WO2021256878A1 - 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법 - Google Patents

배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법 Download PDF

Info

Publication number
WO2021256878A1
WO2021256878A1 PCT/KR2021/007627 KR2021007627W WO2021256878A1 WO 2021256878 A1 WO2021256878 A1 WO 2021256878A1 KR 2021007627 W KR2021007627 W KR 2021007627W WO 2021256878 A1 WO2021256878 A1 WO 2021256878A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cells
pack
battery module
present
Prior art date
Application number
PCT/KR2021/007627
Other languages
English (en)
French (fr)
Inventor
최범
금종윤
신동환
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022544390A priority Critical patent/JP7460777B2/ja
Priority to EP21826108.9A priority patent/EP4089796A4/en
Priority to US17/790,371 priority patent/US20230044305A1/en
Priority to CN202180014440.0A priority patent/CN115088115A/zh
Publication of WO2021256878A1 publication Critical patent/WO2021256878A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, a battery pack including the same, a vehicle, and a method for manufacturing a battery pack, and more particularly, to a battery module with reduced manufacturing cost, a battery pack including the same, a vehicle, and such a battery pack It relates to a manufacturing method for manufacturing.
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, so charging and discharging are free, The self-discharge rate is very low and the energy density is high, attracting attention.
  • Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which a positive electrode active material and a negative electrode active material are applied, respectively, are disposed with a separator interposed therebetween, and an exterior material for sealing and housing the electrode assembly together with an electrolyte, that is, a battery case.
  • the lithium secondary battery may be classified into a cylindrical secondary battery in which the electrode assembly is embedded in a metal can and a pouch-type secondary battery in which the electrode assembly is embedded in a pouch of an aluminum laminate sheet.
  • the battery module of the prior art may include a module case accommodating a plurality of secondary batteries and a bus bar configured to electrically connect the plurality of cylindrical secondary batteries.
  • the plurality of secondary batteries may be embedded in the pack housing.
  • the central portion of the pack housing vibrates in the vertical direction or the central portion of the pack housing is bent upward or downward due to vibration or external shock applied to the battery pack. If the vibration or bending of the pack housing is repeated, the pack housing may be damaged, resulting in deterioration in durability of the battery module.
  • the central portion of the pack housing is more greatly deformed due to the load of the plurality of secondary batteries, thereby exacerbating the problem.
  • the present invention has been devised to solve the above problems, a battery module having reduced manufacturing cost and increased mechanical rigidity, a battery pack including a plurality of battery modules, a vehicle including the battery pack, and such a battery
  • An object of the present invention is to provide a manufacturing method for manufacturing a pack.
  • the battery module according to the present invention for achieving the above object,
  • a plurality of battery cells in the form of being elongated in the vertical direction, having a pair of electrode terminals positioned thereon, and arranged in at least one direction;
  • a cooling frame having a lower portion of the plurality of battery cells fixed to an upper surface and extending in a horizontal direction;
  • the cooling frame may include a plurality of fixing protrusions configured to fix the lower portions of each of the plurality of battery cells.
  • the battery module further includes a plurality of bus bars mounted on the upper frame and configured to be in contact with the electrode terminals of each of the plurality of battery cells,
  • the bus bar may include a plurality of conductive wires.
  • a protrusion protruding toward the electrode terminal may be provided to cover a portion of the electrode terminal of each of the plurality of battery cells.
  • an upper wall positioned above the plurality of battery cells, and a sidewall configured to cover side portions of the plurality of battery cells,
  • a fastening part having a fastening hole is provided on the side of the side wall of the upper frame,
  • the lower portion of the side wall of the upper frame is provided with an insertion groove inserted in the upper direction
  • the cooling frame is
  • a coupling portion having a shape in which an outer peripheral portion of the cooling frame protrudes upward may be provided.
  • a filler configured to surround each side of each of the plurality of battery cells may be further included.
  • the battery pack according to the present invention for achieving the above object may include at least two or more of the battery modules.
  • the battery pack further includes a pack housing having an accommodating space for accommodating at least two or more of the battery modules.
  • the battery pack may further include a reinforcing member fixed to at least one of an inner lower surface, an inner upper surface, and an inner side surface of the pack housing.
  • the vehicle according to the present invention for achieving the above object includes the battery pack.
  • a method of manufacturing a battery pack comprising:
  • the battery module of the present invention by mounting a plurality of battery cells directly on a cooling frame instead of a module case, the number of parts is effectively reduced, the weight of the battery module is reduced, and the manufacturing cost of the battery module is reduced. There are advantages to reducing it.
  • the present invention includes a cooling frame in which the lower portions of the plurality of battery cells are fixed on the upper surface and extending in the horizontal direction, and an adhesive interposed between the plurality of battery cells and the cooling frame, so that the plurality of battery cells are directly plural by the adhesive. Since the lower portion of the battery cells of the battery cell can be directly fixed to the cooling frame, heat generated from a plurality of battery cells can be transferred to the cooling frame with high thermal conductivity. Moreover, in the present invention, it is possible to easily fix a plurality of battery cells using an adhesive, thereby simplifying the manufacturing process and reducing the number of parts, thereby achieving reduction in manufacturing cost.
  • the battery module of the present invention is provided with the insertion groove of the upper frame and the coupling portion of the cooling frame, so that the upper frame and the cooling frame can be easily coupled.
  • the shape of the coupling portion of the cooling frame protruding upwardly and extending along the outer periphery may increase the mechanical rigidity of the cooling frame. In particular, when a force that bends the cooling frame in the vertical direction is generated, mechanical rigidity that can prevent this can be increased.
  • the present invention when manufacturing a large-capacity battery pack in the prior art, a large-scale welding facility is used in order to connect a large amount of battery cells and a bus bar. Although it is inevitable to use, a large welding cost is required, but the present invention is to prepare in advance at least two or more battery modules in which a plurality of battery cells and a bus bar are electrically connected, and to fix the manufactured battery modules to the pack housing.
  • the present invention since a plurality of battery cells are manufactured by dividing the plurality of battery cells into units such as a battery module, a relatively low welding cost may be required using a small-scale welding facility. Accordingly, the present invention has an advantage in that the battery pack can be manufactured at low manufacturing cost.
  • FIG. 1 is a perspective view schematically illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically illustrating a battery module according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view schematically illustrating the configuration of the battery module of FIG. 1 .
  • FIG. 4 is a perspective view schematically illustrating an internal appearance of a battery pack according to an embodiment of the present invention.
  • FIG. 5 is a vertical cross-sectional view schematically showing a state cut along the line A-A' of FIG. 3 .
  • FIG. 6 is a partial plan view schematically illustrating a portion of some components of a battery module according to an embodiment of the present invention.
  • FIG. 7 is a partial plan view schematically illustrating a portion of some components of a battery module according to an embodiment of the present invention.
  • FIG. 8 is a vertical cross-sectional view schematically illustrating a state cut along the line C-C' of the battery module of FIG. 2 .
  • FIG. 9 is a vertical cross-sectional view schematically illustrating some components of a battery pack according to another embodiment of the present invention.
  • FIG. 1 is a perspective view schematically illustrating a battery pack according to an embodiment of the present invention.
  • 2 is an exploded perspective view schematically illustrating a battery module according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view schematically illustrating the configuration of the battery module of FIG. 1 .
  • the battery module 200 of the present invention includes a plurality of battery cells 100 , a cooling frame 260 , and an upper frame 270 .
  • the battery cell 100 may have a shape that is elongated in the vertical direction.
  • An electrode terminal may be provided on an upper portion of the battery cell 100 .
  • the battery cell 100 may be a cylindrical battery cell.
  • the plurality of battery cells 100 may include a battery can 116 and an electrode assembly (not shown) accommodated in the battery can 116 .
  • a negative terminal 112 may be formed on the body of the battery can 116
  • a positive terminal 111 may be formed on a battery cap coupled to the upper portion of the battery can 116 .
  • the plurality of battery cells 100 may be arranged in at least one direction.
  • the plurality of battery cells 100 may be arranged to be spaced apart from each other at a predetermined interval.
  • the plurality of battery cells 100 may be arranged in the front-rear direction and the left-right direction.
  • directions such as before, after, left, right, up, and down described in the present specification may vary depending on the position of the observer or the placed shape of the object.
  • directions such as front, rear, left, right, top, and bottom are separately indicated with reference to the time when viewed in the F direction.
  • the plurality of battery cells 100 may be disposed to be spaced apart, for example, by a distance of about 3 mm.
  • the plurality of battery cells 100 positioned in one row and the plurality of battery cells 100 positioned in another row may be arranged so that positions in the front and rear directions are different from each other.
  • the plurality of battery cells 100 located in one column and the plurality of battery cells 100 located in another column may be arranged so that positions in the left and right directions are different from each other. That is, it can be seen that the plurality of battery cells 100 are generally arranged in a zigzag front, rear, left and right.
  • the cooling frame 260 may be configured to absorb or discharge heat generated by charging and discharging in the plurality of battery cells 100 .
  • the cooling frame 260 may include a metal material having excellent thermal conductivity.
  • the metal material may be copper, aluminum, or the like.
  • the cooling frame 260 may have a plate shape extending in a horizontal direction. Lower portions of the plurality of battery cells 100 may be fixed to the upper surface of the plate shape.
  • the cooling frame 260 may be a heat sink having an inlet and an outlet through which the refrigerant can be injected and discharged, and a refrigerant flow path through which the refrigerant can move. That is, a partition wall forming a refrigerant passage may be provided inside the cooling frame 260 .
  • a partition wall forming a refrigerant passage may be provided inside the cooling frame 260 .
  • any cooling structure capable of discharging the heat generated by the plurality of battery cells 100 to the outside is applicable.
  • the battery module 200 of the present invention instead of the module case, by mounting the plurality of battery cells 100 directly on the cooling frame 260, effectively reducing the number of parts, the battery There are advantages of reducing the weight of the module 200 , increasing the energy density, and reducing the manufacturing cost of the battery module 200 .
  • the adhesive 230 may be interposed between the plurality of battery cells 100 and the cooling frame 260 . That is, the adhesive 230 is applied between the plurality of battery cells 100 and the cooling frame 260 to bond the lower portions of each of the plurality of battery cells 100 to the upper surface of the cooling frame 260 . can be added.
  • the adhesive 230 is not limited to a specific material, and for example, the adhesive 230 may be glue or hot-melt resin.
  • the adhesive 230 may include at least one of a polyamide-based resin, a polyimide-based resin, an epoxy-based resin, and an acrylic resin.
  • the upper frame 270 may be configured to cover upper portions and horizontal side portions of the plurality of battery cells 100 .
  • the upper frame 270 includes an upper wall 272 extending in a horizontal direction to cover upper portions and side portions of the plurality of battery cells 100 , and a side wall 274 extending in a lower direction from an outer periphery of the upper wall 272 .
  • the upper wall 272 may be positioned on the plurality of battery cells 100 .
  • the battery module 200 includes a cooling frame 260 in which the lower portions of the plurality of battery cells 100 are fixed to an upper surface and extend in the horizontal direction, and the plurality of battery cells ( 100) and the cooling frame 260 has a structure including an adhesive 230 interposed between. That is, the battery module 200 has a structure in which the lower portions of the plurality of battery cells 100 are directly fixed to the cooling frame 260 using the adhesive 230 . Accordingly, the battery module 200 can efficiently transfer the heat generated by the plurality of battery cells 100 to the cooling frame 260 . Moreover, in the present invention, the plurality of battery cells 100 can be easily fixed using the adhesive 230 , thereby simplifying the manufacturing process and reducing the number of parts, thereby achieving reduction in manufacturing cost.
  • FIG. 4 is a perspective view schematically illustrating an internal appearance of a battery pack according to an embodiment of the present invention.
  • the battery pack 300 of the present invention may include a plurality of battery modules 200 and a pack housing 350 .
  • the plurality of battery modules 200 may be fixed inside the pack housing 350 of the battery pack 300 .
  • the lower portions of each of the plurality of battery modules 200 may be adhered to the inner lower surface of the pack housing 350 using an adhesive 230 .
  • FIG. 5 is a vertical cross-sectional view schematically showing a state cut along the line A-A' of FIG. 3 .
  • the cooling frame 260 may include a plurality of fixing protrusions P configured to fix respective lower portions of the plurality of battery cells 100 .
  • the fixing protrusion P may have a shape protruding from the inner surface of the cooling frame 260 toward the battery cells 100 (upward direction) to guide the mounting positions of the plurality of battery cells 100 .
  • the fixing protrusion P may have a circular shape on a plane to surround the outer periphery of the lower end of the battery cell 100 .
  • one battery cell 100 may be mounted inside the circular fixing protrusion P.
  • the adhesive 230 may be accommodated in the fixing protrusion P.
  • the adhesive 230 may be configured to adhere between a lower portion of each of the plurality of battery cells 100 and an inner surface of the fixing protrusion P.
  • the fixing protrusion P is provided on the upper surface of the cooling frame 260 , the plurality of battery cells 100 can be easily placed in the correct position as well as , it is possible to increase the bonding area between the inner surface of the cooling frame 260 and the plurality of battery cells 100 , thereby effectively increasing the adhesive force.
  • FIG. 6 is a partial plan view schematically illustrating a portion of some components of a battery module according to an embodiment of the present invention.
  • FIG. 6 only the bus bar 250 and the plurality of battery cells 100 are illustrated in order to show an electrically connected state between the bus bar 250 and the plurality of battery cells 100 , and the remaining components are did not show
  • the battery module 200 may further include a plurality of bus bars 250 .
  • the bus bar 250 may be configured to form an electrical connection between the plurality of battery cells 100 .
  • the bus bar 250 may include a conductive metal.
  • the bus bar 250 may include, for example, at least one of copper, nickel, and aluminum.
