WO2021258295A1 - Imaging lens assembly, camera module and imaging device - Google Patents

Imaging lens assembly, camera module and imaging device Download PDF

Info

Publication number
WO2021258295A1
WO2021258295A1 PCT/CN2020/097763 CN2020097763W WO2021258295A1 WO 2021258295 A1 WO2021258295 A1 WO 2021258295A1 CN 2020097763 W CN2020097763 W CN 2020097763W WO 2021258295 A1 WO2021258295 A1 WO 2021258295A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
lens
lens assembly
imaging surface
imaging lens
Prior art date
Application number
PCT/CN2020/097763
Other languages
French (fr)
Inventor
Daigo Katsuragi
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN202080102352.1A priority Critical patent/CN115715378A/en
Priority to PCT/CN2020/097763 priority patent/WO2021258295A1/en
Publication of WO2021258295A1 publication Critical patent/WO2021258295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
  • imaging lens assembly mounted on such imaging devices also require downsizing.
  • the imaging lens assembly is expected to have higher resolution.
  • an imaging lens assembly such as a collapsible imaging lens assembly, the full length of which changes between a shooting state and a lens storage state, can not sufficiently shorten its full length in the lens storage state.
  • the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
  • an imaging lens assembly includes:
  • a most imaging surface side disposed lens has an aspheric shape having an inflection point
  • a full length of the imaging lens assembly which is a distance on an optical axis from a vertex of an object side surface of a most object side disposed lens to an imaging surface, and a distance from the most imaging surface side disposed lens to the imaging surface are configured to change between a shooting state and a lens storage state, and
  • the imaging lens assembly satisfies, in the shooting state, the following conditional expressions,
  • FB is a distance from an imaging surface side edge of the most imaging surface side disposed lens to the imaging surface
  • Yh is an image height
  • ⁇ Ld is a distance in an optical axis direction from the vertex of the object side surface of a most object side disposed lens to the imaging surface side edge of the most imaging surface side disposed lens
  • ⁇ d is the full length of the imaging lens assembly.
  • the full length of the imaging lens assembly and the distance from the most imaging surface side disposed lens to the imaging surface may be shorter in the lens storage state than in the shooting state.
  • the imaging lens assembly may further satisfy, in the shooting state, the following conditional expression,
  • f is a focal length of an entire optical system.
  • the imaging lens assembly may further satisfy the following conditional expression,
  • fs is a composite focal length of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • the imaging lens assembly may further satisfy the following conditional expression,
  • the most imaging surface side disposed lens may be a lens having a negative refractive power.
  • a surface on a side of the imaging surface of the most imaging surface side disposed lens may have a concave shape near the optical axis and a convex shape in a peripheral portion.
  • the most imaging surface side disposed lens may be formed of plastic.
  • a camera module includes:
  • an image sensor comprising the imaging surface.
  • the camera module may further include an IR filter disposed between the imaging lens assembly and the image sensor.
  • an imaging device includes:
  • a housing for storing the imaging lens assembly.
  • FIG. 1A is a diagram of a camera module according to the present disclosure illustrating a configuration in which the full length of the imaging lens assembly changes between the shooting state and the lens storage state.
  • FIG. 1B is a diagram of a camera module according to the present disclosure illustrating an example of a holder and a lens drive mechanism.
  • FIG. 2 is a configuration diagram of a camera module according to a first example of the present disclosure
  • FIG. 3 is an aberration diagram of the camera module according to the first example of the present disclosure.
  • FIG. 4 is a configuration diagram of a camera module according to a second example of the present disclosure.
  • FIG. 5 is an aberration diagram of the camera module according to the second example of the present disclosure.
  • FIG. 6 is a configuration diagram of a camera module according to a third example of the present disclosure.
  • FIG. 7 is an aberration diagram of the camera module according to the third example of the present disclosure.
  • FIG. 8 is a configuration diagram of a camera module according to a fourth example of the present disclosure.
  • FIG. 9 is an aberration diagram of the camera module according to the fourth example of the present disclosure.
  • FIG. 10 is a configuration diagram of a camera module according to a fifth example of the present disclosure.
  • FIG. 11 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
  • a camera module 11 to which the present disclosure is applied is configured to change a full length ⁇ d of the imaging lens assembly 21 and a flange back FB between a shooting state where a subject (object) is shot (recorded as an image) and a lens storage state where the imaging lens assembly 21 is stored in a housing of the camera module 11.
  • dash–dot lines represent the optical axes of the camera modules (hereinafter the same applies) .
  • the full length ⁇ d of the imaging lens assembly 21 is a distance on the optical axis from a vertex of an object side surface of a most object side disposed lens to an imaging surface S.
  • the flange back FB of the imaging lens assembly 21 is a distance from an imaging surface S side edge of the most imaging surface S side disposed lens to the imaging surface S.
  • the flange back FB is a shortest distance from a most imaging surface S side disposed lens surface to the imaging surface S.
  • ⁇ Ld in the FIG. 1A is a lens length indicating a length in the optical axis direction of only a lens portion of the optical system that constitutes the imaging lens assembly 21. That is, the lens length ⁇ Ld is a distance in the optical axis direction from the vertex of the object side surface of the most object side disposed lens to the imaging surface S side edge of the most imaging surface S side disposed lens.
  • the full length ⁇ d is the sum of the lens length ⁇ Ld and the flange back FB.
  • the camera module 11 has a shorter full length ⁇ d and a shorter flange back FB in the lens storage state than in the shooting state.
  • the camera module 11 pushes out the imaging lens assembly 21, which is accommodated in the housing, in a direction protruding from the housing, by using a lens drive mechanism 24 such as a motor when a predetermined user operation, which starts a shooting mode, is performed.
  • the camera module 11 retracts and stores the imaging lens assembly 21 in the housing by using the lens drive mechanism 24 when a predetermined user operation, which ends the shooting mode, is performed.
  • a camera module 11 is called a collapsible camera module which has excellent storability and portability when a shooting is not performed.
  • the imaging lens assembly 21 may be held in a lens barrel 25 which is movable in the optical axis direction by the lens drive mechanism 24.
  • the lenses included in the imaging lens assembly 21 are illustrated in a simplified manner.
  • the lens barrel 25 is disposed inside a housing 26, and is movable in the optical axis direction together with the imaging lens assembly 21 by an expandable member 241 which constitutes a part of the lens drive mechanism 24.
  • the expandable member 241 is driven in the optical axis direction by a motor 242 which constitutes a part of the lens drive mechanism 24.
  • the lens barrel 25 and the imaging lens assembly 21 are stored in the housing 26 in the lens storage state, and project toward the object side with respect to the housing 26 in the shooting state.
  • the camera module 11 to which the present disclosure is applied is configured as shown in FIGS. 2, 4, 6, 8 and 10, for example.
  • the camera module 11 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23.
  • the imaging lens assembly 21 is a lens configured so that the full length ⁇ d and the flange back FB change between the shooting state and the lens storage state, as described above, and is designed to maintain good optical performance despite being small in size.
  • the image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) .
  • the image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21.
  • the image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage.
  • the optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from incident light from the imaging lens assembly 21.
  • the imaging lens assembly 21 includes at least two lenses having a positive refractive power and at least two lenses having a negative refractive power.
  • the most imaging surface S side disposed lens has an aspheric shape having an inflection point.
  • a surface on the side of the imaging surface S of the most imaging surface S side disposed lens is an aspherical surface having an inflection point near a lens edge.
  • the surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave shape in the lens center (i.e. near the optical axis) and a convex shape in a peripheral portion (i.e. in the vicinity of an outer peripheral area) .
  • a ratio of the flange back FB with respect to the full length ⁇ d is sufficiently large. Since the flange back FB is large in the shooting state, a sufficiently large air gap can be secured between the imaging lens assembly 21 and the imaging surface S. The large air gap enables the imaging lens assembly 21 to retract to the imaging surface S side with a large moving amount when the imaging lens assembly 21 is stored in the housing.
  • a collapsible imaging lens assembly 21 including at least two positive refractive power lenses and at least two negative refractive power lenses and having a large air gap between the imaging lens assembly 21 and the imaging surface S, good optical performance can be obtained despite the small size. Also, since the most imaging surface S side disposed lens has an aspheric shape having an inflection point, good optical performance can be obtained for all image heights.
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (1) in the shooting state:
  • FB is the flange back of the imaging lens assembly 21 described above, which is the distance from the imaging surface S side edge of the most imaging surface side disposed lens to the imaging surface S (hereinafter the same applies) .
  • Yh is an image height (hereinafter the same applies) .
  • the ratio shown in the formula (1) increases, a larger flange back B can be obtained while securing the size of the image sensor 23.
  • the air gap for storing the imaging lens assembly 21 described above can be larger, and thus the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively.
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (2) in the shooting state:
  • ⁇ Ld is the lens length described above, which is the distance in the optical axis direction from the vertex of the object side surface of the most object side disposed lens to the imaging surface S side edge of the most imaging surface side S disposed lens (hereinafter the same applies) .
  • ⁇ d is the full length of the imaging lens assembly21 described above, which is the distance on the optical axis from the vertex of the object side surface of the most object side disposed lens to the imaging surface S (hereinafter the same applies) .
  • the air gap for storing the imaging lens assembly 21 can be larger, and thus the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively.
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (3) in the shooting state:
  • f is a focal length of an entire optical system (hereinafter the same applies) .
  • fs is a composite focal length of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens (hereinafter the same applies) .
  • the value of fs /f falls below the lower limit value of the formula (4) (i.e. 0.9) , the sensitivity of the decentering error of the lens group on the imaging surface S side becomes very high and the difficulty of manufacturing the imaging lens assembly 21 increases.
  • the value of fs /f exceeds the upper limit value of the formula (4) (i.e. 1.9) , a spherical aberration is overcorrected and it is difficult to maintain the optical performance.
  • the imaging lens assembly 21 can be miniaturized and the manufacturability of the imaging lens assembly 21 can be maintained more effectively when the camera module 11 satisfies the following formula (5) :
  • Fno is an F number (hereinafter the same applies) .
  • an aspheric lens in the imaging lens assembly 21, particularly an aspheric lens of aspheric shape having an inflection point is formed of a plastic material (glass material) .
  • a lens having a size equal to or smaller than a specific size may be a lens formed of a plastic material, and a lens larger than the specific size may be a lens formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than a plastic material.
  • Such a camera module 11 including the imaging lens assembly 21 is applicable to compact digital devices (imaging devices) such as mobile phones, wearable cameras and surveillance cameras.
  • Si indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side. Optical elements of the corresponding surfaces are shown together with the corresponding surface number “Si” . Denotations of “first surface” or “1st surface” indicate a surface on the object side of the lens, and denotations of “second surface” or “2nd surface” indicate a surface on the imaging surface S side of the lens. “R” indicates the value of a central curvature radius (mm) of the surface. Regarding “R” , “E + i” indicates an exponential expression with a base of 10, i.e., "10i " .
  • “1.00 E +18” indicates “1.00 ⁇ 1018” .
  • Such an exponential expression is also applied to an aspheric coefficient described later.
  • “Di” indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) .
  • “Ndi” indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • “ ⁇ di” indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
  • the imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces.
  • the aspheric shape of the lens is defined by the following formula (6) :
  • Z is a depth of the aspheric surface
  • C is a paraxial curvature which is equal to 1 /R
  • h is a distance from the optical axis to a lens surface
  • K is an eccentricity (second-order aspheric coefficient)
  • An is an nth-order aspheric coefficient.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power with a convex surface facing the imaging surface S side, and a fifth lens L5 having a negative refractive power with a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
  • Table 1 shows lens data of the first example.
  • Table 2 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • fs is a composite focal length of the first lens L1 and the second lens L2.
  • Table 3 shows the focal length of the entire system f, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly which is obtained when an object point is taken at infinity ⁇ d, the lens length ⁇ Ld, the flange back FB, the image height Yh, and values corresponding to the conditional expressions.
  • Table 4 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 3 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion.
  • Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength.
  • spherical aberration diagram Aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown.
  • S indicates a value of aberration on a sagittal image surface
  • T indicates a value of aberration on a tangential image surface.
  • IMG HT indicates an image height. The same applies to aberration diagrams in other examples.
  • the camera module 11 in the first example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power with a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
  • Table 5 shows lens data of the second example.
  • Table 6 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • fs is a composite focal length of the first lens L1 and the second lens L2.
  • Table 7 shows the focal length of the entire system f, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly which is obtained when an object point is taken at infinity ⁇ d, the lens length ⁇ Ld, the flange back FB, the image height Yh, and values corresponding to the conditional expressions.
  • Table 8 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 5 Aberrations in the second example are shown in FIG. 5. As can be seen from the aberration diagrams in FIG. 5, it is obvious that the camera module 11 in the second example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, and a fourth lens L4 having a negative refractive power with a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed between the second surface of the second lens L2 and the first surface of the third lens L3.
  • Table 9 shows lens data of the third example.
  • Table 10 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • fs is a composite focal length of the first lens L1 and the second lens L2.
  • Table 11 shows the focal length of the entire system f, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly which is obtained when an object point is taken at infinity ⁇ d, the lens length ⁇ Ld, the flange back FB, the image height Yh, and values corresponding to the conditional expressions.
  • Table 12 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 7 Aberrations in the third example are shown in FIG. 7. As can be seen from the aberration diagrams in FIG. 7, it is obvious that the camera module 11 in the third example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power with a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
  • Table 13 shows lens data of the fourth example.
  • Table 14 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • fs is a composite focal length of the first lens L1 and the second lens L2.
  • Table 15 shows the focal length of the entire system f, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly which is obtained when an object point is taken at infinity ⁇ d, the lens length ⁇ Ld, the flange back FB, the image height Yh, and values corresponding to the conditional expressions.
  • Table 16 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 9 Aberrations in the fourth example are shown in FIG. 9. As can be seen from the aberration diagrams in FIG. 9, it is obvious that the camera module 11 in the fourth example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power with a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
  • Table 17 shows lens data of the fifth example.
  • Table 18 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  • fs is a composite focal length of the first lens L1 and the second lens L2.
  • Table 19 shows the focal length of the entire system f, the F number Fno, the angle of view 2 ⁇ , the full length of the imaging lens assembly which is obtained when an object point is taken at infinity ⁇ d, the lens length ⁇ Ld, the flange back FB, the image height Yh, and values corresponding to the conditional expressions.
  • Table 20 shows the aspheric coefficients of the imaging lens assembly 21.
  • FIG. 11 Aberrations in the fifth example are shown in FIG. 11. As can be seen from the aberration diagrams in FIG. 11, it is obvious that the camera module 11 in the fifth example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • a feature defined as “first” and “second” may comprise one or more of this feature.
  • a plurality of means “two or more than two” , unless otherwise specified.
  • the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
  • a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween.
  • a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
  • Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
  • the logic and/or step described in other manners herein or shown in the flow chart may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device and equipment.
  • the computer readable medium may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
  • the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
  • the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An imaging lens assembly (21) includes at least two lenses having a positive refractive power, and at least two lenses having a negative refractive powers,whereina most imaging surface side disposed lens has an aspheric shape having an inflectionpoint,a full length and a distance from the most imaging surface side disposed lens tothe imaging surface change between a shooting state and a lens storage state, the lens satisfying FB /Yh ≥ 0.5, ΣLd /Σd ≤ 0.75, where FB is a distance from an imaging surface side edge of the most imaging surface side disposed lens to the imaging surface, Yh is an image height, ΣLd is a distance from a vertex of the object side surface of a most object side disposed lens to the imaging surface side edge of the most imaging surface side disposed lens, and Σd is the full length.

