WO2021258321A1 - 一种图像获取方法以及装置 - Google Patents

一种图像获取方法以及装置 Download PDF

Info

Publication number
WO2021258321A1
WO2021258321A1 PCT/CN2020/097934 CN2020097934W WO2021258321A1 WO 2021258321 A1 WO2021258321 A1 WO 2021258321A1 CN 2020097934 W CN2020097934 W CN 2020097934W WO 2021258321 A1 WO2021258321 A1 WO 2021258321A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
area
focus
motion
preset range
Prior art date
Application number
PCT/CN2020/097934
Other languages
English (en)
French (fr)
Inventor
董思维
方运潭
方舒
刘闯闯
陈褒扬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080092948.8A priority Critical patent/CN114946169B/zh
Priority to PCT/CN2020/097934 priority patent/WO2021258321A1/zh
Publication of WO2021258321A1 publication Critical patent/WO2021258321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This application relates to the field of artificial intelligence, and in particular to an image acquisition method and device.
  • the color (red green blue, RGB) camera is usually used for shooting.
  • the RGB camera captures the moment of motion by the user usually triggers the shooting manually.
  • the user needs to select an area to focus before shooting, and then when the motion occurs choose a suitable time and press the shutter (or the shooting button of the phone) to record the moment of movement; specifically, a series of processes such as focusing, focusing, pressing the shutter, exposure, and outputting need to be triggered according to the user's operation, and the final output is one Image.
  • the optimal trigger time point may not be determined, resulting in unclear captured images and reducing user experience.
  • the present application provides an image acquisition method and device, which are used to capture the motion trajectory of the target object during motion in a motion scene to complete the focus of the target object in motion and improve the clarity of the obtained image.
  • the present application provides an image acquisition method, which includes: firstly, detecting motion information of a target object.
  • the motion information may include information about the motion trajectory of the target object in a preset range.
  • the range is the camera shooting range; then, the focus information is determined according to the motion information, and the focus information includes parameters for focusing on the target object in the preset range; then, the target object is focused in the preset range according to the focus information, and the shooting preview Set the range of the image.
  • the movement trajectory of the target object within the shooting range of the camera can be detected, and then the focus information is determined according to the movement trajectory of the target object and the focusing is completed, so that a clearer image can be captured. Even if the target object is in motion, the target object can be accurately focused, and a clear image of the motion state can be captured, which improves the user experience.
  • the above-mentioned determining focus information according to the motion information may include: according to the motion information, that is, the information of the motion trajectory of the target object in the preset range, the target object within the preset time period is determined. Predicting the motion trajectory of the target object to obtain a prediction area, where the prediction area is the area where the target object is located within the preset time period obtained by prediction; the focus area is determined according to the prediction area, and the focus area includes at least one that focuses on the target object The focus point, and the focus information includes position information of at least one focus point.
  • the future motion trajectory of the target object can be predicted, and the focus area can be determined according to the predicted area, so that the focus of the target object can be accurately completed. Even if the target object is moving at a high speed, the embodiments of the present application can focus on the target object in advance in a predictive manner, so that the target object is in the focus area, so that a clearer high-speed moving target object can be photographed.
  • determining the focus area according to the prediction area may include: if the prediction area meets a preset condition, then determining the prediction area as the focus area; if the prediction area does not meet the preset condition, re-according to The motion information predicts the motion trajectory of the target object within a preset time period, obtains a new prediction area, and determines the focus area according to the new prediction area.
  • the preset condition may be that the prediction area includes a complete target object, or that the area of the prediction area is greater than a preset value, and so on.
  • the focus area is determined according to the predicted area and the camera is triggered to shoot; when the predicted area does not meet the preset conditions, the camera is not triggered to shoot, so Incomplete target objects in the captured images can be avoided, or meaningless shooting can be avoided.
  • the camera can be in an inactive state when not shooting, and only when the predicted area meets a preset condition, the camera is triggered to shoot, which can reduce the power consumption of the camera.
  • the motion information further includes at least one of the motion direction and the motion speed of the target object;
  • the above-mentioned prediction of the motion trajectory of the target object within a preset period of time according to the motion information to obtain the prediction area may be It includes: predicting the motion trajectory of the target object within a preset time period according to the motion trajectory of the target object when it moves within the preset range, and the motion direction and/or motion speed, to obtain the prediction area.
  • the present application it is possible to predict the movement trajectory of the target object within a preset period of time in the future according to the movement trajectory of the target object within a preset range, and the movement direction and/or movement speed, so that the target object can be predicted.
  • An accurate prediction of the area where the target object is located within a preset time period in the future can be used to more accurately focus the target object, and then a clearer image can be captured.
  • the foregoing predicts the motion trajectory of the target object within the preset time period based on the motion trajectory of the target object when it moves within the preset range, as well as the motion direction and/or motion speed, to obtain the prediction area , May include: fitting the change function of the center point of the area where the target object is located with time according to the movement trajectory of the target object in the preset range, and the movement direction and/or movement speed; and then according to the change function
  • the predicted center point is calculated, and the predicted center point is the center point of the area where the target object is located within the preset time period obtained by prediction; the predicted area is obtained according to the predicted center point.
  • the time-varying change function of the center point of the area where the target object is located can be fitted according to the movement trajectory of the target object during movement, and then the area where the target object is located at a certain time in the future can be predicted based on the change function According to the center point of, the prediction area is determined according to the center point, and then the target object can be more accurately focused, and then a clearer image can be taken.
  • the image in the prediction range may be taken by an RGB camera.
  • the above-mentioned focusing on the target object in a preset range according to the focus information may include: combining the multiple focus points of the RGB camera with the focus point. At least one point with the smallest norm distance of the center point of the area is used as the focus point for focusing.
  • At least one point with the closest norm distance from the center point of the focus area can be selected as the focus point, and focus is performed to complete the focus on the target object.
  • the motion information includes the current area of the target object.
  • the above-mentioned determining the focus information according to the motion information may include: determining the current area of the target object as the focus area, and the focus area includes the focus area. At least one focus point for focusing on the target object, and the focus information includes position information of the at least one focus point.
  • the information about the movement trajectory of the target object within the preset range may include the area where the target object is currently located and the area where the target object is located in history, and the area where the target object is currently located may be used as the focus area. Complete the focus on the target object, and then you can shoot a clearer image.
  • the above method may further include: acquiring an exposure parameter; the foregoing capturing of an image of the preset range may include: capturing an image of a preset range according to the exposure parameter.
  • the exposure parameters can also be adjusted, so that shooting is completed through the exposure parameters, and a clear image is obtained.
  • the aforementioned obtaining of the exposure parameters may include: determining the exposure parameters according to the motion information, where the exposure parameters include the exposure duration, and the motion information includes the motion speed of the target object, the exposure duration and the motion of the target object Speed is negatively correlated.
  • the exposure duration can be determined by the movement speed of the target object, so that the exposure duration matches the movement speed of the target object. For example, the faster the movement speed, the shorter the exposure duration and the slower the movement speed, the exposure duration is The longer. It can avoid overexposure or underexposure, so that clearer images can be captured later, and user experience can be improved.
  • the aforementioned obtaining of the exposure parameter may include: determining the exposure parameter according to the light intensity, where the exposure parameter includes the exposure duration, and the magnitude of the light intensity within the preset range has a negative correlation with the exposure duration.
  • the exposure time can be determined according to the detected light intensity.
  • the exposure time is shorter, and the light intensity is smaller, and the exposure time is longer, so that an appropriate amount of exposure can be guaranteed. To a clearer image.
  • the above method may further include: fusing the images in the preset range according to the information of the detected movement of the target object and the image to obtain the preset range. Set the target image within the range.
  • the movement of the target object within a preset range can also be monitored, and information about the corresponding movement of the target object in the image can be obtained, such as the contour of the target object and the target object.
  • Information such as the position within the preset range, and use the information to enhance the captured image to obtain a clearer target image.
  • the aforementioned detecting the motion information of the target object within the preset range may include: monitoring the motion of the target object within the preset range through the dynamic vision sensor DVS to obtain the motion information.
  • the DVS can be used to monitor the moving object in the shooting range of the camera, so as to obtain accurate motion information. Even if the target object is in a high-speed motion state, the motion of the target object can be captured in time through the DVS information.
  • this application provides an image acquisition device, including:
  • the motion sensor is used to detect the motion information of the target object within a preset range, the motion information includes information about the motion trajectory of the target object when the target object moves within the preset range, and the preset range is the camera shooting range;
  • a calculation module configured to determine focus information according to the motion information, the focus information including parameters for focusing on a target object within a preset range
  • the shooting module is used to focus the target object in a preset range according to the focus information, and is used to shoot an image in the preset range.
  • the calculation module may be a module coupled with the motion sensor, or a module provided inside the motion sensor.
  • the calculation module is specifically configured to: predict the motion trajectory of the target object within a preset time period according to the motion information to obtain a prediction area, where the prediction area is within the preset time period obtained by prediction The area where the target object is located; the focus area is determined according to the prediction area, the focus area includes at least one focus point for focusing on the target object, and the focus information includes position information of the at least one focus point.
  • the calculation module is specifically configured to: if the predicted area meets the preset condition, use the predicted area as the focus area and trigger the shooting module to focus; if the predicted area does not meet the preset condition, restart According to the motion information, the motion trajectory of the target object within the preset time period is predicted to obtain a new prediction area, the new prediction area is used to determine the focus area, and the focus area is determined according to the new prediction area.
  • the motion information further includes at least one of the motion direction and the motion speed of the target object
  • the calculation module is specifically used to predict the motion trajectory of the target object within a preset time period according to the motion trajectory of the target object when it moves within the preset range, as well as the motion direction and/or motion speed, to obtain the prediction area.
  • the calculation module is specifically used to: fit the target object's movement trajectory, movement direction and/or movement speed within the preset range.
  • the shooting module includes an RGB camera
  • the shooting module is specifically configured to focus on at least one point with the smallest norm distance from the center point of the focus area among the multiple focus points of the RGB camera.
  • the motion information includes the current area of the target object
  • the calculation module is specifically configured to use the area where the target object is currently located as the focus area, the focus area includes at least one focus point for focusing on the target object, and the focus information includes position information of the at least one focus point.
  • the photographing module is further configured to obtain exposure parameters before the photographing module photographs an image of a preset range, and to photograph an image of a preset range according to the exposure parameter.
  • the shooting module is specifically configured to obtain exposure parameters according to motion information, where the exposure parameters include exposure duration, and the exposure duration has a negative correlation with the moving speed of the target without images.
  • the photographing module is specifically configured to obtain exposure parameters according to light intensity, where the exposure parameters include exposure duration, and the magnitude of the light intensity within a preset range has a negative correlation with the exposure duration.
  • the image acquisition device may further include:
  • the enhancement module is used for fusing the images in the preset range according to the information of the detected movement of the target object and the image after the shooting module captures the image in the preset range to obtain the target image in the preset range.
  • the motion sensor includes a dynamic vision sensor DVS, which is used to monitor the motion of the target object within a preset range to obtain motion information.
  • DVS dynamic vision sensor
  • an embodiment of the present application provides a graphical user interface GUI, characterized in that the graphical user interface is stored in an electronic device, and the electronic device includes a display screen, a memory, one or more processors, and the one or more A processor is configured to execute one or more computer programs stored in the memory, and the graphical user interface includes: responding to a trigger operation for shooting a target object, and shooting a preset range of images according to focus information, and displaying the preset Range image, the preset range is the camera shooting range, the focus information includes parameters for focusing on the target object within the preset range, the focus information is determined according to the motion information of the target object, and the motion information includes Information about the motion trajectory of the target object when moving within a preset range.
  • the graphical user interface may further include: predicting the motion trajectory of the target object within a preset time period in response to the motion information to obtain a prediction area, where the prediction area is the predicted The area where the target object is located within a preset period of time, and the focus area is determined according to the prediction area, the focus area is displayed on the display screen, the focus area includes at least one focus point for focusing on the target object, and the focus information includes at least The position information of a focus point.
  • the graphical user interface may specifically include: if the prediction area meets a preset condition, in response to determining the focus area according to the prediction area, displaying the focus area on the display screen; If the prediction area does not meet the preset conditions, in response to re-predicting the motion trajectory of the target object within a preset time period based on the motion information, a new prediction area is obtained, and the focus area is determined according to the new prediction area. The focus area is displayed in the monitor.
  • the movement information further includes at least one of the movement direction and movement speed of the target object;
  • the graphical user interface may specifically include: responding to the movement of the target object within a preset range; The movement trajectory during the movement, and the movement direction and/or the movement speed predict the movement trajectory of the target object within a preset time period to obtain the prediction area, and display the prediction area on the display screen.
  • the graphical user interface may specifically include: in response to the movement trajectory of the target object in a preset range according to the movement, and the movement direction and/or the movement speed, Fit the change function of the center point of the area where the target object is located with time, and calculate the predicted center point according to the change function, and the predicted center point is the predicted center point of the area where the target object is located.
  • the center point, and the prediction area is obtained according to the prediction center point, and the prediction area is displayed on the display screen.
  • the image of the prediction range is captured by an RGB camera
  • the graphical user interface may specifically include: responding to setting the center point of the focus area among the multiple focus points of the RGB camera. At least one point with the smallest norm distance of is used as the focus point for focusing, and an image taken after focusing based on the at least one point as the focus point is displayed on the display screen.
  • the motion information includes the current area of the target object
  • the graphical user interface may specifically include: in response to using the current area of the target object as the focus area, the focus area includes At least one focus point for focusing on the target object, the focus information includes position information of the at least one focus point, and the focus area is displayed on the display screen.
  • the graphical user interface may further include: in response to the detected motion information of the target object corresponding to the image, fusing the images within the preset range to obtain the preset The target image within the range, the target image is displayed on the display screen.
  • the motion information is obtained by monitoring the motion of the target object within the preset range through a dynamic vision sensor DVS.
  • the graphical user interface may specifically include: in response to acquiring an exposure parameter before the image of the preset range is captured, displaying the exposure parameter on a display screen;
  • the exposure parameter takes the image of the preset range, and the image of the preset range taken according to the exposure parameter is displayed on the display screen.
  • the exposure parameter is determined according to the motion information, the exposure parameter includes an exposure duration, and the exposure duration has a negative correlation with the movement speed of the target object.
  • the exposure parameter is determined according to the light intensity
  • the light intensity can be the light intensity detected by the camera, or the light intensity detected by the motion sensor
  • the exposure parameter includes the exposure duration, so The magnitude of the light intensity within the preset range is in a negative correlation with the exposure duration.
  • an embodiment of the present application provides an image acquisition device, which has the function of implementing the image acquisition method in the first aspect described above.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides an image acquisition device, including: a processor and a memory, wherein the processor and the memory are interconnected through a wire, and the processor calls the program code in the memory to execute any one of the above-mentioned first aspect Functions related to processing in the image acquisition method shown.
  • the image acquisition device may be a chip.
  • the present application provides an electronic device, which includes a display module, a processing module, and a storage module.
  • the display module is used to display the graphical user interface of the application program stored in the storage module, and the graphical user interface may be the graphical user interface described in the third aspect or any one of the third aspects.
  • the embodiments of the present application provide an image acquisition device.
  • the image acquisition device may also be called a digital processing chip or a chip.
  • the chip includes a processing unit and a communication interface.
  • the processing unit acquires program instructions through the communication interface, and the program instructions are
  • the processing unit executes, and the processing unit is configured to execute a function related to processing in the foregoing first aspect or any optional implementation of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method in the first aspect or any optional implementation of the first aspect.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method in the first aspect or any optional implementation of the first aspect.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by this application.
  • FIG. 2 is a schematic flowchart of an image acquisition method provided by this application.
  • FIG. 3 is a schematic diagram of events collected by a DVS provided by this application.
  • FIG. 4 is a schematic diagram of motion information collected by a DVS provided by this application.
  • Figure 5 is a schematic diagram of a motion trajectory determined by a DVS provided by this application.
  • FIG. 6 is a schematic diagram of a method of fitting a motion trajectory provided by this application.
  • FIG. 7 is a schematic diagram of a method for determining a focus point provided by this application.
  • FIG. 8 is a schematic diagram of a method for determining a prediction center provided by this application.
  • FIG. 9 is a schematic flowchart of another image acquisition method provided by this application.
  • FIG. 10 is a schematic diagram of a shooting range provided by this application.
  • FIG. 11 is a schematic diagram of a prediction area provided by this application.
  • FIG. 12 is a schematic diagram of a focus area provided by this application.
  • FIG. 13 is a schematic flowchart of another image acquisition method provided by this application.
  • FIG. 14 is a schematic diagram of an image enhancement method provided by this application.
  • FIG. 15 is a schematic flowchart of another image acquisition method provided by this application.
  • FIG. 16 is a schematic flowchart of another image acquisition method provided by this application.
  • Figure 17 is a schematic diagram of a scenario applied by this application.
  • Figure 18 is a schematic diagram of another scenario applied by this application.
  • FIG. 19 is a schematic diagram of displaying a GUI provided by this application.
  • FIG. 20A is a schematic diagram showing another GUI provided by this application.
  • FIG. 20B is a schematic diagram showing another GUI provided by this application.
  • FIG. 21A is a schematic diagram showing another GUI provided by this application.
  • FIG. 21B is a schematic diagram showing another GUI provided by this application.
  • FIG. 22 is a schematic diagram showing another GUI provided by this application.
  • FIG. 23 is a schematic diagram showing another GUI provided by this application.
  • FIG. 24A is a schematic diagram showing another GUI provided by this application.
  • FIG. 24B is a schematic diagram showing another GUI provided by this application.
  • FIG. 25 is a schematic structural diagram of an image acquisition device provided by this application.
  • FIG. 26 is a schematic structural diagram of another image acquisition device provided by this application.
  • the image acquisition method provided in this application can be applied to various shooting scenes, such as shooting, security, automatic driving, drone shooting and other scenes.
  • the image acquisition method provided in the present application may be executed by an image acquisition device, and the image acquisition device may be an electronic device that has a photographing function or is connected to a photographing device.
  • the electronic devices in this application may include, but are not limited to: smart mobile phones, televisions, tablet computers, wristbands, head mounted display devices (Head Mount Display, HMD), augmented reality (AR) devices, and mixed reality (mixed reality).
  • Reality, MR head mounted display devices
  • cellular phones smart phones
  • PDAs personal digital assistants
  • tablet computers in-vehicle electronics
  • laptop computers personal computers
  • PC personal computer
  • monitoring equipment robots
  • robots vehicle-mounted terminals
  • autonomous vehicles etc.
  • FIG. 1 Exemplarily, referring to FIG. 1, a specific structure is taken as an example below to illustrate the structure of the electronic device provided in the present application.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, motion sensor 180N, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface can include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter (universal asynchronous transmitter) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may couple the touch sensor 180K, charger, flash, camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to realize the display function of the electronic device 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transfer data between the electronic device 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is merely a schematic description, and does not constitute a structural limitation of the electronic device 100.
  • the electronic device 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive the wireless charging input through the wireless charging coil of the electronic device 100. While the charging management module 140 charges the battery 142, it can also supply power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include, but is not limited to: 5th-Generation (5G) system, global system for mobile communications (GSM), general packet radio service, GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access, TD-SCDMA ), long-term evolution (LTE), Bluetooth (bluetooth), global navigation satellite system (GNSS), wireless fidelity (WiFi), near field communication, NFC), FM (also called FM broadcasting), Zigbee protocol (Zigbee), radio frequency identification (RFID) and/or infrared (IR) technology, etc.
  • 5G 5th-Generation
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division
  • the GNSS may include the global positioning system (GPS), the global navigation satellite system (GLONASS), the Beidou navigation satellite system (BDS), and the quasi-zenith satellite system (quasi). -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS), etc.
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • quadsi quasi-zenith satellite system
  • QZSS -zenith satellite system
  • SBAS satellite-based augmentation systems
  • the electronic device 100 may also include a wired communication module (not shown in FIG. 1), or the mobile communication module 150 or the wireless communication module 160 here may be replaced with a wired communication module (not shown in FIG. 1).
  • the wired communication module can enable the electronic device to communicate with other devices through a wired network.
  • the wired network may include, but is not limited to, one or more of the following: optical transport network (OTN), synchronous digital hierarchy (SDH), passive optical network (PON), Ethernet Network (Ethernet), or flexible Ethernet (flex Ethernet, FlexE), etc.