  • the plurality of bus bars 250 may be mounted on the upper frame 270 .
  • the bus bar 250 may be configured to contact the electrode terminals 111 and 112 of each of the plurality of battery cells 100 .
  • the bus bar 250 may include a body plate 251 elongated along the plurality of battery cells 100 , and a plurality of conductive wires 252 .
  • the body plate 251 and the conductive wire 252 may be connected to each other.
  • the conductive wire 252 may be in contact with the positive terminal 111 or the negative terminal 112 formed on the plurality of battery cells 100 through the exposed portion T2 of the upper frame 270 .
  • the exposed portion T2 may be positioned on the upper wall 272 of the upper frame 270 .
  • the bus bar 250 may electrically connect the plurality of battery cells 100 in series and/or in parallel.
  • the battery cell 100 of the present invention has a structure in which a pair of electrode terminals 111 and 112 are provided in the same direction. Such a structure may bring about simplification of electrical connection. In addition, this structure enables the application of a structure in which the surface opposite to the surface on which the electrode terminals 111 and 112 are formed is directly coupled to the cooling frame 260 . As described above, both the positive terminal 111 and the negative terminal 112 of the battery cell 100 applied to the present invention are provided on one side of the battery cell 100 .
  • the upper peripheral region of the battery can 116 functions as the negative terminal 112
  • a battery cap covering the upper opening of the battery can 116 is provided. It functions as the positive terminal 111 .
  • the upper peripheral region of the battery can 116 is, for example, a crimping portion that covers the upper opening of the battery can 116 and is formed for fixing the battery cap functioning as the positive terminal 111 . It may mean the upper surface.
  • the bus bar 250 includes a plurality of conductive wires 252 , so that the electrode terminals 111 and 112 provided on the plurality of battery cells 100 are provided. ) can be precisely contacted. That is, the bus bar 250 needs to be configured so that an electrical short circuit between the plurality of battery cells 100 does not occur. However, when the distance between the positive terminal 111 and the negative terminal 112 of the plurality of battery cells 100 is very close, a precise connection operation between the bus bar 250 and the electrode terminal is required. Accordingly, according to the present invention, the bus bar 250 enables precise connection between electrode terminals through the conductive wire, thereby reducing the risk of explosion or fire due to an electrical short circuit.
  • the battery module 200 of the present invention may further include an upper cover 216 .
  • the upper cover 216 may prevent other conductive conductors from coming into contact with the bus bars 250 by covering the upper portions of the plurality of bus bars 250 .
  • the upper cover 216 may have a plate shape extending in a horizontal direction.
  • FIG. 7 is a partial plan view schematically illustrating a portion of some components of a battery module according to an embodiment of the present invention.
  • the upper frame 270 may include a perforated exposed portion T2 so that the upper portions of the plurality of battery cells 100 are exposed to the outside.
  • the upper frame 270 of the pack housing 350 of the present invention may include a protrusion K configured to cover a portion of an electrode terminal of each of the plurality of battery cells 100 . That is, the protrusion K may protrude to cover a portion of the positive terminal 111 and/or the negative terminal 112 .
  • the protrusion K may have a shape protruding toward the electrode terminal.
  • any one of the plurality of protrusions K protrudes so that a portion of the negative terminal 112 provided on the upper portion of the battery cell 100 is not exposed to the upper portion.
  • the other one may have a protruding form so that a portion of the negative terminal 112 provided on the upper portion of the battery cell 100 is not exposed to the upper portion.
  • a protruding portion K may be provided to cover a portion of the negative terminal 112 to reduce the possibility that the negative terminal 252 comes into contact with the negative terminal 112 .
  • the conductive wire 252 is connected to another portion of the upper frame 270 adjacent to the conductive wire 252 that needs to be connected to the negative terminal 112 .
  • a protruding portion K may be provided with a protruding portion K to cover a portion of the positive terminal 111 to reduce the possibility of contact with the positive terminal 111 .
  • the upper frame 270 is provided with a protrusion K protruding toward the electrode terminal so as to cover a portion of the electrode terminal of each of the plurality of battery cells 100, During the connection operation between the bus bar 250 and the electrode terminal, the risk of an electrical short occurring between the plurality of battery cells 100 can be effectively reduced. Accordingly, the manufacturing efficiency of the battery pack 300 may be increased, and accidents may be effectively reduced in the manufacturing process.
  • the upper frame 270 of the battery module 200 of the present invention may include at least one fastening part 273 formed on the side wall 274 .
  • the fastening part 273 allows the battery module 200 to be coupled to the pack housing 350 and/or another adjacent battery module 200 .
  • the fastening part 273 may be formed with a fastening hole H1 for bolt fastening, for example.
  • the fastening hole H1 is, for example, when the battery module 200 is mounted on the inner lower surface 350a of the pack housing 350, another fastening hole provided in the pack housing 350 and/or to be described later. It may be configured to be positioned at a position communicating with another fastening hole formed in the reinforcing member 220 .
  • the fastening bolt B is inserted into each of the fastening hole H1 and the other fastening holes of the upper frame 270 to couple the battery module 200 and the pack housing 350 and/or to the battery module 200 adjacent to each other. ) can be combined.
  • the battery module 200 of the present invention includes a fastening part 273 configured to be coupled to the pack housing 350 on the upper frame 270 . Accordingly, the battery module 200 of the present invention can achieve bolt fastening between the upper frame 270 and the pack housing 350 without a separate member such as a bracket, thereby reducing the number of components, thereby reducing the energy density of the battery pack. increase and reduce manufacturing costs.
  • FIG. 8 is a vertical cross-sectional view schematically illustrating a state cut along the line C-C' of the battery module of FIG. 2 .
  • the upper frame 270 of the present invention may be provided with an insertion groove G inserted in the upper direction at the lower portion of the side wall 274 .
  • the insertion groove G may have a linear groove shape extending along the lower end surface of the side wall 274 of the upper frame 270 . That is, when the upper frame 270 is viewed from the bottom up, the insertion groove G may have a rectangular shape.
  • the cooling frame 260 may be provided with a coupling portion 263 configured to be inserted into the insertion groove (G).
  • the coupling portion 263 may have a shape in which an outer peripheral portion of the cooling frame 260 in a horizontal direction protrudes upward. That is, the coupling portion 263 may have a shape in which an outer peripheral portion of the cooling frame 260 in a horizontal direction is bent upward.
  • the cooling frame 260 may have a tray shape in which side walls are provided on the outer periphery.
  • the coupling part 263 may have a shape that can be inserted into the inner space of the insertion groove G of the upper frame 270 . That is, the coupling part 263 may be configured to be coupled to each other while facing the insertion groove G of the upper frame 270 .
  • an insertion groove G may be formed in a lower portion of the sidewall 274 of the upper frame 270 .
  • the cooling frame 260 may have a coupling portion 263 protruding upward to be inserted into the insertion groove (G) on the outer periphery.
  • the insertion groove (G) may have an approximately “U”-shaped groove.
  • an adhesive 230 may be interposed between the insertion groove G and the coupling portion 263 . That is, the insertion groove G and the coupling part 263 may be adhered to each other by the adhesive 230 and fixed.
  • the battery module 200 of the present invention has a structure in which the insertion groove G is provided in the upper frame 270 and the coupling part 263 is provided in the cooling frame 260 , and thus the upper frame 270 is provided. ) and the cooling frame 260 can be easily combined. Moreover, the coupling portion 263 protrudes in the upper direction of the cooling frame 260 and extends along the outer periphery of the cooling frame 260 , thereby increasing the mechanical rigidity of the cooling frame 260 . . In particular, since the cooling frame 260 has the above-described structure, when a force that bends the cooling frame 260 in the vertical direction is generated, mechanical rigidity that can block this can be increased.
  • FIG. 9 is a vertical cross-sectional view schematically illustrating some components of a battery pack according to another embodiment of the present invention.
  • a filler 240 may be added therein.
  • the filler 240 may include an electrically insulating material.
  • the filler 240 may be made of a material having good heat resistance and heat insulation performance.
  • the filler 240 may be a polymer resin configured to be cured after being filled in the battery module 200 .
  • the filler 240 may be an epoxy resin.
  • the filler 240 may be filled inside the battery module 200 to surround the sides of each of the plurality of battery cells 100 . That is, the filler 240 may be filled in the battery module 200 only up to a height that does not cover the positive terminal 111 and the negative terminal 112 positioned above the plurality of battery cells 100 .
  • the filler 240 may be injected into the battery module 200 through, for example, the exposed portion T2 formed in the upper frame 270 . As such, the filler 240 injected into the battery module 200 may fill the space formed between the battery cells 100 adjacent to each other.
  • the battery module 200 of the present invention further includes the filler 240 , so that it is possible to prevent an electrical short circuit between the plurality of battery cells 100 from occurring, as well as from among the plurality of battery cells 100 . , when any one of them causes thermal runaway or fire, the side of the battery can is ruptured and flames are ejected, thereby preventing heat or flame from being transmitted to other adjacent battery cells 100 . That is, the filler 240 blocks the flame and heat of the battery cell 100 , thereby effectively increasing the safety of the battery module 200 .
  • the battery pack 300 may include at least two or more of the battery modules 200 .
  • the battery pack 300 may include a pack housing 350 having an accommodating space for accommodating at least two or more of the battery modules 200 .
  • the battery pack 300 may further include various devices (not shown) for controlling the charging and discharging of the battery module 200 , for example, a battery management system (BMS), a current sensor, a fuse, and the like.
  • BMS battery management system
  • the battery pack 300 may further include a reinforcing member 220 .
  • the reinforcing member 220 may be fixed to any one or more of an inner lower surface, an inner upper surface, and an inner side surface of the pack housing 350 .
  • the reinforcing member 220 may be provided to reinforce mechanical rigidity of the pack housing 350 .
  • the reinforcing member 220 may be an H-shaped steel elongated in one direction.
  • the reinforcing member 220 may have a beam shape extending in the front-rear direction. Both ends (front end and rear end) of the reinforcing member 220 in the extended longitudinal direction may support the inner side surface of the pack housing 350 or may be coupled to the inner side surface.
  • reinforcing member 220 may be coupled to the pack housing 350 using an adhesive 230 and/or fastening means such as bolts.
  • the battery pack 300 of the present invention can achieve mechanical rigidity reinforcement of the battery pack 300 by providing the reinforcing member 220 . Accordingly, in the present invention, in the case of a large-capacity battery pack 300 using the reinforcing member 220 , a plurality of battery cells 100 are accommodated, It is possible to prevent the pack housing 350 from being bent in the vertical direction. Ultimately, durability of the battery pack 300 may be effectively increased.
  • the reinforcing member 220 may function as a support for coupling between adjacent battery modules 200 .
  • the reinforcing member 220 may be interposed between the coupling portion 273 provided in each of the battery modules 200 adjacent to each other and the lower surface 350a of the pack housing 350 .
  • the coupling part 273 may be coupled to the reinforcing member 220 by bolting or the like.
  • the inner space of the pack housing 350 that is, the space between the pack housing 350 and the battery module 200, is filled with the filler 240 having electrical insulation and fire resistance as described above.
  • an electronic device (not shown) according to an embodiment of the present invention includes at least one or more of the above-described battery packs 300 .
  • the electronic device may further include a device housing (not shown) having a storage space for accommodating the battery pack 300 and a display unit through which the user can check the charging state of the battery pack 300 .
  • the battery pack 300 according to an embodiment of the present invention may be included in a vehicle such as an electric vehicle or a hybrid vehicle. That is, in a vehicle according to an embodiment of the present invention, at least one battery pack 300 according to an embodiment of the present invention may be mounted in a vehicle body.
  • the manufacturing method of manufacturing the battery pack 300 includes the fixing step of fixing the lower portions of the plurality of battery cells 100 to the cooling frame 260; combining the upper frame 270 configured to cover the plurality of battery cells 100 with the cooling frame 260; and a connection step of connecting a bus bar 250 to each of the electrode terminals (positive terminal or negative terminal) of the plurality of battery cells 100 to establish an electrical connection between the plurality of battery cells 100 ; a manufacturing step of manufacturing at least two or more battery modules 200 by sequentially performing the fixing step, the combining step, and the connecting step at least two times; and a fixing step of fixing at least two or more of the battery modules 200 to the inside of the pack housing 350; includes The manufacturing of the battery module 200 includes the space formed between the battery cell 100 and the battery cell 100 and the battery cell 100 and the upper frame ( The method may further include a module filling step of filling the filler 240 having electrical insulation and fire resistance to fill the space formed between the sidewalls 274 of the 270
  • the manufacturing method in addition to the above steps, after adding the electrically insulating filler 240 to the inside of the pack housing 350, and then curing the pack filling step; may further include. That is, the method of manufacturing a battery pack according to an embodiment of the present invention may not include the step of filling the filler 240 , and may include the module filling step and/or the pack filling step.
  • the battery pack manufacturing method unlike this, the step of filling the inside of the battery module 200 and the step of filling the space between the battery module 200 and the pack housing 350 It may further include a unified and integrated filling step.
  • the filler 240 added to the inside of the pack housing 350 may be cured after flowing into the battery module 200 through a gap formed in at least a portion of the battery module 200 .
  • a gap may be formed between the upper frame 270 and the cooling frame 260 , or a gap may be formed between the upper frame 270 and the bus bar 250 .
  • the present invention in the prior art, when a large-capacity battery pack 300 is manufactured, a large-scale operation of connecting a large amount of the battery cells 100 and the bus bar 250 is performed. It was inevitable to use a welding facility, so a large welding cost was required, but in the present invention, at least two battery modules 200 in which electrical connection work between the plurality of battery cells 100 and the bus bar 250 are made in advance and the manufactured battery module 200 may be fixed to the pack housing 350 . In other words, in the present invention, since a plurality of battery cells are manufactured by dividing the battery cells into units such as a battery module, a relatively low welding cost may be required using a small-scale welding facility. Accordingly, the present invention has an advantage in that the battery pack can be manufactured at a low manufacturing cost.