Description

IMAGING LENS ASSEMBLY, CAMERA MODULE AND IMAGING DEVICE TECHNICAL FIELD
The present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
BACKGROUND
In recent years, portable imaging devices such as mobile phones and digital cameras are being widely used. With the recent miniaturization of imaging devices, imaging lens assembly mounted on such imaging devices also require downsizing. In addition, to keep up with the improved resolution of imaging elements mounted on the imaging devices, the imaging lens assembly is expected to have higher resolution.
In order to reduce the size of the imaging lens assembly, it is common to shorten a back focus of the imaging lens assembly in order to shorten a full length of the imaging lens assembly.
However, if the back focus is shortened, an imaging lens assembly such as a collapsible imaging lens assembly, the full length of which changes between a shooting state and a lens storage state, can not sufficiently shorten its full length in the lens storage state.
Therefore, there is room for improvement in the conventional imaging lens assembly from the viewpoint of obtaining good optical performance while being small in size.
SUMMARY
The present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
In accordance with the present disclosure, an imaging lens assembly includes:
at least two lenses having a positive refractive power; and
at least two lenses having a negative refractive power, wherein
a most imaging surface side disposed lens has an aspheric shape having an inflection point,
a full length of the imaging lens assembly, which is a distance on an optical axis from a vertex of an object side surface of a most object side disposed lens to an imaging surface, and a distance from the most imaging surface side disposed lens to the imaging surface are configured to change between a shooting state and a lens storage state, and
the imaging lens assembly satisfies, in the shooting state, the following conditional expressions,
FB /Yh ≥ 0.5,
ΣLd /Σd ≤ 0.75,
where FB is a distance from an imaging surface side edge of the most imaging surface side disposed lens to the imaging surface, Yh is an image height, ΣLd is a distance in an optical axis direction from the vertex of the object side surface of a most object side disposed lens to the imaging surface side edge of the most imaging surface side disposed lens, and Σd is the full length of the imaging lens assembly.
In one example, the full length of the imaging lens assembly and the distance from the most imaging surface side disposed lens to the imaging surface may be shorter in the lens storage state than in the shooting state.
In one example, the imaging lens assembly may further satisfy, in the shooting state, the following conditional expression,
0.9 < Σd /f < 1.2,
where f is a focal length of an entire optical system.
In one example, the imaging lens assembly may further satisfy the following conditional expression,
0.9 < fs /f < 1.9,
where fs is a composite focal length of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
In one example, the imaging lens assembly may further satisfy the following conditional expression,
0.2 < Fno /Yh < 0.9,
where Fno is an F number.
In one example, the most imaging surface side disposed lens may be a lens having a negative refractive power.
In one example, a surface on a side of the imaging surface of the most imaging surface side disposed lens may have a concave shape near the optical axis and a convex shape in a peripheral portion.
In one example, the most imaging surface side disposed lens may be formed of plastic.
In accordance with the present disclosure, a camera module includes:
the imaging lens assembly; and
an image sensor comprising the imaging surface.
In one example, the camera module may further include an IR filter disposed between the imaging lens assembly and the image sensor.
In accordance with the present disclosure, an imaging device includes:
the camera module; and
a housing for storing the imaging lens assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1A is a diagram of a camera module according to the present disclosure illustrating a configuration in which the full length of the imaging lens assembly changes between the shooting state and the lens storage state.
FIG. 1B is a diagram of a camera module according to the present disclosure illustrating an example of a holder and a lens drive mechanism.
FIG. 2 is a configuration diagram of a camera module according to a first example of the present disclosure;
FIG. 3 is an aberration diagram of the camera module according to the first example of the present disclosure;
FIG. 4 is a configuration diagram of a camera module according to a second example of the present disclosure;
FIG. 5 is an aberration diagram of the camera module according to the second example of the present disclosure;
FIG. 6 is a configuration diagram of a camera module according to a third example of the present disclosure;
FIG. 7 is an aberration diagram of the camera module according to the third example of the present disclosure;
FIG. 8 is a configuration diagram of a camera module according to a fourth example of the present disclosure;
FIG. 9 is an aberration diagram of the camera module according to the fourth example of the present disclosure;
FIG. 10 is a configuration diagram of a camera module according to a fifth example of the present disclosure, and
FIG. 11 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings. The same or similar elements and elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the drawings are explanatory and aim to illustrate the present disclosure, but they shall not be construed to limit the present disclosure.
<Outline of the disclosure>
First, an outline of the present disclosure will be described. As shown in FIG. 1A, a camera module 11 to which the present disclosure is applied, is configured to change a full length Σd of the imaging lens assembly 21 and a flange back FB between a shooting state where a subject (object) is shot (recorded as an image) and a lens storage state where the imaging lens assembly 21 is stored in a housing of the camera module 11. In the FIG. 1A, dash–dot lines represent the optical axes of the camera modules (hereinafter the same applies) . Here, the full length Σd of the imaging lens assembly 21 is a distance on the optical axis from a vertex of an object side surface of a most object side disposed lens to an imaging surface S. The flange back FB of the imaging lens assembly 21 is a distance from an imaging surface S side edge of the most imaging surface S side disposed lens to the imaging surface S. In other words, the flange back FB is a shortest distance from a most imaging surface S side disposed lens surface to the imaging surface S. ΣLd in the FIG. 1A is a lens length indicating a length in the optical axis direction of only a lens portion of the optical system that constitutes the imaging lens assembly 21. That is, the lens length ΣLd is a distance in the optical axis direction from the vertex of the object side surface of the most object side disposed lens to the imaging surface S side edge of the most imaging surface S side disposed lens. The full length Σd is the sum of the lens length ΣLd and the flange back FB.
The camera module 11 has a shorter full length Σd and a shorter flange back FB in the lens storage state than in the shooting state. For example, the camera module 11 pushes out the imaging lens assembly 21, which is accommodated in the housing, in a direction protruding from the housing, by using a lens drive mechanism 24 such as a motor when a predetermined user operation, which starts a shooting mode, is performed. On the other hand, the camera module 11 retracts and stores the imaging lens assembly 21 in the housing by using the lens drive mechanism 24 when a predetermined user operation, which ends the shooting mode, is performed. Such a camera module 11 is called a collapsible camera module which has excellent storability and portability when a shooting is not performed.
As shown in FIG. 1B, the imaging lens assembly 21 may be held in a lens barrel 25 which is movable in the optical axis direction by the lens drive mechanism 24. In FIG. 1B, the lenses included in the imaging lens assembly 21 are illustrated in a simplified manner. In the example shown in FIG. 1B, the lens barrel 25 is disposed inside a housing 26, and is movable in the optical axis direction together with the imaging lens assembly 21 by an expandable member 241 which constitutes a part of the lens drive mechanism 24. The expandable member 241 is driven in the optical axis direction by a motor 242 which constitutes a part of the lens drive mechanism 24. As shown in FIG. 1B, the lens barrel 25 and the imaging lens assembly 21 are stored in the housing 26 in the lens storage state, and project toward the object side with respect to the housing 26 in the shooting state.
The camera module 11 to which the present disclosure is applied is configured as shown in FIGS. 2, 4, 6, 8 and 10, for example.
The camera module 11 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23.
