WO2021256356A1 - 熱量測定装置および熱量算出方法 - Google Patents

熱量測定装置および熱量算出方法 Download PDF

Info

Publication number
WO2021256356A1
WO2021256356A1 PCT/JP2021/022025 JP2021022025W WO2021256356A1 WO 2021256356 A1 WO2021256356 A1 WO 2021256356A1 JP 2021022025 W JP2021022025 W JP 2021022025W WO 2021256356 A1 WO2021256356 A1 WO 2021256356A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
calorific value
concentration
thermal conductivity
output
Prior art date
Application number
PCT/JP2021/022025
Other languages
English (en)
French (fr)
Inventor
健 内山田
隆二 朝田
俊介 高橋
Original Assignee
理研計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理研計器株式会社 filed Critical 理研計器株式会社
Priority to JP2022531729A priority Critical patent/JPWO2021256356A1/ja
Publication of WO2021256356A1 publication Critical patent/WO2021256356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present invention relates to, for example, a gas calorific value measuring device and a calorific value calculation method, and more particularly to a calorific value measuring device and a calorific value calculation method for a paraffinic hydrocarbon gas containing an interference gas which is an error component.
  • the naturally distributed natural gas is mainly composed of paraffinic hydrocarbon gas, and nitrogen (N 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ), which are error components in calorific value measurement, are used. It contains interfering gas (miscellaneous gas) such as.
  • paraffin-based hydrocarbon gas for example, methane gas (CH 4 ), ethane gas (C 2 H 6 ), propane gas (C 3 H 8 ), butane gas (n-C) for 4 H 10), etc.
  • heat and refractive index for example, heat and refractive index, and the amount of heat and the thermal conductivity is proportional respectively, are possible calorimetry.
  • the calorific value measuring device as described in Patent Document 1 requires both a thermal conductivity measuring means and a refractive index measuring means. Therefore, there is a problem that the price cannot be reduced by downsizing and simplifying the configuration.
  • the present invention has been made in view of the above problems, and provides a calorific value measuring device and a calorific value calculation method capable of accurately measuring the calorific value of a natural gas containing hydrogen gas as an interfering gas, and realizing miniaturization and cost reduction.
  • the purpose is to provide.
  • the present invention is a calorific value measuring device for measuring the calorific value of the target gas
  • the present invention comprises a thermal conductivity converted calorific value measuring means capable of measuring the calorific value obtained from the thermal conductivity of the target gas, and the target gas is the first.
  • the second gas which is a measurement error component, is contained in the gas as a main component, and the heat conductivity-converted calorific value measuring means measures the plurality of the first gas by the heat conductivity measuring means.
  • the calorific value measuring device is characterized in that the calorific value of the target gas is calculated by correcting the error due to the second gas based on the relational expression showing the correlation between the output and the actual calorific value.
  • the present invention is a calorific value calculation method for measuring the calorific value of a gas, wherein the target gas contains a first gas as a main component and a second gas as a measurement error component.
  • the calorific value of the target gas is calculated by correcting the error due to the second gas based on the relational expression showing the correlation between the measured value of the thermal conductivity and the actual calorific value for the plurality of the first gas. It is a calorific value calculation method characterized by.
  • the present invention is a heat quantity measuring device for measuring the heat quantity of the target gas, and is a heat conductivity converted calorie measuring means capable of measuring the heat conductivity converted heat quantity obtained from the heat conductivity of the target gas, and the subject.
  • the target gas includes a refractive index-converted heat quantity measuring means capable of measuring the refractive index-converted calorie obtained from the refractive index of the gas and a calorific value calculating means, and the target gas contains the first gas as a main component and becomes a measurement error component.
  • a third gas and a fourth gas are contained, and the heat conductivity-equivalent calorific value measuring means correlates the output measured by the heat conductivity measuring means with respect to the plurality of the first gas and the actual calorific value. Based on the relational expression indicating The calorific value of the target gas is calculated by the calorific value and a coefficient for correcting the error due to the fourth gas. It is a calorific value measuring device characterized by this.
  • the present invention is a calorific value calculation method for measuring the calorific value of a gas, wherein the target gas contains a first gas as a main component and a third gas and a fourth gas which are measurement error components. Based on the relational expression showing the correlation between the measured value of thermal conductivity and the actual amount of heat for the plurality of the first gas, the error due to the third gas is corrected and the target gas is contained. Acquire the step of calculating the amount of heat obtained from the thermal conductivity (hereinafter referred to as "heat conductivity converted heat quantity”) and the heat quantity obtained from the refractive index of the target gas (hereinafter referred to as "refractive index converted heat quantity").
  • It is characterized by comprising a step of calculating the heat quantity of the target gas by the heat conductivity-converted heat quantity, the refractive index-converted heat quantity, and a coefficient for correcting the error due to the fourth gas. It is a calorific value calculation method.
