WO2021256478A1 - 作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体 - Google Patents

作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体 Download PDF

Info

Publication number
WO2021256478A1
WO2021256478A1 PCT/JP2021/022775 JP2021022775W WO2021256478A1 WO 2021256478 A1 WO2021256478 A1 WO 2021256478A1 JP 2021022775 W JP2021022775 W JP 2021022775W WO 2021256478 A1 WO2021256478 A1 WO 2021256478A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
work
construction material
working
monitoring system
Prior art date
Application number
PCT/JP2021/022775
Other languages
English (en)
French (fr)
Inventor
隆 矢野
浩 川上
誠 斉藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022531849A priority Critical patent/JP7424487B2/ja
Priority to US18/010,329 priority patent/US20230341291A1/en
Publication of WO2021256478A1 publication Critical patent/WO2021256478A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/506Underwater installation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/10Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle in or under water

Abstract

作業中のケーブルに損傷が生じても検知できずに作業を進めてしまい、損害が拡大することを抑制するために、作業中ケーブルの保護監視システムであって、少なくとも一心の光ファイバを含んでいるワイヤーケーブル状の工事材料を移動もしくは設置する作業手段と、光ファイバにより感知された、工事材料の各位置における環境情報を取得するインテロゲーターと、工事材料の各位置において取得された環境情報が異常パターンを満たす場合、位置における異常イベントを検出する異常イベント検出手段と、を備え、作業手段は、異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する。

