可以包括如下步骤。
S801,第一频率范围内的小区确定进入节能状态;
S802,终端设备接入第二频率范围内的小区;
S803,第二频率范围内的小区协助第一频率范围内的小区,使得终端设备接入。
基于本申请实施例,第一频率范围内的小区可以进入节能状态,当该小区接入终端设备或者说为终端设备提供服务时,可以基于第二频率范围内的小区的协助,使得终端设备接入该第一频率范围内的小区。因此,不仅可以实现节能,还可以保证通信性能,提高用户体验。
下文实施例,为区分且不失一般性,用小区A表示第一频率范围内的小区,小区B表示第二频率范围内的小区。应理解,下文中的小区A可以替换为小区A所属的网络设备,小区B可以替换为小区B所属的网络设备。
一示例,第一频率范围内的小区可以表示容量层的小区,即小区A表示容量层的小区;第二频率范围内的小区可以表示覆盖层的小区,即小区B表示覆盖层的小区。
当前基站组网结构是一个多频段组网,组网方式可以为LTE和NR同覆盖组网或者新空口-时分双工(new radio-time division duplexing,NR-TDD)与新空口-频分双工(new radio-Frequency division Duplex,NR-FDD)同覆盖组网。通常情况下,有多频段/多频点载波同覆盖组网时,设定一个或者多个频段(一般是低频)为容量层,其余频段为覆盖层。或者也可以理解,小区A可以表示低频段中的小区,小区B为其余频段的小区。
又一示例,小区A为gNB TDD中的小区、小区B为gNB FDD中的小区。
又一示例,小区A为gNB SA/NSA中的小区、小区B为eNB中的小区。
应理解,小区A和小区B还可能有其他形式,此处不做限定。
可选地,小区A进入节能状态后,停止发送RMSI/OSI/Paging消息;和/或,小区A进入节能状态后,只发送SSB消息。
在NR的下行公共信道中,系统消息的用途如表2所示:
表2
消息 驻留 初始接入 切换 连接态
SSB
RMSI   系统消息更新
OSI     系统消息更新
Paging     只发PDCCH
如表2所示,SSB具有驻留、初始接入、切换和连接态的功能,RMSI具有驻留、初始接入以及在连接态中系统消息更新的功能,OSI具有初始接入连接态中系统消息更新的功能,Paging具有驻留和连接态中只发PDCCH的功能。当把驻留和初始接入功能从小区A中剥离,可以减少RMSI/OSI/Paging的发送机会,甚至不用发送上述消息。
因此通过本申请实施例,可以减少系统广播消息发送的数量,预留更多下行时隙用于符号关断节能。
此外,驻留和初始接入功能可以由小区B(如覆盖层小区)负载,终端设备接入到小区B后,可以通过小区B的协助接入到小区A。应理解,本申请实施例中多次提及协助,协助即表示进入节能状态的小区A如果要接入终端设备时,可以通过其他小区(即小区B,如覆盖层的小区)的协助,使得终端设备接入至该小区A。
可选地,在以下任一情况下,小区A可能会进入节能状态:小区A所属的网络设备(如基站)的负载小于预设的第一门限、接入小区A或者小区A所属的网络设备(如基站)的用户数量小于预设的第二门限。
其中,预设的第一门限和第二门限,可以是预先规定的,如协议定义的,也可以是网络设备配置的;或者,也可以是根据历史通信情况确定的经验值。
下面结合图9和图10,介绍适用于本申请实施例的两个可能的流程。
图9为适用于本申请实施例提供的通信的方法的一种示意性流程图。方法900可以包括如下步骤。
S901、小区A进入节能状态。
一示例,小区A表示容量层的小区,小区B表示覆盖层的小区。又一示例,小区A为gNB TDD中的小区、小区B为gNB FDD中的小区。
关于小区A和小区B的描述,可以参考方法800中的描述,此次不再赘述。
示例地,在以下任一情况下,小区A可能会进入节能状态:小区A所属的网络设备(如基站)的负载小于预设的第一门限、接入小区A或者小区A所属的网络设备(如基站)的用户数量小于预设的第二门限。
其中,预设的第一门限和第二门限,可以是预先规定的,如协议定义的,也可以是网络设备配置的;或者,也可以是根据历史通信情况确定的经验值。
可选地,小区A进入节能状态后,停止发送RMSI/OSI/Paging消息;和/或,小区A进入节能状态后,只发送SSB消息。当把驻留和初始接入功能从小区A中剥离,可以减 少RMSI/OSI/Paging的发送机会,甚至不用发送上述消息。
因此通过本申请实施例,可以减少系统广播消息发送的数量,预留更多下行时隙用于符号关断节能。
其中,驻留和初始接入功能可以由小区B(如覆盖层小区)负载,终端设备接入到小区B后,可以通过小区B的协助接入到小区A。
S902、终端设备进行小区选择。
示例地,终端设备在空闲状态下,对小区进行接入选择。小区A处于节能状态,故终端设备读取小区A所在网络设备的SSB消息后发现该小区A无法驻留。
S903、终端设备接入至小区B。
如前所述,小区A进入节能状态,如果终端设备想要接入小区A,则终端设备可以通过小区B的协助接入到小区A。
S904、小区B向终端设备发送异频测量指示信息,相应地,终端设备接收该异频测量指示信息。
终端设备可以根据小区B的指示可以进行异频测量。
S905、终端设备进行异频测量并将异频测量结果发送至小区B。
S906、小区B向终端设备发送切换信息。
小区B可以根据终端设备上报的异频测量结果,确定终端设备是否要切换至小区A。
在小区B根据终端设备上报的异频测量结果确定终端设备可以切换至小区A时,小区B可以向终端设备发送切换指示,如异频切换或者添加辅载波。
