WO2022174459A1 - Imaging lens assembly, camera module and imaging device - Google Patents

Imaging lens assembly, camera module and imaging device Download PDF

Info

Publication number
WO2022174459A1
WO2022174459A1 PCT/CN2021/077304 CN2021077304W WO2022174459A1 WO 2022174459 A1 WO2022174459 A1 WO 2022174459A1 CN 2021077304 W CN2021077304 W CN 2021077304W WO 2022174459 A1 WO2022174459 A1 WO 2022174459A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
lens assembly
refractive power
imaging lens
Prior art date
Application number
PCT/CN2021/077304
Other languages
French (fr)
Inventor
Kenshi Nabeta
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN202180083253.8A priority Critical patent/CN116783533A/en
Priority to PCT/CN2021/077304 priority patent/WO2022174459A1/en
Publication of WO2022174459A1 publication Critical patent/WO2022174459A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Definitions

  • the present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more particularly, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
  • the imaging lens assembly mounted on such imaging devices also requires downsizing.
  • the imaging lens assembly is expected to have higher resolution.
  • the imaging device In the imaging device, a brighter lens having a larger diameter is required in order to avoid decreased sensitivity or increased noise of imaging elements due to the narrowing of the pitch of a cell.
  • the imaging device which has a wide-angle lens and meets the abovementioned need must be, nevertheless, small in size so that the imaging device is accommodated in a compact digital device, such as a mobile phone or a sports cam.
  • a conventionally designed wide angle lens has a long back focus when used for a compact digital apparatus, and its size is not sufficiently compact.
  • the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
  • an imaging lens assembly includes, in order from an object side:
  • a first lens having a negative refractive power and a concave surface which faces the object side;
  • a fourth lens with a concave surface facing an imaging surface side
  • a seventh lens having a convex shape in a peripheral portion on a surface of the imaging surface side.
  • the imaging lens assembly may satisfy the following conditional expressions,
  • FL is a focal length of an entire lens system
  • F1 is a focal length of the first lens
  • F3 is a focal length of the third lens.
  • the imaging lens assembly may satisfy the following conditional expression,
  • FL is a focal length of an entire lens system and F5 is a focal length of the fifth lens.
  • the fifth lens may have a positive refractive power and a convex surface facing the imaging surface side.
  • the imaging lens assembly may satisfy the following conditional expressions,
  • N1 is a refractive index of the first lens
  • N3 is a refractive index of the third lens
  • N4 is a refractive index of the fourth lens
  • N5 is a refractive index of the fifth lens.
  • the imaging lens assembly may satisfy the following conditional expressions,
  • ⁇ 1 is an Abbe number of the first lens and ⁇ 5 is an Abbe number of the fifth lens.
  • the imaging lens assembly may satisfy the following conditional expression,
  • TTL is a length on an optical axis from a surface of the object side of the first lens to a focal point of an entire lens system
  • HDL is a half diagonal length of an effective pixel area of an imaging surface
  • the imaging lens assembly may further include an aperture stop between the second lens and the third lens.
  • an angle of view of the imaging lens assembly may be equal to or more than 100 degrees.
  • a lens disposed on the most imaging surface side may have an aspheric shape having an inflection point and may be formed of plastic.
  • a camera module includes:
  • an image sensor including the imaging surface.
  • an imaging device includes the camera module.
  • FIG. 1 is a diagram illustrating a schematic configuration of a camera module according to the present disclosure
  • FIG. 2 is a configuration diagram of a camera module according to a first example of the present disclosure
  • FIG. 3 is an aberration diagram of the camera module according to the first example of the present disclosure.
  • FIG. 4 is a configuration diagram of a camera module according to a second example of the present disclosure.
  • FIG. 5 is an aberration diagram of the camera module according to the second example of the present disclosure.
  • FIG. 6 is a configuration diagram of a camera module according to a third example of the present disclosure.
  • FIG. 7 is an aberration diagram of the camera module according to the third example of the present disclosure.
  • FIG. 8 is a configuration diagram of a camera module according to a fourth example of the present disclosure.
  • FIG. 9 is an aberration diagram of the camera module according to the fourth example of the present disclosure.
  • FIG. 10 is a configuration diagram of a camera module according to a fifth example of the present disclosure.
  • FIG. 11 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
  • a camera module to which the present disclosure is applied is configured as shown in FIG. 1, for example.
  • dash–dotted lines represent optical axes of the camera modules (hereinafter the same applies) .
  • the camera module 11 shown in FIG. 1 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23.
  • the imaging lens assembly 21 is, for example, a super-wide-angle lens assembly with an angle of view of 100 degrees or more. According to the angle of view of 100 degrees or more, the angle of view can be cropped to bring about an EIS (electronic image stabilization) effect. Further, when the camera module 11 is applied to a multi-camera, the output of the camera module 11 can be fused with the output of another camera module. In order to increase the angle of view that can be cropped, it is more preferable that the angle of view of the imaging lens assembly 21 is 120 degrees or more.
  • the imaging lens assembly 21 includes, on an object side of an aperture stop 3, one lens having a negative refractive power and one lens having a positive refractive power.
  • the imaging lens assembly 21 includes, on an imaging surface S side with respect to the aperture stop 3, at least one lens having a positive refractive power and at least one lens having a negative refractive power.
  • the image sensor 23 is, for example, a solid-state image sensor, such as CMOS (Complementary Metal Oxide Semiconductor) or CCD (Charge Coupled Device) .
  • the image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21.
  • the image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage.
  • the optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from the light which is incident from the imaging lens assembly 21.
  • the imaging lens assembly 21 includes, on the object side with respect to the aperture stop 3, one lens having a negative refractive power and one lens having a positive refractive power, and includes, on the imaging surface S side with respect to the aperture stop 3, at least one lens having a positive refractive power and at least one lens having a negative refractive power, and a surface on the imaging surface S side of the most imaging surface S side disposed lens has an aspheric shape having an inflection point.
  • the one lens having a negative refractive power and the one lens having a positive refractive power are disposed on the object side with respect to the aperture stop 3, good optical performance can be obtained by properly correcting chromatic aberration, light can be sharply refracted, and a total optical length can be shortened even when the angle of view is super wide.
  • the at least one lens having a positive refractive power and the at least one lens having a negative refractive power are disposed on the imaging surface S side with respect to the aperture stop 3, and a surface on the imaging surface S side of the most imaging surface S side disposed lens has an aspheric shape having an inflection point, it is possible to make a part of the lens disposed on the imaging surface S side with respect to the aperture stop 3 to have a large negative refractive power so as to shorten the back focus of the imaging lens assembly 21.
  • the most imaging surface S side disposed lens has a negative refractive power, i.e., has negative optical power near the optical axis, the back focus can be shortened more.
  • the lens having a negative refractive power which is disposed on the object side with respect to the aperture stop 3, has a concave shape of the object side.
  • the most imaging surface S side disposed lens has an aspheric shape having an inflection point in the vicinity of the lens edge on a surface of the imaging surface S side.
  • a surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave or a convex shape in the lens center (i.e., near the optical axis) and a convex shape in a peripheral portion (i.e., in the vicinity of an outer peripheral portion) .
  • the camera module 11 allows miniaturization and a wide angle of view of the imaging lens assembly 21 while maintaining a good optical performance of the imaging lens assembly 21 by satisfying the following formula (1) :
  • FL is a focal length of an entire lens system (hereinafter the same applies) .
  • F1 is a focal length of a first lens which is the most object side disposed lens (hereinafter the same applies) .
  • the ratio of F1 and FL satisfies the following formula (1) ’ :
  • the camera module 11 enables the miniaturization and the wide angle of view of the imaging lens assembly 21 while maintaining a better optical performance of the imaging lens assembly 21 when it further satisfies the following formula (2) :
  • F3 is a focal length of a third lens which is a lens disposed the third from the object side (hereinafter the same applies) .
  • the ratio of FL and F3 satisfies the following formula (2) ’ :
  • the camera module 11 enables the miniaturization and the wide angle of view of the imaging lens assembly 21 while maintaining a better optical performance of the imaging lens assembly 21 when it further satisfies the following formula (3) :
  • F5 is a focal length of a fifth lens which is a lens disposed the fifth from the object side (hereinafter the same applies) .
  • N1 is a refractive index of the first lens (hereinafter the same applies) .
  • N1 exceeds 1.6
  • glass is used as a material of the first lens and thus the manufacturing costs increase and the power consumption during the autofocus operation of the imaging lens assembly 21 increases because of the increased weight of the imaging lens assembly 21 due to the glass lens.
  • N1 satisfies the following formula (4) ':
  • the manufacturing costs and power consumption of the camera module 11 can be further reduced when the camera module 11 satisfies the following formula (5) :
  • N3 is a refractive index of the third lens (hereinafter the same applies) .
  • N3 exceeds 1.6
  • glass is used as a material of the third lens and thus the manufacturing costs increase and the power consumption during the autofocus operation of the imaging lens assembly 21 increases because of the increased weight of the imaging lens assembly 21 due to the glass lens.
  • N3 satisfies the following formula (5) ':
  • the camera module 11 satisfies the following formulas (6) and (7) :
  • N4 is a refractive index of the fourth lens which is a lens disposed the fourth from the object side (hereinafter the same applies) .
  • N5 is a refractive index of the fifth lens (hereinafter the same applies) .
  • the camera module 11 satisfies the following formulas (8) and (9) :
  • ⁇ 1 is an Abbe number of the first lens (hereinafter the same applies) and ⁇ 5 is an Abbe number of the fifth lens (hereinafter the same applies) .
  • the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained when the camera module 11 satisfies the following formula (10) :
  • TTL Total Track Length
  • HDL Half diagonal Length
  • the ratio of TTL and HDL satisfies the following formula (10) ’ :
  • an aspheric lens constituting the imaging lens assembly 21 in particular, an aspheric lens of aspheric shape having an inflection point, is formed of plastic material.
  • a lens having a size equal to or smaller than a specific size may be a lens formed of a plastic material, and a lens larger than the specific size may be a lens formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than plastic.
  • the imaging lens assembly 21 having a small size and sufficient optical performance can be obtained even when the angle of view is 100 degrees or more.
  • the most imaging surface S side disposed lens has an aspheric shape having the inflection point on the surface of the imaging surface S side while balancing the refractive power between the lenses disposed on the object side with respect to the aperture stop 3 and the lenses disposed on the imaging surface S side with respect to the aperture stop 3.
  • the back focus can be made shorter, aberrations including chromatic aberration can be sufficiently corrected and thus the imaging lens assembly 21 obtained has a small size and good optical performance.
  • Such a camera module 11 including the imaging lens assembly 21 is appropriate for compact digital devices such as mobile phones, wearable cameras and surveillance cameras.
  • a denotation of “Li” indicates the ordinal number of the i-th lens which sequentially increases from the object side toward the imaging surface S side.
  • “L1” indicates a first lens
  • “LiR1” indicates a surface on the object side (i.e., a first surface) of the i-th lens
  • “LiR2” indicates a surface on the imaging surface S side (i.e., a second surface) of the i-th lens.
  • R indicates a central radius of curvature value (mm) .
  • E + i indicates an exponential expression with a base of 10, i.e., "10 i " .
  • E +18 indicates “1.00 ⁇ 10 18 " .
  • Such an exponential expression also applies to an aspheric coefficient described later.
  • D indicates a value (mm) of a distance on the optical axis between the i-th surface and the (i + 1) -th surface.
  • Nd indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ d indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
  • each value of “L1” to “L7” indicates a focal length of each lens, “-” indicating a negative focal length and a value without “-” indicating a positive focal length.
  • the imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces.
  • the aspheric shape of the lens is defined by the following formula (11) ,
  • Z is a depth of the aspheric surface.
  • C is a paraxial curvature which is equal to 1/R, h is a distance from the optical axis to a lens surface, K is a cone coefficient (second-order aspheric coefficient) , and An is an nth-order aspheric coefficient.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
  • Table 1 shows, as lens data of the first example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number ⁇ d.
  • Table 2 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor.
  • Table 3 shows values of the focal lengths of the first lens L1 to the seventh lens L7.
  • Table 4 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) .
  • Table 5 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
  • FIG. 3 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion.
  • Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength.
  • spherical aberration diagram Aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown.
  • S indicates a value of aberration on a sagittal image surface
  • T indicates a value of aberration on a tangential image surface.
  • IMG HT indicates an image height. The same applies to aberration diagrams in other examples.
  • the camera module 11 in the first example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
  • Table 6 shows, as lens data of the second example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number ⁇ d.
  • Table 7 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor.
  • Table 8 shows values of the focal lengths of the first lens L1 to the seventh lens L7.
  • Table 9 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) .
  • Table 10 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
  • FIG. 5 Each aberration of the above second example is shown in FIG. 5.
  • the camera module 11 in the second example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
  • Table 11 shows, as lens data of the third example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number ⁇ d.
  • Table 12 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor.
  • Table 13 shows values of the focal lengths of the first lens L1 to the seventh lens L7.
  • Table 14 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) .
  • Table 15 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
  • FIG. 7 Each aberration of the above third example is shown in FIG. 7. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the third example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the object side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a concave surface facing the imaging surface S side, and a seventh lens L7 having a positive refractive power and a convex surface facing the object side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
  • Table 16 shows, as lens data of the fourth example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number ⁇ d.
  • Table 17 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor.
  • Table 18 shows values of the focal lengths of the first lens L1 to the seventh lens L7.
  • Table 19 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) .
  • Table 20 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
  • FIG. 9 Each aberration of the above fourth example is shown in FIG. 9. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the fourth example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the imaging surface S side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
  • the aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
  • Table 21 shows, as lens data of the fifth example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number ⁇ d.
  • Table 22 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor.
  • Table 23 shows values of the focal lengths of the first lens L1 to the seventh lens L7.
  • Table 24 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) .
  • Table 25 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-sixth aspherical coefficient of each side of each lens.
  • FIG. 11 Each aberration of the above fifth example is shown in FIG. 11. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the fifth example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • a feature defined as “first” and “second” may comprise one or more of this feature.
  • a plurality of means “two or more than two” , unless otherwise specified.
  • the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
  • a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween.
  • a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is orthogonally or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
  • Any process or method described in a flowchart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and that the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
  • the logic and/or step described in other manners herein or shown in a flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device or equipment.
  • "computer readable medium” may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
  • the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
  • the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, since, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be physically separate, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An imaging lens assembly includes, in order from an object side, a first lens having a negative refractive power and a concave surface which faces the object side, a second lens, a third lens having a positive refractive power, a fourth lens with a concave surface facing an imaging surface side, a fifth lens, a sixth lens having a positive refractive power, and a seventh lens having a convex shape in a peripheral portion on a surface of the imaging surface side.