The imaging lens assembly 21 is a lens configured so that the full length Σd and the flange  back FB change between the shooting state and the lens storage state, as described above, and is designed to maintain good optical performance despite being small in size.
The image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) . The image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21. The image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage. The optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from incident light from the imaging lens assembly 21.
The imaging lens assembly 21 will be described in more detail. The imaging lens assembly 21 includes at least two lenses having a positive refractive power and at least two lenses having a negative refractive power. The most imaging surface S side disposed lens has an aspheric shape having an inflection point. Specifically, in the example shown in FIG. 2, a surface on the side of the imaging surface S of the most imaging surface S side disposed lens is an aspherical surface having an inflection point near a lens edge. More specifically, the surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave shape in the lens center (i.e. near the optical axis) and a convex shape in a peripheral portion (i.e. in the vicinity of an outer peripheral area) . In the shooting state, a ratio of the flange back FB with respect to the full length Σd is sufficiently large. Since the flange back FB is large in the shooting state, a sufficiently large air gap can be secured between the imaging lens assembly 21 and the imaging surface S. The large air gap enables the imaging lens assembly 21 to retract to the imaging surface S side with a large moving amount when the imaging lens assembly 21 is stored in the housing.
By employing such a collapsible imaging lens assembly 21 including at least two positive refractive power lenses and at least two negative refractive power lenses and having a large air gap between the imaging lens assembly 21 and the imaging surface S, good optical performance can be obtained despite the small size. Also, since the most imaging surface S side disposed lens has an aspheric shape having an inflection point, good optical performance can be obtained for all image heights.
Furthermore, the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (1) in the shooting state:
FB /Yh ≥ 0.5      (1)
In the formula (1) , FB is the flange back of the imaging lens assembly 21 described above, which is the distance from the imaging surface S side edge of the most imaging surface side disposed lens to the imaging surface S (hereinafter the same applies) . Yh is an image height (hereinafter the same applies) .
As the ratio shown in the formula (1) increases, a larger flange back B can be obtained while securing the size of the image sensor 23. As a result, the air gap for storing the imaging lens assembly 21 described above can be larger, and thus the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively.
Furthermore, the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (2) in the shooting state:
ΣLd /Σd ≤ 0.75      (2)
In the formula (2) , ΣLd is the lens length described above, which is the distance in the optical axis direction from the vertex of the object side surface of the most object side disposed lens to the imaging surface S side edge of the most imaging surface side S disposed lens (hereinafter the same applies) . Σd is the full length of the imaging lens assembly21 described  above, which is the distance on the optical axis from the vertex of the object side surface of the most object side disposed lens to the imaging surface S (hereinafter the same applies) .
As the ratio shown in the formula (2) decreases, the air gap for storing the imaging lens assembly 21 can be larger, and thus the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively.
Furthermore, the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (3) in the shooting state:
0.9 < Σd /f < 1.2      (3)
In the formula (3) , f is a focal length of an entire optical system (hereinafter the same applies) .
If the value of Σd /f falls below the lower limit value of the formula (3) (i.e. 0.9) , manufacturability of the imaging lens assembly 21 is reduced, and it is difficult to maintain the optical performance. On the other hand, if the value of Σd /f exceeds the upper limit value of the formula (3) (i.e. 1.2) , it is difficult to miniaturize the imaging lens assembly 21.
Furthermore, the manufacturability of the imaging lens assembly 21 and its good optical performance can be maintained more effectively when the camera module 11 satisfies the following formula (4) :
0.9 < fs /f < 1.9      (4)
In the formula (4) , fs is a composite focal length of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens (hereinafter the same applies) .
If the value of fs /f falls below the lower limit value of the formula (4) (i.e. 0.9) , the sensitivity of the decentering error of the lens group on the imaging surface S side becomes very high and the difficulty of manufacturing the imaging lens assembly 21 increases. On the other hand, if the value of fs /f exceeds the upper limit value of the formula (4) (i.e. 1.9) , a spherical aberration is overcorrected and it is difficult to maintain the optical performance.
Furthermore, the imaging lens assembly 21 can be miniaturized and the manufacturability of the imaging lens assembly 21 can be maintained more effectively when the camera module 11 satisfies the following formula (5) :
0.2 < Fno /Yh < 0.9     (5)
In the formula (5) , Fno is an F number (hereinafter the same applies) .
If the value of Fno /Yh falls below the lower limit value of the formula (5) (i.e. 0.2) , it is difficult to miniaturize the imaging lens assembly 21. On the other hand, if the value of Fno /Yh exceeds the upper limit value of the formula (5) (i.e. 0.9) , the sensitivity of the decentering error becomes very high and the difficulty of manufacturing the imaging lens assembly 21 increases.
Furthermore, in view of lens forming, it is preferable that an aspheric lens in the imaging lens assembly 21, particularly an aspheric lens of aspheric shape having an inflection point, is formed of a plastic material (glass material) . In addition, among the lenses which constitute the imaging lens assembly 21, a lens having a size equal to or smaller than a specific size may be a lens formed of a plastic material, and a lens larger than the specific size may be a lens formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than a plastic material.
Such a camera module 11 including the imaging lens assembly 21 is applicable to compact digital devices (imaging devices) such as mobile phones, wearable cameras and surveillance cameras.
<Configuration examples of the camera module>
Next, more specific examples to which the present disclosure is applied will be described. In the following examples, “Si” indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side. Optical elements of the corresponding surfaces are shown together with the corresponding surface number “Si” .  Denotations of “first surface” or “1st surface” indicate a surface on the object side of the lens, and denotations of “second surface” or “2nd surface” indicate a surface on the imaging surface S side of the lens. “R” indicates the value of a central curvature radius (mm) of the surface. Regarding “R” , “E + i” indicates an exponential expression with a base of 10, i.e., "10i " . For example, "1.00 E +18" indicates "1.00 × 1018" . Such an exponential expression is also applied to an aspheric coefficient described later. “Di” indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) . “Ndi” indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface. “νdi” indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
The imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces. The aspheric shape of the lens is defined by the following formula (6) :
Z = C × h 2 / {1 + (1 -K × C 2 × h 2) 1/2} + Σ An × h n      (6)
(n = an integer greater than 3) .
In the formula (6) , Z is a depth of the aspheric surface, C is a paraxial curvature which is equal to 1 /R, h is a distance from the optical axis to a lens surface, K is an eccentricity (second-order aspheric coefficient) , and An is an nth-order aspheric coefficient.
[First example]
A first example in which specific numerical values are applied to the camera module 11 shown in FIG. 2, will be described.
In the first example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power with a convex surface facing the imaging surface S side, and a fifth lens L5 having a negative refractive power with a concave surface facing the imaging surface S side. The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
Table 1 shows lens data of the first example. Table 2 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens. In the example of Table 2, fs is a composite focal length of the first lens L1 and the second lens L2. Table 3 shows the focal length of the entire system f, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly which is obtained when an object point is taken at infinity Σd, the lens length ΣLd, the flange back FB, the image height Yh, and values corresponding to the conditional expressions. Table 4 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 1
Si Ri Di Nd νd
1 (Virtual Surface)   1.00E+10    