Abstract

본 발명은, 제조 비용을 절감한 배터리 모듈, 배터리 팩, 자동차, 및 이러한 배터리 팩을 제조하는 제조방법을 개시한다. 위와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은, 상하 방향으로 길게 세워진 형태이고, 상부에 위치하는 한 쌍의 전극 단자를 구비하며, 적어도 일 방향으로 배열된 복수의 전지셀, 상면에 복수의 전지셀의 하부가 고정되고 수평 방향으로 연장된 형태를 가진 냉각 프레임, 복수의 전지셀 및 냉각 프레임 사이에 개재된 접착제 및 복수의 전지셀을 커버하도록 구성된 상부 프레임을 포함한다.

Description

배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법
본 발명은 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법에 관한 것으로서, 보다 상세하게는 제조 비용을 절감한 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 이러한 배터리 팩을 제조하는 제조방법에 관한 것이다.
본 출원은 2020년 6월 17일 자로 출원된 한국 특허출원번호 제10-2020-0073905호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
근래에 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차전지 등이 있는데, 이 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 또한, 이러한 리튬 이차전지는, 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 이러한 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
그리고, 리튬 이차전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 원통형 이차전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차전지로 분류될 수 있다.
이 중, 원통형 이차전지는 전극 조립체가 내장 되는 금속 캔을 원통형으로 제작할 경우가 있다. 종래기술의 배터리 모듈은, 복수의 이차전지를 수용하는 모듈 케이스 및 복수의 원통형 이차전지를 전기적으로 연결하도록 구성된 버스바를 구비할 수 있다.
그러나, 대용량의 배터리 팩의 경우, 다량의 원통형 이차전지를 구비하고 있어, 상기 다량의 원통형 이차전지와 버스바를 서로 용접 연결하기 위해서는, 넓은 면적의 용접 시설과, 다량의 용접 작업이 획일적으로 이루어지기 어려웠다. 이는, 배터리 팩의 제조 비용을 상승시키고, 불량률을 높이는 요인이 되었다.
또한, 이러한 복수의 이차전지는 팩 하우징 내부에 내장될 수 있다. 이 경우, 배터리 팩에 가해지는 진동이나 외부 충격에 의해 팩 하우징의 중심 부분이 상하 방향으로 진동하거나, 또는 팩 하우징의 중심 부분이 상부 방향이나 하부 방향으로 휘어지는 변형(들뜸)이 자주 발생 수 있었다. 이러한 팩 하우징의 진동이나 휘어짐 현상이 반복될 경우, 팩 하우징이 손상될 수 있어, 배터리 모듈의 내구성이 떨어지는 문제가 있었다.
특히, 배터리 모듈이 다수의 이차전지를 내장하는 경우, 다수의 이차전지의 하중에 의해 팩 하우징의 중심 부분의 변형이 더욱 크게 발생되어, 문제를 가중시킬 수 있었다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 제조 비용을 절감하고 기계적 강성을 높인 배터리 모듈, 및 복수의 배터리 모듈을 포함하는 배터리 팩, 이러한 배터리 팩을 포함하는 자동차 및 이러한 배터리 팩을 제조하는 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은,
상하 방향으로 길게 세워진 형태이고, 상부에 위치하는 한 쌍의 전극 단자를 구비하며, 적어도 일 방향으로 배열된 복수의 전지셀;
상면에 상기 복수의 전지셀의 하부가 고정되고 수평 방향으로 연장된 형태를 가진 냉각 프레임;
상기 복수의 전지셀 및 상기 냉각 프레임 사이에 개재된 접착제; 및
상기 복수의 전지셀을 커버하도록 구성된 상부 프레임을 포함한다.
또한, 상기 냉각 프레임은, 상기 복수의 전지셀의 각각의 하부를 고정하도록 구성된 복수의 고정 돌기를 구비할 수 있다.
더욱이, 상기 배터리 모듈은, 상기 상부 프레임 상에 탑재되고 상기 복수의 전지셀 각각의 전극 단자와 접촉되도록 구성된 복수의 버스바를 더 포함하고,
상기 버스바는 복수의 전도성 와이어가 구비될 수 있다.
그리고, 상기 상부 프레임은,
상기 복수의 전지셀의 상부를 외부로 노출시키도록 천공된 노출부; 및
상기 복수의 전지셀 각각의 전극 단자의 일부분을 커버하도록 상기 전극 단자를 향해 돌출된 돌출부가 구비될 수 있다.
또한, 상기 상부 프레임은,
상기 복수의 전지셀 상부에 위치하는 상벽, 및 상기 복수의 전지셀의 측부를 커버하도록 구성된 측벽을 구비하고,
상기 상부 프레임의 측벽의 측부에는 체결홀이 형성된 체결부가 구비되며,
상기 상부 프레임의 측벽의 하부에는 상부 방향으로 내입된 삽입홈이 구비되고,
상기 냉각 프레임은,
상기 냉각 프레임의 외주변부가 상부 방향으로 돌출된 형태를 갖는 결합부가 구비될 수 있다.
더욱이, 상기 복수의 전지셀 각각의 측부를 감싸도록 구성된 충진재를 더 포함할 수 있다.
그리고, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은, 상기 배터리 모듈을 적어도 둘 이상 포함할 수 있다.
나아가, 상기 배터리 팩은, 적어도 둘 이상의 상기 배터리 모듈을 수용하는 수용 공간이 구비된 팩 하우징을 더 포함한다.
또한, 상기 배터리 팩은, 상기 팩 하우징의 내부 하면 및 내부 상면, 및 내부 측면 중, 어느 하나 이상에 고정된 보강 부재를 더 포함할 수 있다.
더욱이, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 자동차는, 상기 배터리 팩을 포함한다.
그리고, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 제조방법은,
배터리 팩을 제조하는 방법으로서,
복수의 전지셀의 하부를 냉각 프레임에 고정하는 고정 단계;
상기 복수의 전지셀을 커버하도록 구성된 상부 프레임을 상기 냉각 프레임과 결합하는 결합 단계; 및
상기 복수의 전지셀 간의 전기적 연결을 이루도록 버스바를 상기 복수의 전지셀의 전극 단자 각각에 접속하는 접속 단계;
상기 고정 단계, 상기 결합 단계, 및 상기 접속 단계를 순차적으로 적어도 2번 이상 수행하여 적어도 둘 이상의 배터리 모듈을 제조하는 제조 단계;
적어도 둘 이상의 상기 배터리 모듈을 팩 하우징 내부에 고정하는 고정 단계; 및
상기 배터리 모듈의 내부 및 팩 하우징 내부 중 적어도 어느 한 곳에 전기 절연성의 충진재를 부가한 후, 경화 시키는 충진 단계;를 포함한다.
본 발명의 일 측면에 의하면, 본 발명의 배터리 모듈은, 모듈 케이스 대신, 냉각 프레임에 직접 복수의 전지셀을 탑재 시킴으로서, 부품의 수를 효과적으로 줄여, 배터리 모듈의 경량화하고, 배터리 모듈의 제조 비용을 줄일 수 있는 이점이 있다.
또한, 본 발명은, 상면에 복수의 전지셀의 하부가 고정되고 수평 방향으로 연장된 형태를 가진 냉각 프레임, 및 복수의 전지셀과 냉각 프레임 사이에 개재된 접착제를 포함함으로써, 접착제에 의해 직접 복수의 전지셀들의 하부를 냉각 프레임 직접 고정시킬 수 있는 바, 복수의 전지셀에서 발생된 열을 높은 열 전도성으로 냉각 프레임으로 전달 시킬 수 있다. 더욱이, 본 발명은, 접착제를 사용해 복수의 전지셀을 손쉽게 고정시킬 수 있어, 제조 공정을 간소화하고, 부품의 수를 줄일 수 있어, 제조 비용의 절감을 달성할 수 있다.
그리고, 본 발명의 일 측면에 의하면, 본 발명의 배터리 모듈은, 상부 프레임의 삽입홈, 및 냉각 프레임의 결합부를 구비함으로써, 상부 프레임과 냉각 프레임의 결합을 손쉽게 이룰 수 있다. 나아가, 냉각 프레임의 결합부의 상부 방향으로 돌출되고 외주변부를 따라 연장된 형태는 냉각 프레임의 기계적 강성을 높일 수 있다. 특히, 냉각 프레임이 상하 방향으로 휘어지는 힘이 발생될 경우, 이를 저지할 수 있는 기계적 강성을 높일 수 있다.
나아가, 본 발명의 일 측면에 의하면, 본 발명의 배터리 팩은, 종래 기술에서는 대용량의 배터리 팩을 제조할 경우, 많은 양의 전지셀과 버스바의 연결 작업이 이루어지기 위해서 큰 규모의 용접 시설을 사용하는 것이 불가피 하여, 큰 용접 비용이 소요되었으나, 본 발명은, 복수의 전지셀과 버스바의 전기적 연결 작업이 이루어진 적어도 둘 이상의 배터리 모듈을 미리 제작하고, 제작된 배터리 모듈을 팩 하우징에 고정시킬 수 있다. 즉, 다시 말해, 본 발명은, 다수의 복수의 전지셀을 배터리 모듈과 같은 단위로 나눠서 제조하기 때문에, 작은 규모의 용접 시설을 이용하여, 비교적 적은 용접 비용이 소요될 수 있다. 이에 따라, 본 발명은, 적은 제조비용으로 배터리 팩을 제조할 수 있는 이점이 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 팩을 개략적으로 나타내는 사시도이다.
도 2는, 본 발명의 일 실시예에 따른 배터리 모듈을 개략적으로 나타내는 분리 사시도이다.