  • the present invention is a program for causing a computer to execute the above calorific value calculation method.
  • the present invention it is possible to provide a calorific value measuring device and a calorific value calculation method capable of accurately measuring the calorific value of a natural gas containing hydrogen gas as an interfering gas, and realizing miniaturization and cost reduction.
  • FIG. 1 It is a schematic diagram which shows the structure of the heat quantity measuring apparatus which concerns on 2nd Embodiment of this invention
  • (A) is the schematic diagram which shows the whole structure
  • (B) is the schematic diagram which shows the refractive index conversion calorific value calculation means. ..
  • (A) is about hydrogen gas.
  • the graph is a graph before the error is corrected
  • (B) is a graph after the correction.
  • (A) is the graph which shows the relationship between the calorific value and the refractive index
  • (B) is the calorific value. It is a graph which shows the relationship between and the output of a thermal conductivity meter. It is a graph which shows the relationship between the actual calorific value after correcting the error due to the interference gas in the calorific value measuring apparatus which concerns on the 2nd Embodiment of this invention, and the measurement result in the calorie measuring apparatus.
  • FIG. 1 is a block diagram schematically showing an example of the configuration and function of the calorific value measuring device 10 according to the first embodiment.
  • the calorific value measuring device 10 measures, for example, the calorific value of the target gas flowing in the gas pipeline 11 in the direction of the arrow in FIG. 1, and is capable of measuring the calorific value obtained from the thermal conductivity of the target gas. It has a measuring means 12, an output means 18, and the like.
  • the gas pipeline 11 and the thermal conductivity-converted calorific value measuring means 12 are connected by a gas flow path 19, and the target gas in the gas pipeline 11 is supplied to the thermal conductivity-converted calorific value measuring means 12.
  • the thermal conductivity-converted calorific value measuring means 12 is arranged in, for example, an explosion-proof container 50.
  • the gas (target gas) to be measured in the calorific value measuring device 10 of the present embodiment is, for example, natural gas or biogas just produced from a gas field, and specifically, the first gas. It contains a second gas, which is mainly composed of gas and is a measurement error component. More specifically, in the first gas, for example, the calorific value thereof and the thermal conductivity and the refractive index have a specific correspondence relationship (specifically, the thermal conductivity is inversely proportional to the calorific value, and the refractive index is proportional to the calorific value).
  • Is a paraffinic hydrocarbon gas for example, a gas such as methane gas (CH 4 ), ethane gas (C 2 H 6 ), propane gas (C 3 H 8 ), butane gas (n-C 4 H 10 )).
  • the second gas is either a hydrogen gas (H 2 ) gas, a nitrogen (N 2 ) gas, or a carbon dioxide (CO 2 ) gas, which has no specific correspondence between its calorific value and its thermal conductivity and refractive index. It is one.
  • the thermal conductivity-converted calorific value measuring means 12 has a thermal conductivity measuring means 13, and correlates between the output measured by the thermal conductivity measuring means previously acquired for a plurality of reference first gases and the actual calorific value. Based on the relational expression showing, the calorific value of the target gas is calculated by correcting the error due to the second gas.
  • the thermal conductivity converted heat quantity measuring means 12 includes, for example, a thermal conductivity measuring means 13, a correction means 14 for realizing the function of heat quantity measuring, and a converted calorific value calculating means 15.
  • the thermal conductivity measuring means 13 is a conventionally known heat conduction capable of measuring the thermal conductivity of a target gas by a signal (voltage applied to the thermal conductivity measuring means 13) output from an external device (power supply device or the like) 17. It is a rate type calorimeter.
  • the correction means 14 has a difference calculation means 141 and a correction output value calculation means 142, and has a function of correcting an error due to the presence of a second gas when calculating the calorific value of the target gas.
  • the converted heat quantity calculating means 15 has a function of acquiring (calculating) the calorific value of the target gas based on the relational expression showing the correlation between the output of the thermal conductivity measuring means 13 and the actual calorific value.
  • the target gas consisting only of the first gas (paraffin-based hydrocarbon gas)
  • the output measured by the thermal conductivity measuring means 13 and the actual calorific value have a predetermined correlation, but the first gas has a second gas. If (interfering gas) is included, the value deviates from the correlation due to the error caused by it. Therefore, the correction means 14 corrects the output measured by the thermal conductivity measuring means 13, and the converted heat quantity calculating means 15 calculates the calorific value of the target gas based on the corrected value.
  • the calorific value measuring device 10 has a data transmission path, an arithmetic means, a control means, a storage means, and the like having known configurations, and each means (function) of these and the thermal conductivity conversion calorific value measuring means 12. ) Collaborate to measure the target gas and perform arithmetic processing.