Description

IMAGING LENS ASSEMBLY, CAMERA MODULE AND IMAGING DEVICE TECHNICAL FIELD
The present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more particularly, to an imaging lens assembly, a camera module, and an imaging device that are small and enable good optical performance.
BACKGROUND
In recent years, portable imaging devices such as mobile phones and digital cameras are being widely used. With the recent miniaturization of imaging devices, the imaging lens assembly mounted on such imaging devices also requires downsizing. In addition, to keep up with the improved resolution of imaging elements mounted on the imaging devices, the imaging lens assembly is expected to have higher resolution.
In the imaging device, a brighter lens having a larger diameter is required in order to avoid decreased sensitivity or increased noise of imaging elements due to the narrowing of the pitch of a cell. In addition, there is an increasing need to enlarge the information quantity of imaging data by means of enlarging the angle of view when shooting, such as taking snapshots, and to produce a shooting space and an air mood. The imaging device which has a wide-angle lens and meets the abovementioned need must be, nevertheless, small in size so that the imaging device is accommodated in a compact digital device, such as a mobile phone or a sports cam.
However, a conventionally designed wide angle lens has a long back focus when used for a compact digital apparatus, and its size is not sufficiently compact.
Therefore, improvement of the conventional wide-angle lens is desirable from the viewpoint of obtaining good optical performance despite its small size and wide angle.
SUMMARY
The present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens assembly, a camera module, and an imaging device.
In accordance with the present disclosure, an imaging lens assembly, includes, in order from an object side:
a first lens having a negative refractive power and a concave surface which faces the object side;
a second lens;
a third lens having a positive refractive power;
a fourth lens with a concave surface facing an imaging surface side;
a fifth lens;
a sixth lens having a positive refractive power; and
a seventh lens having a convex shape in a peripheral portion on a surface of the imaging surface side.
In one example, the imaging lens assembly may satisfy the following conditional expressions,
F1/FL > -2.7,
FL/F3 > 0.7,
where FL is a focal length of an entire lens system, F1 is a focal length of the first lens, and F3 is a focal length of the third lens.
In one example, the imaging lens assembly may satisfy the following conditional expression,
F5/FL > 1.2,
where FL is a focal length of an entire lens system and F5 is a focal length of the fifth lens.
In one example, the fifth lens may have a positive refractive power and a convex surface facing the imaging surface side.
In one example, the imaging lens assembly may satisfy the following conditional expressions,
N1 < 1.6,
N3 < 1.6,
N4 > 1.6,
N5 < 1.6,
where N1 is a refractive index of the first lens, N3 is a refractive index of the third lens, N4 is a refractive index of the fourth lens, and N5 is a refractive index of the fifth lens.
In one example, the imaging lens assembly may satisfy the following conditional expressions,
ν1 > 40,
ν5 > 50,
where ν1 is an Abbe number of the first lens and ν5 is an Abbe number of the fifth lens.
In one example, the imaging lens assembly may satisfy the following conditional expression,
TTL/HDL < 2.0,
where TTL is a length on an optical axis from a surface of the object side of the first lens to a focal point of an entire lens system, and HDL is a half diagonal length of an effective pixel area of an imaging surface.
In one example, the imaging lens assembly may further include an aperture stop between the second lens and the third lens.
In one example, an angle of view of the imaging lens assembly may be equal to or more than 100 degrees.
In one example, a lens disposed on the most imaging surface side may have an aspheric shape having an inflection point and may be formed of plastic.
In accordance with the present disclosure, a camera module includes:
the imaging lens assembly; and
an image sensor including the imaging surface.
In accordance with the present disclosure, an imaging device includes the camera module.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1 is a diagram illustrating a schematic configuration of a camera module according to the present disclosure;
FIG. 2 is a configuration diagram of a camera module according to a first example of the present disclosure;
FIG. 3 is an aberration diagram of the camera module according to the first example of the present disclosure;
FIG. 4 is a configuration diagram of a camera module according to a second example of the present disclosure;
FIG. 5 is an aberration diagram of the camera module according to the second example of the present disclosure;
FIG. 6 is a configuration diagram of a camera module according to a third example of the present disclosure;
FIG. 7 is an aberration diagram of the camera module according to the third example of the present disclosure;
FIG. 8 is a configuration diagram of a camera module according to a fourth example of the present disclosure;
FIG. 9 is an aberration diagram of the camera module according to the fourth example of the present disclosure;
FIG. 10 is a configuration diagram of a camera module according to a fifth example of the present disclosure, and
FIG. 11 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings. The same or similar elements, and elements having same or similar functions, are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the drawings are explanatory and aim to illustrate the present disclosure but shall not be construed to limit the present disclosure.
For example, data, such as lens data in the following description, are just examples, shall not limit the present disclosure, and changes, modifications, alternatives and variations can be made without departing from the scope of the present disclosure.
<Outline of the disclosure>
First, an outline of the present disclosure will be described. A camera module to which the present disclosure is applied is configured as shown in FIG. 1, for example. In the figures, dash–dotted lines represent optical axes of the camera modules (hereinafter the same applies) .
The camera module 11 shown in FIG. 1 includes an imaging lens assembly 21, an optical filter 22 and an image sensor 23.
The imaging lens assembly 21 is, for example, a super-wide-angle lens assembly with an angle of view of 100 degrees or more. According to the angle of view of 100 degrees or more, the angle of view can be cropped to bring about an EIS (electronic image stabilization) effect. Further, when the camera module 11 is applied to a multi-camera, the output of the camera module 11 can be fused with the output of another camera module. In order to increase the angle of view that can be cropped, it is more preferable that the angle of view of the imaging lens assembly 21 is 120 degrees or more.
The imaging lens assembly 21 includes, on an object side of an aperture stop 3, one lens having a negative refractive power and one lens having a positive refractive power. The imaging lens assembly 21 includes, on an imaging surface S side with respect to the aperture stop 3, at least one lens having a positive refractive power and at least one lens having a negative refractive power.
The image sensor 23 is, for example, a solid-state image sensor, such as CMOS (Complementary Metal Oxide Semiconductor) or CCD (Charge Coupled Device) . The image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21.
The image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light, and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage. The optical filter 22 disposed between the imaging lens assembly 21 and the image sensor 23 may be, for example, an IR (infrared) filter which cuts infrared light from the light which is incident from the imaging lens assembly 21.
In order to obtain a small camera module having an imaging lens assembly of good optical performance, it is preferable, for example, to appropriately correct chromatic aberrations of the imaging lens assembly and shorten the back focus of the imaging lens assembly.
Thus, in the camera module 11, the imaging lens assembly 21 includes, on the object side with respect to the aperture stop 3, one lens having a negative refractive power and one lens having a positive refractive power, and includes, on the imaging surface S side with respect to the aperture stop 3, at least one lens having a positive refractive power and at least one lens  having a negative refractive power, and a surface on the imaging surface S side of the most imaging surface S side disposed lens has an aspheric shape having an inflection point.
Since the one lens having a negative refractive power and the one lens having a positive refractive power are disposed on the object side with respect to the aperture stop 3, good optical performance can be obtained by properly correcting chromatic aberration, light can be sharply refracted, and a total optical length can be shortened even when the angle of view is super wide.
Further, since the at least one lens having a positive refractive power and the at least one lens having a negative refractive power are disposed on the imaging surface S side with respect to the aperture stop 3, and a surface on the imaging surface S side of the most imaging surface S side disposed lens has an aspheric shape having an inflection point, it is possible to make a part of the lens disposed on the imaging surface S side with respect to the aperture stop 3 to have a large negative refractive power so as to shorten the back focus of the imaging lens assembly 21. In particular, if the most imaging surface S side disposed lens has a negative refractive power, i.e., has negative optical power near the optical axis, the back focus can be shortened more.
Also, the lens having a negative refractive power, which is disposed on the object side with respect to the aperture stop 3, has a concave shape of the object side.
Further, the most imaging surface S side disposed lens has an aspheric shape having an inflection point in the vicinity of the lens edge on a surface of the imaging surface S side. Specifically, a surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave or a convex shape in the lens center (i.e., near the optical axis) and a convex shape in a peripheral portion (i.e., in the vicinity of an outer peripheral portion) .
Furthermore, the camera module 11 allows miniaturization and a wide angle of view of the imaging lens assembly 21 while maintaining a good optical performance of the imaging lens assembly 21 by satisfying the following formula (1) :
F1/FL > -2.7    (1) .
In the formula (1) , FL is a focal length of an entire lens system (hereinafter the same applies) . F1 is a focal length of a first lens which is the most object side disposed lens (hereinafter the same applies) .
If the ratio of F1 and FL shown in the formula (1) falls below -2.7, it is difficult to widen the angle of the view because the negative refractive power of the first lens and its light convergence become weak.
In order to balance the miniaturization, the wide angle of view and the good optical performance, it is more preferable that the ratio of F1 and FL satisfies the following formula (1) ’ :
F1/FL ≥ -2.1    (1) ’ .
Furthermore, the camera module 11 enables the miniaturization and the wide angle of view of the imaging lens assembly 21 while maintaining a better optical performance of the imaging lens assembly 21 when it further satisfies the following formula (2) :
FL/F3 > 0.7    (2) .
In the formula (2) , F3 is a focal length of a third lens which is a lens disposed the third from the object side (hereinafter the same applies) .
If the ratio of F1 and F3 shown in the formula (2) falls below 0.7, it is difficult to correct aberrations (spherical aberration and chromatic aberration) on the optical axis because a positive refractive power of the third lens becomes weak.
In order to balance the miniaturization, the wide angle of view and the good optical performance, it is more preferable that the ratio of FL and F3 satisfies the following formula (2) ’ :
FL/F3 ≥ 0.8    (2) ’ .