Description

作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体
 本開示は、工事材料ケーブルの作業中の保護監視システム等に関する。
 [作業中の工事材料ケーブル]
 通信、送電用のようなインフラ用ケーブルの設置作業は、ケーブル敷設工事と呼ばれる。長尺なケーブルは、巻かれた状態で現場まで運ばれ、何らかの敷設機械を用いて線状に敷設されるのが一般的である。
 また、コイル状に巻かれて保管されているケーブルは引き出されることによって徐々に移動する。移動先で再び巻き取る移動作業の際には、長いケーブルのどこかがローラー付きトラフやホーリングマシンなどの機械と接している。
 [海底ケーブルの敷設工事]
 ケーブルに対する代表的な作業として、海底ケーブルの敷設工事を例に説明する。
 非特許文献1の9.3章「ケーブル布設工事」に詳述されているように、海底ケーブルは、Cable Ship(CS)と呼ばれる工事船で敷設される。ある施工単位ごとに一連長に接続された海底ケーブルはCS内のタンクに巻かれて積載される。敷設現場において、海底ケーブルはCSから海底に向かって垂れ下がる状態になっており、CSが前進するのと同期して船内からケーブルが繰り出される。船外に出たケーブルは海底に向かって沈降していく。
 海底ケーブルがCSタンクを出て、海底に着底するまでの間のように、海底ケーブルが移動しており不安定な状態にある間は、損傷事故が発生しやすい。大きく2つのリスク要因がある。一つ目のリスク要因は、ケーブルを移動させたり設置したりするための機械とケーブルが接触する際に、当該機械が誤ってケーブルに損傷を与えてしまうことである。二つ目のリスク要因は、海上の敷設船からケーブルが海底に着底するまでに、ケーブルが海中を横切っている間に、海中に存在する障害物とケーブルが接触することによる損傷である。
 海底ケーブル敷設の際に使用される機械には、ケーブルエンジン、鋤埋設機(plough)、ROV(Remotely operated vehicle)などがある。特に、海底の鋤埋設機やROVをCSから遠隔操作する際には、周囲状況の把握が容易ではなく、施工中にケーブルを傷つけてしまうこともある。
 敷設中のケーブルの水平に対する傾斜角は12度程度と浅いため、着底地点は船から水深の4~5倍程度離れているのが通例である。例えば水深3000mの場所では、ケーブル着底地点は船から14kmほど離れている。その間に、海中を横切る漁具や浮き漁礁のワイヤーロープなどとケーブルが接触すればケーブル損傷が生じる。
 通信用海底ケーブルには、海中の機器を動作させるための給電線も備わっている。海底ケーブルが損傷すると、絶縁被覆が破れて給電線が外部の海水と接触する「地絡」という障害になることが多い。こうなると地絡地点より先に給電ができなくなるため、海中の機器は動作しなくなる。
 通信海底ケーブルへの給電電圧は、数kVの高電圧となることも多い。感電事故防止のため、CSから海底ケーブルを垂らしている敷設工事の作業中は、海底ケーブルへは原則給電を行わない。定期的に、作業甲板の作業員を退避させた上で給電試験を行い、ケーブルの絶縁を確認する手順が一般的に行われる。
 [敷設工事機械について]
 恒常的に海底に設置される海底ケーブルは、浅海海域においては、1m程度の溝を掘ってそこに埋設されることが一般的に求められる。浅海では漁業などの人間の活動が海底まで及ぶことが多いため、埋設して海底ケーブルへ干渉しにくくするためである。この埋設工法には、鋤埋設機による敷設同時埋設、もしくはROVによる後埋設、が一般に用いられる。
 鋤埋設機による敷設同時埋設では、図2に点線で示したようにCSからワイヤーで鋤埋設機を海底に降ろし、CSはワイヤーを通じて鋤埋設機を引く。海底ケーブルは鋤埋設機を通過して、鋤埋設機が掘った溝の中に置かれ、その上を土砂で再び覆うものである。敷設と同時に埋設することから敷設同時埋設工法と呼ばれる。
 ROVによる後埋設は、海底に敷設済みの海底ケーブルに対する工法であり、そのため後埋設工法と呼ばれる。ROVと呼ばれる、遠隔操作型の無人潜水機を工事船から海底に降ろし、ジェット水流で海底に溝を掘り、そこに海底ケーブルを落とし込んで、その上に土砂を被せるものである。
 [ケーブル敷設工事に関する情報]
 ケーブルルート情報は、一般にはRPL(route position list)で表現される。RPLでは、実際には曲線のケーブルルートを、多数の地点とそれを結ぶ直線で近似して表している。すべての地点情報は、少なくとも固有の地点番号と、位置を表す地理座標(緯度経度)と水深の属性情報とともに記載されている。ケーブル以外の部品や装置の設置地点も、固有の識別番号とともに地点情報としてRPLに記載されている。またケーブルは、外装の種類の情報が記載されている。
 漁業活動情報は、海底ケーブルと漁業との干渉回避に理解のある漁業団体から、操業場所を間違えるとケーブルと干渉する可能性がある漁の行われるエリアと期間の情報として提供されるものである。
 付近作業情報は、浚渫や掘削、海底ケーブルの敷設や回収、漁礁の設置などの海洋土木工事、音響海底測量、地質調査などの海洋調査などの行われるエリアと期間の情報として提供されるものである。
 水路通報・航行警報情報は、前述の作業情報を含める場合もあるが、それに加えて、軍事訓練などのエリアと期間の情報や、漂流物の情報、などの情報として提供されるものである。
 [光ファイバセンシング技術]
 光ファイバセンシングは、例えば、コヒーレント光をセンシング光ファイバに入射し、センシング光ファイバの各部分からの戻り光を検出及び分析して、センシング光ファイバに作用する擾乱(動的歪み)を環境情報として取得するものである。このような擾乱は、典型的には、センシング光ファイバの部分に伝わる音響波等によって引き起こされるセンシング光ファイバの振動である。そのような、少なくともセンシング光ファイバの部分における振動の存在を表す情報を環境情報として取得する場合、光ファイバセンシングは、分布型音響センシング(DAS:Distributed Acoustic Sensing)と呼ばれる。
 DASの技術は、例えば、特許文献1、特許文献2及び非特許文献2などに開示されている。DASはOTDR方式のセンシング方法の一種である。ここでOTDRはoptical time-domain reflectometryの略である。
 図1は、一般的なOTDR方式の光ファイバセンシングシステムの動作の説明図である。上はセンシングシステムの主要構成を模式的に示しており、その下にはプローブ光及びその後方散乱光の距離に応じたパワーレベルと、プローブ光及びその後方散乱光が時間とともに移動する様子を模式的に表している。
 図1に表されるように、OTDR方式の光ファイバセンシングシステムは、インテロゲーター100と光ファイバ200とを備える。インテロゲーター100は、プローブ光900を、センシング光ファイバである光ファイバ200に送出する。プローブ光900は、光ファイバ200を右方に移動し、移動の過程において、光ファイバ200の各位置において、後方散乱光801、802等の後方散乱光が生じる。当該後方散乱光は、典型的には、レイリー後方散乱光である。後方散乱光は、インテロゲーター100に向けて光ファイバ200を左方に移動し、インテロゲーター100に入射する。光ファイバ200の各位置で生じた後方散乱光は、その位置の環境の影響を受けている。当該環境は、例えば、その位置の温度や音響等の振動の存在である。
 インテロゲーター100は、戻り光である後方散乱光が受けている、光ファイバ200の各位置における影響の程度を検出する。
 そして、インテロゲーター100は、当該戻り光から検出した情報から、光ファイバ200の各位置における環境に関する環境情報を導出する。当該環境情報は、例えば、光ファイバ200の振動状況を表す情報である。
英国特許第2126820号明細書 特開昭59-148835号公報 特許第3127934号公報 米国特許第10466172号明細書 特許第4592279号公報
大山 昇、桑原 守二 監修、「光海底ケーブル通信」、KDDエンジニアリング・アンド・コンサルティング 発行、1991年 発行 R. Posey Jr, G. A. Johnson and S.T. Vohra, "Strain sensing based on coherent Rayleigh scattering in an optical fibre", ELECTRONICS LETTERS, 28th September 2000, Vol. 36 No. 20 G. Marra et al., "Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables", Science 03 Aug 2018: Vol. 361, Issue 6401, pp. 486-490
 張力を持ったワイヤーケーブルは、跳ねたり外れたりすると危険であり、またケーブルを移動させたり設置したりする機械が遠隔にある、散在しているなどの理由により、網羅的に監視しづらいという課題があった。
 例えば特許文献3のように、光ファイバを用いて設置ケーブルのダメージ発生を検知する技術は知られていたが、敷設工事中や移動中のケーブルへのダメージの発生を光ファイバを用いて監視する技術は無かった。
 また、ダメージに気づかずに工事を進めてしまうと、損害が拡大するという課題があった。ケーブルに延々と傷が付くようなケースは無論のこと、ダメージが一ヶ所だけであっても、その修理のためにダメージ発生後に施工したケーブル区間を巻き取る必要があれば、後戻りが拡大し、損害が拡大する。
 また、絶縁不良など、明確なダメージ現象が現れない限り、ケーブルの損傷に気づけないという課題があった。例えば絶縁被覆が削られて局所的に薄くなっても検知できなかった。このような構造的に弱くなった個所が、後にケーブルが引っ張られた際などに障害として顕在化することがあった。
 したがって障害として顕在化しないダメージの場合、作業を止めて当該箇所の状態を確認して修繕等の適切な処置を行えなかった。潜在的なダメージに気づかずに工事を進めると、ダメージが顕在した際に大きな後戻りが発生し、損害が拡大してしまうという課題があった。
 また、光ファイバで振動や音を検知するセンシング技術は知られているが、敷設工事中や移動中においては、ケーブルは激しい機械音や振動を被っており、ケーブルに損傷を与える異常振動はそれら背景雑音と混在しており、異常イベントの発生を的確に検知することが困難という課題があった。
 また通信ケーブルでは、ケーブルを介して給電しないと動作しない増幅中継器が挿入されている。作業中のケーブルを監視する際に、このような増幅中継器を越えた先の監視ができないという課題があった。
 以上のように、工事材料としてケーブルを扱う作業中に、ケーブルに傷がついた可能性がある異常イベントが生じても、リアルタイムに検知できず、作業を進めてしまい、損害が拡大する恐れがあった。
 本発明の作業中ケーブルの保護監視システムは、
 少なくとも一心の光ファイバを含んでいるワイヤーケーブル状の工事材料を移動もしくは設置する作業手段と、
 前記光ファイバにより感知された、前記工事材料の各位置における環境情報を取得するインテロゲーターと、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する異常イベント検出手段と、を備え、
 前記作業手段は、前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する。
 本発明の作業中ケーブルの保護監視方法は、
 移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得し、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出し、
 前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する。
 本発明の記憶媒体は、
 移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得する処理と、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する処理と、
 前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する処理と、
