WO2021258542A1 - 一种低转矩脉动ipm伺服电机 - Google Patents

一种低转矩脉动ipm伺服电机 Download PDF

Info

Publication number
WO2021258542A1
WO2021258542A1 PCT/CN2020/112169 CN2020112169W WO2021258542A1 WO 2021258542 A1 WO2021258542 A1 WO 2021258542A1 CN 2020112169 W CN2020112169 W CN 2020112169W WO 2021258542 A1 WO2021258542 A1 WO 2021258542A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
ipm
motor
hole
servo motor
Prior art date
Application number
PCT/CN2020/112169
Other languages
English (en)
French (fr)
Inventor
王东
钱巍
张建
李金�
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2021258542A1 publication Critical patent/WO2021258542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to a permanent magnet servo motor, in particular to a low torque ripple IPM servo motor.
  • the permanent magnet servo motor has a flexible and simple structure. According to the mutual position of the permanent magnet and the rotor core, it is mainly divided into a surface-mounted permanent magnet (SPM) servo motor and a built-in permanent magnet (Interior Permanent Magnet, IPM) servo There are two types of motors. Compared with SPM servo motors, IPM servo motors have higher power density and overload capacity, which has attracted the attention of various servo motor manufacturers. However, due to the relatively small air gap of the IPM servo motor, its cogging torque and torque ripple are relatively large, thereby reducing the torque output quality of the motor. Generally, the torque performance of the motor is improved by adopting closed slot, skewed slot and oblique pole design schemes, and by sacrificing the torque density of the motor.
  • the cogging torque is the rate of change of the air gap magnetic field energy storage with respect to the rotor position ⁇ , which can be expressed as
  • ⁇ ( ⁇ ) represents the air gap permeability
  • B ( ⁇ , ⁇ ) represents the air gap magnetic density
  • L a represents the axial length of the iron core; R 1 and R 2 respectively represent the outer radius and inner radius of the air gap; Q represents the number of stator slots; p represents the number of motor pole pairs; ⁇ 0 is the relative permeability; N L Represents the least common multiple of the number of stator slots and the number of rotor poles.
  • Fan Ying of Southeast University and Xu Rong of Shanghai Institute of Electrical Engineering have successively studied the cogging torque suppression method of IPM servo motor with V-shaped magnets, and proposed an improvement method for the surface slotting of the rotor core pole shoe.
  • the rotor slotting can be Under the premise of ensuring other performance of the motor, the cogging torque is reduced, the torque ripple of the motor is reduced, the control accuracy of the motor is improved, and the vibration and noise of the motor are effectively improved.
  • this method can also adjust the salient pole rate of the motor to improve the power density and overload capacity of the motor.
  • the method is easy to implement, and the silicon steel sheet can be quickly stamped by a punching machine to form an integral body at one time.
  • the purpose of the present invention is to overcome the defects of the prior art and propose a low torque ripple IPM servo motor, which adopts a rotor core to set up a pole piece magnetic hole to suppress the torque ripple of the motor, which is suitable for mass production.
  • the low torque ripple IPM servo motor proposed by the present invention includes a motor rotor iron core.
  • the motor rotor iron core is uniformly provided with a number of permanent magnet slots along the circumference of the section, and permanent magnets are arranged in the permanent magnet slots; it is characterized in that: the motor rotor At least one pole piece magnetic adjustment hole is arranged between each pair of adjacent permanent magnetic slots of the iron core near the surface of the iron core (located at the position of the pole piece of the magnetic pole).
  • pole piece magnetic adjustment holes between the adjacent permanent magnet slots is an odd number, one of them is located on the pole piece center line, and the others are symmetrical about the pole piece center; if the adjacent permanent magnet slots are between If the number of magnetic pole piece tuning holes is an even number, the pole piece magnetic tuning holes are symmetrically distributed with respect to the center line of the pole piece.
  • the cross-sectional shape of the pole piece magnetic adjustment hole may be a circular hole, a polygonal hole such as a triangular hole, a rectangular hole, etc., a composite hole composed of a circle and a polygon, an irregular shape hole, or a regular shape.