Furthermore, the camera module 11 enables the miniaturization and the wide angle of view of the imaging lens assembly 21 while maintaining a better optical performance of the imaging lens assembly 21 when it further satisfies the following formula (3) :
F5/FL > 1.2    (3) .
In the formula (3) , F5 is a focal length of a fifth lens which is a lens disposed the fifth from the object side (hereinafter the same applies) .
If the ratio of F5 and FL shown in the formula (3) falls below 1.2, it is difficult to balance astigmatism or field curvature because a positive refractive power of the fifth lens becomes weak.
Furthermore, manufacturing costs and power consumption of the camera module 11 can be reduced when the camera module 11 satisfies the following formula (4) :
N1 < 1.6    (4) .
In the formula (4) , N1 is a refractive index of the first lens (hereinafter the same applies) .
If N1 exceeds 1.6, glass is used as a material of the first lens and thus the manufacturing costs increase and the power consumption during the autofocus operation of the imaging lens assembly 21 increases because of the increased weight of the imaging lens assembly 21 due to the glass lens.
Considering the weight balance of the material of each lens, it is more preferable that N1 satisfies the following formula (4) ':
N1 ≤ 1.55    (4) ’ .
The manufacturing costs and power consumption of the camera module 11 can be further reduced when the camera module 11 satisfies the following formula (5) :
N3 < 1.6    (5) .
In the formula (5) , N3 is a refractive index of the third lens (hereinafter the same applies) .
If N3 exceeds 1.6, glass is used as a material of the third lens and thus the manufacturing costs increase and the power consumption during the autofocus operation of the imaging lens assembly 21 increases because of the increased weight of the imaging lens assembly 21 due to the glass lens.
Considering the weight balance of the material of each lens, it is more preferable that N3 satisfies the following formula (5) ':
N3 ≤ 1.55    (5) ’ .
Furthermore, in terms of correcting the aberration of the peripheral angle of view, it is more preferable that the camera module 11 satisfies the following formulas (6) and (7) :
N4 > 1.6    (6) .
N5 < 1.6    (7) .
In the formula (6) , N4 is a refractive index of the fourth lens which is a lens disposed the fourth from the object side (hereinafter the same applies) . In the formula (7) , N5 is a refractive index of the fifth lens (hereinafter the same applies) .
Furthermore, in terms of correcting chromatic aberration, it is more preferable that the camera module 11 satisfies the following formulas (8) and (9) :
ν1 > 40    (8) .
ν5 > 50    (9) .
In the formula (8) , ν1 is an Abbe number of the first lens (hereinafter the same applies) and ν5 is an Abbe number of the fifth lens (hereinafter the same applies) .
Furthermore, the imaging lens assembly 21 can be miniaturized and its good optical performance can be maintained when the camera module 11 satisfies the following formula (10) :
TTL/HDL < 2.0    (10) .
In the formula (10) , TTL (Total Track Length) is a length on the optical axis from a surface of the object side of the first lens to a focal point of the entire lens system (hereinafter the same applies) . HDL (Half Diagonal Length) is a half diagonal length of an effective pixel area of an imaging surface S (hereinafter the same applies) .
If the ratio of TTL and HDL represented by formula (10) exceeds 2.0, the total length of the imaging lens assembly 21 becomes too large.
In terms of miniaturizing the imaging lens assembly 21 and maintaining a good optical performance of the imaging lens assembly 21 more effectively, it is more preferable that the ratio of TTL and HDL satisfies the following formula (10) ’ :
TTL/HDL < 1.75    (10) ’ .
Furthermore, in view of molding the lens, it is preferable that an aspheric lens constituting the imaging lens assembly 21, in particular, an aspheric lens of aspheric shape having an inflection point, is formed of plastic material. In addition, among the lenses which constitute the imaging lens assembly 21, a lens having a size equal to or smaller than a specific size may be a lens formed of a plastic material, and a lens larger than the specific size may be a lens formed of a glass material. This is because it is difficult to form an aspheric lens or a relatively small lens using a material other than plastic.
If the above conditions are satisfied, the imaging lens assembly 21 having a small size and sufficient optical performance can be obtained even when the angle of view is 100 degrees or more.
In particular, the most imaging surface S side disposed lens has an aspheric shape having the inflection point on the surface of the imaging surface S side while balancing the refractive power between the lenses disposed on the object side with respect to the aperture stop 3 and the lenses disposed on the imaging surface S side with respect to the aperture stop 3.
Thereby, the back focus can be made shorter, aberrations including chromatic aberration can be sufficiently corrected and thus the imaging lens assembly 21 obtained has a small size and good optical performance.
Such a camera module 11 including the imaging lens assembly 21 is appropriate for compact digital devices such as mobile phones, wearable cameras and surveillance cameras.
<Configuration examples of the camera module>
Next, more specific examples to which the present disclosure applies will be described.
In the following examples, a denotation of “Li” indicates the ordinal number of the i-th lens which sequentially increases from the object side toward the imaging surface S side. For example, “L1” indicates a first lens, “LiR1” indicates a surface on the object side (i.e., a first surface) of the i-th lens, and “LiR2” indicates a surface on the imaging surface S side (i.e., a second surface) of the i-th lens.
“R” indicates a central radius of curvature value (mm) . Regarding “R” , “E + i” indicates an exponential expression with a base of 10, i.e., "10 i " . For example, "1.00 E +18" indicates "1.00 × 10 18" . Such an exponential expression also applies to an aspheric coefficient described later.
“D” indicates a value (mm) of a distance on the optical axis between the i-th surface and the (i + 1) -th surface.
“Nd” indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
“νd” indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
“Fno” indicates an F number.
Furthermore, each value of “L1” to “L7” indicates a focal length of each lens, “-” indicating a negative focal length and a value without “-” indicating a positive focal length.
The imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces. The aspheric shape of the lens is defined by the following formula (11) ,
Z = C × h 2/ {1 + (1 -K × C 2 × h 2 )  1/2} + Σ An × h n (11) ,
(n = an integer equal to or greater than 3) .
In the formula (11) , Z is a depth of the aspheric surface. C is a paraxial curvature which is equal to 1/R, h is a distance from the optical axis to a lens surface, K is a cone coefficient (second-order aspheric coefficient) , and An is an nth-order aspheric coefficient.
[First example]
A first example in which specific numerical values are applied to the camera module 11 shown in FIG. 1 will be described.
In the first example, as shown in FIG. 2, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative  refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
Table 1 shows, as lens data of the first example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number νd. Table 2 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor. Table 3 shows values of the focal lengths of the first lens L1 to the seventh lens L7. Table 4 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) . Table 5 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
TABLE 1
  R D Nd νd
    1.00E+18    
L1R1 -9.9194 0.3590 1.546 56.170
L1R2 2.2390 0.9155    
L2R1 -4.5040 0.4024 1.645 23.654
L2R2 -4.4790 0.2419    
APERTURE STOP 1.00E+18 -0.0490    
L3R1 2.1508 0.7032 1.546 56.170
L3R2 -2.7079 0.3245    
L4R1 6.4940 0.3000 1.680 19.243
L4R2 2.6089 0.1564    
L5R1 -14.0057 1.2401 1.546 56.170
L5R2 -2.3784 0.0250    
L6R1 3.0942 0.4019 1.680 19.243
L6R2 6.4354 0.3320    
L7R1 3.5524 0.6510 1.6795 19.24
L7R2 2.2729 0.2889    
IRCF 1.00E+18 0.2100 1.5168 64.17
    0.4500    
TABLE 2
FL 1.885
Fno 2.39
ANGLE OF VIEW 140
TTL (INF) 6.9527
SENSOR SIZE 7.06
TABLE 3
L1 -3.30
L2 169.18
L3 2.30
L4 -6.56
L5 5.04
L6 8.28
L7 -11.60
TABLE 4
CONDITIONAL EXPRESSIONS FIRST EXAMPLE
F1/FL > -2.7 -1.749
FL/F3 > 0.7 0.818
F5/FL > 1.2 2.671
N1 <1.6 1.546
N3 <1.6 1.546
N4 >1.6 1.680
N5 <1.6 1.546
ν1 > 40 56.170
ν5 > 50 56.170
TTL/HDL < 2.0 1.970
TABLE 5
  L1R1 L1R2 L2R1
R -9.919423537479500E+00 2.239018778684610E+00 -4.503976689887150E+00
K 9.999999999987950E+00 -1.000000000000000E+01 1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 3.760546384006800E+00 6.728209882345920E-01 -2.768538460065930E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.046961057291070E+01 4.202156826680690E-01 2.395282460634070E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 2.028608331377230E+01 -2.981441078707920E+00 8.275436985795120E-04
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -2.386228879801530E+01 6.093512416200680E+00 -3.365118077066120E-03
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 1.450291895082130E+01 -6.052799992470570E+00 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 -3.447548089820920E+00 3.187070176177910E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 -8.417889839936570E-01 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L2R2 L3R1 L3R2
R -4.479006490106240E+00 2.150754803254590E+00 -2.707933569275210E+00
K -4.521643850682280E+00 7.770501000000000E-01 3.451202000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.547192239419490E-02 -1.276733404864100E-03 -3.928632082719770E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 2.567165379350410E-02 1.771434610821520E-02 5.290522619937770E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.080334518414130E-02 -4.148064742035060E-02 -1.743921168311200E-02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 6.922655182984280E-03 7.217366369733890E-02 -6.504566746569940E-03
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 -6.181497985326860E-02 1.529580909550110E-02
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 2.014559221562370E-02 9.061938310552480E-03
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 -1.197343052411960E-02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L4R1 L4R2 L5R1
R 6.494044484833620E+00 2.608875937838370E+00 -1.400566610898110E+01
K -1.342317000000000E+00 4.548943000000000E-01 9.899999000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.882070994404210E-01 -5.064330498841920E-01 1.900140317758440E-01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 1.691193719852240E-01 5.072307119251200E-01 -7.316847268643520E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -4.135867569437640E-01 -9.149371420956500E-01 -7.233042419403210E-01
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 1.280405583653260E+00 2.939545937717750E+00 2.095837242705180E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -2.031441836186910E+00 -5.545762078138890E+00 -2.478421364315200E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 1.574111274251250E+00 5.847078715867740E+00 1.543394788979480E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -4.975739976869060E-01 -3.362788127051980E+00 -4.350846473931890E-01
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 8.239292589650460E-01 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L5R2 L6R1 L6R2
R -2.378383665067130E+00 3.094159450291150E+00 6.435420876258760E+00
K -1.527381000000000E+01 -8.265435000000000E-01 3.783341000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.480716112224050E+00 -1.106103833666490E+00 4.079679244648790E+00
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -2.819977700676570E+00 -1.710682313864120E+01 -6.214467689688510E+01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 7.234803209251090E+01 1.317786174064280E+02 3.011296554288340E+02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -3.459796040472700E+02 -5.201588661573330E+02 -7.700023274508920E+02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 8.949291283162100E+02 1.271264162734170E+03 1.125881861597850E+03
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 -1.390999647103380E+03 -1.955276597720630E+03 -9.397927158736620E+02