2 (Aperture Stop) 1.00E+18 -0.4350    
3 (L1 1st Surface) 4.374 1.740 1.544 56.07
4 (L1 2nd Surface) 287.191 0.116    
5 (L2 1st Surface) 45.979 0.580 1.635 23.97
6 (L2 2nd Surface) 6.872 1.132    
7 (L3 1st Surface) 5.068 1.233 1.535 55.73
8 (L3 2nd Surface) 5.408 1.297    
9 (L4 1st Surface) -8.132 1.116 1.635 23.97
10 (L4 2nd Surface) -7.602 0.946    
11 (L5 1st Surface) 4.837 0.841 1.535 55.73
12 (L5 2nd Surface) 3.667 4.496    
13 (Optical Filter) 1.00E+18 0.210 1.517 64.20
14 (Image Plane)   0.300    
TABLE 2
Lens Focal length
L1 8.16
L2 -12.80
L3 66.67
L4 101.08
L5 -37.88
fs 16.53
TABLE 3
f 13.89
Fno 2.40
43.96
Σd 14.01
ΣLd 9.23
FB 4.78
Yh 5.80
FB/Yh 0.82
ΣLd/Σd 0.66
Σd/f 1.01
fs/f 1.19
Fno/Yh 0.41
TABLE 4
  S3 (L1 1st Surface) S4 (L1 2nd Surface) S5 (L2 1st Surface)
R 4.374282983166210E+00 2.871907543496870E+02 4.597895906347360E+01
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -4.693491718633530E-04 -2.474388150713030E-04 2.168081232538260E-05
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.077430137016600E-05 -1.060870625349310E-05 -7.602691254832170E-05
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.712811142173320E-06 -1.120240849885720E-05 -1.498444793958760E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 7.531041685287040E-08 8.863717906063860E-07 1.148414196152800E-06
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S6 (L2 2nd Surface) S7 (L3 1st Surface) S8 (L3 2nd Surface)
R 6.872375963068580E+00 5.067803281054720E+00 5.408417251708880E+00
K -4.725508332707000E+00 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 6.304780964013690E-04 -4.039143693627890E-03 -1.465085163963590E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.164637704860940E-04 -2.959489957991050E-04 -6.304259593196880E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.064118067493940E-05 -5.481148742676070E-06 -6.868848501674320E-06
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 7.270296654970850E-07 3.211125651092000E-06 2.953301674306350E-06
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface) S11 (L5 1st Surface)
R -8.132357657210610E+00 -7.602284841309550E+00 4.836692447425280E+00
K -1.000000000000000E+01 -3.427271445856000E+00 -9.058246374816000E-01
A3 0.000000000000000E+00 0.000000000000000E+00 -1.153707456084960E-02
A4 1.270040731242770E-03 -2.425071878072670E-03 -1.325963089703600E-02
A5 0.000000000000000E+00 0.000000000000000E+00 -8.842117240779590E-03
A6 -5.764749445969710E-04 7.763676491145470E-04 4.204416790531720E-03
A7 0.000000000000000E+00 0.000000000000000E+00 2.376391336780540E-04
A8 -1.847631932837120E-05 -1.492593879979130E-04 -2.397025266763410E-04
A9 0.000000000000000E+00 0.000000000000000E+00 -1.986558079681330E-05
A10 -7.575632144696760E-06 6.584153583154160E-06 1.400363234916750E-06
A11 0.000000000000000E+00 0.000000000000000E+00 6.747713206274630E-07
A12 0.000000000000000E+00 0.000000000000000E+00 3.760370679288910E-07
A13 0.000000000000000E+00 0.000000000000000E+00 7.888365878374740E-08
A14 0.000000000000000E+00 0.000000000000000E+00 -4.270234700709730E-09
A15 0.000000000000000E+00 0.000000000000000E+00 -1.095924788941590E-08
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S12 (L5 2nd Surface)
R 3.667126793957230E+00
K -3.877443356251000E+00
A3 -2.250587601237130E-02
A4 2.195699878341100E-02
A5 -4.367753302174020E-02
A6 2.947868981033170E-02
A7 -1.031736827330870E-02
A8 2.004747311113440E-03
A9 -2.047444140686270E-04
A10 8.203834256450030E-06
A11 0.000000000000000E+00
A12 0.000000000000000E+00
A13 0.000000000000000E+00
A14 0.000000000000000E+00
A15 0.000000000000000E+00
A16 0.000000000000000E+00
A17 0.000000000000000E+00
A18 0.000000000000000E+00
A19 0.000000000000000E+00
A20 0.000000000000000E+00
Aberrations in the first example are shown in FIG. 3. FIG. 3 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion. Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength. In the spherical aberration diagram, aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown. In the graph showing astigmatism, “S” indicates a value of aberration on a sagittal image surface and “T” indicates a value of aberration on a tangential image surface. “IMG HT” indicates an image height. The same applies to aberration diagrams in other examples.
As can be seen from the aberration diagrams in FIG. 3, it is clear that the camera module 11  in the first example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
[Second example]
Next, a second example in which specific numerical values are applied to the camera module 11 shown in FIG. 4, will be described.
In the second example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power with a concave surface facing the imaging surface S side. The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
Table 5 shows lens data of the second example. Table 6 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens. In the example of Table 6, fs is a composite focal length of the first lens L1 and the second lens L2. Table 7 shows the focal length of the entire system f, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly which is obtained when an object point is taken at infinity Σd, the lens length ΣLd, the flange back FB, the image height Yh, and values corresponding to the conditional expressions. Table 8 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 5
Si Ri Di Nd νd
1 (Virtual Surface)   1.00E+10    
2 (Aperture Stop) 1.00E+18 -0.300    
3 (L1 1st Surface) 4.006 1.418 1.5439 56.07
4 (L1 2nd Surface) -30.597 0.080    
5 (L2 1st Surface) 159.085 0.400 1.6349 23.97
6 (L2 2nd Surface) 5.907 0.535    
7 (L3 1st Surface) 4.459 0.800 1.5350 55.73
8 (L3 2nd Surface) 10.613 0.879    
9 (L4 1st Surface) -12.797 0.500 1.6349 23.97
10 (L4 2nd Surface) -24.255 0.429    
11 (L5 1st Surface) 46.285 0.570 1.6349 23.97
12 (L5 2nd Surface) -23.390 0.632    
13 (L6 1st Surface) 2.586 0.566 1.5350 55.73
14 (L6 2nd Surface) 1.740 2.305    
15 (Optical Filter) 1.00E+18 0.210 1.5168 64.20
16 (Image Plane)   0.335    
TAB LE 6
Lens Focal length
L1 6.59
L2 -9.58
L3 13.71
L4 -42.99
L5 24.31
L6 -12.93
fs 15.22
TABLE 7
f 8.72
Fno 2.04
47.40
Σd 9.66
ΣLd 7.13
FB 2.53
Yh 4.00
FB/Yh 0.63
ΣLd/Σd 0.74
Σd/f 1.11
fs/f 1.74
Fno/Yh 0.51
TABLE 8
  S3 (L1 1st Surface) S4 (L1 2nd Surface) S5 (L2 1st Surface)
R 4.006036912249650E+00 -3.059657506670850E+01 1.590853555729170E+02
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.911306002287180E-03 -1.869797970476330E-03 1.275385078687380E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -3.408908914340770E-04 -1.796185223278350E-04 -6.570021080222750E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 3.532521789308460E-05 -2.239975670789690E-04 -2.352566028965800E-04
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -1.619257476658450E-05 2.427022300223210E-05 3.913910285616110E-05
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S6 (L2 2nd Surface) S7 (L3 1st Surface) S8 (L3 2nd Surface)
R 5.907365559868180E+00 4.459290553981390E+00 1.061345736016500E+01
K -4.725508332707000E+00 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -4.072027170678340E-04 -8.009326473282610E-03 -7.129721429703220E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -8.063463908790730E-04 1.832661693798400E-04 -4.166447841175850E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -2.513527752760780E-06 7.268818128062720E-05 9.058848771982310E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 8.009529675772380E-06 6.272140343619960E-06 -9.238262502462980E-07
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface) S11 (L5 1st Surface)
R -1.279713966253000E+01 -2.425527509538350E+01 4.628525193138870E+01
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -3.106879678325980E-04 -4.700419126016110E-04 -3.100349416829190E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -6.596745553601700E-05 -1.505342550263110E-04 -2.342223307334680E-03
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -3.316528259129590E-05 1.140241375485240E-05 8.518141013942330E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -3.703592677877890E-06 2.994919561042530E-06 -8.349137166317830E-05
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -8.223473914991080E-08 -2.584730356830070E-07 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 2.351183851560890E-08 -1.269433084061660E-07 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 1.345166597769240E-08 -5.094906022710900E-09 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 -8.229384911763120E-10 1.376496516411150E-08 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S12 (L5 2nd Surface) S13 (L6 1st Surface) S14 (L6 2nd Surface)
R -2.338972920413400E+01 2.586117361799110E+00 1.739519364157910E+00
K -3.427271445856000E+00 -9.058246374816000E-01 -3.877443356251000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 -3.156314601841710E-02
A4 -1.351117265521130E-02 -1.086044438002640E-01 6.504362960183020E-02
A5 0.000000000000000E+00 0.000000000000000E+00 -1.956073678969560E-01
A6 4.618882679649040E-03 2.099991139555150E-02 1.915128776542730E-01
A7 0.000000000000000E+00 0.000000000000000E+00 -9.580248845093770E-02
A8 -1.338429278126440E-03 -2.666902724292960E-03 2.682163639556710E-02
A9 0.000000000000000E+00 0.000000000000000E+00 -4.052068856393590E-03