도 3은, 도 1의 배터리 모듈의 구성들의 모습을 개략적으로 나타낸 분리 사시도이다.
도 4는, 본 발명의 일 실시예에 따른 배터리 팩의 내부 모습을 개략적으로 나타내는 사시도이다.
도 5는, 도 3의 A-A'의 선을 따라 절단된 모습을 개략적으로 나타낸 수직 단면도이다.
도 6은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성들의 일부분을 개략적으로 나타내는 일부 평면도이다.
도 7은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성들의 일부분을 개략적으로 나타내는 일부 평면도이다.
도 8은, 도 2의 배터리 모듈의 C-C'선을 따라 절단된 모습을 개략적으로 나타내는 수직 단면도이다.
도 9는, 본 발명의 또 다른 일 실시예에 따른 배터리 팩의 일부 구성들을 개략적으로 나타내는 수직 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 배터리 팩을 개략적으로 나타내는 사시도이다. 도 2는, 본 발명의 일 실시예에 따른 배터리 모듈을 개략적으로 나타내는 분리 사시도이다. 그리고, 도 3은, 도 1의 배터리 모듈의 구성들의 모습을 개략적으로 나타낸 분리 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 배터리 모듈(200)은, 복수의 전지셀(100), 냉각 프레임(260), 및 상부 프레임(270)을 포함한다.
여기서, 상기 전지셀(100)은, 상하 방향으로 길게 세워진 형태를 가질 수 있다. 상기 전지셀(100)의 상부에는 전극 단자가 구비될 수 있다.
구체적으로, 상기 전지셀(100)은, 원통형 전지셀일 수 있다. 상기 복수의 전지셀(100)은, 전지 캔(116), 및 상기 전지 캔(116)의 내부에 수용된 전극 조립체(도시하지 않음)를 포함할 수 있다. 상기 전지 캔(116)의 몸체에는 음극 단자(112)가 형성되고, 전지 캔(116)의 상부에 결합된 전지 캡에는 양극 단자(111)가 형성될 수 있다.
나아가, 상기 복수의 전지셀(100)은 적어도 일 방향으로 배열될 수 있다. 상기 복수의 전지셀(100)은 소정 간격으로 이격되어 배열될 수 있다. 예를 들면, 도 2의 F 방향으로 바라볼 경우, 도 3에 도시된 바와 같이, 상기 복수의 전지셀(100)은 전후 방향과 좌우 방향으로 배열될 수 있다.
한편, 본 명세서에서 기재된 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어는 관측자의 위치나 대상의 놓여진 형태에 따라 달라질 수 있다. 다만, 본 명세서에서는 설명의 편의를 위해, F 방향으로 바라볼 때를 기준으로 하여, 전, 후, 좌, 우, 상, 하 등의 방향을 구분하여 나타내도록 한다.
더욱이, 상기 복수의 전지셀(100)은 예를 들면, 대략 3 mm 거리로 이격되어 배치될 수 있다. 또한, 하나의 행에 위치한 복수의 전지셀(100)과 다른 행에 위치한 복수의 전지셀(100)은 전후 방향의 위치가 서로 다르도록 배치될 수 있다. 그리고, 하나의 열에 위치한 복수의 전지셀(100)과 다른 열에 위치한 복수의 전지셀(100)은 좌우 방향의 위치가 서로 다르도록 배치될 수 있다. 즉, 복수의 전지셀(100)은 전체적으로 전후좌우로 지그재그로 배치된 형태라고 볼 수 있다.
또한, 상기 냉각 프레임(260)은, 상기 복수의 전지셀(100)에서 충방전에 의해 발생된 열을 흡수 내지 방출하도록 구성될 수 있다. 예를 들면, 상기 냉각 프레임(260)은, 열전도성이 우수한 금속 소재를 포함할 수 있다. 예를 들면, 상기 금속 소재는, 구리, 알루미늄 등일 수 있다.
더욱이, 상기 냉각 프레임(260)은, 수평 방향으로 연장된 플레이트 형상을 가질 수 있다. 상기 플레이트 형상의 상면에 상기 복수의 전지셀(100)의 하부가 고정될 수 있다.
그리고, 상기 냉각 프레임(260)은, 냉매가 주입되고 배출될 수 있는 입구와 출구를 가지고, 상기 냉매가 이동할 수 있는 냉매 유로가 내부에 구비된 히트 싱크일 수 있다. 즉, 상기 냉각 프레임(260) 내부에는 냉매 유로를 형성하는 격벽이 구비될 수 있다. 그러나, 반드시, 이러한 형태로 한정되는 것은 아니고, 상기 복수의 전지셀(100)의 생성된 열을 외부로 배출할 수 있는 냉각 구조체이면 적용이 가능하다.
따라서, 본 발명의 이러한 구성에 의하면, 본 발명의 배터리 모듈(200)은, 모듈 케이스 대신, 냉각 프레임(260)에 직접 복수의 전지셀(100)을 탑재 시킴으로써, 부품의 수를 효과적으로 줄여, 배터리 모듈(200)의 경량화하고, 에너지 밀도를 높이며, 배터리 모듈(200)의 제조 비용을 줄일 수 있는 이점이 있다.
나아가, 상기 접착제(230)는 상기 복수의 전지셀(100) 및 상기 냉각 프레임(260) 사이에 개재될 수 있다. 즉, 상기 접착제(230)는 상기 복수의 전지셀(100) 각각의 하부를 상기 냉각 프레임(260)의 상면에 접합할 수 있도록 상기 복수의 전지셀(100) 및 상기 냉각 프레임(260) 사이에 부가될 수 있다.
또한, 상기 접착제(230)는 특정 소재로 한정되는 것은 아니고, 예를 들면, 상기 접착제(230)는 글루(glue) 또는 핫멜트 수지(Hot-melt resin)일 수 있다. 예를 들면, 상기 접착제(230)는, 폴리아마이드계 수지, 폴리이미드계 수지, 에폭시계 수지, 및 아크릴계 수지 중 적어도 하나 이상을 구비할 수 있다.
더욱이, 상기 상부 프레임(270)은, 상기 복수의 전지셀(100)의 상부 및 수평 방향의 측부를 커버하도록 구성될 수 있다. 상기 상부 프레임(270)은, 상기 복수의 전지셀(100)의 상부와 측부를 커버하도록 수평 방향으로 연장된 상벽(272), 및 상기 상벽(272)의 외주부로부터 하부 방향으로 연장된 측벽(274)을 가질 수 있다. 상기 상벽(272)은, 상기 복수의 전지셀(100) 상부에 위치할 수 있다.
이와 같이, 본 발명에 따른 배터리 모듈(200)은, 상면에 상기 복수의 전지셀(100)의 하부가 고정되고 수평 방향으로 연장된 형태를 가진 냉각 프레임(260), 및 상기 복수의 전지셀(100)과 상기 냉각 프레임(260) 사이에 개재된 접착제(230)를 포함하는 구조를 갖는다. 즉, 상기 배터리 모듈(200)은, 상기 접착제(230)를 사용하여, 직접 복수의 전지셀(100)들의 하부를 냉각 프레임(260)에 직접 고정시킨 구조를 갖는다. 따라서, 상기 배터리 모듈(200)은, 상기 복수의 전지셀(100)에서 발생된 열을 효율적으로 상기 냉각 프레임(260)으로 전달 시킬 수 있다. 더욱이, 본 발명은, 접착제(230)를 사용해 복수의 전지셀(100)을 손쉽게 고정시킬 수 있어, 제조 공정을 간소화하고, 부품의 수를 줄일 수 있어, 제조 비용의 절감을 달성할 수 있다.
도 4는, 본 발명의 일 실시예에 따른 배터리 팩의 내부 모습을 개략적으로 나타내는 사시도이다.
다시 도 1 및 도 4를 참조하면, 본 발명의 배터리 팩(300)은, 복수의 배터리 모듈(200), 및 팩 하우징(350)을 포함할 수 있다. 상기 복수의 배터리 모듈(200)은, 배터리 팩(300)의 팩 하우징(350) 내부에 고정될 수 있다. 예를 들면, 상기 복수의 배터리 모듈(200) 각각의 하부는 접착제(230)를 사용해 상기 팩 하우징(350)의 내부 하면에 접착될 수 있다.
도 5는, 도 3의 A-A'의 선을 따라 절단된 모습을 개략적으로 나타낸 수직 단면도이다.
도 3 및 도 5를 참고하면, 상기 냉각 프레임(260)은, 상기 복수의 전지셀(100)의 각각의 하부를 고정하도록 구성된 복수의 고정 돌기(P)를 구비할 수 있다. 상기 고정 돌기(P)는 상기 복수의 전지셀(100)의 탑재 위치를 가이드 하도록 냉각 프레임(260)의 내면으로부터 상기 전지셀(100)을 향해(상부 방향) 돌출된 형태를 가질 수 있다.
즉, 상기 고정 돌기(P)는 상기 전지셀(100)의 하단부의 외주부를 감싸도록 평면상으로 원형 형태를 가질 수 있다. 또한, 상기 원형의 고정 돌기(P) 내부에 하나의 전지셀(100)이 탑재될 수 있다.
또한, 상기 고정 돌기(P)에는 접착제(230)가 수용될 수 있다. 상기 접착제(230)는 상기 복수의 전지셀(100) 각각의 하부와 상기 고정 돌기(P)의 내면 사이를 접착하도록 구성될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 본 발명은, 냉각 프레임(260)의 상면에 고정 돌기(P)가 구비됨에 따라, 복수의 전지셀(100)을 정위치에 손쉽게 배치할 수 있을 뿐만 아니라, 상기 냉각 프레임(260)의 내면과 상기 복수의 전지셀(100) 간의 접착 면적을 늘릴 수 있어, 접착력을 효과적으로 높일 수 있다.
도 6은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성들의 일부분을 개략적으로 나타내는 일부 평면도이다. 도 6에서는, 버스바(250)와 복수의 전지셀(100)들 간의 전기적으로 연결된 모습을 나타내기 위해서, 오직 버스바(250)와 복수의 전지셀(100)들 만을 도시하였고, 나머지 구성들은 나타내지 않았다.