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 1.287978767738560E+03 1.822878914079100E+03 4.149452625639770E+02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 -6.514667678375610E+02 -9.349428768294290E+02 -7.490891161590560E+01
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 1.380590384173620E+02 2.016581289234740E+02 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L7R1 L7R2
R 3.552422864890340E+00 2.272922292924850E+00
K 9.218042000000000E-01 -3.860001000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00
A4 -3.840197172253750E+00 -4.916132375669810E+00
A5 0.000000000000000E+00 0.000000000000000E+00
A6 4.623788021785630E+01 6.747340316170810E+01
A7 0.000000000000000E+00 0.000000000000000E+00
A8 -4.632850767993810E+02 -7.399889918494730E+02
A9 0.000000000000000E+00 0.000000000000000E+00
A10 2.262541123113200E+03 4.242373866117220E+03
A11 0.000000000000000E+00 0.000000000000000E+00
A12 -6.113317610513140E+03 -1.414391319694300E+04
A13 0.000000000000000E+00 0.000000000000000E+00
A14 9.628458759667470E+03 2.920931436965930E+04
A15 0.000000000000000E+00 0.000000000000000E+00
A16 -8.798259414973910E+03 -3.804447200974910E+04
A17 0.000000000000000E+00 0.000000000000000E+00
A18 4.324762813508860E+03 3.047529903142870E+04
A19 0.000000000000000E+00 0.000000000000000E+00
A20 -8.849432161662590E+02 -1.371947971575990E+04
A21 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 2.656769222900840E+03
Each aberration of the above first example is shown in FIG. 3. FIG. 3 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) and distortion. Each of these aberration diagrams shows aberrations with d-line (587.56 nm) as a reference wavelength. In the spherical aberration diagram, aberrations with respect to g-line (435.84 nm) and C-line (656.27 nm) are also shown. In the graph showing astigmatism, “S” indicates a value of aberration on a sagittal image surface and “T” indicates a value of aberration on a tangential image surface. “IMG HT” indicates an image height. The same applies to aberration diagrams in other examples.
As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the first example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
[Second example]
Next, a second example in which specific numerical values are applied to the camera module 11 shown in FIG. 1 will be described.
In the second example, as shown in FIG. 4, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
Table 6 shows, as lens data of the second example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number νd. Table 7 shows a focal length FL of an  entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor. Table 8 shows values of the focal lengths of the first lens L1 to the seventh lens L7. Table 9 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) . Table 10 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
TABLE 6
  R D Nd νd
    1.00E+18    
L1R1 -5.7834 0.3000 1.532 43.365
L1R2 4.0515 0.2721    
L2R1 25.0129 0.4163 1.677 19.587
L2R2 -360.3620 0.0990    
APERTURE STOP 1.00E+18 -0.0490    
L3R1 2.5582 0.7797 1.546 56.170
L3R2 -2.5930 0.2236    
L4R1 3.8922 0.3000 1.680 19.243
L4R2 2.2292 0.1816    
L5R1 -15.7887 0.9753 1.546 56.175
L5R2 -2.9303 0.1667    
L6R1 2.3004 0.5414 1.521 56.494
L6R2 5.0614 0.4235    
L7R1 4.1407 0.4806 1.6247 23.36
L7R2 1.3374 0.3290    
IRCF 1.00E+18 0.2100 1.5168 64.17
    0.4500    
TAB LE 7
FL 2.964
Fno 2.39
ANGLE OF VIEW 140
TTL (INF) 6.09994
SENSOR SIZE 7.06
TABLE 8
L1 -4.41
L2 34.28
L3 2.48
L4 -8.21
L5 6.40
L6 7.56
L7 -3.36
TABLE 9
CONDITIONAL EXPRESSIONS  SECOND EXAMPLE
F1/FL > -2.7 -1.488
FL/F3 > 0.7 1.194
F5/FL > 1.2 2.158
N1 <1.6 1.532
N3 <1.6 1.546
N4 >1.6 1.680
N5 <1.6 1.546
ν1 > 40 43.365
ν5 > 50 56.175
TTL/HDL < 2.0 1.728
TABLE 10
  L1R1 L1R2 L2R1
R -5.783449178042050E+00 4.051525999344910E+00 2.501289716081870E+01
K 9.999999999987950E+00 -1.000000000000000E+01 1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 6.961088212905820E-01 2.686769888607800E-01 2.941391896596270E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -1.526113699348920E+00 -1.421239900789030E-01 -5.323713098445480E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 2.189119767783890E+00 -1.002086636607150E-01 -6.033708966153790E-02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -2.175117653750830E+00 9.670021016605960E-02 0.000000000000000E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 1.389611623484820E+00 4.731060138942030E-02 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 -3.996428686258420E-01 -1.626227953952480E-01 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 1.162416777480600E-01 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L2R2 L3R1 L3R2
R -3.603620394411360E+02 2.558185144366590E+00 -2.592972619735790E+00
K 1.000000000000000E+01 7.770501000000000E-01 3.451202000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -1.614745626714270E-02 -2.445795384981090E-02 -8.891673706388930E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 3.499059808711390E-04 -6.820509852833030E-02 3.164344461103560E-03
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -9.375356034446480E-04 2.619756438994510E-01 5.730664894243140E-01
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 7.444522634720550E-03 -4.328408869019470E-01 -1.875487825870280E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 3.283092253655430E-01 2.919515546945420E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 -8.508124151189410E-02 -2.304526492426290E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 7.377577021516310E-01
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L4R1 L4R2 L5R1
R 3.892152582477830E+00 2.229157263988430E+00 -1.578868372191080E+01
K -1.342317000000000E+00 4.548943000000000E-01 9.899999000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -4.921254570484200E-01 -9.298127618042130E-01 -2.884832593250970E-01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 7.481295587240180E-01 2.950542575595980E+00 2.374681711745570E+00
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.580473279288950E+00 -9.702151641909620E+00 -6.997611296361540E+00
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.852654705979840E+00 2.361768250934460E+01 1.259107390986400E+01
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -3.322274707805540E+00 -3.735775295779910E+01 -1.362520943225300E+01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 2.135639077565910E+00 3.598870958968210E+01 8.198352413930640E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -5.817997031901480E-01 -1.910173218187350E+01 -2.108970536820340E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 4.258366631299940E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L5R2 L6R1 L6R2
R -2.930291116261980E+00 2.300406459810810E+00 5.061410469886520E+00
K -1.527381000000000E+01 -8.265435000000000E-01 3.783341000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.505950909800770E+00 -3.975453051804590E+00 5.178335923561220E+00
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 8.568998490619220E+00 1.579796927844430E+01 -4.169977692333790E+01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -2.213790950019520E+01 -6.689822057736080E+01 1.451411233321890E+02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 4.360948272319920E+01 1.972305843383030E+02 -3.099583939670640E+02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -6.007407177686310E+01 -3.613341717982070E+02 4.243160394534250E+02
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 5.167264806193400E+01 3.825293978469390E+02 -3.719187528845680E+02
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -2.338298514581490E+01 -2.121145352834230E+02 1.924515090770380E+02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 3.996287802694800E+00 4.758762929724430E+01 -4.468857970919110E+01
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L7R1 L7R2
R 4.140664948000090E+00 1.337420789735970E+00
K 9.218042000000000E-01 -3.860001000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00
A4 -3.114333140168260E+00 -1.155276462559890E+01
A5 0.000000000000000E+00 0.000000000000000E+00
A6 1.365593464570470E+01 9.706011361425000E+01
A7 0.000000000000000E+00 0.000000000000000E+00
A8 -6.180133214212410E+01 -6.047693461804940E+02
A9 0.000000000000000E+00 0.000000000000000E+00
A10 1.411517564087700E+02 2.476906094780290E+03
A11 0.000000000000000E+00 0.000000000000000E+00
A12 -1.685403265196000E+02 -6.705089046113350E+03
A13 0.000000000000000E+00 0.000000000000000E+00
A14 9.818380969915220E+01 1.199721611465310E+04
A15 0.000000000000000E+00 0.000000000000000E+00
A16 -1.693054608223100E+01 -1.397537222298480E+04
A17 0.000000000000000E+00 0.000000000000000E+00
A18 -4.093049863867780E+00 1.016807953280270E+04
A19 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 -4.190405562052780E+03
A21 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 7.461966815896000E+02
Each aberration of the above second example is shown in FIG. 5. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the second example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
[Third example]
Next, a third example in which specific numerical values are applied to the camera module 11 shown in FIG. 1 will be described.
In the third example, as shown in FIG. 6, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the object side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
Table 11 shows, as lens data of the third example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number νd. Table 12 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor. Table 13 shows values of the focal lengths of the first lens L1 to the seventh lens L7. Table 14 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) . Table 15 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
TABLE 11
  R D Nd νd
    1.00E+18    
L1R1 -5.3521 0.2800 1.517 52.431
L1R2 3.5015 0.1780    
L2R1 4.0243 0.4118 1.659 21.757
L2R2 10.2707 0.0790    
APERTURE STOP 1.00E+18 -0.0490    
L3R1 3.1121 0.7281 1.547 55.668
L3R2 -2.4922 0.0455    
L4R1 3.6164 0.2800 1.675 19.500
L4R2 2.1461 0.2235    
L5R1 -14.4762 0.9362 1.546 56.163
L5R2 -3.1726 0.0916    
L6R1 2.2048 0.4480 1.522 53.057
L6R2 5.0222 0.5969    
L7R1 5.1208 0.4370 1.5545 35.22
L7R2 1.3551 0.3535    
IRCF 1.00E+18 0.2100 1.5168 64.17
    0.4500    
TABLE 12
FL 3.047
Fno 2.39
ANGLE OF VIEW 140
TTL (INF) 5.7
SENSOR SIZE 7.06
TABLE 13
L1 -4.03
L2 9.70
L3 2.64
L4 -8.40
L5 7.20
L6 7.11
L7 -3.45
TABLE 14
CONDITIONAL EXPRESSIONS  THIRD EXAMPLE
F1/FL > -2.7 -1.324
FL/F3 > 0.7 1.153
F5/FL > 1.2 2.363
N1 <1.6 1.517
N3 <1.6 1.547
N4 >1.6 1.675
N5 <1.6 1.546
ν1 > 40 52.431
ν5 > 50 56.163
TTL/HDL < 2.0 1.615
TABLE 15
  L1R1 L1R2 L2R1
R -5.352105697854060E+00 3.501517574701180E+00 4.024267376724070E+00
K 9.999999999987950E+00 -1.000000000000000E+01 -1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 4.339902638120110E-01 2.526533410620720E-01 -1.743472167058150E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -8.169688263540020E-01 -1.955959591416140E-01 -1.204919838066990E-01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.240045403974400E+00 -1.370628421381690E-01 -5.838013456234530E-03
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -1.269958536602690E+00 2.994838597885980E-01 3.344028353363490E-02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 7.930862650939410E-01 -3.295328915945360E-02 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 -2.249039272659170E-01 -5.815175193098240E-01 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 4.082073293615550E-01 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L2R2 L3R1 L3R2
R 1.027070381167300E+01 3.112149663783880E+00 -2.492180755017100E+00
K -2.764803138927420E+00 7.770501000000000E-01 3.451202000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.025182345519180E-02 -4.748367438096720E-03 -2.546070001639420E-01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -9.794811625756210E-02 3.526119223584220E-02 1.299940846948980E+00
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 1.213191344368180E-01 -4.221807137122230E-01 -4.423702335836730E+00
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -3.733508560628910E-03 1.078280342679860E+00 9.115496493024060E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 -1.063812598876470E+00 -1.110780484988250E+01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 3.724648218730320E-01 7.358025113973320E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 -2.018351197713600E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L4R1 L4R2 L5R1