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations and is used for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the electronic device 100 can realize a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB camera, YUV and other format image signals.
  • the electronic device 100 may include one or N cameras 193, and N is a positive integer greater than one.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • the NPU can realize applications such as intelligent cognition of the electronic device 100, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called a "handset" is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the electronic device 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the capacitive pressure sensor may include at least two parallel plates with conductive materials.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch position but have different touch operation intensities can correspond to different operation instructions. For example: when a touch operation whose intensity is less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the movement posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shake angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D. Then, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and be used in applications such as horizontal and vertical screen switching, pedometers and so on.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be provided on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor may analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the motion sensor 180N can be used to detect the moving objects within the range photographed by the camera, and collect the motion contours or trajectories of the moving objects.
  • the motion sensor 180N may be an infrared sensor, a laser sensor, a dynamic vision sensor (DVS), etc.
  • the DVS may specifically include DAVIS (Dynamic and Active-pixel Vision Sensor), ATIS (Asynchronous Time-based Image Sensor), etc. ) Or CeleX sensors and other sensors. DVS draws on the characteristics of biological vision.
  • Each pixel simulates a neuron and independently responds to relative changes in light intensity (hereinafter referred to as "light intensity"). When the relative change of the light intensity exceeds the threshold, the pixel will output an event signal, including the position of the pixel, the time stamp, and the characteristic information of the light intensity.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the electronic device 100 may receive key input, and generate key signal input related to user settings and function control of the electronic device 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations that act on different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the electronic device 100.
  • the electronic device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 can also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • this application provides a method that can capture a clear image of a moving object to provide a user experience.
  • FIG. 2 a schematic flowchart of an image acquisition method provided by the present application is as follows.
  • the movement of the target object within the preset range can be monitored by the movement sensor, and the movement information of the target object within the preset range can be obtained.
  • the target object is an object that moves within a preset range
  • the number of the target object may be one or more
  • the movement information may include information about the movement track of the target object when it moves within the preset range.
  • the motion information may include information such as the size of the area where the target object is located, and the coordinates of the border or corner point within the preset range when the target object moves within the preset range.
  • the motion area of the target object when the target object moves within a preset range, the area where the target object is located at each moment of detection is referred to as the motion area of the target object.
  • the movement area for example, if the target object is a pedestrian and the pedestrian is performing whole-body movement, the movement area can include the whole body of the pedestrian; if the pedestrian only moves his arms, the target object can only be the arms of the pedestrian, and the movement area can include the pedestrian’s The arm part.
  • the preset range is related to the focal length or field of view of the camera.
  • the larger the angle of view of the camera the larger the area of the captured range, and the smaller the angle of view of the camera, the smaller the area of the captured range.
  • the larger the focal length of the camera the larger the shooting range, which can also be understood as the clearer the object at a long distance. The smaller the focal length of the camera, the smaller the shooting range.
  • the range monitored by the motion sensor includes the shooting range of the camera
  • the preset range may be the shooting range of the camera
  • the range monitored by the motion sensor includes the preset range, that is, the range monitored by the motion sensor may be Greater than or equal to the preset range.
  • the motion information may include the area where the target object is currently located and the area where the history is located after entering the preset range, and may also include the motion speed or direction of the target object.
  • the movement of the target object within the monitored range will cause a series of pixels to produce event output, and then the movement trajectory and movement characteristics of the target object, such as movement, are identified according to the change of the event position Direction or speed of movement, etc.
  • the way of generating an event may be as shown in FIG. 3, where the DVS generates an event in response to a change in motion. Since a static area does not trigger an event, the event is mostly generated in an area where a moving object exists. Generally, when the difference between the current light intensity and the light intensity at the time of the last event exceeds the threshold, DVS will generate an event, such as events N1, N2, and N3 as shown in Figure 3, and the generation of the event is only related to the light intensity. The relative changes are related. Among them, each event can be expressed as ⁇ x,y,t,f>, (x,y) represents the pixel position where the event is generated, t represents the time when the event is generated, and f represents the characteristic information of the light intensity.
  • f represents the changing trend of light intensity, which can also be called polarity. It is usually represented by 1bit and the value can be ON/OFF, where ON represents light intensity enhancement. OFF means the light intensity is weakened.
  • f represents the absolute light intensity, which is usually represented by multiple bits, for example, 9bit represents the light intensity value in the range of 0-511.
  • the DVS will only generate an event when the light intensity change exceeds the threshold. Therefore, the moving object can be detected by the DVS, and the DVS is not sensitive to the static area. For example, if you wave your hand within the monitoring range of the DVS, the event at one of the monitored moments is shown in Figure 4, where the white in Figure 4 represents the event detected by the DVS, that is, the DVS can detect the movement within the preset range
  • the contour and position of the object can be calculated according to the movement trajectory of the target object within a preset range monitored by the DVS, and the movement direction of the target object can be extracted.
  • a time window can be generated from the data monitored by the DVS, and then the events in the time window can be segmented according to the short-term window, the events in the short-term window can be accumulated, and the motion trajectory obtained after the connected domain can be calculated. Further, a series of motion trajectories in the time window are analyzed, and the motion characteristics of the moving target object, such as the motion direction, the motion speed, etc., are obtained by calculating the optical flow or the motion vector.
  • the time window may be divided into multiple short-term windows, such as k short-term windows as shown in FIG. 5.
  • the method of segmentation can be segmentation according to a set duration, or segmentation according to a random duration, or segmentation according to changes in the motion trajectory, etc., which can be adjusted according to actual application scenarios.
  • analyze the position of the event in each short-term window and determine the area where the target object is located in each short-term window.
  • the motion area in short-term window 1 is As shown in the motion area 1 in FIG. 5, the motion area in the short-term window k is the motion area k shown in FIG. 5. Then, through the change of the movement area in the short-term window 1-k, the movement area and movement characteristics of the target area, such as the movement direction or the movement speed, are determined.
  • the movement characteristics included in the movement information may include movement speed or movement direction.
  • the movement speed may be the change trend of the speed of the target object compared to the previous short-time window, including but not limited to speed trend status variables such as faster and slower, and even more levels of speed trend status variables, such as fast , Faster, very fast, slow, slower, very slow, etc.
  • the movement direction can also be a change in the direction compared to the previous short-term window, including but not limited to leftward, rightward, upward, downward, constant and other directional trend state quantities, and even more levels of directional trend state quantities, Such as upper left, lower left, upper right, lower right, left, right, up, down, unchanged, etc.
  • the focus information is determined according to the movement information.
  • the motion information includes the motion trajectory of the target object, that is, the focus information for focusing on the target object within the preset range can be determined according to the motion trajectory.
  • Method 1 Obtain the focus information by predicting the area
  • the focus area the area where the at least one focus point corresponding to when the target object is photographed.
  • the focus information may include position information of at least one point in the focus area, such as information such as the frame of the focus area or the coordinates of the corner points within a preset range.
  • the specific method for determining the focus area may include: predicting the motion trajectory of the target object within a preset period of time according to the motion information to obtain the prediction area, and then determining the focus area according to the prediction area, the focus area including at least the focus of the target object For one focus point, the focus information includes position information of at least one focus point.
  • the preset duration may be a preset duration, such as 10 microseconds, 5 microseconds, and so on.
  • the RGB camera shooting is triggered only according to the current area and motion characteristics of the target object, the target object may have entered the next position or state.
  • the image has a lag. Therefore, it is necessary to predict the target object area within the preset time period in the future, and filter incomplete motions, especially when the moving object has just entered the field of view of the lens, or the moving object is far away is not conducive to shooting, etc., and the best decision is made.
  • the RGB camera is triggered to work.
  • the motion trajectory of the target object within a preset time period in the future can be predicted based on the motion information obtained in the foregoing step 201, specifically, it can be based on the motion of the target object when moving within a preset range.
  • the trajectory, and at least one of the motion direction and the motion speed predict the motion trajectory of the target object within a preset time period in the future to obtain a prediction area.
  • the prediction center point may be based on the monitored movement trajectory, the movement direction and/or the movement speed of the moving object when the target object is moving within the preset range, fitting the area where the target object is located.
  • the change function of the center point over time and then calculate the prediction center point according to the change function, the prediction center point is the center point of the prediction area, and the prediction area is determined according to the prediction center point.
  • the change function F(x c , y c , t) can be fitted according to the monitored movement trajectory of the target object, where (x c , y c ) is the location where the target object is located.
  • the center point of the area, t is the time, so that the location of the area where the moving object is located in the next time period can be calculated.
  • the change function may be a linear function, or an exponential function, etc., which can be adjusted according to actual application scenarios, and it is not limited here. Then predict the future motion trajectory of the target object according to the change function, select a point from the motion trajectory as the prediction center point, and then determine the prediction area based on the prediction center point.
  • the shape of the prediction area can be adjusted according to the actual application scenario For example, it can be a circumscribed rectangle, a circumscribed smallest circle, a polygon, an irregular shape, etc.
  • the focus area is determined according to the prediction area; if the prediction area does not meet the preset condition, the motion trajectory of the target object within the preset time period is re-executed according to the motion information. Prediction, a new prediction area is obtained, and the focus area is determined according to the new prediction area.
  • the preset condition may be that the target object included in the preset area is in a complete form, that is, the preset area includes the complete target object, or the area of the prediction area is greater than the preset value, or the distance between the target object and the camera is greater than the preset value. Set the distance threshold and so on.
  • the prediction center point can be predicted by motion sensors, such as DAVIS or CeleX, or by the processor of the electronic device, and then when the preset area meets the preset conditions, it can be triggered based on The camera module of the electronic device performs focusing according to the focus area.
  • the prediction of the focus area can be achieved by predicting the area where the target object is located within a preset time in the future, so that the subsequent changes of the target object in the moving state can be captured in time. Clear images improve user experience.
  • Method 2 Determine the focus information directly according to the current area of the target object
  • the area where the target object is currently located can be used as the focus area
  • the focus area includes at least one focus point for focusing on the target object
  • the focus information includes at least one The position information of the focus point. For example, if the current area of the target object is monitored through the DVS, and the movement speed of the target object is less than the speed threshold, it means that the movement speed of the target object is slow and the focusing time is sufficient. Therefore, the area where the target object is currently located can be directly used as the focus area, so a clear image can be captured.
  • the area where the target object is currently located that is, the area where the target object is currently located, can be used as the focus area, so that the target object can be accurately focused.
  • the focusing time is sufficient, and you can focus only through the current area, and you can get a clearer image. And there is no need to make predictions, which reduces the workload.
  • the focus information may include position information of at least one point in the focus area. After the focus area is determined, a target object within a preset range is focused according to the focus area, and an image within the preset range is taken.
  • the focus area may be the same as the prediction area, or may be larger than the prediction area, and may be adjusted according to actual application scenarios. For example, after the prediction area is determined, the prediction area can be directly used as the focus area, or a range larger than the prediction area can be selected as the focus area, so as to ensure that the captured target object is complete. In another scene, such as a low-speed motion scene, the focus area can be the area where the target object is currently located, and you can focus directly in the area where the target object is currently located, and then you can shoot a clear image, reducing the prediction. The workload of the steps.
  • an image can be captured by a camera to obtain an image within a preset range.
  • the shooting is performed by the aforementioned camera 193 shown in FIG. 1.
  • the camera may include a color (red, green, blue, RGB) sensor (also referred to as an RGB camera), that is, an RGB camera is used for shooting.
  • the specific focusing method may include: among the multiple focus points of the RGB camera, at least one point with the smallest norm distance from the center point of the focus area is used as the focus point to focus, thereby completing the area where the target object is located or Focus on the predicted area, and then complete the shooting of the target object to obtain the image captured by the RGB camera.
  • the image captured by the RGB may be referred to as an RGB image.
  • the center point of the prediction area can be directly used as the focus point to complete focusing and shooting, and obtain an RGB image.
  • the RGB camera may have multiple preset focus points.
  • the center point of the focus area is selected.
  • the one or more points with the closest norm of the distance are used as the focus point and focus, so as to complete the shooting of the target object.
  • the calculation method of the distance may include but is not limited to the L1 norm distance or the L2 norm distance.
  • the calculation formula of the L1 norm distance may include:
  • the distance calculation formula can include: Among them, (x1, y1) is the midpoint of the prediction area, and (x2, y2) is the preset focus point of the RGB camera.
  • the RGB camera may not set the focus point in advance. After determining the focus area, directly use the center point of the focus area as the focus point, or use all the pixels in the focus area as the focus point. Or, select one or more pixels in the focus area as the focus point, etc., which can be specifically adjusted according to actual application scenarios.
  • the exposure parameter may also be obtained, and the image is taken according to the exposure parameter.
  • the exposure parameter may include, but is not limited to, exposure value (EV), exposure amount, exposure duration, aperture size, or sensitivity (international standardization organization, ISO), etc.
  • Exposure time can be understood as the length of time that the shutter needs to open when light is projected onto the photosensitive surface of the camera's photosensitive material.
  • the exposure time can be adjusted to match the shooting time of the camera with the movement speed of the target object, so that the camera can quickly capture a clearer image.
  • the exposure value represents the combination between the aperture of the exposure and the exposure time.
  • Exposure is the time integral of the illuminance received by a certain facet on the surface of the object.
  • IOS is a value determined based on exposure.
  • the manner of obtaining the exposure parameter may include: determining the exposure parameter according to the motion information.
  • the exposure duration has a negative correlation with the movement speed of the target object. For example, the faster the target object's movement speed, the shorter the exposure time, the slower the target object's movement speed, and the longer the exposure time, so that the camera can capture clearer images with matching exposure time.
  • the manner of obtaining the exposure parameter may include: determining the exposure parameter according to the light intensity.
  • the exposure duration has a negative correlation with the magnitude of the light intensity. For example, the greater the light intensity, the shorter the exposure time, and the lower the light intensity, the longer the exposure time.
  • the RGB camera can adjust the exposure parameters according to the predicted motion characteristics, specifically the change trend of the motion speed.
  • the exposure parameters are set to multiple gears by default, which are adapted to different speeds of movement, such as 1/30 sec, 1/60 sec, 1/100 sec, 1/200 sec, 1/500 sec, etc.
  • the exposure time should be appropriately reduced and adjusted to a lower level.
  • the exposure time should be appropriately increased and adjusted to a higher level to match the exposure during shooting with the light intensity, avoiding overexposure or insufficient light, etc. .
  • after shooting by the camera it may further include: the motion information of the target object when the image is captured by the motion sensor is monitored, and the images captured by the camera are fused to obtain a preset range of Target image.
  • the RGB camera completes exposure and shooting, and outputs an RGB camera image after its internal image signal processing.
  • DVS records the event data of the same period, accumulates the events in the time period, and obtains the contour and position of the moving object.
  • the pixel coordinates are aligned to highlight the edge details of the moving object, including but not Limited to filtering, edge sharpening, etc.
  • the enhanced target image is used as the final output, presented to the user or stored in the phone memory. After that, according to system settings or user settings, DVS can continue to perform motion detection and trigger the RGB camera to take the next shot, that is, continuous shooting of moving objects.
  • the focus can be performed according to the detected movement trajectory of the target object in the preset range, so as to capture a clearer image.
  • the focus area is the same as or intersects with the area where the target object is when it moves or the area where it is predicted when it moves, so as to capture a clearer image and improve user experience.
  • the captured image can be enhanced according to the motion information at the same time as the captured image, thereby further improving the clarity of the obtained target image.
  • the process of shooting a high-speed moving object can refer to FIG. 9.
  • the shooting range of the RGB camera that is, the aforementioned preset range
  • the DVS the shooting range of the RGB camera
  • one or more objects moving within the shooting range can be monitored.
  • the one or more objects can be people, animals, vehicles, drones or robots that are active in the shooting range, and there may be different objects in different application scenarios, which can be based on actual application scenarios. Make adjustments, and this application does not limit it.
  • the DVS can respond to changes in the light intensity within the shooting range to generate events.
  • One short-term window can include one or more events. Since static areas do not trigger events, events mostly occur in areas where there is movement. Obtain the events in a short-term window to accumulate, and obtain the connected domains, and then one or more regions with motion can be obtained.
  • the area where there is movement is referred to as a movement area below.
  • the form of the movement area includes, but is not limited to, a circumscribed rectangle, a circumscribed minimum circle, a polygon, an irregular shape, and the like.
  • the motion area is smaller than a preset threshold, the area is filtered out. It can be understood that when the monitored movement area is less than the threshold, the movement area may be noise, or the monitored moving object may be incomplete, etc. Filtering out this area can reduce meaningless workload.
  • the shooting range of the camera is related to the field of view ⁇ of the camera.
  • the range of DVS monitoring includes the shooting range of the camera, so as to realize the monitoring of the moving object within the preset range.
  • the events monitored by the DVS are sparse; at the same time, each pixel in the DVS responds to continuous light intensity changes independently and asynchronously, without the effect of the simultaneous exposure of the RGB camera, and is not limited by the exposure time and frame rate. Therefore, DVS usually has a very high time resolution. For example, DAVIS has a time accuracy of up to 1 us, which is suitable for capturing high-speed moving objects.
  • high-speed and low-speed mentioned in this application are relative terms.
  • the division of high-speed and low-speed can be adjusted according to actual application scenarios. For example, a speed higher than 10KM/h can be referred to as high-speed. Speeds below 10KM/h are called low speeds.
  • the DVS can continue to predict the area where the target object is located within a period of time in the future based on the continuously monitored movement trajectory of the target object, and determine whether to trigger the RGB camera to shoot according to the predicted area.
  • the RGB camera is triggered to perform subsequent focusing and shooting. If the preset conditions are not met, the shooting range is continued Monitor until the predicted area that meets the preset conditions is obtained or the shooting ends.
  • the vehicle’s trajectory can be predicted based on the direction and speed of the vehicle’s movement monitored by the DVS, so that it can predict where the vehicle is about to travel.
  • Area namely 1101 shown in Figure 11.
  • the RGB camera can be triggered to focus. If the preset area does not meet the preset condition, the RGB camera is not triggered to focus and continue to monitor the vehicle's movement trajectory.
  • the preset condition may be that the vehicle in the prediction area is incomplete or the area of the prediction area is too small. For example, if the vehicle does not fully enter the lens field of view, the RGB camera is not triggered to shoot.
  • the DVS can transmit the predicted area to the RGB camera as the focus area, and trigger the RGB camera to shoot.
  • the RGB camera may be parallax between the RGB camera and the DVS, so a registration operation is required.
  • the coordinate system of the prediction area is aligned with the pixel coordinate system of the RGB camera, so that the prediction area has the same coordinate system as the field of view of the RGB camera after registration.
  • the focus area may be the area where the target object is currently located, or it may be the prediction area.
  • the focus area can be described by geometric shape parameters. If the focus area is a circumscribed rectangle, the DVS can pass the top left corner vertex coordinates, width, and height to the RGB camera; if the focus area is a polygon, the DVS can transfer each vertex of the polygon Clockwise (or counterclockwise) transfer to the RGB camera in turn; if the focus area is the smallest circle outside, the DVS can transfer the center coordinates and circle radius to the RGB camera, etc., which can be adjusted according to the actual application scenario. Illustrative description, not as a limitation.
  • DVS can also transmit the movement characteristics of the target object, such as movement speed and movement direction, to the RGB camera.
  • the movement speed may be the change value or change trend of the speed of the target object compared to the previous short-time window.
  • the change trend may include, but is not limited to, speed trend status quantities such as becoming faster and slower, and even more levels of speed trend status quantities, such as fast, faster, very fast, slow, slower, very slow, and so on.
  • the movement direction can also be a direction or a change in direction compared to the previous short-time window.
  • This direction change can include, but is not limited to, leftward, rightward, upward, downward, constant and other directional trend state variables, and even more levels of directional trend state variables, such as upper left, lower left, upper right, and lower right , Left, right, up, down, unchanged, etc.
  • the prediction area can be used as a focus area, at least one focus point is determined according to the focus area, and focus is performed based on the at least one focus point. Specifically, focus can be performed directly according to the points included in the focus area, or the focus point that is closest to the center point of the focus area can be selected for focus.
  • RGB cameras have multiple focus points. According to the focus area provided by the DVS, select one or more focus points that are closest to the norm of the focus area to focus, and lock the focus, that is, maintain the one or more focus points Focus. For example, referring to the aforementioned FIG. 7, when the RGB camera receives the prediction area transmitted by the DVS, one or more points that are closest to the norm of the center point of the focus area can be selected as the focus point to focus and lock the focus. Focusing methods include, but are not limited to, phase focus or contrast focus.
