WO2021258792A1 - 水冷组件、电池组和装置 - Google Patents

水冷组件、电池组和装置 Download PDF

Info

Publication number
WO2021258792A1
WO2021258792A1 PCT/CN2021/082201 CN2021082201W WO2021258792A1 WO 2021258792 A1 WO2021258792 A1 WO 2021258792A1 CN 2021082201 W CN2021082201 W CN 2021082201W WO 2021258792 A1 WO2021258792 A1 WO 2021258792A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
water
inner cavity
plate body
cross
Prior art date
Application number
PCT/CN2021/082201
Other languages
English (en)
French (fr)
Inventor
叶伟达
李翔
谷燕龙
黄小腾
严鹏
汪文礼
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76198989&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021258792(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022560360A priority Critical patent/JP7368638B2/ja
Priority to EP21828995.7A priority patent/EP4113701A4/en
Priority to KR1020227035704A priority patent/KR102531155B1/ko
Publication of WO2021258792A1 publication Critical patent/WO2021258792A1/zh
Priority to US18/086,791 priority patent/US11923521B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of battery technology, and in particular, to a water-cooled component, a battery pack, and a device.
  • Devices such as automobiles, electric bicycles, ships, and energy storage cabinets include battery packs, which provide electrical energy for the devices.
  • the car includes a car body and a battery pack
  • the battery pack can provide electric energy for the car body to drive the car.
  • the battery pack may include a battery and a cooling component for cooling the battery.
  • the cooling efficiency of the cooling component is low, which will reduce the charging and discharging efficiency of the battery pack, resulting in low energy efficiency of devices such as automobiles.
  • embodiments of the present application provide a water-cooled assembly, a battery pack, and a device to improve the cooling efficiency of the cooling assembly, increase the charging and discharging efficiency of the battery pack, and the energy efficiency of devices such as automobiles that use the battery pack.
  • a first aspect of the embodiments of the present application provides a water-cooled assembly for cooling a battery, which includes: a body portion having a cooling channel for accommodating a cooling liquid; a first connecting portion connected to the body portion and having a The communicating cavity for discharging the cooling liquid; the second connecting part is arranged between the body part and the first connecting part, and has an inner cavity for communicating the cooling channel with the communicating cavity; the cross-sectional area of the end face of the inner cavity near the cooling channel is larger than that of the communicating cavity The cross-sectional area of the cavity near the end face of the inner cavity.
  • the cross-sectional area of the end face of the inner cavity close to the cooling channel is larger than the cross-sectional area of the end face of the communicating cavity close to the inner cavity, which can reduce the flow rate of the cooling liquid entering the cooling channel or enable the cooling liquid to flow out of the cooling channel at a smaller flow rate. This reduces the pressure loss of the coolant at the second connection part, and improves the cooling efficiency of the water-cooled component.
  • the inner cavity has a first end and a second end that are oppositely arranged, and the first end of the inner cavity is used to communicate with the cooling channel, and is along the first end of the inner cavity.
  • the cross-sectional area of the inner cavity gradually decreases.
  • the inner cavity is a tapered cavity with a gradually changing cross-sectional area.
  • the large end of the inner cavity is the first end and is connected to the cooling channel, and the small end of the inner cavity is the second end and is connected to the communicating cavity, so that the inner cavity communicates with the communicating cavity and the cooling channel. aisle.
  • the cross-sectional area at any position of the inner cavity is equal.
  • the cross-sectional area at any position of the inner cavity is equal, which is easy to process and manufacture.
  • the second connecting part includes: a first pipe section connected to the body part; and a second pipe section connected between the first pipe section and the first connecting part.
  • the cross-sectional area of the cavity in the first pipe section and the cavity in the second pipe section are equal, and the cross-sectional area of the cavity in the first pipe section is larger than the cross-sectional area of the cavity in the second pipe section.
  • the cross-sectional area of the inner cavity is larger than the cross-sectional area of the communicating cavity, and can be formed through a pipe expansion process, which is easy to process and manufacture.
  • the second connecting portion and the body portion are integrally formed.
  • the second connecting portion When the second connecting portion is integrally formed with the main body, the second connecting portion may be a protrusion formed on the first plate.
  • the protrusion may be located at the water inlet or outlet, or at the same time. End or outlet end.
  • the cross-sectional area of the end surface of the inner cavity close to the communication cavity is smaller than or equal to the cross-sectional area of the end surface of the main body portion close to the inner cavity.
  • the cross-sectional area of the end surface of the inner cavity close to the communication cavity is less than or equal to the cross-sectional area of the end surface of the main body close to the inner cavity, which can avoid the sudden expansion and contraction of the second connecting portion and the cooling channel at the same time, and the pressure loss of the coolant Smaller.
  • the main body includes a first plate body and a second plate body that are arranged oppositely, the first plate body faces the side surface of the second plate body and/or the second plate body faces the side surface of the first plate body
  • a groove is provided, and the groove is used to form a cooling channel.
  • grooves are punched on the first plate body and the second plate body.
  • the two grooves are arranged oppositely and connected.
  • the cooling channel formed by the two grooves has a large cross-sectional area, a low flow rate of the cooling liquid, and a pressure loss of the cooling liquid. Small, high heat exchange rate of cooling components.
  • the second connecting portion is provided on the side of the first plate body facing away from the second plate body and/or the side of the second plate body facing away from the first plate body.
  • the second connecting part is located on the side of the first plate body away from the second plate body, and the second connecting part can be firmly connected with the first plate body and has good sealing performance.
  • the water-cooling assembly includes a body portion and a first connecting portion, the body portion is provided with a cooling channel, and the first connecting portion has a communication cavity communicating with the cooling channel, The cooling liquid is introduced into the cooling channel from the communicating cavity or discharged from the communicating cavity, and the cooling liquid exchanges heat with the battery during the flow of the cooling channel to cool the battery.
  • a second connecting portion is further provided between the first connecting portion and the main body portion, and the second connecting portion is provided with an inner cavity connecting the communication cavity and the cooling channel, and the cross-sectional area of the end surface of the inner cavity near the cooling channel is larger than that of the communicating cavity
  • the cross-sectional area of the end face close to the inner cavity can reduce the flow rate of the coolant entering the cooling channel or enable the coolant to flow out of the cooling channel at a smaller flow rate, which reduces the pressure loss of the coolant at the second connection part. , Improve the cooling efficiency of water-cooled components.
  • a second aspect of the embodiments of the present application provides a battery pack, which includes: a plurality of batteries and the water-cooling assembly described in the first aspect, where the water-cooling assembly is used to cool the plurality of batteries.
  • a third aspect of the embodiments of the present application provides a device using a battery, which includes: the battery pack described in the second aspect above, and the battery pack provides electrical energy for the device.
  • Fig. 1 is a schematic structural diagram of a car provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of the exploded structure of the battery pack in Fig. 1.
  • FIG. 3 is a schematic diagram of the structure of part A in FIG. 2.
  • Fig. 4 is a schematic diagram of the structure of part B in Fig. 3.
  • FIG. 5 is a schematic diagram of the structure of the main body in FIG. 2.
  • Fig. 6 is a cross-sectional view of the structure along C-C in Fig. 5.
  • FIG. 7 is a schematic diagram of the exploded structure of the main body in FIG. 5.
  • Fig. 8 is a partial structural diagram of part D in Fig. 7.
  • FIG. 9 is a schematic diagram of the structure of the second board in FIG. 7.
  • Fig. 10 is a schematic diagram of the structure of the second connecting portion.
  • Fig. 11 is a structural schematic diagram 1 of the first connecting portion.
  • Fig. 12 is a schematic cross-sectional view of Fig. 11 along the symmetrical plane of the first connecting portion.
  • Fig. 13 is a second structural diagram of the first connecting portion.
  • Fig. 14 is a schematic cross-sectional view of Fig. 13 along the symmetrical plane of the first connecting portion.
  • Fig. 15 is another schematic diagram of the structure of the first connecting portion and the second connecting portion.
  • Fig. 16 is a schematic diagram of another structure of the battery pack.
  • FIG. 17 is a schematic diagram of the structure of part F in FIG. 16.
  • Fig. 18 is a schematic diagram of the structure of the box body, the main body and the battery module in Fig. 16.
  • Fig. 19 is a schematic diagram of the structure of part G in Fig. 18.
  • FIG. 20 is a schematic diagram of another structure of the battery pack.
  • FIG. 21 is a schematic diagram of the structure of part H in FIG. 20.
  • the battery pack includes a battery module and a water-cooling component that assists the operation of the battery module.
  • the battery module includes one or more batteries.
  • the battery is used to generate current and is a core component of the battery pack.
  • the water-cooling component includes two plates, the plate is in contact with the battery module, one or two of the plates are provided with grooves, the two plates are attached to form a cooling channel, and the cooling liquid flows in the cooling channel and is connected with the battery module Heat exchange.
  • the water-cooling component also includes a water inlet pipe and a water outlet pipe.
  • the cavity of the water inlet pipe is connected with the cooling channel for introducing cooling liquid into the cooling channel
  • the cavity of the water outlet pipe is connected with the cooling channel for discharging the cooling liquid, that is, the water inlet pipe.
  • the cavity, the cooling channel and the cavity of the water outlet pipe form a flow channel for the cooling liquid to flow.
  • an embodiment of the present application provides a device D, a battery pack 1, and a water-cooled component.
  • the device D may be a mobile device such as a vehicle, a ship, a small aircraft, etc., or a non-mobile device capable of providing electrical energy, such as an energy storage cabinet.