应理解,上述仅是示例性说明,对此不作限定。例如,小区B也可以根据终端设备待传输的数据量的大小确定是否要向终端设备发送切换信息。例如,当终端设备的数据量大小大于预设阈值时小区B可以向终端设备发送切换指示,如异频切换或者添加辅载波。
由上可知,在本申请实施例中,终端设备如果想要接入小区A,则可以通过该终端设备的服务小区(即小区B)的协助,如接收小区B的切换指示,进而根据小区B的切换指示接入至小区A。
S907、终端设备切换至小区A。
例如,终端设备可以通过激活辅载波的方式,切换至小区A。也就是说,小区A和小区B可以均为终端设备提供服务。
S908、小区A退出节能状态。
小区A接收终端设备后,可以退出节能状态。或者小区A也可以根据实际通信情况,确定是否要退出节能状态。例如,在以下任一情况下,小区A可能会退出节能状态:小区A所属的网络设备(如基站)的负载大于预设的第三门限、接入小区A或者小区A所属的网络设备(如基站)的用户数量大于预设的第四门限。
其中,预设的第三门限和第四门限,可以是预先规定的,如协议定义的,也可以是网络设备配置的;或者,也可以是根据历史通信情况确定的经验值。
可选地,小区A退出节能状态后,恢复发送RMSI/OSI/Paging消息,终端设备可以接入该小区。
在低载场景下,小区A的SSB,SIB,Paging消息发送占据了大量的下行发送时隙,导致基站无法通过符号关断方式进行节能。通过方法900的实施,可以关闭小区A的SSB, SIB,Paging消息发送,运用符号关断原理,在小区B的协同下,能够达到协同节能的效果。
图10为适用于本申请实施例提供的通信的方法的一种示意性流程图。方法1000包括如下步骤。
S1001、小区A进入节能状态。
一示例,小区A表示容量层的小区,小区B表示覆盖层的小区。又一示例,小区A为gNB SA/NSA中的小区、小区B为eNB中的小区。
关于小区A和小区B的描述,可以参考方法800中的描述,此次不再赘述。
示例地,在以下任一情况下,小区A可能会进入节能状态:小区A所属的网络设备(如基站)的负载小于预设的第一门限、接入小区A或者小区A所属的网络设备(如基站)的用户数量小于预设的第二门限。
其中,预设的第一门限和第二门限,可以是预先规定的,如协议定义的,也可以是网络设备配置的;或者,也可以是根据历史通信情况确定的经验值。
可选地,小区A进入节能状态后,停止发送RMSI/OSI/Paging消息;和/或,小区A进入节能状态后,只发送SSB消息。SSB消息周期拉长,波束减半。
其中,驻留和初始接入功能可以由小区B(如覆盖层小区)负载,终端设备接入到小区B后,可以通过小区B的协助接入到小区A。
S1002、终端设备进行小区选择。
示例地,终端设备在空闲状态下,对小区进行接入选择,小区A处于节能状态,故终端设备读取小区A所在网络设备的SSB消息后发现该小区A无法驻留。
S1003、终端设备接入至小区B。
如前所述,小区A进入节能状态,如果终端设备想要接入小区A,则终端设备可以通过小区B的协助接入到小区A。
S1004、小区B向终端设备发送异系统测量指示信息,相应地,终端设备接收该异系统测量指示信息。
终端设备可以根据小区B的指示可以进行异系统测量。
S1005、终端设备进行异系统测量,并将异系统测量结果发送至小区B。
S1006、小区B向终端设备发送切换信息。
小区B可以根据终端设备上报的异系统测量结果,确定终端设备是否要切换至小区A。
在小区B根据终端设备上报的异系统测量结果确定终端设备可以切换至小区A时,小区B可以向终端设备发送切换指示,如异系统切换或者添加辅站。
应理解,上述仅是示例性说明,对此不作限定。例如,小区B也可以根据终端设备待传输的数据量的大小确定是否要向终端设备发送切换信息。例如,当终端设备的数据量大小大于预设阈值时小区B可以向终端设备发送切换指示,如异系统切换或者添加辅站。
由上可知,在本申请实施例中,终端设备如果想要接入小区A,则可以通过该终端设备的服务小区(即小区B)的协助,如接收小区B的切换指示,进而根据小区B的切换指示接入至小区A。
S1007、终端设备切换至小区A。
例如,终端设备可以通过激活辅站的方式,切换至小区A。也就是说,小区A和小区 B可以均为终端设备提供服务。
S1008、小区A退出节能状态。
小区A接收终端设备后,可以退出节能状态。或者小区A也可以根据实际通信情况,确定是否要退出节能状态。例如,在以下任一情况下,小区A可能会退出节能状态:小区A所属的网络设备(如基站)的负载大于预设的第七门限、接入小区A或者小区A所属的网络设备(如基站)的用户数量大于预设的第八门限。
其中,预设的第七门限和第八门限,可以是预先规定的,如协议定义的,也可以是网络设备配置的;或者,也可以是根据历史通信情况确定的经验值。
可选地,小区A退出节能状态后,恢复发送RMSI/OSI/Paging消息,终端设备可以接入该小区。
在低载场景下,小区A的SSB,SIB,Paging消息发送占据了大量的下行发送时隙,导致无法基站无法通过符号关断方式进行节能。通过方法1000的实施,可以关闭小区A的SSB,SIB,Paging消息发送,运用符号关断原理,在小区B的协同下,能够达到协同节能的效果。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
