WO2023159432A1 - Imaging lens assembly, camera module and imaging device - Google Patents

Imaging lens assembly, camera module and imaging device Download PDF

Info

Publication number
WO2023159432A1
WO2023159432A1 PCT/CN2022/077732 CN2022077732W WO2023159432A1 WO 2023159432 A1 WO2023159432 A1 WO 2023159432A1 CN 2022077732 W CN2022077732 W CN 2022077732W WO 2023159432 A1 WO2023159432 A1 WO 2023159432A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
refractive power
lens assembly
object side
Prior art date
Application number
PCT/CN2022/077732
Other languages
French (fr)
Inventor
Tatsuya Nakatsuji
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to PCT/CN2022/077732 priority Critical patent/WO2023159432A1/en
Publication of WO2023159432A1 publication Critical patent/WO2023159432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/04Bodies collapsible, foldable or extensible, e.g. book type

Definitions

  • the present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are slim and enable good optical performance.
  • a lens is retracted in a space between the lens and a sensor. By retracting the lens of the imaging lens assembly, a thickness of the imaging device when collapsed can be reduced.
  • the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens, a camera module and an imaging device.
  • an imaging lens assembly includes:
  • a lens group including at least one lens having a positive refractive power and at least one lens having a negative refractive power, the lens group being configured so that a distance between the lens group and an imaging surface in a stored lens state is smaller than a distance between the lens group and the imaging surface in a shooting state, the imaging lens assembly being configured, in the shooting state, so that:
  • EFL is a focal length of the imaging lens assembly
  • dd is an image height
  • BL is a distance on an optical axis from a surface on an imaging surface side of a most imaging surface side disposed lens to the imaging surface.
  • a camera module includes:
  • an image sensor including the imaging surface.
  • an imaging device includes:
  • a housing which houses the camera module.
  • FIG. 1 is a diagram of a camera module according to the present disclosure illustrating an imaging lens assembly in a shooting state and an imaging lens assembly in a stored lens state;
  • FIG. 2 is a diagram of an imaging device according to the present disclosure illustrating an imaging device in a shooting state and an imaging device in a stored lens state;
  • FIG. 3 is an explanatory diagram for explaining lens parameters of the imaging lens assembly according to the present disclosure
  • FIG. 4 is a graph of a rear depth of field for explaining lens parameters of the imaging lens assembly according to the present disclosure
  • FIG. 5 is a schematic diagram of a subject and a camera for explaining lens parameters of the imaging lens assembly according to the present disclosure
  • FIG. 6 is a diagram of the camera module in the shooting state according to a first example of the present disclosure
  • FIG. 7 is an aberration diagram of the camera module according to the first example of the present disclosure.
  • FIG. 8 is a diagram of the camera module in the shooting state according to a second example of the present disclosure.
  • FIG. 9 is an aberration diagram of the camera module according to the second example of the present disclosure.
  • FIG. 10 is a diagram of the camera module in the shooting state according to a third example of the present disclosure.
  • FIG. 11 is an aberration diagram of the camera module according to the third example of the present disclosure.
  • FIG. 12 is a diagram of the camera module in the shooting state according to a fourth example of the present disclosure.
  • FIG. 13 is an aberration diagram of the camera module according to the fourth example of the present disclosure.
  • FIG. 14 is a diagram of the camera module in the shooting state according to a fifth example of the present disclosure.
  • FIG. 15 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
  • a camera module 11 to which the present disclosure is applied includes an imaging lens assembly 21, an optical filter 22, and an image sensor 23 having an imaging surface S.
  • the imaging lens assembly 21 includes a lens group 31 and an aperture stop 32.
  • the camera module 11, to which the present disclosure more specifically applies, is configured as shown in FIGS. 6, 8, 10, 12 and 14, for example.
  • the imaging lens assembly 21 is configured to have a shooting state, where a subject (object) is shot (recorded as an image) , and a stored lens state where the lens group 31 is housed in a housing 12 which houses the camera module 11 (see FIG. 2) .
  • the camera module 11 and the housing 12 constitute an imaging device 1.
  • the lens group 31 is configured so that a distance between the lens group 31 and the imaging surface S in the stored lens state is smaller than a distance between the lens group 31 and the imaging surface S in the shooting state.
  • the imaging lens assembly 21 is configured so that a total length LTL and a back focus BL of the imaging lens assembly 21 are smaller when the imaging lens assembly 21 is in the stored lens state than when the imaging lens assembly 21 is in the shooting state.
  • the total length LTL of the imaging lens assembly 21 is a distance on an optical axis from a surface on an object side of a most object side disposed lens to the imaging surface S.
  • a dash –dot line represents the optical axis of the camera module 11 (the same applies hereinafter) .
  • the back focus BL is a distance on the optical axis from a surface on an imaging surface S side of a most imaging surface S side disposed lens to the imaging surface S. LENSTL in Fig.
  • the lens length LENSTL is a distance on the optical axis from a surface on an object side of a most object side disposed lens to the surface on the imaging surface S side of the most imaging surface S side disposed lens.
  • the total length LTL is the sum of the lens length LENSTL and the back focus BL.
  • the lens group 31 stored in the housing 12 is driven in a direction protruding from the housing 12.
  • the lens group 31 is withdrawn (collapsed) and stored in the housing 12. That is, the lens group 31 is at least partially protruded from the housing 12 in the shooting state and is stored in the housing 12 in the stored lens state.
  • the imaging lens assembly 21 having such a configuration is a collapsible imaging lens assembly which has excellent storability and portability when shooting is not performed.
  • the lens group 31 is configured to be integrally movable along the optical axis. More specifically, the lens group 31 is held, or fixed, in a single barrel 33. Therefore, the relative positional relationship between the lenses included in the lens group 31 does not change.
  • the lenses included in the lens group 31 are shown in a simplified form.
  • the lens group 31 can be moved in the optical axis direction by a lens drive mechanism 13.
  • the lens drive mechanism 13 may serve as a collapsible mechanism and an AF mechanism by including, for example, only a stepping motor or an actuator such as a stepping motor and a voice coil motor.
  • the movement of the lens group 31 in the optical axis direction is guided, for example, by a shaft-shaped or tubular guide member 14.
  • the optical filter 22 is disposed between the lens group 31 and the image sensor 23.
  • the optical filter 22 may be, for example, an IR filter.
  • the image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) .
  • the image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21.
  • the image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage.
  • the image sensor 23 may be a large area 1-inch sensor (8.8 mm x 13.2 mm) . By using the large-area image sensor, image quality can be improved.
  • the imaging lens assembly 21 which includes at least one lens having a positive refractive power and at least one lens having a negative refractive power, and ensures a large total length LTL and back focus BL in the shooting state as described above, it is possible to ensure a large back focus which is suitable for retracting the lens group 31. Furthermore, it is possible to obtain an easy-to-use angle of view which is not biased toward either wide-angle or telephoto, while reducing a thickness of the imaging device 1 in the stored lens state. It is also possible to obtain the easy-to-use angle of view while mounting a large-area image sensor 23 with excellent image quality.
  • At least one lens in the lens group 31 may have two or more inflection points.
  • the most imaging surface S side disposed lens i.e., the last lens
  • a surface on the side of the object of the most imaging surface S side disposed lens has a convex shape in the lens center (i.e., near the optical axis) and a concave shape in a peripheral portion (i.e., near the outer periphery) .
  • a surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave shape in the lens center and a convex shape in the peripheral portion.
  • the number of lenses included in the lens group 31 is preferably between 5 or more and 8 or less. By setting the number of lenses included in the lens group 31 to between 5 or more and 8 or less, it is possible to obtain good optical performance while suppressing the lens length LENSTL.
  • the aperture stop 32 may be disposed on the object side of the most object side disposed lens. Alternatively, the aperture stop 32 may be disposed between a vertex of a surface on an object side of the most object side disposed lens and a surface on an imaging surface S side of the most object side disposed lens.
  • Such an imaging lens assembly 21, including the aperture stop 32 at a position far from the imaging surface S can position an exit pupil far from the imaging surface S. Since the exit pupil can be positioned far from the imaging surface S, it is possible to enhance telecentricity and reduce a tilt angle of incident light to the image sensor 23. This makes it possible to prevent a decrease in an amount of light in a periphery of the imaging lens assembly 21 and to stabilize magnification of an image.
  • the imaging lens assembly 21 to which the present disclosure is applied can more effectively ensure the slimming of the imaging device 1 and the easy-to-use angle of view when the imaging lens assembly 21 satisfies, in the shooting state, the following inequalities (1) and (2) :
  • EFL is a focal length of the imaging lens assembly 21 (hereinafter the same applies) .
  • dd is half the length of a diagonal length 2dd of the imaging surface S shown in FIG. 3, that is, an image height (hereinafter the same applies) .
  • BL is a distance on the optical axis from the surface on the imaging surface S side of the most imaging surface S side disposed lens to the imaging surface S, that is the back focus (hereinafter the same applies) .
  • the inequality (1) means that a range of the angle of view is regulated to be a range of the angle of view where a 35 mm equivalent focal length, which is a focal length when a 35mm full-size sensor (24 mm x 36 mm) is used, is between 22mm or more and 37mm or less. That is, the inequality (1) means that a half angle of view is regulated to be between 30.5° or more and 45°or less.
  • EFL/dd deviates from the range of inequality (1) , it is impossible to obtain an easy-to-use angle of view which is not biased toward either wide-angle or telephoto (e.g., an angle of view suitable for setting a composition of an image with a high degree of freedom) . More specifically, if EFL/dd falls below the lower limit (1) of the inequality (1) , the angle of view is biased toward the wide-angle side and it is difficult to zoom in on (i.e., enlarge) a distant subject and image the subject. On the other hand, if EFL/dd exceeds the upper limit (1.7) of the inequality (1) , the angle of view is biased toward the telephoto side and it is difficult to capture a wide area including a background.
  • FIG. 4 shows a relationship between the 35mm equivalent focal length and a rear depth of field when using a 1-inch sensor.
  • the rear depth of field is a range behind (at the back of) a focus position where an image appears to be in focus.
  • the rear depth of field is expressed by the following formula (3) .
  • Rear depth of field (diameter of permissible circle of confusion x F value x (distance of subject) 2 ) / ( (focal length) 2 -diameter of permissible circle of confusion x F value x distance of subject) (3) .
  • the distance of subject is a distance from a camera to a subject as shown in FIG. 5.
  • the diameter of permissible circle of confusion is a maximum diameter of a circular image that can be considered in focus when a point on an object surface is captured as the circular image on the imaging surface S.
  • the graph shown in FIG. 4 is calculated when f-number is 2.0, the distance of subject is 1m, and the diameter of permissible circle of confusion is 3.2 ⁇ m.
  • the larger the 35 mm equivalent focal length the smaller the rear depth of field.
  • the background of the image is blurred. This makes it easier to obtain a bokeh image in which the subject is in focus and the background is blurred. By making it easier to obtain a bokeh image, the expressiveness of the image can be enhanced.
  • a known existing imaging lens assembly to which the 1-inch sensor is applied is an imaging lens assembly having an angle of view corresponding to a 35 mm equivalent focal length of 19 mm (half angle of view 48.7°) .
  • an imaging lens assembly having the 35 mm equivalent focal length of 19 mm it is difficult to obtain a good bokeh image due to its large rear depth of field.
  • an angle of view corresponding to the 35mm equivalent focal length of 22mm or more and 37mm or less can be obtained. Accordingly, a good bokeh image can be easily obtained.
  • the imaging lens assembly 21 can more effectively ensure the slimming of the imaging device 1 when the imaging lens assembly 21 satisfies the following inequality (4) :
  • LENSTL is a distance on the optical axis from a surface on the object side of the most object side disposed lens to the surface on the imaging surface S side of the most imaging surface S side disposed lens, that is a lens length (hereinafter the same applies) .
  • the imaging lens assembly 21 can have a lens configuration close to that of a retrofocus type lens assembly, which effectively ensures a large back focus BL, when the imaging lens assembly 21 satisfies the following inequality (5) :
  • EFL1_2 is a composite focal length of the most object side disposed lens and a lens disposed the second from the object side (hereinafter the same applies) .
  • the imaging lens assembly 21 can have a lens configuration closer to that of the retrofocus type lens assembly, which more effectively ensures a large back focus BL, when the imaging lens assembly 21 satisfies the following inequality (6) :
  • EFL3_L is a composite focal length of lenses from a lens, which is disposed the third from the object side, to the most imaging surface S side disposed lens (i.e., the last lens) (hereinafter the same applies) .
  • the imaging lens assembly 21 can more easily obtain the bokeh image and can intake more object light to improve image quality when the imaging lens assembly 21 satisfies the following inequality (7) :
  • da is a diameter of the aperture stop 32 (hereinafter the same applies) .
  • EFL/da i.e., the F value
  • the image is dark, and thus it is difficult to be blurred.
  • the value of EFL/da exceeds the upper limit of the inequality (7) , it is difficult to intake the object light, and thus image quality is impaired.
  • the imaging lens assembly 21 can more effectively ensure the easy-to-use angle of view, which is not biased toward either wide-angle or telephoto, when the imaging lens assembly 21 satisfies the following inequality (8) :
  • hFOV is the half angle of view (hereinafter the same applies) .
  • the imaging lens assembly 21 can more effectively ensure the slimming of the imaging device 1 when the imaging lens assembly 21 satisfies, in the shooting state, the following inequality (9) :
  • LTL is a total length of the imaging lens assembly 21, which is a distance on the optical axis from the surface on the object side of the most object side disposed lens to the imaging surface S (hereinafter the same applies) .
  • EPL is an exit pupil distance which is a distance between the imaging surface S and an exit pupil (hereinafter the same applies) .
  • the imaging lens assembly 21 can improve optical performance when the imaging lens assembly 21 satisfies the following inequality (10) :
  • An aspherical lens among lenses included in the imaging lens assembly 21 can be formed of glass materials and plastic materials. However, from the viewpoint of lens molding, it is preferable that the aspherical lens is formed of a plastic material. This is because if the aspherical lens is made of a material other than a plastic, a tolerance with respect to an outer shape of the lens is large, and thus, lens eccentricity occurs and it is difficult to obtain a good quality image.
  • Such a camera module 11 including the imaging lens assembly 21 can be used in compact digital devices (imaging devices 1) such as mobile phones, wearable cameras and surveillance cameras.
  • Si indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side.
  • Optical elements of the corresponding surfaces are indicated by the corresponding surface number “Si” .
  • Denotations of "first surface” or “1st surface” indicate a surface on the object side of the lens
  • denotations of "second surface” or “2nd surface” indicate a surface on the imaging surface S side of the lens.
  • “Ri” indicates the value of a central curvature radius (mm) of the surface.
  • Di indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) .
  • Nedi indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ di indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface.
  • ENLi indicates the focal length of the i-th lens from the object side.
  • the imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces.
  • the aspheric shape of the lens is defined by the following formula (11) :
  • Z is a depth of the aspheric surface
  • C is a paraxial curvature which is equal to 1/R
  • h is a distance from the optical axis to a lens surface
  • K is a conic constant (second-order aspheric coefficient)
  • An is an nth-order aspheric coefficient.
  • the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power in a paraxial region, a second lens L2 having a negative refractive power in the paraxial region, a third lens L3 having a positive refractive power in the paraxial region with a convex surface facing the object side, a fourth lens L4 having a positive refractive power in the paraxial region, a fifth lens L5 having a positive refractive power in the paraxial region with a convex surface facing the imaging surface S side, and a sixth lens L6 having a negative refractive power in the paraxial region.
  • the aperture stop 32 is disposed on the object side of the first lens L1.
  • Table 1 shows lens data of the first example.
  • Table 2 shows aspheric coefficients of the imaging lens assembly 21.
  • E-i indicates an exponential expression with a base of 10, i.e., "10 -i " .
  • E-03 indicates "-4.078272 ⁇ 10 -3 " .
  • Table 3 shows focal lengths of each lens and values of parameters corresponding to the conditional expressions.
  • the total length LTL of the imaging lens assembly 21 is the total length when the object point is set at infinity.
  • FIG. 7 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) , distortion and chromatic aberration of magnification.
  • a reference wavelength is d-line (587.6 nm) .
  • S indicates a value of aberration on a sagittal image surface
  • T indicates a value of aberration on a tangential image surface.
  • a reference wavelength is d-line.
  • chromatic aberration of a magnification diagram chromatic aberrations of magnification of C-line and F-line when d-line is used as a reference wavelength are shown. The same applies to aberration diagrams in other examples.
  • the camera module 11 in the first example can satisfactorily correct various aberrations to obtain superior optical performance.
  • the aperture stop 32 is disposed between a vertex of a first surface of the first lens L1 and a second surface of the first lens L1.
  • the lens parameters corresponding to those in the first example are shown in Tables 4 to 6.
  • the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a negative refractive power in the paraxial region.
  • the first lens L1 has a negative refractive power in the paraxial region
  • the fifth lens L5 has a negative refractive power in the paraxial region
  • the sixth lens L6 has a positive refractive power in the paraxial region.
  • the lens parameters corresponding to those in the first example are shown in Tables 7 to 9.
  • E-10 -8.032139 E-11 1.572248. E-10 A18 2.271836. E-11 -1.608019. E-11 6.191042. E-12 4.754265. E-11 A19 2.121342. E-11 -2.987396. E-11 8.113892. E-12 1.467604. E-11 A20 5.525364. E-12 1.222738. E-11 4.022359. E-12 2.704666. E-12 A21 4.300997. E-13 4.380491. E-12 1.602482. E-12 2.593727. E-14 A22 4.077029. E-13 2.794537. E-12 5.345564. E-13 -2.105114. E-13 A23 -2.773086. E-14 1.025235. E-12 1.190635.
  • the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a positive refractive power in the paraxial region, and an eighth lens L8, which has a negative refractive power in the paraxial region.
  • the first lens L1 has a negative refractive power in the paraxial region
  • the fourth lens L4 has a negative refractive power in the paraxial region.
  • the lens parameters corresponding to those in the first example are shown in Tables 10 to 12.
  • E-08 -9.895184 E-09 0 -1.112150. E-08 A14 -3.122469. E-09 -4.252586. E-10 2.762875. E-07 -2.833134. E-07 A15 -1.000431. E-09 2.863429. E-10 0 -1.676149. E-09 A16 -7.802880. E-10 7.836853. E-10 -3.640755. E-09 9.366119. E-09 A17 -4.452165. E-11 1.460067. E-10 0 -3.511150. E-12 A18 1.769603. E-11 4.285051. E-11 -9.571034. E-11 -9.614183. E-11 A19 1.146950.
  • the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a negative refractive power in the paraxial region.
  • the first lens L1 has a negative refractive power in the paraxial region
  • the fifth lens L5 has a negative refractive power in the paraxial region
  • the sixth lens L6 has a positive refractive power in the paraxial region.
  • the lens parameters corresponding to those in the first example are shown in Tables 13 to 15.
  • E-07 6.353613 E-07 A13 0 -1.723946. E-08 3.917858. E-08 -6.337243. E-09 A14 2.757328. E-07 -2.856655. E-07 2.603555. E-08 -8.135764. E-09 A15 0 -2.367862. E-09 3.279812. E-09 3.745903. E-11 A16 -3.777076. E-09 9.170392. E-09 2.415884. E-09 -7.413188. E-10 A17 0 -4.869104. E-11 -8.241766. E-11 1.154922. E-11 A18 -1.185503. E-10 -1.054837.
  • E-10 -8.372257.
  • E-11 A19 0 1.706532.
  • E-13 A21 0 2.715948.
  • E-15 A22 -1.195858.
  • E-16 A23 0 1.941324.
  • E-15 2.070065.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • the feature defined with “first” and “second” may comprise one or more of this feature.
  • a plurality of means two or more than two, unless specified otherwise.
  • the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
  • a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween.
  • a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
  • Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
  • the logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment.
  • the computer readable medium may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
  • the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
  • the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.