 を情報処理装置に実行させる作業中ケーブルの保護監視プログラムを記憶する。
 本発明によれば、工事材料としてケーブルを扱う作業中に、工事材料ケーブルに傷がついた可能性がある異常イベントが生じた場合にリアルタイムに検知できず、作業を進めてしまうことによって損害が拡大することを抑制できる。
 海底ケーブル自体がセンサとなることにより、これまで不可能であった細かでリアルタイムの監視ができるようになり、作業範囲を立入り規制する警備員や警戒船の数を減らせるなどの費用削減効果ももたらす。
一般的なOTDR方式の光ファイバセンシングシステムの動作説明図である。 実施の形態1の海底ケーブル敷設工事の模式図である。 実施の形態1の海底ケーブル敷設工事のケーブル作業位置の説明図である。 実施の形態1の情報処理の説明図である。 実施の形態2の説明のための模式図である。 実施の形態2の接続説明図である。 中継器内のスルー接続光配線の説明図である。 実施の形態2におけるモニタ端子の引き出し構造の例の説明図である。 実施の形態2の接続説明図である。 双方向光増幅器の一例の説明図である。 敷設作業中の暫定的な給電方法の例の説明図である。 実施の形態3の電源回路の実現例である。 実施の形態3の電源回路の実現例である。 実施の形態3の電源回路の実現例である。 実施の形態4の構成例を示す模式図である。 実施の形態4の動作を示すフローチャートである。
 以下、図面を参照して本開示の実施の形態について説明する。なお、以下の記載及び図面は、説明の明確化のため、適宜、省略及び簡略化がなされている。また、以下の各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
<実施の形態1>
 まず、実施の形態1に係るケーブル保護監視システム1の動作概要を述べる。
 図2を参照して、本実施の形態1に係る敷設中のケーブル保護監視システム1の構成例について、海底ケーブルの例で説明する。
 海底ケーブル10(以下、工材ケーブルともいう。)は、CS15の船内タンクから次々に引き出されて、水中に入り、懸垂曲線を描いて、典型的には水深の約4~5倍離れた海底に着底していく。さらに敷設同時埋設工法の場合は、着底部分に鋤埋設機16と呼ぶ大型の機械があり、海底に溝を掘り、工材ケーブルをその溝に落とし込んで埋設していく。
 図3は、工材ケーブル全体を俯瞰して、作業中の区間が移動していく様子を説明する図である。工材ケーブル(工事材料とも呼ぶ)は、少なくとも一心の光ファイバを含んでおり、ワイヤーケーブル状である。工材ケーブルのうち、図3の左側のケーブルはCS16船内タンクに巻かれた状態にある。それが引き出されて敷設作業中の区間となり、そして図3の右側のケーブルのように海底に敷設される。船内タンクにあるケーブルは、ケーブルエンジン17に供給され、そこで適切な速度で繰り出され、船の先頭もしくは船尾にあるシーブ(sheave)18から海中に降ろされる。そして水深の4~5倍離れた場所に着底する。さらに敷設同時埋設工法では、着底場所に鋤埋設機16があり、埋設される。ケーブル保護監視システム1は、前述のケーブルエンジン17、シーブ18及び鋤埋設機16のように、作業手段を備える。作業手段とは、少なくとも一心の光ファイバを含んでいるワイヤーケーブル状の工事材料を移動もしくは設置するものを指す。
 工材ケーブル側から見ると、図3において、作業区間は右から左に移動していくように見える。海底ケーブル10はある起点からの距離が分かるように適度な間隔でマーキングが施されている。また中継器等の海底装置も規定の間隔で海底ケーブル10に接続されている。これら海底ケーブル10上の目印がシーブ18や鋤埋設機16を通過する様子を目視や監視カメラで確認することで、工材ケーブル上の作業区間の現在位置が把握される。
 ここまでは通例行われている敷設工事作業である。
 以上説明した敷設作業において、本実施の形態のケーブル保護監視システム1を、図2を用いて説明する。このケーブル保護監視システム1は、少なくとも、監視対象となる海底ケーブル10と、海底ケーブル10に備わっている光ファイバ11(図示せず)を用いて海底ケーブル周囲の環境情報(典型的には工材ケーブルに加わる音または振動)をセンシングするDASインテロゲーター20と、監視サーバー30を備えている。
 ここでDASインテロゲーター20は、敷設中の海底ケーブル10の作業区間を含む海底ケーブル10の、周囲の環境情報(典型的には音または振動)をセンシングして、異常な事象(イベント)を自動的に分類して、監視サーバー30に情報出力する。その情報には、異常イベントの種類(自動分類結果)、発生時刻、発生した海底ケーブル10上の位置、が含まれる。DASはOTDR方式の一種なので、イベントが発生した海底ケーブル10上の位置を高精度に把握することができる。これにより、異常イベントの発生場所の把握が可能になる。
 DAS技術の概要は背景技術で述べた。本実施の形態において、ケーブル保護監視システム1に備えられたDASセンシングシステムは、図4に示されるように、光ファイバ11、DASインテロゲーター20を含む。また、DASインテロゲーター20は、センシング機能部21及びデータ一次処理部22を含む。光ファイバ11は、機械的な補強のための被覆が施された海底ケーブル10内部に収容されている。光ファイバ11は、監視対象である作業中の海底ケーブル10に沿って敷設されていると言える。この光ファイバ11はセンサ機能およびセンシング信号の伝送媒体の役割を持つ。
 DASインテロゲーター20は、長尺な光ファイバ11の各点で生じた後方散乱光を順次受信し、各点における環境情報を含んだセンシング信号出力を出力する。これにより、DASインテロゲーター20は、光ファイバ11により感知された、工材ケーブル(工事材料)の各位置における環境情報を取得する。環境情報は、例えば、音、振動、温度又はそれらの時間変化であっても良い。
 それらセンシング信号出力は監視サーバー30に渡されるが、特にデータ量が膨大となる音、振動のようなデータについては、データ一次処理部22(異常イベント検出手段)が、異常イベント分類を行ってデータ量を絞り込んだうえで、監視サーバー30にデータを渡す。
 施工中の工材ケーブルには、様々な音、振動が加わっているがそれらの大部分は問題ないものである。データ一次処理部22は、その中から異常を示すパターンの音、振動を分類検知し、監視サーバー30に通知する。例えば、データ一次処理部22は、音又は振動のうち、振幅や周波数が所定の条件を満たしたものを、異常を示すパターンの音又は振動として分類する。監視サーバー30は、懸念のある異常イベントが入力された場合、直ちに前述の作業手段による工材ケーブルの移動または設置を止める。そして、工材ケーブルをCS船内に巻き取ることにより、懸念の個所を目視などで確認する。必要に応じた補強や修繕を行い、敷設工事を再開する。これにより事故発生の検知が後手になることによる後戻り損害を最小限に抑えることできる。
 以上がケーブル保護監視システム1の動作概要である。続いて個々の詳細を説明する
 [作業中のケーブルのリスク]
 作業中の工材ケーブルは、保管状態や設置状態にある工材ケーブルよりも損傷リスクが高い。一例として海底ケーブル10における要注意な状態を2つ説明する。一つ目は、CSを出てから海底に着底するまでの状態である。二つ目は、敷設機械などを通過する状態である。
 一つ目の、CSを出てから海底に着底するまでの区間における損傷リスクを図2で説明する。この区間の海底ケーブル10は水中にあり、海中を横切っている。そのため、この区間の海底ケーブル10には、海中を漂う障害物、例えば、はえ縄漁(Longline fishing)のワイヤー12や、浮きを係留するワイヤーロープ13などと接触するリスクがある。また滅多にあることではないが、自船の推進機や、そばにいる別の作業船と海底ケーブル10が当たってしまったり、強い潮流がある場合などに、位置が予め分かっているはずの浮標係留索や海中構造物と誤って海底ケーブル10が接触してしまうことも考えられる。
 二つ目は、敷設機械などの不良動作のリスクである。海底にある鋤埋設機16などの工事重機は無人遠隔操作なので、操作を誤ると施工中の海底ケーブル10を傷つけるリスクがある。このように移動中の海底ケーブル10は、設置後よりも高いリスクに晒されるので、リアルタイムに監視する意義は大きい。
 [敷設後のケーブルのリスク]
 敷設作業後の海底に置かれた海底ケーブル10は、海底ケーブル10と海底が馴染むまでは、ずれるなどして損傷が起きやすい。また海底ケーブル10が敷設された直後は海図等にも反映されておらず、各船舶に認識されていないため、海底ケーブル10は傷つけられやすい。
 これらの損傷リスクが敷設したすぐ後に生じれば、即時に敷設作業を停止して海底ケーブル10を巻き戻して修理などを行える。それにより、敷設を完了した後に修理するよりも修理に要する日数と費用を削減できる。また敷設から数日後の損傷リスク発生であっても、発生と同時に検知できれば敷設船が障害発生個所に戻って修理する計画が立てやすくなり、船の移動距離や修理日数、費用の削減が期待できる。このように敷設したばかりの海底ケーブル10も、一般の敷設済み海底ケーブルより損傷するリスクは高く、リアルタイムに監視する意義は大きい。
 このように本実施形態では、敷設後の工材ケーブルも作業中のケーブルの一部として監視する。
 [センサ特性の不均一性:ケーブル種類などの違いと補正]
 環境情報を取得する海底ケーブル10は、設置場所によってケーブルの種類や設置工法が異なる。これにより海底ケーブル10のセンサとしての特性が場所ごとに異なる。例えば、取得した環境情報信号の中の特定の周波数域の減衰度合いが異なる。後述するデータ一次処理部22においてより高い信頼度のイベント分類結果を得るために、この影響を取り除いて元の信号に近づける補正処理を行うことが望ましい。
 ここで、ケーブル種類の違いは、例えば送電用/通信用などによる断面構造の違い、保護被覆の構造の違い(外装鉄線の有無やその種類)などである。設置工法の違いは、例えばケーブルを海底表面に置くだけの工法や、海底に溝を掘ってケーブルを埋める工法などの違いである。
 これらのケーブルの場所ごとの違いは、ケーブルの製造記録や、施工記録(例えばRPL)を参照すれば分かるので、海底ケーブル10の場所ごとにほぼ一義的に補正できる。具体的な補正方法は、例えばフィルタによる特定の周波数域の振幅を増大させるものである。
 なおこの補正を取得データ側に施すのではなく、後述する分類条件側に施す手法も存在する。例えばケーブルの構造により環境情報の高周波側が減衰する特性があれば、取得データは補正せずに、分類条件の高周波側を取得位置のケーブル種類に応じて減衰させることで、パターン識別の一致が得られやすくなる。しかし取得データ側を補正するほうがデータ利用の汎用性が高まるなどの利点もあり、好ましい。
  [センサ特性の不均一性:現地ごとの違いと校正]
 敷設後の海底ケーブル10の各点のセンサ特性のばらつきの要因は、前述の施工記録などから一義的に決まる(推定できる)ものだけではない。例えば、一律の深さで埋設されているという記録であっても、実際は場所ごとに埋設深さがばらついていたり、被せていた土砂が流されて露出することもある。
 この課題に対しては、現地に広範囲に伝わる音をリファレンスとして利用して校正する方法が考えられる。リファレンス音には、人工的な音や自然に生ずる音が利用されてよい。同じ音が海底ケーブル10上の各点で感受されるので、それらが同一に近づくように、もしくは音源からの距離に応じた値に近づくように、各点ごとに補正する。
 またこの校正により、海底ケーブル10上の各点が、目的とする環境情報の取得に適するかどうかも把握できる。例えば、ある点は感度が非常に低くて補正しきれない、またある点は特定の周波数域で共鳴しやすく補正も難しい、などである。これら環境取得にやや難のある点は、前後の移動平均トレンドと比べることで抽出できる。そこでイベント検知分類する際に、これら難のある点を、観測点の分布を意識しつつ除外して、ほぼ平均的な環境情報が取得できていると思われる点からのデータを利用することで、観測性能を改善できる。
 [地理座標情報の付加]