R 3.616444345822430E+00 2.146073390986000E+00 -1.447623817749200E+01
K -1.342317000000000E+00 4.548943000000000E-01 9.899999000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -4.714182289541910E-01 -4.692935584004540E-01 -1.765985261331130E-01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 1.390580530723570E+00 9.689849756125270E-01 1.470415577064170E+00
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -4.063641088556900E+00 -2.057305527155140E+00 -2.960138553182520E+00
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 7.174833797125850E+00 2.351840789465570E+00 3.623944397221440E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -7.342239896234900E+00 -1.434915581016780E-01 -2.499799009455640E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 4.072186843181960E+00 -2.636250068458180E+00 8.342120551057880E-01
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -9.553260233981480E-01 2.622055924570580E+00 -6.401263674618030E-02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 -8.297918849085110E-01 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L5R2 L6R1 L6R2
R -3.172628202522150E+00 2.204786441412440E+00 5.022178445349720E+00
K -1.527381000000000E+01 -8.265435000000000E-01 3.783341000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -4.690699459606090E+00 -2.938973981141410E+00 3.197866780973950E+00
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 2.380757642106460E+01 1.341802037208790E+01 -1.865801391473990E+01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -8.984124877553010E+01 -4.863125750849480E+01 3.891216077226930E+01
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.357331404336530E+02 1.067377483158230E+02 -3.421489698000860E+01
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -4.057977490934940E+02 -1.425435026930810E+02 -1.416194225300830E+01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 4.347985766029130E+02 1.125378385877130E+02 5.700503298863660E+01
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -2.556246512898990E+02 -4.805427145801470E+01 -4.486858028029190E+01
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 6.113373746060430E+01 8.560904553839930E+00 1.198598455552600E+01
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L7R1 L7R2
R 5.120773809822430E+00 1.355114370506210E+00
K 9.218042000000000E-01 -3.860001000000000E+00
A3 0.000000000000000E+00 0.000000000000000E+00
A4 -3.553346410654220E+00 -7.295651689517670E+00
A5 0.000000000000000E+00 0.000000000000000E+00
A6 1.202168395160710E+01 3.814097916021830E+01
A7 0.000000000000000E+00 0.000000000000000E+00
A8 -4.011917866504970E+01 -1.626374699803210E+02
A9 0.000000000000000E+00 0.000000000000000E+00
A10 9.059813050612630E+01 4.776236965965650E+02
A11 0.000000000000000E+00 0.000000000000000E+00
A12 -1.394991264098310E+02 -9.590705680132030E+02
A13 0.000000000000000E+00 0.000000000000000E+00
A14 1.408183183916800E+02 1.284399733979360E+03
A15 0.000000000000000E+00 0.000000000000000E+00
A16 -8.134369182442590E+01 -1.098469155704770E+03
A17 0.000000000000000E+00 0.000000000000000E+00
A18 1.988533157618200E+01 5.581857893108220E+02
A19 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 -1.458380346726040E+02
A21 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 1.324589615210050E+01
Each aberration of the above third example is shown in FIG. 7. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the third example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
[Fourth example]
Next, a fourth example in which specific numerical values are applied to the camera module 11 shown in FIG. 1 will be described.
In the fourth example, as shown in FIG. 8, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the object side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a concave surface facing the imaging surface S side, and a seventh lens L7 having a positive refractive power and a convex surface facing the object side.
The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
Table 16 shows, as lens data of the fourth example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number νd. Table 17 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor. Table 18 shows values of the focal lengths of the first lens L1 to the seventh lens L7. Table 19 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) . Table 20 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-second aspherical coefficient of each side of each lens.
TABLE 16
  R D Nd νd
    1.00E+18    
L1R1 -9987.7482 0.5760 1.512 56.622
L1R2 2.4714 1.1689    
L2R1 -9.3206 0.4700 1.607 26.345
L2R2 -6.4105 0.3191    
APERTURE STOP 1.00E+18 -0.0490    
L3R1 1.6992 0.6542 1.541 56.241
L3R2 -2.5296 0.3702    
L4R1 -3.2743 0.3000 1.680 19.243
L4R2 9.1377 0.1405    
L5R1 -178.3345 1.1935 1.551 52.041
L5R2 -1.4104 0.0251    
L6R1 -10.6817 0.5169 1.640 23.479
L6R2 -7.4637 0.0897    
L7R1 27.3100 0.5150 1.5116 56.62
L7R2 45.8000 0.0500    
IRCF 1.00E+18 0.2100 1.5168 64.17
    0.4500    
TABLE 17
FL 1.783
Fno 2.39
ANGLE OF VIEW 120
TTL (INF) 7
SENSOR SIZE 7.06
TABLE 18
L1 -4.81
L2 31.64
L3 1.98
L4 -3.48
L5 2.56
L6 36.15
L7 130.57
TABLE 19
CONDITIONAL EXPRESSIONS  FOURTH EXAMPLE
F1/FL > -2.7 -2.700
FL/F3 > 0.7 0.900
F5/FL > 1.2 1.438
N1 <1.6 1.512
N3 <1.6 1.541
N4 >1.6 1.680
N5 <1.6 1.551
ν1 > 40 56.622
ν5 > 50 52.041
TTL/HDL < 2.0 1.983
TABLE 20
  L1R1 L1R2 L2R1
R -9.987748158097250E+03 2.471439040913690E+00 -9.320561502741970E+00
K 9.999999999987950E+00 -1.000000000000000E+01 -9.999999999999990E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 3.820357752455960E+00 8.918371238369040E-01 1.576218170585580E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -6.021759254485040E+00 1.725875403517670E+00 -1.955195116192440E-01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -5.898319847044180E-01 -8.797523951656070E+00 2.001217440627190E-01
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 3.426834862662720E+01 1.838205875822910E+01 -3.839063309016540E-02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -7.585550393305350E+01 -1.766122557425710E+01 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 6.618007362574710E+01 5.870026562046160E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -2.072123193625150E+01 3.780144518956110E-01 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L2R2 L3R1 L3R2
R -6.410503715228560E+00 1.699175896951880E+00 -2.529575043940190E+00
K -1.000000000000000E+01 1.148656931763960E+00 4.102958895395920E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -5.067280343637980E-03 1.694298312956080E-02 -2.291003112240460E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 6.109410788763100E-03 -7.567127993226630E-02 3.078688165761400E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.743323841903790E-02 1.861721865452250E-01 1.107155362779930E-02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.937598286470220E-02 -2.477638500910440E-01 -1.528309741221970E-01
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 1.691003270056170E-01 2.545876211951970E-01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 -4.633386086189710E-02 -1.594680946465260E-01
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 3.263180748182370E-02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L4R1 L4R2 L5R1
R -3.274325558666830E+00 9.137715804008090E+00 -1.783345330858580E+02
K 4.641450698422460E+00 3.717280626081670E+01 9.899999000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -3.103600357885230E-01 -5.955622148860860E-01 -5.166936381134600E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 9.562785704635200E-01 1.470816324867930E+00 2.783502242393610E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -3.502029503372860E+00 -4.552192022992110E+00 -1.201794663534460E+00
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 8.032216719801620E+00 1.109373914343940E+01 3.912143906489960E+00
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -1.055663475891310E+01 -1.546043181504520E+01 -4.974052726434640E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 7.215363702954010E+00 1.104322139757900E+01 2.780865020761240E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -1.979539429460510E+00 -3.291276909286440E+00 -5.986940603586820E-01
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 1.330522982828900E-01 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L5R2 L6R1 L6R2
R -1.410400757721580E+00 -1.068170390889100E+01 -7.463676730092920E+00
K -1.527381000000000E+01 3.715863367337670E+01 2.022964578171400E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 2.936173069469980E+00 6.514468841039130E+00 2.817625399245420E+01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -2.383680605462520E+01 -3.596913821183430E+01 -2.534363712645080E+02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 4.556849084184470E+01 7.305878514551200E+01 1.027445291092380E+03
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 9.142640932179150E+01 -1.337547194026700E+02 -2.400922206942520E+03
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -6.340648510194490E+02 2.889217536752370E+02 3.351738840896290E+03
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 1.354479433355180E+03 -4.495029743597750E+02 -2.734972736008280E+03
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -1.459665048433410E+03 3.998609710193300E+02 1.199295956024930E+03
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 7.998514573649660E+02 -1.833561027061770E+02 -2.179320423381220E+02
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 -1.772511516618850E+02 3.353817471556200E+01 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L7R1 L7R2
R 2.730997427769110E+01 4.580001872165210E+01
K 1.479903732881390E+02 2.384511197360950E+02
A3 0.000000000000000E+00 0.000000000000000E+00
A4 2.513996413395300E+01 -2.478396948561470E+01
A5 0.000000000000000E+00 0.000000000000000E+00
A6 -3.758084536493290E+02 2.280660837374080E+02
A7 0.000000000000000E+00 0.000000000000000E+00
A8 2.282887117142880E+03 -6.991369584821250E+02
A9 0.000000000000000E+00 0.000000000000000E+00
A10 -7.449423345676870E+03 2.712716455237740E+02
A11 0.000000000000000E+00 0.000000000000000E+00
A12 1.418305310042180E+04 3.197634888207380E+03
A13 0.000000000000000E+00 0.000000000000000E+00
A14 -1.625901585343060E+04 -8.285535391168720E+03
A15 0.000000000000000E+00 0.000000000000000E+00
A16 1.107429457547960E+04 9.338497598824650E+03
A17 0.000000000000000E+00 0.000000000000000E+00
A18 -4.134602798187510E+03 -5.178085954023850E+03
A19 0.000000000000000E+00 0.000000000000000E+00
A20 6.524174009289630E+02 1.151194074582490E+03
A21 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00
Each aberration of the above fourth example is shown in FIG. 9. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the fourth example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
[Fifth example]
Next, a fifth example in which specific numerical values are applied to the camera module 11 shown in FIG. 1 will be described.
In the fifth example, as shown in FIG. 10, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a negative refractive power and concave surfaces facing the object side and the imaging surface S side, a second lens L2 having a positive refractive power, a third lens L3 having a positive refractive power and convex surfaces facing the object side and the imaging surface S side, a fourth lens L4 having a negative refractive power and a concave surface facing the imaging surface S side, a fifth lens L5 having a positive refractive power and a convex surface facing the imaging surface S side, a sixth lens L6 having a positive refractive power and a convex surface facing the imaging surface S side, and a seventh lens L7 having a negative refractive power and a concave surface facing the imaging surface S side.
The aperture stop 3 is disposed on the imaging surface S side with respect to the vertex of the first surface of the third lens L3 and on the object side with respect to the second surface of the third lens L3.
Table 21 shows, as lens data of the fifth example, a radius of curvature R, a surface distance D, a refractive index Nd and an Abbe number νd. Table 22 shows a focal length FL of an entire lens system, an F number Fno, an angle of view, a total track length TTL which is obtained when an object point is taken at infinity, and a size of a sensor. Table 23 shows values of the focal lengths of the first lens L1 to the seventh lens L7. Table 24 shows values corresponding to the conditional expressions shown in the formulas (1) to (10) . Table 25 shows a radius of each curvature of the first lens L1 to the seventh lens L7, a cone coefficient K and the third to twenty-sixth aspherical coefficient of each side of each lens.