  • the vehicle it may be a new energy vehicle, which may be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle, etc.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of the exploded structure of the battery pack in Fig. 1.
  • FIG. 3 is a schematic diagram of the structure of part A in FIG. 2.
  • Fig. 4 is a schematic diagram of the structure of part B in Fig. 3. 1 to 4, the vehicle may include a battery pack 1 and a vehicle body, and the battery pack 1 is used to supply power to the power-consuming components in the vehicle body.
  • the power consumption components can be different.
  • the power-consuming components in the main body of the vehicle may be motors, audio, etc.
  • the battery pack 1 may be horizontally arranged at the bottom of the vehicle body.
  • the battery pack 1 may include a plurality of battery modules 10 and a protective box 20 accommodating the plurality of battery modules 10.
  • the protective box 20 may include a box cover 21 and a box body 22.
  • the box body 22 has a hollow structure and has an opening at one end.
  • the battery module 10 is housed in the box body 22. Inside the protective box 20.
  • each battery module 10 may include one or more batteries (not shown in the figure), and each battery module 10 is arranged side by side in a protective box 20 after being packaged.
  • Each battery includes a positive electrode sheet and a negative electrode sheet, and the positive electrode sheet and the negative electrode sheet are separated by a separator and contained in the battery casing.
  • the positive electrode sheet, the separator and the negative electrode sheet can be encapsulated by a steel or aluminum casing after being stacked or wound to form a square or cylindrical battery, or can be packaged as a soft pack battery by a flexible casing such as an aluminum-plastic composite film.
  • the device D using the battery pack 1 can choose to use a square battery, a cylindrical battery, or a soft pack battery as required.
  • both the positive electrode sheet and the negative electrode sheet of the battery are provided with active materials, and the active material chemically reacts with the electrolyte in the casing, and the electrons generated during the chemical reaction can flow between the positive electrode sheet and the negative electrode sheet to form an electric current.
  • the battery pack 1 is also equipped with a water cooling component 30 and a water supply component ;
  • the water-cooling component 30 is in contact with the battery module 10 and is used to cool the batteries in each battery module 10;
  • the water supply assembly includes a water supply pipe 41, a water return pipe 42, and a water storage member (not shown in the figure). Both the water supply pipe 41 and the water return pipe 42 communicate with the water storage member. The end of the water supply pipe 41 away from the water storage element is connected to the water cooling assembly 30, and the end of the return pipe 42 away from the water storage element is also connected to the water cooling assembly 30 to form a circulating water path so that the cooling liquid can be recycled.
  • the water storage member is arranged outside the protective box 20 and connected to the vehicle body. And according to the difference in the structure of the battery pack 1, the water supply pipe 41 and the water return pipe 42 may be arranged inside the protective box 20 or outside the protective box 20.
  • FIG. 5 is a schematic diagram of the structure of the main body in FIG. 2.
  • Fig. 6 is a cross-sectional view of the structure along C-C in Fig. 5.
  • FIG. 7 is a schematic diagram of the exploded structure of the main body in FIG. 5.
  • Fig. 8 is a partial structural diagram of part D in Fig. 7.
  • FIG. 9 is a schematic diagram of the structure of the second board in FIG. 7. Please refer to FIGS. 2, 3, and 5-9.
  • An embodiment of the present application provides a water-cooling assembly 30.
  • the water-cooling assembly 30 may include a body portion 31.
  • the body portion 31 has a hollow structure and is used to form a cooling channel for accommodating a cooling liquid. 314.
  • the main body portion 31 may also be multiple and be respectively arranged between two adjacent battery modules 10.
  • the main body 31 in this embodiment may be arranged at the bottom of the box body 22 at the back of the exit opening and contact a plurality of battery modules 10 at the same time, so as to reduce the number of the main body 31 and reduce the manufacturing cost.
  • the main body portion 31 may include a first plate body 311 and a second plate body 312 which are arranged oppositely and fixedly attached to each other, and a plurality of battery modules 10 may be mounted on the first plate body 311 or the second plate body at the same time. 312, or when the water-cooling assembly 30 is arranged between two adjacent battery modules 10, the first plate body 311 and the second plate body 312 may both be in contact with the battery module 10.
  • the shapes of the first plate body 311 and the second plate body 312 can be regular geometric shapes such as rectangles and circles, or irregular shapes such as "L" shapes. As shown in FIG. 7, the first plate body 311 And the second plate body 312 is polygonal.
  • the material of the first plate body 311 and the second plate body 312 may be the same, for example, both are aluminum plates, which are easy to conduct heat.
  • the body portion 31 formed by the first plate body 311 and the second plate body 312 is plate-shaped, and the cooling channel 314 is formed inside the body portion 31.
  • a groove 313 may be provided on the side of the first plate 311 facing the second plate 312, or a groove 313 may be provided on the side of the second plate 312 facing the first plate 311.
  • the side of the first plate 311 facing the second plate 312 and the side of the second plate 312 facing the first plate 311 can also be provided with grooves 313 at the same time. At this time, the two grooves 313 are arranged oppositely and communicate with each other to form a cooling channel. 314.
  • the depth of the groove 313 is smaller than the thickness of the first plate 311 or the second plate 312 (not shown in the figure).
  • the groove 313 may also be stamped and formed by the first plate body 311 and/or the second plate body 312.
  • the second plate 312 may be provided with a groove 313 recessed toward the side away from the first plate 311.
  • the first plate 311 may be a flat plate
  • the first plate 311 may be a flat plate.
  • 311 is connected to the second plate 312, and the first plate 311 covers the groove 313 so that the space enclosed by the groove 313 forms a cooling channel 314.
  • a groove 313 may be provided on the second plate body 312 or a groove 313 may be provided on the first plate body 311 and the second plate body 312 at the same time.
  • the punching depth of the groove 313 can be increased.
  • increasing the punching depth of the plate body will result in lower strength of the plate body.
  • the depth of the groove 313 should not be too deep.
  • the maximum punching depth of the groove 313 is less than 3 times the thickness of the plate body, that is, when the material thickness of the aluminum plate is 1.5 millimeters (mm), then the punching depth limit of the groove 313 is 4.5 mm, in order to improve the safety of the water cooling assembly 30, the depth of the groove 313 may be 3.5 mm.
  • the two grooves 313 are oppositely arranged and communicated.
  • the cross-sectional area of the cooling channel 314 formed by the two grooves 313 is Large, low coolant flow rate, low coolant pressure loss, and high heat exchange rate of cooling components.
  • the cross section of the cooling channel 314 refers to the cross section of the cooling channel 314 observed when the cooling channel 314 is cut with a tool perpendicular to the flow direction of the cooling liquid.
  • the structure of the cooling channel 314 may be different.
  • the grooves 313 may be a plurality of (not shown in the figure) arranged in parallel, one end of each groove 313 is located on one side of the main body portion 31 and communicates with the water supply pipe 41 to introduce the cooling liquid, each The other end of the groove 313 is located on the opposite side of the main body 31 and communicates with the water return pipe 42 to discharge the cooling liquid.
  • the flow distance of the cooling liquid is small, and the pressure loss of the cooling liquid is small.
  • the punching width of the groove 313 can also be increased.
  • the width of the groove 313 corresponds to the area of the plate and the cooling channel.
  • the length of 314 is related. If the punching width of the groove 313 is too large, the length of the cooling channel 314 will be reduced, and the user can set it as needed.
  • the groove 313 may not be provided on the plate body in contact with the battery module 10, so as to increase the contact area between the battery module 10 and the plate body, improve the cooling efficiency, and also increase the first plate body 311 and the second plate body 311 and the second plate body.
  • the connection area of the plate body 312 and the connection strength of the main body portion 31 are high.
  • the groove 313 may be provided on the second plate 312, and the space enclosed by the first plate 311 and the groove 313 constitutes a cooling channel 314.
  • the battery module 10 can be bonded and fixed to the first plate 311 by a thermally conductive structural glue.
  • the water supply assembly can be arranged on one side of the first plate 311, that is, the water inlet pipe 315 and the outlet pipe 315.
  • the water pipes 316 are all arranged on the first plate body 311, which has a compact structure and a small volume.
  • the cooling channel 314 has a water inlet end 3141 and a water outlet end 3142.
  • the water cooling assembly 30 further includes a first connecting portion 32 having a communication cavity 321.
  • the first connecting portion 32 may include a water inlet pipe 315 and a water outlet pipe 316 connected to the body portion 31, the water inlet pipe 315 communicates with the water inlet 3141, and the water outlet pipe 316 communicates with the water outlet 3142.
  • the water inlet pipe 315 and the water outlet pipe 316 can both protrude from the outer wall surface of the main body portion 31 and can be detachably connected to the water supply pipe 41 and the return water pipe 42 respectively.
  • the water inlet pipe 315 communicates with the water supply pipe 41 and is used to introduce cooling liquid into the cooling channel 314, and the water outlet pipe 316 communicates with the water return pipe 42 and is used to discharge the cooling liquid from the cooling channel 314.
  • the cooling liquid can be water, glycol, etc.
  • the cooling liquid exchanges heat with each battery module 10 during the flow process to cool the battery module 10.
  • the water inlet pipe 315 and the water outlet pipe 316 can be arranged on the first plate body 311 or the second plate body 312 at the same time, or can be arranged on the first plate body 311 and the second plate body 312 respectively.
  • the water inlet pipe 315 can be arranged on the first plate body 311, and the water outlet pipe 316 can be arranged on the second plate body 312.
  • the water inlet pipe 315 and the water outlet pipe 316 can be located at any position of the first plate body 311.
  • the water inlet pipe 315 and the water outlet pipe 316 may be arranged adjacent to each other, or respectively arranged on two opposite sides of the first plate body 311.