应理解,上述各个实施例中各个步骤仅是一种可能的实现方式,本申请实施例并不做限定。例如,步骤801和步骤802之间并没有严格的先后顺序。又如,步骤901与步骤902、或者步骤1001与步骤1002之间也没有严格的先后顺序。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备(如小区A或者小区A所属的网络设备)实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图8至图10详细说明了本申请实施例提供的方法。以下,结合图11至图14详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图11是本申请实施例提供的通信装置的示意性框图。该通信装置1100包括收发单元1110和处理单元1120。收发单元1110可以实现相应的通信功能,处理单元1110用于进行数据处理。收发单元1110还可以称为通信接口或通信单元。
可选地,该通信装置1100还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1120可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1100可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1100可以为终端设备或者可配置于终端设备的部件,收发单元1110用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1120用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置1100可以用于执行上文方法实施例中小区A(或者小区A所属的网络设备)所执行的动作,这时,该通信装置1100可以为小区A(或者小区A所属的网络设备)或者可配置于小区A(或者小区A所属的网络设备)的部件,收发单元1110用于执行上文方法实施例中小区A(或者小区A所属的网络设备)侧的收发相关的操作,处理单元1120用于执行上文方法实施例中小区A(或者小区A所属的网络设备)侧的处理相关的操作。
或者,该通信装置1100可以用于执行上文方法实施例中小区A(或者小区A所属的网络设备)以及小区B(或者小区B所属的网络设备)所执行的动作,收发单元1110用于执行上文方法实施例中小区A(或者小区A所属的网络设备)以及小区B(或者小区B所属的网络设备)侧的收发相关的操作,处理单元1120用于执行上文方法实施例中小区A(或者小区A所属的网络设备)以及小区B(或者小区B所属的网络设备)侧的处理相关的操作。
作为一种设计,该通信装置1100用于执行上文方法实施例中终端设备所执行的动作。在一种可能的实现中,处理单元1120用于使得通信装置1100接入第二频率范围内的小区;在通信装置1100需要接入第一频率范围内的小区,且第一频率范围内的小区处于节能状态时,处理单元1120用于使得通信装置1100根据第二频率范围内的小区的协助,接入第一频率范围内的小区;其中,第一频率范围内的小区处于节能状态时,第一频率范围内的小区不支持驻留和初始接入功能。
一示例,收发单元1110用于:接收来自第二频率范围内的小区的切换指示,处理单元1120用于根据切换指示,切换至第一频率范围内的小区。
该通信装置1100可实现对应于根据本申请实施例的方法800、方法900和方法1000中的终端设备执行的步骤或者流程,该通信装置1100可以包括用于执行图8中的方法800、图9中的方法900和图10中的方法1000中的终端设备执行的方法的单元。并且,该通信装置1100中的各单元和上述其他操作和/或功能分别为了实现图8中的方法800、图9中的方法900和图10中的方法1000的相应流程。
其中,当该通信装置1100用于执行图8中的方法800时,收发单元1110可用于执行方法800中的步骤S803,处理单元1120可用于执行方法800中的步骤S802。
当该通信装置1100用于执行图9中的方法900时,收发单元1110可用于执行方法900中的步骤S904-S906,处理单元1120可用于执行方法900中的步骤S902、S903、S907。
当该通信装置1100用于执行图10中的方法1000时,收发单元1110可用于执行方法1000中的步骤S1004-S1006,处理单元1120可用于执行方法1000中的步骤S1002、S1003、S1107。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为又一种设计,该通信装置1100用于执行上文方法实施例中小区A(或者小区A所属的网络设备)所执行的动作。在一种可能的实现中,处理单元1120用于确定进入节能状态;在终端设备需要接入通信装置1100时,通信装置1100通过第二频率范围内的小区协助使得终端设备接入。
作为一示例,通信装置1100进入节能状态后,通信装置1100不支持驻留和初始接入功能。
该通信装置1100可实现对应于根据本申请实施例的方法800、方法900和方法1100中的小区A(或者小区A所属的网络设备)执行的步骤或者流程,该通信装置1100可以包括用于执行图8中的方法800、图9中的方法900和图10中的方法1000中的小区A(或者小区A所属的网络设备)执行的方法的单元。并且,该通信装置1100中的各单元和上述其他操作和/或功能分别为了实现图8中的方法800、图9中的方法900和图10中的方法1000的相应流程。
其中,当该通信装置1100用于执行图8中的方法800时,处理单元1120可用于执行方法800中的步骤S801、S803。
当该通信装置1100用于执行图9中的方法900时,处理单元1120可用于执行方法900中的步骤S901、S907、S908。