도 3과 함께 도 6을 참조하면, 상기 배터리 모듈(200)은, 복수의 버스바(250)를 더 포함할 수 있다. 상기 버스바(250)는 상기 복수의 전지셀(100) 간의 전기적 연결을 이루도록 구성될 수 있다. 상기 버스바(250)는 전도성 금속을 구비할 수 있다. 상기 버스바(250)는 예를 들면, 구리, 니켈, 및 알루미늄 중, 적어도 하나 이상을 구비할 수 있다.
또한, 상기 복수의 버스바(250)는 상기 상부 프레임(270) 상에 탑재될 수 있다. 상기 버스바(250)는 상기 복수의 전지셀(100) 각각의 전극 단자들(111, 112)과 접촉되도록 구성될 수 있다. 예를 들면, 상기 버스바(250)는 상기 복수의 전지셀(100)들을 따라 길게 연장된 본체 플레이트(251), 및 복수의 전도성 와이어(252)를 구비할 수 있다. 상기 본체 플레이트(251) 및 상기 전도성 와이어(252)는 서로 연결될 수 있다. 상기 전도성 와이어(252)는, 상기 상부 프레임(270)의 노출부(T2)를 통해 상기 복수의 전지셀(100)의 상부에 형성된 양극 단자(111) 또는 음극 단자(112)와 접촉될 수 있다. 상기 노출부(T2)는 상기 상부 프레임(270)의 상벽(272)에 위치될 수 있다. 상기 버스바(250)는 상기 복수의 전지셀(100)들을 전기적으로 직렬 및/또는 병렬로 연결시킬 수 있다.
본 발명의 전지셀(100)은, 한 쌍의 전극 단자(111, 112)가 동일 방향에 구비된 구조를 갖는다. 이러한 구조는, 전기적 연결의 간소화를 가져올 수 있다. 또한, 이러한 구조는 전극 단자(111, 112)가 형성된 면의 반대측 면을 냉각 프레임(260) 상에 직접 결합시킨 구조의 적용을 가능하게 한다. 상술한 바와 같이 본 발명에 적용되는 전지셀(100)의 양극 단자(111) 및 음극 단자(112)는 모두 전지셀(100)의 일 측에 구비된다. 예를 들어, 상기 전지셀(100)이 원통형 전지셀인 경우, 전지 캔(116)의 상단 둘레 영역이 음극 단자(112)로서 기능하고, 전지 캔(116)의 상단 개구부를 커버하는 전지 캡이 양극 단자(111)로서 기능한다. 상기 전지 캔(116)의 상단 둘레 영역은, 예를 들어, 전지 캔(116)의 상단 개구부를 커버하며 양극 단자(111)로서 기능하는 전지 캡을 고정시키기 위해 형성되는 크림핑부(crimping portion)의 상면을 의미하는 것일 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 본 발명은, 버스바(250)가 복수의 전도성 와이어(252)를 구비함으로써, 복수의 전지셀(100)의 상부에 구비된 전극 단자들(111, 112)과 정밀하게 접촉될 수 있다. 즉, 버스바(250)는 복수의 전지셀(100) 간의 전기적 단락이 발생되지 않도록 구성될 필요가 있다. 다만, 복수의 전지셀(100)의 양극 단자(111)와 음극 단자(112)의 사이의 거리가 매우 가까울 경우, 버스바(250)와 전극 단자 간의 정밀한 연결 작업이 필요하다. 이에 따라, 본 발명은, 전도성 와이어를 통해 버스바(250)가 전극 단자들 간의 정밀한 연결이 가능하여, 전기 단락에 따른 폭발이나 화재 발생의 위험을 줄일 수 있다.
더불어, 본 발명의 배터리 모듈(200)은, 상부 커버(216)를 더 포함할 수 있다. 상기 상부 커버(216)는, 상기 복수의 버스바(250)의 상부를 커버함으로써, 다른 전도성 도체가 상기 버스바(250)와 접촉되는 것을 방지할 수 있다. 상기 상부 커버(216)는 수평 방향으로 연장된 플레이트 형상을 가질 수 있다.
도 7은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성들의 일부분을 개략적으로 나타내는 일부 평면도이다.
도 3과 함께 도 7을 참조하면, 상기 상부 프레임(270)은, 상기 복수의 전지셀(100)의 상부가 외부로 노출될 수 있도록 천공된 노출부(T2)가 구비될 수 있다.
본 발명의 팩 하우징(350)의 상기 상부 프레임(270)은, 상기 복수의 전지셀(100) 각각의 전극 단자의 일부분을 커버하도록 구성된 돌출부(K)를 구비할 수 있다. 즉, 상기 돌출부(K)는 상기 양극 단자(111) 및/또는 음극 단자(112)의 일부분을 커버하도록 돌출될 수 있다. 상기 돌출부(K)는 상기 전극 단자를 향해 돌출된 형태를 가질 수 있다.
예를 들면, 도 7에 도시된 바와 같이, 복수의 돌출부(K) 중, 어느 하나는 상기 전지셀(100)의 상부에 구비된 음극 단자(112)의 일부가 상부로 노출되지 않도록 돌출 연장된 형태를 가질 수 있다. 그리고, 다른 하나는 상기 전지셀(100)의 상부에 구비된 음극 단자(112)의 일부가 상부로 노출되지 않도록 돌출 연장된 형태를 가질 수 있다.
예를 들면, 상기 버스바(250)의 복수의 전도성 와이어(252) 중, 양극 단자(111)와의 연결이 필요한 전도성 와이어(252)와 인접한 상기 상부 프레임(270)의 일 부분에는 상기 전도성 와이어(252)가 상기 음극 단자(112)와의 접촉 가능성을 줄이도록 상기 음극 단자(112)의 일부를 커버하도록 돌출된 돌출부(K)가 구비될 수 있다.
반대로, 상기 버스바(250)의 복수의 전도성 와이어(252) 중, 음극 단자(112)와의 연결이 필요한 전도성 와이어(252)와 인접한 상기 상부 프레임(270)의 다른 일 부분에는 상기 전도성 와이어(252)가 상기 양극 단자(111)와의 접촉 가능성을 줄이도록 상기 양극 단자(111)의 일부를 커버하도록 돌출된 돌출부(K)가 구비될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 상기 상부 프레임(270)은, 상기 복수의 전지셀(100) 각각의 전극 단자의 일부분을 커버하도록 상기 전극 단자를 향해 돌출된 돌출부(K)가 구비됨으로써, 버스바(250)와 상기 전극 단자 간의 연결 작업 중, 복수의 전지셀(100)들 간의 전기 단락이 발생 위험을 효과적으로 줄일 수 있다. 이에 따라, 배터리 팩(300)의 제조 효율이 높아지고, 제조 과정에서 사고가 발생되는 것을 효과적으로 줄일 수 있다.
다시 도 2 및 도 3을 참조하면, 본 발명의 배터리 모듈(200)의 상부 프레임(270)은, 측벽(274)에 형성되는 적어도 하나의 체결부(273)를 구비할 수 있다. 상기 체결부(273)는, 배터리 모듈(200)이 팩 하우징(350) 및/또는 인접한 다른 배터리 모듈(200)과 결합될 수 있도록 한다. 상기 체결부(273)는 예를 들면, 볼트 체결을 위한 체결홀(H1)이 형성될 수 있다. 상기 체결홀(H1)은, 예를 들면, 상기 배터리 모듈(200)이 팩 하우징(350) 내부 하면(350a)에 탑재될 경우, 팩 하우징(350)에 구비되는 다른 체결홀 및/또는 후술할 보강 부재(220)에 형성된 다른 체결홀과 연통되는 위치에 위치되도록 구성될 수 있다. 즉, 체결 볼트(B)가 상기 상부 프레임(270)의 체결홀(H1) 및 다른 체결홀 각각에 삽입되어 배터리 모듈(200)과 팩 하우징(350) 간의 결합 및/또는 서로 인접한 배터리 모듈(200) 간의 결합이 이루어질 수 있다.
이처럼, 본 발명의 배터리 모듈(200)은, 상부 프레임(270)에 상기 팩 하우징(350)과 결합되도록 구성된 체결부(273)를 구비한다. 따라서, 본 발명의 배터리 모듈(200)은, 별도의 브라켓과 같은 부재 없이도, 상부 프레임(270)과 상기 팩 하우징(350)의 볼트 체결을 이룰 수 있어, 부품 수를 줄여, 배터리 팩의 에너지 밀도를 높이고, 제조 비용을 절감할 수 있다.
도 8은, 도 2의 배터리 모듈의 C-C'선을 따라 절단된 모습을 개략적으로 나타내는 수직 단면도이다.
도 2 및 도 3과 함께 도 8을 참조하면, 본 발명의 상기 상부 프레임(270)은, 측벽(274)의 하부에 상부 방향으로 내입된 삽입홈(G)이 구비될 수 있다. 상기 삽입홈(G)은, 상기 상부 프레임(270)의 측벽(274)의 하단면을 따라 연장된 선형의 홈 형태를 가질 수 있다. 즉, 상기 상부 프레임(270)을 아래에서 위로 바라볼 경우, 상기 삽입홈(G)은 사각 형상일 수 있다.
또한, 상기 냉각 프레임(260)은 상기 삽입홈(G)에 삽입되도록 구성된 결합부(263)가 구비될 수 있다. 상기 결합부(263)는 상기 냉각 프레임(260)의 수평 방향의 외주변부가 상부 방향으로 돌출된 형태일 수 있다. 즉, 상기 결합부(263)는 상기 냉각 프레임(260)의 수평 방향의 외주변부가 상부 방향으로 절곡된 형태를 가질 수 있다. 달리 말해, 상기 냉각 프레임(260)은 외주변부에 측벽이 구비된 트레이 형상을 가질 수 있다.
상기 결합부(263)는 상기 상부 프레임(270)의 삽입홈(G)의 내부 공간에 삽입될 수 있는 형태를 가질 수 있다. 즉, 상기 결합부(263)는 상기 상부 프레임(270)의 삽입홈(G)과 마주 본 상태에서 서로 결합되도록 구성될 수 있다.
예를 들면, 도 8에 도시된 바와 같이, 상기 상부 프레임(270)의 측벽(274)의 하부에는 삽입홈(G)이 형성될 수 있다. 상기 냉각 프레임(260)은 상기 삽입홈(G)의 내부에 삽입되도록 상부 방향으로 돌출된 형태의 결합부(263)가 외주변부에 구비될 수 있다. 달리 말해, 상기 삽입홈(G)은 대략 “U”자 홈의 형태를 가질 수 있다.
더욱이, 상기 삽입홈(G)과 상기 결합부(263) 사이에는 접착제(230)가 개재될 수 있다. 즉, 상기 접착제(230)에 의해 상기 삽입홈(G)과 상기 결합부(263)는 서로 접착되어, 고정될 수 있다.