TABLE 21
  R D Nd νd
    1.00E+18    
L1R1 -22.2686 0.4403 1.512 56.622
L1R2 2.5804 1.0206    
L2R1 -4.1779 0.4540 1.600 30.586
L2R2 -4.1052 0.3317    
APERTURE STOP 1.00E+18 -0.0490    
L3R1 1.9396 0.6740 1.551 52.371
L3R2 -2.4723 0.3886    
L4R1 144.5519 0.3000 1.656 20.724
L4R2 2.5636 0.1216    
L5R1 -79.4759 1.1194 1.528 56.399
L5R2 -1.4125 0.0460    
L6R1 -18.9541 0.5874 1.604 25.681
L6R2 -10.6752 0.1517    
L7R1 35.1111 0.4883 1.6275 25.98
L7R2 2.2387 0.2485    
IRCF 1.00E+18 0.2100 1.5168 64.17
    0.4633    
TABLE 22
FL 2.212
Fno 2.39
ANGLE OF VIEW 120
TTL (INF) 7
SENSOR SIZE 7.06
TABLE 23
L1 -4.48
L2 116.70
L3 2.08
L4 -3.95
L5 2.70
L6 39.11
L7 -3.81
TABLE 24
CONDITIONAL EXPRESSIONS  FIFTH EXAMPLE
F1/FL > -2.7 -2.025
FL/F3 > 0.7 1.064
F5/FL > 1.2 1.221
N1 <1.6 1.512
N3 <1.6 1.551
N4 >1.6 1.656
N5 <1.6 1.528
ν1 > 40 56.622
ν5 > 50 56.399
TTL/HDL < 2.0 1.983
TABLE 25
  L1R1 L1R2 L2R1
R -2.226864661831700E+01 2.580425584854820E+00 -4.177873726705590E+00
K 9.999999999987950E+00 -1.000000000000000E+01 8.098213380802350E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 2.313296739872010E+00 8.012976964752990E-01 -3.068796273710210E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -4.233713777237730E+00 6.454455554435680E-01 -1.715402284124350E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 5.212297614116230E+00 -4.549967483217010E+00 8.020295939113560E-02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.307715612892560E-01 1.079138211593390E+01 -3.408925495787080E-02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -8.825447812035330E+00 -1.097539538048010E+01 0.000000000000000E+00
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 8.647444946312600E+00 3.860285821071280E+00 0.000000000000000E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -2.618223722894670E+00 -3.613662807164730E-02 0.000000000000000E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A23 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A24 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A25 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A26 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L2R2 L3R1 L3R2
R -4.105169082608960E+00 1.939597724717780E+00 -2.472259443593060E+00
K -4.305616115501550E+00 6.016991136337790E-01 3.511451062608370E+00
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -3.315312154431790E-02 -3.551407959100700E-03 -3.826579556134760E-02
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 5.236578095648830E-02 -3.007538535232200E-02 5.198372709895910E-02
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -3.264741245459740E-02 9.007487105192170E-02 -1.430625264157990E-01
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.494219991056790E-02 -1.258179732979660E-01 3.672963746015970E-01
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 0.000000000000000E+00 8.764752649654330E-02 -5.263456837104490E-01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 0.000000000000000E+00 -2.465833116495730E-02 3.857442743495620E-01
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 0.000000000000000E+00 -1.135864876283040E-01
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A23 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A24 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A25 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A26 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L4R1 L4R2 L5R1
R 1.445518596312420E+02 2.563578011971680E+00 -7.947591919096790E+01
K -9.999999999999710E+00 4.278753279082380E-01 9.899999000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 -2.935286781811190E-01 -8.712170847565110E-01 -2.492483351577870E-01
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 4.455339444859870E-01 3.193380125227260E+00 2.280513603450120E+00
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 -1.304896451070050E+00 -1.090540331253040E+01 -7.684709753401180E+00
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 2.913900543016270E+00 2.629099239842550E+01 1.352529624904870E+01
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 -3.690540636860340E+00 -3.924828992563270E+01 -1.290196846198210E+01
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 2.406637292416830E+00 3.464290903832710E+01 6.255151358148770E+00
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 -6.408875819098150E-01 -1.661878074621960E+01 -1.195732655655380E+00
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 3.335459719810260E+00 0.000000000000000E+00
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A23 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A24 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A25 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A26 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L5R2 L6R1 L6R2
R -5.758948578645120E+00 -1.895408687649480E+01 -1.067522221380900E+01
K 3.880885124685080E+01 -9.391017240262010E+00 1.000000000000000E+01
A3 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A4 4.501862859127070E+02 -3.990772376911800E+00 5.282908933444220E+00
A5 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A6 -8.004446114615100E+02 2.603300861147460E+01 -6.799975770374650E+01
A7 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A8 8.884783252030560E+02 -1.151530473243500E+02 2.952785930318580E+02
A9 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A10 -5.845061842536680E+02 3.150425754507040E+02 -6.616889226633620E+02
A11 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A12 2.050514938271510E+02 -5.273429888056670E+02 8.157342962513040E+02
A13 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A14 -2.886827005144860E+01 5.282229760130900E+02 -5.410816466220840E+02
A15 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A16 0.000000000000000E+00 -3.020011648595640E+02 1.704622858443380E+02
A17 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A18 0.000000000000000E+00 8.832672749597950E+01 -1.666305914721720E+01
A19 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A20 0.000000000000000E+00 -9.754281753520000E+00 0.000000000000000E+00
A21 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A23 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A24 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A25 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
A26 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00
  L7R1 L7R2
R 3.511112674317370E+01 2.238742645218870E+00
K -1.043624580174740E+00 -6.298750507371820E+00
A3 0.000000000000000E+00 0.000000000000000E+00
A4 1.473011553480090E+01 2.659132346240210E+01
A5 0.000000000000000E+00 0.000000000000000E+00
A6 -1.953323186501580E+02 -8.139275027414330E+02
A7 0.000000000000000E+00 0.000000000000000E+00
A8 1.101546341291490E+03 1.017232950242160E+04
A9 0.000000000000000E+00 0.000000000000000E+00
A10 -3.617607667171890E+03 -7.467482319998970E+04
A11 0.000000000000000E+00 0.000000000000000E+00
A12 7.548974194715700E+03 3.560960182589630E+05
A13 0.000000000000000E+00 0.000000000000000E+00
A14 -1.024142961204890E+04 -1.151694599246990E+06
A15 0.000000000000000E+00 0.000000000000000E+00
A16 8.762817265116850E+03 2.569224123451370E+06
A17 0.000000000000000E+00 0.000000000000000E+00
A18 -4.279142745282840E+03 -3.948601699871790E+06
A19 0.000000000000000E+00 0.000000000000000E+00
A20 9.044819686969810E+02 4.098270835231820E+06
A21 0.000000000000000E+00 0.000000000000000E+00
A22 0.000000000000000E+00 -2.738929943523330E+06
A23 0.000000000000000E+00 0.000000000000000E+00
A24 0.000000000000000E+00 1.062524473328630E+06
A25 0.000000000000000E+00 0.000000000000000E+00
A26 0.000000000000000E+00 -1.816013441254900E+05
Each aberration of the above fifth example is shown in FIG. 11. As can be seen from the aberration diagrams mentioned above, it is clear that the camera module 11 in the fifth example can satisfactorily correct various aberrations for superior optical performance, despite being small in size and having a super wide angle.
In the description of embodiments of the present disclosure, it is to be understood that terms such as "central" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "back" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" and "counterclockwise" should be construed to refer to the orientation or the position as described or as shown in the drawings in discussion. These relative terms are only used to simplify the description of the present disclosure, and do not indicate or imply that the device or element referred to must have a particular orientation or must be constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure.
In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, a feature defined as "first" and "second" may comprise one or more of this feature. In the description of the present disclosure, "a plurality of" means “two or more than two” , unless otherwise specified.
In the description of embodiments of the present disclosure, unless specified or limited otherwise, the terms "mounted" , "connected" , "coupled" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements which can be understood by those skilled in the art according to specific situations.
In the embodiments of the present disclosure, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are in contact via an additional feature formed therebetween. Furthermore, a first feature "on" , "above" or "on top of" a second feature may include an embodiment in which the first feature is orthogonally or obliquely "on" , "above" or "on top of" the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below" , "under" or "on bottom of" a second feature may include an embodiment in which the first feature is orthogonally or obliquely "below" , "under" or "on bottom of" the second feature, or just means that the first feature is at a height lower than that of the second feature.
Various embodiments and examples are provided in the above description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings are described above. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numbers and/or reference letters may be repeated in different examples in the present disclosure. This repetition is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it should be appreciated by those skilled in the art that other processes and/or materials may also be applied.
Reference throughout this specification to "an embodiment" , "some embodiments" , "an exemplary embodiment" , "an example" , "a specific example" or "some examples" means that a particular feature, structure, material, or characteristics described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearance of the above phrases throughout this specification does not necessarily refer to the same embodiment or example of the present disclosure. Furthermore, the  particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Any process or method described in a flowchart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and that the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
The logic and/or step described in other manners herein or shown in a flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instructions execution system, device or equipment (such as a system based on computers, a system comprising processors or other systems capable of obtaining instructions from the instructions execution system, device and equipment executing the instructions) , or to be used in combination with the instructions execution system, device or equipment. As to the specification, "computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) . In addition, the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, since, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
It should be understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instructions execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with the use of programs. The programs may be stored in a computer readable storage medium and comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be physically separate, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.
Although embodiments of the present disclosure have been shown and described, it should be appreciated by those skilled in the art that the embodiments are explanatory and cannot be  construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims (12)

