WO2021258490A1 - 一种滤波装置、一种射频前端装置及一种无线通信装置 - Google Patents

一种滤波装置、一种射频前端装置及一种无线通信装置 Download PDF

Info

Publication number
WO2021258490A1
WO2021258490A1 PCT/CN2020/104851 CN2020104851W WO2021258490A1 WO 2021258490 A1 WO2021258490 A1 WO 2021258490A1 CN 2020104851 W CN2020104851 W CN 2020104851W WO 2021258490 A1 WO2021258490 A1 WO 2021258490A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protrusion
electrode layer
cavity
substrate
Prior art date
Application number
PCT/CN2020/104851
Other languages
English (en)
French (fr)
Inventor
虞成城
曹艳杰
王伟
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Priority to US17/016,677 priority Critical patent/US11646715B2/en
Publication of WO2021258490A1 publication Critical patent/WO2021258490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present invention relates to the field of semiconductor technology. Specifically, the present invention relates to a filter device, a radio frequency front-end device and a wireless communication device.
  • the radio frequency (RF) front-end chips of wireless communication equipment include power amplifiers, antenna switches, radio frequency filters, multiplexers, and low noise amplifiers.
  • the radio frequency filter includes: piezoelectric surface acoustic wave (Surface Acoustic Wave, SAW) filter, piezoelectric bulk acoustic wave (Bulk Acoustic Wave, BAW) filter, micro-electro-mechanical system (Micro-Electro-Mechanical System, MEMS) filter Filters, integrated passive devices (IPD) filters, etc.
  • SAW resonators and BAW resonators have higher quality factor values (Q values), and they are made into radio frequency filters with low insertion loss and high out-of-band suppression.
  • the Q value is the value of the quality factor of the resonator, defined as the center frequency divided by the 3dB bandwidth of the resonator. Filters made of SAW resonators and BAW resonators are subject to the electro-mechanical coupling factor of piezoelectric materials, and the passband bandwidth is limited, while IPD has a wider range than SAW filters and BAW filters The passband.
  • Filters formed by combining resonators (for example, SAW resonators or BAW resonators) and IPD can broaden the passband bandwidth and at the same time have high out-of-band rejection.
  • electrically connecting a monolithic resonator and a monolithic IPD will take up more space in the RF front-end chip and introduce higher cost of production.
  • RF front-end chips will include more RF front-end modules than in the 4G era. Each module includes multiple RF filters, but the size of the chip needs to be further reduced, so the space optimization will be the RF filter An important consideration in design.
  • the problem solved by the present invention is to provide a filter device that can broaden the passband bandwidth, has high out-of-band suppression, and reduces the space occupied in the RF front-end chip.
  • an embodiment of the present invention provides a filter device, including: a substrate, at least one resonant device, a passive device, and a connector; wherein the at least one resonant device includes a first side and the first side is opposite to each other. On the second side of the second side, the substrate is located on the first side, and the passive device is located on the second side; wherein the at least one resonant device and the passive device are connected by the connecting member. Wherein, the substrate, the at least one resonant device and the passive device are located in one chip.
  • the at least one resonance device includes but is not limited to at least one of the following: a surface acoustic wave (SAW) resonance device, a bulk acoustic wave (BAW) resonance device.
  • SAW surface acoustic wave
  • BAW bulk acoustic wave
  • the passive device includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. In some embodiments, the passive device includes, but is not limited to, an integrated passive device (IPD), wherein the integrated passive device is formed by a semiconductor process.
  • IPD integrated passive device
  • the connector includes but is not limited to at least one of the following: bumps, connection pads, electrical wires, and through holes.
  • the at least one resonant device includes a first resonant device
  • the first resonant device includes: a first cavity; a first electrode layer, at least a part of the first electrode layer is located in the first In the cavity or on the first cavity; a first piezoelectric layer covering the first cavity, and the first cavity and the first piezoelectric layer are located on at least a part of the first electrode layer
  • the second electrode layer is located on the first piezoelectric layer, and the first electrode layer and the second electrode layer are located on both sides of the first piezoelectric layer.
  • the substrate includes the first cavity and a first groove, and the first groove is located on one side of the first cavity in a horizontal direction and communicates with the first cavity
  • the first end of the first electrode layer is located in the first cavity, the second end of the first electrode layer is located in the first groove, and the depth of the first groove is equal to the The thickness of the first electrode layer;
  • the first piezoelectric layer is located on the first electrode layer, the first piezoelectric layer is a flat layer, and also covers the substrate.
  • the substrate includes the first cavity; the first electrode layer is located on the first cavity and covers the first cavity; the first piezoelectric layer is located on the Above the substrate, the first electrode layer is covered.
  • the first piezoelectric layer includes a first protrusion, the first protrusion is located above the first electrode layer; the second electrode layer includes a second protrusion, the second The protrusion is located on the first protrusion.
  • the shape of the first protrusion includes: trapezoid and rectangle; the shape of the second protrusion includes: trapezoid and rectangle.
  • the first cavity is located on the substrate; the first electrode layer is located on the substrate, the first electrode layer includes a third protrusion, and the third protrusion is located on the substrate.
  • the first cavity and the first piezoelectric layer are located on both sides of the third protrusion; the first piezoelectric layer is located on the substrate, and the first piezoelectric layer
  • the layer includes a fourth protrusion, the fourth protrusion is located above the third protrusion; the second electrode layer includes a fifth protrusion, and the fifth protrusion is located on the fourth protrusion.
  • the shape of the third protrusion includes: trapezoid, arch, and rectangle; the shape of the fourth protrusion includes: trapezoid, arch, and rectangle; the shape of the fifth protrusion includes: Trapezoidal, arched, rectangular.
  • the first resonance device further includes: a first intermediate layer, the substrate and the first piezoelectric layer are located on both sides of the first intermediate layer, and the first intermediate layer is used for blocking For leaky waves, the first intermediate layer includes the first cavity, and the material of the first intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the first intermediate layer further includes a second groove, the second groove being located on one side of the first cavity in the horizontal direction and communicating with the first cavity; the The first end of the first electrode layer is located in the first cavity, the second end of the first electrode layer is located in the second groove, and the depth of the second groove is equal to that of the first electrode
  • the thickness of the layer; the first piezoelectric layer is located on the first electrode layer, the first piezoelectric layer is a flat layer, and also covers the first intermediate layer.
  • the first electrode layer is located on the first cavity and covers the first cavity; the first piezoelectric layer is located on the first intermediate layer and covers the first cavity. Electrode layer.
  • the first resonance device further includes: a second intermediate layer, the substrate and the first piezoelectric layer are located on both sides of the second intermediate layer, and the second intermediate layer is used for blocking For leaky waves, the first cavity is located on the second intermediate layer, and the material of the second intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the first electrode layer is located on the second intermediate layer, the first electrode layer includes a sixth protrusion, the sixth protrusion is located on the first cavity, and the The first cavity and the first piezoelectric layer are located on both sides of the sixth protrusion; the first piezoelectric layer is located on the second intermediate layer, and the first piezoelectric layer includes a seventh protrusion , The seventh protrusion is located above the sixth protrusion; the second electrode layer includes an eighth protrusion, and the eighth protrusion is located on the seventh protrusion.
  • the shape of the sixth protrusion includes: trapezoid, arch, and rectangle; the shape of the seventh protrusion includes: trapezoid, arch, and rectangle; the shape of the eighth protrusion includes: Trapezoidal, arched, rectangular.
  • the at least one resonant device includes a second resonant device
  • the second resonant device includes: a first reflective layer; a third electrode layer on the first reflective layer; and a second piezoelectric layer , Located above the first reflective layer, covering the third electrode layer; a fourth electrode layer located on the second piezoelectric layer, the third electrode layer and the fourth electrode layer located on the first Two piezoelectric layers on both sides.
  • the first reflective layer is located on the substrate and includes a first sub-reflective layer and a second sub-reflective layer, the first sub-reflective layer and the second sub-reflective layer are alternately placed, The materials of the first sub-reflective layer and the second sub-reflective layer are different.
  • the first reflective layer includes a Bragg reflective layer.
  • the second piezoelectric layer includes a ninth protrusion, the ninth protrusion is located above the third electrode layer; the fourth electrode layer includes a tenth protrusion, the tenth The protrusion is located on the ninth protrusion.
  • the at least one resonant device includes a third resonant device, and the third resonant device includes: a third piezoelectric layer; and a fifth electrode layer on the third piezoelectric layer.
  • the fifth electrode layer includes, but is not limited to, an interdigital transducer.
  • the fifth electrode layer includes a first electrode strip and a second electrode strip, the first electrode strip and the second electrode strip have different polarities, and the first electrode strip and the second electrode strip have different polarities. The second electrode strips are alternately placed.
  • the third resonance device further includes: a third intermediate layer, the third piezoelectric layer is located on the third intermediate layer, the substrate and the third piezoelectric layer are located on the On both sides of the third intermediate layer, the third intermediate layer is used for blocking leakage waves or temperature compensation.
  • the third resonance device further includes: a fourth intermediate layer, the third intermediate layer is located on the fourth intermediate layer, and the substrate and the third intermediate layer are located on the fourth intermediate layer. On both sides of the middle layer, the fourth middle layer is used to block leakage waves.
  • the third resonance device further includes: a second reflective layer, the third piezoelectric layer is located on the second reflective layer, the substrate and the third piezoelectric layer are located on the Both sides of the second reflective layer.
  • the second reflective layer includes a third sub-reflective layer and a fourth sub-reflective layer, the third sub-reflective layer and the fourth sub-reflective layer are alternately placed, and the third sub-reflective layer It is different from the material of the fourth sub-reflective layer.
  • the second reflective layer includes a Bragg reflective layer.
  • the material of the substrate includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, niobium magnesium Lead acid-lead titanate.
  • the at least one resonance device includes a fourth resonance device, the fourth resonance device includes: a sixth electrode layer located on the substrate; wherein the sixth electrode layer includes interdigital transduction Device.
  • the fourth resonance device further includes: a temperature compensation layer on the substrate and covering the sixth electrode layer.
  • An embodiment of the present invention also provides a radio frequency front-end device, which includes: a power amplifying device and at least one filtering device as provided in one of the foregoing embodiments; the power amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including: a low-noise amplifying device and at least one filtering device as provided in one of the foregoing embodiments; the low-noise amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including a multiplexing device, and the multiplexing device includes at least one filtering device as provided in one of the foregoing embodiments.
  • An embodiment of the present invention also provides a wireless communication device, including: an antenna, a baseband processing device, and the radio frequency front-end device provided in one of the foregoing embodiments; the antenna is connected to a first end of the radio frequency front-end device; The baseband processing device is connected to the second end of the radio frequency front-end device.
  • the filter device includes at least one resonance device (for example, BAW resonance device or SAW resonance device) and passive device (for example, IPD), wherein the at least one resonance device
  • the device and the passive device are located in one die, so that the passband bandwidth can be widened, the out-of-band suppression can be high, and the space occupied in the RF front-end chip can be reduced.
  • integrating the resonant device and the passive device into one chip to form a filter device can reduce electrical transmission loss, thereby improving the performance of the filter device.
  • FIG. 1 is a schematic structural diagram of a cross-section A of a filter device 100 according to an embodiment of the present invention
  • FIG. 2a is a schematic structural diagram of a cross-section A of a filter device 200 according to an embodiment of the present invention
  • Figure 2b is a schematic diagram of the structure of a hexagonal crystal
  • Figure 2c(i) is a schematic diagram of the structure of an orthorhombic crystal
  • Figure 2c(ii) is a schematic diagram of the structure of a tetragonal crystal
  • Figure 2c(iii) is a schematic diagram of a cubic crystal structure
  • FIG. 3 is a schematic structural diagram of a cross-section A of a filter device 300 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a cross-section A of a filtering device 400 according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a cross-section A of a filter device 500 according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a cross-section A of a filter device 600 according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a cross-section A of a filtering device 700 according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a cross-section A of a filtering device 800 according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of cross-section A of a filtering device 900 according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of cross-section A of a filter device 1000 according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a cross-section A of a filter device 1100 according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of cross-section A of a filtering device 1200 according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of cross-section A of a filtering device 1300 according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a cross-section A of a filtering device 1400 according to an embodiment of the present invention.
  • 15a is a schematic structural diagram of a cross-section A of a filter device 1500 according to an embodiment of the present invention.
  • 15b is a schematic diagram of an equivalent circuit of a filter device 1500 according to an embodiment of the present invention.
  • 16a is a schematic structural diagram of a cross-section A of a filtering device 1600 according to an embodiment of the present invention.
  • 16b is a schematic structural diagram of a cross-section B of a filter device 1600 according to an embodiment of the present invention.
  • FIG. 16c is a schematic diagram of an equivalent circuit of a filtering device 1600 according to an embodiment of the present invention.
  • FIG. 17a is a schematic structural diagram of cross-section A of a filtering device 1700 according to an embodiment of the present invention.
  • FIG. 17b is a schematic diagram of an equivalent circuit of a filtering device 1700 according to an embodiment of the present invention.
  • FIG. 18a is a schematic structural diagram of cross-section A of a filtering device 1800 according to an embodiment of the present invention.
  • 18b is a schematic diagram of an equivalent circuit of a filtering device 1800 according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram 1900 of the performance of a filtering device according to an embodiment of the present invention.
  • cross-section A and the cross-section B are two cross-sections orthogonal to each other.
  • a monolithic resonant device and a monolithic passive device will occupy more of the RF front-end chip Space, and the introduction of higher production costs.
  • the inventor of the present invention found that integrating a resonant device (e.g., SAW resonant device or BAW resonant device) and a passive device (e.g., IPD) into one chip to form an RF filter device can broaden the passband bandwidth and have a high band External suppression, and reduce the space occupied in the RF front-end chip.
  • a resonant device e.g., SAW resonant device or BAW resonant device
  • a passive device e.g., IPD
  • the inventor of the present invention also found that, compared with electrically connecting a monolithic resonant device and a monolithic passive device, integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission, thereby improving the filtering performance.
  • an embodiment of the present invention provides a filter device, including: a substrate, at least one resonant device, a passive device, and a connector; wherein the at least one resonant device includes a first side and the first side is opposite to each other. On the second side of the second side, the substrate is located on the first side, and the passive device is located on the second side; wherein the at least one resonant device and the passive device are connected by the connecting member.
  • the substrate, the at least one resonant device, and the passive device are located in one chip.
  • the at least one resonance device includes but is not limited to at least one of the following: a surface acoustic wave (SAW) resonance device and a bulk acoustic wave (BAW) resonance device.
  • the passive device includes but is not limited to at least one of the following: capacitors, inductors, resistors, and through holes.
  • the passive device includes but is not limited to an integrated passive device (IPD), wherein the integrated passive device is formed by a semiconductor process.
  • the connecting member includes but is not limited to at least one of the following: bumps, connecting pads, electrical wires, and through holes.
  • integrating a resonant device e.g., SAW resonant device or BAW resonant device
  • a passive device e.g., IPD
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission, thereby improving the filtering performance.
  • the at least one resonant device includes a first resonant device
  • the first resonant device includes: a first cavity; a first electrode layer, at least a part of the first electrode layer is located in the first In the cavity or on the first cavity; a first piezoelectric layer covering the first cavity, and the first cavity and the first piezoelectric layer are located on at least a part of the first electrode layer
  • the second electrode layer is located on the first piezoelectric layer, and the first electrode layer and the second electrode layer are located on both sides of the first piezoelectric layer.
  • the substrate includes the first cavity and a first groove, and the first groove is located on one side of the first cavity in a horizontal direction and communicates with the first cavity
  • the first end of the first electrode layer is located in the first cavity, the second end of the first electrode layer is located in the first groove, and the depth of the first groove is equal to the The thickness of the first electrode layer;
  • the first piezoelectric layer is located on the first electrode layer, the first piezoelectric layer is a flat layer, and also covers the substrate.
  • the substrate includes the first cavity; the first electrode layer is located on the first cavity and covers the first cavity; the first piezoelectric layer is located on the Above the substrate, the first electrode layer is covered.
  • the first piezoelectric layer includes a first protrusion, the first protrusion is located above the first electrode layer; the second electrode layer includes a second protrusion, the second The protrusion is located on the first protrusion.
  • the shape of the first protrusion includes: trapezoid and rectangle; the shape of the second protrusion includes: trapezoid and rectangle.
  • the first cavity is located on the substrate; the first electrode layer is located on the substrate, the first electrode layer includes a third protrusion, and the third protrusion is located on the substrate.
  • the first cavity and the first piezoelectric layer are located on both sides of the third protrusion; the first piezoelectric layer is located on the substrate, and the first piezoelectric layer
  • the layer includes a fourth protrusion, the fourth protrusion is located above the third protrusion; the second electrode layer includes a fifth protrusion, and the fifth protrusion is located on the fourth protrusion.
  • the shape of the third protrusion includes: trapezoid, arch, and rectangle; the shape of the fourth protrusion includes: trapezoid, arch, and rectangle; the shape of the fifth protrusion includes: Trapezoidal, arched, rectangular.
  • the first resonance device further includes: a first intermediate layer, the substrate and the first piezoelectric layer are located on both sides of the first intermediate layer, and the first intermediate layer is used for blocking For leaky waves, the first intermediate layer includes the first cavity, and the material of the first intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the first intermediate layer further includes a second groove, the second groove being located on one side of the first cavity in the horizontal direction and communicating with the first cavity; the The first end of the first electrode layer is located in the first cavity, the second end of the first electrode layer is located in the second groove, and the depth of the second groove is equal to that of the first electrode
  • the thickness of the layer; the first piezoelectric layer is located on the first electrode layer, the first piezoelectric layer is a flat layer, and also covers the first intermediate layer.
  • the first electrode layer is located on the first cavity and covers the first cavity; the first piezoelectric layer is located on the first intermediate layer and covers the first cavity. Electrode layer.
  • the first resonance device further includes: a second intermediate layer, the substrate and the first piezoelectric layer are located on both sides of the second intermediate layer, and the second intermediate layer is used for blocking For leaky waves, the first cavity is located on the second intermediate layer, and the material of the second intermediate layer includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the first electrode layer is located on the second intermediate layer, the first electrode layer includes a sixth protrusion, the sixth protrusion is located on the first cavity, and the The first cavity and the first piezoelectric layer are located on both sides of the sixth protrusion; the first piezoelectric layer is located on the second intermediate layer, and the first piezoelectric layer includes a seventh protrusion , The seventh protrusion is located above the sixth protrusion; the second electrode layer includes an eighth protrusion, and the eighth protrusion is located on the seventh protrusion.
  • the shape of the sixth protrusion includes: trapezoid, arch, and rectangle; the shape of the seventh protrusion includes: trapezoid, arch, and rectangle; the shape of the eighth protrusion includes: Trapezoidal, arched, rectangular.
  • the at least one resonant device includes a second resonant device
  • the second resonant device includes: a first reflective layer; a third electrode layer on the first reflective layer; and a second piezoelectric layer , Located above the first reflective layer, covering the third electrode layer; a fourth electrode layer located on the second piezoelectric layer, the third electrode layer and the fourth electrode layer located on the first Two piezoelectric layers on both sides.
  • the first reflective layer is located on the substrate and includes a first sub-reflective layer and a second sub-reflective layer, the first sub-reflective layer and the second sub-reflective layer are alternately placed, The materials of the first sub-reflective layer and the second sub-reflective layer are different.
  • the first reflective layer includes a Bragg reflective layer.
  • the second piezoelectric layer includes a ninth protrusion, the ninth protrusion is located above the third electrode layer; the fourth electrode layer includes a tenth protrusion, the tenth The protrusion is located on the ninth protrusion.
  • the at least one resonant device includes a third resonant device, and the third resonant device includes: a third piezoelectric layer; and a fifth electrode layer on the third piezoelectric layer.
  • the fifth electrode layer includes, but is not limited to, an interdigital transducer.
  • the fifth electrode layer includes a first electrode strip and a second electrode strip, the first electrode strip and the second electrode strip have different polarities, and the first electrode strip and the second electrode strip have different polarities. The second electrode strips are alternately placed.
  • the third resonance device further includes: a third intermediate layer, the third piezoelectric layer is located on the third intermediate layer, the substrate and the third piezoelectric layer are located on the On both sides of the third intermediate layer, the third intermediate layer is used for blocking leakage waves or temperature compensation.
  • the third resonance device further includes: a fourth intermediate layer, the third intermediate layer is located on the fourth intermediate layer, and the substrate and the third intermediate layer are located on the fourth intermediate layer. On both sides of the middle layer, the fourth middle layer is used to block leakage waves.
  • the third resonance device further includes: a second reflective layer, the third piezoelectric layer is located on the second reflective layer, the substrate and the third piezoelectric layer are located on the Both sides of the second reflective layer.
  • the second reflective layer includes a third sub-reflective layer and a fourth sub-reflective layer, the third sub-reflective layer and the fourth sub-reflective layer are alternately placed, and the third sub-reflective layer It is different from the material of the fourth sub-reflective layer.
  • the second reflective layer includes a Bragg reflective layer.
  • the material of the substrate includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, niobium magnesium Lead acid-lead titanate.
  • the at least one resonance device includes a fourth resonance device, the fourth resonance device includes: a sixth electrode layer located on the substrate; wherein the sixth electrode layer includes interdigital transduction Device.
  • the fourth resonance device further includes: a temperature compensation layer on the substrate and covering the sixth electrode layer.
  • An embodiment of the present invention also provides a radio frequency front-end device, which includes: a power amplifying device and at least one filtering device as provided in one of the foregoing embodiments; the power amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including: a low-noise amplifying device and at least one filtering device as provided in one of the foregoing embodiments; the low-noise amplifying device is connected to the filtering device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including a multiplexing device, and the multiplexing device includes at least one filtering device as provided in one of the foregoing embodiments.