当该通信装置1100用于执行图10中的方法1000时,处理单元1020可用于执行方法1000中的步骤S1001、S1007、S1008。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为又一种设计,该通信装置1100用于执行上文方法实施例中小区A(或者小区A所属的网络设备)和小区B(或者小区B所属的网络设备)所执行的动作。在一种可能的实现中,处理单元1120用于确定小区A(或者小区A所属的网络设备)进入节能状态;在终端设备需要接入小区A(或者小区A所属的网络设备)时,小区A(或者小区A所属的网络设备)通过小区B(或者小区B所属的网络设备)协助使得终端设备接入。
一示例,处理单元1120确定小区A(或者小区A所属的网络设备)进入节能状态,包括:小区A(或者小区A所属的网络设备)不支持驻留和初始接入功能。
又一示例,收发单元1110用于:向终端设备发送切换指示,指示终端设备切换至第一频率范围内的小区。
又一示例,第二频率范围内的小区添加第一频率范围内的小区为辅小区或辅载波。
其中,当该通信装置1100用于执行图8中的方法800时,收发单元1110可用于执行方法800中的步骤S803,处理单元1120可用于执行方法1100中的步骤S801、S802。
当该通信装置1100用于执行图9中的方法900时,收发单元1110可用于执行方法900中的步骤S904-S906,处理单元1120可用于执行方法900中的步骤S901、S903、S907、 S908。
当该通信装置1100用于执行图10中的方法1000时,收发单元1110可用于执行方法1100中的步骤S1004-S1006,处理单元1120可用于执行方法1000中的步骤S1001、S1003、S1007、S1008。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理单元1120可以由至少一个处理器或处理器相关电路实现。收发单元1110可以由收发器或收发器相关电路实现。收发单元1110还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图12所示,本申请实施例还提供一种通信装置1200。该通信装置1200包括处理器1210,处理器1210与存储器1220耦合,存储器1220用于存储计算机程序或指令和/或数据,处理器1210用于执行存储器1220存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1200包括的处理器1210为一个或多个。
可选地,如图12所示,该通信装置1200还可以包括存储器1220。
可选地,该通信装置1200包括的存储器1220可以为一个或多个。
可选地,该存储器1220可以与该处理器1210集成在一起,或者分离设置。
可选地,如图12所示,该通信装置1200还可以包括收发器1230,收发器1230用于信号的接收和/或发送。例如,处理器1210用于控制收发器1230进行信号的接收和/或发送。
作为一种方案,该通信装置1200用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1210用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1230用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1200用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1210用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1230用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1300,该通信装置1300可以是终端设备也可以是芯片。该通信装置1300可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1300为终端设备时,图13示出了一种简化的终端设备的结构示意图。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带 信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元1310也可以称为收发器、收发机、收发装置等。处理单元1320也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1320用于执行图8中终端设备侧的处理动作。例如,处理单元1320用于执行图8中的步骤S802中的处理步骤;收发单元1310用于执行图8中的步骤S803中的收发操作。
又如,在一种实现方式中,处理单元1320用于执行图9中的步骤S902、S903、S907中的处理步骤;收发单元1310用于执行图9中的步骤S904-S906中的收发操作。
又如,在一种实现方式中,处理单元1320用于执行图10中的步骤S1002、S1003、S1007中的处理步骤;收发单元1310用于执行图11中的步骤S1004-S1006中的收发操作。
应理解,图13仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图13所示的结构。