  1. An imaging lens assembly, comprising, in order from an object side:
    a first lens having a negative refractive power and a concave surface which faces the object side;
    a second lens;
    a third lens having a positive refractive power;
    a fourth lens with a concave surface facing an imaging surface side;
    a fifth lens;
    a sixth lens having a positive refractive power; and
    a seventh lens having a convex shape in a peripheral portion on a surface of the imaging surface side.
  2. The imaging lens assembly according to claim 1, wherein the imaging lens assembly satisfies the following conditional expressions,
    F1 /FL > -2.7,
    FL /F3 > 0.7,
    where FL is a focal length of an entire lens system, F1 is a focal length of the first lens, and F3 is a focal length of the third lens.
  3. The imaging lens assembly according to claim 1, wherein the imaging lens assembly satisfies the following conditional expression,
    F5 /FL > 1.2,
    where FL is a focal length of an entire lens system, and F5 is a focal length of the fifth lens.
  4. The imaging lens assembly according to claim 1, wherein the fifth lens has a positive refractive power and a convex surface facing the imaging surface side.
  5. The imaging lens assembly according to claim 1, wherein the imaging lens assembly satisfies the following conditional expressions,
    N1 < 1.6,
    N3 < 1.6,
    N4 > 1.6,
    N5 < 1.6,
    where N1 is a refractive index of the first lens, N3 is a refractive index of the third lens, N4 is a refractive index of the fourth lens, and N5 is a refractive index of the fifth lens.
  6. The imaging lens assembly according to claim 1, wherein the imaging lens assembly satisfies the following conditional expressions,
    ν1 > 40,
    ν5 > 50,
    where ν1 is an Abbe number of the first lens, and ν5 is an Abbe number of the fifth lens.
  7. The imaging lens assembly according to claim 1, wherein the imaging lens assembly satisfies the following conditional expression,
    TTL /HDL < 2.0,
    where TTL is a length on an optical axis from a surface of the object side of the first lens to a focal point of an entire lens system, and HDL is a half diagonal length of an effective pixel area of an imaging surface.
  8. The imaging lens assembly according to claim 1, further comprising an aperture stop between the second lens and the third lens.
  9. The imaging lens assembly according to claim 1, wherein an angle of view of the imaging lens assembly is equal to or more than 100 degrees.
  10. The imaging lens assembly according to claim 1, wherein a lens disposed on the most imaging surface side has an aspheric shape having an inflection point and is formed of plastic.
  11. A camera module comprising:
    an imaging lens assembly according to any one of claims 1-10; and
    an image sensor comprising an imaging surface.
  12. An imaging device comprising a camera module according to claim 11.
PCT/CN2021/077304 2021-02-22 2021-02-22 Imaging lens assembly, camera module and imaging device WO2022174459A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180083253.8A CN116783533A (en) 2021-02-22 2021-02-22 Imaging lens assembly, camera module, and imaging apparatus
PCT/CN2021/077304 WO2022174459A1 (en) 2021-02-22 2021-02-22 Imaging lens assembly, camera module and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077304 WO2022174459A1 (en) 2021-02-22 2021-02-22 Imaging lens assembly, camera module and imaging device