  • the water inlet pipe 315 and the water outlet pipe 316 can be respectively arranged at different angle positions of the first plate body 311, or they can be respectively arranged on the first plate body. At the edge of 311, or arranged in the middle of the first plate body 311, this embodiment is not limited.
  • the embodiment of the present application considers the provision of a second connecting portion 33 on the water-cooling assembly 30, and the second connecting portion 33 may be arranged at a position where the cross-sectional area of the flow passage of the water-cooling assembly 30 suddenly expands.
  • the second connecting portion 33 may be arranged at a position where the cross-sectional area of the flow passage of the water-cooling assembly 30 suddenly expands.
  • the second connection portion 33 may be provided between the main body portion 31 and the first connection portion 32, and the second connection portion 33 has an inner The cavity 331 and the inner cavity 331 communicate with the cooling channel 314 and the communicating cavity 321.
  • the second connecting portion 33 may be formed on the body portion 31 as a part of the body portion 31, may also be formed on the first connecting portion 32 as a part of the first connecting portion 32, or may be provided on the body portion 31 as a separate component. Between it and the first connecting portion 32, this embodiment is not limited.
  • the second connecting portion 33 may be disposed on the first plate body 311 and/or the second plate body 312. That is to say, when the water inlet pipe 315 and the water outlet pipe 316 are arranged on the first plate body 311 at the same time, the second connecting portion 33 is arranged on the first plate body 311. When the water inlet pipe 315 and the water outlet pipe 316 are arranged on the second plate body 312 at the same time, the second connecting portion 33 may be arranged on the second plate body 312.
  • the second connecting portion 33 may be arranged on the first plate body 311 or the second plate body 312, or respectively The second connecting portion 33 is provided on the first plate body 311 and the second plate body 312 at the same time.
  • a sudden expansion can be formed between the water inlet pipe 315 and the main body portion 31, and a sudden contraction can be formed between the water outlet pipe 316 and the main body portion 31.
  • the second connecting portion 33 can be separately provided at the water inlet end 3141 or the water outlet end.
  • the position 3142 can also be arranged at the water inlet end 3141 and the water outlet end 3142 at the same time, which is not limited in this embodiment.
  • the second connecting portion 33 as a buffer structure can improve the sudden expansion and contraction of the cross section of the flow channel into a gradual expansion and contraction.
  • the cross-sectional area of the end surface of the inner cavity 331 near the cooling channel 314 is larger than that of the communication cavity 321.
  • the cross-sectional area of the end surface of the inner cavity 331 is used to reduce the pressure drop of the cooling liquid at the position where the second connecting portion 33 is located.
  • the cross section of the inner cavity 331 refers to the cross section of the inner cavity 331 observed when the inner cavity 331 is cut with a tool perpendicular to the flow direction of the cooling liquid.
  • the cross section of the communicating cavity 321 refers to the cross section of the communicating cavity 321 observed when the communicating cavity 321 is cut with a tool perpendicular to the flow direction of the coolant.
  • the cross-sectional area of the communicating cavity 321 of the water inlet pipe 315 near the end of the cooling channel 314 is smaller than that of the cooling channel 314
  • the cross-sectional area when the coolant is introduced into the cooling channel 314 through the water inlet pipe 315, the cross-sectional area suddenly expands, and the pressure loss of the coolant is large.
  • a second connecting portion 33 is provided between the water inlet pipe 315 and the body portion 31.
  • the cross-sectional area of the inner cavity 331 of the second connecting portion 33 near the end of the cooling channel 314 is larger than that of the communicating cavity 321 of the water inlet pipe 315 near the inner cavity.
  • the cross-sectional area of one end of 331, that is, the cross-sectional area of part of the inner cavity 331 or the entire cross-sectional area of the inner cavity 331 is greater than the cross-sectional area of the communicating cavity 321, and the sudden expansion between the water inlet pipe 315 and the body portion 31 is improved to Gradually expand, reduce the pressure loss of the coolant.
  • the second connecting portion 33 is disposed between the main body portion 31 and the first connecting portion 32, and the flow rate of the cooling liquid in the inner cavity 331 is smaller than the flow rate of the cooling liquid in the communicating cavity 321.
  • a section of the first connecting portion 32 with the same length as the second connecting portion 33 is provided, and the pressure drop of the cooling liquid in the second connecting portion 31 is smaller than that of the cooling liquid in the first connecting portion 32 Pressure drop, that is, after the second connecting portion 33 is provided between the body portion 31 and the first connecting portion 32, the pressure loss of the cooling liquid can be reduced.
  • the cooling liquid passes through the first connecting portion 32, impacts the second plate 312 and then turns into the cooling channel 314. During the turning process, the speed of the coolant in the direction perpendicular to the second plate 312 becomes zero.
  • the cooling liquid flowing through the second connecting portion 33 becomes smaller, the cooling liquid can impact the second plate 312 at a lower speed, and the impact energy loss is small. long lasting.
  • the cooling liquid enters the cooling channel 314 or exits the cooling channel 314 through the second connecting portion 33, and the cross-sectional area of the end surface of the inner cavity 331 close to the communication cavity 321 may be less than or equal to that of the body portion 31 close to the inner cavity 331.
  • the body portion 31 has an opening communicating with the second connecting portion 33.
  • the second connecting portion 33 may be provided on the first plate body 311 and/or the second plate body 312.
  • the second connecting portion 33 can be located at any position of the first plate body 311 according to the different positions of the water supply pipe 41 and the water return pipe 42 in the battery pack 1.
  • the second connecting portion 33 may be located at the peripheral edge of the first plate body 311, and the extension direction of the inner cavity 331 may be arranged in parallel with the plane where the first plate body 331 is located, or arranged at an acute or obtuse angle.
  • the second connecting portion 33 may also be located on the side of the first plate body 311 facing away from the second plate body 312, and the second connecting portion 33 may be firmly connected to the first plate body 311 with good sealing performance;
  • the extending direction of the inner cavity 331 may be perpendicular or inclined to the plane where the first plate 311 is located.
  • the second connecting portion 33 may also be provided on the side of the second board 312 facing away from the first board 311.
  • this embodiment takes the second connecting portion 33 provided on the first plate body 311 and the extension direction of the inner cavity 331 perpendicular to the plane of the first plate body 311 as an example for description.
  • the first plate 311 has a large side space perpendicular to its own direction, and the second connecting portion 33 can be arranged at any position of the first plate 311 as required; and since the first plate 311 is perpendicular to its own direction
  • the side space is large, and the size of the second connecting portion 33 can be large enough, that is, the cross-sectional area of the inner cavity 331 can be large enough to achieve a better effect of reducing the pressure drop.
  • cross-sectional shapes with the same cross-sectional area can be different, for example, the cross-sectional shape can be a circle, an ellipse, or a polygon.
  • the cross-sectional shape at any position of the inner cavity 331 may be the same, so that the inner wall surface of the second connecting portion 33 may be smoothly transitioned.
  • the cross-sectional shape of any position of the inner cavity 331 may be a circle or a rectangle.
  • the inner cavity 331 has a first end and a second end that are oppositely disposed, and the inner cavity 331 has a first end to a second end of the inner cavity 331 and a transverse direction of the inner cavity 331.
  • the cross-sectional area can be gradually reduced. That is, when the second connecting portion 33 is arranged at the end where the water inlet end 3141 is located, the cross-sectional area of the inner cavity 331 gradually increases along the flow direction of the cooling liquid; when the second connecting portion 33 is arranged at the end where the water outlet end 3142 is located At one end of the inner cavity 331 along the direction of the coolant flow, the cross-sectional area of the inner cavity 331 gradually decreases.
  • the second connecting portion 33 may be a structure with a gradually changing cross-sectional area.
  • the inner cavity 331 is a tapered cavity with a gradually changing cross-sectional area.
  • the large end of the inner cavity 331 is the first end and is connected to the cooling channel 314.
  • the small end of the cavity 331 is the second end and is connected to the communicating cavity 321, so that the inner cavity 331 communicates with the communicating cavity 321 and the cooling channel 314, wherein the cross-sectional area of the small end of the inner cavity 331 may be greater than or equal to the cross-sectional area of the communicating cavity 321 .
  • the second connecting portion 33 may also have a multi-stage structure, and correspondingly, the inner cavity 331 is also a multi-stage cavity.
  • the cavity can be a uniform cross-section cavity or a variable cross-section cavity, as long as the cross-sectional area of the cavity near the end of the cooling channel 314 is larger than the cross-sectional area of the cavity at the end away from the cooling channel 314.
  • the second connecting portion 33 may be integrally formed with the first plate body 311.
  • the second connecting portion 33 may be a protruding portion 332 formed on the first plate body 311, and the protruding portion 332 may be located at the water inlet end 3141 or the water outlet end 3142, or at the same time at the water inlet end 3141. Or the water outlet 3142.
  • the protruding portion 332 can be stamped and formed by the first plate body 311, and the punching depth of the protruding portion 332 is also limited by the thickness of the first plate body 311.
  • the protrusion 332 may have process rounded corners, that is, along the direction perpendicular to the flow direction of the cooling liquid, the cross-sectional area of the cavity 331 in the protrusion 332 is gradual.
  • Fig. 10 is a schematic diagram of the structure of the second connecting portion.
  • the protruding portion 332 when the protruding portion 332 has a multi-stage structure, the protruding portion 332 can also be stamped and formed into a step shape.
  • the protruding portion 332 may include a first protruding portion 3321 and a second protruding portion 3322.