  • An embodiment of the present invention also provides a wireless communication device, including: an antenna, a baseband processing device, and the radio frequency front-end device provided in one of the foregoing embodiments; the antenna is connected to a first end of the radio frequency front-end device; The baseband processing device is connected to the second end of the radio frequency front-end device.
  • Figures 1 to 14 show a number of specific embodiments of the present invention.
  • the specific embodiments use resonant devices with different structures, but the present invention can also be implemented in other ways than those described here. Therefore, The present invention is not limited by the specific embodiments disclosed below.
  • FIG. 1 is a schematic structural diagram of a cross-section A of a filter device 100 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 100 including: a substrate 101, which is a wafer substrate; at least one resonance device 103, which is located above the substrate 101; and a passive device 105, which is located on the substrate 101. Above the at least one resonant device 103; wherein the at least one resonant device 103 is electrically connected to the passive device 105.
  • the substrate 101 is located on the first side 103a of the at least one resonant device 103, and the passive device 105 is located on the second side 103b of the at least one resonant device 103.
  • the substrate 101, the at least one resonance device 103, and the passive device 105 are integrated in one chip.
  • the material of the substrate 101 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the at least one resonance device 103 includes but is not limited to at least one of the following: SAW resonance device and BAW resonance device.
  • the passive device 105 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • FIG. 2 is a schematic structural diagram of a cross-section A of a filter device 200 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 200 including: a substrate 201, which is a wafer substrate; a BAW resonator device 203, which is located above the substrate 201; and a passive device 205, which is located on the substrate 201. Above the BAW resonant device 203; wherein the BAW resonant device 203 and the passive device 205 are electrically connected through a connector 207.
  • the substrate 201 and the passive device 205 are located on both sides of the BAW resonator device 203 respectively.
  • the substrate 201, the BAW resonator device 203, and the passive device 205 are integrated in one chip.
  • the material of the substrate 201 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 203 includes: an intermediate layer 2031 located on the substrate 201, wherein the upper surface side of the intermediate layer 2031 includes a cavity 2033a and a recess 2033b, and the recess 2033b is located One of the left and right sides of the cavity 2033a (that is, one side in the horizontal direction) is in communication with the cavity 2033a, and the depth of the recess 2033b is smaller than the depth of the cavity 2033a; the electrode layer 2035 , The first end 2035a of the electrode layer 2035 is located in the cavity 2033a, the second end 2035b of the electrode layer 2035 is located in the recess 2033b, the second end 2035b and the first end 2035a In contrast, the depth of the groove 2033b is equal to the thickness of the electrode layer 2035; the piezoelectric layer 2037 is located on the electrode layer 2035, and the substrate 201 and the piezoelectric layer 2037 are located on the middle layer 2031, respectively.
  • the piezoelectric layer 2037 is a flat layer, covering at least the cavity 2033a; and an electrode layer 2039 is located on the piezoelectric layer 2037, and the electrode layer 2035 and the electrode layer 2039 are respectively located on the Two sides of the piezoelectric layer 2037; wherein the resonance region (ie, the overlapping area of the electrode layer 2035 and the electrode layer 2039) is suspended relative to the cavity 2033a, and has no overlapping portion with the intermediate layer 2031.
  • the material of the intermediate layer 2031 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the material of the electrode layer 2035 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the piezoelectric layer 2037 also covers the upper surface side of the intermediate layer 2031.
  • the intermediate layer 2031 and the passive device 205 are located on both sides of the piezoelectric layer 2037, respectively.
  • the material of the piezoelectric layer 2037 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate. It should be noted that the acoustic impedance of the material of the intermediate layer 2031 is different from the acoustic impedance of the material of the piezoelectric layer 2037, which can block lateral mode (lateral mode) leakage waves.
  • the piezoelectric layer 2037 includes a plurality of crystals, and the plurality of crystals includes a first crystal and a second crystal, wherein the first crystal and the second crystal are among the plurality of crystals.
  • the crystal orientation, crystal plane, etc. of a crystal can be expressed based on a coordinate system. As shown in FIG. 2b, for crystals of the hexagonal system, such as aluminum nitride crystals, the ac three-dimensional coordinate system (including the a-axis and the c-axis) is used.
  • the first crystal may be expressed based on a first three-dimensional coordinate system
  • the second crystal may be expressed based on a second three-dimensional coordinate system
  • the first three-dimensional coordinate system at least includes a first three-dimensional coordinate system along a first direction.
  • the second three-dimensional coordinate system at least includes a second coordinate axis along the second direction and a fourth coordinate axis along the fourth direction, wherein the first coordinate axis Corresponding to the height of the first crystal, the second coordinate axis corresponds to the height of the second crystal.
  • first direction and the second direction are the same or opposite. It should be noted that the first direction and the second direction are the same: the angle range between the vector along the first direction and the vector along the second direction includes 0 degrees to 5 degrees; A direction opposite to the second direction refers to: the angle range between the vector along the first direction and the vector along the second direction includes 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an ac three-dimensional coordinate system, wherein the first coordinate axis is a first c-axis, and the third coordinate axis is a first a-axis;
  • the three-dimensional coordinate system is an ac three-dimensional coordinate system, the second coordinate axis is a second c-axis, and the fourth coordinate axis is a second a-axis, wherein the directions of the first c-axis and the second c-axis are Same or opposite.
  • the first three-dimensional coordinate system further includes a fifth coordinate axis along the fifth direction
  • the second three-dimensional coordinate system further includes a sixth coordinate axis along the sixth direction.
  • the first direction and the second direction are the same or opposite
  • the third direction and the fourth direction are the same or opposite.
  • the third direction and the fourth direction are the same: the angle range between the vector along the third direction and the vector along the fourth direction includes 0 degrees to 5 degrees;
  • the three directions being opposite to the fourth direction mean that the angle between the vector along the third direction and the vector along the fourth direction includes an angle ranging from 175 degrees to 180 degrees.
  • the first three-dimensional coordinate system is an xyz three-dimensional coordinate system, wherein the first coordinate axis is a first z-axis, the third coordinate axis is a first y-axis, and the fifth coordinate axis is a first y-axis.
  • the coordinate axis is the first x-axis;
  • the second three-dimensional coordinate system is the xyz three-dimensional coordinate system, the second coordinate axis is the second z-axis, the fourth coordinate axis is the second y-axis, and the sixth coordinate
  • the axis is the second x axis.
  • the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are the same. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are the same, and the directions of the first y-axis and the second y-axis are opposite. In another embodiment, the directions of the first z-axis and the second z-axis are opposite, and the directions of the first y-axis and the second y-axis are the same.
  • the piezoelectric layer 2037 includes a plurality of crystals, and the half width of the rocking curve of the plurality of crystals is less than 2.5 degrees.
  • the rocking curve describes the angular divergence of a particular crystal plane (the crystal plane determined by the diffraction angle) in the sample, expressed by the plane coordinate system, where the abscissa is the difference between the crystal plane and the sample surface.
  • the included angle, the ordinate indicates the diffraction intensity of the crystal plane at a certain included angle, and the rocking curve is used to indicate the quality of the crystal lattice.
  • the smaller the half-width angle the better the crystal lattice quality.
  • the Full Width at Half Maximum refers to the distance between the points where the value of the function is equal to half of the peak value in a peak of a function.
  • forming the piezoelectric layer 2037 on a plane can make the piezoelectric layer 2037 not include a crystal that is significantly turned, thereby helping to improve the electromechanical coupling coefficient of the resonant device and the Q value of the resonant device.
  • the piezoelectric layer 2037 and the passive device 205 are located on both sides of the electrode layer 2039, respectively.
  • the material of the electrode layer 2039 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the passive device 205 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 205 includes a cavity 2051 located above the resonance region, corresponding to the cavity 2033a, and the cavity 2051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 207 are electrically connected to the electrode layer 2035 and the electrode layer 2039, respectively, and the second ends of the connecting members 207 are electrically connected to the passive device 205.
  • the connecting member 207 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 200 further includes: a sealing member 209, located on the piezoelectric layer 2037, between the piezoelectric layer 2037 and the passive device 205, and at least surrounding the cavity 2051 , Used to seal the cavity 2051.
  • a sealing member 209 located on the piezoelectric layer 2037, between the piezoelectric layer 2037 and the passive device 205, and at least surrounding the cavity 2051 , Used to seal the cavity 2051.
  • FIG. 3 is a schematic structural diagram of a cross-section A of a filter device 300 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 300 including: a substrate 301, which is a wafer substrate; a BAW resonator device 303, which is located on the substrate 301; and a passive device 305, which is located on the substrate 301.
  • a connector 307 Above the BAW resonant device 303; wherein, the BAW resonant device 303 and the passive device 305 are electrically connected by a connector 307.
  • the first side of the BAW resonant device 303 is the substrate 301
  • the second side of the BAW resonant device 303 is the passive device 305, wherein the The first side is opposite to the second side.
  • the substrate 301, the BAW resonator device 303, and the passive device 305 are integrated in one chip.
  • the material of the substrate 301 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonance device 303 includes, but is not limited to: a cavity 3031a on the upper surface side of the substrate 301 and a groove 3031b, and the groove 3031b is located on one of the left and right sides of the cavity 3031a And communicate with the cavity 3031a, the depth of the groove 3031b is less than the depth of the cavity 3031a; the electrode layer 3033, the first end 3033a of the electrode layer 3033 is located in the cavity 3031a, the electrode The second end 3033b of the layer 3033 is located in the groove 3031b, the second end 3033b is opposite to the first end 3033a, and the depth of the groove 3031b is equal to the thickness of the electrode layer 3033; the piezoelectric layer 3035 , Located on the electrode layer 3033, the piezoelectric layer 3035 is a flat layer, at least covering the cavity 3031a; and an electrode layer 3037, located on the piezoelectric layer 3035, the electrode layer 3033 and the electrode The layers 3037 are respectively located
  • the material of the electrode layer 3033 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the piezoelectric layer 3035 also covers the upper surface side of the base 301.
  • the substrate 301 and the passive device 305 are located on both sides of the piezoelectric layer 3035, respectively.
  • the material of the piezoelectric layer 3035 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the piezoelectric layer 3035 and the passive device 305 are located on both sides of the electrode layer 3037, respectively.
  • the material of the electrode layer 3037 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the passive device 305 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 305 includes a cavity 3051 located above the resonance region, corresponding to the cavity 3031a, and the cavity 3051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 307 are electrically connected to the electrode layer 3033 and the electrode layer 3037, respectively, and the second ends of the connecting members 307 are electrically connected to the passive device 305.
  • the connecting member 307 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 300 further includes: a sealing member 309, located on the piezoelectric layer 3035, between the piezoelectric layer 3035 and the passive device 305, and at least surrounding the cavity 3051 , Used to seal the cavity 3051.
  • a sealing member 309 located on the piezoelectric layer 3035, between the piezoelectric layer 3035 and the passive device 305, and at least surrounding the cavity 3051 , Used to seal the cavity 3051.
  • FIG. 4 is a schematic structural diagram of a cross-section A of a filter device 400 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 400 that includes: a substrate 401, which is a wafer substrate; a BAW resonator device 403, which is located above the substrate 401; and a passive device 405, which is located on the substrate 401. Above the BAW resonant device 403; wherein, the BAW resonant device 403 and the passive device 405 are electrically connected through a connector 407.
  • the substrate 401 and the passive device 405 are located on both sides of the BAW resonator device 403, respectively.
  • the substrate 401, the BAW resonator device 403, and the passive device 405 are integrated in one chip.
  • the material of the substrate 401 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 403 includes: an intermediate layer 4031 located on the substrate 401, wherein the upper surface side of the intermediate layer 4031 includes a cavity 4033; an electrode layer 4035 located in the cavity 4033 Upper, covering the cavity 4033, the substrate 401 and the electrode layer 4035 are respectively located on both sides of the intermediate layer 4031; the piezoelectric layer 4037, located on the intermediate layer 4031, covering the electrode layer 4035, The piezoelectric layer 4037 includes a protrusion 4037a located above the electrode layer 4035; and an electrode layer 4039 is located on the piezoelectric layer 4037, and the electrode layer 4039 includes a protrusion 4039a located on the protrusion 4037a
  • the resonance region ie, the overlapping area of the electrode layer 4035 and the electrode layer 4039
  • the intermediate layer 4031 have overlapping portions, wherein the overlapping portions are located in the left and right sides of the cavity 4033 One side.
  • the material of the intermediate layer 4031 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the electrode layer 4035 is also located on the intermediate layer 4031.
  • the cross section A of the electrode layer 4035 is trapezoidal.
  • the cross section A of the lower electrode layer is rectangular.
  • the material of the electrode layer 4035 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the piezoelectric layer 4037 also covers the upper surface side of the intermediate layer 4031.
  • the material of the piezoelectric layer 4037 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate. It should be noted that the acoustic impedance of the material of the intermediate layer 4031 is different from the acoustic impedance of the material of the piezoelectric layer 4037, which can block the lateral mode leakage wave.
  • the protrusion height of the protrusion 4037a is greater than or equal to the thickness of the electrode layer 4035.
  • the cross section A of the protrusion 4037a is trapezoidal.
  • the cross-section A of the first protrusion is rectangular.
  • the piezoelectric layer 4037 and the passive device 405 are located on both sides of the electrode layer 4039, respectively.
  • the material of the electrode layer 4039 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 4039a is greater than or equal to the thickness of the electrode layer 4035.
  • the cross section A of the protrusion 4039a is trapezoidal. In another embodiment, the cross-section A of the second protrusion is rectangular.
  • the passive device 405 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 405 includes a cavity 4051 located above the resonance region and corresponding to the cavity 4033.
  • the cavity 4051 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 407 are electrically connected to the electrode layer 4035 and the electrode layer 4039, respectively, and the second ends of the connecting members 407 are electrically connected to the passive device 405.
  • the connecting member 407 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filtering device 400 further includes: a sealing member 409, located between the BAW resonator device 403 and the passive device 405, at least surrounding the cavity 4051, for sealing the cavity 4051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 5 is a schematic structural diagram of a cross-section A of a filter device 500 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 500 including: a substrate 501, which is a wafer substrate; a BAW resonator device 503, which is located on the substrate 501; and a passive device 505, which is located on the substrate 501. Above the BAW resonant device 503; wherein, the BAW resonant device 503 and the passive device 505 are electrically connected through a connector 507.
  • the first side of the BAW resonant device 503 is the substrate 501
  • the second side of the BAW resonant device 503 is the passive device 505, wherein the BAW resonant device 503 The first side is opposite to the second side.
  • the substrate 501, the BAW resonator device 503, and the passive device 505 are integrated in one chip.
  • the material of the substrate 501 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonance device 503 includes but is not limited to: a cavity 5031 on the upper surface side of the substrate 501; an electrode layer 5033 located on the cavity 5031 and covering the cavity 5031; and a piezoelectric layer 5035, located on the substrate 501, covering the electrode layer 5033, the piezoelectric layer 5035 includes a protrusion 5035a, located above the electrode layer 5033; and an electrode layer 5037, located on the piezoelectric layer 5035, so
  • the electrode layer 5037 includes a protrusion 5037a located on the protrusion 5035a; wherein the resonance area (ie, the overlapping area of the electrode layer 5033 and the electrode layer 5037) and the substrate 501 have an overlapping portion, wherein, The overlapping portion is located on one of the left and right sides of the cavity 5031.
  • the electrode layer 5033 is also located on the substrate 501.
  • the cross section A of the electrode layer 5033 is trapezoidal.
  • the cross section A of the lower electrode layer is rectangular.
  • the material of the electrode layer 5033 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the piezoelectric layer 5035 also covers the upper surface side of the base 501.
  • the material of the piezoelectric layer 5035 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the protrusion height of the protrusion 5035a is greater than or equal to the thickness of the electrode layer 5033.
  • the cross-section A of the protrusion 5035a is trapezoidal.
  • the cross-section A of the first protrusion is rectangular.
  • the piezoelectric layer 5035 and the passive device 505 are located on both sides of the electrode layer 5037, respectively.
  • the material of the electrode layer 5037 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 5037a is greater than or equal to the thickness of the electrode layer 5033.
  • the cross-section A of the protrusion 5037a is trapezoidal. In another embodiment, the cross-section A of the second protrusion is rectangular.
  • the passive device 505 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 505 includes a cavity 5051 located above the resonance region, corresponding to the cavity 5031, and the cavity 5051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 507 are electrically connected to the electrode layer 5033 and the electrode layer 5037 respectively, and the second ends of the connecting members 507 are electrically connected to the passive device 505.
  • the connecting member 507 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 500 further includes: a sealing member 509, located between the BAW resonator device 503 and the passive device 505, at least surrounding the cavity 5051, for sealing the cavity 5051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 6 is a schematic structural diagram of a cross-section A of a filter device 600 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 600 including: a substrate 601, the substrate 601 is a wafer substrate; a BAW resonator device 603, located above the substrate 601; and a passive device 605, located on the Above the BAW resonant device 603; wherein, the BAW resonant device 603 and the passive device 605 are electrically connected through a connector 607.
  • the substrate 601 and the passive device 605 are located on both sides of the BAW resonator device 603, respectively.
  • the substrate 601, the BAW resonator device 603, and the passive device 605 are located in one chip.
  • the material of the substrate 601 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 603 includes: an intermediate layer 6031 located on the substrate 601; a reflective layer 6033 located on the intermediate layer 6031, and the substrate 601 and the reflective layer 6033 are respectively located on the On both sides of the intermediate layer 6031; the electrode layer 6035 is located on the intermediate layer 6031, the electrode layer 6035 includes protrusions 6035a, is located on the reflective layer 6033; the piezoelectric layer 6037 is located on the intermediate layer 6031, The piezoelectric layer 6037 includes a protrusion 6037a located above the protrusion 6035a; an electrode layer 6039 is located on the piezoelectric layer 6037, and the electrode layer 6039 includes a protrusion 6039a located on the protrusion 6037a; Wherein, the resonance region (ie, the overlapping area of the electrode layer 6035 and the electrode layer 6039) is located above the reflective layer 6033.
  • the resonance region ie, the overlapping area of the electrode layer 6035 and the electrode layer 6039
  • the material of the intermediate layer 6031 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the cross-section A of the reflective layer 6033 is trapezoidal. In another embodiment, the cross-section A of the reflective layer is rectangular. In this embodiment, the reflective layer 6033 is a cavity, that is, a cavity 6033.
  • the material of the electrode layer 6035 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 6035a is greater than or equal to the thickness of the reflective layer 6033 (that is, the depth of the cavity 6033).
  • the cross section A of the protrusion 6035a is trapezoidal. In another embodiment, the cross-section A of the first protrusion is rectangular.
  • the material of the piezoelectric layer 6037 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate. It should be noted that the acoustic impedance of the material of the intermediate layer 6031 is different from the acoustic impedance of the material of the piezoelectric layer 6037, which can block the lateral mode leakage wave.
  • the protrusion height of the protrusion 6037a is greater than or equal to the thickness of the reflective layer 6033 (ie, the depth of the cavity 6033).
  • the cross-section A of the protrusion 6037a is trapezoidal. In another embodiment, the cross-section A of the second protrusion is rectangular.
  • the material of the electrode layer 6039 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 6039a is greater than or equal to the thickness of the reflective layer 6033 (ie, the depth of the cavity 6033).
  • the cross-section A of the protrusion 6039a is trapezoidal. In another embodiment, the cross-section A of the third protrusion is rectangular.
  • the passive device 605 includes but is not limited to at least one of the following: a capacitor, an inductor, a resistor, and a through hole. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 605 includes a cavity 6051 located above the resonance region and corresponding to the cavity 6033.
  • the cavity 6051 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 607 are electrically connected to the electrode layer 6035 and the electrode layer 6039, respectively, and the second ends of the connecting members 607 are electrically connected to the passive device 605.
  • the connecting member 607 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filtering device 600 further includes: a sealing member 609, located between the BAW resonator device 603 and the passive device 605, at least surrounding the cavity 6051, for sealing the cavity 6051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 7 is a schematic structural diagram of a cross-section A of a filtering device 700 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 700 that includes: a substrate 701, which is a wafer substrate; a BAW resonator device 703, which is located on the substrate 701; and a passive device 705, which is located on the substrate 701. Above the BAW resonant device 703; wherein, the BAW resonant device 703 and the passive device 705 are electrically connected through a connector 707.
  • the first side of the BAW resonant device 703 is the substrate 701, and the second side of the BAW resonant device 703 is the passive device 705, wherein the The first side is opposite to the second side.
  • the substrate 701, the BAW resonator device 703, and the passive device 705 are located in one chip.
  • the material of the substrate 701 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 703 includes: a reflective layer 7031 located on the substrate 701; an electrode layer 7033 located on the substrate 701, and the electrode layer 7033 includes a protrusion 7033a located on the reflective layer 7031; piezoelectric layer 7035, located on the substrate 701, the piezoelectric layer 7035 includes a protrusion 7035a, located above the protrusion 7033a; electrode layer 7037, located on the piezoelectric layer 7035, the electrode The layer 7037 includes a protruding portion 7037a located on the protruding portion 7035a; wherein the resonance area (ie, the overlapping area of the electrode layer 7033 and the electrode layer 7037) is located above the reflective layer 7031.
  • the resonance area ie, the overlapping area of the electrode layer 7033 and the electrode layer 7037
  • the cross section A of the reflective layer 7031 is trapezoidal. In another embodiment, the cross-section A of the reflective layer is rectangular. In this embodiment, the reflective layer 7031 is a cavity, that is, a cavity 7031.
  • the material of the electrode layer 7033 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 7033a is greater than or equal to the thickness of the reflective layer 7031 (that is, the depth of the cavity 7031).
  • the cross section A of the protrusion 7033a is trapezoidal. In another embodiment, the cross-section A of the first protrusion is rectangular.
  • the material of the piezoelectric layer 7035 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the protrusion height of the protrusion 7035a is greater than or equal to the thickness of the reflective layer 7031 (that is, the depth of the cavity 7031).
  • the cross section A of the protrusion 7035a is trapezoidal.
  • the cross-section A of the second protrusion is rectangular.
  • the material of the electrode layer 7037 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 7037a is greater than or equal to the thickness of the reflective layer 7031 (that is, the depth of the cavity 7031).
  • the cross section A of the protrusion 7037a is trapezoidal. In another embodiment, the cross-section A of the third protrusion is rectangular.