  • the exposure parameters can also be adjusted according to the motion characteristics monitored by the DVS. For example, the faster the movement speed of the target object, the smaller the exposure parameter, and the slower the movement speed of the target object, the larger the exposure parameter, so that the camera can capture clearer images. Specifically, the camera can convert the collected optical signal into an electrical signal, thereby obtaining a captured image of a preset range.
  • the focus area 1101 is determined by predicting the driving trajectory of the vehicle, and then the focus is locked, and then adjusted to the appropriate exposure time. In this period of focusing and adjusting the exposure time, the vehicle Drive to the prediction area, complete the shooting of the moving vehicle, and get a clear image of the vehicle.
  • the mapping relationship between the motion speed of the target object and the exposure duration can be established. After the motion speed of the target object is determined, the exposure duration can be adjusted according to the mapping relationship, so that the exposure duration is more consistent with that of the target object. The movement speed is matched, and then a clearer image is captured.
  • the mapping relationship may be a preset mapping table, for example, when the motion speed is in the first range, the exposure time is 1/60 second, when the motion speed is in the second range, the exposure time is 1/360 second, and so on.
  • the mapping relationship may also be a linear relationship, an exponential relationship, an inverse proportional relationship, etc., which can be specifically adjusted according to actual application scenarios, which is not limited here.
  • a mapping relationship between the size of the change in the movement speed of the target object and the adjustment method of the exposure duration can be established. For example, if the movement speed of the target object increases, the exposure duration is reduced, and if the movement speed of the target object decreases, the exposure duration is increased, so that the camera can capture clearer images. More specifically, the amount of adjustment of the exposure duration can be related to the magnitude of the change in the movement speed. For example, the greater the amount of change in the movement speed, the greater the amount of adjusted exposure duration, and the smaller the amount of change in the movement speed, the adjusted The amount of exposure time is also smaller.
  • the exposure time can be adjusted in combination with the movement speed and direction of the target object.
  • the speed of movement can be the speed of the target object in the actual environment
  • the speed of the target object in the direction perpendicular to the shooting direction of the camera can be determined according to the speed and direction of movement, and then according to the speed in the direction perpendicular to the shooting direction of the camera To adjust the exposure time.
  • the greater the speed in the direction perpendicular to the shooting direction of the camera the longer the exposure time, and the lower the speed in the direction perpendicular to the shooting direction of the camera, the shorter the exposure time.
  • the information of the moving object within the preset range that is simultaneously monitored by the DVS can be based on the information monitored by the DVS, such as the contour of the target object or the position in the image, etc.
  • the motion details of the image captured by the camera are enhanced to obtain a clearer target image.
  • the DVS can continue to monitor the moving objects within the preset range to obtain the moving objects within the preset range during the shooting time.
  • Information such as the outline of the target object, the position in the image, and other information, and based on this information, the captured image is processed by noise filtering or edge sharpening, so as to enhance the texture details or contours of the image captured by the camera. , To further obtain clearer images and improve user experience.
  • the movement trajectory of the target object can be fitted through the collected movement information of the target object. Then obtain the predicted area of the target object according to the fitted trajectory of the target object.
  • the predicted area is the area that the target object will move in a period of time in the future, and focus and lock the focus according to the predicted area, according to the movement of the target object
  • the feature adjusts the exposure parameters to complete the shooting of the moving target object. It can be understood that after a series of steps such as focusing, focusing, and adjusting exposure parameters, the target object moves to the prediction area, that is, within the focus area. At this time, the target object is photographed, and a clearer image can be captured. Therefore, even if the target object is in a state of high-speed motion, the focusing of the target object can be accurately completed, so that a clearer image can be captured.
  • FIG. 13 is a schematic diagram of another flow chart of the image acquisition method provided by the present application.
  • the DVS performs motion detection, that is, detecting moving objects within the shooting range of the RGB camera.
  • event data is generated based on the information of the detected target object.
  • DVS can generate event data in the monitoring range according to the change of the light intensity in the monitoring range.
  • the difference between the current light intensity and the light intensity when the last event occurred exceeds the threshold, DVS will generate an event and get the data of an event .
  • the event data of an event may include one or more kinds of information such as the position of the pixel point where the light intensity change occurs in an event, the pixel value of the pixel point, or the light intensity change value.
  • DVS can fit the motion trajectory of the target object according to the event data obtained by monitoring, and predict the area to which the target object will move according to the motion trajectory of the target object to obtain the predicted area.
  • the RGB camera can be turned off when the DVS performs motion detection and obtains the prediction area, thereby reducing the power consumption of the RGB camera.
  • the RGB camera can be turned off when the DVS performs motion detection and obtains the prediction area, thereby reducing the power consumption of the RGB camera.
  • DVS when shooting high-speed moving objects, such as airplanes, vehicles, high-speed users, etc., you can first monitor the movement of the object through DVS. When the obtained prediction area meets the preset conditions, DVS will trigger the RGB camera to shoot. The power consumption generated by the RGB camera.
  • the DVS After the DVS obtains the predicted area, it transmits the predicted area to the RGB camera, triggers the RGB camera to start, and instructs the RGB camera to focus according to the predicted area.
  • the DVS may determine the focus area according to the prediction area, the range of the focus area is larger than the range of the prediction area, and then instruct the RGB camera to focus according to the focus area. The following is an example of instructing the RGB camera to focus according to the prediction area.
  • the prediction area can also be registered, that is, the coordinate system of the prediction area is consistent with the coordinate system of the RGB camera, so that the RGB camera can accurately obtain the prediction area in the shooting The position within the range to accurately determine the focus point.
  • the RGB camera can be activated under the trigger of DVS to focus according to the predicted area. For example, an RGB camera can select one or more focus points closest to the norm of the center point of the prediction area to focus, and lock the focus point, that is, maintain the focus point.
  • the DVS also transmits the motion characteristics of the target object to the RGB camera, and the motion characteristics may include information such as the motion speed or direction of the target object.
  • the RGB camera adjusts the exposure parameters according to the received motion characteristics, including exposure duration or exposure value.
  • the mapping relationship between the motion speed of the target object and the corresponding exposure duration can be set.
  • the exposure duration associated with the motion speed can be determined according to the mapping relationship, so as to adjust the exposure duration. Specific examples, as shown in Table 1,
  • the movement speed can be calculated by the coordinates of the target object in the shooting range.
  • a coordinate system can be established according to the shooting range.
  • the coordinate system can be a two-dimensional coordinate system or a three-dimensional coordinate system, depending on the actual application scenario. Make adjustments. Then according to the change value of the target object in the coordinate system, the movement speed of the target object is calculated.
  • the photosensitive element of the RGB camera collects image signals within the shooting range, and processes the collected image signals, for example, converts the collected analog signals into electrical signals, thereby obtaining the captured images.
  • the DVS can continuously monitor the movement of the target object in the shooting range, so the event data during the shooting period can be obtained.
  • the image and the event data in the same period can be merged, thereby enhancing the motion details of the captured image to obtain a clearer target image.
  • the DVS event in the shooting period may include the outline of the moving vehicle, and the image captured by the RGB camera, that is, the RGB image shown in FIG. 14, may be merged according to the DVS event.
  • Enhance the motion details of the RGB image such as filtering out noise, edge sharpening, etc., so as to obtain a target image with enhanced motion details.
  • the enhanced image can be used as the final output, displayed on the display interface or stored in the storage medium of the electronic device.
  • DVS monitors the moving objects within the shooting range, collects a longer long time window, and then fits the movement trajectory of the target object by splitting the time window, and compares the movement trajectory obtained according to the fitting. Predict the area where the target object is located within a period of time in the future to obtain the predicted area. When the predicted area meets the preset conditions, the RGB camera is triggered to start, and focus is performed according to the predicted area.
  • the DVS also calculates the operating characteristics of the target object's motion speed or direction according to the monitored target object's motion trajectory, and transmits the operating characteristics to the RGB camera.
  • the RGB camera adjusts the exposure parameters according to the motion characteristics to use the exposure parameters that match the motion characteristics, such as exposure duration and exposure value.
  • the DVS While the RGB camera is focusing, adjusting the exposure parameters, and outputting RGB images, the DVS continues to monitor the moving objects in the shooting range to obtain event data during the shooting period, including the contour of the target object when it is moving, and the Location etc.
  • the processor of the electronic device can perform enhancement processing on the RGB image based on the event data collected by the DVS, such as filtering out noise, sharpening edges, etc., so as to obtain a clearer target image.
  • the focus can be performed in advance by predicting the area where the target object is located within a period of time in the future, so that a clear image in motion can be captured.
  • the target object can be exposed to match the movement speed, so that the camera can further capture clearer images.
  • the motion details of the captured image can be enhanced to obtain a clearer target image.
  • the process of shooting non-high-speed motion can refer to FIG. 16.
  • the non-high-speed motion scenes are scenes such as security and access control.
  • DVS performs exercise monitoring.
  • the target object may be an object moving at a low speed.
  • step 1601 reference may be made to the related description in the foregoing step 901, which will not be repeated here.
  • the second scenario can be an access control scenario.
  • RGB cameras and DVS can be set in the access control.
  • devices such as ISP or monitors can also be set. Go into details one by one.
  • step 1603 is performed, and if not, step 1601 is performed.
  • the DVS can send the current area as the focus area to the RGB camera to trigger the RGB camera to start, and according to this Shoot in the area where you are currently located.
  • the area of the object may cover the shooting range of the DVS and RGB camera.
  • Causing DVS to detect changes in light intensity For example, outside the access control is the public access control of the community. When people enter the front of the access control, the lights of the corridor may be blocked, causing the light intensity in the entire field of view to decrease.
  • the DVS When the DVS detects a moving object according to the change of the light intensity, as shown in 1801 in Figure 18, it can monitor the area where the target object is currently located, and then determine whether the area of the area where the target object is currently located is greater than the preset value, or Whether the target object in the area where the target object is currently located is complete, etc., determine whether to trigger the RGB camera to shoot.
  • the DVS can transmit the current area of the target object as the focus area to the RGB camera.
  • the RGB camera can focus based on the area where the target object is currently located, and adjust the exposure parameters according to the motion characteristics of the target object. Shoot the target object to get the RGB image of the target object.
  • DVS can continuously monitor the area where the target object is located during the shooting period.
  • Step 1603 is similar to the aforementioned step 903, and will not be repeated here.
  • the exposure parameters can be adjusted according to the light intensity.
  • the exposure parameter may include an exposure duration, and the exposure duration has a negative correlation with the light intensity in the shooting range.
  • the light intensity value used to adjust the exposure parameters can be the light intensity value collected by DVS, or the light intensity value collected by RGB cameras or other devices, which can be adjusted according to actual application scenarios. Not limited.
  • the average light intensity change can be estimated according to the overall event rate of the DVS, and the average light intensity L is positively correlated with the DVS event rate R, that is, L ⁇ R.
  • the exposure parameters can be adjusted according to this relationship.
  • the exposure time is increased, such as increasing from 1/100 second to 1/30 second, and when the estimated average light intensity increases, the exposure time is reduced , Such as reducing from 1/30 second to 1/100 second.
  • the value of the average light intensity can be calculated, and then the exposure parameters can be determined according to the value of the average light intensity. If the value of the average light intensity is larger, the exposure time is shorter, and the value of the average light intensity is smaller, and the exposure time is longer. In this way, the exposure time of the camera is matched with the value of the average light intensity, and then the image within the shooting range can be fully captured to obtain a clearer image and improve the user experience.
  • step 1605 is similar to the aforementioned step 905, and will not be repeated here.
  • focusing can be performed according to the area where the target object is currently monitored by the DVS, and the area where the moving object is located can be accurately identified, so as to perform accurate focusing.
  • the exposure parameters can also be adjusted according to the intensity of the light, so that the RGB camera can accurately adapt to the intensity of the light, thereby capturing clearer images.
  • this application scene can also use the events detected by the DVS at the same time to enhance the motion details of the captured image to obtain a clearer target image.
  • the RGB camera in this scene, especially in some surveillance scenes, if the RGB camera is continuously used for monitoring, it will produce a larger power consumption.
  • the power consumption of the RGB camera for continuous shooting is usually hundreds of milliwatts to tens of watts, etc. , And the amount of data generated is large.
  • the image acquisition method provided by this application can start shooting with the RGB camera when the DVS detects a moving object.
  • the power consumption of the DVS is usually tens of milliwatts.
  • the power consumption of the DAVIS346 sensor is 10-30 milliwatts. Therefore, power consumption can be reduced.
  • the DVS only obtains the outline of the moving object, which can avoid monitoring all user data, such as private data, and can improve user experience.
  • abnormal movements can be photographed, and follow-up alarm operations can be performed according to the captured images, and specific adjustments can be made according to actual application scenarios to improve safety.
  • the image acquisition method provided by this application monitors the movement of the outside world in real time with low power consumption through DVS, and triggers the RGB camera to work only when it is judged as abnormal movement, which has the advantage of power consumption; at the same time, the DVS output The event does not contain specific texture details, only the outline and position of the moving object, which has the advantage of privacy and security.
  • This application also provides a graphical user interface (GUI).
  • GUI graphical user interface
  • the GUI can be applied to electronic devices, such as terminals, monitoring devices, and autonomous vehicles.
  • the electronic device can include a display screen, a memory, one or more Multiple processors, the one or more processors are used to execute one or more computer programs stored in the memory, such as the steps of the image acquisition method mentioned in Figure 2-18, the GUI is used to The screen captured by the camera in Figure 2-18 is displayed on the display screen.
  • the graphical user interface includes: responding to a trigger operation for shooting a target object, and shooting a preset range of images according to focus information, displaying the preset range of images, the preset range being the camera shooting range, and the focus information including the Parameters for focusing the target object within the preset range, the focusing information is determined according to the motion information of the target object, and the motion information includes information about the motion trajectory of the target object during the motion within the preset range .
  • the GUI may specifically include, in response to detecting the motion information of the target object, the motion information may include the motion trajectory of the target object within a preset range.
  • Information the preset range is the camera shooting range; then, the focus information is determined according to the motion information, and the focus information includes parameters for focusing on the target object within the preset range; subsequently, the target object is performed in the preset range according to the focus information
  • the captured image is displayed on the display screen.
  • the image may include a vehicle in high-speed motion.
  • the motion trajectory of the target object in motion within the shooting range of the camera can be detected, and then the focus information is determined according to the motion trajectory of the target object and the focus is completed, so that a clearer image can be captured. Even if the target object is in motion, the target object can be accurately focused, and a clear image of the motion state can be captured, which improves the user experience.
  • the focus information includes information about a focus area
  • the graphical user interface may further include: predicting the motion trajectory of the target object within a preset period of time in response to the motion information to obtain the prediction area, and The focus area is determined according to the prediction area, and the focus area is displayed on the display screen.
  • the motion trajectory of the vehicle within a preset time period in the future can be predicted based on the detected motion trajectory of the vehicle in the shooting range, and the future segment can be obtained.
  • the predicted area that the vehicle will reach within the time is taken as the focus area 2001, and the focus is performed based on the focus area 2001, as shown in FIG. 20B, so that a clearer image of the target object is captured.
  • the embodiments of the present application it is possible to predict the motion trajectory of the target object within a preset period of time in the future, and determine the focus area according to the prediction area, so that the focus of the target object can be accurately completed. Even if the target object is moving at a high speed, the embodiments of the present application can also focus on the target object in advance through a predictive method, so that the target object is in the focus area, so that a clearer high-speed moving target object can be photographed.
  • the graphical user interface may specifically include: if the prediction area meets a preset condition, in response to determining the focus area according to the prediction area, displaying the focus area on the display screen; If the prediction area does not meet the preset conditions, in response to re-predicting the motion trajectory of the target object within a preset time period based on the motion information, a new prediction area is obtained, and the focus area is determined according to the new prediction area. The focus area is displayed in the monitor.
  • the preset condition may be that the prediction area includes a complete target object, or that the area of the prediction area is greater than a preset value, and so on.
  • the area of the prediction area for the target object may be small, that is, the focus area 2101 is small, which is smaller than the area of the vehicle, resulting in subsequent photographs. Part of the vehicle may be unclear.
  • the prediction area whose area meets the requirements, namely the focus area 2102 can be obtained at this time, so that a complete and clear image of the vehicle can be captured based on the focus area 2102.
  • Figure 21C the prediction area whose area meets the requirements, namely the focus area 2102
  • the focus area is determined according to the predicted area and the camera is triggered to shoot; when the predicted area does not meet the preset conditions, the camera is not triggered to shoot, so Incomplete target objects in the captured images can be avoided, or meaningless shooting can be avoided.
  • the camera can be in an inactive state when not shooting, and only when the predicted area meets a preset condition, the camera is triggered to shoot, which can reduce the power consumption of the camera.
  • the movement information further includes at least one of the movement direction and movement speed of the target object;
  • the graphical user interface may specifically include: responding to the movement of the target object within a preset range; The movement trajectory during the movement, and the movement direction and/or the movement speed predict the movement trajectory of the target object within a preset time period to obtain the prediction area, and display the prediction area on the display screen.
  • the movement trajectory of the target object within a preset range can be used to predict the movement trajectory of the target object within a preset duration in the future.
  • the future motion trajectory of the target object can be accurately predicted, and then the target object can be more accurately focused, and then a clearer image can be captured.
  • the graphical user interface may specifically include: in response to the target object's motion trajectory within a preset range, as well as the motion direction and/or the motion speed, fitting the target The change function of the center point of the area where the object is located over time, and the predicted center point is calculated according to the change function, and the predicted center point is the predicted center point of the area where the target object is located.
  • the prediction center point obtains the prediction area, and the prediction area is displayed on the display screen.
  • the image of the prediction range is captured by an RGB camera
  • the graphical user interface may specifically include: responding to setting the center point of the focus area among the multiple focus points of the RGB camera. At least one point with the smallest norm distance of is used as the focus point for focusing, and an image taken after focusing based on the at least one point as the focus point is displayed on the display screen.
  • the focus information includes information about the focus area
  • the motion information includes the area where the target object is currently located
  • the graphical user interface may specifically include: responding to the current location of the target object The area serves as the focus area, and the focus area is displayed on the display screen.
  • the target object may be a pedestrian moving at a low speed.
  • the motion speed of the target object is low, and the current area of the target object can be directly used as the focus area 2201, and then the focus area 2201 is based on the focus area 2201.
  • the information of the target object's motion trajectory within the preset range may include the current area of the target object and the historical area.
  • the current area of the target object may be , As the focus area, to complete the focus on the target object, and then you can take a clearer image.
  • the graphical user interface may specifically include: in response to acquiring an exposure parameter before the image of the preset range is captured, displaying the exposure parameter on a display screen;
  • the exposure parameter takes the image of the preset range, and the image of the preset range taken according to the exposure parameter is displayed on the display screen. Therefore, in the embodiments of the present application, the exposure parameters can also be adjusted, so that shooting is completed through the exposure parameters, and a clear image is obtained.
  • the exposure parameters can include parameters such as EV, exposure time, exposure, aperture size, or ISO.
  • the exposure parameters can be displayed in the shooting interface so that the user can obtain the current shooting according to the displayed exposure parameters. Situation to improve user experience.
  • the exposure parameter may include EV.
  • the exposure parameter is determined according to the motion information, the exposure parameter includes an exposure duration, and the exposure duration has a negative correlation with the movement speed of the target object.
  • the exposure duration can be determined by the movement speed of the target object, so that the exposure duration matches the movement speed of the target object. For example, the faster the movement speed, the shorter the exposure duration and the slower the movement speed, the exposure duration is The longer. It can avoid overexposure or underexposure, so that clearer images can be captured later, and user experience can be improved.
  • the exposure parameter is determined according to the light intensity
  • the light intensity can be the light intensity detected by the camera, or the light intensity detected by the motion sensor
  • the exposure parameter includes the exposure duration, so The magnitude of the light intensity within the preset range is in a negative correlation with the exposure duration.
  • the exposure time can be determined according to the detected light intensity.
  • the exposure time is shorter, and the light intensity is smaller, and the exposure time is longer, so that an appropriate amount of exposure can be guaranteed. To a clearer image.