A10 8.360160771124060E-05 1.081290747295690E-04 2.593076928814220E-04
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
Aberrations in the second example are shown in FIG. 5. As can be seen from the aberration diagrams in FIG. 5, it is obvious that the camera module 11 in the second example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
[Third example]
Next, a third example in which specific numerical values are applied to the camera module 11 shown in FIG. 6, will be described.
In the third example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power, a third lens L3 having a positive refractive power, and a fourth lens L4 having a negative refractive power with a concave surface facing the imaging surface S side. The aperture stop 3 is disposed between the second surface of the second lens L2 and the first surface of the third lens L3. 
Table 9 shows lens data of the third example. Table 10 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens. In the example of Table 10, fs is a composite focal length of the first lens L1 and the second lens L2. Table 11 shows the focal length of the entire system f, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly which is obtained when an object point is taken at infinity Σd, the lens length ΣLd, the flange back FB, the image height Yh, and values corresponding to the conditional expressions. Table 12 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 9
Si Ri Di Nd νd
1 (Virtual Surface)   1.00E+10    
2 (L1 1st Surface) 3.802 1.157 1.5346 56.27
3 (L1 2nd Surface) 177.137 0.060    
4 (L2 1st Surface) 49.338 0.663 1.6349 23.97
5 (L2 2nd Surface) 9.432 1.083    
6 (Aperture Stop) 1.00E+18 1.000    
7 (L3 1st Surface) -110.690 0.904 1.6349 23.97
8 (L3 2nd Surface) -12.372 0.575    
9 (L4 1st Surface) 6.032 1.004 1.5346 56.27
10 (L4 2nd Surface) 2.867 3.982    
11 (Optical Filter) 1.00E+18 0.210 1.5168 64.20
12 (Image Plane)   0.300    
TABLE 10
Lens Focal length
L1 7.25
L2 -18.49
L3 21.86
L4 -11.49
fs 10.67
TABLE 11
f 11.10
Fno 2.79
44.30
Σd 10.94
ΣLd 6.77
FB 4.17
Yh 4.62
FB/Yh 0.90
ΣLd/Σd 0.62
Σd/f 0.99
fs/f 0.96
Fno/Yh 0.60
TABLE 12
  S2 (L1 1st Surface) S3 (L1 2nd Surface) S4 (L2 1st Surface)
R 3.802031290573680E+00 1.771372886332950E+02 4.933809716890890E+01
K -4.222627690878340E+00 4.133719695076220E+01 5.000000000000000E+02
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 5.654075025085200E-03 -3.128979150769280E-02 -2.324072299924700E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.727148067468160E-03 3.085622545088260E-03 -2.523599720932590E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 4.110383094625670E-04 1.153615489433310E-04 1.081511112184180E-03
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -1.542072600389600E-04 -7.386942944034180E-05 -9.405211160365600E-05
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S5 (L2 2nd Surface) S7 (L3 1st Surface) S8 (L3 2nd Surface)
R 9.432015679091100E+00 -1.106900913845380E+02 -1.237156444816480E+01
K 5.506142808935400E+00 -2.588468378849690E+03 1.640462115279430E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.366936547900330E-03 9.968523901728590E-03 1.383750433382940E-02
A5 0.000000000000000E+00 0.000000000000000E+00 -5.893811720499000E-03
A6 -3.904156329794120E-03 -8.151440882634300E-03 3.250844818240270E-04
A7 0.000000000000000E+00 0.000000000000000E+00 -1.365951393886340E-03
A8 9.674544420826550E-04 1.941251159888160E-03 -3.918892235408180E-04
A9 0.000000000000000E+00 0.000000000000000E+00 1.432551110410270E-04
A10 -8.887014499340580E-05 -6.105082011003630E-04 -6.059774084943440E-05
A11 0.000000000000000E+00 0.000000000000000E+00 6.485884410607930E-05
A12 0.000000000000000E+00 7.586306601039520E-05 4.064953530958530E-05
A13 0.000000000000000E+00 0.000000000000000E+00 -9.989221485428300E-06
A14 0.000000000000000E+00 0.000000000000000E+00 -7.785903591244450E-06
A15 0.000000000000000E+00 0.000000000000000E+00 -1.688625481944950E-06
A16 0.000000000000000E+00 0.000000000000000E+00 1.553717889789440E-06
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface)
R 6.031969094924200E+00 2.867446207356180E+00
K -1.000000000000000E+01 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00
A4 -2.994042642014170E-02 1.426524525863420E-02
A5 2.145200416513360E-03 -2.389739685168660E-02
A6 1.355195181183530E-03 7.100742267919820E-03
A7 -5.254053740457060E-04 4.890011722656620E-04
A8 -6.855671768363250E-04 -4.324272599498770E-04
A9 2.527814941566280E-04 -3.403857977666240E-06
A10 2.243466607926210E-06 1.851740445568120E-05
A11 -4.204362876823750E-06 -6.669285163540690E-07
A12 3.543034386581930E-06 -4.660355900720310E-07
A13 -6.214370187641160E-07 3.147355448837110E-08
A14 3.521633581929570E-07 -3.240798354869540E-08
A15 9.882874685174850E-08 1.183964750105940E-09
A16 -2.159738495273670E-08 3.265878614453200E-09
A17 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00
Aberrations in the third example are shown in FIG. 7. As can be seen from the aberration diagrams in FIG. 7, it is obvious that the camera module 11 in the third example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
[Fourth example]
Next, a fourth example in which specific numerical values are applied to the camera module 11 shown in FIG. 8, will be described.
In the fourth example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power with a concave surface facing the imaging surface S side. The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
Table 13 shows lens data of the fourth example. Table 14 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens. In the example of Table 14, fs is a composite focal length of the first lens L1 and the second lens L2. Table 15 shows the focal length of the entire system f, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly which is obtained when an object point is taken at infinity Σd, the lens length ΣLd, the flange back FB, the image height Yh, and values corresponding to the conditional expressions. Table 16 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 13
Si Ri Di Nd νd
1 (Virtual Surface)   1.00E+10    
2 (Aperture Stop) 1.00E+18 -0.438    
3 (L1 1st Surface) 5.610 1.955 1.5439 56.07
4 (L1 2nd Surface) -94.781 0.100    
5 (L2 1st Surface) 61.836 0.343 1.6349 23.97
6 (L2 2nd Surface) 8.061 0.761    
7 (L3 1st Surface) 6.799 1.169 1.5350 55.73
8 (L3 2nd Surface) 18.309 1.356    
9 (L4 1st Surface) -13.118 0.731 1.6349 23.97
10 (L4 2nd Surface) -22.484 0.686    
11 (L5 1st Surface) 32.344 0.898 1.6349 23.97
12 (L5 2nd Surface) -111.815 1.102    
13 (L6 1st Surface) 3.558 0.777 1.5350 55.73
14 (L6 2nd Surface) 2.467 3.694    
15 (Optical Filter) 1.00E+18 0.220 1.5168 64.20
16 (Image Plane)   0.300    
TABLE 14
Lens Focal length
L1 9.82
L2 -14.63
L3 19.56
L4 -51.15
L5 39.61
L6 -20.04
fs 22.64
TABLE 15
f 13.01
Fno 2.08
46.60
Σd 14.09
ΣLd 10.41
FB 3.68
Yh 5.80
FB/Yh 0.63
ΣLd/Σd 0.74
Σd/f 1.08
fs/f 1.74
Fno/Yh 0.36
TABLE 16
  S3 (L1 1st Surface) S4 (L1 2nd Surface) S5 (L2 1st Surface)
R 5.610414694285750E+00 -9.478078484525570E+01 6.183602050397920E+01
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.030466995830030E-03 -6.053079129698070E-04 4.069727765995530E-04
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -6.187053565919240E-05 -3.059944129714630E-05 -9.610818617957380E-05
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.359729802261180E-06 -1.615509134959570E-05 -1.624867225589740E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -5.220222936569110E-07 8.154473576837390E-07 1.230991109986150E-06
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S6 (L2 2nd Surface) S7 (L3 1st Surface) S8 (L3 2nd Surface)
R 8.060534436998860E+00 6.798813171985340E+00 1.830899611800240E+01
K -4.725508332707000E+00 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.726062693183110E-04 -2.575841540225340E-03 -2.244102600604670E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.291432212206670E-04 2.600187503164630E-05 -5.764405976224520E-05
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -9.624513511004070E-07 5.404306374825380E-06 7.196182163118750E-06
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 3.148755010164620E-07 3.415003110358090E-07 -6.822601499342000E-08
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface) S11 (L5 1st Surface)
R -1.311809998958340E+01 -2.248424773745540E+01 3.234416822430570E+01
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -3.362788716021000E-04 3.259882670716770E-06 -1.283098232510310E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.777711631933170E-05 -3.749685448727790E-05 -3.398200983846650E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -3.434614277247120E-06 -1.086536136266010E-06 6.979501453009950E-06
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -1.970308127553390E-07 6.744133139598070E-08 -3.381736532169020E-06
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -4.070088126954600E-09 6.195905503755970E-09 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 8.265065710507890E-10 1.367335071238780E-10 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 6.237037357697140E-11 -2.442354221821370E-11 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 -1.242339336097840E-11 6.809511518149140E-12 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S12 (L5 2nd Surface) S13 (L6 1st Surface) S14 (L6 2nd Surface)