  • the first protruding portion 3321 is stamped and formed by the first plate body 311, and the second protruding portion 3322 is formed by the first protruding portion 3322.
  • the portion 3321 is stamped and formed, and the stamping area of the first protruding portion 3321 is larger than the stamping area of the second protruding portion 3322.
  • the first protruding portion 3321 and the second protruding portion 3322 may constitute the second connecting portion 33 of the above-mentioned multi-stage structure.
  • the cavities formed in the first protrusion 3321 and the second protrusion 3322 are both variable cross-section cavities.
  • Fig. 11 is a structural schematic diagram 1 of the first connecting portion.
  • Fig. 12 is a schematic cross-sectional view of Fig. 11 along the symmetrical plane of the first connecting portion.
  • the second connecting portion 33 may also be a hollow pipe section 333, and the hollow pipe section 333 may be a tapered pipe section (not shown in the figure).
  • the hollow pipe section 333 may be arranged at the water inlet end 3141 for introducing the cooling liquid, or may be arranged at the water outlet end 3142 for discharging the cooling liquid, or at the water inlet end 3141 and the water outlet 3142 at the same time.
  • the hollow pipe section 333 can be welded and fixed with the water inlet pipe 315, that is, the hollow pipe section 333 is independent of the water inlet pipe 315 and the first plate body 311.
  • the hollow pipe section 333 can also be formed as a part of the water inlet pipe 315, which is formed through the pipe expansion process.
  • the hollow pipe section 333 can also be a multi-segment structure, and includes a first pipe section 3331 and a second pipe section 3332.
  • the first pipe section 3331 can be connected to the body portion 31, and the second pipe section 3332 is provided on the first pipe section 3331 away from the body portion 31.
  • One end is connected to the first connecting portion 32, and the cavities in the first pipe section 3331 and the second pipe section 3332 communicate to form an inner cavity 331.
  • the cavity corresponding to the first pipe section 3331 may be a uniform cross-section cavity or a tapered cavity with variable cross-section
  • the cavity corresponding to the second pipe section 3332 may be a uniform cross-section cavity or a tapered cavity with variable cross-section.
  • the cross-sectional area of the cavity in the first pipe section 3331 and the cavity in the second pipe section 3332 are equal, and the cavity in the first pipe section 3331
  • the cross-sectional area of the body is greater than the cross-sectional area of the cavity in the second pipe section 3332, and the cross-sectional area of the cavity in the second pipe section 3332 is greater than the cross-sectional area of the communicating cavity 321. It can be formed through a pipe expansion process and is easy to manufacture .
  • FIG. 13 is a second structural diagram of the first connecting portion.
  • Fig. 14 is a schematic cross-sectional view of Fig. 13 along the symmetrical plane of the first connecting portion.
  • the hollow pipe section 333 can be a uniform cross-sectional cylindrical structure, the cross-sectional area of the inner cavity 331 in the hollow pipe section 333 can be equal at any position, and the cross-sectional area of the inner cavity 331 is larger than the communicating cavity 321 cross-sectional area.
  • This embodiment does not limit the structure of the inner cavity 331 or the second connecting portion 33.
  • the second connecting portion 33 may also include the above-mentioned protruding portion 332 and the hollow pipe section 333 at the same time, and the second connecting portion 33 may be located at the water inlet end 3141, or at the water outlet end 3142, or at the same time at the water inlet end 3141. Or the water outlet 3142, at this time the hollow pipe section 333 and the protrusion 332 are welded and fixed.
  • the second connecting portion 33 can be combined into a variety of arrangements.
  • the protruding portion 332 is provided at the water inlet end 3141, and the hollow pipe section 333 is provided at the water outlet end 3142; for another example, the protruding portion 332 and the hollow pipe section 333 are provided at the water inlet end 3141 at the same time, while the water outlet end 3142 is not provided.
  • a second connecting portion 33 is provided; or, a hollow pipe section 333 and the like are provided at the water inlet end 3141 and the water outlet end 3142 at the same time.
  • the hollow pipe section 333 is connected with the first plate 311 or the protrusion 332, the outer wall of the hollow pipe section 333 may be provided with the first plate 311
  • the annular boss 322 or the annular groove 323, the hollow pipe section 333 and the first plate body 311 are clamped and fixed by brazing, and the connection is firm and the sealing performance is good.
  • FIG. 15 is another structural schematic diagram of the first connecting portion and the second connecting portion.
  • the realization form of the section 332 and the hollow pipe section 333 is provided on the first plate body 311.
  • the hollow pipe section 333 includes a first connecting pipe 3333 and a second connecting pipe 3334 that are detachably connected.
  • the first connecting pipe 3333 is connected to the protruding portion 332, and the second connecting pipe 3334 is disposed on the first connecting pipe 3333 away from the protruding portion One end of 332.
  • the second connecting pipe 3334 includes a connected connecting section a and a socket section b.
  • the connecting section a is used to connect with the water supply pipe 41 or the return pipe 42, and the end of the socket section b away from the connecting section a is sleeved on the first connection. Outside the tube 3333.
  • the cross-sectional area of the cavity in the socket section b is greater than the cross-sectional area of the cavity in the first connecting pipe 3333, and the cross-sectional area of the cavity in the first connecting pipe 3333 is larger than the cavity in the connecting section a
  • the cross-sectional area of the body since the socket section b is sleeved outside the first connecting tube 3333, the socket section b It also constitutes part of the second connecting portion 33; and the connecting section a constitutes the first connecting portion 32.
  • This embodiment does not list the arrangement forms of the second connecting portion 33 one by one.
  • the protruding portion 332 when the protruding portion 332 is provided in the area where the main body portion 31 contacts each battery module 10, the contact area between the battery module 10 and the main body portion 31 is reduced, and the heat exchange efficiency is affected. And considering that the main body 31 can be arranged between two adjacent battery modules 10, or can be attached to multiple battery modules 10 at the same time, the water inlet pipe 315 and the water outlet pipe 316 connected to the main body 31 can be located adjacent to each other. Between the two battery modules 10 or located outside the battery pack 1 in the circumferential direction, that is to say, according to the structure of the battery pack 1, the protruding area of the protrusion 332 is affected by the adjacent battery modules 10, box 22 and other components. limit.
  • FIG. 16 is a schematic diagram of another structure of the battery pack.
  • FIG. 17 is a schematic diagram of the structure of part F in FIG. 16.
  • Fig. 18 is a schematic diagram of the structure of the box body, the main body and the battery module in Fig. 16.
  • FIG. 19 is a schematic diagram of the structure of part G in FIG. 18.
  • FIG. 20 is a schematic diagram of another structure of the battery pack.
  • FIG. 21 is a schematic diagram of the structure of part H in FIG. 20. Please refer to Figure 8, Figure 16 to Figure 21, take the protruding part 332 is provided on the outer side of the battery module 10 as an example, according to the structure of the battery pack 1, the water supply pipe 41 and the return pipe 42 can be provided in the box 22 The inner side or the outer side of the box 22.
  • the water inlet pipe 315 and the water outlet pipe 316 can be arranged on the inner side of the box 22 or the outer side of the box 22.
  • the protrusion 332 can also be located in the box 22 or the box. 22 outside.
  • the protruding area of the protruding portion 332 is limited by the size of the gap between the box 22 and the battery module 10.
  • the protruding area Part or all of the edges of the portion 332 may extend along adjacent components.
  • the edge shape of the protrusion 332 may be a regular geometric shape such as a rectangle or a circle. Please refer to FIG. 8, taking the square protrusion 332 as an example.
  • the side length of the protrusion 332 can be the same as the width of the groove 313. On the one hand, it can avoid the protrusion area of the protrusion 332 from being too large and being impacted by the coolant. The protrusion 332 will be deformed. On the other hand, it can avoid that the width of the protrusion 332 is greater than the width of the groove 313 and the pressure loss of the cooling liquid between the protrusion 332 and the groove 313 can be avoided.
  • the edge shape of the protrusion 332 can also be irregular, that is to say, a part of the outline of the protrusion 332 can be recessed to the inside of itself. Form an avoidance area 3323.
  • the protrusion area of the protrusion 332 is increased to reduce the pressure drop when the cooling liquid flows through the second connection portion 33.
  • the protrusion 332 may be an "L" shape, and the avoiding area 3323 formed by the "L" shaped protrusion 332 is used to avoid components such as the battery module 10.
  • the shape of the protrusion 332 of the water inlet end 3141 and the water outlet end 3142 can be the same or different, as long as they can not interfere with adjacent components. , And have the set welding strength.
  • the protrusion 332 at the water inlet end 3141 may be rectangular, and the protrusion 332 at the water outlet end 3142 may be an "L" shape (not shown in the figure).
  • the edge shape thereof may be a regular geometric shape or an irregular geometric shape.
  • the water supply pipe 41 or the water return pipe 42 connected to the protruding portion 332 is also provided on the inner side of the box body 22.
  • the water supply pipe 41 or the return pipe 42 connected to the protruding portion 332 is also provided on the outside of the box 22.
  • the water supply pipe 41 and the water return pipe 42 can be rubber pipes.
  • the water supply pipe 41 can be directly sleeved on the water inlet pipe 315
  • the return water pipe 42 can be directly sleeved on the water outlet pipe 316.
  • the water supply pipe 41 and the return pipe 42 can also be metal pipe fittings.
  • the water supply pipe 41 can be connected to the water inlet pipe 315 through the first joint
  • the return pipe 42 can be connected to the water outlet pipe 316 through the second joint.
  • the water inlet pipe 315 and the water outlet pipe 316 The connecting bosses 324 connected to the first joint and the second joint can be respectively provided on the upper part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种水冷组件(30)、电池组(1)和装置,涉及电池技术领域,用于解决电池组(1)的冷却组件冷却效率低,导致使用电池组(1)的汽车的能效低的技术问题,该水冷组件(30)用于冷却电池,其包括本体部(31),具有用于容纳冷却液的冷却通道(314);第一连接部(32),与所述本体部(31)连接,具有用于导入或排出所述冷却液的连通腔(321);第二连接部(33),设置于所述本体部(31)和所述第一连接部(32)之间,具有用于连通所述冷却通道(314)与所述连通腔的内腔(331);所述内腔(331)靠近所述冷却通道(314)的端面的横截面面积大于所述连通腔(321)靠近所述内腔(331)的端面的横截面面积。该电池组(1)包括上述水冷组件(30)。该装置包括上述电池组(1)。用于提高冷却组件(30)的冷却效率,提高电池组(1)的充放电效率以及使用电池组(1)的汽车等装置的能效。