  • the shortest distance l min between the pole piece magnetic adjustment hole and the surface of the rotor core should be greater than 0.5 times the air gap length ⁇ , and less than 3 times the air gap length ⁇ , that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • pole piece magnetic adjustment holes between the adjacent permanent magnet slots are round holes and the number is 3
  • the pole piece magnetic adjustment holes on both sides of the pole piece center line have the same radius
  • the magnetic adjustment holes of the pole piece are round holes and the number is 4
  • the radii of the magnetic adjustment holes of the symmetrical positions on both sides of the center line of the pole piece are equal.
  • pole piece magnetic adjustment hole is a composite hole composed of a circular hole and a polygon, its arc should be close to the air gap side.
  • pole piece magnetic adjustment hole When the pole piece magnetic adjustment hole is an irregularly shaped hole, its overall outline should be parallel to the direction of the magnetic force line, and the wider part should be close to the air gap side, and the narrow part should be away from the air gap side.
  • the motor rotor iron core may be a spoke-type IPM motor rotor iron core, and may also be a "one"-shaped, V-shaped, U-shaped, and W-shaped IPM motor rotor core.
  • the IPM servo motor may be an inner rotor IPM motor, an outer rotor type IPM motor, a linear IPM motor, or an axial magnetic field type IPM motor.
  • the present invention proposes that the rotor iron core is slotted near the air gap side to adjust the air gap permeance and the air gap magnetic density distribution, thereby improving the cogging torque and reducing the torque pulsation of the motor.
  • the low torque ripple IPM servo motor of the present invention can further reduce the cogging torque and torque ripple of the motor and improve the torque output performance of the motor compared with the IPM servo motor without magnetic adjustment hole; Compared with the IPM motor, it has higher power density and torque density, and has higher production efficiency and lower production cost; the IPM motor with magnetic adjustment holes on the surface of the rotor core has lower wind milling Loss, lower production cost and higher production efficiency.
  • Figure 1(a) is a cross-sectional view of a low torque ripple IPM servo motor, in which: 1 is the rotor side rotor core, 2 is the rotor side permanent magnet, 3 is the stator side stator core, and 4 is the stator side armature winding.
  • Figure 1(b) is a schematic diagram of the rotor core on the rotor side (3 circular hole-shaped pole piece magnetic adjustment holes), among which: 1.1, 1.2 and 1.3 are the pole piece magnetic adjustment holes.
  • Figure 2 is a schematic diagram of the rotor core on the rotor side (1 round hole-shaped pole piece magnetic adjustment hole).
  • Figure 3 is a schematic diagram of the rotor core on the rotor side (2 round hole-shaped pole piece magnetic adjustment holes).
  • Figure 4 is a schematic diagram of the rotor core on the rotor side (4 round hole-shaped pole piece magnetic adjustment holes).
  • Figure 5 is a schematic diagram of the rotor core on the rotor side (2 rectangular pole piece magnetic adjustment holes). .
  • Figure 6 is a schematic diagram of the rotor core on the rotor side (2 pole piece magnetic adjustment holes, which are composite holes composed of a circle and a polygon).
  • Figure 7 is a schematic diagram of the rotor core on the rotor side (2 pole piece magnetic adjustment holes, which are composite holes composed of a circle and a polygon).
  • Figure 8 is a schematic diagram of the rotor core on the rotor side (3 pole-piece magnetic adjustment holes, two irregular holes, and one round hole).
  • Figure 9 is an example of finite element calculation of the magnetic field of the motor after the rotor core is slotted on the rotor side.
  • Fig. 10 is a comparison diagram of cogging torque optimization before and after the opening of the rotor core on the rotor side.
  • Figure 11 is a comparison diagram of electromagnetic torque optimization before and after the opening of the rotor core on the rotor side.
  • FIG. 1(a) it is a cross-sectional view of a low torque ripple IPM servo motor
  • 1 is the rotor side rotor core
  • 2 is the rotor side permanent magnet
  • 3 is the stator side stator core
  • 4 is the stator side armature winding .
  • Figure 1(b) it is the corresponding rotor core.