R -1.118148108918630E+02 3.557532358335650E+00 2.467016462414470E+00
K -3.427271445856000E+00 -9.058246374816000E-01 -3.877443356251000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 -1.267991018756300E-02
A4 -4.490321888539960E-03 -3.475685779776400E-02 2.018494029626550E-02
A5 0.000000000000000E+00 0.000000000000000E+00 -4.279399874572910E-02
A6 6.612248689404550E-04 3.134375039850520E-03 2.871910717348930E-02
A7 0.000000000000000E+00 0.000000000000000E+00 -9.827881508768980E-03
A8 -9.606817866297160E-05 -1.841949030262010E-04 1.883003380132900E-03
A9 0.000000000000000E+00 0.000000000000000E+00 -1.945342829340240E-04
A10 2.793291771392320E-06 3.436407996445710E-06 8.480284659621530E-06
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
Aberrations in the fourth example are shown in FIG. 9. As can be seen from the aberration diagrams in FIG. 9, it is obvious that the camera module 11 in the fourth example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
[Fifth example]
Next, a fifth example in which specific numerical values are applied to the camera module 11 shown in FIG. 10, will be described.
In the fifth example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power with a  convex surface facing the object side, a second lens L2 having a negative refractive power with a concave surface facing the imaging surface S side, a third lens L3 having a positive refractive power with a convex surface facing the object side, a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power with a concave surface facing the imaging surface S side. The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the first lens L1 and on the object side with respect to the second surface of the first lens L1.
Table 17 shows lens data of the fifth example. Table 18 shows a focal length of each lens and a composite focal length fs of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens. In the example of Table 18, fs is a composite focal length of the first lens L1 and the second lens L2. Table 19 shows the focal length of the entire system f, the F number Fno, the angle of view 2ω, the full length of the imaging lens assembly which is obtained when an object point is taken at infinity Σd, the lens length ΣLd, the flange back FB, the image height Yh, and values corresponding to the conditional expressions. Table 20 shows the aspheric coefficients of the imaging lens assembly 21.
TABLE 17
Si Ri Di Nd νd
1 (Virtual Surface)   1.00E+10    
2 (Aperture Stop) 1.00E+18 -0.3478    
3 (L1 1st Surface) 4.553 1.428 1.544 56.07
4 (L1 2nd Surface) -66.086 0.093    
5 (L2 1st Surface) 64.635 0.464 1.635 23.97
6 (L2 2nd Surface) 6.307 0.598    
7 (L3 1st Surface) 5.393 0.985 1.535 55.73
8 (L3 2nd Surface) 12.571 1.985    
9 (L4 1st Surface) -18.498 0.892 1.635 23.97
10 (L4 2nd Surface) -12.595 0.788    
11 (L5 1st Surface) 2.904 0.672 1.535 55.73
12 (L5 2nd Surface) 1.990 2.963    
13 (Optical Filter) 1.00E+18 0.210 1.517 64.20
14 (Image Plane)   0.300    
TABLE 18
Lens Focal length
L1 7.90
L2 -11.04
L3 16.87
L4 58.72
L5 -15.92
fs 19.78
TABLE 19
f 10.66
Fno 2.24
45.26
Σd 11.38
ΣLd 8.31
FB 3.07
Yh 4.60
FB/Yh 0.67
ΣLd/Σd 0.73
Σd/f 1.07
fs/f 1.85
Fno/Yh 0.49
TEBLE 20
  S3 (L1 1st Surface) S4 (L1 2nd Surface) S5 (L2 1st Surface)
R 4.552862551417140E+00 -6.608599088557810E+01 6.463481423203610E+01
K 0.000000000000000E+00 0.000000000000000E+00 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.937866835295020E-03 -1.223870883684040E-03 6.776091180720090E-04
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.620015741947140E-04 -9.554904309776210E-05 -3.574781940758630E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.515935839181470E-05 -8.390353544038090E-05 -8.401859214784020E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -4.893996911208110E-06 6.932532320411610E-06 1.097174772031690E-05
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S6 (L2 2nd Surface) S7 (L3 1st Surface) S8 (L3 2nd Surface)
R 6.306875892590400E+00 5.392510247204890E+00 1.257110381284520E+01
K -4.725508332707000E+00 0.000000000000000E+00 0.000000000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.545276816182570E-04 -5.408419208594880E-03 -4.182161540504750E-03
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -3.665998341603050E-04 1.229013292087090E-04 -2.160645170669820E-04
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.445601078022600E-07 2.929199010147280E-05 3.192822274238880E-05
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.330181328336730E-06 1.470623046865290E-06 2.310260725895220E-07
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S9 (L4 1st Surface) S10 (L4 2nd Surface) S11 (L5 1st Surface)
R -1.849780992913930E+01 -1.259533070370760E+01 2.904401269556930E+00
K -1.000000000000000E+01 -3.427271445856000E+00 -9.058246374816000E-01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.063650912769420E-03 -8.935486050507290E-03 -6.738012633678480E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.086279535748830E-03 2.386218196630840E-03 9.874765307964980E-03
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 5.908336323430520E-05 -4.698853691497900E-04 -9.563459591480250E-04
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -2.587933533823080E-05 2.402199446359280E-05 3.149270964386900E-05
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  S12 (L5 2nd Surface)
R 1.990494547920140E+00
K -3.877443356251000E+00
A3 -2.118129621906380E-02
A4 4.230370072747820E-02
A5 -1.086948386136910E-01
A6 9.152532793627450E-02
A7 -3.948017699978830E-02
A8 9.539589501342980E-03
A9 -1.243187863591240E-03
A10 6.859258217907770E-05
A11 0.000000000000000E+00
A12 0.000000000000000E+00
A13 0.000000000000000E+00
A14 0.000000000000000E+00
A15 0.000000000000000E+00
A16 0.000000000000000E+00
A17 0.000000000000000E+00
A18 0.000000000000000E+00
A19 0.000000000000000E+00
A20 0.000000000000000E+00
Aberrations in the fifth example are shown in FIG. 11. As can be seen from the aberration diagrams in FIG. 11, it is obvious that the camera module 11 in the fifth example can satisfactorily correct various aberrations to obtain superior optical performance despite being small in size.
In the description of embodiments of the present disclosure, it is to be understood that terms such as "central" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "back" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" and "counterclockwise" should be construed to refer to the orientation or the position as described or as shown in the drawings in discussion. These relative terms are only used to simplify the description of the present disclosure, and do not indicate or imply that the device or element referred to must have a particular orientation, or must be constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure.
In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, a feature defined as "first" and "second" may comprise one or more of this feature. In the description of the present disclosure, "a plurality of" means “two or more than two” , unless otherwise specified.
In the description of embodiments of the present disclosure, unless specified or limited otherwise, the terms "mounted" , "connected" , "coupled" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
In the embodiments of the present disclosure, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween. Furthermore, a first feature "on" ,  "above" or "on top of" a second feature may include an embodiment in which the  first feature is orthogonally or obliquely "on" , "above" or "on top of" the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below" , "under" or "on bottom of" a second feature may include an embodiment in which the first feature is orthogonally or obliquely "below" , "under" or "on bottom of" the second feature, or just means that the first feature is at a height lower than that of the second feature.
Various embodiments and examples are provided in the above description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings are described in the above. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numbers and/or reference letters may be repeated in different examples in the present disclosure. This repetition is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may also be applied.
Reference throughout this specification to "an embodiment" , "some embodiments" , "an exemplary embodiment" , "an example" , "a specific example" or "some examples" means that a particular feature, structure, material, or characteristics described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device and equipment. As to the specification, "the computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) . In addition, the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
It should be understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of  steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with programs. The programs may be stored in a computer readable storage medium, and the programs comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.
Although embodiments of the present disclosure have been shown and described, it should be appreciated by those skilled in the art that the embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims (11)