  • the passive device 705 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 705 includes a cavity 7051 located above the resonance region, corresponding to the cavity 7031, and the cavity 7051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 707 are electrically connected to the electrode layer 7033 and the electrode layer 7037, respectively, and the second ends of the connecting members 707 are electrically connected to the passive device 705.
  • the connecting member 707 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 700 further includes: a sealing member 709, located between the BAW resonator device 703 and the passive device 705, at least surrounding the cavity 7051, for sealing the cavity 7051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 8 is a schematic structural diagram of a cross-section A of a filtering device 800 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 800 that includes: a substrate 801, which is a wafer substrate; a BAW resonator device 803, which is located above the substrate 801; and a passive device 805, which is located on the substrate 801. Above the BAW resonant device 803; wherein, the BAW resonant device 803 and the passive device 805 are electrically connected through a connector 807.
  • the substrate 801 and the passive device 805 are located on both sides of the BAW resonator device 803, respectively.
  • the substrate 801, the BAW resonator device 803, and the passive device 805 are located in one chip.
  • the material of the substrate 801 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 803 includes: an intermediate layer 8031 located on the substrate 801; a reflective layer 8033 located on the intermediate layer 8031, and the substrate 801 and the reflective layer 8033 are respectively located on the On both sides of the intermediate layer 8031; electrode layer 8035, located on the intermediate layer 8031, the electrode layer 8035 includes protrusions 8035a, located on the reflective layer 8033; piezoelectric layer 8037, located on the intermediate layer 8031, The piezoelectric layer 8037 includes a protrusion 8037a located above the protrusion 8035a; an electrode layer 8039 is located on the piezoelectric layer 8037, and the electrode layer 8039 includes a protrusion 8039a located on the protrusion 8037a; Wherein, the resonance area (ie, the overlapping area of the electrode layer 8035 and the electrode layer 8039) is located above the reflective layer 8033.
  • the resonance area ie, the overlapping area of the electrode layer 8035 and the electrode layer 8039
  • the material of the intermediate layer 8031 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the cross section A of the reflective layer 8033 is arched.
  • the reflective layer 8033 is a cavity, that is, a cavity 8033.
  • the material of the electrode layer 8035 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 8035a is greater than or equal to the thickness of the reflective layer 8033 (ie, the depth of the cavity 8033).
  • the cross-section A of the protrusion 8035a is arched.
  • the material of the piezoelectric layer 8037 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the acoustic impedance of the material of the intermediate layer 8031 is different from the acoustic impedance of the material of the piezoelectric layer 8037, which can block the lateral mode leakage wave.
  • the protrusion height of the protrusion 8037a is greater than or equal to the thickness of the reflective layer 8033 (ie, the depth of the cavity 8033).
  • the cross-section A of the protrusion 8037a is arched.
  • the material of the electrode layer 8039 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 8039a is greater than or equal to the thickness of the reflective layer 8033 (ie, the depth of the cavity 8033).
  • the cross-section A of the protrusion 8039a is arched.
  • the passive device 805 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 805 includes a cavity 8051 located above the resonance region and corresponding to the cavity 8033.
  • the cavity 8051 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 807 are electrically connected to the electrode layer 8035 and the electrode layer 8039, respectively, and the second ends of the connecting members 807 are electrically connected to the passive device 805.
  • the connecting member 807 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 800 further includes: a sealing member 809, located between the BAW resonator device 803 and the passive device 805, at least encloses the cavity 8051, and is used to seal the cavity 8051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 9 is a schematic structural diagram of a cross-section A of a filter device 900 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 900 that includes: a substrate 901, which is a wafer substrate; a BAW resonator device 903, which is located on the substrate 901; and a passive device 905, which is located on the substrate 901. Above the BAW resonant device 903; wherein, the BAW resonant device 903 and the passive device 905 are electrically connected through a connector 907.
  • the first side of the BAW resonant device 903 is the substrate 901, and the second side of the BAW resonant device 903 is the passive device 905, wherein the BAW resonant device 903 The first side is opposite to the second side.
  • the substrate 901, the BAW resonator device 903, and the passive device 905 are located in one chip.
  • the material of the substrate 901 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 903 includes: a reflective layer 9031 located on the substrate 901; an electrode layer 9033 located on the substrate 901, and the electrode layer 9033 includes a protrusion 9033a located on the reflective layer 9031; piezoelectric layer 9035, located on the substrate 901, the piezoelectric layer 9035 includes a protrusion 9035a, located above the protrusion 9033a; electrode layer 9037, located on the piezoelectric layer 9035, the electrode The layer 9037 includes a protruding portion 9037a located on the protruding portion 9035a; wherein the resonance area (ie, the overlapping area of the electrode layer 9033 and the electrode layer 9037) is located above the reflective layer 9031.
  • the resonance area ie, the overlapping area of the electrode layer 9033 and the electrode layer 9037
  • the cross section A of the reflective layer 9031 is arched.
  • the reflective layer 9031 is a cavity, that is, a cavity 9031.
  • the material of the electrode layer 9033 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 9033a is greater than or equal to the thickness of the reflective layer 9031 (that is, the depth of the cavity 9031).
  • the cross-section A of the protrusion 9033a is arched.
  • the material of the piezoelectric layer 9035 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the protrusion height of the protrusion 9035a is greater than or equal to the thickness of the reflective layer 9031 (that is, the depth of the cavity 9031).
  • the cross section A of the protrusion 9035a is arched.
  • the material of the electrode layer 9037 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the protrusion height of the protrusion 9037a is greater than or equal to the thickness of the reflective layer 9031 (that is, the depth of the cavity 9031).
  • the cross-section A of the protrusion 9037a is arched.
  • the passive device 905 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 905 includes a cavity 9051 located above the resonance region, corresponding to the cavity 9031, and the cavity 9051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 907 are electrically connected to the electrode layer 9033 and the electrode layer 9037 respectively, and the second ends of the connecting members 907 are electrically connected to the passive device 905.
  • the connecting member 907 includes but is not limited to at least one of the following: an electrical wire, a bump, a pad, and a through hole. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 900 further includes: a sealing member 909 located between the BAW resonator device 903 and the passive device 905, at least surrounding the cavity 9051, for sealing the cavity 9051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 10 is a schematic structural diagram of a cross-section A of a filter device 1000 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1000 including: a substrate 1010, which is a wafer substrate; a BAW resonator device 1030, which is located above the substrate 1010; and a passive device 1050, which is located on the substrate 1010. Above the BAW resonant device 1030; wherein, the BAW resonant device 1030 and the passive device 1050 are electrically connected through a connector 1070.
  • the substrate 1010 and the passive device 1050 are located on both sides of the BAW resonator device 1030, respectively.
  • the substrate 1010, the BAW resonator device 1030, and the passive device 1050 are located in one chip.
  • the material of the substrate 1010 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 1030 includes: a reflective layer 1031 on the substrate 1010; an electrode layer 1033 on the reflective layer 1031, and the substrate 1010 and the electrode layer 1033 are respectively located on the Two sides of the reflective layer 1031; a piezoelectric layer 1035, located on the reflective layer 1031, covering the electrode layer 1033, the piezoelectric layer 1035 including a protrusion 1035a, located above the electrode layer 1033; and an electrode layer 1037 , Located on the piezoelectric layer 1035, the electrode layer 1037 includes a protruding portion 1037a, located on the protruding portion 1035a; wherein, the resonance region (ie, the overlapping area of the electrode layer 1033 and the electrode layer 1037) Located above the reflective layer 1031.
  • the resonance region ie, the overlapping area of the electrode layer 1033 and the electrode layer 1037
  • the reflective layer 1031 includes a plurality of sub-reflective layers 1031a and a plurality of sub-reflective layers 1031b, wherein the sub-reflective layers 1031a and the sub-reflective layers 1031b are alternately placed.
  • the sub-reflective layer 1031a and the sub-reflective layer 1031b have different materials, so that the sub-reflective layer 1031a and the sub-reflective layer 1031b have different acoustic impedances.
  • the material of the sub-reflective layer 1031a includes but is not limited to at least one of the following: silicon oxycarbide, silicon nitride, silicon dioxide, aluminum nitride, tungsten, and molybdenum.
  • the material of the sub-reflective layer 1031b includes but is not limited to at least one of the following: silicon oxycarbide, silicon nitride, silicon dioxide, aluminum nitride, tungsten, and molybdenum.
  • the reflective layer 1031 is a quarter-wave Bragg mirror.
  • the thickness of the sub-reflective layer 1031a is twice the thickness of the sub-reflective layer 1031b.
  • the thickness of the sub-reflective layer is uniform.
  • the quarter-wave Bragg reflector in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment, and other acoustic reflection layers known to those skilled in the art are also It can be applied to the embodiment of the present invention.
  • the material of the electrode layer 1033 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the material of the piezoelectric layer 1035 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the height of the protrusion 1035a is greater than or equal to the thickness of the electrode layer 1033.
  • the cross section A of the protrusion 1035a is rectangular. In another embodiment, the cross-section A of the first protrusion is trapezoidal.
  • the material of the electrode layer 1037 includes but is not limited to at least one of the following: molybdenum, ruthenium, tungsten, platinum, iridium, aluminum, and beryllium.
  • the height of the protrusion 1037a is greater than or equal to the thickness of the electrode layer 1033.
  • the cross section A of the protrusion 1037a is rectangular. In another embodiment, the cross-section A of the second protrusion is trapezoidal.
  • the passive device 1050 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 1050 includes a cavity 1051 located above the resonance region, and the cavity 1051 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the resonance region by raising the passive device.
  • the first ends of the two connecting members 1070 are electrically connected to the electrode layer 1033 and the electrode layer 1037, respectively, and the second ends of the connecting members 1070 are electrically connected to the passive device 1050.
  • the connecting member 1070 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 1000 further includes: a sealing member 1090, located between the BAW resonator device 1030 and the passive device 1050, at least surrounding the cavity 1051, and used for sealing the cavity 1051 .
  • integrating the BAW resonant device and the passive device into a single chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 11 is a schematic structural diagram of a cross-section A of a filter device 1100 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1100 including: a substrate 1110, which is a wafer substrate; a SAW resonance device 1130, which is located above the substrate 1110; and a passive device 1150, which is located on the substrate 1110. Above the SAW resonant device 1130; wherein, the SAW resonant device 1130 and the passive device 1150 are electrically connected by a connector 1170.
  • the first side of the SAW resonant device 1130 is the substrate 1110
  • the second side of the SAW resonant device 1130 is the passive device 1150
  • the SAW resonant device 1130 The first side is opposite to the second side.
  • the substrate 1110, the SAW resonator device 1130, and the passive device 1150 are located in one chip.
  • the material of the substrate 1110 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the SAW resonator device 1130 includes: a piezoelectric layer 1131 on the substrate 1110; an electrode layer 1133 on the piezoelectric layer 1131, the piezoelectric layer 1131 and the passive device 1150 is located on both sides of the electrode layer 1133 respectively.
  • the material of the piezoelectric layer 1131 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the electrode layer 1133 includes an interdigital transducer (IDT), where the IDT includes a plurality of electrode strips 1133a and a plurality of electrode strips 1133b.
  • IDT interdigital transducer
  • the polarities of the plurality of electrode strips 1133a and the plurality of electrode strips 1133b are different.
  • the electrode strips 1133a and the electrode strips 1133b are alternately placed.
  • the distance between the adjacent electrode strips 1133a and the electrode strips 1133b is the same.
  • the separation distance between two adjacent electrode strips is variable.
  • the passive device 1150 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 1150 includes a cavity 1151 located above the electrode layer 1133, and the cavity 1151 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the electrode layer by raising the passive device.
  • the first ends of the two connecting members 1170 are respectively electrically connected to the plurality of electrode strips 1133a and the plurality of electrode strips 1133b, and the second ends of the connecting members 1170 are electrically connected to the passive ⁇ 1150.
  • the connecting member 1170 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiment of the present invention.
  • the filter device 1100 further includes: a sealing member 1190, located on the piezoelectric layer 1131, between the piezoelectric layer 1131 and the passive device 1150, and at least surrounding the cavity 1151 , Used to seal the cavity 1151.
  • a sealing member 1190 located on the piezoelectric layer 1131, between the piezoelectric layer 1131 and the passive device 1150, and at least surrounding the cavity 1151 , Used to seal the cavity 1151.
  • FIG. 12 is a schematic structural diagram of a cross-section A of a filter device 1200 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1200 that includes: a substrate 1210, which is a wafer substrate; a SAW resonator device 1230, which is located above the substrate 1210; and a passive device 1250, which is located on the substrate 1210. Above the SAW resonant device 1230; wherein, the SAW resonant device 1230 and the passive device 1250 are electrically connected by a connector 1270.
  • the substrate 1210 and the passive device 1250 are located on both sides of the SAW resonance device 1230, respectively.
  • the substrate 1210, the SAW resonator device 1230, and the passive device 1250 are located in one chip.
  • the material of the substrate 1210 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the SAW resonator device 1230 includes: an intermediate layer 1231 located on the base 1210; a piezoelectric layer 1233 located on the intermediate layer 1231, and the base 1210 and the piezoelectric layer 1233 are located respectively The two sides of the intermediate layer 1231; the electrode layer 1235 is located on the piezoelectric layer 1233, and the piezoelectric layer 1233 and the passive device 1250 are located on both sides of the electrode layer 1235, respectively.
  • the material of the intermediate layer 1231 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the material of the piezoelectric layer 1233 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate. It should be noted that the acoustic impedance of the material of the intermediate layer 1231 is different from the acoustic impedance of the material of the piezoelectric layer 1233, which can block leakage waves.
  • the intermediate layer 1231 for example, silicon dioxide
  • the material of the piezoelectric layer 1233 have opposite temperature and frequency shift characteristics, the temperature coefficient of frequency (TCF) of the resonant device can be reduced. ), tends to 0 ppm/°C, thereby improving frequency-temperature stability, that is, the intermediate layer 1231 is a temperature compensation layer.
  • the electrode layer 1235 includes an IDT, where the IDT includes a plurality of electrode bars 1235a and a plurality of electrode bars 1235b.
  • the polarities of the plurality of electrode strips 1235a and the plurality of electrode strips 1235b are different.
  • the electrode strips 1235a and the electrode strips 1235b are alternately placed.
  • the distance between the adjacent electrode strips 1235a and the electrode strips 1235b is the same.
  • the separation distance between two adjacent electrode strips is variable.
  • the passive device 1250 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 1250 includes a cavity 1251 located above the electrode layer 1235, and the cavity 1251 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the electrode layer by raising the passive device.
  • the first ends of the two connecting members 1270 are respectively electrically connected to the plurality of electrode strips 1235a and the plurality of electrode strips 1235b, and the second ends of the connecting members 1270 are electrically connected to the passive ⁇ 1250.
  • the connecting member 1270 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 1200 further includes: a sealing member 1290 located on the piezoelectric layer 1233, located between the piezoelectric layer 1233 and the passive device 1250, and at least encloses the cavity 1251 , Used to seal the cavity 1251.
  • a sealing member 1290 located on the piezoelectric layer 1233, located between the piezoelectric layer 1233 and the passive device 1250, and at least encloses the cavity 1251 , Used to seal the cavity 1251.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 13 is a schematic structural diagram of cross-section A of a filtering device 1300 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1300 including: a substrate 1310, which is a wafer substrate; a SAW resonator device 1330, which is located above the substrate 1310; and a passive device 1350, which is located on the substrate 1310. Above the SAW resonant device 1330; wherein, the SAW resonant device 1330 and the passive device 1350 are electrically connected through a connector 1370.
  • the substrate 1310 and the passive device 1350 are located on both sides of the SAW resonance device 1330, respectively. In this embodiment, the substrate 1310, the SAW resonance device 1330, and the passive device 1350 are located in one chip.
  • the material of the substrate 1310 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the SAW resonator device 1330 includes: an intermediate layer 1331 located on the substrate 1310; an intermediate layer 1333 located on the intermediate layer 1331, and the substrate 1310 and the intermediate layer 1333 are respectively located on the On both sides of the intermediate layer 1331; the piezoelectric layer 1335 is located on the intermediate layer 1333; the electrode layer 1337 is located on the piezoelectric layer 1335, the intermediate layer 1333 and the electrode layer 1337 are respectively located on the piezoelectric layer 1335 on both sides.
  • the material of the intermediate layer 1331 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the material of the intermediate layer 1333 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the material of the piezoelectric layer 1335 includes but is not limited to at least one of the following: aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the acoustic impedance of the material of the intermediate layer 1331 is different from the acoustic impedance of the material of the intermediate layer 1333, and the acoustic impedance of the material of the intermediate layer 1333 is different from the acoustic impedance of the piezoelectric layer 1335. Block leaky waves.
  • the TCF of the resonant device can be reduced, tending to 0 ppm/°C, thereby increasing Frequency-temperature stability, that is, the intermediate layer 1333 is a temperature compensation layer.
  • the electrode layer 1337 includes an IDT, where the IDT includes a plurality of electrode strips 1337a and a plurality of electrode strips 1337b.
  • the polarities of the plurality of electrode strips 1337a and the plurality of electrode strips 1337b are different.
  • the electrode strips 1337a and the electrode strips 1337b are alternately placed.
  • the distance between the adjacent electrode strips 1337a and the electrode strips 1337b is the same.
  • the separation distance between two adjacent electrode strips is variable.
  • the passive device 1350 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 1350 includes a cavity 1351 located above the electrode layer 1337, and the cavity 1351 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the electrode layer by raising the passive device.
  • the first ends of the two connecting members 1370 are respectively electrically connected to the plurality of electrode strips 1337a and the plurality of electrode strips 1337b, and the second ends of the connecting members 1370 are electrically connected to the passive ⁇ 1350.
  • the connecting member 1370 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 1300 further includes: a sealing member 1390, located on the piezoelectric layer 1335, between the piezoelectric layer 1335 and the passive device 1350, and at least surrounding the cavity 1351 , Used to seal the cavity 1351.
  • a sealing member 1390 located on the piezoelectric layer 1335, between the piezoelectric layer 1335 and the passive device 1350, and at least surrounding the cavity 1351 , Used to seal the cavity 1351.
  • FIG. 14 is a schematic structural diagram of a cross-section A of a filtering device 1400 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1400 including: a substrate 1410, the substrate 1410 is a wafer substrate; a SAW resonance device 1430, located above the substrate 1410; and a passive device 1450, located on the Above the SAW resonant device 1430; wherein, the SAW resonant device 1430 and the passive device 1450 are electrically connected through a connector 1470.
  • the substrate 1410 and the passive device 1450 are located on both sides of the SAW resonance device 1430, respectively.
  • the substrate 1410, the SAW resonator device 1430, and the passive device 1450 are located in one chip.
  • the material of the substrate 1410 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the SAW resonator device 1430 includes: a reflective layer 1431 located on the substrate 1410; a piezoelectric layer 1433 located on the reflective layer 1431, the substrate 1410 and the piezoelectric layer 1433 are respectively located The two sides of the reflective layer 1431; the electrode layer 1435 is located on the piezoelectric layer 1433.
  • the reflective layer 1431 includes a plurality of sub-reflective layers 1431a and a plurality of sub-reflective layers 1431b, wherein the sub-reflective layers 1431a and the sub-reflective layers 1431b are alternately placed.
  • the materials of the sub-reflective layer 1431a and the sub-reflective layer 1431b are different, so that the sub-reflective layer 1431a and the sub-reflective layer 1431b have different acoustic impedances.
  • the material of the sub-reflective layer 1431a includes but is not limited to at least one of the following: silicon oxycarbide, silicon nitride, silicon dioxide, aluminum nitride, tungsten, and molybdenum.
  • the material of the sub-reflective layer 1431b includes but is not limited to at least one of the following: silicon oxycarbide, silicon nitride, silicon dioxide, aluminum nitride, tungsten, and molybdenum.
  • the reflective layer 1431 is a quarter-wave Bragg mirror.
  • the thickness of the sub-reflective layer 1431a is twice the thickness of the sub-reflective layer 1431b.
  • the thickness of the sub-reflective layer is uniform.
  • the quarter-wave Bragg reflector in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment, and other acoustic reflection layers known to those skilled in the art are also It can be applied to the embodiment of the present invention.
  • the material of the piezoelectric layer 1433 includes but is not limited to at least one of the following: aluminum nitride, aluminum alloy oxide, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, Lead magnesium niobate-lead titanate.
  • the electrode layer 1435 includes an IDT, where the IDT includes a plurality of electrode bars 1435a and a plurality of electrode bars 1435b.
  • the polarities of the plurality of electrode strips 1435a and the plurality of electrode strips 1435b are different.
  • the electrode strips 1435a and the electrode strips 1435b are alternately placed.
  • the distance between the adjacent electrode strips 1435a and the electrode strips 1435b is the same.
  • the separation distance between two adjacent electrode strips is variable.
  • the passive device 1450 includes but is not limited to at least one of the following: capacitors, inductors, resistors, and vias. It should be noted that passive devices (for example, IPD) known to those skilled in the art can be applied to the embodiments of the present invention.
  • the passive device 1450 includes a cavity 1451 located above the electrode layer 1435, and the cavity 1451 can optimize the height of the monolithic filter device. In another embodiment, a cavity can be formed on the upper side of the electrode layer by raising the passive device.
  • the first ends of the two connecting members 1470 are respectively electrically connected to the plurality of electrode strips 1435a and the plurality of electrode strips 1435b, and the second ends of the connecting members 1470 are electrically connected to the passive ⁇ 1450.
  • the connecting member 1470 includes but is not limited to at least one of the following: electrical wires, bumps, pads, and through holes. It should be noted that the connection structure known to those skilled in the art can be applied to the embodiments of the present invention.
  • the filter device 1400 further includes: a sealing member 1490, located on the piezoelectric layer 1433, between the piezoelectric layer 1433 and the passive device 1450, and at least surrounding the cavity 1451 , Used to seal the cavity 1451.
  • a sealing member 1490 located on the piezoelectric layer 1433, between the piezoelectric layer 1433 and the passive device 1450, and at least surrounding the cavity 1451 , Used to seal the cavity 1451.
  • An embodiment of the present invention also provides a filter device (not shown) including: a first substrate, a first SAW resonator device, and a first passive device; wherein, the material of the first substrate includes but is not limited to at least one of the following : Aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, lead magnesium niobate-lead titanate.
  • the first SAW resonator device includes a first electrode layer on the first substrate, and the first electrode layer includes a first IDT.
  • the first passive device is located above the first electrode layer, the first electrode layer is electrically connected to the first passive device through a first connecting member, and the first substrate is electrically connected to the first electrode layer.
  • the first passive devices are respectively located on both sides of the first electrode layer.
  • An embodiment of the present invention also provides a filter device (not shown) including: a second substrate, a second SAW resonator device, and a second passive device; wherein the material of the second substrate includes but is not limited to at least one of the following : Aluminum nitride, aluminum oxide aluminum, gallium nitride, zinc oxide, lithium tantalate, lithium niobate, lead zirconate titanate, lead magnesium niobate-lead titanate.