Description

水冷组件、电池组和装置
相关申请的交叉引用
本申请要求享有于2020年06月24日提交的名称为“水冷组件、电池组和装置”的中国专利申请202021195337.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请实施方式涉及电池技术领域,尤其涉及一种水冷组件、电池组和装置。
背景技术
汽车、电动自行车、船舶、储能电柜等装置包括电池组,电池组为装置提供电能。
相关技术中,以汽车为例,汽车包括车体以及电池组,电池组能够为车体提供电能,从而驱动汽车行驶。其中,电池组可以包括电池以及用于冷却电池的冷却组件。
然而,在一些情形下,冷却组件的冷却效率低,会降低电池组的充放电效率,导致汽车等装置的能效低。
发明内容
鉴于上述问题,本申请实施例提供一种水冷组件、电池组和装置,提高冷却组件的冷却效率,提高电池组的充放电效率以及使用电池组的汽车等装置的能效。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例的第一方面提供一种水冷组件,用于冷却电池,其包括:本体部,具有用于容纳冷却液的冷却通道;第一连接部,与本体部连接,具有用于导入或排出冷却液的连通腔;第二连接部,设置于本体部和第一连接部之间,具有用于连通冷却通道与连通腔的内腔;内腔靠近冷却通道的端面的横截面面积大于连通腔靠近内腔的端面的横截面面积。
内腔靠近冷却通道的端面的横截面面积大于连通腔靠近内腔的端面的横截面面积,能够减小进入冷却通道的冷却液的流速或使冷却液能以较小的流速流出冷却通道,也就降低了冷却液在第二连接部处的压力损失,提高了水冷组件的冷却效率。
如上所述的水冷组件,其中,沿冷却液的流动方向,内腔具有相对设置的第一端 和第二端,内腔的第一端用于与冷却通道连通,沿内腔的第一端至内腔的第二端,内腔的横截面面积逐渐减小。
内腔为横截面面积渐变的锥形腔,内腔的大端为第一端并与冷却通道连接,内腔的小端为第二端并与连通腔连接,使得内腔连通连通腔与冷却通道。
如上所述的水冷组件,其中,内腔任意位置处的横截面面积均相等。
内腔任意位置处的横截面面积均相等,易于加工制造。
如上所述的水冷组件,其中,第二连接部包括:第一管段,连接于本体部;第二管段,连接于第一管段和第一连接部之间。
第一管段内的腔体和第二管段内的腔体的横截面面积均相等,且第一管段内的腔体的横截面面积大于第二管段内的腔体的横截面面积,第二管段内的腔体的横截面面积大于连通腔的横截面面积,可以通过扩管工序成型,易于加工制造。
如上所述的水冷组件,其中,第二连接部与本体部一体成型。
第二连接部与本体部一体成型时,第二连接部可以为形成在第一板体上的凸出部,凸出部既可以位于进水端也可以位于出水端,或者同时设置在进水端或出水端。
如上所述的水冷组件,其中,内腔靠近连通腔的端面的横截面面积小于或等于本体部靠近内腔的端面的横截面面积。
内腔靠近连通腔的端面的横截面面积小于或等于本体部靠近内腔的端面的横截面面积,可以避免第二连接部与冷却通道连通处同时出现突扩和突缩,冷却液的压力损失较小。
如上所述的水冷组件,其中,本体部包括相对设置的第一板体和第二板体,第一板体朝向第二板体的侧面和/或第二板体朝向第一板体的侧面设有凹槽,凹槽用于构成冷却通道。
同时在第一板体和第二板体上冲压凹槽,两个凹槽相对设置且连通,两个凹槽形成的冷却通道的横截面面积大,冷却液的流速小,冷却液的压力损失小,冷却组件的换热率高。
如上所述的水冷组件,其中,第二连接部设置在第一板体背离第二板体的侧面和/或第二板体背离第一板体的侧面上。
第二连接部位于第一板体背离第二板体的侧面上,第二连接部可以与第一板体稳固连接,且密封性好。
与现有技术相比,本申请实施例提供的水冷组件具有如下优点:水冷组件包括本 体部和第一连接部,本体部设置有冷却通道,第一连接部具有与冷却通道连通的连通腔,冷却液从连通腔导入冷却通道内或者从连通腔排出,冷却液在冷却通道流动过程中与电池发生热交换以冷却电池。其中,第一连接部与本体部之间还设有第二连接部,第二连接部设有连通上述连通腔与冷却通道的内腔,内腔靠近冷却通道的端面的横截面面积大于连通腔靠近内腔的端面的横截面面积,能够减小进入冷却通道的冷却液的流速或使冷却液能以较小的流速流出冷却通道,也就降低了冷却液在第二连接部处的压力损失,提高了水冷组件的冷却效率。
本申请实施例的第二方面提供一种电池组,其包括:多个电池和上述第一方面所述的水冷组件,水冷组件用于冷却多个电池。
本申请实施例的第三方面提供一种使用电池的装置,其包括:上述第二方面所述的电池组,电池组为装置提供电能。
除了上面所描述的本申请实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请实施例提供的水冷组件、电池组和装置所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的汽车的结构示意图。
图2为图1中电池组的爆炸结构示意图。
图3为图2中A部分的结构示意图。
图4为图3中B部分的结构示意图。
图5为图2中本体部的结构示意图。
图6为图5中沿C-C的结构剖视图。
图7为图5中本体部的爆炸结构示意图。
图8为图7中D部分的局部结构示意图。
图9为图7中第二板体的结构示意图。
图10为第二连接部的结构示意图。
图11为第一连接部的结构示意图一。
图12为图11沿第一连接部对称面的剖视结构示意图。
图13为第一连接部的结构示意图二。
图14为图13沿第一连接部对称面的剖视结构示意图。
图15为第一连接部和第二连接部的另一结构示意图。
图16为电池组的另一结构示意图。
图17为图16中F部分的结构示意图。
图18为图16中箱体、本体部与电池模块的结构示意图。
图19为图18中G部分的结构示意图。
图20为电池组的另一结构示意图。
图21为图20中H部分的结构示意图。
具体实施方式
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
对于汽车等装置,装置损耗的能量多,其能效就低。汽车中的传动轮系、电池组等部件均需要消耗能量。以电池组为例,电池组包括电池模块以及辅助电池模块工作的水冷组件等,电池模块包括一个或多个电池,电池用于产生电流,是电池组的核心部件。水冷组件包括两个板体,板体与电池模块接触,其中一个板体或者两个板体上设有凹槽,两个板体贴合围成冷却通道,冷却液在冷却通道中流动并与电池模块热交换。水冷组件还包括进水管和出水管,进水管的空腔与冷却通道连通,用于向冷却通道内导入冷却液,出水管的空腔与冷却通道连通,用于排出冷却液,也就是进水管的空腔、冷却通道以及出水管的空腔形成了供冷却液流动的流道。申请人发现:冷却液在流道中流动过程中,会因为流道的横截面面积的突然变大或突然变小(突扩或突缩)出现压力损失的状况,这种压力损失直接导致整车端能效下降。其中,流道的横截面指的是用与冷却液的流动方向垂直的刀具切开流道时所观察到的流道截面。
鉴于此,本申请实施例提供一种装置D、电池组1和水冷组件。其中,装置D可以是车辆、船舶、小型飞机等移动设备,也可以是储能电柜等能够提供电能的非移动设备。对于车辆,其可以为新能源汽车,该新能源汽车可以为纯电动汽车,也可以为混合动力汽车或增程式汽车等。
以车辆为例,图1为本申请实施例提供的汽车的结构示意图。图2为图1中电池组的爆炸结构示意图。图3为图2中A部分的结构示意图。图4为图3中B部分的结构示意图。请参阅图1至图4,车辆可以包括电池组1以及车辆主体,电池组1用于为车辆主体中的耗电组件供电。根据装置D的不同,耗电组件可以不同。例如,当装置D为汽车时,车辆主体中的耗电组件可以为电机、音响等。
其中,电池组1可水平设置在车辆主体的底部。电池组1可以包括多个电池模块10以及容纳多个电池模块10的防护箱20。
防护箱20可以包括箱盖21和箱体22,箱体22为中空结构,且一端具有开口,电池模块10容置在箱体22内,箱盖21封盖开口,以将电池模块10封装在防护箱20内。
如图2,每个电池模块10可以包括一个或多个电池(图中未示出),且每个电池模块10封装后并列设置在防护箱20内。
每个电池均包括正极片和负极片,正极片和负极片之间通过隔膜分隔并容纳于电池的壳体内。正极片、隔膜和负极片堆叠或卷绕后可以通过钢制或铝制的壳体封装并形成方形或圆柱电池,也可以通过铝塑复合膜等柔性壳体封装为软包电池。应用电池组1的装置D可以根据需要选择使用方形电池、圆柱电池或软包电池。其中,电池的正极片和负极片上均设有活性物质,活性物质与壳体内的电解液发生化学反应,化学反应过程中生成的电子可以在正极片和负极片之间流动,以形成电流。
因为活性物质与电解液发生化学反应过程中会生成热量,同时环境温度也会影响电池组1的使用温度,为避免电池组1过热影响其性能,电池组1还配置有水冷组件30以及供水组件;水冷组件30与电池模块10接触,用于冷却各个电池模块10中的电池;供水组件用于向水冷组件30提供冷却液并回收循环利用冷却液。
供水组件包括供水管41、回水管42以及储水件(图中未示出)。供水管41、回水管42均与储水件连通。供水管41背离储水件的一端与水冷组件30连接,回水管42背离储水件的一端也与水冷组件30连接,以构成循环水路,使冷却液可以循环使用。
储水件设置在防护箱20的外部并与车辆主体连接。且根据电池组1结构的不同,供水管41、回水管42可以设置在防护箱20内部或者防护箱20的外部。
图5为图2中本体部的结构示意图。图6为图5中沿C-C的结构剖视图。图7为图5中本体部的爆炸结构示意图。图8为图7中D部分的局部结构示意图。图9为图7中第二板体的结构示意图。请参阅图2、图3、图5至图9,本申请实施例提供一种水冷组件30,水冷组件30可以包括本体部31,本体部31为中空结构,用于形成容纳冷却液的冷却通道314。考虑到电池组1包括多个并列设置的电池模块10,本体部31也可以为多个并分别设置在相邻两个电池模块10之间。
在一些实施例中,本实施例中本体部31可以设置在箱体22背离开口的底部并同时与多个电池模块10接触,以减少本体部31的个数,降低制造成本。
在一些实施例中,本体部31可以包括相对设置且贴合固定的第一板体311和第二板体312,多个电池模块10可以同时贴装在第一板体311或第二板体312上,或者当水冷组件30设置在相邻的两个电池模块10之间时,第一板体311和第二板体312可以均与电池模块10接触。
第一板体311和第二板体312的形状可以为矩形、圆形等规则的几何形状,也可以为“L”型等的不规则的形状,如图7所示,第一板体311和第二板体312为多边形。第一板体311和第二板体312的材质可以相同,例如均为铝板,易于导热。
请一并参阅图2、图7、图8和图9,第一板体311和第二板体312形成的本体部31呈板状,冷却通道314形成在本体部31内部。
为形成冷却通道314,第一板体311朝向第二板体312的侧面可以设置凹槽313,或者在第二板体312朝向第一板体311的侧面设置凹槽313,在一些实施例中,第一板体311朝向第二板体312的侧面以及第二板体312朝向第一板体311的侧面也可以同时设置凹槽313,此时两个凹槽313相对设置并连通形成冷却通道314,凹槽313的深度小于第一板体311或第二板体312的厚度(图中未示出)。
在一些实施例中,凹槽313还可以由第一板体311和/或第二板体312冲压成型。具体地,请参阅图6至图8,第二板体312上可以设置朝向背离第一板体311的一侧凹陷的凹槽313,此时第一板体311可以为平板,第一板体311和第二板体312相连,第一板体311封盖凹槽313,以使凹槽313围成的空间构成冷却通道314。