Abstract

An imaging lens assembly includes a lens group including at least one lens having a positive refractive power and at least one lens having a negative refractive power, the lens group being configured so that a distance between the lens group and an imaging surface in a stored lens state is smaller than a distance between the lens group and the imaging surface in a shooting state, the imaging lens assembly being configured, in the shooting state, so that: 1 <EFL/dd<1.7, BL/dd>0.35, where EFL is a focal length of the imaging lens assembly, dd is an image height, and BL is a distance on an optical axis from a surface on an imaging surface side of a most imaging surface side disposed lens to the imaging surface.

Description

IMAGING LENS ASSEMBLY, CAMERA MODULE AND IMAGING DEVICE TECHNICAL FIELD
The present disclosure relates to an imaging lens assembly, a camera module, and an imaging device, and more specifically, to an imaging lens assembly, a camera module, and an imaging device that are slim and enable good optical performance.
BACKGROUND
In recent years, portable imaging devices such as mobile phones and digital cameras are being widely used. Such imaging devices are required to be slim so that they are suitable for carrying around. In order to meet such a demand for slimming (miniaturization) of the imaging devices, in a conventional imaging lens assembly, a lens is retracted in a space between the lens and a sensor. By retracting the lens of the imaging lens assembly, a thickness of the imaging device when collapsed can be reduced.
However, no effective proposal has been made for an imaging lens assembly having a large back focus which is suitable for retracting a lens.
SUMMARY
The present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide an imaging lens, a camera module and an imaging device.
In accordance with the present disclosure, an imaging lens assembly includes:
a lens group including at least one lens having a positive refractive power and at least one lens having a negative refractive power, the lens group being configured so that a distance between the lens group and an imaging surface in a stored lens state is smaller than a distance between the lens group and the imaging surface in a shooting state, the imaging lens assembly being configured, in the shooting state, so that:
1 < EFL/dd < 1.7,
BL/dd > 0.35,
where EFL is a focal length of the imaging lens assembly, dd is an image height, and BL is a distance on an optical axis from a surface on an imaging surface side of a most imaging surface side disposed lens to the imaging surface.
In accordance with the present disclosure, a camera module includes:
the imaging lens assembly; and
an image sensor including the imaging surface.
In accordance with the present disclosure, an imaging device includes:
the camera module; and
a housing which houses the camera module.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1 is a diagram of a camera module according to the present disclosure illustrating an imaging lens assembly in a shooting state and an imaging lens assembly in a stored lens state;
FIG. 2 is a diagram of an imaging device according to the present disclosure illustrating an imaging device in a shooting state and an imaging device in a stored lens state;
FIG. 3 is an explanatory diagram for explaining lens parameters of the imaging lens assembly according to the present disclosure;
FIG. 4 is a graph of a rear depth of field for explaining lens parameters of the imaging lens  assembly according to the present disclosure;
FIG. 5 is a schematic diagram of a subject and a camera for explaining lens parameters of the imaging lens assembly according to the present disclosure;
FIG. 6 is a diagram of the camera module in the shooting state according to a first example of the present disclosure;
FIG. 7 is an aberration diagram of the camera module according to the first example of the present disclosure;
FIG. 8 is a diagram of the camera module in the shooting state according to a second example of the present disclosure;
FIG. 9 is an aberration diagram of the camera module according to the second example of the present disclosure;
FIG. 10 is a diagram of the camera module in the shooting state according to a third example of the present disclosure;
FIG. 11 is an aberration diagram of the camera module according to the third example of the present disclosure;
FIG. 12 is a diagram of the camera module in the shooting state according to a fourth example of the present disclosure;
FIG. 13 is an aberration diagram of the camera module according to the fourth example of the present disclosure;
FIG. 14 is a diagram of the camera module in the shooting state according to a fifth example of the present disclosure, and
FIG. 15 is an aberration diagram of the camera module according to the fifth example of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the drawings are explanatory and aim to illustrate the present disclosure, but shall not be construed to limit the present disclosure.
<Outline of the disclosure>
First, an outline of the present disclosure will be described. As shown in FIG. 1, a camera module 11 to which the present disclosure is applied includes an imaging lens assembly 21, an optical filter 22, and an image sensor 23 having an imaging surface S. The imaging lens assembly 21 includes a lens group 31 and an aperture stop 32. The camera module 11, to which the present disclosure more specifically applies, is configured as shown in FIGS. 6, 8, 10, 12 and 14, for example.
The imaging lens assembly 21 is configured to have a shooting state, where a subject (object) is shot (recorded as an image) , and a stored lens state where the lens group 31 is housed in a housing 12 which houses the camera module 11 (see FIG. 2) . The camera module 11 and the housing 12 constitute an imaging device 1.
The lens group 31 is configured so that a distance between the lens group 31 and the imaging surface S in the stored lens state is smaller than a distance between the lens group 31 and the imaging surface S in the shooting state.
In other words, the imaging lens assembly 21 is configured so that a total length LTL and a back focus BL of the imaging lens assembly 21 are smaller when the imaging lens assembly 21 is in the stored lens state than when the imaging lens assembly 21 is in the shooting state. Here, the total length LTL of the imaging lens assembly 21 is a distance on an optical axis from a surface on an object side of a most object side disposed lens to the imaging surface S. In Fig. 1, a dash –dot line represents the optical axis of the camera module 11 (the same applies  hereinafter) . The back focus BL is a distance on the optical axis from a surface on an imaging surface S side of a most imaging surface S side disposed lens to the imaging surface S. LENSTL in Fig. 1 is a lens length, which is a length in an optical axis direction of only the lens group 31 of the optical system that constitutes the imaging lens assembly 21. That is, the lens length LENSTL is a distance on the optical axis from a surface on an object side of a most object side disposed lens to the surface on the imaging surface S side of the most imaging surface S side disposed lens. The total length LTL is the sum of the lens length LENSTL and the back focus BL.
For example, when a user operation or an automatic operation by an algorithm is performed to start a shooting mode, the lens group 31 stored in the housing 12 is driven in a direction protruding from the housing 12. On the other hand, when a user operation or an automatic operation by the algorithm is performed to end the shooting mode, the lens group 31 is withdrawn (collapsed) and stored in the housing 12. That is, the lens group 31 is at least partially protruded from the housing 12 in the shooting state and is stored in the housing 12 in the stored lens state. The imaging lens assembly 21 having such a configuration is a collapsible imaging lens assembly which has excellent storability and portability when shooting is not performed.
As shown in FIG. 2, the lens group 31 is configured to be integrally movable along the optical axis. More specifically, the lens group 31 is held, or fixed, in a single barrel 33. Therefore, the relative positional relationship between the lenses included in the lens group 31 does not change. In FIG. 2, the lenses included in the lens group 31 are shown in a simplified form. As shown in FIG. 2, the lens group 31 can be moved in the optical axis direction by a lens drive mechanism 13. The lens drive mechanism 13 may serve as a collapsible mechanism and an AF mechanism by including, for example, only a stepping motor or an actuator such as a stepping motor and a voice coil motor. The movement of the lens group 31 in the optical axis direction is guided, for example, by a shaft-shaped or tubular guide member 14.
The optical filter 22 is disposed between the lens group 31 and the image sensor 23. The optical filter 22 may be, for example, an IR filter.
The image sensor 23 is, for example, a solid-state image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device) . The image sensor 23 has the imaging surface S which is an imaging plane of the imaging lens assembly 21. The image sensor 23 receives incident light from the subject (object side) via the imaging lens assembly 21 and the optical filter 22, photoelectrically converts the light and outputs an image data, obtained by photoelectric conversion of the light, to a subsequent stage.
The image sensor 23 may be a large area 1-inch sensor (8.8 mm x 13.2 mm) . By using the large-area image sensor, image quality can be improved.
According to the present disclosure, by employing the imaging lens assembly 21, which includes at least one lens having a positive refractive power and at least one lens having a negative refractive power, and ensures a large total length LTL and back focus BL in the shooting state as described above, it is possible to ensure a large back focus which is suitable for retracting the lens group 31. Furthermore, it is possible to obtain an easy-to-use angle of view which is not biased toward either wide-angle or telephoto, while reducing a thickness of the imaging device 1 in the stored lens state. It is also possible to obtain the easy-to-use angle of view while mounting a large-area image sensor 23 with excellent image quality.
At least one lens in the lens group 31 may have two or more inflection points. In the example shown in FIG. 1, the most imaging surface S side disposed lens (i.e., the last lens) has, on the object side and the imaging surface S side, aspheric shapes having inflection points. Specifically, a surface on the side of the object of the most imaging surface S side disposed lens has a convex shape in the lens center (i.e., near the optical axis) and a concave shape in a peripheral portion (i.e., near the outer periphery) . A surface on the side of the imaging surface S of the most imaging surface S side disposed lens has a concave shape in the lens center and a  convex shape in the peripheral portion. Such an imaging lens assembly 21 having two or more inflection points can suppress the lens length LENSTL and effectively secure the back focus, while providing good correction of various aberrations.