  • the second SAW resonator device includes a second electrode layer on the second substrate, and the second electrode layer includes a second IDT.
  • the second passive device is located above the second electrode layer, the second electrode layer is electrically connected to the second passive device through a second connection member, and the second substrate is electrically connected to the second electrode layer.
  • the second passive devices are respectively located on both sides of the second electrode layer.
  • the second SAW resonator device further includes a temperature compensation layer, which is located on the second substrate and covers the second electrode layer.
  • the second substrate and the second passive device are respectively located on the second substrate.
  • the two sides of the temperature compensation layer are respectively located on the temperature compensation layer.
  • the material of the temperature compensation layer for example, silicon dioxide
  • the material of the second substrate have opposite temperature frequency shift characteristics, which can reduce the frequency temperature coefficient of the resonance device, which tends to be 0 ppm/°C , Thereby improving frequency-temperature stability.
  • FIG. 15a is a schematic structural diagram of a cross-section A of a filter device 1500 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1500 that includes: a substrate 1510, which is a wafer substrate; a resonance device 1530, which is located above the substrate 1510; and a passive device 1550, which is located on the resonance Above the device 1530; wherein the resonant device 1530 and the passive device 1550 are electrically connected by a connector 1570.
  • the substrate 1510 is located on the first side of the resonance device 1530, and the passive device 1550 is located on the second side of the resonance device 1530, wherein the first side of the resonance device 1530 is Opposite the second side.
  • the substrate 1510, the resonance device 1530, and the passive device 1550 are located in one chip.
  • the material of the substrate 1510 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the resonance device 1530 includes but is not limited to at least one of the following: SAW resonance device and BAW resonance device.
  • the resonance device 1530 includes an active layer 1531, and the active layer 1531 includes a piezoelectric layer (not shown) and at least one electrode layer (not shown).
  • the passive device 1550 includes: an intermediate layer 1551 that includes a capacitor 1553; a substrate 1555 located on the intermediate layer 1551; a through hole 1557a that penetrates the passive device 1550, so The first end on the upper side of the through hole 1557a is used to connect to the input end of the filter device 1500; the through hole 1557b penetrates through the passive device 1550, and the first end on the upper side of the through hole 1557b is used to connect to the The output terminal of the filter device 1500; the through hole 1557c is embedded in the intermediate layer 1551, the first end on the upper side of the through hole 1557c is electrically connected to the second end on the lower side of the capacitor 1553; the through hole 1557d penetrates the substrate 1555, the first end on the upper side of the through hole 1557d is used for grounding, and the second end on the lower side of the through hole 1557d is electrically connected to the first end on the upper side of the capacitor 1553.
  • the material of the intermediate layer 1551 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the intermediate layer 1551 further includes a cavity 1559 located above the active layer 1531, and the cavity 1559 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the active layer by raising the passive device.
  • the capacitor 1553 is a metal-insulator-metal (Metal-Insulator-Metal, MIM) capacitor.
  • MIM Metal-Insulator-Metal
  • the capacitor 1553 is formed by a semiconductor process.
  • MIM capacitor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment.
  • MOM metal- Metal-Oxide-Metal
  • the material of the substrate 1555 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the connecting member 1570 includes: bumps 1571a, electrically connected to the first end (for example, the first electrode) of the active layer 1531; bumps 1571b, electrically connected to the first end of the active layer 1531 Two ends (for example, the second electrode); the connecting pad 1573a is located on the bump 1571a, the upper side of the connecting pad 1573a is electrically connected to the second end on the lower side of the through hole 1557a, the connecting pad 1573a The lower side is electrically connected to the bump 1571a; the connecting pad 1573b is located on the bump 1571b, and the upper side of the connecting pad 1573b is electrically connected to the second end of the lower side of the through hole 1557b and the bottom of the through hole 1557c At the second end of the side, the lower side of the connecting pad 1573b is electrically connected to the bump 1571b.
  • the filter device 1500 further includes: a sealing member 1590 located between the resonance device 1530 and the passive device 1550, at least surrounding the cavity 1559, for sealing the cavity 1559.
  • FIG. 15b is a schematic diagram of an equivalent circuit of a filter device 1500 according to an embodiment of the present invention.
  • the equivalent circuit diagram of the filtering device 1500 includes: the resonant device 1530 and the capacitor 1553; wherein, the first end of the resonant device 1530 is connected to the input terminal in; the resonant device 1530 The second terminal of the capacitor 1553 is electrically connected to the first terminal of the capacitor 1553; the second terminal of the resonance device 1530 is also connected to the output terminal out; the first terminal of the capacitor 1553 is also connected to the output terminal out; the capacitor 1553 The second terminal is grounded.
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 16a is a schematic structural diagram of a cross-section A of a filter device 1600 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1600 including: a substrate 1610, the substrate 1610 is a wafer substrate; a resonance device 1630, located above the substrate 1610; and a passive device 1650, located on the resonance Above the device 1630; wherein, the resonant device 1630 and the passive device 1650 are electrically connected by a connector 1670.
  • the substrate 1610 is located on the first side of the resonance device 1630
  • the passive device 1650 is located on the second side of the resonance device 1630, wherein the first side of the resonance device 1630 is Opposite the second side.
  • the substrate 1610, the resonance device 1630, and the passive device 1650 are located in one chip.
  • the material of the substrate 1610 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the resonance device 1630 includes but is not limited to at least one of the following: SAW resonance device and BAW resonance device.
  • the resonance device 1630 includes an active layer 1631, and the active layer 1631 includes a piezoelectric layer (not shown) and at least one electrode layer (not shown).
  • the passive device 1650 includes: an intermediate layer 1651 that includes an inductor 1653; a substrate 1655 located on the intermediate layer 1651; a through hole 1657a that penetrates the passive device 1650, so The first end on the upper side of the through hole 1657a is used to connect to the input end of the filter device 1600; the through hole 1657b penetrates the passive device 1650, and the first end on the upper side of the through hole 1657b is used to connect to the The output end of the filter device 1600; the through hole 1657c penetrates the passive device 1650, the first end on the upper side of the through hole 1657c is used for grounding, and the second end on the lower side of the through hole 1657c is electrically connected through the connecting wire 1657d Connect the first end of the inductor 1653.
  • the material of the intermediate layer 1651 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the intermediate layer 1651 further includes a cavity 1659 located above the active layer 1631, and the cavity 1659 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the active layer by raising the passive device.
  • the inductor 1653 is a spiral inductor.
  • the inductor 1653 is formed by a semiconductor process. It should be noted that the spiral inductor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Inductors made by other semiconductor processes known to those skilled in the art can also be applied to the present invention. Invention embodiment.
  • the thickness of the inductor 1653 is smaller than the thickness of the intermediate layer 1651. In another embodiment, the thickness of the inductor is equal to the thickness of the intermediate layer.
  • the material of the substrate 1655 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the connecting member 1670 includes: bumps 1671a, which are electrically connected to the first end (for example, the first electrode) of the active layer 1631; bumps 1671b, which are electrically connected to the first end of the active layer 1631.
  • a connecting pad 1673a located on the bump 1671a, the upper side of the connecting pad 1673a is electrically connected to the second end of the lower side of the through hole 1657a, the connecting pad 1673a
  • the lower side is electrically connected to the bump 1671a; the land 1673b is located on the bump 1671b, and the upper side of the land 1673b is electrically connected to the second end of the lower side of the through hole 1657b and the first end of the inductor 1653.
  • the lower side of the connecting pad 1673b is electrically connected to the bump 1671b.
  • the filtering device 1600 further includes: a sealing member 1690, located between the resonance device 1630 and the passive device 1650, at least surrounding the cavity 1659, for sealing the cavity 1659.
  • FIG. 16b is a schematic structural diagram of a cross-section B of a filter device 1600 according to an embodiment of the present invention.
  • the cross section B of the inductor 1653 is quadrilateral.
  • the cross-sectional B shape of the inductor includes but is not limited to at least one of the following: pentagon, hexagon, octagon, circle, and ellipse.
  • the inductor 1653 includes two layers of coils.
  • the inductor includes three or more layers of coils. It should be noted that the spiral inductor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Other spiral inductors known to those skilled in the art can also be applied to the embodiments of the present invention. .
  • the cross section B of the cavity 1659 is quadrilateral.
  • the cross-sectional B shape of the cavity includes but is not limited to at least one of the following: a pentagon, a hexagon, an octagon, a circle, and an ellipse.
  • FIG. 16c is a schematic diagram of an equivalent circuit of a filtering device 1600 according to an embodiment of the present invention.
  • the equivalent circuit diagram of the filtering device 1600 includes: the resonant device 1630 and the inductor 1653; wherein, the first end of the resonant device 1630 is connected to the input terminal in; the resonant device 1630 The second terminal of the inductor 1653 is electrically connected to the first terminal of the inductor 1653; the second terminal of the resonance device 1630 is also connected to the output terminal out; the first terminal of the inductor 1653 is also connected to the output terminal out; the inductor 1653 The second terminal is grounded.
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 17a is a schematic structural diagram of a cross-section A of a filter device 1700 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1700 that includes: a substrate 1710, which is a wafer substrate; a resonance device 1730, which is located above the substrate 1710; and a passive device 1750, which is located on the resonance Above the device 1730; wherein, the resonant device 1730 and the passive device 1750 are electrically connected through a connector 1770.
  • the substrate 1710 is located on the first side of the resonant device 1730
  • the passive device 1750 is located on the second side of the resonant device 1730
  • the first side of the resonant device 1730 is Opposite the second side.
  • the substrate 1710, the resonant device 1730, and the passive device 1750 are located in one chip.
  • the material of the substrate 1710 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the resonant device 1730 includes but is not limited to at least one of the following: SAW resonant device and BAW resonant device.
  • the resonance device 1730 includes an active layer 1731, and the active layer 1731 includes a piezoelectric layer (not shown) and at least one electrode layer (not shown).
  • the passive device 1750 includes: an intermediate layer 1751 that includes a resistor 1753; a substrate 1755 located on the intermediate layer 1751; a through hole 1757a that penetrates the passive device 1750, so The first end on the upper side of the through hole 1757a is used to connect to the input end of the filter device 1700; the through hole 1757b penetrates the passive device 1750, and the first end on the upper side of the through hole 1757b is used to connect to the The output end of the filter device 1700; a through hole 1757c penetrates the passive device 1750, the first end on the upper side of the through hole 1757c is used for grounding, and the second end on the lower side of the through hole 1757c is electrically connected through a connecting wire 1757d Connect the first end of the resistor 1753.
  • the material of the intermediate layer 1751 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the intermediate layer 1751 further includes a cavity 1759 located above the active layer 1731, and the cavity 1759 can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the active layer by raising the passive device.
  • the resistor 1753 is formed by a semiconductor process. It should be noted that the resistor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment, and resistors made by other semiconductor processes known to those skilled in the art can also be applied to the present invention. Examples.
  • the material of the substrate 1755 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the connecting member 1770 includes: bumps 1771a, which are electrically connected to the first end (for example, the first electrode) of the active layer 1731; bumps 1771b, which are electrically connected to the first end of the active layer 1731. Two ends (for example, the second electrode); a connecting pad 1773a, located on the bump 1771a, the upper side of the connecting pad 1773a is electrically connected to the second end on the lower side of the through hole 1757a, the connecting pad 1773a The lower side is electrically connected to the bump 1771a; the connecting pad 1773b is located on the bump 1771b, and the upper side of the connecting pad 1773b is electrically connected to the second end of the lower side of the through hole 1757b and the first end of the resistor 1753 At the two ends, the lower side of the connecting pad 1773b is electrically connected to the bump 1771b.
  • the filtering device 1700 further includes: a sealing member 1790, located between the resonance device 1730 and the passive device 1750, at least surrounding the cavity 1759, for sealing the cavity 1759.
  • FIG. 17b is a schematic diagram of an equivalent circuit of a filtering device 1700 according to an embodiment of the present invention.
  • the equivalent circuit diagram of the filtering device 1700 includes: the resonant device 1730 and the resistor 1753; wherein, the first end of the resonant device 1730 is connected to the input terminal in; the resonant device 1730 The second terminal of the resistor 1753 is electrically connected to the first terminal of the resistor 1753; the second terminal of the resonance device 1730 is also connected to the output terminal out; the first terminal of the resistor 1753 is also connected to the output terminal out; the resistor 1753 The second terminal is grounded.
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission (the electrical transmission path is shorter), thereby improving the filtering performance.
  • FIG. 18 shows a specific embodiment of the present invention, but the present invention can also be implemented in other ways different from those described here, so the present invention is not limited by the specific embodiments disclosed below.
  • FIG. 18a is a schematic structural diagram of a cross-section A of a filter device 1800 according to an embodiment of the present invention.
  • an embodiment of the present invention provides a filter device 1800 including: a substrate 1810, the substrate 1810 is a wafer substrate; a BAW resonance device 1820, located above the substrate 1810; a BAW resonance device 1830, located on the substrate 1810 above; and integrated passive device (IPD) 1840, located above the BAW resonant device 1820 and the BAW resonant device 1830; wherein, the BAW resonant device 1820 and the IPD 1840 are electrically connected through a connector 1850, so The BAW resonance device 1830 and the IPD 1840 are electrically connected through the connecting member 1860.
  • IPD integrated passive device
  • the substrate 1810 and the IPD 1840 are located on both sides of the BAW resonator device 1820, and the substrate 1810 and the IPD 1840 are located on both sides of the BAW resonator device 1830, respectively.
  • the substrate 1810, the BAW resonator device 1820, the BAW resonator device 1830, and the IPD 1840 are located in one chip.
  • the material of the substrate 1810 includes but is not limited to at least one of the following: silicon, silicon carbide, silicon dioxide, gallium arsenide, gallium nitride, aluminum oxide, magnesium oxide, ceramics, and polymers.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the BAW resonator device 1820 includes, but is not limited to: a piezoelectric layer (not labeled), and an electrode layer 1821 and an electrode layer 1822 located on both sides of the piezoelectric layer. It should be noted that the BAW resonant device 1820 in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Other BAW resonant devices or SAW resonant devices known to those skilled in the art It can also be applied to the embodiment of the present invention.
  • the BAW resonator device 1830 includes, but is not limited to, a piezoelectric layer (not marked) and an electrode layer 1831 and an electrode layer 1832 located on both sides of the piezoelectric layer. It should be noted that the BAW resonator device 1830 in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Other BAW resonator devices or SAW resonator devices known to those skilled in the art It can also be applied to the embodiment of the present invention.
  • the filtering device includes 3 or more BAW resonant devices or SAW resonant devices. In another embodiment, the filtering device includes at least one BAW resonant device and at least one SAW resonant device.
  • the IPD 1840 includes: an intermediate layer 1841, located above the BAW resonant device 1820 and the BAW resonant device 1830, the intermediate layer 1841 includes an inductor 1842; an intermediate layer 1843, located on the intermediate layer 1841 Above, the intermediate layer 1843 includes a capacitor 1844, a capacitor 1845, and a capacitor 1846; a substrate 1847 located on the intermediate layer 1843; and a plurality of through holes 1848.
  • the material of the intermediate layer 1841 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the intermediate layer 1841 further includes a first cavity (not indexed) located above the BAW resonance device 1820, and the first cavity can optimize the height of the monolithic filter device.
  • the intermediate layer 1841 further includes a second cavity (not indexed) located above the BAW resonator device 1830, and the second cavity can optimize the height of the monolithic filter device.
  • a cavity can be formed on the upper side of the resonance device by raising the passive device.
  • the inductor 1842 is a spiral inductor.
  • the inductor 1842 is formed by a semiconductor process. It should be noted that the spiral inductor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Inductors made by other semiconductor processes known to those skilled in the art can also be applied to the present invention. Invention embodiment.
  • the thickness of the inductor 1842 is smaller than the thickness of the intermediate layer 1841. In another embodiment, the thickness of the inductor is equal to the thickness of the intermediate layer.
  • the material of the intermediate layer 1843 includes but is not limited to at least one of the following: polymer, insulating dielectric, and polysilicon.
  • the polymer includes but is not limited to at least one of the following: benzocyclobutene (ie, BCB), photosensitive epoxy resin photoresist (for example, SU-8), and polyimide.
  • the insulating dielectric includes but is not limited to at least one of the following: aluminum nitride, silicon dioxide, silicon nitride, and titanium oxide.
  • the capacitor 1844, the capacitor 1845, and the capacitor 1846 are MIM capacitors.
  • the capacitor 1844, the capacitor 1845, and the capacitor 1846 are formed by a semiconductor process. It should be noted that the MIM capacitor in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment. Those skilled in the art are aware of capacitors made by other semiconductor processes, such as MOM capacitors. It can also be applied to the embodiments of the present invention.
  • the electrode layer 1822 is connected to the input terminal through the connecting member 1850 and the through hole 1848; the electrode layer 1821 is electrically connected to the inductor 1842 through the connecting member 1850 and the through hole 1848.
  • the two ends and the second end on the upper side of the capacitor 1845 are electrically connected to the electrode layer 1831 through the connecting member 1860 and the through hole 1848; the electrode layer 1831 is electrically connected to the electrode layer 1831 through the connecting member 1860 and the through hole 1848
  • the first terminal on the lower side of the capacitor 1846 is also electrically connected; the second terminal on the upper side of the capacitor 1846 is grounded through the through hole 1848; the electrode layer 1832 is electrically connected through the connector 1860 and the through hole 1848. Connect the output terminal.
  • the equivalent circuit diagram of the filtering device 1800 includes: the BAW resonant device 1820, the BAW resonant device 1830, the inductor 1842, the capacitor 1844, the capacitor 1845, and the Capacitor 1846; wherein, the first end of the BAW resonant device 1820 is connected to the input end in, and the second end of the BAW resonant device 1820 is connected to the first end of the inductor 1842, the first end of the capacitor 1844, and The first end of the capacitor 1845 is electrically connected; the first end of the capacitor 1844 is also electrically connected to the first end of the capacitor 1845 and the first end of the inductor 1842; the second end of the capacitor 1844 is grounded The first end of the inductor 1842 is also electrically connected to the first end of the capacitor 1845; the second end of the inductor 1842 is respectively connected to the second end of the capacitor 1845 and the first end of the BAW resonator 1830 And the first end of
  • the equivalent circuit of the IPD 1840 formed by the capacitor 1844, the capacitor 1845, the capacitor 1846, and the inductor 1842 is a band-pass filter circuit.
  • the equivalent circuit of IPD includes but is not limited to at least one of the following: a low-pass filter circuit, a high-pass filter circuit, a band stop filter (band -stop filter) circuit.
  • circuit in this embodiment is only a specific embodiment, and the present invention is not limited by the specific embodiment.
  • the embodiment of the present invention may adopt other circuit structures known to those skilled in the art.
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • integrating the resonant device and the passive device into one chip can reduce electrical transmission loss (electrical transmission path is shorter), thereby improving filtering performance.
  • FIG. 19 shows a performance diagram 1900 of a specific embodiment of the present invention, but the present invention can also be implemented by using other filtering devices different from those described herein, so the present invention is not limited by the specific embodiments disclosed below.
  • An embodiment of the present invention provides a filter device (not shown) including: a chip substrate, a band-pass filter device (for example, IPD 1840 in FIG. 18), and a first BAW resonance device (for example, BAW resonance device 1820 in FIG. 18) ), and a second BAW resonator device (for example, the BAW resonator device 1830 in FIG.
  • a filter device including: a chip substrate, a band-pass filter device (for example, IPD 1840 in FIG. 18), and a first BAW resonance device (for example, BAW resonance device 1820 in FIG. 18) ), and a second BAW resonator device (for example, the BAW resonator device 1830 in FIG.
  • the wafer substrate is located on the first side of the first BAW resonator device and the second BAW resonator device
  • the The band-pass filter device is located on the second side of the first BAW resonant device and the second BAW resonant device, wherein the first side of the first BAW resonant device and the second BAW resonant device are connected to the second side of the second BAW resonant device.
  • the second side is opposite.
  • the chip substrate, the first BAW resonator device, the second BAW resonator device, and the band-pass filter device are located in one chip.
  • the first BAW resonant device and the second BAW resonant device are located on both sides of the band-pass filter device; It is input from the first end, first passes through the first BAW resonant device, then passes through the band-pass filter device, and finally passes through the second BAW resonant device, and the filtered signal is output from the second end.
  • the performance diagram 1900 of the filtering device includes an insertion loss curve.
  • the abscissa of the insertion loss curve represents frequency (unit: GHz), and the ordinate represents insertion loss (unit: dB).
  • the insertion loss curve includes: a first out-of-band suppression zone 1901, a band-pass zone 1903, and a second out-of-band suppression zone 1905; wherein, the first out-of-band suppression zone 1901 is mainly based on the first BAW resonator device, so
  • the band-pass zone 1903 is mainly based on the band-pass filtering device, and the second out-of-band suppression zone 1905 is mainly based on the second BAW resonator device.
  • the first out-of-band suppression zone 1901 includes high out-of-band suppression (greater than -40 dB), and the second out-of-band suppression zone 1905 includes high out-of-band suppression (greater than -60 dB).
  • the filtering device can be applied to the 5G n79 frequency band (4.4 to 5 GHz).
  • integrating the resonant device and the passive device into one chip to form a filter device can broaden the passband bandwidth, have high out-of-band suppression, and reduce the space occupied in the RF front-end chip.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: at least one filter device and a power amplifier device as provided in one of the foregoing embodiments; the filter device is electrically connected to the power amplifier device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: at least one filter device and a low-noise amplifying device as provided in one of the foregoing embodiments; the filter device is electrically connected to the low-noise amplifying device.
  • An embodiment of the present invention also provides a radio frequency front-end device, including but not limited to: a multiplexing device, and the multiplexing device includes at least one filtering device as provided in one of the foregoing embodiments.
  • An embodiment of the present invention also provides a wireless communication device, including but not limited to: a radio frequency front-end device, an antenna, and a baseband processing device as provided in one of the foregoing embodiments; the first end of the radio frequency front-end device is electrically connected to the antenna , The second end of the radio frequency front-end device is electrically connected to the baseband processing device.
  • the resonant device for example, SAW resonant device or BAW resonant device
  • passive device for example, IPD
  • integrating the resonant device and the passive device into one chip can reduce the loss of electrical transmission, thereby improving the filtering performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明提供一种滤波装置、一种射频前端装置及一种无线通信装置。其中,滤波装置包括:基底、至少一个谐振装置、无源装置及连接件;其中,至少一个谐振装置包括第一侧及第一侧相对的第二侧,基底位于第一侧,无源装置位于第二侧;其中,至少一个谐振装置与无源装置通过连接件连接。将谐振装置(例如,SAW谐振装置或BAW谐振装置)及无源装置(例如,IPD)集成到一个晶片中形成射频滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用射频前端芯片中的空间。