  • the round hole-shaped pole piece magnetic adjustment hole 1.1 and the round hole-shaped pole piece magnetic adjustment hole 1.3 Symmetrical about the center line of the magnetic poles, the circular hole-shaped pole piece magnetic adjustment hole 1.2 is located on the magnetic pole center line, and the distance from the center of the circular hole-shaped pole piece magnetic adjustment hole 1.2 to the center of the motor may not be equal to the circular hole-shaped pole piece magnetic adjustment hole 1.1 or a circle.
  • the distance between the center of the hole-shaped pole piece magnetic adjustment hole and the center of the motor is 1.2.
  • the rotor iron core has a circular hole-shaped pole piece magnetic adjustment hole near the surface of the iron core between two adjacent permanent magnetic slots, and the pole piece magnetic adjustment hole center is located on the center of the magnetic pole.
  • the shortest distance l min from the circular hole-shaped pole piece magnetic tuning hole to the surface of the rotor core is greater than 0.5 times the air gap length and less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • the rotor core near the surface of the iron core between two adjacent permanent magnet slots has two round hole-shaped pole piece magnetic adjustment holes, namely, round hole-shaped pole piece magnetic adjustment holes 1.1 and The round hole-shaped pole piece magnetic adjustment hole 1.2, the corresponding radii are R 1 and R 2 respectively .
  • the air gap length is less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • FIG. 5 there are 2 rectangular pole piece magnetic adjustment holes (1.1, 1.2) and 2 rectangular pole piece magnetic adjustment holes near the surface of the iron core between two adjacent permanent magnetic slots of the rotor iron core.
  • the magnetic poles are symmetrical about the center line, their sizes are equal, and the shortest distance l min from the rectangular hole to the rotor core surface is greater than 0.5 times the air gap length and less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • the rotor core has 2 pole piece magnetic adjustment holes near the surface of the iron core between two adjacent permanent magnetic slots, which are composite holes composed of a circular hole and a triangle and are about the center line of the magnetic pole. Symmetrical, the relevant feature size is equal, and its arc is close to the air gap side, and the vertex corresponding to the triangle should be away from the air gap side.
  • the shortest distance l min between the pole piece tuning hole and the rotor core surface is greater than 0.5 times the air gap length and less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • the rotor iron core has 2 irregular pole piece adjustment holes near the surface of the iron core between two adjacent permanent magnet slots, and they are symmetrical about the center line of the magnetic pole, and the relevant feature sizes are equal.
  • the overall profile should be parallel to the direction of the magnetic field lines, and the wider part should be close to the air gap side, and the narrow part should be away from the air gap side.
  • the shortest distance l min between the pole piece tuning hole and the rotor core surface is greater than 0.5 times the air gap length and less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • the rotor core has 3 pole piece magnetic adjustment holes (1.1, 1.2, 1.3) near the surface of the iron core between two adjacent permanent magnet slots, among which the pole piece magnetic adjustment holes ( 1.1, 1.3) are irregular holes and symmetrical about the centerline of the magnetic poles.
  • the overall outline of the hole should be parallel to the direction of the magnetic force line, and the wider part should be close to the air gap side, and the narrow part should be away from the air gap side.
  • the pole piece tuning hole 1.2 is on the magnetic pole center line.
  • the shortest distance l min between the pole piece tuning hole and the surface of the rotor core is greater than 0.5 times the air gap length and less than 3 times the air gap length, that is, 0.5 ⁇ l min ⁇ 3 ⁇ .
  • the low-torque pulsation IPM servo motor of the present invention can not only be applied to the industrial field of servo IPM motor, but also can be widely used in the field of domestic electrical appliances, new energy IPM motors, all-electric aircraft motors and other transportation fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种低转矩脉动IPM伺服电机,包括电机转子铁芯(1),所述电机转子铁芯(1)沿断面圆周均匀设置若干永磁槽,永磁槽内设永磁体(2)。所述电机转子铁芯(1)每对相邻的永磁槽之间靠近铁芯表面处均设置至少一个极靴调磁孔(1.1,1.2,1.3)。与未开调磁孔IPM伺服电机相比,可进一步降低电机的齿槽转矩和转矩脉动,提高电机转矩输出性能。与通过斜槽或者斜极的IPM电机相比,具有更高的功率密度和转矩密度,并具有较高的生产效率和较低的制作成本。与转子铁芯表面开调磁孔的IPM电机,具有较低的风磨损耗、更低的制作成本和更高的生产效率。