The number of lenses included in the lens group 31 is preferably between 5 or more and 8 or less. By setting the number of lenses included in the lens group 31 to between 5 or more and 8 or less, it is possible to obtain good optical performance while suppressing the lens length LENSTL.
The aperture stop 32 may be disposed on the object side of the most object side disposed lens. Alternatively, the aperture stop 32 may be disposed between a vertex of a surface on an object side of the most object side disposed lens and a surface on an imaging surface S side of the most object side disposed lens. Such an imaging lens assembly 21, including the aperture stop 32 at a position far from the imaging surface S, can position an exit pupil far from the imaging surface S. Since the exit pupil can be positioned far from the imaging surface S, it is possible to enhance telecentricity and reduce a tilt angle of incident light to the image sensor 23. This makes it possible to prevent a decrease in an amount of light in a periphery of the imaging lens assembly 21 and to stabilize magnification of an image.
The imaging lens assembly 21 to which the present disclosure is applied can more effectively ensure the slimming of the imaging device 1 and the easy-to-use angle of view when the imaging lens assembly 21 satisfies, in the shooting state, the following inequalities (1) and (2) :
1 < EFL/dd < 1.7 (1)
BL/dd >0.35 (2)
In the inequality (1) , EFL is a focal length of the imaging lens assembly 21 (hereinafter the same applies) . dd is half the length of a diagonal length 2dd of the imaging surface S shown in FIG. 3, that is, an image height (hereinafter the same applies) . In the inequality (2) , BL is a distance on the optical axis from the surface on the imaging surface S side of the most imaging surface S side disposed lens to the imaging surface S, that is the back focus (hereinafter the same applies) .
The inequality (1) means that a range of the angle of view is regulated to be a range of the angle of view where a 35 mm equivalent focal length, which is a focal length when a 35mm full-size sensor (24 mm x 36 mm) is used, is between 22mm or more and 37mm or less. That is, the inequality (1) means that a half angle of view is regulated to be between 30.5° or more and 45°or less.
If EFL/dd deviates from the range of inequality (1) , it is impossible to obtain an easy-to-use angle of view which is not biased toward either wide-angle or telephoto (e.g., an angle of view suitable for setting a composition of an image with a high degree of freedom) . More specifically, if EFL/dd falls below the lower limit (1) of the inequality (1) , the angle of view is biased toward the wide-angle side and it is difficult to zoom in on (i.e., enlarge) a distant subject and image the subject. On the other hand, if EFL/dd exceeds the upper limit (1.7) of the inequality (1) , the angle of view is biased toward the telephoto side and it is difficult to capture a wide area including a background.
FIG. 4 shows a relationship between the 35mm equivalent focal length and a rear depth of field when using a 1-inch sensor.
The rear depth of field is a range behind (at the back of) a focus position where an image appears to be in focus. The rear depth of field is expressed by the following formula (3) .
Rear depth of field = (diameter of permissible circle of confusion x F value x (distance of subject)  2) / ( (focal length)  2 -diameter of permissible circle of confusion x F value x distance of subject) (3) .
In the formula (3) , the distance of subject is a distance from a camera to a subject as shown in FIG. 5. The diameter of permissible circle of confusion is a maximum diameter of a circular image that can be considered in focus when a point on an object surface is captured as the  circular image on the imaging surface S. The graph shown in FIG. 4 is calculated when f-number is 2.0, the distance of subject is 1m, and the diameter of permissible circle of confusion is 3.2μm.
As shown in FIG. 4, the larger the 35 mm equivalent focal length, the smaller the rear depth of field. When the rear depth of field is small, the background of the image is blurred. This makes it easier to obtain a bokeh image in which the subject is in focus and the background is blurred. By making it easier to obtain a bokeh image, the expressiveness of the image can be enhanced.
Here, a known existing imaging lens assembly to which the 1-inch sensor is applied is an imaging lens assembly having an angle of view corresponding to a 35 mm equivalent focal length of 19 mm (half angle of view 48.7°) . However, using such an imaging lens assembly having the 35 mm equivalent focal length of 19 mm, it is difficult to obtain a good bokeh image due to its large rear depth of field.
In contrast, according to the imaging lens assembly 21 of the present disclosure, when the inequality (1) is satisfied, an angle of view corresponding to the 35mm equivalent focal length of 22mm or more and 37mm or less can be obtained. Accordingly, a good bokeh image can be easily obtained.
If the value of BL/dd falls below the lower limit of the inequality (2) , it is difficult to secure a sufficient back focus BL to accommodate the lens group 31.
Further, the imaging lens assembly 21 can more effectively ensure the slimming of the imaging device 1 when the imaging lens assembly 21 satisfies the following inequality (4) :
LENSTL < dd (4)
In the inequality (4) , LENSTL is a distance on the optical axis from a surface on the object side of the most object side disposed lens to the surface on the imaging surface S side of the most imaging surface S side disposed lens, that is a lens length (hereinafter the same applies) .
If the value of LENSTL exceeds the upper limit of the inequality (4) , it is difficult to reduce the thickness of the imaging device 1.
Further, the imaging lens assembly 21 can have a lens configuration close to that of a retrofocus type lens assembly, which effectively ensures a large back focus BL, when the imaging lens assembly 21 satisfies the following inequality (5) :
1/EFL1_2 < 0.01 (5)
In the inequality (5) , EFL1_2 is a composite focal length of the most object side disposed lens and a lens disposed the second from the object side (hereinafter the same applies) .
If the value of 1/EFL1_2 exceeds the upper limit of the inequality (5) , it is difficult to increase the back focus.
Further, the imaging lens assembly 21 can have a lens configuration closer to that of the retrofocus type lens assembly, which more effectively ensures a large back focus BL, when the imaging lens assembly 21 satisfies the following inequality (6) :
EFL3_L/EFL1_2 < 0.2 (6)
In the inequality (6) , EFL3_L is a composite focal length of lenses from a lens, which is disposed the third from the object side, to the most imaging surface S side disposed lens (i.e., the last lens) (hereinafter the same applies) .
If the value of EFL3_L/EFL1_2 exceeds the upper limit of the inequality (6) , it is difficult to increase the back focus BL.
Further, the imaging lens assembly 21 can more easily obtain the bokeh image and can intake more object light to improve image quality when the imaging lens assembly 21 satisfies the following inequality (7) :
EFL/da < 2.4 (7)
In the inequality (7) , da is a diameter of the aperture stop 32 (hereinafter the same applies) .
If the value of EFL/da (i.e., the F value) exceeds the upper limit of the inequality (7) , the image is dark, and thus it is difficult to be blurred. Further, if the value of EFL/da exceeds the  upper limit of the inequality (7) , it is difficult to intake the object light, and thus image quality is impaired.
Further, the imaging lens assembly 21 can more effectively ensure the easy-to-use angle of view, which is not biased toward either wide-angle or telephoto, when the imaging lens assembly 21 satisfies the following inequality (8) :
0.58 < tan (hFOV) < 1 (8)
In the inequality (8) , hFOV is the half angle of view (hereinafter the same applies) .
If the value of tan (hFOV) deviates from the range of the inequality (8) , it is impossible to regulate a range of the angle of view to be a range of the angle of view where the 35 mm equivalent focal length is between 22mm or more and 37mm or less.
Further, the imaging lens assembly 21 can more effectively ensure the slimming of the imaging device 1 when the imaging lens assembly 21 satisfies, in the shooting state, the following inequality (9) :
0.85 < LTL/EPL < 1.5 (9)
In the inequality (9) , LTL is a total length of the imaging lens assembly 21, which is a distance on the optical axis from the surface on the object side of the most object side disposed lens to the imaging surface S (hereinafter the same applies) . EPL is an exit pupil distance which is a distance between the imaging surface S and an exit pupil (hereinafter the same applies) .
If the value of LTL/EPL falls below the lower limit of the inequality (9) , since the total length of the imaging lens assembly 21, LTL, is too small in relation to the back focus BL, the storage space of the imaging lens assembly 21 is unnecessarily large. As a result, it is difficult to reduce the thickness of the imaging device 1. If the value of LTL/EPL exceeds the upper limit of the inequality (9) , since the total length LTL of the imaging lens assembly 21 is too large, it is difficult to reduce the thickness of the imaging device 1.
Further, the imaging lens assembly 21 can improve optical performance when the imaging lens assembly 21 satisfies the following inequality (10) :
-4 < (dd-EFL × tan (hFOV) ) / (EFL × tan (hFOV) ) × 100 < 4 (10)
If the value of (dd-EFL × tan (hFOV) ) / (EFL × tan (hFOV) ) × 100 deviates from the range of the inequality (10) , it is difficult to correct a distortion.
An aspherical lens among lenses included in the imaging lens assembly 21 can be formed of glass materials and plastic materials. However, from the viewpoint of lens molding, it is preferable that the aspherical lens is formed of a plastic material. This is because if the aspherical lens is made of a material other than a plastic, a tolerance with respect to an outer shape of the lens is large, and thus, lens eccentricity occurs and it is difficult to obtain a good quality image.
Such a camera module 11 including the imaging lens assembly 21 can be used in compact digital devices (imaging devices 1) such as mobile phones, wearable cameras and surveillance cameras.
<Configuration examples of the camera module>
Next, more specific examples to which the present disclosure applies will be described. In the following examples, "Si" indicates the ordinal number of the i-th surface which sequentially increases from the object side toward the imaging surface S side. Optical elements of the corresponding surfaces are indicated by the corresponding surface number "Si" . Denotations of "first surface" or "1st surface" indicate a surface on the object side of the lens, and denotations of "second surface" or "2nd surface" indicate a surface on the imaging surface S side of the lens. "Ri" indicates the value of a central curvature radius (mm) of the surface. "Di" indicates a value of a distance on the optical axis between the i-th surface and the (i + 1) -th surface (mm) . "Ndi" indicates a value of a refractive index at d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface. "νdi" indicates a value of the Abbe number at d-line of the material of the optical element having the i-th surface. "EFLi" indicates the focal length of the i-th lens from the object side.