  • the graphical user interface may further include: in response to the detected motion information of the target object corresponding to the image, fusing the images within the preset range to obtain the preset The target image within the range, the target image is displayed on the display screen.
  • the movement of the target object within a preset range can also be monitored, and information about the corresponding movement of the target object in the image can be obtained, such as the contour of the target object and the target object.
  • Information such as the position within the preset range, and use the information to enhance the captured image to obtain a clearer target image.
  • the DVS can collect the contour of the moving target object, so that the image collected by the RGB camera can be enhanced according to the contour of the target object collected by the DVS, and the image collected by the RGB camera can be as shown in Figure 24A , Such as eliminating the noise of the contour of the target object, enhancing the contour of the target object, etc., so as to obtain a clearer image of the target object, as shown in FIG. 24B.
  • the motion information is obtained by monitoring the motion of the target object within the preset range through a dynamic vision sensor DVS.
  • the DVS can be used to monitor the moving object in the shooting range of the camera, so as to obtain accurate motion information. Even if the target object is in a high-speed motion state, the motion of the target object can be captured in time through the DVS information.
  • the image acquisition device may include:
  • the motion sensor 2501 is used to detect the motion information of the target object, the motion information includes information about the motion trajectory when the target object moves within a preset range, and the preset range is the camera shooting range;
  • the calculation module 2502 is configured to determine focus information according to the motion information, where the focus information includes parameters for focusing on a target object within a preset range;
  • the photographing module 2503 is used to focus the target object in a preset range according to the focus information, and is used to photograph an image in the preset range.
  • the calculation module 2502 may be a module coupled with the motion sensor 2501, or a module provided inside the motion sensor 2501.
  • the focus information includes information about the focus area; the calculation module 2502 is specifically configured to: predict the movement trajectory of the target object within a preset time period according to the movement information to obtain the prediction area; and determine the focus according to the prediction area area.
  • the calculation module 2502 is specifically configured to: if the predicted area meets the preset condition, use the predicted area as the focus area and trigger the shooting module 2503 to focus; if the predicted area does not meet the preset condition, Then, the motion trajectory of the target object within the preset time period is predicted again according to the motion information to obtain a new prediction area, and the focus area is determined according to the new prediction area.
  • the calculation module 2502 determines that the preset area meets the preset conditions, the preset area is used as the focus area, for example, the preset area is used as the focus area or the area larger than the preset area is determined as the focus area, etc. , And trigger the shooting module to shoot.
  • the camera module can be in the closed state. For example, if the camera module includes a camera, before the calculation module 2502 triggers shooting, if the preset area does not meet the preset conditions, the camera can be in the closed state, thereby reducing the functionality of the camera. Consumption, save resources.
  • the motion information further includes at least one of the motion direction and the motion speed of the target object
  • the calculation module 2502 is specifically configured to predict the motion trajectory of the target object within the preset time period according to the motion trajectory of the target object in the preset range, as well as the motion direction and/or motion speed, to obtain the prediction area.
  • the calculation module 2502 is specifically configured to: according to the movement area, the movement direction and/or the movement speed, fit the change function of the center point of the movement area of the target object over time; according to the change The function calculates the prediction center point, which is the center point of the area where the target object is located within the preset time period obtained by the prediction; the prediction area is obtained according to the prediction center point.
  • the photographing module 2503 includes an RGB camera
  • the photographing module 2503 is specifically configured to focus at least one point with the smallest norm distance from the center point of the focus area among the multiple focus points of the RGB camera as the focus point.
  • the focus information includes the information of the focus area
  • the motion area includes the area where the target object is currently located
  • the calculation module 2502 is specifically configured to use the area where the target object is currently located as the focus area.
  • the photographing module 2503 is further configured to obtain exposure parameters before the photographing module 2503 photographs an image of a preset range, and to photograph an image of a preset range according to the exposure parameter.
  • the photographing module 2503 is specifically configured to obtain exposure parameters according to motion information, where the exposure parameters include exposure duration, and the exposure duration has a negative correlation with the moving speed of the target with no image.
  • the photographing module 2503 is specifically configured to obtain exposure parameters according to light intensity, where the exposure parameters include exposure duration, and the magnitude of the light intensity within a preset range has a negative correlation with the exposure duration.
  • the image acquisition device may further include:
  • the enhancement module 2504 is used for fusing the images in the preset range to obtain the target image in the preset range according to the information of the detected movement of the target object and the image after the shooting module captures the image in the preset range.
  • the motion sensor 2501 may include a dynamic vision sensor DVS, which is used to monitor the motion of the target object within a preset range to obtain motion information.
  • DVS dynamic vision sensor
  • FIG. 26 is a schematic structural diagram of another image acquisition device provided by this application, as described below.
  • the image acquisition device may include a processor 2601, a memory 2602, a camera 2603, and a motion sensor 2604.
  • the processor 2601, the camera 2603 and the motion sensor 2604 are interconnected by wires.
  • the memory 2602 stores program instructions and data.
  • the camera 2603 is used for shooting and converts the collected analog signals into electrical signals.
  • the motion sensor 2604 is used to monitor moving objects within the shooting range.
  • the memory 2602 stores the program instructions and data corresponding to the steps in FIGS. 2-18.
  • the processor 2601 is configured to execute the method steps executed by the image acquisition device shown in any one of the embodiments in FIGS. 2-18.
  • the camera 2603 is used to perform the steps of capturing images performed by the image capturing apparatus shown in any of the embodiments in FIGS. 2-18.
  • the motion sensor 2604 is used to perform the steps of monitoring a moving object performed by the image acquisition device shown in any of the embodiments in FIGS. 2-18.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program used to generate a vehicle speed. Shows the steps in the method described in the embodiment.
  • the aforementioned image acquisition device shown in FIG. 26 may be a chip.
  • the embodiment of the application also provides an image acquisition device.
  • the image acquisition device may also be called a digital processing chip or a chip.
  • the chip includes a processing unit and a communication interface.
  • the processing unit obtains program instructions through the communication interface, and the program instructions are executed by the processing unit.
  • the processing unit is configured to execute the method steps executed by the image acquisition device shown in any one of the embodiments in Figs. 2-18.
  • the embodiment of the present application also provides a digital processing chip.
  • the digital processing chip integrates circuits and one or more interfaces used to implement the above-mentioned processor 2601 or the functions of the processor 2601.
  • the digital processing chip can complete the method steps of any one or more of the foregoing embodiments.
  • the memory is not integrated in the digital processing chip, it can be connected to an external memory through a communication interface.
  • the digital processing chip implements the actions performed by the image acquisition device in the foregoing embodiment according to the program code stored in the external memory.
  • the embodiment of the present application also provides a product including a computer program, which when it is driven on a computer, causes the computer to execute the steps performed by the image acquisition device in the method described in the embodiment shown in Figs. 2-18.
  • the image acquisition device provided in the embodiment of the present application may be a chip.
  • the chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the server executes the image acquisition method described in the embodiments shown in FIGS. 4 to 8.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the wireless access device, such as a storage unit located outside the chip.
  • Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the aforementioned processing unit or processor may be a central processing unit (CPU), a network processor (neural-network processing unit, NPU), a graphics processing unit (GPU), or a digital signal processing unit.
  • CPU central processing unit
  • NPU network processor
  • GPU graphics processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate.
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware, and the specific hardware structure used to achieve the same function can also be diverse, such as analog circuits, digital circuits or special purpose circuits. Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk.