이처럼, 본 발명의 배터리 모듈(200)은, 상부 프레임(270)에 삽입홈(G)이 구비되고, 냉각 프레임(260)에 결합부(263)가 구비된 구조를 가짐으로써, 상부 프레임(270)과 냉각 프레임(260)의 결합을 손쉽게 이룰 수 있다. 더욱이, 상기 결합부(263)는, 냉각 프레임(260)의 상부 방향으로 돌출되고 또한 냉각 프레임(260)의 외주변부를 따라 연장된 형태를 가짐으로써 냉각 프레임(260)의 기계적 강성을 높일 수 있다. 특히, 상기 냉각 프레임(260)은 상술한 바와 같은 구조를 가짐으로써 냉각 프레임(260)이 상하 방향으로 휘어지는 힘이 발생될 경우, 이를 저지할 수 있는 기계적 강성을 높일 수 있다.
도 9는, 본 발명의 또 다른 일 실시예에 따른 배터리 팩의 일부 구성들을 개략적으로 나타내는 수직 단면도이다.
도 4와 함께 도 9를 참조하면, 본 발명의 배터리 모듈(200)은, 내부에 충진재(240)가 부가될 수 있다. 상기 충진재(240)는 전기 절연성의 소재를 구비할 수 있다. 상기 충진재(240)는 내열성 및 단열 성능이 좋은 소재를 구비할 수 있다. 또한, 상기 충진재(240)는 배터리 모듈(200) 내부에 충진된 후, 경화되도록 구성된 고분자 수지일 수 있다. 예를 들면, 상기 충진재(240)는, 에폭시 수지일 수 있다.
더욱이, 상기 충진재(240)는 상기 복수의 전지셀(100) 각각의 측부를 감싸도록 배터리 모듈(200) 내부에 채워질 수 있다. 즉, 상기 충진재(240)는 상기 복수의 전지셀(100)의 상부에 위치한 양극 단자(111) 및 음극 단자(112)를 덮지 않을 만큼의 높이까지만 배터리 모듈(200) 내부에 채워질 수 있다.
상기 충진재(240)는, 예를 들어, 상부 프레임(270)에 형성된 노출부(T2)를 통해 배터리 모듈(200) 내부로 주입될 수 있다. 이처럼 배터리 모듈(200) 내부에 주입된 충진재(240)는 서로 인접한 배터리 셀(100)들 사이에 형성된 공간을 채울 수 있다.
이처럼, 본 발명의 배터리 모듈(200)은, 충진재(240)를 더 포함함으로써, 복수의 전지셀(100)들 간의 전기적 단락이 일어나는 것을 방지할 수 있을 뿐만 아니라, 복수의 전지셀(100) 중, 어느 하나가 열폭주나 화재가 발생될 경우, 전지캔의 측부가 파열되어 화염이 분출되어, 인접한 다른 전지셀(100)로 열이나 화염이 전해지는 것을 방지할 수 있다. 즉, 충진재(240)는 전지셀(100)의 화염 및 열을 차단하여, 배터리 모듈(200)의 안전성을 효과적으로 높일 수 있다.
다시 도 1 및 도 4를 참조하면, 본 발명의 일 실시예 따른 배터리 팩(300)은, 상기 배터리 모듈(200)을 적어도 둘 이상을 포함할 수 있다. 또한, 상기 배터리 팩(300)은, 적어도 둘 이상의 상기 배터리 모듈(200)을 수용하는 수용 공간이 구비된 팩 하우징(350)을 포함할 수 있다. 그리고, 상기 배터리 팩(300)은, 상기 배터리 모듈(200)의 충방전을 제어하기 위한 각종 장치(미도시), 예컨대 BMS(Battery Management System), 전류 센서, 퓨즈 등이 더 포함될 수 있다.
또한, 상기 배터리 팩(300)은, 보강 부재(220)를 더 포함할 수 있다. 상기 보강 부재(220)는 상기 팩 하우징(350)의 내부 하면 및 내부 상면, 및 내부 측면 중, 어느 하나 이상에 고정될 수 있다. 상기 보강 부재(220)는, 상기 팩 하우징(350)의 기계적 강성 보강을 위해 구비될 수 있다. 예를 들면, 상기 보강 부재(220)는 일 방향으로 길게 연장된 H 형강일 수 있다.
예를 들면, 상기 보강 부재(220)는 전후 방향으로 연장된 빔 형태일 수 있다. 상기 보강 부재(220)의 연장된 길이 방향의 양 단부(전단부 및 후단부)는 상기 팩 하우징(350)의 내부 측면을 지지하거나, 상기 내부 측면에 결합될 수 있다.
또한, 상기 보강 부재(220)는 접착제(230) 및/또는 볼트 등의 체결 수단을 사용하여 상기 팩 하우징(350) 에 결합될 수 있다.
이처럼, 본 발명의 배터리 팩(300)은, 보강 부재(220)를 구비함으로써, 배터리 팩(300)의 기계적 강성 보강을 이룰 수 있다. 이에 따라, 본 발명은, 상기 보강 부재(220)를 사용하여, 대용량의 배터리 팩(300)의 경우, 다수의 전지셀(100)을 수용하고 있어, 다수의 전지셀(100)의 무게에 의해 팩 하우징(350)이 상하 방향으로 휘어지는 현상을 방지할 수 있다. 궁극적으로, 배터리 팩(300)의 내구성을 효과적으로 높일 수 있다.
한편, 도 4를 참조하면, 상기 보강 부재(220)는, 서로 인접한 배터리 모듈(200) 간의 결합을 위한 지지체로서 기능할 수 있다. 상기 보강 부재(220)는, 서로 이웃하는 배터리 모듈(200) 각각에 구비된 결합부(273)와 팩 하우징(350)의 하면(350a) 사이에 개재될 수 있다. 이 경우, 상기 결합부(273)는 보강 부재(220) 상에 볼팅 등에 의해 결합될 수 있다.
도면에 도시되지는 않았으나, 상기 팩 하우징(350)의 내부 공간, 즉 팩 하우징(350)과 배터리 모듈(200) 사이의 공간에는 앞서 설명한 바와 같은 전기 절연성 및 내화성을 갖는 충진재(240)가 충진될 수 있다.
한편, 본 발명의 일 실시예에 따른 전자 디바이스(미도시)는 상술한 배터리 팩(300)을 적어도 하나 이상 포함한다. 상기 전자 디바이스는, 배터리 팩(300)을 수납하기 위한 수납 공간이 구비된 디바이스 하우징(미도시) 및 사용자가 배터리 팩(300)의 충전 상태를 확인할 수 있는 표시부를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리 팩(300)은 전기 자동차나 하이브리드 자동차와 같은 자동차에 포함될 수도 있다. 즉, 본 발명의 일 실시예에 따른 자동차는 차체 내에 본 발명의 일 실시예에 따른 배터리 팩(300)을 적어도 하나 이상 탑재할 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 팩(300)을 제조하는 제조방법은, 복수의 전지셀(100)의 하부를 냉각 프레임(260)에 고정하는 고정 단계; 상기 복수의 전지셀(100)을 커버하도록 구성된 상부 프레임(270)을 상기 냉각 프레임(260)과 결합하는 결합 단계; 및 상기 복수의 전지셀(100) 간의 전기적 연결을 이루도록 버스바(250)를 상기 복수의 전지셀(100)의 전극 단자(양극 단자 또는 음극 단자) 각각에 접속하는 접속 단계; 상기 고정 단계, 상기 결합 단계, 및 상기 접속 단계를 순차적으로 적어도 2번 이상 수행하여 적어도 둘 이상의 배터리 모듈(200)을 제조하는 제조 단계; 및 적어도 둘 이상의 상기 배터리 모듈(200)을 팩 하우징(350) 내부에 고정하는 고정 단계; 를 포함한다. 상기 배터리 모듈(200)을 제조하는 단계는, 상술한 고정 단계, 결합 단계 및 접속 단계 이 외에도 추가적으로 배터리 셀(100)과 배터리 셀(100) 사이에 형성된 공간 및 배터리 셀(100)과 상부 프레임(270)의 측벽(274) 사이에 형성된 공간을 채우도록 전기 절연성 및 내화성을 갖는 충진재(240)를 충진하는 모듈 충진 단계를 더 포함할 수 있다. 한편, 상기 제조 방법은, 상술한 단계들 이 외에도 팩 하우징(350) 내부에 전기 절연성의 충진재(240)를 부가한 후, 경화 시키는 팩 충진 단계;를 더 포함할 수도 있다. 즉, 본 발명의 일 실시예에 따른 배터리 팩 제조 방법은, 충진재(240)를 충진하는 단계를 포함하지 않을 수도 있고, 모듈 충진 단계 및/또는 팩 충진 단계를 포함할 수도 있다.
또한, 본 발명의 일 실시예에 따른 배터리 팩 제조방법은, 이와는 달리, 배터리 모듈(200)의 내부를 충진하는 단계와 배터리 모듈(200)과 팩 하우징(350) 사이의 공간을 충진하는 단계를 일원화한 통합 충진 단계를 더 포함할 수도 있다.
이 경우, 팩 하우징(350) 내부에 부가된 충진재(240)는, 배터리 모듈(200)의 적어도 일부에 형성되어 있는 틈을 통해 배터리 모듈(200) 내부로 흘러 들어간 후 경화될 수 있다. 예를 들면, 상부 프레임(270)과 냉각 프레임(260) 사이에 틈이 형성되어 있을 수도 있고, 상부 프레임(270)과 버스바(250) 사이에 틈이 형성되어 있을 수도 있다.
따라서, 본 발명의 이러한 구성에 의하면, 종래 기술에서는 대용량의 배터리 팩(300)을 제조할 경우, 많은 양의 전지셀(100)과 상기 버스바(250)의 연결 작업이 이루어지기 위해서 큰 규모의 용접 시설을 사용하는 것이 불가피 하여, 큰 용접 비용이 소요되었으나, 본 발명은, 복수의 전지셀(100)과 버스바(250)의 전기적 연결 작업이 이루어진 적어도 둘 이상의 배터리 모듈(200)을 미리 제작하고, 제작된 배터리 모듈(200)을 팩 하우징(350)에 고정시킬 수 있다. 즉, 다시 말해, 본 발명은, 다수의 복수의 전지셀을 배터리 모듈과 같은 단위로 나눠서 제조하기 때문에, 작은 규모의 용접 시설을 이용하여, 비교적 적은 용접 비용이 소요될 수 있다. 이에 따라, 본 발명은, 적은 제조비용으로 배터리 팩을 제조할 수 있는 이점이 있다.
한편, 본 명세서에서는 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (10)