The imaging lens assembly 21 used in the following examples includes lenses having aspheric surfaces. The aspheric shape of the lens is defined by the following formula (11) :
Z = C × h  2/ {1 + (1 -K × C  2 × h  21/2} + Σ An × h  n (11)
(n = an integer greater than or equal to 3) .
In the formula (11) , Z is a depth of the aspheric surface, C is a paraxial curvature which is equal to 1/R, h is a distance from the optical axis to a lens surface, K is a conic constant (second-order aspheric coefficient) , and An is an nth-order aspheric coefficient.
[First Example]
First, a first example in which specific numerical values are applied to the camera module 11 shown in FIG. 6 will be described.
In the first example, the imaging lens assembly 21 includes, in order from the object side toward the imaging surface S side, a first lens L1 having a positive refractive power in a paraxial region, a second lens L2 having a negative refractive power in the paraxial region, a third lens L3 having a positive refractive power in the paraxial region with a convex surface facing the object side, a fourth lens L4 having a positive refractive power in the paraxial region, a fifth lens L5 having a positive refractive power in the paraxial region with a convex surface facing the imaging surface S side, and a sixth lens L6 having a negative refractive power in the paraxial region. The aperture stop 32 is disposed on the object side of the first lens L1.
Table 1 shows lens data of the first example. Table 2 shows aspheric coefficients of the imaging lens assembly 21. In the aspheric coefficients, "E-i" indicates an exponential expression with a base of 10, i.e., "10 -i" . For example, "-4.078272. E-03" indicates "-4.078272 × 10 -3" . Table 3 shows focal lengths of each lens and values of parameters corresponding to the conditional expressions. In Table 3, the total length LTL of the imaging lens assembly 21 is the total length when the object point is set at infinity.
TABLE 1
Figure PCTCN2022077732-appb-000001
TABLE 2
Si 3 (L1 1st Surface) 4 (L1 2nd Surface) 5 (L2 1st Surface) 6 (L2 2nd Surface)
K -12.293178 -34.658005 -9.507118 -17.957814
A4 -4.078272. E-03 -9.181559. E-03 6.254285. E-03 7.588046. E-03
A6 -3.949568. E-04 -4.559541. E-04 -3.755693. E-04 -3.294323. E-04
A8 1.693034. E-06 8.148511. E-05 -5.617554. E-05 -5.409189. E-05
A10 1.872771. E-06 -2.023314. E-06 -1.820274. E-08 -2.657389. E-06
A12 1.796477. E-07 -4.794879. E-07 1.785613. E-07 3.549945. E-07
A14 4.872710. E-08 2.730149. E-08 -1.996172. E-08 5.555917. E-08
A16 -7.948812. E-09 -8.962891. E-10 1.834365. E-09 -4.118897. E-09
A18
0 0 0 0
A20 0 0 0 0
Si 7 (L3 1st Surface) 8 (L3 2nd Surface)
K -5.572217 -58.618105
A4 4.157590. E-03 1.661017. E-03
A6 -1.215711. E-04 -2.817495. E-04
A8 -4.205772. E-05 1.254093. E-04
A10 1.159118. E-05 -3.158753. E-05
A12 -1.446735. E-06 4.111673. E-06
A14 9.607970. E-08 -3.053149. E-07
A16 -3.655682. E-09 9.156341. E-09
A18
0 0
A20 0 0
Si 9 (L4 1st Surface) 10 (L4 2nd Surface) 11 (L5 1st Surface) 12 (L5 2nd Surface)
K -0.995701 0.290433 -0.315937 -3.253003
A3 -1.556519E-03 -1.366604E-03 0 5.201936E-04
A4 -4.251799E-03 2.267212E-03 1.247759E-02 -6.263192E-04
A5 1.001984E-04 -9.947110E-04 0 1.158573E-04
A6 -5.335379E-04 -1.202146E-03 -8.270966E-04 -3.717080E-04
A7 -6.383967E-05 -7.656917E-05 0 1.621244E-06
A8 1.292947E-05 5.708409E-05 3.525256E-05 1.732005E-04
A9 1.955215E-06 5.643548E-06 0 2.181525E-06
A10 -4.316129E-07 8.083408E-07 3.023537E-05 -2.642376E-05
A11 3.825030E-07 3.528790E-07 0 1.031005E-07
A12 4.436366E-08 -4.623841E-08 -4.415837E-06 3.977601E-06
A13 -1.580368E-08 -2.528531E-08 0 -1.450824E-08
A14 -1.684728E-10 -2.192235E-08 2.555589E-07 -2.839135E-07
A15 -3.029888E-09 -6.084615E-09 0 -2.038929E-09
A16 -6.456046E-11 -1.696792E-09 -5.513388E-09 9.150880E-09
A17 -1.298617E-10 -5.236734E-10 0 -9.874393E-11
A18 1.402094E-11 1.096099E-11 -2.239801E-10 -1.234273E-10
A19 1.979181E-11 -1.062762E-11 0 7.505646E-12
A20 4.618535E-12 1.814549E-11 -3.023198E-11 -2.036330E-11
A21 3.715009E-13 5.757169E-12 0 1.488762E-12
A22 2.136941E-13 3.204814E-12 -4.672006E-13 -1.077731E-12
A23 -1.004058E-13 9.953069E-13 0 1.170705E-13
A24 -3.368216E-14 1.727422E-13 1.589861E-13 6.160081E-15
A25 -2.840471E-14 2.243378E-14 0 2.158678E-18
A26 -6.367958E-17 -2.745961E-14 4.011647E-14 7.094680E-15
A27 2.938757E-15 -1.437129E-14 0 -1.031211E-15
A28 3.840344E-15 -5.297111E-15 1.790296E-15 4.597041E-16
A29 1.266869E-17 -3.813773E-16 0 -8.723771E-17
A30 -3.051769E-16 6.694054E-16 -4.315136E-16 2.772230E-17
Si 13 (L6 1st Surface) 14 (L6 2nd Surface)
K -3.338455 -6.997371
A3 6.968182E-03 1.193536E-02
A4 -1.725108E-02 -2.046718E-02
A5 -1.584145E-03 3.817647E-03
A6 8.583215E-04 -2.091999E-04
A7 1.237240E-04 -8.242444E-05
A8 -1.625508E-05 8.546495E-05
A9 -4.744782E-06 2.721587E-06
A10 -8.050918E-07 -1.140141E-05
A11 -4.035346E-07 -4.859437E-08
A12 -3.782022E-07 6.497992E-07
A13 2.830469E-08 -2.604072E-09
A14 2.162616E-08 -7.440529E-09
A15 2.074107E-09 9.586240E-11
A16 2.182413E-09 -7.491175E-10
A17 -9.446322E-11 7.403563E-12
A18 -7.719824E-11 1.608531E-11
A19 -1.385702E-11 -1.298212E-14
A20 -1.057792E-11 4.428841E-13
A21 -7.300554E-13 -1.977801E-15
A22 -5.655583E-13 1.646319E-15
A23 4.398617E-14 -2.811119E-16
A24 4.848141E-14 7.861734E-17
A25 1.057126E-14 1.340095E-17
A26 5.805079E-15 -1.947792E-17
A27 3.074681E-16 -3.657783E-20
A28 -1.264254E-16 -2.149013E-18
A29 -2.136654E-17 4.645756E-20
A30 -1.800224E-17 7.350567E-20
TABLE 3
EFL1 (mm) 113.625
EFL2 (mm) -20.372
EFL3 (mm) 10.925
EFL4 (mm) 21.565
EFL5 (mm) 9.548
EFL6 (mm) -7.633
LTL (mm) 12.982
da (mm) 5.400
dd (mm) 8.200
BL (mm) 5.082
LENSTL (mm) 7.900
EFL (mm) 10.660
EPL (mm) 9.567
hFOV (°) 36.683
EFL1_2 (mm) -26.232
EFL3_L (mm) 7.150
1<EFL/dd<1.7 1.300
BL/dd > 0.35 0.620
(1/EFL1_2) < 0.01 -0.038
(EFL3_L) / (EFL1_2) <0.2 -0.273
EFL/da < 2.4 1.974
0.58 < tan (hFOV) <1 0.745
0.85 < LTL/EPL < 1.5 1.357
-4< (dd-EFL·tan hFOV) / (EFL·tan hFOV) *100 <4 3.269
Aberrations in the first example are shown in FIG. 7. FIG. 7 shows, as examples of aberrations, spherical aberration, astigmatism (field curvature) , distortion and chromatic aberration of magnification. In the graph showing astigmatism, a reference wavelength is d-line (587.6 nm) . Further, "S" indicates a value of aberration on a sagittal image surface and "T" indicates a value of aberration on a tangential image surface. In the spherical aberration diagram, aberrations with respect to C-line (656.3 nm) , d-line and F-line (486.1 nm) are shown. In the distortion diagram, a reference wavelength is d-line. In the chromatic aberration of a magnification diagram, chromatic aberrations of magnification of C-line and F-line when d-line is used as a reference wavelength are shown. The same applies to aberration diagrams in other examples.
As can be seen from the aberration diagrams in FIG. 7, it is clear that the camera module 11 in the first example can satisfactorily correct various aberrations to obtain superior optical performance.
[Second Example]
Next, a second example in which specific numerical values are applied to the camera module 11 shown in FIG. 8 will be described.
Unlike the first example, in the second example, the aperture stop 32 is disposed between a vertex of a first surface of the first lens L1 and a second surface of the first lens L1. 
The lens parameters corresponding to those in the first example are shown in Tables 4 to 6.
TABLE 4
Figure PCTCN2022077732-appb-000002
TABLE 5
Si 3 (L1 1st Surface) 4 (L1 2nd Surface) 5 (L2 1st Surface) 6 (L2 2nd Surface)
K -0.671357 -19.694752 -14.167355 -24.976808
A4 -9.047204. E-04 -2.114217. E-03 4.711032. E-03 5.844665. E-03
A6 -1.034486. E-04 -3.750020. E-04 -2.096099. E-04 -1.091751. E-04
A8 4.911198. E-06 4.163964. E-05 -3.584984. E-06 -2.580976. E-05
A10 -1.190576. E-06 -1.500737. E-06 9.016245. E-07 8.437420. E-07
A12 -7.060514. E-08 -1.656775. E-07 -4.068352. E-08 1.835783. E-07
A14 1.720509. E-08 1.678415. E-08 -8.450610. E-09 -2.500579. E-08
A16 -7.179788. E-10 -4.474568. E-10 6.094520. E-10 1.060937. E-09
A18
0 0 0 0
A20 0 0 0 0
Si 7 (L3 1st Surface) 8 (L3 2nd Surface)
K -5.391699 -9.743943
A4 6.602671. E-03 7.982608. E-03
A6 -3.991948. E-04 -9.875149. E-04
A8 -5.867327. E-05 1.286334. E-04
A10 1.346338. E-05 -2.817687. E-05
A12 -1.368764. E-06 4.089473. E-06
A14 7.504603. E-08 -3.309153. E-07
A16 -1.562963. E-09 1.078475. E-08
A18
0 0
A20 0 0
Si 9 (L4 1st Surface) 10 (L4 2nd Surface) 11 (L5 1st Surface) 12 (L5 2nd Surface)
K -2.530103 -6.883014 -0.263256 -3.174094
A3 7.034746E-04 1.175818E-03 0 0
A4 -5.274437E-03 -2.836592E-03 1.133887E-02 -2.594594E-03
A5 -6.014037E-04 -6.482913E-05 0 0
A6 -4.378204E-04 -7.869688E-04 -8.127256E-04 -2.601234E-04
A7 6.926592E-06 -2.008819E-05 0 0
A8 2.365109E-05 5.548446E-05 2.613880E-05 1.659173E-04
A9 2.589257E-08 1.886918E-06 0 0
A10 -1.805777E-06 -3.446227E-07 3.089656E-05 -2.802575E-05
A11 -6.164527E-08 8.953911E-08 0 0
A12 8.963283E-09 -9.007029E-08 -4.394164E-06 3.956251E-06
A13 2.090052E-09 -7.367126E-09 0 0
A14 1.154910E-08 -8.853501E-09 2.553010E-07 -2.757632E-07
A15 1.091940E-09 -1.098730E-09 0 0
A16 6.675179E-10 2.535527E-10 -4.882812E-09 1.013140E-08
A17 1.541742E-10 9.023596E-12 0 0
A18 3.451655E-11 1.176094E-10 -7.374624E-11 -6.919196E-11
A19 1.037891E-11 5.469830E-12 0 0
A20 -3.999573E-12 1.238293E-11 -1.214628E-11 -1.916360E-11
A21 -8.605796E-13 1.632564E-12 0 0
A22 -3.609415E-13 8.808530E-13 4.357011E-13 -1.099310E-12
A23 -1.294840E-13 8.508197E-14 0 0
A24 2.968723E-15 -5.083012E-14 4.396132E-14 1.075679E-14
A25 -2.132431E-14 -1.591446E-14 0 0
A26 5.834121E-15 -1.296053E-14 2.741419E-15 8.612123E-15
A27 1.407862E-15 -1.929436E-15 0 0
A28 1.035392E-15 -1.040640E-15 -4.939995E-16 5.035513E-16
A29 1.229172E-16 -4.835169E-17 0 0
A30 -1.360943E-16 2.007730E-16 1.531958E-17 -4.235560E-17
Si 13 (L6 1st Surface) 14 (L6 2nd Surface)
K 2.011881 -9.137147
A3 -1.841781E-03 3.759895E-04
A4 -1.601378E-02 -8.137586E-03
A5 -2.006081E-05 9.959359E-05
A6 7.293080E-04 5.285716E-06
A7 -1.314343E-07 -5.250778E-06
A8 -3.063336E-05 8.283864E-05
A9 4.204214E-07 4.551846E-07
A10 1.433737E-06 -1.168802E-05
A11 -1.026814E-10 -5.736185E-09
A12 -3.779983E-07 6.661985E-07
A13 1.642242E-10 -9.260291E-10
A14 1.185170E-08 -7.328870E-09
A15 -9.666902E-11 2.545699E-11
A16 2.007970E-09 -7.618560E-10
A17 -4.271782E-12 2.413420E-12
A18 -2.654861E-11 1.544912E-11
A19 -1.558406E-13 -8.540697E-15
A20 -6.232852E-12 4.623300E-13
A21 4.657724E-15 1.832528E-16
A22 -5.503127E-13 3.845267E-15
A23 4.024979E-15 -2.117712E-16
A24 2.399421E-14 1.042764E-16
A25 1.968566E-16 1.025223E-17
A26 3.923710E-15 -2.125541E-17
A27 -1.202730E-18 -1.791216E-19
A28 -1.852101E-16 -2.191465E-18
A29 -7.534189E-19 9.731115E-21
A30 3.326329E-19 8.322249E-20
TABLE 6
EFL1 (mm) 20.525
EFL2 (mm) -21.165
EFL3 (mm) 16.756
EFL4 (mm) 76.563
EFL5 (mm) 12.657
EFL6 (mm) -12.449
LTL (mm) 14.992
da (mm) 6.900
dd (mm) 8.200
BL (mm) 6.792
LENSTL (mm) 8.200
EFL (mm) 13.328
EPL (mm) 11.648
hFOV (°) 30.795
EFL1_2 (mm) 168.102
EFL3_L (mm) 13.151
1<EFL/dd<1.7 1.625
BL/dd > 0.35 0.828