在一些实施例中,还可以在第二板体312上设置凹槽313或者在第一板体311和第二板体312上同时设置凹槽313。
为减小冷却液在冷却通道314中流动时的压力损失,可以增加凹槽313的冲压深度。但增加板体冲压深度会造成板体强度变低,为避免板体过度减薄造成强度不够的问题, 凹槽313深度不宜过深。示例性地,当板体为铝板时,凹槽313的最大冲压深度小于板体厚度的3倍,即,当铝板的材质厚度为1.5毫米(mm),那么凹槽313的冲压深度极限为4.5mm,为提高水冷组件30的使用安全性,凹槽313的深度可以为3.5mm。
在一些实施例中,当同时在第一板体311和第二板体312上冲压凹槽313,两个凹槽313相对设置且连通,两个凹槽313形成的冷却通道314的横截面面积大,冷却液的流速小,冷却液的压力损失小,冷却组件的换热率高。其中,冷却通道314的横截面指的是用与冷却液的流动方向垂直的刀具切开冷却通道314时所观察到的冷却通道314的截面。
根据凹槽313的冲压形式不同,冷却通道314的结构可以不同。示例性地,凹槽313可以为并列设置的多个(图中未示出),每个凹槽313的一端位于本体部31的一侧,并与供水管41连通以导入冷却液,每个凹槽313的另一端位于本体部31相对的另一侧,并与回水管42连通以排出冷却液,冷却液的流动距离小,冷却液的压力损失小。
为减小冷却液在冷却通道314中流动时的压力损失,还可以增加凹槽313的冲压宽度,当凹槽313在板体上冲压成型,凹槽313的宽度与板体的面积以及冷却通道314的长度相关,凹槽313的冲压宽度过大会降低冷却通道314的长度,使用人员可以根据需要进行设置。
在一些实施例中,可以不在与电池模块10接触的板体上设置凹槽313,以增加电池模块10与板体的接触面积,提高冷却效率,且还能增加第一板体311与第二板体312的连接面积,本体部31的连接强度高。示例性的,凹槽313可以设置在第二板体312上,第一板体311与凹槽313围成的空间构成冷却通道314。
此时,电池模块10可以通过导热结构胶与第一板体311粘接固定,为减小电池组1的体积,供水组件可以设置在第一板体311的一侧,即进水管315和出水管316均设置在第一板体311上,结构紧凑,体积小。
请参阅图3、图7和图8,冷却通道314具有进水端3141和出水端3142,相应的,水冷组件30还包括具有连通腔321的第一连接部32。第一连接部32可以包括连接在本体部31上的进水管315和出水管316,进水管315与进水端3141连通,出水管316与出水端3142连通。其中,进水管315和出水管316可以均凸出本体部31的外壁面,并分别与供水管41和回水管42可拆卸连接。
进水管315与供水管41连通,用于向冷却通道314内导入冷却液,出水管316与回水管42连通,用于从冷却通道314中排出冷却液。冷却液可以是水、乙二醇等。冷却液在流动过程中与各个电池模块10发生热交换,以冷却电池模块10。
根据电池组1的不同布置形式,进水管315和出水管316可以同时设置在第一板体311或第二板体312上,也可以分别设设置在第一板体311和第二板体312上,例如进水管315可以设置在第一板体311上,出水管316可以设置在第二板体312上。
当进水管315和出水管316同时设置在第一板体311上时,根据装置D的布置形式,进水管315和出水管316可以位于第一板体311的任意位置。例如,进水管315和出水管316可以相邻设置,或者分别设置在第一板体311相对的两侧。以第一板体311和第二板体312均为矩形为例,进水管315和出水管316可以分别设置在第一板体311的不同夹角位置处,也可以分别设置在第一板体311的边缘处,或者设置在第一板体311的中部,本实施例不进行限制。
进一步的,为提高装置D的能效,本申请实施例考虑在水冷组件30上设置第二连接部33,第二连接部33可以设置在水冷组件30的流道的横截面面积突扩位置、突缩位置处,以降低流经第二连接部33的冷却液的压降,也就是减小冷却液在突扩、突缩位置处的压力损失,避免额外耗费冷却液驱动件的功率,提高水冷组件30的冷却效率、电池组1的充放电效率以及汽车的能效。
由于本体部31和第一连接部32的连通处的横截面存在突扩或突缩,第二连接部33可以设置在本体部31和第一连接部32之间,第二连接部33具有内腔331,内腔331连通冷却通道314和连通腔321。其中,第二连接部33可以作为本体部31的一部分形成在本体部31上,也可以作为第一连接部32的一部分形成在第一连接部32上,或者可以作为独立部件设置在本体部31和第一连接部32之间,本实施例不进行限制。
根据出水端3142和进水端3141设置位置不同,第二连接部33可以设置在第一板体311和/或第二板体312上。也就是说当进水管315和出水管316同时设置在第一板体311上时,第二连接部33设置在第一板体311上。当进水管315和出水管316同时设置在第二板体312上时,第二连接部33可以设置在第二板体312上。当进水管315和出水管316分别设置在第一板体311和第二板体312上时,第二连接部33既可以设置在第一板体311或第二板体312上,也可以分别在第一板体311和第二板体312上同时设置第二连接部33。
其中,进水管315与本体部31之间可以形成突扩,出水管316与本体部31之间可以形成突缩,相应地,第二连接部33既可以单独设置在进水端3141或出水端3142处,也可以同时设置在进水端3141和出水端3142处,本实施例不进行限制。
进一步的,第二连接部33作为缓冲结构可以将流道横截面的突扩突缩改进为渐扩 渐缩,具体的,内腔331靠近冷却通道314的端面的横截面面积大于连通腔321靠近内腔331的端面的横截面面积,以降低冷却液在第二连接部33所在位置处的压降。其中,内腔331的横截面指的是用与冷却液的流动方向垂直的刀具切开内腔331时所观察到的内腔331的截面。连通腔321的横截面指的是用与冷却液的流动方向垂直的刀具切开连通腔321时所观察到的连通腔321的截面。
以突扩改进为渐扩为例,当第一连接部32为进水管315时,沿冷却液的流动方向,进水管315中连通腔321靠近冷却通道314一端的横截面面积小于冷却通道314的横截面面积,冷却液经进水管315导入冷却通道314内时,横截面面积突然扩大,冷却液的压力损失大。本实施例中在进水管315和本体部31之间设置第二连接部33,第二连接部33中内腔331靠近冷却通道314一端的横截面面积大于进水管315中连通腔321靠近内腔331一端的横截面面积,也就是部分内腔331的横截面面积或内腔331整体的横截面面积大于连通腔321的横截面面积,将进水管315与本体部31之间的突扩改进为渐扩,减小冷却液的压力损失。
第二连接部33设置在本体部31和第一连接部32之间,冷却液在内腔331内的流速小于冷却液在连通腔321内的流速。沿冷却液的流动方向,假设设置一段与第二连接部33等长度的第一连接部32,冷却液在第二连接部31内的压降小于冷却液在该段第一连接部32内的压降,也就是说,本体部31和第一连接部32之间设置第二连接部33后,冷却液的压力损失可以变小。
请继续参阅图6、图7和图8,冷却液经由第一连接部32,冲击第二板体312后转向进入冷却通道314内。转向过程中,冷却液在垂直于第二板体312方向上的速度变为0。
当设置第二连接部33后,由于流经第二连接部33的冷却液流速变小,冷却液能以更小的速度冲击第二板体312,冲击能量损失小,第二板体312的使用寿命长。
在一些实施例中,冷却液经第二连接部33进入冷却通道314或排出冷却通道314,那么内腔331靠近连通腔321的端面的横截面面积可以小于或等于本体部31靠近内腔331的端面的横截面面积。具体的,本体部31上具有与第二连接部33连通的开口,通过上述设置,可以避免该开口的开口面积小于内腔331靠近冷却通道314的端面的横截面面积,也就是避免第二连接部33与冷却通道314连通处同时出现突扩和突缩,冷却液的压力损失较小。
进一步的,由上述实施例可知,第二连接部33可以设置在第一板体311和/或第二板体312上。
以第二连接部33设置在第一板体311为例,根据供水管41、回水管42在电池组1中设置位置的不同,第二连接部33可以位于第一板体311的任意位置,例如第二连接部33可以位于第一板体311周向的边缘位置,并且内腔331的延伸方向可以与第一板体331所在平面平行设置,或者呈锐角或钝角设置。在一些实施例中,第二连接部33还可以位于第一板体311背离第二板体312的侧面上,第二连接部33可以与第一板体311稳固连接,且密封性好;其中内腔331的延伸方向可以与第一板体311所在的平面垂直或倾斜设置。
可以理解的,当第二连接部33设置在第二板体312上,第二连接部也可以设置在第二板体312背离第一板体311的侧面上。
考虑到本体部31周向的空间较小,本实施例以第二连接部33设置在第一板体311上,且内腔331的延伸方向与第一板体311所在平面垂直为例进行说明。其中,第一板体311在垂直于自身方向的侧方空间大,第二连接部33可以根据需要设置在第一板体311的任意位置;且由于第一板体311在垂直于自身方向的侧方空间大,第二连接部33的尺寸可以足够大,也就是内腔331的横截面面积可以足够大,起到更好的减小压降的效果。
本领域技术人员熟知,具有相同横截面面积的横截面形状可以不同,例如横截面形状可以为圆形、椭圆或多边形。在一些实施例中,为了降低冷却液的压力损失,内腔331任意位置处的横截面形状可以相同,使得第二连接部33的内壁面可以平滑过渡。示例性的,内腔331任意位置的横截面形状可以为圆形或矩形。
在一些实施例中,沿冷却液的流动方向,内腔331具有相对设置的第一端和第二端,沿内腔331的第一端至内腔331的第二端,内腔331的横截面面积可以逐渐减小。也就是说,当第二连接部33设置在进水端3141所在的一端,沿冷却液的流动方向,内腔331的横截面面积逐渐增大;当第二连接部33设置在出水端3142所在的一端,沿冷却液的流动方向,内腔331的横截面面积逐渐减小。
其中,第二连接部33可以为横截面面积渐变的结构,相应的,内腔331为横截面面积渐变的锥形腔,内腔331的大端为第一端并与冷却通道314连接,内腔331的小端为第二端并与连通腔321连接,使得内腔331连通连通腔321与冷却通道314,其中,内腔331小端的横截面面积可以大于或等于连通腔321的横截面面积。
在一些实施例中,第二连接部33还可以为多段式结构,相应的,内腔331也为多段式腔体。对于任意一段腔体,其可以为等截面腔体也可以为变截面腔体,只要靠近冷却通道314一端的腔体的横截面面积大于背离冷却通道314一端的腔体的横截面面积即可。
具体的,第二连接部33可以与第一板体311一体成型。此时,第二连接部33可以为形成在第一板体311上的凸出部332,凸出部332既可以位于进水端3141也可以位于出水端3142,或者同时设置在进水端3141或出水端3142。
请参阅6至图8,凸出部332可以通过第一板体311冲压成型,凸出部332的冲压深度同样受到第一板体311厚度的限制。考虑到冲压工艺,凸出部332可以具有工艺圆角,也就是沿垂直于冷却液的流动方向,凸出部332内的内腔331的横截面面积是渐变的。