Description

一种滤波装置、一种射频前端装置及一种无线通信装置 技术领域
本发明涉及半导体技术领域,具体而言,本发明涉及一种滤波装置、一种射频前端装置及一种无线通信装置。
背景技术
无线通信设备的射频(Radio Frequency,RF)前端芯片包括功率放大器、天线开关、射频滤波器、多工器和低噪声放大器等。其中,射频滤波器包括:压电声表面波(Surface Acoustic Wave,SAW)滤波器、压电体声波(Bulk Acoustic Wave,BAW)滤波器、微机电系统(Micro-Electro-Mechanical System,MEMS)滤波器、集成无源装置(Integrated Passive Devices,IPD)滤波器等。
SAW谐振器和BAW谐振器的品质因数值(Q值)较高,由SAW谐振器和BAW谐振器制作成低插入损耗、高带外抑制的射频滤波器。其中,Q值是谐振器的品质因数值,定义为中心频率除以谐振器3dB带宽。由SAW谐振器和BAW谐振器制作的滤波器受制于压电材料的机电耦合系数(electro-mechanical coupling factor),通带(passband)带宽有限,而IPD具有较SAW滤波器和BAW滤波器更宽的通带。
结合谐振器(例如,SAW谐振器或BAW谐振器)和IPD形成的滤波器可以拓宽通带带宽并同时具有高带外抑制。然而,电连接单片谐振器和单片IPD(例如,SAW谐振器或BAW谐振器位于一个晶片中,IPD位于另一个晶片中)会占用更多RF前端芯片中的空间,及引入更高的制作成本。随着5G时代的到来,RF前端芯片会包括比4G时代更多的RF前端模组,每个模组包括多个RF滤波器,芯片的尺寸却需要进一步缩小,因此空间优化会是RF滤波器设计中的一个重要考虑因素。
技术问题
本发明解决的问题是提供一种滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
技术解决方案
为解决上述问题,本发明实施例提供一种滤波装置,包括:基底、至少一个谐振装置、无源装置及连接件;其中,所述至少一个谐振装置包括第一侧及所述第一侧相对的第二侧,所述基底位于所述第一侧,所述无源装置位于所述第二侧;其中,所述至少一个谐振装置与所述无源装置通过所述连接件连接。其中,所述基底、所述至少一个谐振装置及所述无源装置位于一个晶片中。
在一些实施例中,所述至少一个谐振装置包括但不限于以下至少之一:声表面波(SAW)谐振装置、体声波(BAW)谐振装置。
在一些实施例中,所述无源装置包括但不限于以下至少之一:电容、电感、电阻、通孔。在一些实施例中,所述无源装置包括但不限于集成无源装置(IPD),其中,所述集成无源装置通过半导体工艺形成。
在一些实施例中,所述连接件包括但不限于以下至少之一:凸块、连接盘、电导线、通孔。
在一些实施例中,所述至少一个谐振装置包括第一谐振装置,所述第一谐振装置包括:第一空腔;第一电极层,所述第一电极层的至少一部分位于所述第一空腔内或所述第一空腔上;第一压电层,覆盖所述第一空腔,所述第一空腔和所述第一压电层位于所述第一电极层的至少一部分的两侧;第二电极层,位于所述第一压电层上,所述第一电极层和所述第二电极层位于所述第一压电层两侧。
在一些实施例中,所述基底包括所述第一空腔及第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内, 所述第一电极层的第二端位于所述第一凹槽内,所述第一凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述基底。
在一些实施例中,所述基底包括所述第一空腔;所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述基底上方,覆盖所述第一电极层。在一些实施例中,所述第一压电层包括第一突起部,所述第一突起部位于所述第一电极层上方;所述第二电极层包括第二突起部,所述第二突起部位于所述第一突起部上。在一些实施例中,所述第一突起部的形状包括:梯形、矩形;所述第二突起部的形状包括:梯形、矩形。
在一些实施例中,所述第一空腔位于所述基底上;所述第一电极层位于所述基底上,所述第一电极层包括第三突起部,所述第三突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第三突起部两侧;所述第一压电层位于所述基底上,所述第一压电层包括第四突起部,所述第四突起部位于所述第三突起部上方;所述的第二电极层包括第五突起部,所述第五突起部位于所述第四突起部上。在一些实施例中,所述第三突起部的形状包括:梯形、拱形、矩形;所述第四突起部的形状包括:梯形、拱形、矩形;所述第五突起部的形状包括:梯形、拱形、矩形。
在一些实施例中,所述第一谐振装置还包括:第一中间层,所述基底和所述第一压电层位于所述第一中间层两侧,所述第一中间层用于阻隔漏波,所述第一中间层包括所述第一空腔,所述第一中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述第一中间层还包括第二凹槽,所述第二凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内,所述第一电极层的第二端位于所述第二凹槽内,所述第二凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述第一中间层。在一些实施例中,所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述第一中间层上方,覆盖所述第一电极层。
在一些实施例中,所述第一谐振装置还包括:第二中间层,所述基底和所述第一压电层位于所述第二中间层两侧,所述第二中间层用于阻隔漏波,所述第一空腔位于所述第二中间层上,所述第二中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述第一电极层位于所述第二中间层上,所述第一电极层包括第六突起部,所述第六突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第六突起部两侧;所述第一压电层位于所述第二中间层上,所述第一压电层包括第七突起部,所述第七突起部位于所述第六突起部上方;所述的第二电极层包括第八突起部,所述第八突起部位于所述第七突起部上。在一些实施例中,所述第六突起部的形状包括:梯形、拱形、矩形;所述第七突起部的形状包括:梯形、拱形、矩形;所述第八突起部的形状包括:梯形、拱形、矩形。
在一些实施例中,所述至少一个谐振装置包括第二谐振装置,所述第二谐振装置包括:第一反射层;第三电极层,位于所述第一反射层上;第二压电层,位于所述第一反射层上方,覆盖所述第三电极层;第四电极层,位于所述第二压电层上,所述第三电极层和所述第四电极层位于所述第二压电层两侧。
在一些实施例中,所述第一反射层,位于所述基底上,包括第一子反射层和第二子反射层,所述第一子反射层和所述第二子反射层交替放置,所述第一子反射层和所述第二子反射层的材料不同。在一些实施例中,所述第一反射层包括布拉格反射层。在一些实施例中,所述第二压电层包括第九突起部,所述第九突起部位于所述第三电极层上方;所述第四电极层包括第十突起部,所述第十突起部位于所述第九突起部上。
在一些实施例中,所述至少一个谐振装置包括第三谐振装置,所述第三谐振装置包括:第三压电层;第五电极层,位于所述第三压电层上。在一些实施例中,所述第五电极层包括但不 限于叉指换能装置。在一些实施例中,所述第五电极层包括第一电极条和第二电极条,所述第一电极条和所述第二电极条的极性不同,所述第一电极条和所述第二电极条交替放置。
在一些实施例中,所述第三谐振装置还包括:第三中间层,所述第三压电层位于所述第三中间层上,所述基底和所述第三压电层位于所述第三中间层两侧,所述第三中间层用于阻隔漏波或温度补偿。在一些实施例中,所述第三谐振装置还包括:第四中间层,所述第三中间层位于所述第四中间层上,所述基底和所述第三中间层位于所述第四中间层两侧,所述第四中间层用于阻隔漏波。
在一些实施例中,所述第三谐振装置还包括:第二反射层,所述第三压电层位于所述第二反射层上,所述基底和所述第三压电层位于所述第二反射层两侧。在一些实施例中,所述第二反射层包括第三子反射层和第四子反射层,所述第三子反射层和所述第四子反射层交替放置,所述第三子反射层和所述第四子反射层的材料不同。在一些实施例中,所述第二反射层包括布拉格反射层。
在一些实施例中,所述基底的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。在一些实施例中,所述至少一个谐振装置包括第四谐振装置,所述第四谐振装置包括:第六电极层,位于所述基底上;其中,所述第六电极层包括叉指换能装置。在一些实施例中,所述第四谐振装置还包括:温度补偿层,位于所述基底上,覆盖所述第六电极层。
本发明实施例还提供一种射频前端装置,包括:功率放大装置和至少一个如上述实施例其中之一提供的滤波装置;所述功率放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括:低噪声放大装置和至少一个如上述实施例其中之一提供的滤波装置;所述低噪声放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括:多工装置,所述多工装置包括至少一个如上述实施例其中之一提供的滤波装置。
本发明实施例还提供一种无线通信装置,包括:天线、基带处理装置和如上述实施例其中之一提供的射频前端装置;所述天线与所述射频前端装置的第一端连接;所述基带处理装置与所述射频前端装置的第二端连接。
有益效果
从上述描述可知,本发明提供一种滤波装置,所述滤波装置包括至少一个谐振装置(例如,BAW谐振装置或SAW谐振装置)及无源装置(例如,IPD),其中,所述至少一个谐振装置和所述无源装置位于一个晶片(die)中,从而可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置及无源装置集成到一个晶片中形成滤波装置可以减少电传输的损耗,从而提高滤波装置的性能。
附图说明
图1是本发明实施例的一种滤波装置100的剖面A结构示意图;
图2a是本发明实施例的一种滤波装置200的剖面A结构示意图;
图2b是一种六方晶系晶体的结构示意图;
图2c(i)是一种正交晶系晶体的结构示意图;
图2c(ii)是一种四方晶系晶体的结构示意图;
图2c(iii)是一种立方晶系晶体的结构示意图;
图3是本发明实施例的一种滤波装置300的剖面A结构示意图;
图4是本发明实施例的一种滤波装置400的剖面A结构示意图;
图5是本发明实施例的一种滤波装置500的剖面A结构示意图;
图6是本发明实施例的一种滤波装置600的剖面A结构示意图;
图7是本发明实施例的一种滤波装置700的剖面A结构示意图;
图8是本发明实施例的一种滤波装置800的剖面A结构示意图;
图9是本发明实施例的一种滤波装置900的剖面A结构示意图;
图10是本发明实施例的一种滤波装置1000的剖面A结构示意图;
图11是本发明实施例的一种滤波装置1100的剖面A结构示意图;
图12是本发明实施例的一种滤波装置1200的剖面A结构示意图;
图13是本发明实施例的一种滤波装置1300的剖面A结构示意图;
图14是本发明实施例的一种滤波装置1400的剖面A结构示意图;
图15a是本发明实施例的一种滤波装置1500的剖面A结构示意图;
图15b是本发明实施例的一种滤波装置1500的等效电路示意图;
图16a是本发明实施例的一种滤波装置1600的剖面A结构示意图;
图16b是本发明实施例的一种滤波装置1600的剖面B结构示意图;
图16c是本发明实施例的一种滤波装置1600的等效电路示意图;
图17a是本发明实施例的一种滤波装置1700的剖面A结构示意图;
图17b是本发明实施例的一种滤波装置1700的等效电路示意图;
图18a是本发明实施例的一种滤波装置1800的剖面A结构示意图;
图18b是本发明实施例的一种滤波装置1800的等效电路示意图;
图19是本发明实施例的一种滤波装置的性能示意图1900。
需要说明的是,所述剖面A和所述剖面B为互相正交的两个剖面。
本发明的实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此本发明不受下面公开的具体实施例的限制。
如背景技术部分所述,电连接单片谐振装置及单片无源装置(例如,SAW谐振装置或BAW谐振装置位于一个晶片中,IPD位于另一个晶片中)会占用更多RF前端芯片中的空间,及引入更高的制作成本。
本发明的发明人发现,将谐振装置(例如,SAW谐振装置或BAW谐振装置)及无源装置(例如,IPD)集成到一个晶片中形成RF滤波装置,从而可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
本发明的发明人还发现,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗,从而提高滤波性能。
为解决上述问题,本发明实施例提供一种滤波装置,包括:基底、至少一个谐振装置、无源装置及连接件;其中,所述至少一个谐振装置包括第一侧及所述第一侧相对的第二侧,所述基底位于所述第一侧,所述无源装置位于所述第二侧;其中,所述至少一个谐振装置与所述无源装置通过所述连接件连接。
本实施例中,所述基底、所述至少一个谐振装置及所述无源装置位于一个晶片中。本实施例中,所述至少一个谐振装置包括但不限于以下至少之一:声表面波(SAW)谐振装置、体声波(BAW)谐振装置。本实施例中,所述无源装置包括但不限于以下至少之一:电容、电感、电阻、通孔。本实施例中,所述无源装置包括但不限于集成无源装置(IPD),其中,所述集成无源装置通过半导体工艺形成。本实施例中,所述连接件包括但不限于以下至少之一:凸块、连接盘、电导线、通孔。
需要说明的是,将谐振装置(例如,SAW谐振装置或BAW谐振装置)及无源装置(例如,IPD)集成到一个晶片中形成RF滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗,从而提高滤波性能。
在一些实施例中,所述至少一个谐振装置包括第一谐振装置,所述第一谐振装置包括:第一空腔;第一电极层,所述第一电极层的至少一部分位于所述第一空腔内或所述第一空腔上;第一压电层,覆盖所述第一空腔,所述第一空腔和所述第一压电层位于所述第一电极层的至少一部分的两侧;第二电极层,位于所述第一压电层上,所述第一电极层和所述第二电极层位于所述第一压电层两侧。
在一些实施例中,所述基底包括所述第一空腔及第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内,所述第一电极层的第二端位于所述第一凹槽内,所述第一凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述基底。
在一些实施例中,所述基底包括所述第一空腔;所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述基底上方,覆盖所述第一电极层。在一些实施例中,所述第一压电层包括第一突起部,所述第一突起部位于所述第一电极层上方;所述第二电极层包括第二突起部,所述第二突起部位于所述第一突起部上。在一些实施例中,所述第一突起部的形状包括:梯形、矩形;所述第二突起部的形状包括:梯形、矩形。
在一些实施例中,所述第一空腔位于所述基底上;所述第一电极层位于所述基底上,所述第一电极层包括第三突起部,所述第三突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第三突起部两侧;所述第一压电层位于所述基底上,所述第一压电层包括第四突起部,所述第四突起部位于所述第三突起部上方;所述的第二电极层包括第五突起部,所述第五突起部位于所述第四突起部上。在一些实施例中,所述第三突起部的形状包括:梯形、拱形、矩形;所述第四突起部的形状包括:梯形、拱形、矩形;所述第五突起部的形状包括:梯形、拱形、矩形。
在一些实施例中,所述第一谐振装置还包括:第一中间层,所述基底和所述第一压电层位于所述第一中间层两侧,所述第一中间层用于阻隔漏波,所述第一中间层包括所述第一空腔,所述第一中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述第一中间层还包括第二凹槽,所述第二凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内,所述第一电极层的第二端位于所述第二凹槽内,所述第二凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述第一中间层。在一些实施例中,所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述第一中间层上方,覆盖所述第一电极层。
在一些实施例中,所述第一谐振装置还包括:第二中间层,所述基底和所述第一压电层位于所述第二中间层两侧,所述第二中间层用于阻隔漏波,所述第一空腔位于所述第二中间层上,所述第二中间层的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。在一些实施例中,所述第一电极层位于所述第二中间层上,所述第一电极层包括第六突起部,所述第六突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第六突起部两侧;所述第一压电层位于所述第二中间层上,所述第一压电层包括第七突起部,所述第七突起部位于所述第六突起部上方;所述的第二电极层包括第八突起部,所述第八突起部位于所述第七突起部上。在一些实施例中,所述第六突起部的形状包括:梯形、拱形、矩形;所述第七突起部的形状包括:梯形、拱形、矩形;所述第八突起部的形状包括:梯形、拱形、矩 形。
在一些实施例中,所述至少一个谐振装置包括第二谐振装置,所述第二谐振装置包括:第一反射层;第三电极层,位于所述第一反射层上;第二压电层,位于所述第一反射层上方,覆盖所述第三电极层;第四电极层,位于所述第二压电层上,所述第三电极层和所述第四电极层位于所述第二压电层两侧。
在一些实施例中,所述第一反射层,位于所述基底上,包括第一子反射层和第二子反射层,所述第一子反射层和所述第二子反射层交替放置,所述第一子反射层和所述第二子反射层的材料不同。在一些实施例中,所述第一反射层包括布拉格反射层。在一些实施例中,所述第二压电层包括第九突起部,所述第九突起部位于所述第三电极层上方;所述第四电极层包括第十突起部,所述第十突起部位于所述第九突起部上。
在一些实施例中,所述至少一个谐振装置包括第三谐振装置,所述第三谐振装置包括:第三压电层;第五电极层,位于所述第三压电层上。在一些实施例中,所述第五电极层包括但不限于叉指换能装置。在一些实施例中,所述第五电极层包括第一电极条和第二电极条,所述第一电极条和所述第二电极条的极性不同,所述第一电极条和所述第二电极条交替放置。
在一些实施例中,所述第三谐振装置还包括:第三中间层,所述第三压电层位于所述第三中间层上,所述基底和所述第三压电层位于所述第三中间层两侧,所述第三中间层用于阻隔漏波或温度补偿。在一些实施例中,所述第三谐振装置还包括:第四中间层,所述第三中间层位于所述第四中间层上,所述基底和所述第三中间层位于所述第四中间层两侧,所述第四中间层用于阻隔漏波。
在一些实施例中,所述第三谐振装置还包括:第二反射层,所述第三压电层位于所述第二反射层上,所述基底和所述第三压电层位于所述第二反射层两侧。在一些实施例中,所述第二反射层包括第三子反射层和第四子反射层,所述第三子反射层和所述第四子反射层交替放置,所述第三子反射层和所述第四子反射层的材料不同。在一些实施例中,所述第二反射层包括布拉格反射层。
在一些实施例中,所述基底的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。在一些实施例中,所述至少一个谐振装置包括第四谐振装置,所述第四谐振装置包括:第六电极层,位于所述基底上;其中,所述第六电极层包括叉指换能装置。在一些实施例中,所述第四谐振装置还包括:温度补偿层,位于所述基底上,覆盖所述第六电极层。
本发明实施例还提供一种射频前端装置,包括:功率放大装置和至少一个如上述实施例其中之一提供的滤波装置;所述功率放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括:低噪声放大装置和至少一个如上述实施例其中之一提供的滤波装置;所述低噪声放大装置与所述滤波装置连接。
本发明实施例还提供一种射频前端装置,包括:多工装置,所述多工装置包括至少一个如上述实施例其中之一提供的滤波装置。
本发明实施例还提供一种无线通信装置,包括:天线、基带处理装置和如上述实施例其中之一提供的射频前端装置;所述天线与所述射频前端装置的第一端连接;所述基带处理装置与所述射频前端装置的第二端连接。
图1至图14示出了本发明的多个具体实施例,所述多个具体实施例采用不同结构的谐振装置,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此本发明不受下面公开的具体实施例的限制。
图1是本发明实施例的一种滤波装置100的剖面A结构示意图。
如图1所示,本发明实施例提供一种滤波装置100包括:基底101,所述基底101为晶片基 底;至少一个谐振装置103,位于所述基底101上方;以及无源装置105,位于所述至少一个谐振装置103上方;其中,所述至少一个谐振装置103与所述无源装置105电连接。
本实施例中,所述基底101位于所述至少一个谐振装置103的第一侧103a,所述无源装置105位于所述至少一个谐振装置103的第二侧103b。本实施例中,所述基底101、所述至少一个谐振装置103、以及所述无源装置105集成于一个晶片中。
本实施例中,所述基底101的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述至少一个谐振装置103包括但不限于以下至少之一:SAW谐振装置、BAW谐振装置。
本实施例中,所述无源装置105包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。
需要说明的是,将谐振装置及无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
图2是本发明实施例的一种滤波装置200的剖面A结构示意图。
如图2a所示,本发明实施例提供一种滤波装置200包括:基底201,所述基底201为晶片基底;BAW谐振装置203,位于所述基底201上方;以及无源装置205,位于所述BAW谐振装置203上方;其中,所述BAW谐振装置203与所述无源装置205通过连接件207电连接。
本实施例中,所述基底201和所述无源装置205分别位于所述BAW谐振装置203的两侧。本实施例中,所述基底201、所述BAW谐振装置203及所述无源装置205集成于一个晶片中。
本实施例中,所述基底201的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置203包括:中间层2031,位于所述基底201上,其中,所述中间层2031的上表面侧包括空腔2033a及凹糟2033b,所述凹糟2033b位于所述空腔2033a左右两侧中的一侧(即,水平方向上的一侧)并和所述空腔2033a相通,所述凹糟2033b的深度小于所述空腔2033a的深度;电极层2035,所述电极层2035的第一端2035a位于所述空腔2033a内,所述电极层2035的第二端2035b位于所述凹糟2033b内,所述第二端2035b与所述第一端2035a相对,所述凹槽2033b的深度等于所述电极层2035的厚度;压电层2037,位于所述电极层2035上,所述基底201和所述压电层2037分别位于所述中间层2031的两侧,所述压电层2037为平层,至少覆盖所述空腔2033a;以及电极层2039,位于所述压电层2037上,所述电极层2035和所述电极层2039分别位于所述压电层2037两侧;其中,谐振区(即,所述电极层2035和所述电极层2039的重合区域)相对于所述空腔2033a悬空,与所述中间层2031没有重合部。
本实施例中,所述中间层2031的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述电极层2035的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述压电层2037还覆盖所述中间层2031的上表面侧。本实施例中,所述中间层2031和所述无源装置205分别位于所述压电层2037的两侧。本实施例中,所述压电层2037的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。需要说明的是,所述中间层2031材料的声阻抗和所述压电层2037材料的声阻抗不同,可以阻隔横向模式(lateral mode)漏波。
本实施例中,所述压电层2037包括多个晶体,所述多个晶体包括第一晶体和第二晶体,其中,所述第一晶体和所述第二晶体是所述多个晶体中的任意两个晶体。所属技术领域的技术人员知晓晶体的晶向、晶面等可以基于坐标系表示。如图2b所示,对于六方晶系的晶体,例如氮化铝晶体,采用ac立体坐标系(包括a轴及c轴)表示。如图2c所示,对于(i)正交晶系(a≠b≠c)、(ii)四方晶系(a=b≠c)、(iii)立方晶系(a=b=c)等的晶体,采用xyz立体坐标系(包括x轴、y轴及z轴)表示。除上述两个实例,晶体还可以基于其他所属技术领域的技术人员知晓的坐标系表示,因此本发明不受上述两个实例的限制。
本实施例中,所述第一晶体可以基于第一立体坐标系表示,所述第二晶体可以基于第二立体坐标系表示,其中,所述第一立体坐标系至少包括沿第一方向的第一坐标轴及沿第三方向第三坐标轴,所述第二立体坐标系至少包括沿第二方向的第二坐标轴及沿第四方向的第四坐标轴,其中,所述第一坐标轴对应所述第一晶体的高,所述第二坐标轴对应所述第二晶体的高。
本实施例中,所述第一方向和所述第二方向相同或相反。需要说明的是,所述第一方向和所述第二方向相同指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括0度至5度;所述第一方向和所述第二方向相反指:沿所述第一方向的向量和沿所述第二方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为ac立体坐标系,其中,所述第一坐标轴为第一c轴,所述第三坐标轴为第一a轴;所述第二立体坐标系为ac立体坐标系,所述第二坐标轴为第二c轴,所述第四坐标轴为第二a轴,其中,所述第一c轴和所述第二c轴的指向相同或相反。
在另一个实施例中,所述第一立体坐标系还包括沿第五方向的第五坐标轴,所述第二立体坐标系还包括沿第六方向的第六坐标轴。在另一个实施例中,所述第一方向和所述第二方向相同或相反,所述第三方向和所述第四方向相同或相反。需要说明的是,所述第三方向和所述第四方向相同指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括0度至5度;所述第三方向和所述第四方向相反指:沿所述第三方向的向量和沿所述第四方向的向量的夹角范围包括175度至180度。
在另一个实施例中,所述第一立体坐标系为xyz立体坐标系,其中,所述第一坐标轴为第一z轴,所述第三坐标轴为第一y轴,所述第五坐标轴为第一x轴;所述第二立体坐标系为xyz立体坐标系,所述第二坐标轴为第二z轴,所述第四坐标轴为第二y轴,所述第六坐标轴为第二x轴。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相同。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相同,所述第一y轴和所述第二y轴的指向相反。在另一个实施例中,所述第一z轴和所述第二z轴的指向相反,所述第一y轴和所述第二y轴的指向相同。
本实施例中,所述压电层2037包括多个晶体,所述多个晶体的摇摆曲线半峰宽低于2.5度。需要说明的是,摇摆曲线(Rocking curve)描述某一特定晶面(衍射角确定的晶面)在样品中角发散大小,通过平面坐标系表示,其中,横坐标为该晶面与样品面的夹角,纵坐标则表示在某一夹角下,该晶面的衍射强度,摇摆曲线用于表示晶格质量,半峰宽角度越小说明晶格质量越好。此外,半峰宽(Full Width at Half Maximum,FWHM)指在函数的一个峰当中,前后两个函数值等于峰值一半的点之间的距离。
需要说明的是,在平面上形成所述压电层2037可以使所述压电层2037不包括明显转向的晶体,从而有助于提高谐振装置的机电耦合系数以及谐振装置的Q值。
本实施例中,所述压电层2037和所述无源装置205分别位于所述电极层2039的两侧。本实施例中,所述电极层2039的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述无源装置205包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置205包括空腔2051,位于所述谐振区上方,对应所述空腔2033a,所述空腔2051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件207的第一端分别电连接所述电极层2035和所述电极层2039,所述连接件207的第二端电连接所述无源装置205。本实施例中,所述连接件207包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置200还包括:密封件209,位于所述压电层2037上,位于所述压电层2037与所述无源装置205之间,至少包围所述空腔2051,用于密封所述空腔2051。需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图3是本发明实施例的一种滤波装置300的剖面A结构示意图。
如图3所示,本发明实施例提供一种滤波装置300包括:基底301,所述基底301为晶片基底;BAW谐振装置303,位于所述基底301上;以及无源装置305,位于所述BAW谐振装置303上方;其中,所述BAW谐振装置303与所述无源装置305通过连接件307电连接。本实施例中,所述BAW谐振装置303的第一侧为所述基底301,所述BAW谐振装置303的第二侧为所述无源装置305,其中,所述BAW谐振装置303的所述第一侧与所述第二侧相对。本实施例中,所述基底301、所述BAW谐振装置303及所述无源装置305集成于一个晶片中。
本实施例中,所述基底301的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述BAW谐振装置303包括但不限于:所述基底301上表面侧的空腔3031a及凹槽3031b,所述凹槽3031b位于所述空腔3031a左右两侧中的一侧并和所述空腔3031a相通,所述凹槽3031b的深度小于所述空腔3031a的深度;电极层3033,所述电极层3033的第一端3033a位于所述空腔3031a内,所述电极层3033的第二端3033b位于所述凹槽3031b内,所述第二端3033b与所述第一端3033a相对,所述凹槽3031b的深度等于所述电极层3033的厚度;压电层3035,位于所述电极层3033上,所述压电层3035为平层,至少覆盖所述空腔3031a;以及电极层3037,位于所述压电层3035上,所述电极层3033和所述电极层3037分别位于所述压电层3035两侧;其中,谐振区(即,所述电极层3033和所述电极层3037的重合区域)相对于所述空腔3031a悬空,与所述基底301没有重合部。
本实施例中,所述电极层3033的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述压电层3035还覆盖所述基底301的上表面侧。本实施例中,所述基底301 和所述无源装置305分别位于所述压电层3035的两侧。本实施例中,所述压电层3035的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述压电层3035和所述无源装置305分别位于所述电极层3037的两侧。本实施例中,所述电极层3037的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述无源装置305包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置305包括空腔3051,位于所述谐振区上方,对应所述空腔3031a,所述空腔3051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件307的第一端分别电连接所述电极层3033和所述电极层3037,所述连接件307的第二端电连接所述无源装置305。本实施例中,所述连接件307包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置300还包括:密封件309,位于所述压电层3035上,位于所述压电层3035与所述无源装置305之间,至少包围所述空腔3051,用于密封所述空腔3051。需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图4是本发明实施例的一种滤波装置400的剖面A结构示意图。