(1/EFL1_2) < 0.01 0.006
(EFL3_L) / (EFL1_2) <0.2 0.078
EFL/da < 2.4 1.932
0.58 < tan (hFOV) <1 0.596
0.85 < LTL/EPL < 1.5 1.287
-4< (dd-EFL·tan hFOV) / (EFL·tan hFOV) *100 <4 3.231
Aberrations in the second example are shown in FIG. 9. According to the second example, by making the lens parameters different from those of the first example, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example.
[Third Example]
Next, a third example in which specific numerical values are applied to the camera module 11 shown in FIG. 10 will be described.
Unlike the first example, in the third example, the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a negative refractive power in the paraxial region. Further, unlike the first example, in the third example, the first lens L1 has a negative refractive power in the paraxial region, the fifth lens L5 has a negative refractive power in the paraxial region, and the sixth lens L6 has a positive refractive power in the paraxial region.
The lens parameters corresponding to those in the first example are shown in Tables 7 to 9.
TABLE 7
Figure PCTCN2022077732-appb-000003
TABLE 8
Si 3 (L1 1st Surface) 4 (L1 2nd Surface) 5 (L2 1st Surface) 6 (L2 2nd Surface)
K -29.943926 -20.705581 -7.350180 -11.058853
A4 -3.335382. E-03 -8.308201. E-03 5.973287. E-03 6.481137. E-03
A6 -1.032357. E-03 -4.842825. E-04 -1.874636. E-04 -4.065233. E-04
A8 3.891521. E-05 3.468039. E-05 -9.263886. E-05 -5.003597. E-05
A10 9.638918. E-06 -3.441278. E-06 -6.654178. E-06 -3.950435. E-06
A12 -6.556852. E-07 8.345741. E-07 1.325084. E-06 6.742687. E-07
A14 4.850052. E-08 1.047611. E-07 8.948738. E-08 -2.839788. E-09
A16 -5.715934. E-09 -2.158974. E-08 -1.883880. E-08 -1.080239. E-09
A18
0 0 0 0
A20 0 0 0 0
Si 7 (L3 1st Surface) 8 (L3 2nd Surface)
K -4.423712 -47.814106
A4 4.542682. E-03 -1.030053. E-03
A6 1.189333. E-05 1.876064. E-04
A8 -4.419862. E-05 1.028183. E-04
A10 1.033529. E-05 -3.314557. E-05
A12 -1.363425. E-06 4.308694. E-06
A14 1.067013. E-07 -2.903562. E-07
A16 -4.025172. E-09 7.801195. E-09
A18
0 0
A20 0 0
Si 9 (L4 1st Surface) 10 (L4 2nd Surface) 11 (L5 1st Surface) 12 (L5 2nd Surface)
K -1.690297 0.391572 -0.518271 -0.260510
A3 3.164686. E-04 -1.075405. E-03 4.924210. E-03 8.329411. E-03
A4 -5.724116. E-03 2.563274. E-03 5.560592. E-03 1.313652. E-03
A5 1.909880. E-03 -6.906576. E-04 1.315966. E-03 6.712144. E-04
A6 -5.241465. E-04 -1.020875. E-03 2.854891. E-04 3.141053. E-04
A7 -1.433935. E-04 -8.593907. E-05 4.741229. E-05 3.985641. E-05
A8 -5.119357. E-06 3.641796. E-05 1.027319. E-05 2.040122. E-05
A9 -7.218971. E-07 -1.257669. E-06 1.328533. E-06 -1.015479. E-06
A10 -6.437126. E-07 -3.603379. E-07 4.853013. E-07 -2.899628. E-10
A11 3.828037. E-07 4.031225. E-07 -1.710887. E-08 -1.730791. E-07
A12 4.225439. E-08 5.849706. E-08 1.882283. E-08 -4.132579. E-08
A13 -1.862125. E-08 1.735609. E-08 -1.260860. E-08 -1.118668. E-08
A14 -1.275885. E-09 -9.581360. E-09 -3.077250. E-09 -6.878548. E-10
A15 -2.666551. E-09 -3.588166. E-09 -1.161312. E-09 2.582650. E-10
A16 1.103373. E-10 -1.292233. E-09 -8.664452. E-10 8.022414. E-10
A17 -9.391726. E-12 -5.639517. E-10 -8.032139. E-11 1.572248. E-10
A18 2.271836. E-11 -1.608019. E-11 6.191042. E-12 4.754265. E-11
A19 2.121342. E-11 -2.987396. E-11 8.113892. E-12 1.467604. E-11
A20 5.525364. E-12 1.222738. E-11 4.022359. E-12 2.704666. E-12
A21 4.300997. E-13 4.380491. E-12 1.602482. E-12 2.593727. E-14
A22 4.077029. E-13 2.794537. E-12 5.345564. E-13 -2.105114. E-13
A23 -2.773086. E-14 1.025235. E-12 1.190635. E-13 -1.529115. E-13
A24 3.202782. E-14 1.959779. E-13 2.974855. E-14 -6.345990. E-14
A25 -3.098817. E-14 3.950230. E-14 9.040397. E-15 -2.254549. E-14
A26 4.192453. E-15 -2.427806. E-14 2.970170. E-15 -7.542140. E-15
A27 1.064784. E-15 -1.322279. E-14 -2.133838. E-16 -1.804161. E-15
A28 3.155660. E-15 -5.001407. E-15 -3.524855. E-16 -1.629826. E-16
A29 -2.430633. E-16 -4.729467. E-16 -1.157203. E-16 2.164564. E-16
A30 -2.960686. E-16 5.597421. E-16 -1.455624. E-17 1.792310. E-16
Si 13 (L6 1st Surface) 14 (L6 2nd Surface) 15 (L7 1st Surface) 16 (L7 2nd Surface)
K -0.051943 -3.894678 1.463591 -6.938841
A3 0 -5.235227. E-03 8.083786. E-04 7.468322. E-03
A4 1.216281. E-02 2.802539. E-03 -1.472892. E-02 -1.884799. E-02
A5
0 3.289224. E-04 -2.181310. E-03 4.809005. E-03
A6 -1.126650. E-03 -4.554487. E-04 6.339028. E-04 -4.899643. E-04
A7 0 -6.231016. E-05 2.062976. E-04 -1.531534. E-04
A8 1.357812. E-06 1.550022. E-04 -1.149743. E-05 9.451493. E-05
A9 0 -1.044630. E-06 -6.819700. E-06 5.726714. E-06
A10 2.901376. E-05 -2.699630. E-05 -1.601338. E-06 -1.100581. E-05
A11
0 4.750458. E-08 -5.853703. E-07 -7.601370. E-08
A12 -4.286159. E-06 3.967113. E-06 -3.807841. E-07 6.329017. E-07
A13 0 -1.268098. E-08 3.917858. E-08 -6.685650. E-09
A14 2.753567. E-07 -2.836535. E-07 2.603555. E-08 -8.138704. E-09
A15 0 -1.740606. E-09 3.279812. E-09 6.085370. E-11
A16 -3.821244. E-09 9.351336. E-09 2.415884. E-09 -7.381473. E-10
A17 0 -6.427925. E-12 -8.241766. E-11 1.223017. E-11
A18 -1.147469. E-10 -9.670989. E-11 -8.374085. E-11 1.764374. E-11
A19
0 1.854894. E-11 -1.917024. E-11 2.116837. E-13
A20 -2.743874. E-11 -1.618912. E-11 -1.247807. E-11 4.877777. E-13
A21
0 2.642786. E-12 -1.277833. E-12 -1.540459. E-15
A22 -1.151178. E-12 -7.883921. E-13 -7.272104. E-13 -4.655069. E-16
A23
0 1.793551. E-13 2.227608. E-14 -3.959330. E-16
A24 2.053991. E-15 1.589240. E-14 4.742211. E-14 -4.263256. E-17
A25
0 1.021331. E-15 1.185517. E-14 -5.034139. E-18
A26 1.934208. E-14 6.148893. E-15 6.516493. E-15 -2.065471. E-17
A27 0 -1.647626. E-15 4.297976. E-16 -4.960063. E-20
A28 9.208378. E-16 1.763972. E-16 -1.303321. E-16 -2.104752. E-18
A29 0 -1.192771. E-16 -6.242320. E-18 1.291464. E-19
A30 -1.057541. E-16 1.604493. E-17 -2.153516. E-17 6.676396. E-20
TABLE 9
EFL1 (mm) -95.339
EFL2 (mm) -29.312
EFL3 (mm) 10.888
EFL4 (mm) 14.891
EFL5 (mm) -18.867
EFL6 (mm) 7.102
EFL7 (mm) -8.431
LTL (mm) 13.329
da (mm) 5.200
dd (mm) 8.200
BL (mm) 5.429
LENSTL (mm) 7.900
EFL (mm) 10.300
EPL (mm) 10.871
hFOV (°) 37.855
EFL1_2 (mm) -23.111
EFL3_L (mm) 7.145
1<EFL/dd<1.7 1.256
BL/dd > 0.35 0.662
(1/EFL1_2) < 0.01 -0.043
(EFL3_L) / (EFL1_2) <0.2 -0.309
EFL/da < 2.4 1.981
0.58 < tan (hFOV) <1 0.777
0.85 < LTL/EPL < 1.5 1.226
-4< (dd-EFL·tan hFOV) / (EFL·tan hFOV) *100 <4 2.436
Aberrations in the third example are shown in FIG. 11. According to the third example, by making the lens parameters and number of the lenses different from those of the first and second examples, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example. 
[Fourth Example]
Next, a fourth example in which specific numerical values are applied to the camera module 11 shown in FIG. 12 will be described.
Unlike the first example, in the fourth example, the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a positive refractive power in the paraxial region, and an eighth lens L8, which has a negative refractive power in the paraxial region. Further, unlike the first example, in the fourth example, the first lens L1 has a negative refractive power in the paraxial region and the fourth lens L4 has a negative refractive power in the paraxial region.
The lens parameters corresponding to those in the first example are shown in Tables 10 to 12.
TABLE 10
Figure PCTCN2022077732-appb-000004
TABLE 11
Si 3 (L1 1st Surface) 4 (L1 2nd Surface) 5 (L2 1st Surface) 6 (L2 2nd Surface)
K -31.236614 -21.782842 -7.025463 -10.706080
A4 -3.014943. E-03 -7.100791. E-03 5.743380. E-03 6.563768. E-03
A6 -1.481555. E-03 -1.005637. E-03 -1.025334. E-04 -3.508769. E-04
A8 7.991411. E-05 8.690907. E-05 -6.688213. E-05 -3.267830. E-05
A10 1.156646. E-05 -2.689024. E-06 -1.440472. E-05 -6.337909. E-06
A12 -6.633793. E-07 5.474110. E-07 1.568141. E-06 2.160565. E-07
A14 4.310433. E-09 8.317530. E-08 1.800001. E-07 1.302112. E-07
A16 -4.235166. E-09 -1.700783. E-08 -2.283491. E-08 -8.706536. E-09
A18
0 0 0 0
A20 0 0 0 0
Si 7 (L3 1st Surface) 8 (L3 2nd Surface)
K -4.554347 -59.480717
A4 4.408807. E-03 -1.818491. E-03
A6 5.297103. E-06 1.917811. E-04
A8 -4.666278. E-05 1.031562. E-04
A10 9.423001. E-06 -3.386419. E-05
A12 -1.315014. E-06 4.184255. E-06
A14 1.100434. E-07 -2.632825. E-07
A16 -4.706557. E-09 6.490863. E-09
A18
0 0
A20 0 0
Si 9 (L4 1st Surface) 10 (L4 2nd Surface) 11 (L5 1st Surface) 12 (L5 2nd Surface)
K 9.629844 -68.945527 -1.902036 0.397699
A3 -8.296644. E-04 -8.415302. E-04 9.458615. E-05 -8.399018. E-04
A4 8.088126. E-05 -2.149847. E-04 -5.826762. E-03 2.433355. E-03
A5 -2.260662. E-05 4.941480. E-06 1.967200. E-03 -6.581905. E-04
A6 -1.294756. E-05 6.780298. E-06 -5.035912. E-04 -1.006170. E-03
A7 -2.042084. E-06 -1.412357. E-07 -1.380524. E-04 -8.300461. E-05
A8 1.496800. E-07 -9.443282. E-07 -3.650028. E-06 3.696899. E-05
A9 1.359248. E-07 -4.547402. E-07 -2.531148. E-07 -1.106728. E-06
A10 1.129892. E-07 -1.676273. E-07 -4.815262. E-07 -3.122505. E-07
A11 1.305693. E-08 -3.672448. E-08 4.378954. E-07 4.134961. E-07
A12 2.124226. E-08 -2.209325. E-08 6.039621. E-08 5.923896. E-08
A13 -4.855072. E-09 -2.842032. E-09 -1.287466. E-08 1.656262. E-08
A14 -5.430580. E-09 -4.436167. E-09 4.022072. E-10 -1.010631. E-08
A15 -2.356569. E-09 5.135003. E-10 -2.243036. E-09 -3.822119. E-09
A16 -1.568308. E-09 -2.249615. E-10 1.877843. E-10 -1.357327. E-09
A17 4.357589. E-10 2.251179. E-10 -1.566547. E-11 -5.753459. E-10
A18 1.178439. E-10 -3.937736. E-11 1.019593. E-11 -1.634671. E-11
A19 2.834580. E-11 -3.422626. E-11 1.454752. E-11 -2.893293. E-11
A20 -1.641005. E-11 7.891556. E-12 2.976869. E-12 1.274066. E-11
A21
0 0 -2.313713. E-13 4.548866. E-12
A22
0 0 3.839643. E-13 2.823635. E-12
A23
0 0 6.815765. E-14 1.018120. E-12
A24
0 0 9.620544. E-14 1.932885. E-13
A25
0 0 -4.064939. E-15 4.023718. E-14
A26
0 0 1.178009. E-14 -2.294771. E-14
A27
0 0 -2.651171. E-16 -1.148128. E-14
A28
0 0 3.938314. E-15 -4.632670. E-15
A29
0 0 -1.287142. E-15 -3.211009. E-16
A30
0 0 -1.367138. E-16 4.360715. E-16
Si 13 (L6 1st Surface) 14 (L6 2nd Surface) 15 (L7 1st Surface) 16 (L7 2nd Surface)
K -0.518535 -0.263969 0.105093 -3.827640
A3 4.591980. E-03 8.328769. E-03 0 -3.813595. E-03
A4 5.358234. E-03 1.588536. E-03 1.176452. E-02 2.899885. E-03
A5 1.265858. E-03 7.247746. E-04 0 2.234645. E-04
A6 2.693125. E-04 3.218913. E-04 -1.154311. E-03 -5.010246. E-04
A7 4.176884. E-05 4.086977. E-05 0 -7.294006. E-05
A8 8.325929. E-06 2.061169. E-05 -1.776738. E-06 1.534737. E-04
A9 7.155433. E-07 -9.084058. E-07 0 -1.108723. E-06
A10 3.110645. E-07 4.816279. E-08 2.880785. E-05 -2.694552. E-05
A11 -6.257381. E-08 -1.560699. E-07 0 7.227128. E-08
A12 8.600308. E-09 -3.637193. E-08 -4.296589. E-06 3.974354. E-06
A13 -1.434114. E-08 -9.895184. E-09 0 -1.112150. E-08
A14 -3.122469. E-09 -4.252586. E-10 2.762875. E-07 -2.833134. E-07
A15 -1.000431. E-09 2.863429. E-10 0 -1.676149. E-09
A16 -7.802880. E-10 7.836853. E-10 -3.640755. E-09 9.366119. E-09
A17 -4.452165. E-11 1.460067. E-10 0 -3.511150. E-12
A18 1.769603. E-11 4.285051. E-11 -9.571034. E-11 -9.614183. E-11
A19 1.146950. E-11 1.316925. E-11 0 1.866905. E-11
A20 4.549217. E-12 2.349148. E-12 -2.619336. E-11 -1.613111. E-11
A21 1.515832. E-12 -4.785749. E-14 0 2.668321. E-12
A22 4.042140. E-13 -2.099963. E-13 -1.117395. E-12 -7.780364. E-13
A23 4.338088. E-14 -1.416781. E-13 0 1.835532. E-13
A24 -4.879677. E-15 -5.673643. E-14 -5.306155. E-15 1.660496. E-14