  1. An imaging lens assembly, comprising:
    at least two lenses having a positive refractive power; and
    at least two lenses having a negative refractive power, wherein
    a most imaging surface side disposed lens has an aspheric shape having an inflection point,
    a full length of the imaging lens assembly, which is a distance on an optical axis from a vertex of an object side surface of a most object side disposed lens to an imaging surface, and a distance from the most imaging surface side disposed lens to the imaging surface are configured to change between a shooting state and a lens storage state, and
    the imaging lens assembly satisfies, in the shooting state, the following conditional expressions,
    FB /Yh ≥ 0.5,
    ΣLd /Σd ≤ 0.75,
    where FB is a distance from an imaging surface side edge of the most imaging surface side disposed lens to the imaging surface, Yh is an image height, ΣLd is a distance in an optical axis direction from the vertex of the object side surface of a most object side disposed lens to the imaging surface side edge of the most imaging surface side disposed lens, and Σd is the full length of the imaging lens assembly.
  2. The imaging lens assembly according to claim 1, wherein the full length of the imaging lens assembly and the distance from the most imaging surface side disposed lens to the imaging surface are shorter in the lens storage state than in the shooting state.
  3. The imaging lens assembly according to claim 1, wherein the imaging lens assembly further satisfies, in the shooting state, the following conditional expression,
    0.9 < Σd /f < 1.2,
    where f is a focal length of an entire optical system.
  4. The imaging lens assembly according to claim 1, wherein the imaging lens assembly further satisfies the following conditional expression,
    0.9 < fs /f < 1.9,
    where fs is a composite focal length of lenses from the most object side disposed lens to the most object side disposed negative refractive power lens.
  5. The imaging lens assembly according to claim 1, wherein the imaging lens assembly further satisfies the following conditional expression,
    0.2 < Fno /Yh < 0.9,
    where Fno is an F number.
  6. The imaging lens assembly according to claim 1, wherein the most imaging surface side disposed lens is a lens having a negative refractive power.
  7. The imaging lens assembly according to claim 1, wherein a surface on a side of the imaging surface of the most imaging surface side disposed lens has a concave shape near the optical axis and a convex shape in a peripheral portion.
  8. The imaging lens assembly according to claim 1, wherein the most imaging surface side disposed lens is formed of plastic.
  9. A camera module, comprising:
    an imaging lens assembly according to any one of claims 1-8; and
    an image sensor comprising the imaging surface.
  10. The camera module according to claim 9, further comprising an IR filter disposed between the imaging lens assembly and the image sensor.
  11. An imaging device, comprising:
    a camera module according to any one of claims 9 and 10; and
    a housing for storing the imaging lens assembly.
PCT/CN2020/097763 2020-06-23 2020-06-23 Imaging lens assembly, camera module and imaging device WO2021258295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102352.1A CN115715378A (en) 2020-06-23 2020-06-23 Imaging lens assembly, camera module and imaging apparatus
PCT/CN2020/097763 WO2021258295A1 (en) 2020-06-23 2020-06-23 Imaging lens assembly, camera module and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097763 WO2021258295A1 (en) 2020-06-23 2020-06-23 Imaging lens assembly, camera module and imaging device