图10为第二连接部的结构示意图。请参阅图10,当凸出部332为多段式结构时,凸出部332还可以冲压成型为台阶状。示例性的,凸出部332可以包括第一凸出部3321和第二凸出部3322,第一凸出部3321由第一板体311冲压成型,第二凸出部3322由第一凸出部3321冲压成型,第一凸出部3321的冲压面积大于第二凸出部3322的冲压面积。此时第一凸出部3321和第二凸出部3322可以构成上述多段式结构的第二连接部33。考虑到冲压成型工艺,第一凸出部3321和第二凸出部3322内形成的腔体均为变截面腔体。
图11为第一连接部的结构示意图一。图12为图11沿第一连接部对称面的剖视结构示意图。请参阅图3、图7、图11和图12,第二连接部33还可以为中空管段333,中空管段333可以为锥形管段(图中未示出)。中空管段333可以设置在进水端3141用于导入冷却液,也可以设置在出水端3142用于排出冷却液,或者同时设置在进水端3141和出水端3142。以中空管段333设置在进水端3141一侧为例,中空管段333可以与进水管315焊接固定,也就是中空管段333是独立于进水管315以及第一板体311之间的独立部件;中空管段333也可以形成为进水管315的一部分,通过扩管工序成型。
中空管段333还可以为多段式结构,并包括第一管段3331和第二管段3332,第一管段3331可以与本体部31连接,第二管段3332设置在第一管段3331背离本体部31的一端并与第一连接部32连接,第一管段3331和第二管段3332内的腔体连通并形成内腔331。第一管段3331对应的腔体,其可以为等截面腔体或变截面的锥形腔体,第二管段3332对应的腔体,其可以为等截面腔体或变截面的锥形腔体。
在一些实施例中,请参阅图11和图12,本实施例中第一管段3331内的腔体和第二管段3332内的腔体的横截面面积均相等,且第一管段3331内的腔体的横截面面积大于第二管段3332内的腔体的横截面面积,第二管段3332内的腔体的横截面面积大于连通腔321的横截面面积,可以通过扩管工序成型,易于加工制造。
在一些实施例中,内腔331任意位置处的横截面面积均相等。具体的,图13 为第一连接部的结构示意图二。图14为图13沿第一连接部对称面的剖视结构示意图。请参阅图13和图14,空管段333可以为等截面筒状结构,空管段333中的内腔331任意位置处的横截面面积可以相等,且内腔331的横截面面积大于连通腔321的横截面面积。本实施例不对内腔331或第二连接部33的结构进行限制。
当然,第二连接部33也可以同时包括上述凸出部332与中空管段333,且第二连接部33可以位于进水端3141,或者位于出水端3142,或者同时设置在进水端3141或出水端3142,此时中空管段333与凸出部332焊接固定。
可以理解的,第二连接部33可以组合出多种设置形式。比如,凸出部332设置在进水端3141,中空管段333设置在出水端3142;再比如,凸出部332和中空管段333同时设置在进水端3141,而出水端3142未设置第二连接部33;或者,同时在进水端3141和出水端3142设置中空管段333等。
请参阅图6、图12和图14,当中空管段333与第一板体311或凸出部332连接,中空管段333的外壁面上可以设有与第一板体311卡接的环形凸台322或环形凹槽323,中空管段333与第一板体311卡接后通过钎焊焊接固定,连接牢靠,密封性好。
在一些实施例中,图15为第一连接部和第二连接部的另一结构示意图,请参阅图15,本实施例提供一种在进水端3141和/或出水端3142同时设置凸出部332和中空管段333的实现形式。其中,凸出部332设置在第一板体311上。中空管段333包括可拆卸连接的第一连接管3333和第二连接管3334,第一连接管3333与凸出部332连接,第二连接管3334设置在第一连接管3333背离凸出部332的一端。且第二连接管3334包括相连通的连接段a和套接段b,连接段a用于与供水管41或回水管42连接,套接段b背离连接段a的一端套设在第一连接管3333外。
此时,套接段b内的腔体的横截面面积大于第一连接管3333内的腔体的横截面面积,第一连接管3333内的腔体的横截面面积大于连接段a内的腔体的横截面面积。也就是说,凸出部332构成部分内的腔体331,第一连接管3333也构成部分内的腔体331,且由于套接段b套设在第一连接管3333外,套接段b也构成部分第二连接部33;而连接段a则构成第一连接部32。
本实施例不一一列举第二连接部33的设置形式。
进一步的,凸出部332设置在本体部31与各个电池模块10接触的区域时,会降低电池模块10与本体部31的接触面积,影响换热效率。且考虑到本体部31可以设 置在相邻两个电池模块10之间,或者可以同时与多个电池模块10贴装,与本体部31相连的进水管315以及出水管316相应的可以位于相邻两个电池模块10之间或者位于电池组1周向的外侧,也就是说,根据电池组1的结构,凸出部332的凸出面积受到相邻的电池模块10、箱体22等部件的限制。
图16为电池组的另一结构示意图。图17为图16中F部分的结构示意图。图18为图16中箱体、本体部与电池模块的结构示意图。图19为图18中G部分的结构示意图。图20为电池组的另一结构示意图。图21为图20中H部分的结构示意图。请参阅图8、图16至图21,以凸出部332设置在电池模块10周向的外侧为例,根据电池组1的结构不同,供水管41和回水管42可以设置在箱体22的内侧或者箱体22的外侧,相应的,进水管315、出水管316可以设置在箱体22的内侧或者箱体22的外侧,相应的,凸出部332也可以位于箱体22内或者箱体22外。
当凸出部332设置在箱体22的内侧,凸出部332的凸出面积受到箱体22以及电池模块10之间的间隙大小限制,为增大凸出部332的凸出面积,凸出部332的部分或者全部边缘可以沿相邻部件延伸。
凸出部332的边缘形状可以为矩形、圆形等规则的几何形状。请参阅图8,以正方形的凸出部332为例,凸出部332的边长可以与凹槽313的宽度相同,一方面可以避免凸出部332凸出面积过大,受到冷却液冲击时凸出部332会变形,另一方面,可以避免因凸出部332的宽度大于凹槽313宽度,使冷却液在凸出部332与凹槽313之间形成压力损失。
当箱体22与电池模块10之间形成的间隙形状不规则时,凸出部332的边缘形状也可以相应的为不规则形状,也就是说凸出部332的部分轮廓可以向自身内部凹陷以形成避让区域3323。在避免凸出部332与电池组1的其他部件干涉的条件下,增大凸出部332的凸出面积,使冷却液流经第二连接部33时的压降变小。请参阅图18以及图19,凸出部332可以是“L”型,“L”型的凸出部332形成的避让区域3323用于避让电池模块10等部件。
可以理解地,当进水端3141和出水端3142均设置凸出部332时,进水端3141和出水端3142的凸出部332形状可以相同,也可以不同,只要能不与相邻部件干涉,且具有设定的焊接强度即可。示例性地,位于进水端3141的凸出部332可以为矩形,位于出水端3142的凸出部332可以为“L”型(图中未示出)。
当凸出部332设置在箱体22的外侧时,其边缘形状可以为规则的几何形状, 也可以为不规则的几何形状。
进一步的,当凸出部332设置在箱体22的内侧,与凸出部332相连的供水管41或回水管42也设置在箱体22的内侧。当凸出部332设置在箱体22的外侧时,与凸出部332相连的供水管41或回水管42也设置在箱体22的外侧。
其中,供水管41与回水管42可以为胶管,此时供水管41可以直接套设在进水管315上,回水管42可以直接套设在出水管316上。供水管41和回水管42也可以为金属管件,此时供水管41可以通过第一接头与进水管315连接,回水管42可以通过第二接头与出水管316连接,进水管315和出水管316上可以分别设置与第一接头、第二接头连接的连接凸台324。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种水冷组件,用于冷却电池,其中,包括:
    本体部,具有用于容纳冷却液的冷却通道;
    第一连接部,与所述本体部连接,具有用于导入或排出所述冷却液的连通腔;
    第二连接部,设置于所述本体部和所述第一连接部之间,具有用于连通所述冷却通道与所述连通腔的内腔;
    所述内腔靠近所述冷却通道的端面的横截面面积大于所述连通腔靠近所述内腔的端面的横截面面积。
  2. 根据权利要求1所述的水冷组件,其中,沿所述冷却液的流动方向,所述内腔具有相对设置的第一端和第二端,所述内腔的第一端用于与所述冷却通道连通,沿所述内腔的第一端至所述内腔的第二端,所述内腔的横截面面积逐渐减小。
  3. 根据权利要求1所述的水冷组件,其中,所述内腔任意位置处的横截面面积均相等。
  4. 根据权利要求1-3中任意一项所述的水冷组件,其中,所述第二连接部包括:
    第一管段,连接于所述本体部;
    第二管段,连接于所述第一管段和所述第一连接部之间。
  5. 根据权利要求1-3中任意一项所述的水冷组件,其中,所述第二连接部与所述本体部一体成型。
  6. 根据权利要求1-5中任意一项所述的水冷组件,其中,所述内腔靠近所述连通腔的端面的横截面面积小于或等于所述本体部靠近所述内腔的端面的横截面面积。
  7. 根据权利要求1-6中任意一项所述的水冷组件,其中,所述本体部包括相对设置的第一板体和第二板体,所述第一板体朝向所述第二板体的侧面和/或所述第二板体朝向所述第一板体的侧面设有凹槽,所述凹槽用于构成所述冷却通道。
  8. 根据权利要求7所述的水冷组件,其中,所述第二连接部设置在所述第一板体背离所述第二板体的侧面和/或所述第二板体背离所述第一板体的侧面上。
  9. 一种电池组,其中,包括多个电池和权利要求1-8中任意一项所述的水冷组件,所述水冷组件用于冷却多个所述电池。
  10. 一种使用电池的装置,其中,包括权利要求9所述的电池组,所述电池组为所述装置提供电能。
PCT/CN2021/082201 2020-06-24 2021-03-22 水冷组件、电池组和装置 WO2021258792A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022560360A JP7368638B2 (ja) 2020-06-24 2021-03-22 水冷ユニット、電池パック及び装置
EP21828995.7A EP4113701A4 (en) 2020-06-24 2021-03-22 LIQUID COOLING ASSEMBLY, BATTERY PACK, AND DEVICE
KR1020227035704A KR102531155B1 (ko) 2020-06-24 2021-03-22 수냉 어셈블리, 배터리팩 및 장치
US18/086,791 US11923521B2 (en) 2020-06-24 2022-12-22 Water cooling assembly, battery pack, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021195337.XU CN213401361U (zh) 2020-06-24 2020-06-24 水冷组件、电池组和装置
CN202021195337.X 2020-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/086,791 Continuation US11923521B2 (en) 2020-06-24 2022-12-22 Water cooling assembly, battery pack, and device