Description

一种低转矩脉动IPM伺服电机 技术领域
本发明涉及一种永磁伺服电机,具体说是一种低转矩脉动IPM伺服电机。
背景技术
永磁伺服电机,结构灵活简单,根据永磁体和转子铁芯相互位置主要分为表贴式永磁(Surface-mounted Permanent Magnet,SPM)伺服电机和内置式永磁(Interior Permanent Magnet,IPM)伺服电机两类。与SPM伺服电机相比,而IPM伺服电机具有更高的功率密度和过载能力,已引起各伺服电机制造商的关注。然而,由于IPM伺服电机气隙相对较小,其齿槽转矩和转矩波动相对较大,从而降低电机的转矩输出质量。一般通过采用闭口槽、斜槽和斜极设计方案,通过牺牲电机的转矩密度,来改善电机的转矩性能。
根据能量法,齿槽转矩为气隙磁场储能对于转子位置α的变化率,可表示为
Figure PCTCN2020112169-appb-000001
式中,λ(θ)表示气隙磁导,B(θ,α)表示气隙磁密。通过傅里叶展开,可得
Figure PCTCN2020112169-appb-000002
将式(2)代入式(1),齿槽转矩表达式可具体可表示为
Figure PCTCN2020112169-appb-000003
式中,L a表示铁芯轴向长度;R 1和R 2分别表示气隙外半径和内半径;Q表示定子槽数;p表 示电机极对数;μ 0为相对磁导率;N L表示定子槽数和转子极数的最小公倍数。
通过式(3)可知,调整气隙相对磁导或者气隙磁密,可以优化电机的齿槽转矩。基于此,国内外众多学者和工程技术人员作了大量的研究工作。
重庆大学学者韩力等提出永磁体表面开矩形槽的SPM电机齿槽转矩抑制方法,通过优化永磁槽的大小尺寸、所在位置和不同数量,有限元计算结果表明,可有效削弱电机的齿槽转矩。此外,该方法通过在磁极表面开不同数量的矩形槽,还可以进一步增大转子磁极表面积,改善散热性能,降低转子侧永磁体的高温退磁风险。。
东南大学樊瑛和上海电机学院徐蓉等先后对V型磁钢的IPM伺服电机齿槽转矩抑制方法进行了研究,并提出了转子铁芯极靴表面开槽的改善方法,转子开槽可以在保证电机其他性能的前提下减小齿槽转矩,降低电机的转矩脉动,提高电机的控制精度,有效改善电机的振动和噪声。此外,通过该方法还可以调整电机的凸极率,改善电机的功率密度和过载能力。该方法易于实现,可以通过冲床对硅钢片快速冲压,一次整体成型。
当前,国内外伺服企业在IPM伺服电机转矩脉动抑制技术方面尚处在探索阶段,尚未推出采用特殊抑制转矩脉动策略的IPM伺服电机产品。
发明内容
本发明目的在于,克服现有技术存在的缺陷,提出了一种低转矩脉动IPM伺服电机,采用转子铁芯设置极靴调磁孔抑制电机的转矩脉动,适宜批量化大规模生产。
本发明提出的低转矩脉动IPM伺服电机,包括电机转子铁芯,所述电机转子铁芯沿断面圆周均匀设置若干永磁槽,永磁槽内设永磁体;其特征是:所述电机转子铁芯每对相邻的永磁槽之间靠近铁芯表面处(位于磁极极靴部位)均设置至少一个极靴调磁孔。
若所述相邻的永磁槽之间的极靴调磁孔的数量为奇数,则其中一个位于极靴中心线上, 其余关于极靴中心对称;若所述相邻的永磁槽之间的极靴调磁孔的数量为偶数,则所述极靴调磁孔关于极靴中心线对称分布。
所述极靴调磁孔的断面形状,可以为圆形孔,可以为三角形孔、矩形孔等多边形孔,可以为圆形和多边形构成的复合孔,可以为不规则形状孔,还可以为规则形状孔和不规则形状孔构成的复合孔。
所述极靴调磁孔距离转子铁芯表面的最短距离l min应大于0.5倍气隙长度δ,且小于3倍气隙长度δ,即满足0.5δ<l min<3δ。
所述相邻的永磁槽之间的极靴调磁孔为圆孔且数量为3时,极靴中心线两侧的极靴调磁孔半径相等,;所述相邻的永磁槽之间的极靴调磁孔为圆孔且数量为4时,极靴中心线两侧对称位置的极靴调磁孔半径相等。
所述极靴调磁孔,若为圆形孔和多边形构成的复合孔,其圆弧应靠近气隙侧。
所述极靴调磁孔为不规则形状孔时,其外型整体轮廓应平行于磁力线方向,并且较宽部分应靠近气隙侧,较窄部分应背离气隙侧。
所述电机转子铁芯可以是辐条型IPM电机转子铁芯,还可以是“一”字型、V型、U型和W型的IPM电机转子铁芯。
所述IPM伺服电机,既可以是内转子IPM电机,也可以是外转子型IPM电机、直线型IPM电机、轴向磁场型IPM电机。
本发明通过齿槽转矩数学模型的分析,提出转子铁芯靠近气隙侧开槽调整气隙磁导,调整气隙磁密分布,从而可以改善齿槽转矩和降低电机的转矩脉动。
本发明低转矩脉动IPM伺服电机,与未开调磁孔IPM伺服电机相比,可进一步降低电机的齿槽转矩和转矩脉动,提高电机转矩输出性能;与通过斜槽或者斜极的IPM电机相比,具 有更高的功率密度和转矩密度,并具有较高的生产效率和较低的制作成本;与转子铁芯表面开调磁孔的IPM电机,具有较低的风磨损耗、更低的制作成本和更高的生产效率。
附图说明
图1(a)为低转矩脉动IPM伺服电机截面图,其中:1为转子侧转子铁芯,2为转子侧永磁体,3为定子侧定子铁芯,4为定子侧电枢绕组。
图1(b)为转子侧转子铁芯示意图(3个圆孔形极靴调磁孔),其中:1.1、1.2和1.3为极靴调磁孔。
图2为转子侧转子铁芯示意图(1个圆孔形极靴调磁孔)。