Publications (1)

Publication Number Publication Date
WO2021258295A1 true WO2021258295A1 (en) 2021-12-30

Family

ID=79282692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097763 WO2021258295A1 (en) 2020-06-23 2020-06-23 Imaging lens assembly, camera module and imaging device

Country Status (2)

Country Link
CN (1) CN115715378A (en)
WO (1) WO2021258295A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236156A (en) * 2010-04-28 2011-11-09 株式会社尼康 Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
CN102298200A (en) * 2010-06-23 2011-12-28 株式会社尼康 Imaging lens, optical device having the same and method for producing the same
CN103163634A (en) * 2011-12-14 2013-06-19 索尼公司 Zoom lens and imaging apparatus
US20140029109A1 (en) * 2012-07-30 2014-01-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
CN103576300A (en) * 2012-07-27 2014-02-12 索尼公司 Variable focal length lens system and image pickup unit
JP2019095619A (en) * 2017-11-24 2019-06-20 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2020086159A (en) * 2018-11-27 2020-06-04 株式会社ニコン Optical system, optical device, and method of manufacturing optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460107B (en) * 2011-03-30 2016-02-17 富士胶片株式会社 Image taking lens and image picking-up apparatus
JP5949592B2 (en) * 2013-02-14 2016-07-06 ソニー株式会社 Endoscope and endoscope apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236156A (en) * 2010-04-28 2011-11-09 株式会社尼康 Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
CN102298200A (en) * 2010-06-23 2011-12-28 株式会社尼康 Imaging lens, optical device having the same and method for producing the same
CN103163634A (en) * 2011-12-14 2013-06-19 索尼公司 Zoom lens and imaging apparatus
CN103576300A (en) * 2012-07-27 2014-02-12 索尼公司 Variable focal length lens system and image pickup unit
US20140029109A1 (en) * 2012-07-30 2014-01-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2019095619A (en) * 2017-11-24 2019-06-20 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2020086159A (en) * 2018-11-27 2020-06-04 株式会社ニコン Optical system, optical device, and method of manufacturing optical system

Also Published As

Publication number Publication date
CN115715378A (en) 2023-02-24

Similar Documents

Publication Publication Date Title
US9383553B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
WO2021159406A1 (en) Imaging lens, camera module and imaging device
JP5021565B2 (en) Five-lens imaging lens and imaging device
US9279962B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9575290B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9568711B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9661199B2 (en) Imaging apparatus and electronic device which can be reduced in height
US9547156B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
WO2021128064A1 (en) Imaging lens, camera module and imaging device
WO2022033326A1 (en) Optical system, lens module, and electronic device
WO2022016329A1 (en) Imaging lens assembly, camera module and imaging device
CN112782833A (en) Imaging lens, image capturing module and electronic device
WO2023159432A1 (en) Imaging lens assembly, camera module and imaging device
CN114740596B (en) Optical system, image capturing module and electronic equipment
WO2021258295A1 (en) Imaging lens assembly, camera module and imaging device
WO2022165847A1 (en) Imaging lens assembly, camera module and imaging device
CN112904532B (en) Optical lens, camera module and electronic equipment
US9329363B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
WO2022236552A1 (en) Imaging lens assembly, camera module and imaging device
WO2022174459A1 (en) Imaging lens assembly, camera module and imaging device
CN115079373A (en) Optical imaging system, image capturing module and electronic device
WO2023245548A1 (en) Imaging lens assembly, camera module and imaging device
WO2023044854A1 (en) Imaging lens assembly, camera module and imaging device
WO2023197253A1 (en) Imaging lens assembly, camera module and imaging device
WO2023039878A1 (en) Imaging lens assembly, camera module and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942385

Country of ref document: EP

Kind code of ref document: A1