 以上の処理によって得られた環境情報は、様々な用途に使用され得る。そのためには取得位置を地理座標で表現することが求められる。センシング機能部21が出力するデータの段階では、取得位置は光ケーブル上の位置(例えば光ケーブル端からの距離)で表現されている。ケーブル上の位置と、施工記録(RPLなど)に記載されている光ケーブルが設置されている地理座標データとを照らし合わせることで、各ケーブル上の位置に対応する地理座標が求まる。このケーブル上の位置と地理座標の対応関係は、ケーブル設置後は変わらないため、予め算出してデータ一次処理部22に記憶させておけばよい。またその際、RPLから水深(標高)データも引用して地理座標情報に含めることが望ましい。
 そしてデータ一次処理部22は、センシングデータから異常イベントを検知分析する前に、ケーブル上の位置に対応する地理座標情報を個々のデータに付加する。
 [イベントの検知と分類機能]
 取得された環境情報には、様々なものが含まれており、その中から注目するイベントを、できるだけ漏れなく、またできるだけ誤検知を少なく、見つける必要がある。本実施形態における、検出すべきイベントは、例えば、工材ケーブルが作業手段と強く擦れた音や、工材ケーブルが海中の浮遊物と接触した音、設置後の工材ケーブルを損傷させた可能性のある事象の音などである。一方で、例えば、作業手段は正常動作時にも大きな音を工材ケーブルに与えているが、それを損傷リスクのあるイベントと誤検出してしまい、作業を止めてしまうことは極力抑制する必要がある。
 なお、前述の、ケーブル各点でのセンサ特性の不均一性への対処、地理座標情報の付加は、イベントの検知と分類を行う前に処理済みであるとして説明する。
 データ一次処理部22は、異常ではない音に混じって現れる、損傷リスクのある音を的確に検知、分類する。そのためにデータ一次処理部22は、既知のイベントそれぞれに固有の特徴を分類条件として予め備えている。分類条件に用いられる特徴とは、異常イベント信号の周波数、周波数の時間変化、強度包絡線の時間変化などに存在する特徴である。また分類手法としては、類比判定、パターン識別、機械学習などの技術を組み合わせて用いても良い。
 またこれら検知・分類の処理は周波数帯に分けた評価を行うことが望ましい。(後述する)
 データ一次処理部22は、取得した環境情報の中に既知の異常イベントが含まれているかを分類条件に照らして調べ、含まれていれば、少なくとも対応する異常イベントの種類および発生時刻と位置を、異常イベントデータとして監視サーバー30に出力する。異常イベントの種類によっては、その検出強度(例えば、振動の大きさ等)などの付随する情報も合わせて出力する。
 [イベント分類条件]
 イベント分類条件は、海底ケーブル10の設置状況などが異なってもイベントを正しく検知・分類できるように用意される。その方法は、ケーブルの設置状況などに影響されにくい、異常時にのみ存在する特徴を見出して、それを基に分類するものである。もし同一のイベントが、海底ケーブル10の設置状況などによって1つの分類条件では正しく分類できないとしても、複数の分類条件のいずれか1つで検知されるようにして、同一のイベント種類に紐づければよい。
 [的確な分類条件を得る方法]
 これらの分類の信頼度を高めるために、事前に、正常時の音・異常時の音の事例データを多数入手して、異常時の音にのみ存在する特徴を見つけ出して、分類条件とすることが重要である。もし事例データの数が十分でない場合は、正常時、異常時のイベントを模擬的に起こして、その時の音・振動を、様々な状況に置かれた海底ケーブル10で取得して、より信頼度の高い分類条件とすることが望ましい。
 例えば、データ一次処理部22は、前述の作業手段が工材ケーブルを適切に移動もしくは設置するときに取得される環境情報を非異常パターンとして複数のケースについて採取する。また故意に、誤操作、故障などを生じさせて、それにより工材ケーブルが傷ついた時に取得される環境情報を異常パターンとして複数のケースについて採取する。そして、非異常パターンにはほとんど含まれず、異常パターンには共通して見られる特徴を見出して、分類条件とする。
 [取得情報を周波数帯に分けた検知・分類]
 イベント検知機能部22は、環境情報を検知・分類する際に、環境情報を周波数帯域ごとに分けたのち検知・分類することが望ましい。各々の帯域に分けられたデータの中にイベントが含まれているかどうかを分類条件で判定する。周波数帯域ごとに分けるとは、例えば、極低周波から0.01Hz,0.01から0.1Hz,0.1から1Hz,1から10Hz,10から100Hzのような分け方である。ただし帯域の境界付近に存在するイベントの検出を漏らさないようにするため、各帯域は多少オーバーラップさせることが望ましい。なお、これら複数の周波数帯の検知結果の組合せによって異常イベントを分類判定してもよい。
 環境情報データを周波数帯に分けて検知・分類することで、検知不要だが振幅が大きい信号が、検知すべき信号と同時に存在している場合に、それらを周波数的に分離できる可能性がある。これにより、より信頼度の高い検知・分類が可能となる。
 また周波数帯に応じてデータサイズが大きく異なるので、周波数帯ごとに分けた方がパターン識別などの演算処理がしやすくなるメリットもある。
 ここで、当該イベント検知部分が含まれるオリジナル(各周波数帯に分ける前)のセンシングデータも、イベント分類機能部23で使用するかどうかに関わらず、監視サーバー30に出力して記録しても構わない。例えば後で(オフラインで)詳しく分析したい場合などに利用することができる。このような、用途や状況に応じた動作の細かな設定を可能にするためにプログラマブルな仕様にしておくことが望ましい。
 [作業手段と工材ケーブルの接触点の追尾]
 データ一次処理部22は、工材ケーブルの各位置のうち作業手段と接している位置を、環境情報及び非異常パターンに基づいて特定する。具体的には、データ一次処理部22は、工材ケーブル上のある位置における環境情報から、作業手段と関係する非異常パターンが検出された場合に、その位置において工材ケーブルと作業手段が接していることを検出する。工材ケーブルが作業手段を次々に通過すると、同じイベントがケーブル上の位置を移動しながら継続して検知される。そこでデータ一次処理部22に、作業手段との接触点がケーブル上を移動しているというモデルを持つことで、その接触点を識別追尾(Tracking)することができる。
 また、データ一次処理部22は、作業手段に取り付けられた監視センサから得られる作業手段の状態と、光ファイバから得た環境情報との相関を取ることで作業手段の種類と接触位置を特定してもよい。具体的には、データ一次処理部22は、作業手段の状態(例えば、振動や温度)と、その作業手段と接する位置における工材ケーブルの環境情報との類似性を評価することで、作業手段の種類と接触位置を間違いなく区別できる。
 なお、作業手段に取り付けられた監視センサから得られる作業手段の状態と、光ファイバから取得した接触点付近の環境情報に基づいて異常イベントを検出してもよい。
 また、作業手段に振動発生器を取り付けて、工材ケーブルに固有の振動を伝えることで、データ一次処理部22がケーブルと接している作業手段をより確実に特定してもよい。これにより、類似した作業音を生じる複数の作業手段が近接してケーブルと接していても、それらの接触位置と作業手段の種類を間違いなく区別できる。
 これら作業手段と工材ケーブルの接触点付近は、作業に伴う振動が激しく存在し、また損傷リスクも高い個所であるから注視すべき特殊な個所である。そこで接触点の近傍では、それ以外の一般の区間とは異なるイベント分類条件や検出しきい値を適用するなどして、損傷リスク検知の信頼度をより高めることができる。
 詳細を後述する工程管理制御システム31は、作業に先立ち、データ一次処理部22に、各作業手段の種類やおよその配置間隔などを伝える。データ一次処理部22は、この情報を基に、各作業手段を追尾するモデルを内部に用意する。これにより作業手段と工材ケーブルの接触点の識別がより確実となり、損傷リスクの検知・分類の信頼が高まる。
 また工程管理制御システム31は、工材ケーブルのどの部分がどの作業手段を通過したかを監視する必要がある。上述のように、データ一次処理部22は工材ケーブルと各作業手段の接触点を追尾できるので、工程管理制御システム31に有用な情報を提供できる。
 [工程管理制御システムとの情報連携]
 これらの高いリスクのある区間、すなわち、海底ケーブル10がCSを出てから着底するまでの区間や、埋設機を通過する区間は、ケーブル敷設が進むに連れて移動していく。CSでは、海底ケーブル10上のどこが今CSから繰り出され、どこが埋設機を通過したかなどをリアルタイムで把握し、制御しながら敷設を進めている。その工程管理制御システム31とケーブル保護監視システム1の監視サーバー30は相互に情報を共有することが望まれる。
 工程管理制御システム31は、少なくともこれから設置する海底ケーブル区間の設置予定ルート情報と、設置済みケーブル区間のルート情報を、地図データとして内部に記憶している。地図(海の場合、海図ともいう)は、一般に購入可能な地図データに加えて、海底ケーブル10の敷設ルートの検討のために、敷設前に通例実施される実地測量で得られた詳細データも含むのが通例である。
 海底ケーブル10の敷設においては、最終的な完成形である海底ケーブル10を一度に敷設することはできないため、作業は、ある施工ブロック単位に敷設していき、敷設し終えたブロック同士を接続するように進められることが一般的である。特にそのブロック同士の接続点では、海底から引き揚げるための余分な長さの海底ケーブル10を一時的に継ぎ足したり、接続時に不要となった余長が切り落とされたりする。つまり敷設工事中に、特にケーブル接続点を中心として、海底ケーブル10の長さなどの情報が変化していく。この変化の情報は、工程管理制御システム31に随時取り込まれ、最終的に計画通りの施工結果になるように導いていく。この海底ケーブル10の変化の情報は、監視サーバー30にも随時取り込まれる。
 工程管理制御システム31は、一般社会から、海底ケーブルルート周囲に関する、潮流・海気象情報、漁業活動情報、付近作業情報、水路通報・航行警報情報、などの情報を入手する。
 以上のように、実施の形態1におけるケーブル保護監視システム1においては、監視サーバー30が工材ケーブルの各位置における異常イベントを検出する。そのため、ケーブル保護監視システム1は、工材ケーブルに対する作業中に、作業に伴う振動や騒音の中にあっても、工材ケーブルに傷がついた可能性がある異常イベントを、その正確な場所とともにリアルタイムに把握することが可能となる。そのため、実施の形態1におけるケーブル保護監視システム1によれば、異常イベント発生後短時間のうちに作業を一時停止でき、工材ケーブルを目視確認できるところまで巻き取るなどして当該箇所を確認し、修繕や補強等の処置を行うことで、損害を最小に抑えることが可能となる。すなわち、実施の形態1におけるケーブル保護監視システム1によれば、工事材料としてケーブルを扱う作業中に、ケーブルに傷がついた可能性がある異常イベントが生じた場合にリアルタイムに検知できず、作業を進めてしまうことによって損害が拡大することを抑制できる。また、ケーブル保護監視システム1は、工材ケーブル自体がセンサとなることにより、これまで不可能であった細かでリアルタイムの監視ができるようになり、作業範囲を立入り規制する警備員や警戒船の数を減らせるなどの費用削減効果ももたらす。
 作業中の海底ケーブル10がセンシング対象である場合は、DASインテロゲーター20と海底ケーブル10とは暫定的な接続となることが多い。DASインテロゲーター20と海底ケーブル10の接続点の場所は、海底ケーブル10の端点を保持している敷設工事船上で最も確保されやすい。海底ケーブル10の端点が陸地まで届いている場合は、DASインテロゲーター20と海底ケーブル10とを陸地にて接続することも考えられる。
 このような一時的な接続形態について次の実施の形態で説明する。
<実施の形態2>
 実施の形態1では、敷設中の海底ケーブル10は単なるケーブルとして説明したが、海底ケーブル10には、実際には数10kmごとに光増幅中継器などの給電を要する海底機器が挿入されている。一般的な光増幅中継器はセンシング信号を通さないので、船上でケーブル端に仮接続しているDASインテロゲーター20から監視できるのは、DASインテロゲーター20から辿って最初の光増幅中継器までの範囲である。上述の要注意な作業区間(リスクが高い区間)が光増幅中継器よりも先にあれば、肝心の区間を監視できないという課題がある。
 そこで実施の形態2においては、海底ケーブル10と中継器に次に述べるような工夫を実施の形態1のケーブル保護監視システム1に加える。