图3为转子侧转子铁芯示意图(2个圆孔形极靴调磁孔)。
图4为转子侧转子铁芯示意图(4个圆孔形极靴调磁孔)。
图5为转子侧转子铁芯示意图(2个矩形极靴调磁孔)。。
图6为转子侧转子铁芯示意图(2个极靴调磁孔,为圆形和多边形构成的复合孔)。
图7为转子侧转子铁芯示意图(2个极靴调磁孔,为圆形和多边形构成的复合孔)。
图8为转子侧转子铁芯示意图(3个极靴调磁孔,两个不规则孔,一个圆孔)。
图9为转子侧转子铁芯开槽后一例有限元计算电机磁场图。
图10为转子侧转子铁芯开孔前后的齿槽转矩优化对比图。
图11为转子侧转子铁芯开孔前后的电磁转矩优化对比图。
具体实施方式
结合附图,对本发明的技术方案做进一步详细的说明。
实施例1:
如图1(a)所示,为低转矩脉动IPM伺服电机截面图,1为转子侧转子铁芯,2为转子侧永 磁体,3为定子侧定子铁芯,4为定子侧电枢绕组。为进一步说明实施方案,如图1(b)所示,为对应的转子铁芯。每相邻的两个永磁槽之间的铁芯靠近表面处均有3个圆孔形极靴调磁孔,其中圆孔形极靴调磁孔1.1和圆孔形极靴调磁孔1.3关于磁极中心线对称,圆孔形极靴调磁孔1.2位于磁极中心线上,圆孔形极靴调磁孔1.2圆心到电机中心的距离可以不等于圆孔形极靴调磁孔1.1或圆孔形极靴调磁孔1.2圆心到电机中心的距离。圆孔形极靴调磁孔1.1、圆孔形极靴调磁孔1.2和圆孔形极靴调磁孔1.3半径分别为R 1、R 2和R 3,三个圆孔半径大小满足R 1=R 3<R 2,并且3个圆孔距离转子铁芯表面最短距离l min均应大于0.5倍气隙长度(定义单边气隙长度为δ),且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例2:
如图2所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有1个圆孔形极靴调磁孔,极靴调磁孔圆心位于磁极中心上,并且该圆孔形极靴调磁孔距离转子铁芯表面最短距离l min大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例3:
如图3所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有2个圆孔形极靴调磁孔,即圆孔形极靴调磁孔1.1和圆孔形极靴调磁孔1.2,对应半径分别为R 1和R 2,其中圆孔形极靴调磁孔1.1和圆孔形极靴调磁孔1.2关于磁极中心线对称,其半径大小满足R 1=R 2,并且圆孔形极靴调磁孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例4:
如图4所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有4个圆孔形极靴调磁孔(1.1,1.2,1.3,1.4),对应半径分别为R 1,R 2,R 3,R 4,,R 1=R 4,,R 2=R 3,并且圆孔形极 靴调磁孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例5:
如图5所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有2个矩形极靴调磁孔(1.1,1.2),2个矩形极靴调磁孔关于磁极中心线对称,其大小尺寸均相等,并且矩形孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例6:
如图6所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有2个极靴调磁孔,为圆孔和三角形构成的复合孔且关于磁极中心线对称,相关特征尺寸相等,并且其圆弧靠近气隙侧,三角形对应的顶点应背离气隙侧。此外,极靴调磁孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例7:
如图7所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有2个不规则极靴调磁孔且关于磁极中心线对称,相关特征尺寸相等,其外型整体轮廓应平行于磁力线方向,并且较宽部分应靠近气隙侧,较窄部分应背离气隙侧。此外,极靴调磁孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度,且小于3倍气隙长度,即0.5δ<l min<3δ。
实施例8:
如图8所示,转子铁芯每相邻的两个永磁槽之间的铁芯靠近表面处均有3个极靴调磁孔(1.1,1.2,1.3),其中极靴调磁孔(1.1,1.3)为不规则孔,并且关于磁极中心线对称,其外型整体轮廓应平行于磁力线方向,并且较宽部分应靠近气隙侧,较窄部分应背离气隙侧。极靴调磁 孔1.2在磁极中心线上,此外,极靴调磁孔距离转子铁芯表面最短距离l min均大于0.5倍气隙长度且小于3倍气隙长度,即0.5δ<l min<3δ。
本发明低转矩脉动IPM伺服电机,既可以应用于伺服IPM电机工业领域,也可以广泛应用于生活电器电机领域,新能源IPM电机以及全电飞机电机等交通领域。