  • a readable storage medium such as a computer floppy disk.
  • U disk mobile hard disk
  • read only memory read only memory
  • ROM random access memory
  • RAM random access memory
  • magnetic disk or optical disk etc., including several instructions to make a computer device (which can be a personal A computer, a server, or a network device, etc.) execute the method described in each embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供一种人工智能领域的图像获取方法、图形用户界面以及装置,用于在运动场景中,通过捕获目标对象的进行运动时的运动轨迹,完成对运动的目标对象的对焦,提高得到的图像的清晰度。该方法包括:检测目标对象的运动信息,所述运动信息包括所述目标对象在所述预设范围内的进行运动时的运动轨迹的信息,所述预设范围为摄像头拍摄范围;根据所述运动信息确定对焦信息,所述对焦信息包括对所述预设范围内的目标对象进行对焦的参数;根据所述对焦信息在所述预设范围中对所述目标对象进行对焦,并拍摄所述预设范围的图像。

Description

一种图像获取方法以及装置 技术领域
本申请涉及人工智能领域,尤其涉及一种图像获取方法以及装置。
背景技术
随着智能手机和数码相机等的飞速发展和广泛普及,用户对于摄影的需求也越来越强烈。而现有的手机或数码相机等虽然能够覆盖绝大多数场景的拍摄,然而对于运动的抓拍并不尽如人意,具体表现在用户需要较准确地把握拍摄的时机,刚好能够抓住运动的瞬间,同时运动区域的对焦以及曝光控制等操作技巧都影响着最终的成像效果。
现有方案中,通常采用色彩(red green blue,RGB)摄像头进行拍摄,RGB摄像头对于运动瞬间的捕捉通常由用户手动触发摄影,用户需要在拍摄前选定一个区域进行对焦,然后在运动发生时选择一个合适的时机按下快门(或手机的拍摄按键)记录下该运动瞬间;具体的,需要根据用户的操作触发对焦、锁焦、按下快门、曝光、输出等一系列过程,最终输出一幅图像。
然而,若由用户来触发对焦、锁焦等操作,则可能导致无法确定出最优的触发时间点,导致拍摄到的图像不清晰,降低用户体验。
发明内容
本申请提供一种图像获取方法以及装置,用于在运动场景中,通过捕获目标对象的进行运动时的运动轨迹,完成对运动的目标对象的对焦,提高得到的图像的清晰度。
第一方面,本申请提供一种图像获取方法,包括:首先,检测目标对象的运动信息,该运动信息中可以包括目标对象在预设范围内的进行运动时的运动轨迹的信息,该预设范围为摄像头拍摄范围;然后,根据运动信息确定对焦信息,对焦信息包括对预设范围内的目标对象进行对焦的参数;随后,根据对焦信息在预设范围中对目标对象进行对焦,并拍摄预设范围的图像。
因此,在本申请实施方式中,可以检测摄像头的拍摄范围内目标对象的运动轨迹,然后根据目标对象的运动轨迹确定对焦信息并完成对焦,从而可以拍摄到更清晰的图像。即使目标对象处于运动中,也可以准确地对目标对象进行对焦,拍摄到清晰的运动状态的图像,提高用户体验。
在一种可能的实施方式中,上述的根据运动信息确定对焦信息,可以包括:根据运动信息,即目标对象在预设范围内的进行运动时的运动轨迹的信息,对预设时长内目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域;根据预测区域确定对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。
因此,在本申请实施方式中,可以对目标对象未来的运动轨迹进行预测,并根据预测区域确定对焦区域,可以准确地完成对目标对象的对焦。即使目标对象处于高速运动,本申请实施方式也可以通过预测的方式提前对目标对象进行对焦,使目标对象处于对焦区域, 从而拍摄到更清晰的高速运动的目标对象。
在一种可能的实施方式中,根据所述预测区域确定对焦区域,可以包括:若预测区域符合预设条件,则将预测区域确定为对焦区域;若预测区域不符合预设条件,则重新根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到新的预测区域,并根据新的预测区域确定对焦区域。该预设条件可以是预测区域中包括完整的目标对象,或者预测区域的面积大于预设值等。
因此,在本申请实施方式中,只有当预测区域符合预设条件时,才根据预测区域确定对焦区域,并触发摄像头拍摄,当预测区域不符合预设条件时,则不触发摄像头进行拍摄,从而可以避免拍摄到的图像中目标对象不完整,或者可以避免无意义的拍摄。并且,在未进行拍摄时,摄像头可以处于未启动状态,仅当预测区域满足预设条件时,才触发摄像头进行拍摄,可以降低摄像头产生的功耗。
在一种可能的实施方式中,运动信息还包括目标对象的运动方向和运动速度中的至少一种;上述的根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到预测区域,可以包括:根据目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度对预设时长内目标对象的运动轨迹进行预测,得到预测区域。
因此,本申请实施方式中,可以根据目标对象在预设范围内的运动轨迹,以及运动方向和/或运动速度等,对未来的预设时长内目标对象的运动轨迹进行预测,从而可以对目标对象未来预设时长内目标对象所在的区域进行准确的预测,进而可以对目标对象进行更准确的对焦,进而可以拍摄到更清晰的图像。
在一种可能的实施方式中,上述的根据目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度对预设时长内目标对象的运动轨迹进行预测,得到预测区域,可以包括:根据目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度,拟合出目标对象的所在区域的中心点随时间变化的变化函数;随后根据变化函数计算出预测中心点,预测中心点为预测得到的预设时长内目标对象所在的区域的中心点;根据预测中心点得到预测区域。
因此,本申请实施方式中,可以根据目标对象进行运动时的运动轨迹,拟合目标对象所在的区域中心点随时间变化的变化函数,然后根据该变化函数预测出未来某一时刻目标对象所在区域的中心点,根据该中心点确定预测区域,进而可以对目标对象进行更准确的对焦,进而可以拍摄到更清晰的图像。
在一种可能的实施方式中,预测范围的图像可以由RGB摄像头拍摄,上述的根据对焦信息在预设范围中对目标对象进行对焦,可以包括:将RGB摄像头的多个对焦点中,与对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦。
因此,在本申请实施方式中,可以选择与对焦区域的中心点的范数距离最近的至少一个点作为对焦点,并进行对焦,从而完成对目标对象的对焦。
在一种可能的实施方式中,运动信息中包括目标对象的当前所在的区域,上述的根据运动信息确定对焦信息,可以包括:将目标对象的当前所在的区域确定为对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信 息。
因此,本申请实施方式中,目标对象在预设范围内的运动轨迹的信息可以包括目标对象当前所在的区域和目标对象历史所在的区域,可以将目标对象当前所在的区域,作为对焦区域,从而完成对目标对象的对焦,进而可以拍摄到更清晰的图像。
在一种可能的实施方式中,在拍摄预设范围的图像之前,上述方法还可以包括:获取曝光参数;上述的拍摄预设范围的图像,可以包括:根据曝光参数拍摄预设范围的图像。
因此,本申请实施方式中,还可以调整曝光参数,从而通过曝光参数完成拍摄,得到清晰的图像。
在一种可能的实施方式中,上述的获取曝光参数,可以包括:根据运动信息确定曝光参数,其中,曝光参数包括曝光时长,运动信息中包括目标对象的运动速度,曝光时长与目标对象的运动速度呈负相关关系。
因此,在本申请实施方式中,可以通过目标对象的运动速度确定曝光时长,使曝光时长与目标对象的运动速度匹配,如运动速度越快,曝光时长越短,运动速度越慢,则曝光时长越长。可以避免过曝或者曝光不足等,从而使后续可以拍摄到更清晰的图像,提高用户体验。
在一种可能的实施方式中,上述的获取曝光参数,可以包括:根据光照强度确定曝光参数,其中,曝光参数包括曝光时长,预设范围内的光照强度的大小与曝光时长呈负相关关系。
因此,本申请实施方式中,可以根据检测到的光照强度确定曝光时长,当光照强度越大时,曝光时长越短,光照强度越小时,曝光时长越长,从而可以保障适量的曝光量,拍摄到更清晰的图像。
在一种可能的实施方式中,在摄预设范围的图像之后,上述方法还可以包括:根据监测到的目标对象与图像对应的运动的信息,对预设范围内的图像进行融合,得到预设范围内的目标图像。
因此,本申请实施方式中,在拍摄图像的同时,还可以对预设范围内目标对象的运动情况进行监测,获取到目标对象在图像中对应的运动的信息,如目标对象的轮廓、目标对象在预设范围内的位置等信息,并通过该信息对拍摄到的图像进行增强处理,得到更清晰的目标图像。
在一种可能的实施方式中,上述的检测预设范围内的目标对象的运动信息,可以包括:通过动态视觉传感器DVS对预设范围内的目标对象的运动情况进行监测,得到运动信息。
因此,本申请实施方式中,可以通过DVS对摄像头的拍摄范围进行运动的对象的监测,从而得到准确的运动信息,即使目标对象处于高速运动的状态,也可以通过DVS及时捕获到目标对象的运动信息。
第二方面,本申请提供一种图像获取装置,包括:
运动传感器,用于检测预设范围内的目标对象的运动信息,运动信息包括目标对象在预设范围内进行运动时的运动轨迹的的信息,预设范围为摄像头拍摄范围;
计算模块,用于根据运动信息确定对焦信息,对焦信息包括对预设范围内的目标对象 进行对焦的参数;
拍摄模块,用于根据对焦信息在预设范围中对目标对象进行对焦,并用于拍摄预设范围的图像。
第二方面及第二方面任一种可能的实施方式产生的有益效果可参照第一方面及第一方面任一种可能实施方式的描述。
在一种可能的实施方式中,计算模块可以是与运动传感器耦合的模块,或者设置于运动传感器内部的模块。
在一种可能的实施方式中,计算模块,具体用于:根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域;根据预测区域确定对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。
在一种可能的实施方式中,计算模块,具体用于:若预测区域符合预设条件,则将预测区域作为对焦区域,并触发拍摄模块进行对焦;若预测区域不符合预设条件,则重新根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到新的预测区域,新的预测区域用于确定对焦区域,并根据新的预测区域确定对焦区域。
在一种可能的实施方式中,运动信息还包括目标对象的运动方向和运动速度中的至少一种;
计算模块,具体用于根据目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度对预设时长内目标对象的运动轨迹进行预测,得到预测区域。
在一种可能的实施方式中,计算模块,具体用于:根据目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度,拟合出目标对象的所在的区域的中心点随时间变化的变化函数;根据变化函数计算出预测中心点,预测中心点为预测得到的预设时长内目标对象所在的区域的中心点;根据预测中心点得到预测区域。
在一种可能的实施方式中,拍摄模块包括RGB摄像头;
拍摄模块,具体用于将RGB摄像头的多个对焦点中,与对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦。
在一种可能的实施方式中,运动信息中包括目标对象的当前所在的区域,
计算模块,具体用于将目标对象的当前所在的区域作为对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。
在一种可能的实施方式中,拍摄模块,还用于在拍摄模块拍摄预设范围的图像之前,获取曝光参数,根据曝光参数拍摄预设范围的图像。
在一种可能的实施方式中,拍摄模块,具体用于根据运动信息获取曝光参数,其中,曝光参数包括曝光时长,曝光时长与目标无图的运动速度呈负相关关系。
在一种可能的实施方式中,拍摄模块,具体用于根据光照强度获取曝光参数,其中,曝光参数包括曝光时长,预设范围内的光照强度的大小与曝光时长呈负相关关系。
在一种可能的实施方式中,图像获取装置还可以包括:
增强模块,用于在拍摄模块拍摄预设范围的图像之后,根据监测到的目标对象与图像 对应的运动的信息,对预设范围内的图像进行融合,得到预设范围内的目标图像。
在一种可能的实施方式中,运动传感器包括动态视觉传感器DVS,DVS用于对预设范围内的目标对象的运动情况进行监测,得到运动信息。
第三方面,本申请实施例提供一种图形用户界面GUI,其特征在于,该图形用户界面存储在电子设备中,该电子设备包括显示屏、存储器、一个或多个处理器,该一个或多个处理器用于执行存储在该存储器中的一个或多个计算机程序,该图形用户界面包括:响应于针对目标对象进行拍摄的触发操作,以及根据对焦信息拍摄预设范围的图像,显示该预设范围的图像,该预设范围为摄像头拍摄范围,该对焦信息包括对该预设范围内的该目标对象进行对焦的参数,该对焦信息为根据该目标对象的运动信息确定,所述运动信息包括所述目标对象在预设范围内的进行运动时的运动轨迹的信息。
第三方面及第三方面任一种可能的实施方式产生的有益效果可参照第一方面及第一方面任一种可能实施方式的描述。
在一种可能的实施方式中,该图形用户界面还可以包括:响应于该运动信息对预设时长内该目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域,以及根据该预测区域确定该对焦区域,在该显示屏中显示该对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。
在一种可能的实施方式中,该图形用户界面具体可以包括:若该预测区域符合预设条件,则响应于根据该预测区域确定该对焦区域,在该显示屏中显示该对焦区域;若该预测区域不符合预设条件,则响应于重新根据该运动信息对预设时长内该目标对象的运动轨迹进行预测,得到新的预测区域,以及根据该新的预测区域确定该对焦区域,在该显示屏中显示该对焦区域。
在一种可能的实施方式中,该运动信息还包括该目标对象的运动方向和运动速度中的至少一种;该图形用户界面具体可以包括:响应于根据该目标对象在预设范围内的进行运动时的运动轨迹,以及该运动方向和/或该运动速度对预设时长内该目标对象的运动轨迹进行预测,得到该预测区域,在该显示屏中显示该预测区域。
在一种可能的实施方式中,该图形用户界面具体可以包括:响应于根据所述目标对象在预设范围内的进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度,拟合出所述目标对象的所在的区域的中心点随时间变化的变化函数,以及根据所述变化函数计算出预测中心点,所述预测中心点为预测得到的所述目标对象所在的区域的中心点,并根据所述预测中心点得到所述预测区域,在显示屏中显示该预测区域。
在一种可能的实施方式中,所述预测范围的图像由RGB摄像头拍摄,该图形用户界面具体可以包括:响应于将所述RGB摄像头的多个对焦点中,与所述对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦,在显示屏中显示基于该至少一个点作为对焦点进行对焦后拍摄到的图像。
在一种可能的实施方式中,该运动信息中包括该目标对象的当前所在的区域,该图形用户界面具体可以包括:响应于将目标对象的当前所在的区域作为该对焦区域,对焦区域 包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息,在该显示屏中显示该对焦区域。
在一种可能的实施方式中,该图形用户界面还可以包括:响应于根据监测到的该目标对象与该图像对应的运动的信息,对该预设范围内的图像进行融合,得到该预设范围内的目标图像,在该显示屏中显示该目标图像。
在一种可能的实施方式中,该运动信息为通过动态视觉传感器DVS对该预设范围内的目标对象的运动情况进行监测得到。
在一种可能的实施方式中,该图形用户界面具体可以包括:响应于在所述拍摄所述预设范围的图像之前,获取曝光参数,在显示屏中显示该曝光参数;响应于根据所述曝光参数拍摄所述预设范围的图像,在显示屏中显示该根据所述曝光参数拍摄所述预设范围的图像。
在一种可能的实施方式中,曝光参数为根据所述运动信息确定,所述曝光参数包括曝光时长,所述曝光时长与所述目标对象的运动速度呈负相关关系。
在一种可能的实施方式中,曝光参数为根据光照强度确定,该光照强度可以是由摄像头检测到的光照强度,也可以是运动传感器检测到的光照强度,所述曝光参数包括曝光时长,所述预设范围内的光照强度的大小与所述曝光时长呈负相关关系。
第四方面,本申请实施例提供一种图像获取装置,该图像获取装置具有实现上述第一方面图像获取方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种图像获取装置,包括:处理器和存储器,其中,处理器和存储器通过线路互联,处理器调用存储器中的程序代码用于执行上述第一方面任一项所示的图像获取方法中与处理相关的功能。可选地,该图像获取装置可以是芯片。
第六方面,本申请提供一种电子设备,该电子设备包括:显示模块、处理模块和存储模块。
该显示模块用于显示存储在存储模块中的应用程序的图形用户界面,该图形用户界面可以是前述第三方面或者第三方面任一项所述的图形用户界面。
第七方面,本申请实施例提供了一种图像获取装置,该图像获取装置也可以称为数字处理芯片或者芯片,芯片包括处理单元和通信接口,处理单元通过通信接口获取程序指令,程序指令被处理单元执行,处理单元用于执行如上述第一方面或第一方面任一可选实施方式中与处理相关的功能。
第八方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任一可选实施方式中的方法。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任一可选实施方式中的方法。
附图说明
图1为本申请提供的一种电子设备的结构示意图;
图2为本申请提供的一种图像获取方法的流程示意图;
图3为本申请提供的一种DVS采集到的事件示意图;
图4为本申请提供的一种DVS采集到的运动信息的示意图;
图5为本申请提供的一种DVS确定的运动轨迹示意图
图6为本申请提供的一种拟合运动轨迹的方式示意图;
图7为本申请提供的一种确定对焦点的方式示意图;
图8为本申请提供的一种确定预测中心的方式示意图;
图9为本申请提供的另一种图像获取方法的流程示意图;
图10为本申请提供的一种拍摄范围示意图;
图11为本申请提供的一种预测区域示意图;
图12为本申请提供的一种对焦区域示意图;
图13为本申请提供的另一种图像获取方法的流程示意图;
图14为本申请提供的一种图像增强方式示意图;
图15为本申请提供的另一种图像获取方法的流程示意图;
图16为本申请提供的另一种图像获取方法的流程示意图;
图17为本申请应用的一种场景示意图;
图18为本申请应用的另一种场景示意图;
图19为本申请提供的一种GUI的显示示意图;
图20A为本申请提供的另一种GUI的显示示意图;
图20B为本申请提供的另一种GUI的显示示意图;
图21A为本申请提供的另一种GUI的显示示意图;
图21B为本申请提供的另一种GUI的显示示意图;
图22为本申请提供的另一种GUI的显示示意图;
图23为本申请提供的另一种GUI的显示示意图;
图24A为本申请提供的另一种GUI的显示示意图;
图24B为本申请提供的另一种GUI的显示示意图;
图25为本申请提供的一种图像获取装置的结构示意图;
图26为本申请提供的另一种图像获取装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的图像获取的方法可以应用于各种拍摄场景,如拍照、安防、自动驾驶、无人机拍摄等场景。本申请提供的图像获取的方法可以由图像获取装置执行,该图像获取装置可以是具有拍摄功能或者连接了拍摄设备的电子设备。
本申请中的电子设备可以包括但不限于:智能移动电话、电视、平板电脑、手环、头戴显示设备(Head Mount Display,HMD)、增强现实(augmented reality,AR)设备,混合现实(mixed reality,MR)设备、蜂窝电话(cellular phone)、智能电话(smart phone)、个人数字助理(personal digital assistant,PDA)、平板型电脑、车载电子设备、膝上型电脑(laptop computer)、个人电脑(personal computer,PC)、监控设备、机器人、车载终端、自动驾驶车辆等。当然,在以下实施例中,对该电子设备的具体形式不作任何限制。
示例性地,参阅图1,下面以一个具体的结构为例,对本申请提供的电子设备的结构进行示例性说明。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M,运动传感器180N等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输 器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用 上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理 模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括但不限于:第五代移动通信技术(5th-Generation,5G)系统,全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),蓝牙(bluetooth),全球导航卫星系统(the global navigation satellite system,GNSS),无线保真(wireless fidelity,WiFi),近距离无线通信(near field communication,NFC),FM(也可以称为调频广播),紫蜂协议(Zigbee),射频识别技术(radio frequency identification,RFID)和/或红外(infrared,IR)技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)等。
在一些实施方式中,电子设备100也可以包括有线通信模块(图1中未示出),或者,此处的移动通信模块150或者无线通信模块160可以替换为有线通信模块(图1中未示出),该有线通信模块可以使电子设备通过有线网络与其他设备进行通信。该有线网络可以包括但不限于以下一项或者多项:光传送网(optical transport network,OTN)、同步数字体系(synchronous digital hierarchy,SDH)、无源光网络(passive optical network,PON)、以太网(Ethernet)、或灵活以太网(flex Ethernet,FlexE)等。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP 处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB摄像头,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以 通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
运动传感器180N,可以用于对摄像头拍摄的范围内的运动物体进行检测,采集运动物体的运动轮廓或者运动轨迹等。例如,该运动传感器180N可以是红外传感器、激光传感器、动态视觉传感器(dynamic vision sensor,DVS)等,该DVS具体可以包括DAVIS(Dynamic and Active-pixel Vision Sensor)、ATIS(Asynchronous Time-based Image Sensor)或者CeleX传感器等传感器。DVS借鉴了生物视觉的特性,每个像素模拟一个神经元,独立地对光照强度(以下简称“光强”)的相对变化做出响应。当光强的相对变化超过阈值时, 像素会输出一个事件信号,包括像素的位置、时间戳以及光强的特征信息。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
在一些包括了运动对象的场景中,若由用户手动进行对焦、锁焦、调整曝光等操作时,可能由于误差而导致调整的对焦区域(即对焦点所在的区域)不准确、曝光参数步准确、无法捕获最佳的图像等问题。因此,本申请基于前述的电子设备,提供了一种可以拍摄到清晰的运动对象的图像的方法,提供用户体验。