 図5にその模式図を示す。海底ケーブル10にはセンシング用の光ファイバ11が1本追加されている。その光ファイバ11は、中継器(REP:Repeater)42を素通りし、中継器41のケーブルカップリング部で本線の光ファイバと分離されて、モニタコード50として外に引き出されている。このモニタコード50にDASインテロゲーター20が仮接続される。中継器41、42は、光増幅中継器とも呼ばれる。センシング用の光が光増幅中継されない状態で、一つのDASインテロゲーター20が監視できる範囲は約100kmであるので、その範囲にある光増幅中継器ではセンシング用光ファイバはスルー接続するものとする。なお、ここでのスルー接続とは、光ファイバ11を本線の光ファイバと一体で中継器本体43に入れ、光増幅器は通さずに素通りさせて、本線の光ファイバと一体で中継器本体43から出すことを指す。
 図6は、本実施の形態を適用した敷設工事中の海底ケーブル10における、海底ケーブル10内や光増幅中継器内の光ファイバ心線の配線を模式的に図示したものである。図6に示される形態によれば、一つのDASインテロゲーター20で100km余のケーブル長を監視できるので、最も要注意な作業区間も含めて監視できる。そして作業区間の移動に伴い、DASインテロゲーター20と接続するモニタ端子を、より船内タンク側に移す。
 図6に示されるように、DASインテロゲーター20を複数台(図6では2台)用意して、モニタ端子を交互に移動させていくと、インテロゲーター接続替えの間の不監視時間帯を最小化することができる。
 図7は中継器(REP)42の構成と接続を説明する図である。中継器42は、中継器本体43とその前後に結合されるケーブルカップリング部48からなる。中継器本体43とケーブルカップリング部48の間は、ある程度の角度まで自在に曲がるように、ジンバル機構46(後述する)が設けられている。海底ケーブル10内の光ファイバ11と中継器内部につながる光ファイバケーブル(テイルケーブル44)とは、ケーブルカップリング部48内のジョイントチャンバ45において接続される。図7に示した海底ケーブル10、ケーブルカップリング部48、中継器本体43の接続構造は一般的に用いられている構造である。
 ここで本実施の形態のセンシングに用いる心線は、図7の中継器本体43内に点線で示されるように内部を素通りするように結線されている。図6を参照するとわかるように、全ての中継器41、42において、中継器本体43ではこの結線をすればよく、品種を分ける必要はない。
 中継器41と42の違いは、中継器本体43とケーブルカップリング部の接続部からセンシング用光ファイバ心線のモニタコード50を引き出すかどうかの違いである。ここではモニタコード50が引き出されるケーブルカップリング部を49、モニタコード50が引き出されない通常のケーブルカップリング部を48と呼称している。図7はモニタコード50が引き出されないケーブルカップリング部48と結合された中継器42を説明した図である。中継器42では、センシング用光ファイバ心線は他の光ファイバ心線と同様に接続される。
 一方で、中継器41は図6に示すように、モニタコード50を引き出す構造を持っている。図6においては、ケーブルカップリング部はケーブル10と中継機本体の間にある台形で模式的に表している。図6に示される中継器41の左側のケーブルカップリング部49では、海底ケーブル10内のセンシング用光ファイバ心線とつながっているモニタコード50が、外部に引き出される。この引き出されたモニタコード50は移動中や設置中のケーブルの監視に用いられる。また中継器本体側のセンシング用光ファイバ心線は、ケーブルカップリング部49内のジョイントチャンバ45(後述する)内で光終端している。
 図8は、モニタコード50を引き出す構造を持ったケーブルカップリング部49の断面模式図である。海底ケーブル10側の光ファイバと、中継器本体側の光ファイバは、ジョイントチャンバ45内で接続されている。
 海底ケーブル10内のセンシング用光ファイバ心線は、例えば、ジョイントチャンバ45からテイルケーブル44と同様にジンバル機構を通過して、接続部のベローズ部47から外部に引き出され、モニタコード50となる。一方、中継器本体43側のセンシング用光ファイバ心線は、ジョイントチャンバ45内で光終端される。テイルケーブル44は高水圧に耐える配線材であるが、モニタコード50は水中投下前に使用するものなので、高水圧に耐えるように設計される必要はない。
 図9は、本実施の形態の別の例である。この例は、インテロゲーター接続替えの間の不監視時間帯を生じさせないための工夫を、更に備えるケーブル保護監視システム1である。この例のケーブル保護監視システム1は、前述のケーブルカップリング部49内のジョイントチャンバ45内に、センシング光ファイバを分岐する光カプラ60を配置して、その分岐した光ファイバをモニタ端子として外部に出す構成を備える。図9ではモニタコード50は、説明の都合上、位置の違いによって51、52、53、と呼称する。
 図6の構成では、作業区間がモニタコード52に接近すると、モニタコード52が引き出されている中継器41もCS15から繰り出す必要が生じる。そのため、DASインテロゲーター20とモニタコード52の接続を切断する必要がある。そのため、図6の構成では、中継器41の直前の区間が施工される際の監視が困難という課題がある。そこで図9のように光カプラ60を介して次のモニタコード53からの監視に切り替える。このようにすると光カプラ60を挿入したことによる損失は加わるものの、モニタコード52から監視する範囲は、中継器41までではなく、中継器41の少し先までで良くなるので、不監視となる区間を無くすことができる。
 さらに別の例として、図6において、センシング用光ファイバ心線の終端点をケーブルカップリング部49内とはせず、もう少し先まで伸ばすことによって、不監視区間を無くしても良い。しかしその場合は海底ケーブル10の心線数が部分的に増えることになり、品種が増えて、品種間違いを防ぐ管理コストや予備ケーブルのコストが増える。品種を増やさずに済ますには、センシング用光ファイバ心線を全区間2本にしなければならず、これも経済的ではない。
 また別の例として、図6において、センシング用光ファイバ心線を左右2本ともケーブルカップリングから外に出して、そこに双方向光増幅器を接続してもよい。これによって、インテロゲーターによってセンシングされる距離が伸びる。こうすることでインテロゲーターの接続替え作業を減らせる効果もある。しかしながらこの構成では、作業区間が中継器41に近づいて、モニタコード50との接続を切断したときに、当該作業区間の監視ができないという課題は解消されない。モニタコード50同士を直接つないで仮接続すれば短い距離を監視できると考えられるが、モニタコード50はベローズ部47の外に出ているため、施工機械の通過時に切れてしまう可能性が高い。通過させるのであればケーブルカップリング部49のジョイントチャンバ45内で接続する必要があるが、それとモニタコードを通じて光増幅器を一時的に挿入することの両立は困難である。
 以上のように、実施の形態2におけるケーブル保護監視システム1は、実施の形態1のケーブル保護監視システム1に更なる工夫を加えたものである。そのため、実施の形態2におけるケーブル保護監視システム1は、実施の形態1のケーブル保護監視システム1と同様の効果を奏する。更に、実施の形態2のケーブル保護監視システム1においては、DASインテロゲーター20が送受するセンシング光は、上述のように、光増幅器を通過しない光ファイバ11を用いてセンシングを行う。そのため、実施の形態2におけるケーブル保護監視システム1は、DASインテロゲーター20から光増幅中継器を超えた先の工材ケーブル上の区間も監視することができる。
<実施の形態3>
 実施の形態2におけるケーブル保護監視システム1は、電力供給しないと動作しない光増幅中継装置を越えた先のセンシングを実現するために、光増幅中継器をスルー接続した、作業監視用のセンシング光ファイバが海底ケーブル10内に追加された形態であった。一方、実施の形態3におけるケーブル保護監視システム1では、監視センシング用の光ファイバを追加せず、実施の形態1におけるケーブル保護監視システム1に対して通信用の光ファイバ心線を用いる。そして少なくともセンシングを行う(通信用)光ファイバ心線の光増幅中継器に対して部分的な給電を行う。
 一般的な光増幅器はアイソレーターを含む構成となっており、そのままではセンシング光の反射戻り光が阻止されてしまう。これについては、少なくともセンシング光を増幅中継する部分については、例えば図10に示すような双方向光増幅器構成にすればよい。
 しかし従来の光増幅中継装置では、中継装置の中に複数ある光増幅中継器の一部のみに給電することはできず、稼働させるとなると全数の稼働となり、高い給電電圧が必要となる。敷設作業中に動作試験などのため一時的に給電することがあるが、作業者は感電事故防止のため海底ケーブル10から離れなくてはならず、給電試験中は工事作業に支障があった。
 そこで光増幅中継器内の給電回路に工夫を施し、通常運用時より低い給電電流値でもセンシング光のために必要な光増幅器だけは駆動されるようにする。これを監視モードと呼ぶことにする。
 海底ケーブルシステムにおける給電線は1本で、大地(海中)をリターン線として用いた給電回路が一般的である。海底ケーブル10内の給電線には所定の定電流を流し、直列接続されている負荷を稼働させる。
 図11に模式的に示すように、工事作業中においても、CS15内に給電装置を置き、作業中の海底ケーブル10と接続して試験用の給電が行えるようにしている。
 中継器本体43内の電源回路の基本構成は、ツェナーダイオードZDを用いた定電圧回路である。実現例の一つを図12に示す。上側にあるのは給電電流方向に依らず動作させるためのダイオードブリッジ(全波整流器)である。ツェナーダイオードZD1で作られた電源で負荷RL1が駆動され、ツェナーダイオードZD2で作られた電源で負荷RL2が駆動される。この2つの回路は直列接続されているので同一の電流が流れる。
 ここでZD2とRL2の回路の方が、ZD1とRL1の回路よりも低い電流で起動するように設計しておく。このような構成すると全回路を動作させる電流よりも少ない電流で、RL2だけを動作させることができる。この時、ZD1とRL1の回路では大部分の電流はRL1を流れており、ZD1とRL1側の電圧はZD1のツェナー電圧より低いので、装置全体の電圧も全回路を動作させる場合に比べて低い。負荷RL2にセンシング光のために必要な光増幅器を駆動する回路を含めることで、前述の監視モードが実現される。
 別の実現例を図13に示す。この電源回路では、給電電流方向によって、動作する回路が切り替わる。右から左に流すことでRL3が、左から右に流すことでRL4が動作する。RL3は全回路を駆動する一方、RL4はセンシング光のために必要な光増幅器だけを駆動することで、前述の監視モードが実現される。
 また別の実現例を図14に示す。図13と比較すると、RL5は給電電流方向に依らず動作するのに対して、RL6は電流が右から左に流れるときだけ動作する。電流を左から右に流すことにより、回路RL5で駆動されるセンシング光のために必要な光増幅器だけを動作させることができ、前述の監視モードが実現される。
 これら電流の量や向きによって動作回路を切り替える技術は、周知であったり、例えば特許文献5のように開示技術であるので、ここに挙げた例以外の方法であってもそれを用いて監視モードを実現してよい。
 こうすることで、給電電圧が低く抑えられる。具体例を示す。全長770km、中継器間隔70km、中継器10台の一連長になった海底ケーブル10に必要な給電電圧を計算する。海底ケーブル10の抵抗値1Ω/km、中継器は、通常時の給電電流は1Aで、その時の電圧が50V、監視モード時の給電電流が0.2Aで、その時の電圧が25Vとする。
 通常時の給電電圧は、ケーブル770V+中継器500Vの合計1270Vが必要である。監視モード時の給電電圧は、ケーブル154V+中継器250Vの合計404Vとなり、通常時の半分程度の電圧で駆動できる。
 この例の構成は、通常の駆動電流でも、センシング光のために必要な光増幅器は問題なく動作するので、通信ケーブルとして運用しながら海底ケーブル10周辺の環境情報をセンシングすることも可能となる。通信光とセンシング光は波長多重分離技術を使って一つの光ファイバを共用することができる。