当该通信装置1300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1400,该通信装置1400可以是网络设备(小区A(或者小区A所属的网络设备)或者小区B(或者小区B所属的网络设备))也可以是芯片。该通信装置1400可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1400为网络设备时,例如为基站。图14示出了一种简化的基站架构示意图。基站包括1410部分以及1420部分。1410部分主要用于射频信号的收发以及射频信号与基带信号的转换;1420部分主要用于基带处理,对基站进行控制等。1410部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1420部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1410部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1410部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1410部分包括接收单元 和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1420部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1410部分的收发单元用于执行图8所示实施例中由网络设备执行的收发相关的步骤;1420部分用于执行图8所示实施例中由网络设备执行的处理相关的步骤。
例如,在又一种实现方式中,1410部分的收发单元用于执行图9所示实施例中由网络设备执行的收发相关的步骤;1420部分用于执行图9所示实施例中由网络设备执行的处理相关的步骤。
例如,在又一种实现方式中,1410部分的收发单元用于执行图10所示实施例中由网络设备执行的收发相关的步骤;1420部分用于执行图10所示实施例中由网络设备执行的处理相关的步骤。
应理解,图14仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图14所示的结构。
当该通信装置1400为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定, 只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它 的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (15)

  1. 一种通信的方法,其特征在于,包括:
    第一频率范围内的小区确定进入节能状态;
    在终端设备需要接入所述第一频率范围内的小区时,第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入。
  2. 根据权利要求1所述的方法,其特征在于,所述第一频率范围内的小区进入节能状态,包括:
    所述第一频率范围内的小区不支持驻留和初始接入功能。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入,包括:
    第二频率范围内的小区向所述终端设备发送切换指示,指示所述终端设备切换至所述第一频率范围内的小区。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第二频率范围内的小区协助所述第一频率范围内的小区,使得所述终端设备接入,包括:
    所述第二频率范围内的小区添加所述第一频率范围内的小区为辅小区或辅载波。
  5. 一种通信的方法,其特征在于,包括:
    第一频率范围内的小区确定进入节能状态;
    在终端设备需要接入所述第一频率范围内的小区时,所述第一频率范围内的小区通过第二频率范围内的小区协助使得所述终端设备接入。
  6. 根据权利要求5所述的方法,其特征在于,所述第一频率范围内的小区进入节能状态,包括:
    所述第一频率范围内的小区不支持驻留和初始接入功能。
  7. 一种通信的方法,其特征在于,包括:
    终端设备接入第二频率范围内的小区;
    在所述终端设备需要接入第一频率范围内的小区,且所述第一频率范围内的小区处于节能状态时,所述终端设备根据所述第二频率范围内的小区的协助,接入所述第一频率范围内的小区;
    其中,所述第一频率范围内的小区处于节能状态时,所述第一频率范围内的小区不支持驻留和初始接入功能。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述第二频率范围内的小区的协助,接入所述第一频率范围内的小区,包括:
    所述终端设备接收来自所述第二频率范围内的小区的切换指示,根据所述切换指示,所述终端设备切换至所述第一频率范围内的小区。
  9. 一种通信装置,其特征在于,包括用于执行如权利要求1至8中任一项所述的方法的模块。
  10. 一种通信装置,其特征在于,包括:
    存储单元,用于存储计算机指令;
    处理单元,用于执行所述存储单元中存储的计算机指令,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  11. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,其上存储有指令,所述指令被计算机执行时,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  14. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至8中任一项所述的方法。