  1. 상하 방향으로 길게 세워진 형태이고, 상부에 위치하는 한 쌍의 전극 단자를 구비하며, 적어도 일 방향으로 배열된 복수의 전지셀;
    상면에 상기 복수의 전지셀의 하부가 고정되고 수평 방향으로 연장된 형태를 가진 냉각 프레임;
    상기 복수의 전지셀 및 상기 냉각 프레임 사이에 개재된 접착제; 및
    상기 복수의 전지셀을 커버하도록 구성된 상부 프레임
    을 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 냉각 프레임은, 상기 복수의 전지셀의 각각의 하부를 고정하도록 구성된 복수의 고정 돌기를 구비한 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 배터리 모듈은,
    상기 상부 프레임 상에 탑재되고 상기 복수의 전지셀 각각의 전극 단자와 접촉되도록 구성된 복수의 버스바를 더 포함하고,
    상기 버스바는 복수의 전도성 와이어가 구비된 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 상부 프레임은,
    상기 복수의 전지셀의 상부를 외부로 노출시키도록 천공된 노출부; 및
    상기 복수의 전지셀 각각의 전극 단자의 일부분을 커버하도록 상기 전극 단자를 향해 돌출된 돌출부
    가 구비된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 상부 프레임은,
    상기 복수의 전지셀 상부에 위치하는 상벽, 및 상기 복수의 전지셀의 측부를 커버하도록 구성된 측벽을 구비하고,
    상기 상부 프레임의 측벽의 측부에는 체결홀이 형성된 체결부가 구비되며,
    상기 상부 프레임의 측벽의 하부에는 상부 방향으로 내입된 삽입홈이 구비되고,
    상기 냉각 프레임은,
    상기 냉각 프레임의 외주변부가 상부 방향으로 돌출된 형태를 갖는 결합부가 구비된 것을 특징으로 하는 배터리 모듈.
  6. 제5항에 있어서,
    상기 복수의 전지셀 각각의 측부를 감싸도록 구성된 충진재를 더 포함한 것을 특징으로 하는 배터리 모듈.
  7. 제1항 내지 제6항 중, 어느 한 항에 따른 배터리 모듈을 적어도 둘 이상 포함하고,
    적어도 둘 이상의 상기 배터리 모듈을 수용하는 수용 공간이 구비된 팩 하우징을 포함한 것을 특징으로 하는 배터리 팩.
  8. 제7항에 있어서,
    상기 배터리 팩은,
    상기 팩 하우징의 내부 하면 및 내부 상면, 및 내부 측면 중, 어느 하나 이상에 고정된 보강 부재를 더 포함하는 것을 특징으로 하는 배터리 팩.
  9. 제7항에 따른 배터리 팩을 포함하는 것을 특징으로 하는 자동차.
  10. 배터리 팩을 제조하는 방법으로서,
    복수의 전지셀의 하부를 냉각 프레임에 고정하는 고정 단계;
    상기 복수의 전지셀을 커버하도록 구성된 상부 프레임을 상기 냉각 프레임과 결합하는 결합 단계;
    상기 복수의 전지셀 간의 전기적 연결을 이루도록 버스바를 상기 복수의 전지셀의 전극 단자 각각에 접속하는 접속 단계;
    상기 고정 단계, 상기 결합 단계, 및 상기 접속 단계를 순차적으로 적어도 2번 이상 수행하여 적어도 둘 이상의 배터리 모듈을 제조하는 제조 단계;
    적어도 둘 이상의 상기 배터리 모듈을 팩 하우징 내부에 고정하는 고정 단계; 및
    상기 배터리 모듈의 내부 및 팩 하우징 내부 중 적어도 어느 한 곳에 전기 절연성의 충진재를 부가한 후, 경화 시키는 충진 단계;
    를 포함하는 것을 특징으로 하는 제조방법.
PCT/KR2021/007627 2020-06-17 2021-06-17 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법 WO2021256878A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022544390A JP7460777B2 (ja) 2020-06-17 2021-06-17 バッテリーモジュール、それを含むバッテリーパック及び自動車、並びにバッテリーパックを製造する方法
EP21826108.9A EP4089796A4 (en) 2020-06-17 2021-06-17 BATTERY MODULE, BATTERY PACK INCLUDING THE LATTER, VEHICLE, AND METHOD FOR MANUFACTURING BATTERY PACK
US17/790,371 US20230044305A1 (en) 2020-06-17 2021-06-17 Battery module, battery pack comprising the same, vehicle, and method for manufacturing battery pack
CN202180014440.0A CN115088115A (zh) 2020-06-17 2021-06-17 电池模块、包括其的电池组、车辆以及制造电池组的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0073905 2020-06-17
KR20200073905 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256878A1 true WO2021256878A1 (ko) 2021-12-23