 地震など様々な海底環境モニタリングを行ったり、海底に設置された海底ケーブル10に何らかの異常振動が加わったことを検知する用途にも用いることもできる。
 以上のように、実施の形態3におけるケーブル保護監視システム1は、実施の形態1のケーブル保護監視システム1に更なる工夫を加えたものである。そのため、実施の形態3におけるケーブル保護監視システム1は、実施の形態1と同様の効果を奏する。更に、実施の形態3のケーブル保護監視システム1における光増幅中継器は、センシング光の増幅中継を行える光増幅器を備え、また当該光増幅器に動作範囲を絞った動作モードを備えた電源回路を持つことで、工材ケーブルの作業中においても、工材ケーブルへの給電電圧を抑えつつ監視することができる。
<実施の形態4>
 図15及び図16を参照して、ケーブル保護監視システム4について説明する。図15は、ケーブル保護監視システム4の構成例を示すブロック図である。図16は、ケーブル保護監視システム4の動作例を示すフローチャートである。図15に示されるようにケーブル保護監視システムは、作業手段600、インテロゲーター100及び異常イベント検出手段300を備える。
 作業手段600は、少なくとも一心の光ファイバ200を含んでいるワイヤーケーブル状の工事材料500を移動もしくは設置する。また、インテロゲーター100は、光ファイバ200により感知された、工事材料500の各位置における環境情報を取得する。
 異常イベント検出手段300は、工事材料500の各位置において取得された環境情報が異常パターンを満たす場合、各位置における異常イベントを検出する。異常イベントが検出された場合、作業手段600は、ワイヤーケーブル状の工事材料500の移動および設置を停止する。
 次に、図16を用いて、ケーブル保護監視システム4の動作を説明する。なお、下記の動作の開始時において、作業手段600は、工事材料500の移動もしくは設置を開始しているものとする。
 インテロゲーター100は、工事材料500の各位置における環境情報を取得する(S401)。
 異常イベント検出手段300は、取得された環境情報が異常パターンを満たす場合、工事材料500における異常イベントを検出する(S402)。なお、異常イベント検出手段300は、更に、工事材料500のうち、異常イベントが検出された位置を修理すべき位置として特定してもよい。
 作業手段600は、工事材料500の移動および設置を停止する(S403)。
 以上のように、ケーブル保護監視システム4は、異常イベント検出手段300が工事材料500の各位置における異常イベントを検出する。そのため、ケーブル保護監視システム4は、ケーブル作業中に、作業に伴う振動や騒音の中にあっても、ケーブルに傷がついた可能性がある異常イベントを、その正確な場所とともにリアルタイムに検知し、作業を止めることが可能となる。そのため後戻りの損害を最小に抑えることが可能となる。すなわち、実施の形態4におけるケーブル保護監視システム4によれば、工事材料としてケーブルを扱う作業中に、ケーブルに傷がついた可能性がある異常イベントが生じた場合にリアルタイムに検知できず、作業を進めてしまうことによって損害が拡大することを抑制できる。また、ケーブル保護監視システム4は、海底ケーブル自体がセンサとなることにより、これまで不可能であった細かでリアルタイムの監視ができるようになり、作業範囲を立入り規制する警備員や警戒船の数を減らせるなどの費用削減効果ももたらす。
 [変形例] 
 上記の実施の形態では、光ファイバセンシングの方法として、DASを例に説明したが、DVSやDTS、BOTDRなど他の手法でもよい。ここで、DVSはdistributed vibration sensingの略、DTSはdistributed temperature sensingの略、BOTDRはBrillouin optical time-domain reflectometryの略である。
 さらにはOTDR方式以外の、広く分布的にセンシングを行える光ファイバセンシングであっても構わない。例えば特許文献4や非特許文献3では、反射戻り光を使うOTDR方式ではなく、透過光を使う分布型光ファイバセンシング技術が開示されている。
 上記の実施の形態では、海底ケーブルの作業中の例で説明したが、ケーブル敷設工事期間中の敷設済みケーブル区間や、一時的な休工期間中の実施であっても構わないことは言うまでもない。
 上記の実施の形態では、もっぱら通信海底ケーブルで説明したが、光ファイバを含んだ海底電力ケーブルや、光ファイバを沿わせた海底パイプラインでも、本開示を用いた監視が可能である。
 上記の実施の形態では、ケーブルを海で用いる例で説明したが、河川,湖沼の実施でも有効である。
 上記の実施の形態では、ケーブルを水中で用いる例で説明したが、地中ケーブルや架空ケーブル等にも同様に適用できるものである。
 上記の実施の形態では、海底ケーブルが感じる音または振動の検知手段として光ファイバセンシングを用いる例で説明したが、海底機器に内蔵した音または振動のセンサ素子を搭載してそれで検知してもよい。
 上記の実施の形態では、海底ケーブルが感じる環境情報として音または振動の現象による監視の例で説明したが、例えば温度変化でもよい。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 少なくとも一心の光ファイバを含んでいるワイヤーケーブル状の工事材料を移動もしくは設置する作業手段と、
 前記光ファイバにより感知された、前記工事材料の各位置における環境情報を取得するインテロゲーターと、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する異常イベント検出手段と、を備え、
 前記作業手段は、前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する
 作業中ケーブルの保護監視システム。
(付記2)
 前記異常イベント検出手段は、前記工事材料の製造記録又は設置記録に基づいて、または前記工事材料の場所ごとの感知の程度を把握して、前記工事材料の場所ごとに前記環境情報の感知感度を補正したのち異常パターンを検出する、付記1に記載の作業中ケーブルの保護監視システム。
(付記3)
 前記異常イベント検出手段は、前記取得した環境情報を周波数帯に分けたのち異常パターンを検出する、付記1又は2に記載の作業中ケーブルの保護監視システム。
(付記4)
 前記異常イベント検出手段は、前記工事材料のうち、前記異常イベントが検出された位置を提示する付記1から3の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記5)
 前記異常イベント検出手段が用いる前記異常パターンは、前記異常イベントが生じたときに取得した前記環境情報を基に、前記異常イベントに固有の特徴を見出して用意された異常パターンである、付記1から4の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記6)
 前記異常イベント検出手段は、
 前記作業手段が前記工事材料を適切に移動もしくは設置する際に取得される環境情報を非異常パターンとして予め記憶し、
 前記環境情報が前記非異常パターンを満たす場合、前記異常イベントを検出しない
 付記1から5の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記7)
 前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置を、前記環境情報及び前記非異常パターンに基づいて特定する
 付記6に記載の作業中ケーブルの保護監視システム。
(付記8)
 前記異常イベント検出手段は、前記工事材料が前記作業手段と接する位置が移動する様子を、移動するモデルにあてはめて検出する
 付記7に記載の作業中ケーブルの保護監視システム。
(付記9)
 前記作業手段は、前記作業手段ごとに固有の特徴を持つ振動を前記工事材料に与え、
 前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置における、前記環境情報および前記固有の振動の特徴に基づいて、前記作業手段の各々の位置を特定する
 付記7又は8に記載の作業中ケーブルの保護監視システム。
(付記10)
 前記作業手段の配置情報を予め記憶している作業管理サーバーを更に備え、
 前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置を、前記環境情報及び前記非異常パターン、並びに前記作業管理サーバーから得た前記配置情報に基づいて特定する
 付記7から9の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記11)
 前記作業手段の状態を監視する監視センサを更に備え、
 前記異常イベント検出手段は、前記状態及び前記環境情報に基づいて前記異常イベントを検出する
 付記1~10の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記12)
 前記工事材料は、光増幅中継機能を有する光増幅器を備えた中継装置を含み、
 前記工事材料に含まれる前記光ファイバは、
  前記光増幅器に接続されず、
  前記中継装置との接続部において外部に引き出され、前記インテロゲーターと接続可能である
 付記1~11の何れか1項に記載の作業中ケーブルの保護監視システム。
(付記13)
 前記工事材料に含まれる前記光ファイバは、
  前記中継装置との接続部において、前記作業手段と前記工事材料とが接する位置を含む作業区間が監視されるように接続された光カプラを介して、外部に引き出される
 付記12に記載の作業中ケーブルの保護監視システム。
(付記14)
 前記工事材料に外部から給電する給電手段を更に備え、
 前記中継装置の中に複数ある光増幅中継器のうち、少なくとも1つは前記環境情報を感知する前記光ファイバと接続されており、かつ、前記インテロゲーターが送受する光を光増幅中継する機能を有しており、
 前記中継装置は、前記給電手段から供給される電流の大きさ又は向きの違いによって給電する範囲を切替可能な電源回路を更に備え、
 前記作業中ケーブルの保護監視期間中は、前記電源回路への給電電流又は向きの違いによって、前記インテロゲーターが送受する光の光増幅中継に関与しない回路範囲への給電を抑制する、
 付記12又は13に記載の作業中ケーブルの保護監視システム。
(付記15)
 移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得し、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出し、
 前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する
 作業中ケーブルの保護監視方法。
(付記16)
 移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得する処理と、
 前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する処理と、
 前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する処理と、
 を情報処理装置に実行させる作業中ケーブルの保護監視プログラムを記憶する記憶媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2020年6月17日に出願された日本出願特願2020-104718を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、4 ケーブル保護監視システム
10 海底ケーブル
11、200 光ファイバ
15 海底ケーブル敷設船(CS)
16 すき埋設機
17 ケーブルエンジン
18 シーブ
20 DASインテロゲーター
21 センシング機能部
22 データ一次処理部
30 監視サーバー
31 工程管理制御システム
40、41、42 中継器(REP)
43 中継器本体
44 テイルケーブル
45 ジョイントチャンバ
47 ベローズ部
48、49 ケーブルカップリング部
50、51,52,53 モニタコード
60 光カプラ
100 インテロゲーター
300 異常イベント検出手段
500 工事材料
600 作業手段