A25 -3.327965. E-15 -1.985104. E-14 0 1.211409. E-15
A26 -3.477267. E-16 -6.734624. E-15 1.781765. E-14 6.225283. E-15
A27 -5.370863. E-16 -1.590635. E-15 0 -1.649967. E-15
A28 -2.993477. E-16 -1.288188. E-16 8.078125. E-16 1.758978. E-16
A29 4.327305. E-17 1.843119. E-16 0 -1.211958. E-16
A30 -1.510743. E-18 1.484744. E-16 -9.763988. E-17 1.455163. E-17
Si 17 (L8 1st Surface) 18 (L8 2nd Surface)
K 1.385382 -5.661686
A3 1.317405. E-04 1.817644. E-03
A4 -1.542916. E-02 -1.802382. E-02
A5 -2.103927. E-03 4.904967. E-03
A6 6.394695. E-04 -4.941798. E-04
A7 2.070461. E-04 -1.563154. E-04
A8 -1.137669. E-05 9.392258. E-05
A9 -6.601925. E-06 5.724086. E-06
A10 -1.597070. E-06 -1.098572. E-05
A11 -5.853703. E-07 -6.903824. E-08
A12 -3.780049. E-07 6.342668. E-07
A13 3.917858. E-08 -6.541137. E-09
A14 2.603555. E-08 -8.136869. E-09
A15 3.279812. E-09 5.310709. E-11
A16 2.415884. E-09 -7.408285. E-10
A17 -8.162880. E-11 1.137755. E-11
A18 -8.362187. E-11 1.749167. E-11
A19 -1.917118. E-11 1.952265. E-13
A20 -1.248973. E-11 4.897203. E-13
A21 -1.275011. E-12 -5.343554. E-16
A22 -7.286645. E-13 -1.793428. E-16
A23 2.229270. E-14 -3.269020. E-16
A24 4.742211. E-14 -4.250059. E-17
A25 1.185517. E-14 -4.938624. E-18
A26 6.520132. E-15 -2.063528. E-17
A27 4.358895. E-16 -1.823399. E-20
A28 -1.307284. E-16 -2.105163. E-18
A29 -6.253677. E-18 1.367100. E-19
A30 -2.094181. E-17 6.332523. E-20
TABLE 12
EFL1 (mm) -96.133
EFL2 (mm) -28.196
EFL3 (mm) 10.933
EFL4 (mm) -743.152
EFL5 (mm) 13.861
EFL6 (mm) -19.392
EFL7 (mm) 7.260
EFL8 (mm) -8.016
LTL (mm) 13.163
da (mm) 5.200
dd (mm) 8.200
BL (mm) 5.051
LENSTL (mm) 8.112
EFL (mm) 10.204
EPL (mm) 10.193
hFOV (°) 37.950
EFL1_2 (mm) -22.423
EFL3_L (mm) 6.975
1<EFL/dd<1.7 1.244
BL/dd > 0.35 0.616
(1/EFL1_2) < 0.01 -0.045
(EFL3_L) / (EFL1_2) <0.2 -0.311
EFL/da < 2.4 1.962
0.58 < tan (hFOV) <1 0.780
0.85 < LTL/EPL < 1.5 1.291
-4< (dd-EFL·tan hFOV) / (EFL·tan hFOV) *100 <4 3.044
Aberrations in the fourth example are shown in FIG. 13. According to the fourth example, by making the lens parameters and number of the lenses different from those of the first to third examples, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example. 
[Fifth Example]
Next, a fifth example in which specific numerical values are applied to the camera module 11 shown in FIG. 14 will be described.
Unlike the first example, in the fifth example, the camera module 11 further includes, in addition to the first to sixth lenses L1-L6, a seventh lens L7, which has a negative refractive power in the paraxial region. Further, unlike the first example, in the fifth example, the first lens L1 has a negative refractive power in the paraxial region, the fifth lens L5 has a negative refractive power in the paraxial region, and the sixth lens L6 has a positive refractive power in the paraxial region.
The lens parameters corresponding to those in the first example are shown in Tables 13 to 15.
TABLE 13
Figure PCTCN2022077732-appb-000005
TABLE 14
Si 3 (L1 1st Surface) 4 (L1 2nd Surface) 5 (L2 1st Surface) 6 (L2 2nd Surface)
K -90.000000 -46.025079 -6.890556 -10.862772
A4 -8.161819. E-03 -1.020382. E-02 5.392884. E-03 5.338189. E-03
A6 -1.266102. E-03 -1.104635. E-03 -1.266086. E-04 -3.481664. E-04
A8 1.400387. E-04 1.377481. E-04 -1.728908. E-04 3.659807. E-06
A10 1.402283. E-05 3.973867. E-06 1.675564. E-05 -4.782038. E-06
A12 -2.321084. E-06 3.021968. E-06 5.958315. E-07 -2.993721. E-06
A14 1.771320. E-07 -1.014514. E-06 -4.956097. E-07 6.505365. E-07
A16 -1.718864. E-08 6.315520. E-08 3.849500. E-08 -3.378907. E-08
A18
0 0 0 0
A20 0 0 0 0
Si 7 (L3 1st Surface) 8 (L3 2nd Surface)
K -4.865463 -90.000000
A4 4.303080. E-03 -3.368095. E-03
A6 1.154018. E-05 2.635121. E-04
A8 -3.674340. E-05 1.046352. E-04
A10 9.935120. E-06 -3.387888. E-05
A12 -1.614934. E-06 4.218758. E-06
A14 1.512222. E-07 -2.685801. E-07
A16 -6.859502. E-09 6.431416. E-09
A18
0 0
A20 0 0
Si 9 (L4 1st Surface) 10 (L4 2nd Surface) 11 (L5 1st Surface) 12 (L5 2nd Surface)
K -2.261724 0.506618 -0.520346 -0.256536
A3 7.094183. E-04 -2.843944. E-04 5.198772. E-03 9.698545. E-03
A4 -5.782472. E-03 2.014491. E-03 4.764386. E-03 1.338801. E-03
A5 2.176768. E-03 -4.375119. E-04 1.281293. E-03 4.713976. E-04
A6 -4.371500. E-04 -8.564039. E-04 2.994245. E-04 2.628014. E-04
A7 -1.202785. E-04 -4.615869. E-05 5.240397. E-05 3.524343. E-05
A8 8.579023. E-07 4.380091. E-05 1.182157. E-05 2.156879. E-05
A9 5.555880. E-07 -4.238800. E-07 1.902700. E-06 -3.274579. E-07
A10 -3.099324. E-07 -4.544182. E-07 7.431216. E-07 1.822639. E-07
A11 4.235951. E-07 3.575202. E-07 8.927035. E-08 -1.439535. E-07
A12 3.965251. E-08 2.942819. E-08 5.736413. E-08 -4.015800. E-08
A13 -2.493328. E-08 7.640474. E-09 2.235711. E-09 -1.211670. E-08
A14 -5.803607. E-09 -1.310577. E-08 2.532983. E-09 -1.380225. E-09
A15 -4.748906. E-09 -4.659024. E-09 -1.643180. E-10 5.001700. E-11
A16 -7.227221. E-10 -1.438185. E-09 -8.192699. E-10 8.046597. E-10
A17 -3.033322. E-10 -6.235740. E-10 7.382666. E-15 1.769119. E-10
A18 -3.943317. E-11 -5.960167. E-11 2.465177. E-11 5.739872. E-11
A19 5.871619. E-12 -4.624488. E-11 1.374969. E-11 1.929995. E-11
A20 1.846584. E-12 1.066180. E-11 4.740826. E-12 4.838350. E-12
A21 -4.304842. E-13 4.236423. E-12 9.452669. E-13 8.015638. E-13
A22 3.141703. E-13 2.384222. E-12 6.513953. E-13 1.049572. E-13
A23 -2.466048. E-14 8.802500. E-13 2.224229. E-13 -4.984056. E-14
A24 1.174401. E-13 1.696272. E-13 9.124345. E-14 -3.666728. E-14
A25 1.626136. E-14 3.916833. E-14 -1.368591. E-15 -1.644337. E-14
A26 -2.388072. E-16 -2.438971. E-14 9.839186. E-16 -7.533817. E-15
A27 -6.584068. E-16 -9.406092. E-15 -1.037695. E-15 -2.002467. E-15
A28 5.083263. E-15 -3.294134. E-15 -4.632962. E-17 -2.021003. E-16
A29 8.762185. E-16 9.858183. E-17 2.458257. E-16 1.482601. E-16
A30 -3.545281. E-16 5.989072. E-16 -6.416577. E-17 1.529793. E-16
Si 13 (L6 1st Surface) 14 (L6 2nd Surface) 15 (L7 1st Surface) 16 (L7 2nd Surface)
K -0.010687 -3.708117 1.252058 -5.453532
A3 0 -4.677970. E-03 -5.928603. E-04 2.415884. E-03
A4 1.185453. E-02 3.054328. E-03 -1.629311. E-02 -1.882299. E-02
A5
0 2.144585. E-04 -2.172195. E-03 4.757005. E-03
A6 -1.092195. E-03 -4.794224. E-04 5.828957. E-04 -4.310770. E-04
A7 0 -5.667902. E-05 2.304540. E-04 -1.507782. E-04
A8 7.513598. E-07 1.594647. E-04 -1.149243. E-05 9.309133. E-05
A9
0 4.161265. E-07 -6.854700. E-06 5.499520. E-06
A10 2.901376. E-05 -2.668833. E-05 -1.601338. E-06 -1.101746. E-05
A11
0 8.937936. E-08 -5.853703. E-07 -6.770218. E-08
A12 -4.289651. E-06 3.964667. E-06 -3.807841. E-07 6.353613. E-07
A13 0 -1.723946. E-08 3.917858. E-08 -6.337243. E-09
A14 2.757328. E-07 -2.856655. E-07 2.603555. E-08 -8.135764. E-09
A15 0 -2.367862. E-09 3.279812. E-09 3.745903. E-11
A16 -3.777076. E-09 9.170392. E-09 2.415884. E-09 -7.413188. E-10
A17 0 -4.869104. E-11 -8.241766. E-11 1.154922. E-11
A18 -1.185503. E-10 -1.054837. E-10 -8.372257. E-11 1.750172. E-11
A19
0 1.706532. E-11 -1.917024. E-11 2.111541. E-13
A20 -2.796572. E-11 -1.623822. E-11 -1.247859. E-11 5.056121. E-13
A21
0 2.715948. E-12 -1.277931. E-12 -1.538183. E-15
A22 -1.195858. E-12 -7.510761. E-13 -7.277486. E-13 -4.655069. E-16
A23
0 1.941324. E-13 2.227296. E-14 -3.959330. E-16
A24 6.421084. E-15 2.070065. E-14 4.742211. E-14 -4.260027. E-17
A25
0 2.436247. E-15 1.185517. E-14 -5.034139. E-18
A26 2.011864. E-14 6.428289. E-15 6.516493. E-15 -2.065471. E-17
A27 0 -1.577112. E-15 4.297890. E-16 -4.960063. E-20
A28 1.039739. E-15 1.881186. E-16 -1.301757. E-16 -2.104752. E-18
A29 0 -1.212416. E-16 -6.315982. E-18 1.360790. E-19
A30 -1.199685. E-16 1.259699. E-17 -2.154319. E-17 6.447151. E-20
TABLE 15
EFL1 (mm) -50.319
EFL2 (mm) -26.091
EFL3 (mm) 9.973
EFL4 (mm) 12.321
EFL5 (mm) -17.943
EFL6 (mm) 6.909
EFL7 (mm) -7.433
LTL (mm) 12.846
da (mm) 4.900
dd (mm) 8.200
BL (mm) 4.746
LENSTL (mm) 8.100
EFL (mm) 9.737
EPL (mm) 10.298
hFOV (°) 39.259
EFL1_2 (mm) -17.551
EFL3_L (mm) 6.367
1<EFL/dd<1.7 1.187
BL/dd > 0.35 0.579
(1/EFL1_2) < 0.01 -0.057
(EFL3_L) / (EFL1_2) <0.2 -0.363
EFL/da < 2.4 1.987
0.58 < tan (hFOV) <1 0.817
0.85 < LTL/EPL < 1.5 1.247
-4< (dd-EFL·tan hFOV) / (EFL·tan hFOV) *100 <4 3.037
Aberrations in the fifth example are shown in FIG. 15. According to the fifth example, by making the lens parameters different from those of the first to fourth examples, the degree of freedom in designing the camera module 11 according to the present disclosure can be further increased while obtaining the same effects as in the first example.
In the description of embodiments of the present disclosure, it is to be understood that terms such as "central" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" and "counterclockwise" should be construed to refer to the orientation or the position as described or as shown in the drawings under discussion. These relative terms are only used to simplify description of the present disclosure, and do not indicate or imply that the device or element referred to must have a particular orientation, or constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure. 
In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with "first" and "second" may comprise one or more of this feature. In the description of the present disclosure, "a plurality of" means two or more than two, unless specified otherwise.
In the description of embodiments of the present disclosure, unless specified or limited otherwise, the terms "mounted" , "connected" , "coupled" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
In the embodiments of the present disclosure, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature "on" , "above" or "on top of" a second feature may include an embodiment in which the first feature is right or obliquely "on" , "above" or "on top of" the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below" , "under" or "on bottom of" a second feature may include an embodiment in which the first feature is right or obliquely "below" , "under" or "on bottom of" the second feature, or just means that the first feature is at a height lower than that of the second feature.
Various embodiments and examples are provided in the above description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings are described in the above. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numbers and/or reference letters may be repeated in different examples in the present disclosure. This repetition is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may be also applied.
Reference throughout this specification to "an embodiment" , "some embodiments" , "an exemplary embodiment" , "an example" , "aspecific example" or "some examples" means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment. As to the specification, "the computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) . In addition, the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper  or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
It should be understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with programs. The programs may be stored in a computer readable storage medium, and the programs comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.
Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that the embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims (21)