Publications (1)

Publication Number Publication Date
WO2022174459A1 true WO2022174459A1 (en) 2022-08-25

Family

ID=82932286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077304 WO2022174459A1 (en) 2021-02-22 2021-02-22 Imaging lens assembly, camera module and imaging device

Country Status (2)

Country Link
CN (1) CN116783533A (en)
WO (1) WO2022174459A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221104A (en) * 2019-12-26 2020-06-02 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111505810A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111505811A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111538136A (en) * 2020-07-09 2020-08-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111983780A (en) * 2020-09-01 2020-11-24 玉晶光电(厦门)有限公司 Optical imaging lens
CN112230370A (en) * 2020-10-23 2021-01-15 江西晶超光学有限公司 Optical lens, camera module and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221104A (en) * 2019-12-26 2020-06-02 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111505810A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111505811A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111538136A (en) * 2020-07-09 2020-08-14 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111983780A (en) * 2020-09-01 2020-11-24 玉晶光电(厦门)有限公司 Optical imaging lens
CN112230370A (en) * 2020-10-23 2021-01-15 江西晶超光学有限公司 Optical lens, camera module and electronic device

Also Published As

Publication number Publication date
CN116783533A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2021159406A1 (en) Imaging lens, camera module and imaging device
US9529177B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9279962B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9274319B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
CN111045188B (en) Optical lens assembly, image capturing module and electronic device
US9661199B2 (en) Imaging apparatus and electronic device which can be reduced in height
US9547156B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
CN113391430B (en) Optical system, lens module and electronic equipment
WO2021128064A1 (en) Imaging lens, camera module and imaging device
KR101729470B1 (en) Photographic Lens Optical System
CN111045190A (en) Optical camera lens assembly, image capturing module and electronic device
WO2021035758A1 (en) Optical system, lens module, and electronic apparatus
CN110967805B (en) Optical camera lens assembly, image capturing module and electronic device
CN110673300B (en) Optical pick-up lens, image capturing device and electronic device
WO2023159432A1 (en) Imaging lens assembly, camera module and imaging device
CN114740596B (en) Optical system, image capturing module and electronic equipment
WO2022016329A1 (en) Imaging lens assembly, camera module and imaging device
CN114326019B (en) Optical system, image capturing module and electronic equipment
WO2022174459A1 (en) Imaging lens assembly, camera module and imaging device
US9400372B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
CN115079373A (en) Optical imaging system, image capturing module and electronic device
WO2022016392A1 (en) Optical imaging lens, camera module and imaging device
WO2023197253A1 (en) Imaging lens assembly, camera module and imaging device
CN113391429A (en) Optical system, camera module and electronic equipment
WO2021232242A1 (en) Imaging lens which takes into consideration image processing-based distortion correction, camera module and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083253.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926176

Country of ref document: EP

Kind code of ref document: A1