Publications (1)

Publication Number Publication Date
WO2021258792A1 true WO2021258792A1 (zh) 2021-12-30

Family

ID=76198989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082201 WO2021258792A1 (zh) 2020-06-24 2021-03-22 水冷组件、电池组和装置

Country Status (6)

Country Link
US (1) US11923521B2 (zh)
EP (1) EP4113701A4 (zh)
JP (1) JP7368638B2 (zh)
KR (1) KR102531155B1 (zh)
CN (1) CN213401361U (zh)
WO (1) WO2021258792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923521B2 (en) 2020-06-24 2024-03-05 Contemporary Amperex Technology Co., Limited Water cooling assembly, battery pack, and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045139A1 (zh) * 2022-09-01 2024-03-07 宁德时代新能源科技股份有限公司 水冷接头、热管理部件、电池和用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036461A (ko) * 2000-11-10 2002-05-16 신영주 열교환기
CN206397586U (zh) * 2016-12-12 2017-08-11 重庆万虎机电有限责任公司 一种单缸水冷发动机及其冷却系统
CN107509367A (zh) * 2017-09-07 2017-12-22 武汉欧辰光电有限公司 一种外置式水冷装置
CN108987851A (zh) * 2018-08-22 2018-12-11 广州小鹏汽车科技有限公司 一种水冷板及水冷式电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029270A1 (ja) 2010-08-30 2012-03-08 住友重機械工業株式会社 ショベル
JP2012156057A (ja) 2011-01-27 2012-08-16 Panasonic Corp 電池モジュールおよびそれを含む電池パック
DE102012005871A1 (de) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatterie mit Kühlvorrichtung
JP6144522B2 (ja) * 2013-04-01 2017-06-07 カルソニックカンセイ株式会社 温調装置
WO2016015156A1 (en) * 2014-07-31 2016-02-04 Dana Canada Corporation Battery cell heat exchanger with graded heat transfer surface
JPWO2017033412A1 (ja) 2015-08-27 2018-06-14 三洋電機株式会社 バッテリシステム及びバッテリシステムを備える電動車両
KR102044426B1 (ko) * 2015-12-04 2019-11-13 주식회사 엘지화학 전지모듈들을 균일하게 냉각시킬 수 있는 간접 냉각 시스템 및 이를 포함하는 전지팩
CN110622349B (zh) * 2017-05-16 2023-05-02 达纳加拿大公司 具有侧入口配件的逆流式热交换器
US10833379B2 (en) * 2017-07-12 2020-11-10 Rivian Ip Holdings, Llc Electric vehicle with modular removable auxiliary battery with integrated cooling
CN107509347B (zh) * 2017-10-21 2019-11-12 淮北禾获人科技有限公司 方便吊装、具有锁位结构的电力防护盖板及其工作方法
CN209071564U (zh) * 2018-10-18 2019-07-05 郑州深澜动力科技有限公司 电池箱及其液冷板
JP7333690B2 (ja) 2018-11-21 2023-08-25 三井化学株式会社 冷却装置および構造体
CN209461614U (zh) * 2019-04-28 2019-10-01 国能新能源汽车有限责任公司 一种纯电动汽车电池水冷系统管路
CN213401361U (zh) 2020-06-24 2021-06-08 宁德时代新能源科技股份有限公司 水冷组件、电池组和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036461A (ko) * 2000-11-10 2002-05-16 신영주 열교환기
CN206397586U (zh) * 2016-12-12 2017-08-11 重庆万虎机电有限责任公司 一种单缸水冷发动机及其冷却系统
CN107509367A (zh) * 2017-09-07 2017-12-22 武汉欧辰光电有限公司 一种外置式水冷装置
CN108987851A (zh) * 2018-08-22 2018-12-11 广州小鹏汽车科技有限公司 一种水冷板及水冷式电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113701A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923521B2 (en) 2020-06-24 2024-03-05 Contemporary Amperex Technology Co., Limited Water cooling assembly, battery pack, and device

Also Published As

Publication number Publication date
KR102531155B1 (ko) 2023-05-09
JP2023510044A (ja) 2023-03-10
US11923521B2 (en) 2024-03-05
EP4113701A1 (en) 2023-01-04
CN213401361U (zh) 2021-06-08
US20230128468A1 (en) 2023-04-27
JP7368638B2 (ja) 2023-10-24
EP4113701A4 (en) 2024-04-10
KR20220147688A (ko) 2022-11-03

Similar Documents

Publication Publication Date Title
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
CN117855678A (zh) 电池模块和包括该电池模块的电池包
WO2021258792A1 (zh) 水冷组件、电池组和装置
WO2011033722A1 (ja) 電池モジュール及びその製造方法並びに温度調整システム
JP2006093144A (ja) 二次電池および二次電池モジュール
JP2015122323A (ja) 優れた冷却効率およびコンパクトな構造を有する電池モジュールならびに中型もしくは大型の電池パック
KR20130086018A (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
JPWO2013171885A1 (ja) 電池モジュール
KR20190012998A (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
JP7301271B2 (ja) 電池パック
CN217719768U (zh) 热管理部件、电池以及用电设备
JP2009252473A (ja) 蓄電装置の冷却構造及び車両
US20240097272A1 (en) Gas-exhausting apparatus, battery cell, battery and electricity-consuming apparatus
KR20140037452A (ko) 전지모듈
KR20190004610A (ko) 냉각 부재를 포함하는 전지
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN116666812A (zh) 冷却板、电池包和用电设备
WO2023141840A1 (zh) 电极组件、电池单体、电池及用电设备
JP2023546083A (ja) 電池モジュールおよびこれを含む電池パック
KR102663793B1 (ko) 전지 모듈 및 그 제조 방법
CN219303773U (zh) 电池单体、电池及用电装置
CN215600436U (zh) 电池组
US20220376328A1 (en) Secondary battery cooling structure
CN218448207U (zh) 电池和用电设备
CN220544083U (zh) 电池及电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560360

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035704

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021828995

Country of ref document: EP

Effective date: 20220930

NENP Non-entry into the national phase

Ref country code: DE