Claims (16)

  1.  少なくとも一心の光ファイバを含んでいるワイヤーケーブル状の工事材料を移動もしくは設置する作業手段と、
     前記光ファイバにより感知された、前記工事材料の各位置における環境情報を取得するインテロゲーターと、
     前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する異常イベント検出手段と、を備え、
     前記作業手段は、前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する
     作業中ケーブルの保護監視システム。
  2.  前記異常イベント検出手段は、前記工事材料の製造記録又は設置記録に基づいて、または前記工事材料の場所ごとの感知の程度を把握して、前記工事材料の場所ごとに前記環境情報の感知感度を補正したのち異常パターンを検出する、請求項1に記載の作業中ケーブルの保護監視システム。
  3.  前記異常イベント検出手段は、前記取得した環境情報を周波数帯に分けたのち異常パターンを検出する、請求項1又は2に記載の作業中ケーブルの保護監視システム。
  4.  前記異常イベント検出手段は、前記工事材料のうち、前記異常イベントが検出された位置を提示する請求項1から3の何れか1項に記載の作業中ケーブルの保護監視システム。
  5.  前記異常イベント検出手段が用いる前記異常パターンは、前記異常イベントが生じたときに取得した前記環境情報を基に、前記異常イベントに固有の特徴を見出して用意された異常パターンである、請求項1から4の何れか1項に記載の作業中ケーブルの保護監視システム。
  6.  前記異常イベント検出手段は、
     前記作業手段が前記工事材料を適切に移動もしくは設置する際に取得される環境情報を非異常パターンとして予め記憶し、
     前記環境情報が前記非異常パターンを満たす場合、前記異常イベントを検出しない
     請求項1から5の何れか1項に記載の作業中ケーブルの保護監視システム。
  7.  前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置を、前記環境情報及び前記非異常パターンに基づいて特定する
     請求項6に記載の作業中ケーブルの保護監視システム。
  8.  前記異常イベント検出手段は、前記工事材料が前記作業手段と接する位置が移動する様子を、移動するモデルにあてはめて検出する
     請求項7に記載の作業中ケーブルの保護監視システム。
  9.  前記作業手段は、前記作業手段ごとに固有の特徴を持つ振動を前記工事材料に与え、
     前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置における、前記環境情報および前記固有の振動の特徴に基づいて、前記作業手段の各々の位置を特定する
     請求項7又は8に記載の作業中ケーブルの保護監視システム。
  10.  前記作業手段の配置情報を予め記憶している作業管理サーバーを更に備え、
     前記異常イベント検出手段は、前記工事材料の各位置のうち前記作業手段と接している位置を、前記環境情報及び前記非異常パターン、並びに前記作業管理サーバーから得た前記配置情報に基づいて特定する
     請求項7から9の何れか1項に記載の作業中ケーブルの保護監視システム。
  11.  前記作業手段の状態を監視する監視センサを更に備え、
     前記異常イベント検出手段は、前記状態及び前記環境情報に基づいて前記異常イベントを検出する
     請求項1~10の何れか1項に記載の作業中ケーブルの保護監視システム。
  12.  前記工事材料は、光増幅中継機能を有する光増幅器を備えた中継装置を含み、
     前記工事材料に含まれる前記光ファイバは、
      前記光増幅器に接続されず、
      前記中継装置との接続部において外部に引き出され、前記インテロゲーターと接続可能である
     請求項1~11の何れか1項に記載の作業中ケーブルの保護監視システム。
  13.  前記工事材料に含まれる前記光ファイバは、
      前記中継装置との接続部において、前記作業手段と前記工事材料とが接する位置を含む作業区間が監視されるように接続された光カプラを介して、外部に引き出される
     請求項12に記載の作業中ケーブルの保護監視システム。
  14.  前記工事材料に外部から給電する給電手段を更に備え、
     前記中継装置の中に複数ある光増幅中継器のうち、少なくとも1つは前記環境情報を感知する前記光ファイバと接続されており、かつ、前記インテロゲーターが送受する光を光増幅中継する機能を有しており、
     前記中継装置は、前記給電手段から供給される電流の大きさ又は向きの違いによって給電する範囲を切替可能な電源回路を更に備え、
     前記作業中ケーブルの保護監視期間中は、前記電源回路への給電電流又は向きの違いによって、前記インテロゲーターが送受する光の光増幅中継に関与しない回路範囲への給電を抑制する、
     請求項12又は13に記載の作業中ケーブルの保護監視システム。
  15.  移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得し、
     前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出し、
     前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する
     作業中ケーブルの保護監視方法。
  16.  移動もしくは設置されているワイヤーケーブル状の工事材料に含まれる少なくとも一心の光ファイバにより、前記工事材料の各位置における環境情報を取得する処理と、
     前記位置において取得された前記環境情報が異常パターンを満たす場合、前記位置における異常イベントを検出する処理と、
     前記異常イベントが検出された場合、前記ワイヤーケーブル状の工事材料の移動および設置を停止する処理と、
     を情報処理装置に実行させる作業中ケーブルの保護監視プログラムを記憶する記憶媒体。
PCT/JP2021/022775 2020-06-17 2021-06-16 作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体 WO2021256478A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531849A JP7424487B2 (ja) 2020-06-17 2021-06-16 作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラム
US18/010,329 US20230341291A1 (en) 2020-06-17 2021-06-16 Working-state cable protection monitoring system, working-state cable protection monitoring method, and storage medium having stored therein working-state cable protection monitoring program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104718 2020-06-17
JP2020104718 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256478A1 true WO2021256478A1 (ja) 2021-12-23