  1. An imaging lens assembly, comprising:
    a lens group comprising at least one lens having a positive refractive power and at least one lens having a negative refractive power, the lens group being configured so that a distance between the lens group and an imaging surface in a stored lens state is smaller than a distance between the lens group and the imaging surface in a shooting state, the imaging lens assembly being configured, in the shooting state, so that:
    1 < EFL /dd < 1.7,
    BL /dd > 0.35,
    where EFL is a focal length of the imaging lens assembly, dd is an image height, and BL is a distance on an optical axis from a surface on an imaging surface side of a most imaging surface side disposed lens to the imaging surface.
  2. The imaging lens assembly according to claim 1, configured so that:
    LENSTL < dd,
    where LENSTL is a distance on the optical axis from a surface on an object side of a most object side disposed lens to the surface on the imaging surface side of the most imaging surface side disposed lens.
  3. The imaging lens assembly according to claim 1, configured so that:
    1 /EFL1_2 < 0.01,
    where EFL1_2 is a composite focal length of a most object side disposed lens and a lens disposed the second from the object side.
  4. The imaging lens assembly according to claim 1, configured so that:
    EFL3_L /EFL1_2 < 0.2,
    where EFL1_2 is a composite focal length of a most object side disposed lens and a lens disposed the second from the object side, and EFL3_L is a composite focal length of lenses from a lens, which is disposed the third from the object side, to the most imaging surface side disposed lens.
  5. The imaging lens assembly according to claim 1, comprising an aperture stop.
  6. The imaging lens assembly according to claim 5, wherein the aperture stop is disposed on an object side of a most object side disposed lens.
  7. The imaging lens assembly according to claim 5, wherein the aperture stop is disposed between a vertex of a surface on an object side of a most object side disposed lens and a surface on an imaging surface side of the most object side disposed lens.
  8. The imaging lens assembly according to claim 5, configured so that:
    EFL /da < 2.4,
    where da is a diameter of the aperture stop.
  9. The imaging lens assembly according to claim 1, configured so that:
    0.58 < tan (hFOV) < 1,
    wherein hFOV is a half angle of view.
  10. The imaging lens assembly according to claim 1, configured, in the shooting state, so that:
    0.85 < LTL /EPL < 1.5,
    where LTL is a total length of the imaging lens assembly, which is a distance on the optical axis from a surface on an object side of a most object side disposed lens to the imaging surface, and EPL is a distance between the imaging surface and an exit pupil.
  11. The imaging lens assembly according to claim 1, configured so that:
    -4 < (dd-EFL × tan (hFOV) ) / (EFL × tan (hFOV) ) × 100 < 4,
    where hFOV is a half angle of view.
  12. The imaging lens assembly according to claim 1, wherein at least one lens in the lens group has two or more inflection points.
  13. The imaging lens assembly according to claim 1, wherein the lens group is integrally movable along the optical axis.
  14. The imaging lens assembly according to claim 1, wherein the lens group comprises between 5 or more and 8 or less lenses.
  15. The imaging lens assembly according to claim 14, wherein the lens group comprises, in order from an object side,
    a first lens having a positive refractive power,
    a second lens having a negative refractive power,
    a third lens having a positive refractive power,
    a fourth lens having a positive refractive power,
    a fifth lens having a positive refractive power, and
    a sixth lens having a negative refractive power.
  16. The imaging lens assembly according to claim 14, wherein the lens group comprises, in order from an object side,
    a first lens having a negative refractive power,
    a second lens having a negative refractive power,
    a third lens having a positive refractive power,
    a fourth lens having a positive refractive power,
    a fifth lens having a negative refractive power,
    a sixth lens having a positive refractive power, and
    a seventh lens having a negative refractive power.
  17. The imaging lens assembly according to claim 14, wherein the lens group comprises, in order from an object side,
    a first lens having a negative refractive power,
    a second lens having a negative refractive power,
    a third lens having a positive refractive power,
    a fourth lens having a negative refractive power,
    a fifth lens having a positive refractive power,
    a sixth lens having a negative refractive power,
    a seventh lens having a positive refractive power, and
    an eighth lens having a negative refractive power.
  18. A camera module, comprising:
    an imaging lens assembly according to any one of claims 1-17; and
    an image sensor comprising an imaging surface.
  19. The camera module according to claim 18, comprising an optical filter disposed between the imaging lens assembly and the image sensor.
  20. An imaging device, comprising:
    a camera module according to claim 18 or 19; and
    a housing which houses the camera module.
  21. The imaging device according to claim 20, wherein
    the lens group is protruded from the housing in the shooting state and is stored in the housing in the stored lens state.
PCT/CN2022/077732 2022-02-24 2022-02-24 Imaging lens assembly, camera module and imaging device WO2023159432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077732 WO2023159432A1 (en) 2022-02-24 2022-02-24 Imaging lens assembly, camera module and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077732 WO2023159432A1 (en) 2022-02-24 2022-02-24 Imaging lens assembly, camera module and imaging device