下面基于前述的电子设备,对本申请提供的图像获取的方法进行详细说明。参阅图2,本申请提供的一种图像获取方法的流程示意图,如下所述。
201、检测目标对象的运动信息。
可以通过运动传感器对目标对象在预设范围内的运动情况进行监测,得到预设范围内的目标对象的运动信息。其中,目标对象是预设范围内运动的物体,目标对象的数量可以是一个或者多个,该运动信息可以包括目标对象在预设范围内进行运动时的运动轨迹的信息。
例如,该运动信息中可以包括目标对象在预设范围内进行运动时,目标对象所在的区域的大小、边框或者角点在预设范围内的坐标等信息。
为便于理解,以下将目标对象在预设范围内进行运动时,目标对象在检测到的每一时刻中所在的区域称为目标对象的运动区域。该运动区域例如,若目标对象为行人,且行人正在进行全身运动,则运动区域内可以包括行人的全身,若行人仅手臂运动,则目标对象可以仅仅是行人的手臂,运动区域可以包括行人的手臂部分。
通常,该预设范围与摄像头的焦距或者视场角等相关。例如,摄像头的视场角越大,拍摄到的范围的面积也越大,摄像头的视场角越小,拍摄到的范围的面积也越小。又例如, 摄像头的焦距越大,拍摄的范围也就越大,也可以理解为拍摄到的距离远的对象更清晰,摄像头的焦距越小,拍摄到的范围也就越小。
本申请实施方式中,运动传感器监测到的范围包括摄像头的拍摄范围,预设范围可以是摄像头的拍摄范围,运动传感器所监测到的范围包括该预设范围,即运动传感器所监测到的范围可以大于或者等于该预设范围。
在一种可能的实施方式中,该运动信息可以包括目标对象当前所在的区域和进入预设范围后的历史所在的区域,还可以包括目标对象的运动速度或者运动方向等。
下面以DVS为例,对本申请实施例中监测目标对象的运动轨迹的方式进行示例性说明。
根据DVS的采样原理,即感应光照强度的变化,监测的范围内目标对象的运动将引起一系列的像素产生事件输出,然后根据事件的位置变化识别出目标对象的运动轨迹以及运动特性,如运动方向或者运动速度等。
示例性地,产生事件的方式可以如图3所示,DVS对运动变化进行响应产生事件,由于静态区域不会激发事件,因此事件大多产生于存在运动物体的区域。通常,在当前光强与上一次事件产生时的光强的差异超过阈值时,DVS将产生一个事件,如图3中所示的事件N1、N2和N3,且通过事件的产生仅与光强的相对变化相关。其中,每个事件可以表示为<x,y,t,f>,(x,y)表示产生事件的像素位置,t表示产生事件的时间,f表示光强的特征信息。在部分DVS传感器(如DAVIS传感器、ATIS传感器等)中,f表示光强的变化趋势,也可以称为极性,通常用1bit表示,取值可以为ON/OFF,其中ON表示光强增强,OFF表示光强减弱。在某些DVS传感器,如CeleX传感器进行运动对象监测的场景中f表示绝对光强,通常用多个比特表示,如9bit表示0-511范围内的光强值。
可以理解为,DVS对光强变化超过阈值时才会产生事件,因此可以通过DVS检测运动的对象,而DVS对静态区域则并不敏感。例如,若在DVS的监测范围内挥手,监测到的其中一个时刻的事件如图4所示,其中,图4中的白色表示DVS监测到的事件,即DVS可以监测到预设范围内的运动对象的轮廓和位置,可以根据DVS监测到的目标对象在预设范围内的运动轨迹,计算目标对象的运动速度,并提取到目标对象的运动方向。
具体地,可以通过DVS监测到的数据生成时间窗口,然后对其中的事件按照短时窗口对时间窗口进行切分,累积短时窗口中的事件,计算连通域后得到的运动轨迹。进一步地,对时间窗口中的一系列运动轨迹进行分析,通过计算光流或者运动矢量,得到运动的目标对象的运动特性,如运动方向、运动速度等信息。
示例性地,如图5所示,可以将时间窗口切分多个短时窗口,如图5中所示的k个短时窗口。切分的方式可以是按照设定的时长进行切分,也可以是按照随机的时长进行切分,或者按照运动轨迹变化情况进行切分等,具体可以根据实际应用场景进行调整。在切分得到k个短时窗口之后,分析每个短时窗口中的事件的位置,确定目标对象在每个短时窗口中的目标对象所在的区域,如短时窗口1中的运动区域为如图5中所示的运动区域1,短时窗口k中的运动区域为图5中所示的运动区域k。然后通过短时窗口1-k中运动区域的变化情况,确定目标区域的运动区域以及运动特性,如运动方向或者运动速度等。
通常,运动信息中所包括的运动特性可以包括运动速度或运动方向等。具体地,该运 动速度可以是目标对象相比前一短时窗口的速度的变化趋势,包括但不限于变快、变慢等速度趋势状态量,甚至更多级别的速度趋势状态量,如快、较快、非常快、慢、较慢、非常慢等。该运动方向也可以是相比前一短时窗口的方向变化,包括但不限于向左、向右、向上、向下、不变等方向趋势状态量,甚至更多级别的方向趋势状态量,如向左上、向左下、向右上、向右下、向左、向右、向上、向下、不变等。
202、根据运动信息确定对焦信息。
在获取到目标对象在预设范围内的运动信息之后,根据该运动信息确定对焦信息。其中,该运动信息中包括目标对象的运动轨迹,即可以根据该运动轨迹确定对预设范围内的目标对象进行对焦的对焦信息。
可选地,确定对焦信息的方式有多种,下面分别进行详细说明。
方式一、通过预测区域得到对焦信息
为便于理解,在本申请以下实施方式中,将拍摄目标对象时对应的至少一个对焦点所在的区域称为对焦区域。
其中,对焦信息可以包括对焦区域中的至少一个点的位置信息,如对焦区域的边框或者角点在预设范围内的坐标等信息。确定该对焦区域的具体方式可以包括:根据运动信息对预设时长内目标对象的运动轨迹进行预测,以得到预测区域,然后根据预测区域确定对焦区域,该对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。该预设时长可以是预先设定的时长,如10微秒,5微秒等。
可以理解的是,在一些场景中,由于运动已经发生,若只根据目标对象当前所在的区域和运动特性来触发RGB摄像头拍摄,则可能目标对象以已经进入下一位置或状态,此时拍摄的图像存在滞后。因此,需要对未来的预设时长内目标对象区域进行预测,对不完整的运动进行筛选,尤其对于运动对象刚进入镜头视野,或运动对象较远不利于拍摄等情况进行筛选,决策出最佳的拍摄时机,触发RGB摄像头进行工作。
在一种具体的实施方式中,可以根据前述步骤201中得到的运动信息对未来的预设时长内目标对象的运动轨迹进行预测,具体可以根据目标对象的在预设范围内进行运动时的运动轨迹,以及运动方向和运动速度中的至少一个对未来的预设时长内目标对象的运动轨迹进行预测,得到预测区域。
在一种更具体的实施方式中,可以是根据监测到的运动对象目标对象在预设范围内进行运动时的运动轨迹,以及运动方向和/或运动速度,拟合出目标对象所在的区域的中心点随时间变化的变化函数,然后根据该变化函数计算出预测中心点,该预测中心点为预测区域的中心点,并根据该预测中心点确定预测区域。
示例性地,如图6所示,可以根据监测到的目标对象的运动轨迹,拟合出变化函数F(x c,y c,t),其中(x c,y c)为目标对象所在的区域的中心点,t为时间,从而可计算出下一个时间段内运动对象所在的区域位置。中心点(x c,y c)由所有事件的坐标位置(x i,y i)求均值得到,i=1,2,...n,n为短时窗口内的事件个数,n为正整数。具体的计算方式例如
Figure PCTCN2020097934-appb-000001
该变化函数可能是线性函数、也可能是指数型函数等等,具体可以根据实际应用场景 进行调整,此处并不作限定。然后根据该变化函数预测目标对象在未来的运动轨迹,从该运动轨迹中选择一个点作为预测中心点,然后根据该预测中心点确定出预测区域,该预测区域的形状可以根据实际应用场景进行调整,例如,可以是外接矩形、外接最小圆、多边形、不规则形状等。
在一种可能的实施方式中,若预测区域符合预设条件,则根据预测区域确定对焦区域;若预测区域不符合预设条件,则重新根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到新的预测区域,并根据新的预测区域确定对焦区域。该预设条件可以是预设区域中包括的目标对象为完整的形态,即预设区域中包括了完整的目标对象,或者预测区域的面积大于预设值,或者目标对象与摄像头的距离大于预设的距离阈值等。
通常,该预测中心点可以由运动传感器,如DAVIS或CeleX等传感器等进行预测,也可以是由电子设备的处理器来进行预测,然后当该预设区域满足预设条件时,即可根据触发电子设备的摄像模块根据对焦区域进行对焦。
在方式一中,可以通过拟合目标对象在预设范围内的运动轨迹,来对未来的预设时长内目标对象所在的区域进行预测,从而实现对焦区域的预测,使得后续拍摄到的图片更清晰。尤其在一些目标对象高速移动的场景中,可以通过对未来的预设时长内目标对象所在的区域的预测,从而实现对焦区域的预测,以使后续可以及时捕获到目标对象在运动状态下的更清晰的图像,提高用户体验。
方式二、直接根据目标对象的当前所在的区域确定对焦信息
其中,在得到目标对象在预设范围内进行运动时的运动轨迹之后,可以将目标对象当前所在的区域作为对焦区域,对焦区域包括对目标对象进行对焦的至少一个对焦点,对焦信息包括至少一个对焦点的位置信息。例如,若通过DVS监测到目标对象的当前所在的区域,且目标对象的运动速度小于速度阈值,即表示目标对象的运动速度较慢,对焦时间充足。因此,可以直接将目标对象当前所在的区域作为对焦区域,因此可以拍摄到清晰的图像。
获取目标对象当前所在的区域的方式可以参阅前述方式一,此处不再赘述。
在本方式二中,可以将目标对象的当前所在的区域,即目标对象当前所在的区域作为对焦区域,从而可以准确地对目标对象进行对焦。尤其在一些低速运动的场景中,对焦时间充足,仅通过当前所在的区域即可对焦,可以得到更清晰的图像。并且无需再进行预测,减少了工作量。
203、根据对焦信息在预设范围中对目标对象进行对焦,并拍摄预设范围的图像。
其中,对焦信息可以包括对焦区域中的至少一个点的位置信息,在确定对焦区域之后,根据该对焦区域对预设范围内的目标对象进行对焦,并拍摄预设范围内的图像。
具体地,该对焦区域可以与预测区域相同,也可以大于预测区域,具体可以根据实际应用场景进行调整。例如,在确定预测区域之后,可以直接将该预测区域作为对焦区域,也可以选择比预测区域更大的范围作为对焦区域,从而可以保障拍摄到的目标对象完整。在另一种场景中,如低速运动的场景,对焦区域可以是目标对象的当前所在的区域,则可以直接在当前所在的区域内进行对焦,即可拍摄到清晰的图像,减少了预测这一步骤的工 作量。
在一种可能的实施方式中,可以通过摄像头进行图像拍摄,得到预设范围内的图像。如通过前述图1中所示的摄像头193进行拍摄。该摄像头可以包括色彩(red green blue,RGB)传感器(也可以称为RGB摄像头),即由RGB摄像头进行拍摄。相应地,具体的对焦方式可以包括:将RGB摄像头的多个对焦点中,与对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦,从而完成对目标对象所在的区域或者预测的区域进行对焦,进而完成对目标对象的拍摄,得到RGB摄像头拍摄到的图像,以下可以将RGB拍摄到的图像称为RGB图像。当然,在一些场景中,可以直接将预测区域的中心点作为对焦点,从而完成对焦以及拍摄,得到RGB图像。
示例性地,如图7所示,RGB摄像头可以具有多个预先设定的对焦点,当预测出目标对象的预测区域,并根据该预测区域确定对焦区域之后,选取与该对焦区域的中心点的范数距离最近的一个或者多个点作为对焦点并进行对焦,从而完成对目标对象的拍摄。距离的计算方法可以包括但不限于L1范数距离或者L2范数距离,例如,L1范数距离的计算公式可以包括:|x 1-x 2|+|y 1-y 2|,L2范数距离的计算公式可以包括:
Figure PCTCN2020097934-appb-000002
其中,(x1,y1)为预测区域的中点,(x2,y2)为RGB摄像头的预先设定的对焦点。
在另一种可能的场景中,RGB摄像头也可以不预先设定对焦点,在确定对焦区域之后,直接将对焦区域的中心点作为对焦点,或者将对焦区域内的所有像素点作为对焦点,或者,选择对焦区域中的一个或者多个像素点作为对焦点等,具体可以根据实际应用场景进行调整。
在一种可能的实施方式中,在拍摄图像之前,还可以获取曝光参数,并根据该曝光参数拍摄图像。
该曝光参数可以包括但不限于曝光值(exposure value,EV)、曝光量、曝光时长、光圈大小或者感光度(international standardization organization,ISO)等。曝光时长可以理解为将光投射到摄像头的感光材料的感光面上,快门所要打开的时长。可以通过调整曝光时长,使摄像头的拍摄时长与目标对象的运动速度匹配,从而使摄像头可以快速捕获到更清晰的图像。曝光值表示曝光的光圈和曝光时长之间的组合。曝光量表示物体表面某一面元接收的光照度在时间内的积分。IOS为根据曝光量确定的值。
在一种具体的实施方式中,获取曝光参数的方式可以包括:根据运动信息确定曝光参数。其中,以曝光参数包括曝光时长为例,该曝光时长与目标对象的运动速度呈负相关关系。例如,目标对象的运动速度越快,曝光时长越短,目标对象的运动速度越慢,曝光时长越长,从而使摄像头可以在匹配的曝光时长下,拍摄到更清晰的图像。
在另一种具体的实施方式中,获取曝光参数的方式可以包括:根据光照强度确定曝光参数。其中,以曝光参数包括曝光时长为例,该曝光时长与光照强度的大小呈负相关关系。例如,光照强度越大,曝光时长越短,光照强度越小,曝光时长越长。
例如,RGB摄像头可以根据预测的运动特性,具体为运动速度的变化趋势,调整曝光参数。曝光参数默认设定为多个档位,分别适应不同速度的运动,如1/30秒,1/60秒, 1/100秒,1/200秒,1/500秒等。当运动变快时,若曝光时间较长,则将曝光时间适当减小,调至更小一级的档位。当运动变慢时,若曝光时间较短,则适当提高曝光时间,调至更高一级的档位,以使拍摄时的曝光量与光照强度相匹配的,避免过曝或者光照不足等情况。
在一种可能的实施方式中,在通过摄像头进行拍摄之后,还可以包括:通过运动传感器监测到的目标对象在拍摄图像时的运动信息,对摄像头拍摄到的图像进行融合,得到预设范围的目标图像。
例如,如图8所示,RGB摄像头完成曝光和拍摄,经过其内部的图像信号处理后输出一幅RGB摄像头图像。DVS记录了同时段的事件数据,将该时间段内的事件进行累积,得到运动对象的轮廓和位置,与RGB摄像头图像配准后,即像素坐标对齐,突出运动对象的边缘细节,包括但不限于滤波、边缘锐化等方式。经增强后的目标图像作为最终输出,呈现给用户或存储至手机内存。此后,根据系统设置或用户设置,DVS可继续进行运动检测,触发RGB摄像头进行下一次拍摄,即对运动的物体的连续拍摄。
因此,在本申请实施方式中,可以根据检测到的目标对象在预设范围内的进行运动时的运动轨迹进行对焦,从而拍摄到更清晰的图像。并且,使对焦区域与目标对象运动时所在的区域或者预测到的运动时所在区域相同或者相交,从而拍摄到更清晰的图像,提高用户体验。并且,进一步地,可以根据目标对象在预设范围内的运动轨迹对目标对象在未来的预设时长内所在的区域进行预测,从而可以根据预测区域进行对焦,可以理解为提前确定对焦区域,从而可以使拍摄到的运动的物体更清晰。并且,可以根据与拍摄到的图像同时段的运动信息,对拍摄到的图像进行加强处理,从而进一步提高得到的目标图像的清晰度。
前述对本申请提供的图像获取方法的流程进行了介绍,为便于理解,下面基于前述介绍的方法,以具体的应用场景为例进行更详细的说明。
场景一
示例性地,拍摄高速运动物体的流程可以参阅图9。
901、DVS进行运动监测。
其中,可以通过DVS对RGB摄像头的拍摄范围,即前述的预设范围进行监测,监测该拍摄范围内进行运动的一个或者多个对象。
需要说明的是,该一个或者多个对象可以是在拍摄范围内活动的人物、动物、车辆、无人机或者机器人等,在不同的应用场景中可能具有不同的对象,具体可以根据实际应用场景进行调整,本申请对此不作限定。
具体地,DVS可以对拍摄范围内的光照强度的变化进行响应,产生事件。一个短时窗口内可以包括一个或者多个事件。由于静态区域不会激发事件,因此事件大多产生于存在运动的区域。获取一个短时窗口内的事件进行累积,并求取其连通域,可得到一个或多个存在运动的区域。为便于理解,以下将该存在运动的区域称为运动区域。该运动区域的形态包括但不限于外接矩形、外接最小圆、多边形、不规则形状等。通常,若运动区域小于预先设定的阈值,则筛选掉该区域。可以理解为,当监测到的运动区域小于阈值时,该运 动区域可能是噪声,或者监测到的运动物体不完整等,过滤掉该区域可以降低无意义的工作量。
DVS监测目标对象的具体方式可以参阅前述步骤201中的相关描述,此处不再赘述。
示例性地,如图10所示,摄像头的拍摄范围即前述的预设范围,与摄像头的视场角α相关。通常,摄像头的视场角越大,拍摄范围也就越大,视场角越小,拍摄范围也越小。DVS监测的范围包括摄像头的拍摄范围,从而实现对该预设范围内的运动的对象的监测。DVS监测到的事件具有稀疏性;同时,DVS中每个像素独立、异步地对连续的光强变化做出响应,而并无RGB摄像头的同步曝光影响,不受曝光时间、帧率的限制,因此DVS通常具有极高的时间分辨率,例如DAVIS的时间精度可达1us,适合捕捉高速运动的对象。
需要说明的是,本申请中所提及的高速与低速是相对而言的,对于高速和低速的划分可以根据实际应用场景进行调整,例如,可以将高于10KM/h的速度称为高速,低于10KM/h的速度称为低速。
902、进行预测得到预测区域,判断是否触发RGB摄像头拍摄,若是,则执行步骤903,若否,则执行步骤901。
其中,可以由DVS根据持续监测到的目标对象的运动轨迹,持续对目标对象的未来一段时长内所在的区域进行预测,并根据预测区域判断是否触发RGB摄像头进行拍摄。
确定该预测区域的具体方式可以参阅前述步骤202中的相关描述,此处不再赘述。
当确定目标对象的预测区域之后,判断该预设区域是否满足预设条件,若满足预设条件,则触发RGB摄像头进行后续的对焦以及拍摄,若不满足预设条件,则继续对拍摄范围进行监测,直到得到满足预设条件的预测区域或者结束拍摄。
示例性地,如图11所示,当车辆在道路上高速行驶时,可以根据DVS监测到的车辆的运动方向和运动速度,对车辆的行驶轨迹进行预测,从而可以预测到车辆即将行驶至的区域,即图11中所示的1101。当预测区域满足预设条件时,即可触发RGB摄像头进行对焦,若预设区域不满足预设条件,则不触发RGB摄像头进行对焦,并继续对车辆的运动轨迹进行监测。该预设条件可以是预测区域内的车辆不完整或者预测区域的面积太小等。例如,若车辆并未完全进入镜头视野则不触发RGB摄像头拍摄。
当预测区域满足预设条件时,DVS可以将该预测区域作为对焦区域传送至RGB摄像头,触发RGB摄像头拍摄。通常,RGB摄像头和DVS之间可能存在视差,因此需要进行配准操作。如将预测区域的坐标系与RGB摄像头的像素坐标系对齐,以使预测区域经过配准后具有与RGB摄像头视野相同的坐标系。
具体地,对焦区域可以是目标对象的当前所在区域,也可以是预测区域。对焦区域可以通过几何形状参数描述,若对焦区域采用外接矩形,则DVS可以将其左上角顶点坐标、宽、高等数传递给RGB摄像头;若对焦区域采用多边形,则DVS可以将多边形的每个顶点按顺时针(或逆时针)依次传递给RGB摄像头;若对焦区域采用外界最小圆,则DVS可以将圆心坐标、圆半径传递给RGB摄像头等,具体可以根据实际应用场景进行调整,此处仅仅是示例性说明,并不作为限定。
此外,DVS还可以将目标对象的运动特性,如运动速度和运动方向等传送给RGB摄像 头。该运动速度可以是目标对象相比前一短时窗口的速度的变化值或者变化趋势。该变化趋势可以包括但不限于变快、变慢等速度趋势状态量,甚至更多级别的速度趋势状态量,如快、较快、非常快、慢、较慢、非常慢等。该运动方向也可以是相比前一短时窗口的方向或者方向变化。该方向变化可以包括但不限于向左、向右、向上、向下、不变等方向趋势状态量,甚至更多级别的方向趋势状态量,如向左上、向左下、向右上、向右下、向左、向右、向上、向下、不变等。
903、基于预测区域进行对焦。
在确定预测区域之后,可以将该预测区域作为对焦区域,并根据该对焦区域确定至少一个对焦点,并基于该至少一个对焦点进行对焦。具体地,可以直接按照该对焦区域所包括的点进行对焦,也可以是选取与该对焦区域的中心点距离最近的对焦点进行对焦等。
通常,RGB摄像头有多个对焦点,根据DVS提供的对焦区域,选择与该对焦区域的范数距离最近的一个或者多个对焦点进行对焦,并锁焦,即保持该一个或者多个对焦点的对焦。例如,参阅前述图7,在RGB摄像头接收到DVS传送的预测区域,可以选择与对焦区域的中心点的范数距离最近的一个或者多个点作为对焦点进行对焦并锁焦。对焦方式包括但不限于相位对焦或者反差对焦等。
904、调整曝光参数并拍摄。
在进行对焦之后,还可以根据DVS监测到的运动特性调整曝光参数。例如,目标对象的运动速度越快,曝光参数越小,目标对象的运动速度越慢,则曝光参数越大,使摄像头可以拍摄到更清晰的图像。具体地,摄像头可以将采集到的光信号转换为电信号,从而得到拍摄到的预设范围的图像。
示例性地,如图12所示,通过对车辆的行驶轨迹进行预测确定对焦区域1101,然后完成对焦锁焦,随后调整至合适的曝光时长之后,在此对焦以及调整曝光时长的时段中,车辆行驶到预测区域,完成对运动的车辆的拍摄,得到清晰的车辆的图像。
例如,在一些场景中,可以建立目标对象的运动速度和曝光时长之间的映射关系,在确定目标对象的运动速度之后,可以根据该映射关系来调整曝光时长,从而使得曝光时长与目标对象的运动速度匹配,进而拍摄到更清晰的图像。具体地,该映射关系可以是预先设置的映射表格,如当运动速度处于第一范围时,曝光时长为1/60秒,当运动速度处于第二范围时,曝光时长为1/360秒等。该映射关系还可以是线性关系、指数关系、反比例关系等,具体可以根据实际应用场景进行调整,此处不做限定。
又例如,在一些场景中,可以建立目标对象的运动速度的变化大小和曝光时长的调整方式之间的映射关系。例如,若目标对象的运动速度增大,则降低曝光时长,若目标对象的运动速度减小,则提高曝光时长,从而使得摄像头可以拍摄到更清晰的图像。更具体地,曝光时长的调整量可以与运动速度的变化幅度相关,如运动速度的变化量越大,则调整的曝光时长的量也就越大,运动速度的变化量越小,则调整的曝光时长的量也就越小。
还例如,在一些场景中,可以结合目标对象的运动速度和运动方向,调整曝光时长。如该运动速度可以是目标对象在实际环境中的速度,可以根据该速度和运动方向,确定目标对象与摄像头的拍摄方向垂直的方向的速度,然后根据该与摄像头的拍摄方向垂直的方 向的速度来调整曝光时长。如该与摄像头的拍摄方向垂直的方向的速度越大,曝光时长越长,该与摄像头的拍摄方向垂直的方向的速度越小,则曝光时长越短。
905、增强运动细节。
在通过摄像头进行拍摄,得到拍摄到的图像之后,通过DVS同时监测到的预设范围内的运动对象的信息,可以根据DVS监测到的信息,如目标对象的轮廓或者在图像中的位置等,对摄像头拍摄到的图像的运动细节进行增强处理,得到更清晰的目标图像。
可以理解为,在通过摄像头拍摄的同时(以下将通过摄像头拍摄的时段称为拍摄时段),DVS可以持续对预设范围内的运动对象进行监测,得到拍摄时段中预设范围内的运动的对象的信息,如目标对象的轮廓、在图像中的位置等信息,并根据该信息对拍摄到的图像进行噪声滤除或者边缘锐化等处理,从而增强摄像头拍摄到的图像的纹理细节或者轮廓等,进一步得到更清晰的图像,提高用户体验。
因此,在本申请实施方式中,可以通过采集到的目标对象的运动信息,对目标对象的运动轨迹进行拟合。然后根据拟合得到的目标对象的运动轨迹得到目标对象的预测区域,该预测区域即目标对象未来一段时长内即将运动到的区域,并根据该预测区域进行对焦以及锁焦,根据目标对象的运动特性调整曝光参数,从而完成对运动的目标对象的拍摄。可以理解为,在进行对焦、锁焦以及调整曝光参数等一系列步骤之后,目标对象移动至预测区域,即对焦区域内,此时对目标对象进行拍摄,可以拍摄到更清晰的图像。因此,即使目标对象处于高速运动的状态,也可以准确地完成对目标对象的对焦,从而拍摄到更清晰的图像。
前述对本申请提供的图像获取方法的具体流程进行了详细介绍,为便于理解,下面对以具体的场景为例,对本申请提供的图像获取方法的一些应用场景进行示例性说明,下面分别对不同的应用场景进行介绍。
示例性地,为便于理解,下面对场景一的流程进行更具体的描述。参阅图13,本申请提供的图像获取方法的另一种流程示意图。
首先,由DVS进行运动检测,即检测RGB摄像头的拍摄范围内的运动的对象,以运动的目标对象为例,根据检测到的目标对象的信息生成事件数据。DVS可以根据监测范围内的光强的变化,生成监测范围内的事件数据,在当前光强与上一次事件产生时的光强的差异超过阈值时,DVS将产生一个事件,得到一个事件的数据。通常,一个事件的事件数据可以包括一个事件中产生光强变化的像素点的位置、像素点的像素值或者光强变化值等一种或者多种信息。
DVS可以根据监测得到的事件数据,拟合目标对象的运动轨迹,并根据目标对象的运动轨迹预测目标对象即将运动至的区域,得到预测区域。
可选地,在DVS进行运动检测以及得到预测区域的过程中,RGB摄像头可以处于关闭状态,从而减少RGB摄像头的功耗。例如,在拍摄高速运动的物体,如飞机、车辆、高速运动的用户等,可以先通过DVS监测对象的运动情况,当得到的预测区域满足预设条件时,DVS才触发RGB摄像头进行拍摄,降低RGB摄像头产生的功耗。