如图4所示,本发明实施例提供一种滤波装置400包括:基底401,所述基底401为晶片基底;BAW谐振装置403,位于所述基底401上方;以及无源装置405,位于所述BAW谐振装置403上方;其中,所述BAW谐振装置403与所述无源装置405通过连接件407电连接。本实施例中,所述基底401和所述无源装置405分别位于所述BAW谐振装置403的两侧。本实施例中,所述基底401、所述BAW谐振装置403及所述无源装置405集成于一个晶片中。
本实施例中,所述基底401的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置403包括:中间层4031,位于所述基底401上,其中,所述中间层4031的上表面侧包括空腔4033;电极层4035,位于所述空腔4033上,覆盖所述空腔4033,所述基底401和所述电极层4035分别位于所述中间层4031的两侧;压电层4037,位于所述中间层4031上,覆盖所述电极层4035,所述压电层4037包括突起部4037a,位于所述电极层4035上方;以及电极层4039,位于所述压电层4037上,所述电极层4039包括突起部4039a,位于所述突起部4037a上;其中,谐振区(即,所述电极层4035和所述电极层4039的重合区域)与所述中间层4031有重合部,其中,所述重合部位于所述空腔4033左右两侧中的一侧。
本实施例中,所述中间层4031的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述电极层4035还位于所述中间层4031上。本实施例中,所述电极层4035的剖面A呈梯形。在另一个实施例中,下电极层的剖面A呈矩形。本实施例中,所述电极层4035的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述压电层4037还覆盖所述中间层4031的上表面侧。本实施例中,所述压电层4037的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。需要说明的是,所述中间层4031材料的声阻抗和所述压电层4037材料的声阻抗不同,可以阻隔横向模式漏波。
本实施例中,所述突起部4037a的突起高度大于或等于所述电极层4035的厚度。本实施例中,所述突起部4037a的剖面A呈梯形。在另一个实施例中,第一突起部的剖面A呈矩形。本实施例中,所述压电层4037和所述无源装置405分别位于所述电极层4039的两侧。本实施例中,所述电极层4039的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述突起部4039a的突起高度大于或等于所述电极层4035的厚度。本实施例中,所述突起部4039a的剖面A呈梯形。在另一个实施例中,第二突起部的剖面A呈矩形。
本实施例中,所述无源装置405包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置405包括空腔4051,位于所述谐振区上方,对应所述空腔4033,所述空腔4051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件407的第一端分别电连接所述电极层4035和所述电极层4039,所述连接件407的第二端电连接所述无源装置405。本实施例中,所述连接件407包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置400还包括:密封件409,位于所述BAW谐振装置403与所述无源装置405之间,至少包围所述空腔4051,用于密封所述空腔4051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图5是本发明实施例的一种滤波装置500的剖面A结构示意图。
如图5所示,本发明实施例提供一种滤波装置500包括:基底501,所述基底501为晶片基底;BAW谐振装置503,位于所述基底501上;以及无源装置505,位于所述BAW谐振装置503上方;其中,所述BAW谐振装置503与所述无源装置505通过连接件507电连接。
本实施例中,所述BAW谐振装置503的第一侧为所述基底501,所述BAW谐振装置503的第二侧为所述无源装置505,其中,所述BAW谐振装置503的所述第一侧与所述第二侧相对。本实施例中,所述基底501、所述BAW谐振装置503及所述无源装置505集成于一个晶片中。
本实施例中,所述基底501的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置503包括但不限于:所述基底501上表面侧的空腔5031;电极层5033,位于所述空腔5031上,覆盖所述空腔5031;压电层5035,位于所述基底501上,覆盖所述电极层5033,所述压电层5035包括突起部5035a,位于所述电极层5033上 方;以及电极层5037,位于所述压电层5035上,所述电极层5037包括突起部5037a,位于所述突起部5035a上;其中,谐振区(即,所述电极层5033和所述电极层5037的重合区域)与所述基底501有重合部,其中,所述重合部位于所述空腔5031左右两侧中的一侧。
本实施例中,所述电极层5033还位于所述基底501上。本实施例中,所述电极层5033的剖面A呈梯形。在另一个实施例中,下电极层的剖面A呈矩形。本实施例中,所述电极层5033的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述压电层5035还覆盖所述基底501的上表面侧。本实施例中,所述压电层5035的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述突起部5035a的突起高度大于或等于所述电极层5033的厚度。本实施例中,所述突起部5035a的剖面A呈梯形。在另一个实施例中,第一突起部的剖面A呈矩形。本实施例中,所述压电层5035和所述无源装置505分别位于所述电极层5037的两侧。本实施例中,所述电极层5037的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述突起部5037a的突起高度大于或等于所述电极层5033的厚度。本实施例中,所述突起部5037a的剖面A呈梯形。在另一个实施例中,第二突起部的剖面A呈矩形。
本实施例中,所述无源装置505包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置505包括空腔5051,位于所述谐振区上方,对应所述空腔5031,所述空腔5051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件507的第一端分别电连接所述电极层5033和所述电极层5037,所述连接件507的第二端电连接所述无源装置505。本实施例中,所述连接件507包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置500还包括:密封件509,位于所述BAW谐振装置503与所述无源装置505之间,至少包围所述空腔5051,用于密封所述空腔5051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图6是本发明实施例的一种滤波装置600的剖面A结构示意图。
如图6所示,本发明实施例提供一种滤波装置600包括:基底601,所述基底601为晶片基底;BAW谐振装置603,位于所述基底601上方;以及无源装置605,位于所述BAW谐振装置603上方;其中,所述BAW谐振装置603与所述无源装置605通过连接件607电连接。
本实施例中,所述基底601和所述无源装置605分别位于所述BAW谐振装置603的两侧。
本实施例中,所述基底601、所述BAW谐振装置603及所述无源装置605位于一个晶片中。
本实施例中,所述基底601的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置603包括:中间层6031,位于所述基底601上;反射层6033,位于所述中间层6031上,所述基底601和所述反射层6033分别位于所述中间层6031的两侧;电极层6035,位于所述中间层6031上,所述电极层6035包括突起部6035a,位于所 述反射层6033上;压电层6037,位于所述中间层6031上,所述压电层6037包括突起部6037a,位于所述突起部6035a上方;电极层6039,位于所述压电层6037上,所述电极层6039包括突起部6039a,位于所述突起部6037a上;其中,谐振区(即,所述电极层6035和所述电极层6039的重合区域)位于所述反射层6033上方。
本实施例中,所述中间层6031的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述反射层6033的剖面A呈梯形。在另一个实施例中,反射层的剖面A呈矩形。本实施例中,所述反射层6033为空腔,即空腔6033。
本实施例中,所述电极层6035的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部6035a的突起高度大于或等于所述反射层6033的厚度(即,所述空腔6033的深度)。本实施例中,所述突起部6035a的剖面A呈梯形。在另一个实施例中,第一突起部的剖面A呈矩形。
本实施例中,所述压电层6037的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。需要说明的是,所述中间层6031材料的声阻抗和所述压电层6037材料的声阻抗不同,可以阻隔横向模式漏波。
本实施例中,所述突起部6037a的突起高度大于或等于所述反射层6033的厚度(即,所述空腔6033的深度)。本实施例中,所述突起部6037a的剖面A呈梯形。在另一个实施例中,第二突起部的剖面A呈矩形。
本实施例中,所述电极层6039的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部6039a的突起高度大于或等于所述反射层6033的厚度(即,所述空腔6033的深度)。本实施例中,所述突起部6039a的剖面A呈梯形。在另一个实施例中,第三突起部的剖面A呈矩形。
本实施例中,所述无源装置605包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置605包括空腔6051,位于所述谐振区上方,对应所述空腔6033,所述空腔6051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件607的第一端分别电连接所述电极层6035和所述电极层6039,所述连接件607的第二端电连接所述无源装置605。本实施例中,所述连接件607包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置600还包括:密封件609,位于所述BAW谐振装置603与所述无源装置605之间,至少包围所述空腔6051,用于密封所述空腔6051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图7是本发明实施例的一种滤波装置700的剖面A结构示意图。
如图7所示,本发明实施例提供一种滤波装置700包括:基底701,所述基底701为晶片基底;BAW谐振装置703,位于所述基底701上;以及无源装置705,位于所述BAW谐振装置703上方;其中,所述BAW谐振装置703与所述无源装置705通过连接件707电连接。
本实施例中,所述BAW谐振装置703的第一侧为所述基底701,所述BAW谐振装置703的第二侧为所述无源装置705,其中,所述BAW谐振装置703的所述第一侧与所述第二侧相对。本实施例中,所述基底701、所述BAW谐振装置703及所述无源装置705位于一个晶片中。
本实施例中,所述基底701的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置703包括:反射层7031,位于所述基底701上;电极层7033,位于所述基底701上,所述电极层7033包括突起部7033a,位于所述反射层7031上;压电层7035,位于所述基底701上,所述压电层7035包括突起部7035a,位于所述突起部7033a上方;电极层7037,位于所述压电层7035上,所述电极层7037包括突起部7037a,位于所述突起部7035a上;其中,谐振区(即,所述电极层7033和所述电极层7037的重合区域)位于所述反射层7031上方。
本实施例中,所述反射层7031的剖面A呈梯形。在另一个实施例中,反射层的剖面A呈矩形。本实施例中,所述反射层7031为空腔,即空腔7031。
本实施例中,所述电极层7033的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部7033a的突起高度大于或等于所述反射层7031的厚度(即,所述空腔7031的深度)。本实施例中,所述突起部7033a的剖面A呈梯形。在另一个实施例中,第一突起部的剖面A呈矩形。
本实施例中,所述压电层7035的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述突起部7035a的突起高度大于或等于所述反射层7031的厚度(即,所述空腔7031的深度)。本实施例中,所述突起部7035a的剖面A呈梯形。在另一个实施例中,第二突起部的剖面A呈矩形。
本实施例中,所述电极层7037的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部7037a的突起高度大于或等于所述反射层7031的厚度(即,所述空腔7031的深度)。本实施例中,所述突起部7037a的剖面A呈梯形。在另一个实施例中,第三突起部的剖面A呈矩形。
本实施例中,所述无源装置705包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置705包括空腔7051,位于所述谐振区上方,对应所述空腔7031,所述空腔7051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件707的第一端分别电连接所述电极层7033和所述电极层7037,所述连接件707的第二端电连接所述无源装置705。本实施例中,所述连接件707包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置700还包括:密封件709,位于所述BAW谐振装置703与所述无源装置705之间,至少包围所述空腔7051,用于密封所述空腔7051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图8是本发明实施例的一种滤波装置800的剖面A结构示意图。
如图8所示,本发明实施例提供一种滤波装置800包括:基底801,所述基底801为晶片基底;BAW谐振装置803,位于所述基底801上方;以及无源装置805,位于所述BAW谐振装置803上方;其中,所述BAW谐振装置803与所述无源装置805通过连接件807电连接。
本实施例中,所述基底801和所述无源装置805分别位于所述BAW谐振装置803的两侧。
本实施例中,所述基底801、所述BAW谐振装置803及所述无源装置805位于一个晶片中。本实施例中,所述基底801的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置803包括:中间层8031,位于所述基底801上;反射层8033,位于所述中间层8031上,所述基底801和所述反射层8033分别位于所述中间层8031的两侧;电极层8035,位于所述中间层8031上,所述电极层8035包括突起部8035a,位于所述反射层8033上;压电层8037,位于所述中间层8031上,所述压电层8037包括突起部8037a,位于所述突起部8035a上方;电极层8039,位于所述压电层8037上,所述电极层8039包括突起部8039a,位于所述突起部8037a上;其中,谐振区(即,所述电极层8035和所述电极层8039的重合区域)位于所述反射层8033上方。
本实施例中,所述中间层8031的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述反射层8033的剖面A呈拱形。本实施例中,所述反射层8033为空腔,即空腔8033。
本实施例中,所述电极层8035的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部8035a的突起高度大于或等于所述反射层8033的厚度(即,所述空腔8033的深度)。本实施例中,所述突起部8035a的剖面A呈拱形。
本实施例中,所述压电层8037的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。需要说明的是,所述中间层8031材料的声阻抗和所述压电层8037材料的声阻抗不同,可以阻隔横向模式漏波。本实施例中,所述突起部8037a的突起高度大于或等于所述反射层8033的厚度(即,所述空腔8033的深度)。本实施例中,所述突起部8037a的剖面A呈拱形。
本实施例中,所述电极层8039的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部8039a的突起高度大于或等于所述反射层8033的厚度(即,所述空腔8033的深度)。本实施例中,所述突起部8039a的剖面A呈拱形。
本实施例中,所述无源装置805包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置805包括空腔8051,位于所述谐振区上方,对应所述空腔8033,所述空腔8051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件807的第一端分别电连接所述电极层8035和所述电极层8039,所述连接件807的第二端电连接所述无源装置805。本实施例中,所述连接件807包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置800还包括:密封件809,位于所述BAW谐振装置803与所述无源装置805之间,至少包围所述空腔8051,用于密封所述空腔8051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图9是本发明实施例的一种滤波装置900的剖面A结构示意图。
如图9所示,本发明实施例提供一种滤波装置900包括:基底901,所述基底901为晶片基底;BAW谐振装置903,位于所述基底901上;以及无源装置905,位于所述BAW谐振装置903上方;其中,所述BAW谐振装置903与所述无源装置905通过连接件907电连接。本实施例中,所述BAW谐振装置903的第一侧为所述基底901,所述BAW谐振装置903的第二侧为所述无源装置905,其中,所述BAW谐振装置903的所述第一侧与所述第二侧相对。本实施例中,所述基底901、所述BAW谐振装置903及所述无源装置905位于一个晶片中。
本实施例中,所述基底901的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置903包括:反射层9031,位于所述基底901上;电极层9033,位于所述基底901上,所述电极层9033包括突起部9033a,位于所述反射层9031上;压电层9035,位于所述基底901上,所述压电层9035包括突起部9035a,位于所述突起部9033a上方;电极层9037,位于所述压电层9035上,所述电极层9037包括突起部9037a,位于所述突起部9035a上;其中,谐振区(即,所述电极层9033和所述电极层9037的重合区域)位于所述反射层9031上方。
本实施例中,所述反射层9031的剖面A呈拱形。本实施例中,所述反射层9031为空腔,即空腔9031。
本实施例中,所述电极层9033的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部9033a的突起高度大于或等于所述反射层9031的厚度(即,所述空腔9031的深度)。本实施例中,所述突起部9033a的剖面A呈拱形。
本实施例中,所述压电层9035的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述突起部9035a的突起高度大于或等于所述反射层9031的厚度(即,所述空腔9031的深度)。本实施例中,所述突起部9035a的剖面A呈拱形。
本实施例中,所述电极层9037的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部9037a的突起高度大于或等于所述反射层9031的厚度(即,所述空腔9031的深度)。本实施例中,所述突起部9037a的剖面A呈拱形。
本实施例中,所述无源装置905包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置905包括空腔9051,位于所述谐振区上方,对应所述空腔9031,所述空腔9051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件907的第一端分别电连接所述电极层9033和所述电极层9037,所述连接件907的第二端电连接所述无源装置905。本实施例中,所述连接件907包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置900还包括:密封件909,位于所述BAW谐振装置903与所述 无源装置905之间,至少包围所述空腔9051,用于密封所述空腔9051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图10是本发明实施例的一种滤波装置1000的剖面A结构示意图。
如图10所示,本发明实施例提供一种滤波装置1000包括:基底1010,所述基底1010为晶片基底;BAW谐振装置1030,位于所述基底1010上方;以及无源装置1050,位于所述BAW谐振装置1030上方;其中,所述BAW谐振装置1030与所述无源装置1050通过连接件1070电连接。
本实施例中,所述基底1010和所述无源装置1050分别位于所述BAW谐振装置1030的两侧。本实施例中,所述基底1010、所述BAW谐振装置1030及所述无源装置1050位于一个晶片中。
本实施例中,所述基底1010的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述BAW谐振装置1030包括:反射层1031,位于所述基底1010上;电极层1033,位于所述反射层1031上,所述基底1010和所述电极层1033分别位于所述反射层1031的两侧;压电层1035,位于所述反射层1031上,覆盖所述电极层1033,所述压电层1035包括突起部1035a,位于所述电极层1033上方;以及电极层1037,位于所述压电层1035上,所述电极层1037包括突起部1037a,位于所述突起部1035a上;其中,谐振区(即,所述电极层1033和所述电极层1037的重合区域)位于所述反射层1031上方。
本实施例中,所述反射层1031包括多个子反射层1031a及多个子反射层1031b,其中,所述子反射层1031a和所述子反射层1031b交替放置。
本实施例中,所述子反射层1031a与所述子反射层1031b的材料不同,从而所述子反射层1031a与所述子反射层1031b的声学阻抗不同。本实施例中,所述子反射层1031a的材料包括但不限于以下至少之一:碳氧化硅、氮化硅、二氧化硅、氮化铝、钨、钼。本实施例中,所述子反射层1031b的材料包括但不限于以下至少之一:碳氧化硅、氮化硅、二氧化硅、氮化铝、钨、钼。
本实施例中,所述反射层1031为四分之一波布拉格反射镜(quarter-wave Bragg mirror)。本实施例中,所述子反射层1031a的厚度是所述子反射层1031b的厚度的两倍。在另一个实施例中,子反射层的厚度一致。需要说明的是,本实施例中的四分之一波布拉格反射镜仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他声学反射层也可以应用于本发明实施例。
本实施例中,所述电极层1033的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。
本实施例中,所述压电层1035的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。本实施例中,所述突起部1035a的高度大于或等于所述电极层1033的厚度。本实施例中,所述突起部1035a的剖面A呈矩形。在另一个实施例中,第一突起部的剖面A呈梯形。
本实施例中,所述电极层1037的材料包括但不限于以下至少之一:钼、钌、钨、铂、铱、铝、铍。本实施例中,所述突起部1037a的高度大于或等于所述电极层1033的厚度。本实施例中,所述突起部1037a的剖面A呈矩形。在另一个实施例中,第二突起部的剖面A呈 梯形。
本实施例中,所述无源装置1050包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置1050包括空腔1051,位于所述谐振区上方,所述空腔1051可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在谐振区上侧形成空腔。
本实施例中,两个所述连接件1070的第一端分别电连接所述电极层1033和所述电极层1037,所述连接件1070的第二端电连接所述无源装置1050。本实施例中,所述连接件1070包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置1000还包括:密封件1090,位于所述BAW谐振装置1030与所述无源装置1050之间,至少包围所述空腔1051,用于密封所述空腔1051。
需要说明的是,将BAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图11是本发明实施例的一种滤波装置1100的剖面A结构示意图。
如图11所示,本发明实施例提供一种滤波装置1100包括:基底1110,所述基底1110为晶片基底;SAW谐振装置1130,位于所述基底1110上方;以及无源装置1150,位于所述SAW谐振装置1130上方;其中,所述SAW谐振装置1130与所述无源装置1150通过连接件1170电连接。
本实施例中,所述SAW谐振装置1130的第一侧为所述基底1110,所述SAW谐振装置1130的第二侧为所述无源装置1150,其中,所述SAW谐振装置1130的所述第一侧与所述第二侧相对。本实施例中,所述基底1110、所述SAW谐振装置1130及所述无源装置1150位于一个晶片中。
本实施例中,所述基底1110的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述SAW谐振装置1130包括:压电层1131,位于所述基底1110上;电极层1133,位于所述压电层1131上,所述压电层1131和所述无源装置1150分别位于所述电极层1133两侧。
本实施例中,所述压电层1131的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述电极层1133包括叉指换能装置(InterDigital Transducer,IDT),其中,所述IDT包括多个电极条1133a与多个电极条1133b。
本实施例中,所述多个电极条1133a与所述多个电极条1133b的极性不同。本实施例中,所述电极条1133a与所述电极条1133b交替放置。本实施例中,相邻的所述电极条1133a和所述电极条1133b之间的间隔距离一致。在另一个实施例中,相邻两个电极条的间隔距离是变化的。
需要说明的是,所属技术领域的技术人员知晓的IDT结构可以应用于本发明实施例。
本实施例中,所述无源装置1150包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置1150包括空腔1151,位于所述电极层1133上方,所 述空腔1151可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在电极层上侧形成空腔。
本实施例中,两个所述连接件1170的第一端分别电连接所述多个电极条1133a及所述多个电极条1133b,所述连接件1170的第二端电连接所述无源装置1150。本实施例中,所述连接件1170包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置1100还包括:密封件1190,位于所述压电层1131上,位于所述压电层1131与所述无源装置1150之间,至少包围所述空腔1151,用于密封所述空腔1151。需要说明的是,将SAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图12是本发明实施例的一种滤波装置1200的剖面A结构示意图。
如图12所示,本发明实施例提供一种滤波装置1200包括:基底1210,所述基底1210为晶片基底;SAW谐振装置1230,位于所述基底1210上方;以及无源装置1250,位于所述SAW谐振装置1230上方;其中,所述SAW谐振装置1230与所述无源装置1250通过连接件1270电连接。
本实施例中,所述基底1210和所述无源装置1250分别位于所述SAW谐振装置1230的两侧。
本实施例中,所述基底1210、所述SAW谐振装置1230及所述无源装置1250位于一个晶片中。
本实施例中,所述基底1210的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述SAW谐振装置1230包括:中间层1231,位于所述基底1210上;压电层1233,位于所述中间层1231上,所述基底1210和所述压电层1233分别位于所述中间层1231两侧;电极层1235,位于所述压电层1233上,所述压电层1233和所述无源装置1250分别位于所述电极层1235两侧。
本实施例中,所述中间层1231的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述压电层1233的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。需要说明的是,所述中间层1231材料的声阻抗和所述压电层1233材料的声阻抗不同,可以阻隔漏波。此外,如果所述中间层1231的材料(例如,二氧化硅)与所述压电层1233的材料具有相反的温度频移特性,可以减小谐振装置的频率温度系数(Temperature Coefficient of Frequency,TCF),趋向于0ppm/℃,从而提升频率-温度稳定性,即,所述中间层1231为温度补偿层。
本实施例中,所述电极层1235包括IDT,其中,所述IDT包括多个电极条1235a与多个电极条1235b。
本实施例中,所述多个电极条1235a与所述多个电极条1235b的极性不同。本实施例中,所述电极条1235a与所述电极条1235b交替放置。本实施例中,相邻的所述电极条1235a和所述电极条1235b之间的间隔距离一致。在另一个实施例中,相邻两个电极条的间隔距离是变化的。
需要说明的是,所属技术领域的技术人员知晓的IDT结构可以应用于本发明实施例。
本实施例中,所述无源装置1250包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置1250包括空腔1251,位于所述电极层1235上方,所述空腔1251可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在电极层上侧形成空腔。
本实施例中,两个所述连接件1270的第一端分别电连接所述多个电极条1235a及所述多个电极条1235b,所述连接件1270的第二端电连接所述无源装置1250。本实施例中,所述连接件1270包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置1200还包括:密封件1290,位于所述压电层1233上,位于所述压电层1233与所述无源装置1250之间,至少包围所述空腔1251,用于密封所述空腔1251。需要说明的是,将SAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图13是本发明实施例的一种滤波装置1300的剖面A结构示意图。