Claims (8)

  1. 一种低转矩脉动IPM伺服电机,包括电机转子铁芯,所述电机转子铁芯沿断面圆周均匀设置若干永磁槽,永磁槽内设永磁体;其特征是:所述电机转子铁芯每对相邻的永磁槽之间靠近铁芯表面处均设置至少一个极靴调磁孔。
  2. 根据权利要求1所述低转矩脉动IPM伺服电机,其特征是:
    若所述相邻的永磁槽之间的极靴调磁孔的数量为奇数,则其中一个位于极靴中心线上,其余关于极靴中心对称;
    若所述相邻的永磁槽之间的极靴调磁孔的数量为偶数,则所述极靴调磁孔关于极靴中心线对称分布。
  3. 根据权利要求1所述低转矩脉动IPM伺服电机,其特征是:所述极靴调磁孔的断面形状为圆形孔、多边形孔、圆形或多边形构成的复合孔,或为不规则形状孔、规则形状和不规则形状构成的复合孔。
  4. 根据权利要求3所述低转矩脉动IPM伺服电机,其特征是:所述极靴调磁孔,若为圆形孔和多边形构成的复合孔,其圆弧靠近气隙侧。
  5. 根据权利要求3所述低转矩脉动IPM伺服电机,其特征是:所述极靴调磁孔为不规则形状孔时,其外型整体轮廓应平行于磁力线方向,并且较宽部分应靠近气隙侧,较窄部分应背离气隙侧。
  6. 根据权利要求1所述低转矩脉动IPM伺服电机,其特征是:所述极靴调磁孔距离转子铁芯表面的最短距离l min大于0.5倍气隙长度δ,且小于3倍气隙长度δ,即满足0.5δ<lmin<3δ。
  7. 根据权利要求1所述低转矩脉动IPM伺服电机,其特征是:所述相邻的永磁槽之间的极靴调磁孔为圆孔且数量为3时,极靴中心线两侧的极靴调磁孔半径相等;所述相邻的永磁 槽之间的极靴调磁孔为圆孔且数量为4时,极靴中心线两侧对称位置的极靴调磁孔半径相等。
  8. 根据权利要求1所述低转矩脉动IPM伺服电机,其特征是:所述IPM伺服电机,为内转子IPM电机、外转子型IPM电机、直线型IPM电机或轴向磁场型IPM电机。
PCT/CN2020/112169 2020-06-22 2020-08-28 一种低转矩脉动ipm伺服电机 WO2021258542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010570862.3A CN111614179A (zh) 2020-06-22 2020-06-22 一种低转矩脉动ipm伺服电机
CN202010570862.3 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258542A1 true WO2021258542A1 (zh) 2021-12-30

Family

ID=72202681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112169 WO2021258542A1 (zh) 2020-06-22 2020-08-28 一种低转矩脉动ipm伺服电机

Country Status (2)