DVS得到预测区域之后,将该预测区域传送至RGB摄像头,触发RGB摄像头启动,并 指示RGB摄像头根据该预测区域进行对焦。或者,DVS可以根据该预测区域确定对焦区域,该对焦区域的范围大于预测区域的范围,然后指示RGB摄像头根据该对焦区域进行对焦。下面以指示RGB摄像头根据预测区域进行对焦为例进行示例性说明。
通常,DVS将预测区域传送至RGB摄像头之前,还可以对该预测区域进行配准,即该预测区域所在的坐标系与RGB摄像头的坐标系保持一致,使得RGB摄像头可以准确地得到预测区域在拍摄范围内的位置,从而准确地确定对焦点。
RGB摄像头可以在DVS的触发下启动,根据预测区域进行对焦。例如,RGB摄像头可以选择与预测区域的中心点的范数距离最近的一个或者多个对焦点进行对焦,并锁定对焦点,即保持对焦点。
此外,DVS还将目标对象的运动特性传送至RGB摄像头,该运动特性可以包括目标对象的运动速度或者运动方向等信息。
RGB摄像头根据接收到的运动特性调整曝光参数,包括曝光时长或者曝光值等。例如,可以设定目标对象的运动速度和对应的曝光时长的映射关系,当接收到目标对象的运动速度时,可以根据该映射关系确定与该运动速度关联的曝光时长,从而调整曝光时长。具体例如,如表1所示,
运动速度 曝光时长(s)
[0,5) 1/60
[5,10) 1/200
[10,15) 1/500
[15,20) 1/800
表1
其中,运动速度可以通过目标对象在拍摄范围内的坐标来计算,例如,可以根据拍摄范围建立坐标系,该坐标系可以是二维坐标系,也可以是三维坐标系,具体可以根据实际应用场景进行调整。然后根据目标对象在坐标系中的变化值,计算目标对象的运动速度。
在进行曝光调整之后,通过RGB摄像头的感光元件,采集拍摄范围内的图像信号,并对采集到的图像信号进行处理,例如,将采集到的模拟信号转换为电信号,从而得到拍摄的图像。
在RGB摄像头进行拍摄的同时,DVS可以持续对拍摄范围内的目标对象的运动情况进行监测,因此可以得到拍摄时段内的事件数据。
在RGB摄像头拍摄得到拍摄范围内的图像之后,可以对该图像以及同时段内的事件数据进行融合,从而对拍摄到的图像进行运动细节增强,得到更清晰的目标图像。
示例性地,如图14所示,拍摄时段内的DVS事件中可以包括运动的车辆的轮廓,可以根据该DVS事件对RGB摄像头拍摄到的图像,即图14中所示的RGB图像进行融合,增强RGB图像的运动细节,如滤除噪声、边缘锐化等处理,从而得到增强运动细节后的目标图像。经增强后的图像可以作为最终输出,在显示界面中显示或存储至电子设备的存储介质中。
示例性地,通过RGB摄像头和DVS获取目标图像的更具体的方式可以参阅图15。其中, DVS对拍摄范围内运动的对象进行监测,采集到较长的长时间窗,然后通过切分时间窗的方式,对目标对象的运动轨迹进行拟合,并根据拟合得到的运动轨迹对目标对象未来一段时长内所在的区域进行预测,得到预测区域。当预测区域满足预设条件时,即触发RGB摄像头启动,并根据预测区域进行对焦。
其次,DVS还根据监测到的目标对象的运动轨迹,计算目标对象的运动速度或者运动方向等运行特性,并将该运行特性传送至RGB摄像头。RGB摄像头根据该运动特性调整曝光参数,以使用与该运动特性匹配的曝光参数,如曝光时长和曝光值等。
在调整曝光参数之后,进行拍摄,将感光元件采集到的信号转换为电信号,得到拍摄得到的RGB图像。
在RGB摄像头进行对焦、调整曝光参数以及输出RGB图像的同时,DVS持续对拍摄范围内运动的对象进行监测,得到拍摄时段内的事件数据,包括目标对象运动时的轮廓、在预设区域内的位置等。
然后可以由电子设备的处理器根据DVS采集到的事件数据对RGB图像进行增强处理,如滤除噪声、边缘锐化等,从而得到更清晰的目标图像。
因此,在本场景中,对于高速运动的对象,可以通过预测未来一段时长内目标对象所在的区域来提前进行对焦,从而可以拍摄到清晰的运动中的图像。并且,可以通过调整曝光参数,来对目标对象进行与运动速度匹配的曝光,从而使摄像头进一步拍摄到更清晰的图像。此外,还可以通过DVS在同时段检测到的事件,对拍摄到的图像进行运动细节的增强,得到更清晰的目标图像。
场景二
示例性地,拍摄非高速运动的流程可以参阅图16。该非高速运动的场景如安防、门禁等场景。
1601、DVS进行运动监测。
其中,本场景中,目标对象可以是低速运动的对象。
具体地,步骤1601可以参阅前述步骤901中的相关描述,此处不再赘述。
示例性地,本场景二可以是门禁场景中,如图17所示,可以在门禁中设置RGB摄像头和DVS,此外,还可以设置ISP或者显示器等装置,此处仅仅是示例性说明,不再一一赘述。
1602、根据目标对象当前所在的区域判断是否触发RGB摄像头拍摄,若是,则执行步骤1603,若否,则执行步骤1601。
本场景中,因目标对象处于低速运动,可以根据目标对象的当前所在的区域判断是否触发RGB摄像头进行拍摄。具体地,可以判断目标对象当前所在的区域是否满足预设条件,若是,则执行步骤1603,若否,则执行步骤1601。
例如,可以判断当前所在的区域中的目标对象是否完整,当前所在的区域的面积是否大于预设值等。当当前所在的区域中的目标对象完整,或者,当前所在的区域的面积大于预设值等,则DVS可以将当前所在的区域作为对焦区域发送至RGB摄像头,以触发RGB摄像头启动,并根据该当前所在的区域进行拍摄。
示例性地,如图18所示,当存在目标对象进入门禁的监控范围内,且出现了异常运动时,如靠近门禁或者接触门禁等,可能存在对象的面积覆盖了DVS和RGB摄像头的拍摄范围,导致DVS检测到光照强度变化。例如门禁外是小区公共门禁,当人员进入门禁前方,可能遮挡楼道的灯光,造成整个视野内的光强减小。当DVS根据光照强度的变化,监测到运动对象时,如图18中所示的1801,可以监测目标对象的当前所在的区域,然后判断目标对象当前所在的区域的面积是否大于预设值,或者目标对象当前所在的区域内的目标对象是否完整等,决定是否触发RGB摄像头拍摄。当确定触发RGB摄像头拍摄时,DVS可以将目标对象当前所在的区域作为对焦区域传送至RGB摄像头,RGB摄像头可以基于目标对象当前所在的区域进行对焦,并根据目标对象的运动特性调整曝光参数,完成对目标对象的拍摄,得到目标对象的RGB图像。同时,DVS可以在拍摄时段对目标对象所在区域进行持续监测。
1603、基于目标对象当前所在的区域进行对焦。
其中,基于当前运动区域进行对焦与基于预设区域进行对焦的方式类似,此处不再赘述。步骤1603与前述步骤903类似,此处不再赘述。
1604、调整曝光参数并拍摄。
在本场景中,可以根据光强来调整曝光参数。具体地,曝光参数可以包括曝光时长,该曝光时长与拍摄范围内的光强大小呈负相关关系。
并且,调整曝光参数所使用的光照强度值,可以是由DVS采集到的光照强度值,也可以是由RGB摄像头或者其他设备采集到的光照强度值,具体可以根据实际应用场景进行调整,此处不做限定。
例如,可以根据DVS整体的事件发生速率,估计出平均光强的变化,平均光强L与DVS事件率R成正相关关系即L∝R。可以根据这一关系调整曝光参数,当估计的平均光强减小时,则增加曝光时长,如由1/100秒提高至1/30秒,当估计的平均光强增大时,则减少曝光时长,如由1/30秒减少至1/100秒。
又例如,可以计算出平均光强的值,然后根据该平均光强的值确定曝光参数。如平均光强的值越大,则曝光时长越短,平均光强的值越小,曝光时长越长。从而使摄像头的曝光时长与平均光强的值匹配,进而可以充分拍摄到拍摄范围内的图像,得到更清晰的图像,提高用户体验。
1605、增强运动细节。
其中,步骤1605与前述步骤905类似,此处不再赘述。
因此,在本应用场景中,可以根据DVS监测到的目标对象当前所在的区域进行对焦,可以准确地识别出运动物体所在的区域,从而进行准确的对焦。并且,也可以根据光强的大小调整曝光参数,使得RGB摄像头可以准确地适应光照强度的大小,从而拍摄到更清晰的图像。此外,本应用场景也可以通过DVS在同时段检测到的事件,对拍摄到的图像进行运动细节的增强,得到更清晰的目标图像。
并且,在此场景中,尤其在一些监控场景中,若持续采用RGB摄像头进行监控,将产生较大的功耗,如RGB摄像头持续拍摄的功耗较通常为数百毫瓦至数十瓦等,且产生的数 据量大。而本申请提供的图像获取方法,可以在DVS检测到存在运动的对象时才出发RGB摄像头启动拍摄,DVS功耗通常为数十毫瓦,例如DAVIS346型号传感器的功耗为10-30毫瓦,因此可以降低功耗。且DVS仅获取到运动的对象的轮廓,可以避免对用户的所有数据,如隐私数据都监控,可以提高用户体验。且可以对异常运动进行拍摄,可以根据拍摄到的图像进行后续的报警操作,具体可以根据实际应用场景进行调整,提高安全性。可以理解为,本申请提供的图像获取方法,通过DVS以较低功耗实时监测外界的运动,只有在判别为异常运动时才触发RGB摄像头工作,具有功耗上的优势;同时,DVS输出的事件并不包含具体的纹理细节,只有运动对象的轮廓和位置,具有隐私安全的优势。
本申请还提供一种图形用户界面(graphical user interface,GUI),该GUI可以应用于电子设备,如终端、监控设备、自动驾驶车辆等设备中,该电子设备可以包括显示屏、存储器、一个或多个处理器,所述一个或多个处理器用于执行存储在所述存储器中的一个或多个计算机程序,如前述图2-18中所提及的图像获取方法的步骤,该GUI用于通过显示屏对前述图2-18中摄像头所拍摄到的画面进行显示。
下面对本申请提供的GUI进行详细介绍。
该图形用户界面包括:响应于针对目标对象进行拍摄的触发操作,以及根据对焦信息拍摄预设范围的图像,显示该预设范围的图像,该预设范围为摄像头拍摄范围,该对焦信息包括对该预设范围内的该目标对象进行对焦的参数,该对焦信息为根据该目标对象的运动信息确定,所述运动信息包括所述目标对象在预设范围内的进行运动时的运动轨迹的信息。
示例性地,如图19所示,目标对象可以高速移动的车辆,GUI具体可以包括,响应于在检测目标对象的运动信息,该运动信息中可以包括目标对象在预设范围内的运动轨迹的信息,该预设范围为摄像头拍摄范围;然后,根据运动信息确定对焦信息,对焦信息包括对预设范围内的目标对象进行对焦的参数;随后,根据对焦信息在预设范围中对目标对象进行对焦,并通过摄像头拍摄到车辆的图像之后,在显示屏中显示拍摄到的图像,该图像中可以包括高速运动中的车辆。
因此,在本申请实施方式中,可以检测摄像头的拍摄范围内,运动中的目标对象的运动轨迹,然后根据目标对象的运动轨迹确定对焦信息并完成对焦,从而可以拍摄到更清晰的图像。即使目标对象处于运动中,也可以准确地对目标对象进行对焦,拍摄到清晰的运动状态的图像,提高用户体验。
在一种可能的实施方式中,该对焦信息包括对焦区域的信息,该图形用户界面还可以包括:响应于该运动信息对预设时长内该目标对象的运动轨迹进行预测,得到预测区域,以及根据该预测区域确定该对焦区域,在该显示屏中显示该对焦区域。
示例性地,如图20A所示,当车辆处于高速运动状态时,可以根据检测到的车辆在拍摄范围内进行运动的运动轨迹,对未来预设时长内车辆的运动轨迹进行预测,得到未来一段时间内车辆即将到达的预测区域,将该区域作为对焦区域2001,并基于对焦区域2001进行对焦,如图20B所示,从而拍摄到更清晰的目标对象的图像。
因此,在本申请实施方式中,可以对目标对象未来的预设时长内的运动轨迹进行预测, 并根据预测区域确定对焦区域,可以准确地完成对目标对象的对焦。即使目标对象处于高速运动,本申请实施方式也可以通过预测的方式提前对目标对象进行对焦,使目标对象处于对焦区域,从而拍摄到更清晰的高速运动的目标对象。
在一种可能的实施方式中,该图形用户界面具体可以包括:若该预测区域符合预设条件,则响应于根据该预测区域确定该对焦区域,在该显示屏中显示该对焦区域;若该预测区域不符合预设条件,则响应于重新根据该运动信息对预设时长内该目标对象的运动轨迹进行预测,得到新的预测区域,以及根据该新的预测区域确定该对焦区域,在该显示屏中显示该对焦区域。
该预设条件可以是预测区域中包括完整的目标对象,或者预测区域的面积大于预设值等。
示例性地,如图21A所示,当摄像头拍摄到的目标对象不完整时,可能导致针对目标对象的预测区域的面积较小,即对焦区域2101较小,小于车辆的面积,导致后续拍摄到的车辆可能出现部分不清晰的情况。而当车辆的车身完全进行拍摄范围,如图21B所示,则此时可以得到面积符合要求的预测区域,即对焦区域2102,从而基于该对焦区域2102,拍摄到完整、清晰的车辆的图像,如图21C所示。
因此,在本申请实施方式中,只有当预测区域符合预设条件时,才根据预测区域确定对焦区域,并触发摄像头拍摄,当预测区域不符合预设条件时,则不触发摄像头进行拍摄,从而可以避免拍摄到的图像中目标对象不完整,或者可以避免无意义的拍摄。并且,在未进行拍摄时,摄像头可以处于未启动状态,仅当预测区域满足预设条件时,才触发摄像头进行拍摄,可以降低摄像头产生的功耗。
在一种可能的实施方式中,该运动信息还包括该目标对象的运动方向和运动速度中的至少一种;该图形用户界面具体可以包括:响应于根据所述目标对象在预设范围内进行运动时的运动轨迹,以及该运动方向和/或该运动速度对预设时长内该目标对象的运动轨迹进行预测,得到该预测区域,在该显示屏中显示该预测区域。
因此,本申请实施方式中,可以根据目标对象在预设范围内的运动轨迹,以及运动方向和/或运动速度等,对目标对象在未来的预设时长内的运动轨迹进行预测,从而可以对目标对象未来的运动轨迹进行准确的预测,进而可以对目标对象进行更准确的对焦,进而可以拍摄到更清晰的图像。
在一种可能的实施方式中,该图形用户界面具体可以包括:响应于根据目标对象在预设范围内的运动轨迹,以及所述运动方向和/或所述运动速度,拟合出所述目标对象所在的区域的中心点随时间变化的变化函数,以及根据所述变化函数计算出预测中心点,所述预测中心点为预测得到的所述目标对象所在的区域的中心点,并根据所述预测中心点得到所述预测区域,在显示屏中显示该预测区域。
在一种可能的实施方式中,所述预测范围的图像由RGB摄像头拍摄,该图形用户界面具体可以包括:响应于将所述RGB摄像头的多个对焦点中,与所述对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦,在显示屏中显示基于该至少一个点作为对焦点进行对焦后拍摄到的图像。
在一种可能的实施方式中,该对焦信息包括对焦区域的信息,该运动信息中包括该目标对象的当前所在的区域,该图形用户界面具体可以包括:响应于将该目标对象的当前所在的区域作为该对焦区域,在该显示屏中显示该对焦区域。
示例性地,如图22所示,目标对象可以是低速运动的行人,此时目标对象的运动速度较低,可以直接将目标对象的当前所在的区域作为对焦区域2201,然后对基于对焦区域2201进行对焦,即可得到清晰的图像。
因此,本申请实施方式中,目标对象在预设范围内的运动轨迹的信息中可以包括目标对象当前所在的区域和历史所在的区域,在一些低速场景中,可以将目标对象的当前所在的区域,作为对焦区域,从而完成对目标对象的对焦,进而可以拍摄到更清晰的图像。
在一种可能的实施方式中,该图形用户界面具体可以包括:响应于在所述拍摄所述预设范围的图像之前,获取曝光参数,在显示屏中显示该曝光参数;响应于根据所述曝光参数拍摄所述预设范围的图像,在显示屏中显示该根据所述曝光参数拍摄所述预设范围的图像。因此,本申请实施方式中,还可以调整曝光参数,从而通过曝光参数完成拍摄,得到清晰的图像。
具体地,曝光参数可以包括EV、曝光时长、曝光量、光圈大小或者ISO等参数,在拍摄图像时,可以在拍摄界面中显示曝光参数,以使用户可以根据显示的曝光参数获取到当前的拍摄情况,提高用户体验。
示例性地,如图23所示,曝光参数可以包括EV,在拍摄图像时,若EV=6,则可以在显示界面中显示“EV:6”,以使用户通过显示界面或者到EV的具体值,提高用户体验。
在一种可能的实施方式中,曝光参数为根据所述运动信息确定,所述曝光参数包括曝光时长,所述曝光时长与所述目标对象的运动速度呈负相关关系。
因此,在本申请实施方式中,可以通过目标对象的运动速度确定曝光时长,使曝光时长与目标对象的运动速度匹配,如运动速度越快,曝光时长越短,运动速度越慢,则曝光时长越长。可以避免过曝或者曝光不足等,从而使后续可以拍摄到更清晰的图像,提高用户体验。
在一种可能的实施方式中,曝光参数为根据光照强度确定,该光照强度可以是由摄像头检测到的光照强度,也可以是运动传感器检测到的光照强度,所述曝光参数包括曝光时长,所述预设范围内的光照强度的大小与所述曝光时长呈负相关关系。
因此,本申请实施方式中,可以根据检测到的光照强度确定曝光时长,当光照强度越大时,曝光时长越短,光照强度越小时,曝光时长越长,从而可以保障适量的曝光量,拍摄到更清晰的图像。
在一种可能的实施方式中,该图形用户界面还可以包括:响应于根据监测到的该目标对象与该图像对应的运动的信息,对该预设范围内的图像进行融合,得到该预设范围内的目标图像,在该显示屏中显示该目标图像。
因此,本申请实施方式中,在拍摄图像的同时,还可以对预设范围内目标对象的运动情况进行监测,获取到目标对象在图像中对应的运动的信息,如目标对象的轮廓、目标对象在预设范围内的位置等信息,并通过该信息对拍摄到的图像进行增强处理,得到更清晰 的目标图像。
示例性地,DVS可以采集到运动的目标对象的轮廓,从而可以根据DVS采集到的目标对象的轮廓,对RGB摄像头采集到的图像进行增强处理,RGB摄像头采集到的图像可以如图24A所示,如消除目标对象的轮廓的噪声,对目标物体的轮廓进行增强等,从而得到更清晰的目标对象的图像,如图24B所示。
在一种可能的实施方式中,该运动信息为通过动态视觉传感器DVS对该预设范围内的目标对象的运动情况进行监测得到。
因此,本申请实施方式中,可以通过DVS对摄像头的拍摄范围进行运动的对象的监测,从而得到准确的运动信息,即使目标对象处于高速运动的状态,也可以通过DVS及时捕获到目标对象的运动信息。
前述对本申请提供的图像获取方法的流程以及GUI进行了详细介绍,下面基于前述图2-24B所示的方法流程以及GUI,对本申请提供的装置进行说明。
参阅图25,本申请提供的一种图像获取装置的一种结构示意图,该图像获取装置可以包括:
运动传感器2501,用于检测目标对象的运动信息,运动信息包括目标对象在预设范围内进行运动时的运动轨迹的信息,预设范围为摄像头拍摄范围;
计算模块2502,用于根据运动信息确定对焦信息,对焦信息包括对预设范围内的目标对象进行对焦的参数;
拍摄模块2503,用于根据对焦信息在预设范围中对目标对象进行对焦,并用于拍摄预设范围的图像。
在一种可能的实施方式中,计算模块2502可以是与运动传感器2501耦合的模块,或者设置于运动传感器2501内部的模块。
在一种可能的实施方式中,对焦信息包括对焦区域的信息;计算模块2502,具体用于:根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到预测区域;根据预测区域确定对焦区域。
在一种可能的实施方式中,计算模块2502,具体用于:若预测区域符合预设条件,则将预测区域作为对焦区域,并触发拍摄模块2503进行对焦;若预测区域不符合预设条件,则重新根据运动信息对预设时长内目标对象的运动轨迹进行预测,得到新的预测区域,并根据所述新的预测区域确定所述对焦区域。
可以理解为,当计算模块2502确定预设区域符合预设条件时,即将该预设区域作为对焦区域,如将该预设区域作为对焦区域或者确定比该预设区域大的范围作为对焦区域等,并触发拍摄模块进行拍摄。在此之前,摄像模块可以处于关闭状态,例如,若摄像模块包括摄像头,在计算模块2502触发拍摄之前,如预设区域不符合预设条件,则该摄像头可以处于关闭状态,从而减少摄像头的功耗,节省资源。
在一种可能的实施方式中,运动信息还包括目标对象的运动方向和运动速度中的至少一种;
计算模块2502,具体用于根据目标对象在预设范围内进行运动时的运动轨迹,以及运 动方向和/或运动速度对预设时长内目标对象的运动轨迹进行预测,得到预测区域。
在一种可能的实施方式中,计算模块2502,具体用于:根据运动区域,以及运动方向和/或运动速度,拟合出目标对象的运动区域的中心点随时间变化的变化函数;根据变化函数计算出预测中心点,预测中心点为预测得到的预设时长内目标对象的所在区域的中心点;根据预测中心点得到预测区域。
在一种可能的实施方式中,拍摄模块2503包括RGB摄像头;
拍摄模块2503,具体用于将RGB摄像头的多个对焦点中,与对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦。
在一种可能的实施方式中,对焦信息包括对焦区域的信息,运动区域中包括目标对象的当前所在的区域,计算模块2502,具体用于将目标对象的当前所在的区域作为对焦区域。
在一种可能的实施方式中,拍摄模块2503,还用于在拍摄模块2503拍摄预设范围的图像之前,获取曝光参数,根据曝光参数拍摄预设范围的图像。
在一种可能的实施方式中,拍摄模块2503,具体用于根据运动信息获取曝光参数,其中,曝光参数包括曝光时长,曝光时长与目标无图的运动速度呈负相关关系。
在一种可能的实施方式中,拍摄模块2503,具体用于根据光照强度获取曝光参数,其中,曝光参数包括曝光时长,预设范围内的光照强度的大小与曝光时长呈负相关关系。
在一种可能的实施方式中,图像获取装置还可以包括:
增强模块2504,用于在拍摄模块拍摄预设范围的图像之后,根据监测到的目标对象与图像对应的运动的信息,对预设范围内的图像进行融合,得到预设范围内的目标图像。
在一种可能的实施方式中,运动传感器2501可以包括动态视觉传感器DVS,DVS用于对预设范围内的目标对象的运动情况进行监测,得到运动信息。
请参阅图26,本申请提供的另一种图像获取装置的结构示意图,如下所述。
该图像获取装置可以包括处理器2601、存储器2602、摄像头2603和运动传感器2604。该处理器2601摄像头2603和运动传感器2604之间通过线路互联。其中,存储器2602中存储有程序指令和数据。摄像头2603用于进行拍摄,将采集到的模拟信号转换为电信号。运动传感器2604用于对拍摄范围内的运动的对象进行监测。
存储器2602中存储了前述图2-18中的步骤对应的程序指令以及数据。
处理器2601用于执行前述图2-18中任一实施例所示的图像获取装置执行的方法步骤。
摄像头2603用于执行前述图2-18中任一实施例所示的图像获取装置执行的拍摄图像的步骤。
运动传感器2604用于执行前述图2-18中任一实施例所示的图像获取装置执行的对运动的对象进行监测的步骤。
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有用于生成车辆行驶速度的程序,当其在计算机上行驶时,使得计算机执行如前述图2-18所示实施例描述的方法中的步骤。
可选地,前述的图26中所示的图像获取装置可以是芯片。
本申请实施例还提供了一种图像获取装置,该图像获取装置也可以称为数字处理芯片 或者芯片,芯片包括处理单元和通信接口,处理单元通过通信接口获取程序指令,程序指令被处理单元执行,处理单元用于执行前述图2-18中任一实施例所示的图像获取装置执行的方法步骤。
本申请实施例还提供一种数字处理芯片。该数字处理芯片中集成了用于实现上述处理器2601,或者处理器2601的功能的电路和一个或者多个接口。当该数字处理芯片中集成了存储器时,该数字处理芯片可以完成前述实施例中的任一个或多个实施例的方法步骤。当该数字处理芯片中未集成存储器时,可以通过通信接口与外置的存储器连接。该数字处理芯片根据外置的存储器中存储的程序代码来实现上述实施例中图像获取装置执行的动作。
本申请实施例中还提供一种包括计算机程序产品,当其在计算机上行驶时,使得计算机执行如前述图2-18所示实施例描述的方法中图像获取装置所执行的步骤。
本申请实施例提供的图像获取装置可以为芯片,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使服务器内的芯片执行上述图4至图8所示实施例描述的图像获取方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述无线接入设备端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
具体地,前述的处理单元或者处理器可以是中央处理器(central processing unit,CPU)、网络处理器(neural-network processing unit,NPU)、图形处理器(graphics processing unit,GPU)、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)或现场可编程逻辑门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者也可以是任何常规的处理器等。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中, 如计算机的软盘、U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种图像获取方法,其特征在于,包括:
    检测目标对象的运动信息,所述运动信息包括所述目标对象在预设范围内进行运动时的运动轨迹的信息,所述预设范围为摄像头拍摄范围;