如图13所示,本发明实施例提供一种滤波装置1300包括:基底1310,所述基底1310为晶片基底;SAW谐振装置1330,位于所述基底1310上方;以及无源装置1350,位于所述SAW谐振装置1330上方;其中,所述SAW谐振装置1330与所述无源装置1350通过连接件1370电连接。
本实施例中,所述基底1310和所述无源装置1350分别位于所述SAW谐振装置1330的两侧。本实施例中,所述基底1310、所述SAW谐振装置1330及所述无源装置1350位于一个晶片中。
本实施例中,所述基底1310的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述SAW谐振装置1330包括:中间层1331,位于所述基底1310上;中间层1333,位于所述中间层1331上,所述基底1310和所述中间层1333分别位于所述中间层1331两侧;压电层1335,位于所述中间层1333上;电极层1337,位于所述压电层1335上,所述中间层1333和所述电极层1337分别位于所述压电层1335两侧。
本实施例中,所述中间层1331的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1333的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述压电层1335的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
需要说明的是,所述中间层1331材料的声阻抗和所述中间层1333材料的声阻抗不同,所述中间层1333材料的声阻抗和所述压电层1335材料的声阻抗不同,从而可以阻隔漏波。
此外,如果所述中间层1333的材料(例如,二氧化硅)与所述压电层1335的材料具有相反的温度频移特性,可以减小谐振装置的TCF,趋向于0ppm/℃,从而提升频率-温度稳定性,即,所述中间层1333为温度补偿层。
本实施例中,所述电极层1337包括IDT,其中,所述IDT包括多个电极条1337a与多个电极条1337b。
本实施例中,所述多个电极条1337a与所述多个电极条1337b的极性不同。本实施例中,所述电极条1337a与所述电极条1337b交替放置。本实施例中,相邻的所述电极条1337a和所述电极条1337b之间的间隔距离一致。在另一个实施例中,相邻两个电极条的间隔距离是变化的。
需要说明的是,所属技术领域的技术人员知晓的IDT结构可以应用于本发明实施例。
本实施例中,所述无源装置1350包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置1350包括空腔1351,位于所述电极层1337上方,所述空腔1351可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在电极层上侧形成空腔。
本实施例中,两个所述连接件1370的第一端分别电连接所述多个电极条1337a及所述多个电极条1337b,所述连接件1370的第二端电连接所述无源装置1350。本实施例中,所述连接件1370包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置1300还包括:密封件1390,位于所述压电层1335上,位于所述压电层1335与所述无源装置1350之间,至少包围所述空腔1351,用于密封所述空腔1351。需要说明的是,将SAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图14是本发明实施例的一种滤波装置1400的剖面A结构示意图。
如图14所示,本发明实施例提供一种滤波装置1400包括:基底1410,所述基底1410为晶片基底;SAW谐振装置1430,位于所述基底1410上方;以及无源装置1450,位于所述SAW谐振装置1430上方;其中,所述SAW谐振装置1430与所述无源装置1450通过连接件1470电连接。
本实施例中,所述基底1410和所述无源装置1450分别位于所述SAW谐振装置1430的两侧。
本实施例中,所述基底1410、所述SAW谐振装置1430及所述无源装置1450位于一个晶片中。
本实施例中,所述基底1410的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述SAW谐振装置1430包括:反射层1431,位于所述基底1410上;压电层1433,位于所述反射层1431上,所述基底1410和所述压电层1433分别位于所述反射层1431两侧;电极层1435,位于所述压电层1433上。
本实施例中,所述反射层1431包括多个子反射层1431a及多个子反射层1431b,其中,所述子反射层1431a和所述子反射层1431b交替放置。
本实施例中,所述子反射层1431a与所述子反射层1431b的材料不同,从而所述子反射层1431a与所述子反射层1431b的声学阻抗不同。本实施例中,所述子反射层1431a的材料包 括但不限于以下至少之一:碳氧化硅、氮化硅、二氧化硅、氮化铝、钨、钼。本实施例中,所述子反射层1431b的材料包括但不限于以下至少之一:碳氧化硅、氮化硅、二氧化硅、氮化铝、钨、钼。
本实施例中,所述反射层1431为四分之一波布拉格反射镜(quarter-wave Bragg mirror)。本实施例中,所述子反射层1431a的厚度是所述子反射层1431b的厚度的两倍。在另一个实施例中,子反射层的厚度一致。需要说明的是,本实施例中的四分之一波布拉格反射镜仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他声学反射层也可以应用于本发明实施例。
本实施例中,所述压电层1433的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
本实施例中,所述电极层1435包括IDT,其中,所述IDT包括多个电极条1435a与多个电极条1435b。
本实施例中,所述多个电极条1435a与所述多个电极条1435b的极性不同。本实施例中,所述电极条1435a与所述电极条1435b交替放置。本实施例中,相邻的所述电极条1435a和所述电极条1435b之间的间隔距离一致。在另一个实施例中,相邻两个电极条的间隔距离是变化的。
需要说明的是,所属技术领域的技术人员知晓的IDT结构可以应用于本发明实施例。
本实施例中,所述无源装置1450包括但不限于以下至少之一:电容、电感、电阻、通孔。需要说明的是,所属技术领域的技术人员知晓的无源装置(例如,IPD)可以应用于本发明实施例。本实施例中,所述无源装置1450包括空腔1451,位于所述电极层1435上方,所述空腔1451可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在电极层上侧形成空腔。
本实施例中,两个所述连接件1470的第一端分别电连接所述多个电极条1435a及所述多个电极条1435b,所述连接件1470的第二端电连接所述无源装置1450。本实施例中,所述连接件1470包括但不限于以下至少之一:电导线、凸块(bump)、连接盘(pad)、通孔。需要说明的是,所属技术领域的技术人员知晓的连接结构可以应用于本发明实施例。
本实施例中,所述滤波装置1400还包括:密封件1490,位于所述压电层1433上,位于所述压电层1433与所述无源装置1450之间,至少包围所述空腔1451,用于密封所述空腔1451。需要说明的是,将SAW谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
本发明实施例还提供一种滤波装置(未图示)包括:第一基底、第一SAW谐振装置以及第一无源装置;其中,所述第一基底的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。本实施例中,所述第一SAW谐振装置包括第一电极层,位于所述第一基底上,所述第一电极层包括第一IDT。本实施例中,所述第一无源装置位于所述第一电极层上方,所述第一电极层与所述第一无源装置通过第一连接件电连接,所述第一基底与所述第一无源装置分别位于所述第一电极层两侧。
本发明实施例还提供一种滤波装置(未图示)包括:第二基底、第二SAW谐振装置以及第二无源装置;其中,所述第二基底的材料包括但不限于以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。本实施例中,所述第二SAW谐振装置包括第二电极层,位于所述第二基底上,所述第二电极层包括第二IDT。本实施例中,所述第二无源装置位于所述第二电极层上方,所述第二电极层与所述第二无源装置通过第二连接件电连接,所述第二基底与所述第二无源装置分别位于所述第二电极层两侧。
本实施例中,所述第二SAW谐振装置还包括温度补偿层,位于所述第二基底上,覆盖所述第二电极层,所述第二基底和所述第二无源装置分别位于所述温度补偿层两侧。需要说明的是,所述温度补偿层的材料(例如,二氧化硅)与所述第二基底的材料具有相反的温度频移特性,可以减小谐振装置的频率温度系数,趋向于0ppm/℃,从而提升频率-温度稳定性。
图15至图17示出了本发明的多个具体实施例,采用不同的无源装置,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此本发明不受下面公开的具体实施例的限制。图15a是本发明实施例的一种滤波装置1500的剖面A结构示意图。
如图15a所示,本发明实施例提供一种滤波装置1500包括:基底1510,所述基底1510为晶片基底;谐振装置1530,位于所述基底1510上方;以及无源装置1550,位于所述谐振装置1530上方;其中,所述谐振装置1530与所述无源装置1550通过连接件1570电连接。
本实施例中,所述基底1510位于所述谐振装置1530的第一侧,所述无源装置1550位于所述谐振装置1530的第二侧,其中,所述谐振装置1530的所述第一侧和所述第二侧相对。本实施例中,所述基底1510、所述谐振装置1530及所述无源装置1550位于一个晶片中。
本实施例中,所述基底1510的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述谐振装置1530包括但不限于以下至少之一:SAW谐振装置、BAW谐振装置。本实施例中,所述谐振装置1530包括有源层1531,所述有源层1531包括压电层(未图示)及至少一个电极层(未图示)。
本实施例中,所述无源装置1550包括:中间层1551,所述中间层1551包括电容1553;基底1555,位于所述中间层1551上;通孔1557a,贯穿所述无源装置1550,所述通孔1557a上侧的第一端用于连接所述滤波装置1500的输入端;通孔1557b,贯穿所述无源装置1550,所述通孔1557b上侧的第一端用于连接所述滤波装置1500的输出端;通孔1557c,嵌入所述中间层1551,所述通孔1557c上侧的第一端电连接所述电容1553下侧的第二端;通孔1557d,贯穿所述基底1555,所述通孔1557d上侧的第一端用于接地,所述通孔1557d下侧的第二端电连接所述电容1553上侧的第一端。
本实施例中,所述中间层1551的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1551还包括空腔1559,位于所述有源层1531上方,所述空腔1559可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在有源层上侧形成空腔。
本实施例中,所述电容1553为金属-绝缘体-金属(Metal-Insulator-Metal,MIM)电容。本实施例中,所述电容1553通过半导体工艺形成。需要说明的是,本实施例中的MIM电容仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他半导体工艺制作的电容,例如,金属-氧化物-金属(Metal-Oxide-Metal,MOM)电容,也可以应用于本发明实施例。
本实施例中,所述基底1555的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述连接件1570包括:凸块1571a,电连接所述有源层1531的第一端(例如,第一电极);凸块1571b,电连接所述有源层1531的第二端(例如,第二电极);连接盘1573a, 位于所述凸块1571a上,所述连接盘1573a的上侧电连接所述通孔1557a下侧的第二端,所述连接盘1573a的下侧电连接所述凸块1571a;连接盘1573b,位于所述凸块1571b上,所述连接盘1573b的上侧电连接所述通孔1557b下侧的第二端及所述通孔1557c下侧的第二端,所述连接盘1573b的下侧电连接所述凸块1571b。
本实施例中,所述滤波装置1500还包括:密封件1590,位于所述谐振装置1530与所述无源装置1550之间,至少包围所述空腔1559,用于密封所述空腔1559。
图15b是本发明实施例的一种滤波装置1500的等效电路示意图。
如图15b所示,所述滤波装置1500的等效电路示意图包括:所述谐振装置1530及所述电容1553;其中,所述谐振装置1530的第一端连接输入端in;所述谐振装置1530的第二端电连接所述电容1553的第一端;所述谐振装置1530的第二端还连接输出端out;所述电容1553的第一端还连接所述输出端out;所述电容1553的第二端接地。
需要说明的是,将谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图16a是本发明实施例的一种滤波装置1600的剖面A结构示意图。
如图16a所示,本发明实施例提供一种滤波装置1600包括:基底1610,所述基底1610为晶片基底;谐振装置1630,位于所述基底1610上方;以及无源装置1650,位于所述谐振装置1630上方;其中,所述谐振装置1630与所述无源装置1650通过连接件1670电连接。
本实施例中,所述基底1610位于所述谐振装置1630的第一侧,所述无源装置1650位于所述谐振装置1630的第二侧,其中,所述谐振装置1630的所述第一侧和所述第二侧相对。
本实施例中,所述基底1610、所述谐振装置1630及所述无源装置1650位于一个晶片中。
本实施例中,所述基底1610的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述谐振装置1630包括但不限于以下至少之一:SAW谐振装置、BAW谐振装置。本实施例中,所述谐振装置1630包括有源层1631,所述有源层1631包括压电层(未图示)及至少一个电极层(未图示)。
本实施例中,所述无源装置1650包括:中间层1651,所述中间层1651包括电感1653;基底1655,位于所述中间层1651上;通孔1657a,贯穿所述无源装置1650,所述通孔1657a上侧的第一端用于连接所述滤波装置1600的输入端;通孔1657b,贯穿所述无源装置1650,所述通孔1657b上侧的第一端用于连接所述滤波装置1600的输出端;通孔1657c,贯穿所述无源装置1650,所述通孔1657c上侧的第一端用于接地,所述通孔1657c下侧的第二端通过连接线1657d电连接所述电感1653的第一端。
本实施例中,所述中间层1651的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1651还包括空腔1659,位于所述有源层1631上方,所述空腔1659可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在有源层上侧形成空腔。
本实施例中,所述电感1653为螺旋电感(spiral inductor)。本实施例中,所述电感1653通过半导体工艺形成。需要说明的是,本实施例中的螺旋电感仅是一个具体实施例,本发明不 受所述具体实施例的限制,所属技术领域的技术人员知晓的其他半导体工艺制作的电感也可以应用于本发明实施例。
本实施例中,所述电感1653的厚度小于所述中间层1651的厚度。在另一个实施例中,电感的厚度等于中间层的厚度。
本实施例中,所述基底1655的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述连接件1670包括:凸块1671a,电连接所述有源层1631的第一端(例如,第一电极);凸块1671b,电连接所述有源层1631的第二端(例如,第二电极);连接盘1673a,位于所述凸块1671a上,所述连接盘1673a的上侧电连接所述通孔1657a下侧的第二端,所述连接盘1673a的下侧电连接所述凸块1671a;连接盘1673b,位于所述凸块1671b上,所述连接盘1673b的上侧电连接所述通孔1657b下侧的第二端及所述电感1653的第二端,所述连接盘1673b的下侧电连接所述凸块1671b。
本实施例中,所述滤波装置1600还包括:密封件1690,位于所述谐振装置1630与所述无源装置1650之间,至少包围所述空腔1659,用于密封所述空腔1659。
图16b是本发明实施例的一种滤波装置1600的剖面B结构示意图。
本实施例中,所述电感1653的剖面B呈四边形。在另一个实施例中,电感的剖面B形状包括但不限于以下至少之一:五边形、六边形、八边形、圆形、椭圆形。本实施例中,所述电感1653包括两层线圈。在另一个实施例中,电感包括三层或三层以上线圈。需要说明的是,本实施例中的螺旋电感仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他螺旋电感也可以应用于本发明实施例。
本实施例中,所述空腔1659的剖面B呈四边形。在另一个实施例中,空腔的剖面B形状包括但不限于以下至少之一:五边形、六边形、八边形、圆形、椭圆形。
图16c是本发明实施例的一种滤波装置1600的等效电路示意图。
如图16c所示,所述滤波装置1600的等效电路示意图包括:所述谐振装置1630及所述电感1653;其中,所述谐振装置1630的第一端连接输入端in;所述谐振装置1630的第二端电连接所述电感1653的第一端;所述谐振装置1630的第二端还连接输出端out;所述电感1653的第一端还连接所述输出端out;所述电感1653的第二端接地。
需要说明的是,将谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图17a是本发明实施例的一种滤波装置1700的剖面A结构示意图。
如图17a所示,本发明实施例提供一种滤波装置1700包括:基底1710,所述基底1710为晶片基底;谐振装置1730,位于所述基底1710上方;以及无源装置1750,位于所述谐振装置1730上方;其中,所述谐振装置1730与所述无源装置1750通过连接件1770电连接。
本实施例中,所述基底1710位于所述谐振装置1730的第一侧,所述无源装置1750位于所述谐振装置1730的第二侧,其中,所述谐振装置1730的所述第一侧和所述第二侧相对。本实施例中,所述基底1710、所述谐振装置1730及所述无源装置1750位于一个晶片中。
本实施例中,所述基底1710的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述谐振装置1730包括但不限于以下至少之一:SAW谐振装置、BAW谐振装 置。本实施例中,所述谐振装置1730包括有源层1731,所述有源层1731包括压电层(未图示)及至少一个电极层(未图示)。
本实施例中,所述无源装置1750包括:中间层1751,所述中间层1751包括电阻1753;基底1755,位于所述中间层1751上;通孔1757a,贯穿所述无源装置1750,所述通孔1757a上侧的第一端用于连接所述滤波装置1700的输入端;通孔1757b,贯穿所述无源装置1750,所述通孔1757b上侧的第一端用于连接所述滤波装置1700的输出端;通孔1757c,贯穿所述无源装置1750,所述通孔1757c上侧的第一端用于接地,所述通孔1757c下侧的第二端通过连接线1757d电连接所述电阻1753的第一端。
本实施例中,所述中间层1751的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1751还包括空腔1759,位于所述有源层1731上方,所述空腔1759可以优化单片滤波装置的高度。在另一个实施例中,可以通过抬高无源装置,在有源层上侧形成空腔。
本实施例中,所述电阻1753通过半导体工艺形成。需要说明的是,本实施例中的电阻仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他半导体工艺制作的电阻也可以应用于本发明实施例。
本实施例中,所述基底1755的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述连接件1770包括:凸块1771a,电连接所述有源层1731的第一端(例如,第一电极);凸块1771b,电连接所述有源层1731的第二端(例如,第二电极);连接盘1773a,位于所述凸块1771a上,所述连接盘1773a的上侧电连接所述通孔1757a下侧的第二端,所述连接盘1773a的下侧电连接所述凸块1771a;连接盘1773b,位于所述凸块1771b上,所述连接盘1773b的上侧电连接所述通孔1757b下侧的第二端及所述电阻1753的第二端,所述连接盘1773b的下侧电连接所述凸块1771b。
本实施例中,所述滤波装置1700还包括:密封件1790,位于所述谐振装置1730与所述无源装置1750之间,至少包围所述空腔1759,用于密封所述空腔1759。
图17b是本发明实施例的一种滤波装置1700的等效电路示意图。
如图17b所示,所述滤波装置1700的等效电路示意图包括:所述谐振装置1730及所述电阻1753;其中,所述谐振装置1730的第一端连接输入端in;所述谐振装置1730的第二端电连接所述电阻1753的第一端;所述谐振装置1730的第二端还连接输出端out;所述电阻1753的第一端还连接所述输出端out;所述电阻1753的第二端接地。
需要说明的是,将谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图18示出了本发明的一个具体实施例,但是本发明还可以采用其他不同于在此描述的其他方式来实施,因此本发明不受下面公开的具体实施例的限制。
图18a是本发明实施例的一种滤波装置1800的剖面A结构示意图。
如图18a所示,本发明实施例提供一种滤波装置1800包括:基底1810,所述基底1810为晶片基底;BAW谐振装置1820,位于所述基底1810上方;BAW谐振装置1830,位于所述 基底1810上方;以及集成无源装置(IPD)1840,位于所述BAW谐振装置1820及所述BAW谐振装置1830上方;其中,所述BAW谐振装置1820与所述IPD 1840通过连接件1850电连接,所述BAW谐振装置1830与所述IPD 1840通过所述连接件1860电连接。
本实施例中,所述基底1810及所述IPD 1840分别位于所述BAW谐振装置1820的两侧,所述基底1810及所述IPD 1840分别位于所述BAW谐振装置1830的两侧。本实施例中,所述基底1810、所述BAW谐振装置1820、所述BAW谐振装置1830及所述IPD 1840位于一个晶片中。
本实施例中,所述基底1810的材料包括但不限于以下至少之一:硅、碳化硅、二氧化硅、砷化镓、氮化镓、氧化铝、氧化镁、陶瓷、聚合物。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。
本实施例中,所述BAW谐振装置1820包括但不限于:压电层(未标记)及位于所述压电层两侧的电极层1821和电极层1822。需要说明的是,本实施例中的所述BAW谐振装置1820仅是具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他BAW谐振装置或SAW谐振装置也可以应用于本发明实施例。
本实施例中,所述BAW谐振装置1830包括但不限于:压电层(未标记)及位于所述压电层两侧的电极层1831和电极层1832。需要说明的是,本实施例中的所述BAW谐振装置1830仅是具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他BAW谐振装置或SAW谐振装置也可以应用于本发明实施例。
在另一个实施例中,滤波装置包括3个或3个以上BAW谐振装置或SAW谐振装置。在另一个实施例中,滤波装置包括至少一个BAW谐振装置及至少一个SAW谐振装置。
本实施例中,所述IPD 1840包括:中间层1841,位于所述BAW谐振装置1820及所述BAW谐振装置1830上方,所述中间层1841包括电感1842;中间层1843,位于所述中间层1841上,所述中间层1843包括电容1844、电容1845及电容1846;基底1847,位于所述中间层1843上;以及多个通孔1848。
本实施例中,所述中间层1841的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述中间层1841还包括第一空腔(未标引),位于所述BAW谐振装置1820上方,所述第一空腔可以优化单片滤波装置的高度。
本实施例中,所述中间层1841还包括第二空腔(未标引),位于所述BAW谐振装置1830上方,所述第二空腔可以优化单片滤波装置的高度。
在另一个实施例中,可以通过抬高无源装置,在谐振装置上侧形成空腔。
本实施例中,所述电感1842为螺旋电感。本实施例中,所述电感1842通过半导体工艺形成。需要说明的是,本实施例中的螺旋电感仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他半导体工艺制作的电感也可以应用于本发明实施例。
本实施例中,所述电感1842的厚度小于所述中间层1841的厚度。在另一个实施例中,电感的厚度等于中间层的厚度。
本实施例中,所述中间层1843的材料包括但不限于以下至少之一:聚合物、绝缘电介质、多晶硅。本实施例中,所述聚合物包括但不限于以下至少之一:苯并环丁烯(即,BCB)、光感环氧树脂光刻胶(例如,SU-8)、聚酰亚胺。本实施例中,所述绝缘电介质包括但不限于以下至少之一:氮化铝、二氧化硅、氮化硅、氧化钛。
本实施例中,所述电容1844、所述电容1845、所述电容1846为MIM电容。本实施例中, 所述电容1844、所述电容1845、所述电容1846通过半导体工艺形成。需要说明的是,本实施例中的MIM电容仅是一个具体实施例,本发明不受所述具体实施例的限制,所属技术领域的技术人员知晓的其他半导体工艺制作的电容,例如,MOM电容,也可以应用于本发明实施例。
本实施例中,所述电极层1822通过所述连接件1850及所述通孔1848连接输入端;所述电极层1821通过所述连接件1850及所述通孔1848电连接所述电感1842的第一端、所述电容1844下侧的第一端及所述电容1845下侧的第一端;所述电容1844上侧的第二端通过所述通孔1848接地;所述电感1842的第二端及所述电容1845上侧的第二端通过所述连接件1860及所述通孔1848电连接所述电极层1831;所述电极层1831通过所述连接件1860及所述通孔1848还电连接所述电容1846下侧的第一端;所述电容1846上侧的第二端通过所述通孔1848接地;所述电极层1832通过所述连接件1860及所述通孔1848电连接输出端。图18b是本发明实施例的一种滤波装置1800的等效电路示意图。
如图18b所示,所述滤波装置1800的等效电路示意图包括:所述BAW谐振装置1820、所述BAW谐振装置1830、所述电感1842、所述电容1844、所述电容1845、及所述电容1846;其中,所述BAW谐振装置1820的第一端连接输入端in,所述BAW谐振装置1820的第二端分别与所述电感1842的第一端、所述电容1844的第一端及所述电容1845的第一端电连接;所述电容1844的第一端还分别电连接所述电容1845的第一端及所述电感1842的第一端;所述电容1844的第二端接地;所述电感1842的第一端还电连接所述电容1845的第一端;所述电感1842的第二端分别与所述电容1845的第二端、所述BAW谐振装置1830的第一端及所述电容1846的第一端电连接;所述电容1845的第二端还分别与所述BAW谐振装置1830的第一端及所述电容1846的第一端电连接;所述电容1846的第一端还电连接所述BAW谐振装置1830的第一端;所述电容1846的第二端接地;所述BAW谐振装置1830的第二端连接输出端out。
本实施例中,所述电容1844、所述电容1845、所述电容1846及所述电感1842形成的所述IPD 1840的等效电路为带通滤波器(band-pass filter)电路。在另一个实施例中,IPD的等效电路包括但不限于以下至少之一:低通滤波器(low-pass filter)电路、高通滤波器(high-pass filter)电路、带阻滤波器(band-stop filter)电路。
需要说明的是,本实施例中的电路仅是一个具体实施例,本发明不受所述具体实施例的限制,本发明实施例可以采用所属技术领域的技术人员知晓的其他电路结构。
需要说明的是,将谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗(电传输路径更短),从而提高滤波性能。
图19示出了本发明的一个具体实施例的性能示意图1900,但是本发明还可以采用其他不同于在此描述的滤波装置来实施,因此本发明不受下面公开的具体实施例的限制。
本发明实施例提供一种滤波装置(未图示)包括:晶片基底、带通滤波装置(例如,图18中的IPD 1840)、第一BAW谐振装置(例如,图18中的BAW谐振装置1820)、以及第二BAW谐振装置(例如,图18中的BAW谐振装置1830);其中,所述晶片基底位于所述第一BAW谐振装置及所述第二BAW谐振装置的第一侧,所述带通滤波装置位于所述第一BAW谐振装置及所述第二BAW谐振装置的第二侧,其中,所述第一BAW谐振装置及所述第二BAW谐振装置的所述第一侧与所述第二侧相对。
本实施例中,所述晶片基底、所述第一BAW谐振装置、所述第二BAW谐振装置、以及所述带通滤波装置位于一个晶片中。
本实施例中,在所述滤波装置的等效电路(未图示)中,所述第一BAW谐振装置和所述第二BAW谐振装置分别位于所述带通滤波装置两侧;其中,信号由第一端输入,先通过所述第一BAW谐振装置,然后通过所述带通滤波装置,最后通过所述第二BAW谐振装置,滤波后的信号由第二端输出。
如图19所示,所述滤波装置的性能示意图1900包括插入损耗(insertion loss)曲线,所述插入损耗曲线的横坐标表示频率(单位为GHz),纵坐标表示插入损耗(单位为dB)。所述插入损耗曲线包括:第一带外抑制区1901、带通区1903、第二带外抑制区1905;其中,所述第一带外抑制区1901主要基于所述第一BAW谐振装置,所述带通区1903主要基于所述带通滤波装置,所述第二带外抑制区1905主要基于所述第二BAW谐振装置。
本实施例中,所述第一带外抑制区1901包括高带外抑制(大于-40dB),所述第二带外抑制区1905包括高带外抑制(大于-60dB)。
需要说明的是,基于所述插入损耗曲线,所述滤波装置可以应用于5G n79频段(4.4to 5GHz)。
需要说明的是,将谐振装置和无源装置集成到一个晶片中形成滤波装置,可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
本发明实施例还提供一种射频前端装置,包括但不限于:至少一个如上述实施例其中之一提供的滤波装置及功率放大装置;所述滤波装置与所述功率放大装置电连接。
本发明实施例还提供一种射频前端装置,包括但不限于:至少一个如上述实施例其中之一提供的滤波装置及低噪声放大装置;所述滤波装置与所述低噪声放大装置电连接。
本发明实施例还提供一种射频前端装置,包括但不限于:多工装置,所述多工装置包括至少一个如上述实施例其中之一提供的滤波装置。
本发明实施例还提供一种无线通信装置,包括但不限于:如上述实施例其中之一提供的射频前端装置、天线、基带处理装置;所述射频前端装置的第一端电连接所述天线,所述射频前端装置的第二端电连接所述基带处理装置。
综上所述,将谐振装置(例如,SAW谐振装置或BAW谐振装置)及无源装置(例如,IPD)集成到一个晶片中形成RF滤波装置,从而可以拓宽通带带宽,具有高带外抑制,且减少占用RF前端芯片中的空间。
此外,与电连接单片谐振装置和单片无源装置相比,将谐振装置和无源装置集成到一个晶片中可以减少电传输的损耗,从而提高滤波性能。
应该理解,此处的例子和实施例仅是示例性的,本领域技术人员可以在不背离本申请和所附权利要求所限定的本发明的精神和范围的情况下,做出各种修改和更正。