  15. 一种通信系统,其特征在于,包括第一频率范围内的小区、终端设备,与第二频率范围内的小区,所述第一频率范围内的小区、所述终端设备,与所述第二频率范围内的小区用于执行如权利要求1至8中任一项所述的方法。
PCT/CN2021/101457 2020-06-24 2021-06-22 通信的方法、通信装置 WO2021259236A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21828895.9A EP4161149A4 (en) 2020-06-24 2021-06-22 COMMUNICATION METHOD AND COMMUNICATION DEVICE
US18/069,812 US20230126489A1 (en) 2020-06-24 2022-12-21 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589129.6A CN113840341A (zh) 2020-06-24 2020-06-24 通信的方法、通信装置
CN202010589129.6 2020-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/069,812 Continuation US20230126489A1 (en) 2020-06-24 2022-12-21 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021259236A1 true WO2021259236A1 (zh) 2021-12-30

Family

ID=78964639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101457 WO2021259236A1 (zh) 2020-06-24 2021-06-22 通信的方法、通信装置

Country Status (4)

Country Link
US (1) US20230126489A1 (zh)
EP (1) EP4161149A4 (zh)
CN (1) CN113840341A (zh)
WO (1) WO2021259236A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206304A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 网络节能小区的配置方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023133681A1 (en) * 2022-01-11 2023-07-20 Lenovo (Beijing) Limited Wireless communication method and apparatus
WO2023216105A1 (en) * 2022-05-10 2023-11-16 Lenovo (Beijing) Limited Access to energy saving network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857980A (zh) * 2011-07-01 2013-01-02 华为技术有限公司 通信方法、设备及系统
EP2665312A1 (en) * 2012-05-15 2013-11-20 Fujitsu Limited Cell Activation and Deactivation in Heterogeneous Networks
CN108990073A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 无线小区的覆盖控制方法、装置及基站
CN110267301A (zh) * 2019-05-31 2019-09-20 长安大学 一种双连接系统中终端能力获取方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085238A2 (en) * 2010-01-08 2011-07-14 Interdigital Patent Holdings, Inc. Managing power consumption in base stations and remote access points
US9294995B2 (en) * 2012-03-23 2016-03-22 Nokia Solutions And Networks Oy Activate ES cell for particular UE(s)
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857980A (zh) * 2011-07-01 2013-01-02 华为技术有限公司 通信方法、设备及系统
EP2665312A1 (en) * 2012-05-15 2013-11-20 Fujitsu Limited Cell Activation and Deactivation in Heterogeneous Networks
CN108990073A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 无线小区的覆盖控制方法、装置及基站