Country Link
CN (1) CN111614179A (zh)
WO (1) WO2021258542A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421924B (zh) * 2020-11-09 2021-09-10 广东威灵电机制造有限公司 电机和家用电器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611266A (zh) * 2011-01-18 2012-07-25 德昌电机(深圳)有限公司 洗衣机用电机、干衣机用电机、电机及电机转子的制造方法
CN103988399A (zh) * 2011-12-23 2014-08-13 三菱电机株式会社 永磁型电动机
CN104937815A (zh) * 2013-01-24 2015-09-23 三菱电机株式会社 永磁体式旋转电机
JP2018011456A (ja) * 2016-07-14 2018-01-18 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. 永久磁石モータ
CN212210630U (zh) * 2020-06-22 2020-12-22 南京埃斯顿自动化股份有限公司 一种低转矩脉动ipm伺服电机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636480B1 (fr) * 1988-08-01 1995-04-14 Alsthom Gec Moteur synchrone a aimants permanents
CN1949628A (zh) * 2006-11-01 2007-04-18 宁波骏腾国际工贸有限公司 聚磁型低波动永磁无刷轮电机
KR102390035B1 (ko) * 2017-06-21 2022-04-25 엘지전자 주식회사 자속 집중형 모터
CN107240975B (zh) * 2017-08-09 2023-05-26 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN110620455B (zh) * 2018-06-20 2021-07-06 广东美芝制冷设备有限公司 永磁电机和压缩机
CN209104914U (zh) * 2018-10-31 2019-07-12 浙江新能机电科技有限公司 一种永磁电机的转子结构
CN110022016B (zh) * 2019-04-24 2024-05-28 广东金霸智能科技股份有限公司 一种转子芯片及其转子和电机
CN110350693B (zh) * 2019-08-02 2021-06-11 珠海格力电器股份有限公司 转子组件和永磁电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611266A (zh) * 2011-01-18 2012-07-25 德昌电机(深圳)有限公司 洗衣机用电机、干衣机用电机、电机及电机转子的制造方法
CN103988399A (zh) * 2011-12-23 2014-08-13 三菱电机株式会社 永磁型电动机
CN104937815A (zh) * 2013-01-24 2015-09-23 三菱电机株式会社 永磁体式旋转电机
JP2018011456A (ja) * 2016-07-14 2018-01-18 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. 永久磁石モータ
CN212210630U (zh) * 2020-06-22 2020-12-22 南京埃斯顿自动化股份有限公司 一种低转矩脉动ipm伺服电机

Also Published As

Publication number Publication date
CN111614179A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
US8937420B2 (en) Rotor of permanent magnet embedded motor, blower, and compressor
JP4672083B2 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
JP5361942B2 (ja) 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
US20110163624A1 (en) Permanent magnet type rotary electric machine
US20140175932A1 (en) Motor and rotor thereof
EP1714374A1 (en) Electrical rotary machine and electromagnetic apparatus
WO2010116921A1 (ja) 磁気回路構造体
CN210246575U (zh) 电机、压缩机及制冷设备
JP2010045974A (ja) 永久磁石形同期回転電機、それを備える車両、昇降機、流体機械および加工機
Pei et al. Studies on grain-oriented silicon steel used in traction motors
WO2021258542A1 (zh) 一种低转矩脉动ipm伺服电机
JP2010183792A (ja) 電動機
CN212210630U (zh) 一种低转矩脉动ipm伺服电机
JP5258944B2 (ja) 電動機及び分割固定子鉄心の製造方法
WO2017208317A1 (ja) 回転子、電動機、圧縮機、送風機、及び空気調和機
CN112003399A (zh) 转子、电机、压缩机及空调器、车辆
CN207098796U (zh) 转子及压缩机
CN210167872U (zh) 转子、电机、压缩机及制冷设备
CN114069918A (zh) 转子冲片、转子铁芯、转子、电机和车辆
JP4411663B2 (ja) 永久磁石形同期回転電機、それを備える車両、昇降機、流体機械および加工機
CN221305582U (zh) 电机转子和永磁同步电机
CN110752682A (zh) 一种外转子永磁电机
CN218867999U (zh) 转子冲片、转子铁芯、转子、电机、压缩机和车辆
CN221828685U (zh) 一种电机定子、电机及压缩机
CN221042419U (zh) 电机、压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941861

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941861

Country of ref document: EP

Kind code of ref document: A1