Claims (37)

  1. 一种滤波装置,其特征在于,包括:基底、至少一个谐振装置、无源装置及连接件;其中,所述至少一个谐振装置包括第一侧及所述第一侧相对的第二侧,所述基底位于所述第一侧,所述无源装置位于所述第二侧;其中,所述至少一个谐振装置与所述无源装置通过所述连接件连接;所述基底、所述至少一个谐振装置及所述无源装置位于一个晶片中。
  2. 如权利要求1所述的滤波装置,其特征在于,所述至少一个谐振装置包括以下至少之一:声表面波谐振装置、体声波谐振装置。
  3. 如权利要求1所述的滤波装置,其特征在于,所述无源装置包括以下至少之一:电容、电感、电阻、通孔。
  4. 如权利要求1所述的滤波装置,其特征在于,所述无源装置包括集成无源装置,其中,所述集成无源装置通过半导体工艺形成。
  5. 如权利要求1所述的滤波装置,其特征在于,所述连接件包括以下至少之一:凸块、连接盘、电导线、通孔。
  6. 如权利要求1所述的滤波装置,其特征在于,所述至少一个谐振装置包括第一谐振装置,所述第一谐振装置包括:第一空腔;第一电极层,所述第一电极层的至少一部分位于所述第一空腔内或所述第一空腔上;第一压电层,覆盖所述第一空腔,所述第一空腔和所述第一压电层位于所述第一电极层的至少一部分的两侧;第二电极层,位于 所述第一压电层上,所述第一电极层和所述第二电极层位于所述第一压电层两侧。
  7. 如权利要求6所述的滤波装置,其特征在于,所述基底包括所述第一空腔及第一凹槽,所述第一凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内,所述第一电极层的第二端位于所述第一凹槽内,所述第一凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述基底。
  8. 如权利要求6所述的滤波装置,其特征在于,所述基底包括所述第一空腔;所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述基底上方,覆盖所述第一电极层。
  9. 如权利要求8所述的滤波装置,其特征在于,所述第一压电层包括第一突起部,所述第一突起部位于所述第一电极层上方;所述第二电极层包括第二突起部,所述第二突起部位于所述第一突起部上。
  10. 如权利要求9所述的滤波装置,其特征在于,所述第一突起部的形状包括:梯形、矩形;所述第二突起部的形状包括:梯形、矩形。
  11. 如权利要求6所述的滤波装置,其特征在于,所述第一空腔位于所述基底上;所述第一电极层位于所述基底上,所述第一电极层包括第三突起部,所述第三突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第三突起部两侧;所述第一压电层位于所述基底上,所述第一压电层包括第四突起部,所述第四突起部位于所述 第三突起部上方;所述的第二电极层包括第五突起部,所述第五突起部位于所述第四突起部上。
  12. 如权利要求11所述的滤波装置,其特征在于,所述第三突起部的形状包括:梯形、拱形、矩形;所述第四突起部的形状包括:梯形、拱形、矩形;所述第五突起部的形状包括:梯形、拱形、矩形。
  13. 如权利要求6所述的滤波装置,其特征在于,所述第一谐振装置还包括:第一中间层,所述基底和所述第一压电层位于所述第一中间层两侧,所述第一中间层用于阻隔漏波,所述第一中间层包括所述第一空腔,所述第一中间层的材料包括以下至少之一:聚合物、绝缘电介质、多晶硅。
  14. 如权利要求13所述的滤波装置,其特征在于,所述第一中间层还包括第二凹槽,所述第二凹槽位于所述第一空腔水平方向上的一侧并与所述第一空腔相通;所述第一电极层的第一端位于所述第一空腔内,所述第一电极层的第二端位于所述第二凹槽内,所述第二凹槽的深度等于所述第一电极层的厚度;所述第一压电层位于所述第一电极层上,所述第一压电层为平层,还覆盖所述第一中间层。
  15. 如权利要求13所述的滤波装置,其特征在于,所述第一电极层位于所述第一空腔上,覆盖所述第一空腔;所述第一压电层位于所述第一中间层上方,覆盖所述第一电极层。
  16. 如权利要求6所述的滤波装置,其特征在于,所述第一谐振装置还包括:第二中间层,所述基底和所述第一压电层位于所述第二中间层两侧,所述第二中间层用于阻隔漏波,所述第一空腔位于所述第二 中间层上,所述第二中间层的材料包括以下至少之一:聚合物、绝缘电介质、多晶硅。
  17. 如权利要求16所述的滤波装置,其特征在于,所述第一电极层位于所述第二中间层上,所述第一电极层包括第六突起部,所述第六突起部位于所述第一空腔上,所述第一空腔与所述第一压电层位于所述第六突起部两侧;所述第一压电层位于所述第二中间层上,所述第一压电层包括第七突起部,所述第七突起部位于所述第六突起部上方;所述的第二电极层包括第八突起部,所述第八突起部位于所述第七突起部上。
  18. 如权利要求17所述的滤波装置,其特征在于,所述第六突起部的形状包括:梯形、拱形、矩形;所述第七突起部的形状包括:梯形、拱形、矩形;所述第八突起部的形状包括:梯形、拱形、矩形。
  19. 如权利要求1所述的滤波装置,其特征在于,所述至少一个谐振装置包括第二谐振装置,所述第二谐振装置包括:第一反射层;第三电极层,位于所述第一反射层上;第二压电层,位于所述第一反射层上方,覆盖所述第三电极层;第四电极层,位于所述第二压电层上,所述第三电极层和所述第四电极层位于所述第二压电层两侧。
  20. 如权利要求19所述的滤波装置,其特征在于,所述第一反射层,位于所述基底上,包括第一子反射层和第二子反射层,所述第一子反射层和所述第二子反射层交替放置,所述第一子反射层和所述第二子反射层的材料不同。
  21. 如权利要求19所述的滤波装置,其特征在于,所述第一反射层包括布拉格反射层。
  22. 如权利要求19所述的滤波装置,其特征在于,所述第二压电层包括第九突起部,所述第九突起部位于所述第三电极层上方;所述第四电极层包括第十突起部,所述第十突起部位于所述第九突起部上。
  23. 如权利要求1所述的滤波装置,其特征在于,所述至少一个谐振装置包括第三谐振装置,所述第三谐振装置包括:第三压电层;第五电极层,位于所述第三压电层上。
  24. 如权利要求23所述的滤波装置,其特征在于,所述第五电极层包括叉指换能装置。
  25. 如权利要求23所述的滤波装置,其特征在于,所述第五电极层包括第一电极条和第二电极条,所述第一电极条和所述第二电极条的极性不同,所述第一电极条和所述第二电极条交替放置。
  26. 如权利要求23所述的滤波装置,其特征在于,所述第三谐振装置还包括:第三中间层,所述第三压电层位于所述第三中间层上,所述基底和所述第三压电层位于所述第三中间层两侧,所述第三中间层用于阻隔漏波或温度补偿。
  27. 如权利要求26所述的滤波装置,其特征在于,所述第三谐振装置还包括:第四中间层,所述第三中间层位于所述第四中间层上,所述基底和所述第三中间层位于所述第四中间层两侧,所述第四中间层用于阻隔漏波。
  28. 如权利要求23所述的滤波装置,其特征在于,所述第三谐振装置还包括:第二反射层,所述第三压电层位于所述第二反射层上,所述基底和所述第三压电层位于所述第二反射层两侧。
  29. 如权利要求28所述的滤波装置,其特征在于,所述第二反射层包括第三子反射层和第四子反射层,所述第三子反射层和所述第四子反射层交替放置,所述第三子反射层和所述第四子反射层的材料不同。
  30. 如权利要求28所述的滤波装置,其特征在于,所述第二反射层包括布拉格反射层。
  31. 如权利要求1所述的滤波装置,其特征在于,所述基底的材料包括以下至少之一:氮化铝、氧化铝合金、氮化镓、氧化锌、钽酸锂、铌酸锂、锆钛酸铅、铌镁酸铅—钛酸铅。
  32. 如权利要求31所述的滤波装置,其特征在于,所述至少一个谐振装置包括第四谐振装置,所述第四谐振装置包括:第六电极层,位于所述基底上;其中,所述第六电极层包括叉指换能装置。
  33. 如权利要求32所述的滤波装置,其特征在于,所述第四谐振装置还包括:温度补偿层,位于所述基底上,覆盖所述第六电极层。
  34. 一种射频前端装置,其特征在于,包括:功率放大装置和至少一个如权利要求1至33其中之一所述的滤波装置;所述功率放大装置与所述滤波装置连接。
  35. 一种射频前端装置,其特征在于,包括:低噪声放大装置和至少一个如权利要求1至33其中之一所述的滤波装置;所述低噪声放大装置与所述滤波装置连接。
  36. 一种射频前端装置,其特征在于,包括:多工装置,所述多工装置包括至少一个如权利要求1至33其中之一所述的滤波装置。
  37. 一种无线通信装置,其特征在于,包括:天线、基带处理装置和如权利要求34至36其中之一所述的射频前端装置;所述天线与所述射频前端装置的第一端连接;所述基带处理装置与所述射频前端装置的第二端连接。
PCT/CN2020/104851 2020-06-22 2020-07-27 一种滤波装置、一种射频前端装置及一种无线通信装置 WO2021258490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/016,677 US11646715B2 (en) 2020-06-22 2020-09-10 Filter device, RF front-end device and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010571968.5 2020-06-22
CN202010571968.5A CN111740715A (zh) 2020-06-22 2020-06-22 一种滤波装置、一种射频前端装置及一种无线通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/016,677 Continuation US11646715B2 (en) 2020-06-22 2020-09-10 Filter device, RF front-end device and wireless communication device

Publications (1)

Publication Number Publication Date
WO2021258490A1 true WO2021258490A1 (zh) 2021-12-30

Family

ID=72652067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104851 WO2021258490A1 (zh) 2020-06-22 2020-07-27 一种滤波装置、一种射频前端装置及一种无线通信装置

Country Status (2)

Country Link
CN (2) CN111740715A (zh)
WO (1) WO2021258490A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094970A (zh) * 2022-01-20 2022-02-25 深圳新声半导体有限公司 用于制作薄膜体声波谐振器的方法及谐振器
US11463070B2 (en) 2022-01-18 2022-10-04 Shenzhen Newsonic Technologies Co., Ltd. FBAR structure and manufacturing method of same
CN116073782A (zh) * 2023-03-06 2023-05-05 深圳新声半导体有限公司 一种混合滤波器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955976A (zh) * 2021-02-26 2022-08-30 中芯集成电路(宁波)有限公司上海分公司 一种mems器件及其制作方法
CN113315486B (zh) * 2021-05-17 2022-06-21 无锡豪帮高科股份有限公司 面向5g通信的高阻带抑制低通滤波器
CN113783548B (zh) * 2021-11-08 2022-04-01 深圳新声半导体有限公司 谐振器及滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075161A (zh) * 2011-01-20 2011-05-25 张�浩 声波器件及其制作方法
CN103560763A (zh) * 2013-11-08 2014-02-05 诺思(天津)微系统有限公司 片上集成型体波谐振器及其制造方法
US20150333248A1 (en) * 2012-12-21 2015-11-19 Epcos Ag BAW Component, Lamination for a BAW Component, and Method for Manufacturing a BAW Component
CN105897216A (zh) * 2016-04-18 2016-08-24 中国工程物理研究院电子工程研究所 单片集成的体声波双工器及其制造方法
CN210405249U (zh) * 2019-10-08 2020-04-24 开元通信技术(厦门)有限公司 一种滤波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075161A (zh) * 2011-01-20 2011-05-25 张�浩 声波器件及其制作方法
US20150333248A1 (en) * 2012-12-21 2015-11-19 Epcos Ag BAW Component, Lamination for a BAW Component, and Method for Manufacturing a BAW Component
CN103560763A (zh) * 2013-11-08 2014-02-05 诺思(天津)微系统有限公司 片上集成型体波谐振器及其制造方法
CN105897216A (zh) * 2016-04-18 2016-08-24 中国工程物理研究院电子工程研究所 单片集成的体声波双工器及其制造方法
CN210405249U (zh) * 2019-10-08 2020-04-24 开元通信技术(厦门)有限公司 一种滤波装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11463070B2 (en) 2022-01-18 2022-10-04 Shenzhen Newsonic Technologies Co., Ltd. FBAR structure and manufacturing method of same
CN114094970A (zh) * 2022-01-20 2022-02-25 深圳新声半导体有限公司 用于制作薄膜体声波谐振器的方法及谐振器
CN114094970B (zh) * 2022-01-20 2022-05-17 深圳新声半导体有限公司 用于制作薄膜体声波谐振器的方法及谐振器
CN116073782A (zh) * 2023-03-06 2023-05-05 深圳新声半导体有限公司 一种混合滤波器

Also Published As

Publication number Publication date
CN111740715A (zh) 2020-10-02
CN113904644A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021258490A1 (zh) 一种滤波装置、一种射频前端装置及一种无线通信装置
US10707828B2 (en) Filter including bulk acoustic wave resonator
US10396759B2 (en) Filter and multiplexer
KR100859086B1 (ko) 벌크 음파 디바이스 및 그 설계 방법, 무선 주파수 대역 통과 필터, 무선 주파수 수신기 및 무선 주파수 송신기
CN104660211B (zh) 声波滤波器和双工器
US7116187B2 (en) Saw element and saw device
KR101686689B1 (ko) 경사 에지를 포함한 리액턴스 필터
US11606080B2 (en) Filter device, RF front-end device and wireless communication device
JP2004515149A (ja) フィルタの、もしくはフィルタに関連する改善
JP6538007B2 (ja) 弾性波デバイス
WO2021217749A1 (zh) 一种滤波装置、一种射频前端装置及一种无线通信装置
US7145417B2 (en) Filter chip and filter device
JP2002198777A (ja) 圧電共振子を含むフィルタ構造および構成
US10069476B2 (en) Multiplexer and module
US20180041193A1 (en) Acoustic filtering circuitry including capacitor
US11646715B2 (en) Filter device, RF front-end device and wireless communication device
CN114421914A (zh) 体声波谐振装置及形成方法、滤波装置及射频前端装置
JP3903848B2 (ja) 圧電共振子、圧電共振子の製造方法、圧電フィルタ、圧電フィルタの製造方法、デュプレクサおよび電子通信機器
US11955950B2 (en) Formation method of filter device
EP4401309A1 (en) Bulk acoustic wave resonance device, filter device, and radio frequency front-end device
CN214228213U (zh) 一种滤波装置、一种射频前端装置及一种无线通信装置
US20220337212A1 (en) Bulk acoustic wave resonance device and bulk acoustic wave filter
US20220416765A1 (en) Bulk acoustic wave resonance device and bulk acoustic wave filter
CN112787623B (zh) 声表面波滤波器
CN117375568B (zh) 体声波谐振装置及体声波谐振装置的形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941605

Country of ref document: EP

Kind code of ref document: A1