Family

ID=79268095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022775 WO2021256478A1 (ja) 2020-06-17 2021-06-16 作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体

Country Status (3)

Country Link
US (1) US20230341291A1 (ja)
JP (1) JP7424487B2 (ja)
WO (1) WO2021256478A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102140A (ja) * 1992-09-17 1994-04-15 Nippon Telegr & Teleph Corp <Ntt> 敷設による光ケーブルの歪み分布の測定方法
JP2001515334A (ja) * 1997-09-04 2001-09-18 コンダックス・インターナショナル・インコーポレーテッド ケーブル搬送装置及びその方法
JP2006258707A (ja) * 2005-03-18 2006-09-28 Daiden Co Ltd 光レベル検出感度調整方法及びその装置
US20140355383A1 (en) * 2011-12-23 2014-12-04 Optasense Holdings Limited Location and Monitoring of Undersea Cables
WO2019022084A1 (ja) * 2017-07-28 2019-01-31 長野計器株式会社 下水道モニタリングシステム及びその施工方法
JP2019180109A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 監視システム及びケーブル布設システム
JP2020508464A (ja) * 2017-02-24 2020-03-19 オプタセンス・ホールデイングス・リミテツド 海中ケーブルのモニタリング

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102140A (ja) * 1992-09-17 1994-04-15 Nippon Telegr & Teleph Corp <Ntt> 敷設による光ケーブルの歪み分布の測定方法
JP2001515334A (ja) * 1997-09-04 2001-09-18 コンダックス・インターナショナル・インコーポレーテッド ケーブル搬送装置及びその方法
JP2006258707A (ja) * 2005-03-18 2006-09-28 Daiden Co Ltd 光レベル検出感度調整方法及びその装置
US20140355383A1 (en) * 2011-12-23 2014-12-04 Optasense Holdings Limited Location and Monitoring of Undersea Cables
JP2020508464A (ja) * 2017-02-24 2020-03-19 オプタセンス・ホールデイングス・リミテツド 海中ケーブルのモニタリング
WO2019022084A1 (ja) * 2017-07-28 2019-01-31 長野計器株式会社 下水道モニタリングシステム及びその施工方法
JP2019180109A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 監視システム及びケーブル布設システム

Also Published As

Publication number Publication date
JP7424487B2 (ja) 2024-01-30
JPWO2021256478A1 (ja) 2021-12-23
US20230341291A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022045117A1 (ja) 障害予測システム、障害予測装置及び障害予測方法
EP3274730B1 (en) Detecting failure locations in power cables
CA2839764C (en) Monitoring of conduits
US9612189B2 (en) Integrity monitoring system and a method of monitoring integrity of a stationary structure
EP2807461B1 (en) Location and monitoring of undersea cables
EP1552490B1 (en) A system and a method for detecting, locating and discerning an approach towards a linear installation
JP7380885B2 (ja) 保護監視システム、保護監視方法及び保護監視プログラム
DE102016211651B4 (de) Verfahren zum Bestimmen eines Isolationsfehlerortes auf einem elektrischen Leiter einer Untermeeresversorgungsleitung
CN114562950A (zh) 一种用于水下协同作业的脐带缆缆形监测系统及装置
CN211232436U (zh) 一种海底管道实时安全监测与诊断系统
WO2021256478A1 (ja) 作業中ケーブルの保護監視システム、作業中ケーブルの保護監視方法及び作業中ケーブルの保護監視プログラムを記憶する記憶媒体
JP6389450B2 (ja) 海底ケーブルの位置探査方法及び海底管の位置探査方法
US20230296426A1 (en) Underwater noise monitoring device, underwater noise monitoring method, and storage medium
GB2583712A (en) Distributed acoustic sensor applications
CN113124322B (zh) 一种天然气管道冰堵定位方法及系统
US8537636B2 (en) Protective socket for a sensor node
KR20200110550A (ko) 선박의 그물 분리 장치
GB2579352A (en) System, method and station for subsea monitoring
CN115144988A (zh) 一种海光缆的布放系统
Sweeney Marine Mammal Mitigation Report
GB2531799A (en) Undersea sensing system
Hosseini et al. Submarine cable installation between production platform and satellite wellhead platform of south pars gas field-phase 1 in the Persian Gulf
Horne Marine and maintenance (from inception to the grave)
Horne et al. Marine and maintenance (from inception to end of life)
JPH09259658A (ja) 光ファイバ複合水底電力ケーブル線路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826414

Country of ref document: EP

Kind code of ref document: A1