CN110267301A (zh) * 2019-05-31 2019-09-20 长安大学 一种双连接系统中终端能力获取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4161149A4
ZTE: "Consideration on inter-RAT energy saving", 3GPP DRAFT; R3-191453 CONSIDERATION ON INTER-RAT ENERGY SAVING, vol. RAN WG3, 29 March 2019 (2019-03-29), Xi’an, China, pages 1 - 3, XP051694908 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206304A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 网络节能小区的配置方法和装置

Also Published As

Publication number Publication date
CN113840341A (zh) 2021-12-24
US20230126489A1 (en) 2023-04-27
EP4161149A4 (en) 2023-12-06
EP4161149A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2021259236A1 (zh) 通信的方法、通信装置
US11252755B2 (en) Uplink resource grant methods and apparatus
WO2019157758A1 (zh) 一种信息处理方法和装置
WO2018045576A1 (zh) 通信方法及其用户设备、网络设备
US11343858B2 (en) Configuring random access channels for wireless communications
US20230179374A1 (en) Channel transmission method, terminal device, and network device
PH12015502322B1 (en) Co-channel deployment of new and legacy carrier types
WO2020199765A1 (zh) 一种配置信息的方法与装置
US20230042361A1 (en) Supporting devices with different bandwidth capability in a communication network
EP4167647A1 (en) Method and apparatus for accessing cell
US20240224338A1 (en) Method and apparatus for transreceiving signal, and communication system
WO2021189367A1 (zh) 物理信道监测方法和终端设备
US20240251367A1 (en) Method for receiving common signal, method for transmitting common signal and apparatuses therefor and communication system
WO2020258051A1 (zh) 小区接入的方法和设备
WO2019242570A1 (zh) 通信方法和装置
WO2020147634A1 (zh) 一种信号传输方法及其相关设备
EP3972351B1 (en) Power saving method, terminal device and network device
US20230116565A1 (en) Bwp configuration method and apparatus, terminal device, and network device
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2019210517A1 (zh) 无线通信方法、通信设备、芯片和系统
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备
WO2023216929A1 (zh) 一种通信的方法和装置
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2024032798A1 (zh) 数据传输方法、装置以及设备
US20240357477A1 (en) Method and apparatus for providing system information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202237076857

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021828895

Country of ref document: EP

Effective date: 20221230

NENP Non-entry into the national phase

Ref country code: DE