Publications (1)

Publication Number Publication Date
WO2023159432A1 true WO2023159432A1 (en) 2023-08-31

Family

ID=87764490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077732 WO2023159432A1 (en) 2022-02-24 2022-02-24 Imaging lens assembly, camera module and imaging device

Country Status (1)

Country Link
WO (1) WO2023159432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406399A (en) * 2023-12-14 2024-01-16 江西联益光学有限公司 Optical lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713382A (en) * 2012-10-02 2014-04-09 索尼公司 Imaging lens and imaging device
CN110208922A (en) * 2018-02-28 2019-09-06 富士胶片株式会社 Imaging lens and photographic device
US20200033625A1 (en) * 2018-07-26 2020-01-30 Fujifilm Corporation Imaging lens and imaging apparatus
US20210231930A1 (en) * 2020-01-29 2021-07-29 Fujifilm Corporation Imaging lens and imaging apparatus
WO2022016329A1 (en) * 2020-07-20 2022-01-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713382A (en) * 2012-10-02 2014-04-09 索尼公司 Imaging lens and imaging device
CN110208922A (en) * 2018-02-28 2019-09-06 富士胶片株式会社 Imaging lens and photographic device
US20200033625A1 (en) * 2018-07-26 2020-01-30 Fujifilm Corporation Imaging lens and imaging apparatus
US20210231930A1 (en) * 2020-01-29 2021-07-29 Fujifilm Corporation Imaging lens and imaging apparatus
WO2022016329A1 (en) * 2020-07-20 2022-01-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406399A (en) * 2023-12-14 2024-01-16 江西联益光学有限公司 Optical lens
CN117406399B (en) * 2023-12-14 2024-03-26 江西联益光学有限公司 Optical lens

Similar Documents

Publication Publication Date Title
US9709775B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9279958B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9383553B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9235200B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US8941928B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9304297B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9170403B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9423594B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9575291B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US8982478B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9201218B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US20150109685A1 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US20160216486A1 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9279962B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9575290B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9568711B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9671590B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
US9547156B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
WO2021159406A1 (en) Imaging lens, camera module and imaging device
US20150168687A1 (en) Imaging lens and imaging apparatus equipped with the imaging lens
WO2023159432A1 (en) Imaging lens assembly, camera module and imaging device
WO2021128064A1 (en) Imaging lens, camera module and imaging device
CN211554452U (en) Optical system, camera module and electronic device
WO2022016329A1 (en) Imaging lens assembly, camera module and imaging device
US9329363B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927721

Country of ref document: EP

Kind code of ref document: A1