    根据所述运动信息确定对焦信息,所述对焦信息包括对所述预设范围内的目标对象进行对焦的参数;
    根据所述对焦信息在所述预设范围中对所述目标对象进行对焦,并拍摄所述预设范围的图像。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述运动信息确定对焦信息,包括:
    根据所述运动信息对预设时长内所述目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域;
    根据所述预测区域确定对焦区域,所述对焦区域包括对所述目标对象进行对焦的至少一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述预测区域确定所述对焦区域,包括:
    若所述预测区域符合预设条件,则将所述预测区域确定为所述对焦区域;
    若所述预测区域不符合预设条件,则重新根据所述运动信息对所述预设时长内所述目标对象的运动轨迹进行预测,得到新的预测区域,并根据所述新的预测区域确定所述对焦区域。
  4. 根据权利要求2或3所述的方法,其特征在于,所述运动信息还包括所述目标对象的运动方向和运动速度中的至少一种;
    所述根据所述运动信息对预设时长内所述目标对象的运动轨迹进行预测,得到预测区域,包括:
    根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度对预设时长内所述目标对象的运动轨迹进行预测,得到所述预测区域。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度对所述目标对象的运动轨迹进行预测,得到所述预测区域,包括:
    根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度,拟合出所述目标对象的所在的区域的中心点随时间变化的变化函数;
    根据所述变化函数计算出预测中心点,所述预测中心点为预测得到的预设时长内所述目标对象所在的区域的中心点;
    根据所述预测中心点得到所述预测区域。
  6. 根据权利要求1所述的方法,其特征在于,所述运动信息包括所述目标对象的当前所在的区域,所述根据所述运动信息确定对焦信息,包括:
    将所述目标对象的当前所在的区域作为对焦区域,所述对焦区域包括对所述目标对象 进行对焦的至少一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述预测范围的图像由色彩RGB摄像头拍摄,所述根据所述对焦信息在所述预设范围中对所述目标对象进行对焦,包括:
    将所述RGB摄像头的多个对焦点中,与所述对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述拍摄所述预设范围的图像之前,所述方法还包括:
    获取曝光参数;
    所述拍摄所述预设范围的图像,包括:
    根据所述曝光参数拍摄所述预设范围的图像。
  9. 根据权利要求8所述的方法,其特征在于,所述获取曝光参数,包括:
    根据所述运动信息确定所述曝光参数,其中,所述曝光参数包括曝光时长,所述曝光时长与所述目标对象的运动速度呈负相关关系。
  10. 根据权利要求9所述的方法,其特征在于,所述获取曝光参数,包括:
    根据光照强度确定所述曝光参数,其中,所述曝光参数包括曝光时长,所述预设范围内的光照强度的大小与所述曝光时长呈负相关关系。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,在所述摄所述预设范围的图像之后,所述方法还包括:
    根据监测到的所述目标对象与所述图像对应的运动的信息,对所述预设范围内的图像进行融合,得到所述预设范围内的目标图像。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述检测预设范围内的目标对象的运动信息,包括:
    通过动态视觉传感器DVS对所述预设范围内的目标对象的运动情况进行监测,得到所述运动信息。
  13. 一种图像获取装置,其特征在于,包括:
    运动传感器,用于检测目标对象的运动信息,所述运动信息包括所述目标对象在所述预设范围内的进行运动时的运动轨迹的信息,所述预设范围为摄像头拍摄范围;
    计算模块,用于根据所述运动信息确定对焦信息,所述对焦信息包括对所述预设范围内的目标对象进行对焦的参数;
    拍摄模块,用于根据所述对焦信息在所述预设范围中对所述目标对象进行对焦,并用于拍摄所述预设范围的图像。
  14. 根据权利要求13所述的图像获取装置,其特征在于,
    所述计算模块,具体用于:
    根据所述运动信息对预设时长内所述目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域;
    根据所述预测区域确定对焦区域,所述对焦区域包括对所述目标对象进行对焦的至少 一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息。
  15. 根据权利要求14所述的方法,其特征在于,所述计算模块,具体用于:
    若所述预测区域符合预设条件,则将所述预测区域确定为所述对焦区域,并触发所述拍摄模块进行对焦;
    若所述预测区域不符合预设条件,则重新根据所述运动信息对所述预设时长内所述目标对象的运动轨迹进行预测,得到新的预测区域,并根据所述新的预测区域确定所述对焦区域。
  16. 根据权利要求14或者15所述的图像获取装置,其特征在于,所述运动信息还包括所述目标对象的运动方向和运动速度中的至少一种;
    所述计算模块,具体用于根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度对预设时长内所述目标对象的运动轨迹进行预测,得到所述预测区域。
  17. 根据权利要求16所述的图像获取装置,其特征在于,所述计算模块,具体用于:
    根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度,拟合出所述目标对象的所在的区域的中心点随时间变化的变化函数;
    根据所述变化函数计算出预测中心点,所述预测中心点为预测得到的预设时长内所述目标对象所在的区域的中心点;
    根据所述预测中心点得到所述预测区域。
  18. 根据权利要求13所述的方法,其特征在于,所述运动信息中包括所述目标对象的当前所在的区域,
    所述计算模块,具体用于将所述目标对象的当前所在的区域确定为对焦区域,所述对焦区域包括对所述目标对象进行对焦的至少一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息。
  19. 根据权利要求14-18中任一项所述的方法,其特征在于,所述拍摄模块包括色彩RGB摄像头;
    所述拍摄模块,具体用于将所述RGB摄像头的多个对焦点中,与所述对焦区域的中心点的范数距离最小的至少一个点作为对焦点进行对焦。
  20. 根据权利要求13-19中任一项所述的图像获取装置,其特征在于,
    所述拍摄模块,还用于在所述拍摄模块拍摄所述预设范围的图像之前,获取曝光参数,根据所述曝光参数拍摄所述预设范围的图像。
  21. 根据权利要求20所述的图像获取装置,其特征在于,
    所述拍摄模块,具体用于根据所述运动信息获取所述曝光参数,其中,所述曝光参数包括曝光时长,所述曝光时长与所述目标无图的运动速度呈负相关关系。
  22. 根据权利要求20所述的图像获取装置,其特征在于,
    所述拍摄模块,具体用于根据光照强度获取所述曝光参数,其中,所述曝光参数包括曝光时长,所述预设范围内的光照强度的大小与所述曝光时长呈负相关关系。
  23. 根据权利要求13-22中任一项所述的图像获取装置,其特征在于,所述图像获取 装置还包括:
    增强模块,用于在所述拍摄模块拍摄所述预设范围的图像之后,根据监测到的所述目标对象与所述图像对应的运动的信息,对所述预设范围内的图像进行融合,得到所述预设范围内的目标图像。
  24. 根据权利要求13-23中任一项所述的图像获取装置,其特征在于,所述运动传感器包括动态视觉传感器DVS,所述DVS用于对所述预设范围内的目标对象的运动情况进行监测,得到所述运动信息。
  25. 一种图形用户界面GUI,其特征在于,所述图形用户界面存储在电子设备中,所述电子设备包括显示屏、存储器、一个或多个处理器,所述一个或多个处理器用于执行存储在所述存储器中的一个或多个计算机程序,其特征在于,所述图形用户界面包括:
    响应于针对目标对象进行拍摄的触发操作,以及根据对焦信息拍摄预设范围的图像,显示所述预设范围的图像,所述预设范围为摄像头拍摄范围,所述对焦信息包括对所述预设范围内的所述目标对象进行对焦的参数,所述对焦信息为根据所述目标对象的运动信息确定,所述运动信息包括所述目标对象在预设范围内的进行运动时的运动轨迹的信息。
  26. 根据权利要求25所述的图形用户界面,其特征在于,所述图形用户界面还包括:
    响应于根据所述运动信息对预设时长内所述目标对象的运动轨迹进行预测,得到预测区域,所述预测区域为预测得到的所述预设时长内所述目标对象所在的区域,以及根据所述预测区域确定对焦区域,所述对焦区域包括对所述目标对象进行对焦的至少一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息,在所述显示屏中显示所述对焦区域。
  27. 根据权利要求26所述的图形用户界面,其特征在于,所述图形用户界面具体包括:
    若所述预测区域符合预设条件,则响应于根据所述预测区域确定所述对焦区域,在所述显示屏中显示所述对焦区域;
    若所述预测区域不符合预设条件,则响应于重新根据所述运动信息对所述预设时长内所述目标对象的运动轨迹进行预测,得到新的预测区域,以及根据所述新的预测区域确定所述对焦区域,在所述显示屏中显示所述对焦区域。
  28. 根据权利要求25或者26所述的图形用户界面,其特征在于,所述运动信息还包括所述目标对象的运动方向和运动速度中的至少一种;
    所述图形用户界面具体包括:
    响应于根据所述目标对象在预设范围内进行运动时的运动轨迹,以及所述运动方向和/或所述运动速度对所述预设时长内所述目标对象的运动轨迹进行预测,得到所述预测区域,在所述显示屏中显示所述预测区域。
  29. 根据权利要求28所述的图形用户界面,其特征在于,所述运动信息中包括所述目标对象的当前所在的区域,
    所述图形用户界面具体包括:
    响应于将所述目标对象的当前所在的区域确定为所述对焦区域,所述对焦区域包括对所述目标对象进行对焦的至少一个对焦点,所述对焦信息包括所述至少一个对焦点的位置信息,在所述显示屏中显示所述对焦区域。
  30. 根据权利要求25-29中任一项所述的图形用户界面,其特征在于,该图形用户界面具体可以包括:
    响应于在所述拍摄所述预设范围的图像之前,获取曝光参数,在显示屏中显示该曝光参数;
    响应于根据所述曝光参数拍摄所述预设范围的图像,在显示屏中显示该根据所述曝光参数拍摄的所述预设范围的图像。
  31. 根据权利要求30所述的图形用户界面,其特征在于,
    所述曝光参数为根据所述运动信息确定,所述曝光参数包括曝光时长,所述曝光时长与所述目标对象的运动速度呈负相关关系。
  32. 根据权利要求30所述的图形用户界面,其特征在于,
    所述曝光参数为根据光照强度确定,所述曝光参数包括曝光时长,所述预设范围内的光照强度的大小与所述曝光时长呈负相关关系。
  33. 根据权利要求25-32中任一项所述的图形用户界面,其特征在于,所述图形用户界面还包括:
    响应于根据监测到的所述目标对象与所述图像对应的运动的信息,对所述预设范围内的图像进行融合,得到所述预设范围内的目标图像,在所述显示屏中显示所述目标图像。
  34. 根据权利要求25-33中任一项所述的图形用户界面,其特征在于,所述运动信息为通过动态视觉传感器DVS对所述预设范围内的目标对象的运动情况进行监测得到。
  35. 一种电子设备,其特征在于,包括显示模块、处理模块和存储模块,其特征在于,
    所述显示模块用于显示存储在所述存储模块中的应用程序的图形用户界面,所述图形用户界面包括如权利要求25-33中任一项所述的图形用户界面。
  36. 一种图像获取装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器存储有程序,当所述存储器存储的程序指令被所述处理器执行时实现权利要求1至12中任一项所述的方法。
  37. 一种计算机可读存储介质,包括程序,当其被处理单元所执行时,执行如权利要求1至12中任一项所述的方法。
  38. 一种图像获取装置,其特征在于,包括处理单元和通信接口,所述处理单元通过所述通信接口获取程序指令,当所述程序指令被所述处理单元执行时实现权利要求1至12中任一项所述的方法。
PCT/CN2020/097934 2020-06-24 2020-06-24 一种图像获取方法以及装置 WO2021258321A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080092948.8A CN114946169B (zh) 2020-06-24 2020-06-24 一种图像获取方法以及装置
PCT/CN2020/097934 WO2021258321A1 (zh) 2020-06-24 2020-06-24 一种图像获取方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097934 WO2021258321A1 (zh) 2020-06-24 2020-06-24 一种图像获取方法以及装置

Publications (1)

Publication Number Publication Date
WO2021258321A1 true WO2021258321A1 (zh) 2021-12-30

Family

ID=79282756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097934 WO2021258321A1 (zh) 2020-06-24 2020-06-24 一种图像获取方法以及装置

Country Status (2)

Country Link
CN (1) CN114946169B (zh)
WO (1) WO2021258321A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363599A (zh) * 2022-02-24 2022-04-15 北京蜂巢世纪科技有限公司 基于电子变焦的追焦距方法、系统、终端及存储介质
CN114390209A (zh) * 2022-02-23 2022-04-22 维沃移动通信有限公司 拍摄方法、拍摄装置、电子设备和可读存储介质
CN114449173A (zh) * 2022-02-25 2022-05-06 Oppo广东移动通信有限公司 光学防抖控制方法、装置、存储介质与电子设备
CN114742827A (zh) * 2022-06-09 2022-07-12 深圳市腾盛精密装备股份有限公司 基于视觉传感器飞拍的胶水检测方法、装置、设备及介质
CN115297262A (zh) * 2022-08-09 2022-11-04 中国电信股份有限公司 对焦方法、对焦装置、存储介质与电子设备
CN115589534A (zh) * 2022-09-09 2023-01-10 广州市斯睿特智能科技有限公司 跟随式车辆检测项图片采集装置及方法
CN115601842A (zh) * 2022-11-28 2023-01-13 荣耀终端有限公司(Cn) 一种自动抓拍的方法、电子设备及存储介质
CN116055844A (zh) * 2023-01-28 2023-05-02 荣耀终端有限公司 一种跟踪对焦方法、电子设备和计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114946169B (zh) * 2020-06-24 2024-02-02 华为技术有限公司 一种图像获取方法以及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133525A (zh) * 2014-07-07 2014-11-05 联想(北京)有限公司 一种信息处理方法及电子设备
US20150124153A1 (en) * 2013-11-07 2015-05-07 Samsung Electronics Co., Ltd. Electronic apparatus and method of controlling the same
CN105827928A (zh) * 2015-01-05 2016-08-03 中兴通讯股份有限公司 一种选择对焦区域的方法及装置
CN106961552A (zh) * 2017-03-27 2017-07-18 联想(北京)有限公司 一种对焦控制方法及电子设备
CN109167910A (zh) * 2018-08-31 2019-01-08 努比亚技术有限公司 对焦方法、移动终端及计算机可读存储介质
CN110505408A (zh) * 2019-09-12 2019-11-26 深圳传音控股股份有限公司 终端拍摄方法、装置、移动终端及可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542545A (zh) * 2010-12-24 2012-07-04 方正国际软件(北京)有限公司 一种多焦距照片融合方法、系统及拍照装置
US9307252B2 (en) * 2012-06-04 2016-04-05 City University Of Hong Kong View synthesis distortion model for multiview depth video coding
US10231614B2 (en) * 2014-07-08 2019-03-19 Wesley W. O. Krueger Systems and methods for using virtual reality, augmented reality, and/or a synthetic 3-dimensional information for the measurement of human ocular performance
CN114946169B (zh) * 2020-06-24 2024-02-02 华为技术有限公司 一种图像获取方法以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124153A1 (en) * 2013-11-07 2015-05-07 Samsung Electronics Co., Ltd. Electronic apparatus and method of controlling the same
CN104133525A (zh) * 2014-07-07 2014-11-05 联想(北京)有限公司 一种信息处理方法及电子设备
CN105827928A (zh) * 2015-01-05 2016-08-03 中兴通讯股份有限公司 一种选择对焦区域的方法及装置
CN106961552A (zh) * 2017-03-27 2017-07-18 联想(北京)有限公司 一种对焦控制方法及电子设备
CN109167910A (zh) * 2018-08-31 2019-01-08 努比亚技术有限公司 对焦方法、移动终端及计算机可读存储介质
CN110505408A (zh) * 2019-09-12 2019-11-26 深圳传音控股股份有限公司 终端拍摄方法、装置、移动终端及可读存储介质

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390209A (zh) * 2022-02-23 2022-04-22 维沃移动通信有限公司 拍摄方法、拍摄装置、电子设备和可读存储介质
WO2023160496A1 (zh) * 2022-02-23 2023-08-31 维沃移动通信有限公司 拍摄方法、拍摄装置、电子设备和可读存储介质
CN114363599A (zh) * 2022-02-24 2022-04-15 北京蜂巢世纪科技有限公司 基于电子变焦的追焦距方法、系统、终端及存储介质
CN114449173A (zh) * 2022-02-25 2022-05-06 Oppo广东移动通信有限公司 光学防抖控制方法、装置、存储介质与电子设备
CN114742827A (zh) * 2022-06-09 2022-07-12 深圳市腾盛精密装备股份有限公司 基于视觉传感器飞拍的胶水检测方法、装置、设备及介质
CN115297262A (zh) * 2022-08-09 2022-11-04 中国电信股份有限公司 对焦方法、对焦装置、存储介质与电子设备
CN115589534A (zh) * 2022-09-09 2023-01-10 广州市斯睿特智能科技有限公司 跟随式车辆检测项图片采集装置及方法
CN115589534B (zh) * 2022-09-09 2023-09-08 广州市斯睿特智能科技有限公司 跟随式车辆检测项图片采集装置及方法
CN115601842A (zh) * 2022-11-28 2023-01-13 荣耀终端有限公司(Cn) 一种自动抓拍的方法、电子设备及存储介质
CN115601842B (zh) * 2022-11-28 2023-11-24 荣耀终端有限公司 一种自动抓拍的方法、电子设备及存储介质
CN116055844A (zh) * 2023-01-28 2023-05-02 荣耀终端有限公司 一种跟踪对焦方法、电子设备和计算机可读存储介质
CN116055844B (zh) * 2023-01-28 2024-05-31 荣耀终端有限公司 一种跟踪对焦方法、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN114946169B (zh) 2024-02-02
CN114946169A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2021258321A1 (zh) 一种图像获取方法以及装置
WO2020259038A1 (zh) 一种拍摄方法及设备
WO2021136050A1 (zh) 一种图像拍摄方法及相关装置
WO2021047435A1 (zh) 一种电子设备及传感器控制方法
WO2022141418A1 (zh) 一种图像处理方法以及装置
CN113810601B (zh) 终端的图像处理方法、装置和终端设备
WO2022141376A1 (zh) 一种位姿估计方法及相关装置
WO2021036318A1 (zh) 一种视频图像处理方法及装置
WO2022141477A1 (zh) 一种图像处理方法以及装置
WO2022141445A1 (zh) 一种图像处理方法以及装置
CN112492193B (zh) 一种回调流的处理方法及设备
WO2021190314A1 (zh) 触控屏的滑动响应控制方法及装置、电子设备
WO2021213031A1 (zh) 图像合成方法及相关装置
WO2021208926A1 (zh) 一种用于拍照的装置及方法
WO2022141333A1 (zh) 一种图像处理方法以及装置
US20240137659A1 (en) Point light source image detection method and electronic device
WO2022141351A1 (zh) 一种视觉传感器芯片、操作视觉传感器芯片的方法以及设备
WO2023273323A1 (zh) 一种对焦方法和电子设备
WO2021057626A1 (zh) 图像处理方法、装置、设备及计算机存储介质
CN112087649B (zh) 一种设备搜寻方法以及电子设备
US20230230343A1 (en) Image Processing Method, Electronic Device, Image Processing System, and Chip System
CN112188094B (zh) 图像处理方法及装置、计算机可读介质及终端设备
CN116389884B (zh) 缩略图显示方法及终端设备
CN113496477A (zh) 屏幕检测方法及电子设备
WO2022033344A1 (zh) 视频防抖方法、终端设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942388

Country of ref document: EP

Kind code of ref document: A1