Family

ID=79176059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007627 WO2021256878A1 (ko) 2020-06-17 2021-06-17 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법

Country Status (6)

Country Link
US (1) US20230044305A1 (ko)
EP (1) EP4089796A4 (ko)
JP (1) JP7460777B2 (ko)
KR (1) KR20210156240A (ko)
CN (1) CN115088115A (ko)
WO (1) WO2021256878A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799371B (zh) * 2023-08-25 2023-11-14 山东中卓环保能源科技有限公司 一种新能源储能器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004378A (ja) * 2007-06-21 2009-01-08 Delphi Technologies Inc バッテリーパックでの熱の拡散を低減するための調量装置
KR20120065026A (ko) * 2010-12-10 2012-06-20 대한칼소닉주식회사 전기자동차용 배터리 냉각장치
KR20160016503A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈
KR20190000210A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 팩
KR20190047499A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 전지 셀 냉각 및 고정 구조가 통합된 배터리 모듈 및 이를 포함하는 배터리 팩
KR20200073905A (ko) 2018-12-16 2020-06-24 서승환 전력사용량 알리미

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471784B (zh) * 2012-05-17 2016-12-28 日立汽车系统株式会社 电池组件
US9966584B2 (en) 2013-03-11 2018-05-08 Atieva, Inc. Bus bar for battery packs
KR102258178B1 (ko) * 2017-10-27 2021-06-03 주식회사 엘지에너지솔루션 냉각 및 조립 구조를 단순화시킨 배터리 모듈 및 그 제조방법
KR102288405B1 (ko) * 2017-12-26 2021-08-09 주식회사 엘지에너지솔루션 공간 활용성과 안전성이 향상된 원통형 전지셀 조립체 및 이를 포함하는 배터리 모듈
US20200168963A1 (en) * 2018-11-28 2020-05-28 Sf Motors, Inc. Electric vehicle battery cell heat transfer system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004378A (ja) * 2007-06-21 2009-01-08 Delphi Technologies Inc バッテリーパックでの熱の拡散を低減するための調量装置
KR20120065026A (ko) * 2010-12-10 2012-06-20 대한칼소닉주식회사 전기자동차용 배터리 냉각장치
KR20160016503A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈
KR20190000210A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 팩
KR20190047499A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 전지 셀 냉각 및 고정 구조가 통합된 배터리 모듈 및 이를 포함하는 배터리 팩
KR20200073905A (ko) 2018-12-16 2020-06-24 서승환 전력사용량 알리미

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089796A4

Also Published As

Publication number Publication date
EP4089796A4 (en) 2023-09-20
EP4089796A1 (en) 2022-11-16
JP7460777B2 (ja) 2024-04-02
US20230044305A1 (en) 2023-02-09
CN115088115A (zh) 2022-09-20
KR20210156240A (ko) 2021-12-24
JP2023511181A (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2019177275A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019107717A1 (ko) 방열 플레이트를 구비한 배터리 모듈
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2021071071A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2018186616A1 (ko) 크래쉬 빔과 배수 구조를 갖는 배터리 팩
WO2017095003A1 (ko) 그립핑부가 구비되어 있는 카트리지를 포함하고 있는 전지모듈
WO2017104878A1 (ko) 배터리 팩
WO2022050780A1 (ko) 배터리 팩, 및 자동차, 및 이를 포함하는 전자 디바이스
WO2013103211A1 (ko) 중대형 전지팩 어셈블리
WO2020009484A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2021025525A1 (ko) 자동차용 언더 바디
WO2021107429A1 (ko) 배터리 모듈 및 배터리 팩
WO2021149903A1 (ko) 배터리 모듈
WO2021107305A1 (ko) 배터리 모듈
WO2015046725A1 (ko) 전기 절연성 부재를 포함하는 전지팩
WO2015152527A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019146892A1 (en) Battery module comprising a housing with integrated bus bar
WO2021025469A1 (ko) 배터리 모듈과 강성 빔을 통합하고 역방향 조립 방식을 채용한 배터리 팩
WO2021040293A1 (ko) 셀 프레임을 포함한 배터리 모듈
WO2021182779A1 (ko) 버스바를 구비한 배터리 모듈, 배터리 팩, 및 자동차
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2021206426A1 (ko) 모듈 버스바를 포함하는 배터리 모듈, 및 그것을 포함한 배터리 팩, 및 전자 디바이스
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022005032A1 (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
WO2021256878A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩, 자동차, 및 배터리 팩을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021826108

Country of ref document: EP

Effective date: 20220809

NENP Non-entry into the national phase

Ref country code: DE