  • the calculated amount of heat is configured to be able to be output to the outside via the output means 18.
  • the output means 18 is, for example, a display means, a printing means, or a transmission means capable of outputting (transmitting) predetermined data by communication with the outside.
  • the calorific value measuring device 10 may be separately provided with a communication means capable of transmitting and receiving predetermined data to and from an external device.
  • the figure is a graph showing the relationship between the output of the thermal conductivity measuring means 13 of a plurality of types of reference gas (reference gas) and the actual amount of heat, and the figure (A) includes the second gas. It is a graph before correction of the error by, and the figure (B) is a graph after correction.
  • the vertical axis is the calorific value [MJ / Nm 3 ] of various reference gases obtained by analysis using, for example, a gas chromatograph (hereinafter, also referred to as “true calorific value”), and the horizontal axis represents various reference gases. It is an output result measured by the thermal conductivity measuring means 13.
  • the case where the second gas is hydrogen gas is illustrated.
  • the “reference gas” is a mixed gas in which another component is added to methane gas in different proportions, and refers to a gas having a clear composition (concentration, mixing ratio) and true calorific value.
  • the other components to be added are paraffinic hydrocarbon gas of ethane gas, propane gas, and butane gas, and hydrogen gas, respectively.
  • the concentration of methane gas is 100 vol% to 80 vol%, and the concentration of the other components is 0 vol% to 0 vol%. It is 20 vol%.
  • the output measured by the thermal conductivity measuring means 13 for a gas having a methane gas concentration of 100 vol% (pure methane gas) is “0”, and the output and the true calorific value are shown in a substantially linear relationship.
  • the output of the thermal conductivity measuring means 13 is standardized (normalized). That is, the output of the thermal conductivity meter on the horizontal axis in the figure is the output XT.
  • the thermal conductivity measuring means 13 standardized (normalized) in this way. C. In the present embodiment, this may be referred to as “normalized output XTC " or simply "output XTC ".
  • the standardized output XT As C moves away from the point "0" (increases or decreases), it means that the concentration of methane gas decreases in steps of 2.5 vol% and the concentration of the added component increases.
  • FIG. 3A shows the output (normalized output) XT.
  • the thermal conductivity measuring means 13 when the voltage applied to the thermal conductivity measuring means 13 is 0.5 V for these plurality of types of reference gases.
  • C and the output of the thermal conductivity measuring means 13 when the voltage applied to the thermal conductivity measuring means 13 was 1.0 V (normalized output) X T. C and the true value of each heat quantity are plotted.
  • the plot marked with ⁇ is the result of a mixed gas of methane gas and ethane gas (CH 4- C 2 H 6 ) when the applied voltage is 1.0 V, and in this case, the output XT.
  • C increases from “0" (pure methane gas)
  • the concentration of methane gas decreases in steps of 2.5 vol% (methane gas 97.5 vol% -ethane gas 2.5 vol%, methane gas 95 vol% -ethane gas 5 vol%, methane gas 92. .5 vol% -Etan gas 7.5 vol% ...) Mixed gas is shown.
  • the plot marked with ⁇ is the result of the mixed gas of methane gas and ethane gas (CH 4- C 2 H 6 ) when the applied voltage is 0.5 V, and the output XT.
  • C increases from “0" (pure methane gas)
  • the concentration of methane gas decreases in steps of 2.5 vol% (methane gas 97.5 vol% -ethane gas 2.5 vol%, methane gas 95 vol% -ethane gas 5 vol%, methane gas 92. .5 vol% -Etan gas 7.5 vol% ...) Mixed gas is shown.
  • the plot marked with ⁇ is a mixed gas of methane gas and propane gas (CH 4- C 3 H 8 ) when the applied voltage is 1.0 V
  • the plot marked with ⁇ is the methane gas and propane gas when the applied voltage is 0.5 V.
  • the plot is the result of a mixed gas of methane gas and butane gas (CH 4- C 4 H 10) when the applied voltage is 0.5 V.
  • the plot marked with ⁇ is a mixed gas of methane gas and hydrogen gas (CH 4- H 2 ) when the applied voltage is 1.0 V
  • the plot marked with ⁇ is the plot of methane gas and hydrogen gas when the applied voltage is 0.5 V.
  • This is the result of the mixed gas (CH 4- H 2).
  • hydrogen gas interference gas
  • the concentration of methane gas decreases in steps of 2.5 vol% (methane gas 97.5 vol% -hydrogen gas 2.5 vol%, methane gas 95 vol% -hydrogen gas 5 vol%, Methane gas 92.5 vol% -hydrogen gas 7.5 vol% ...) Mixed gas is shown.
  • the thermal conductivity measuring means 13 increases as the amount of the component added to the methane gas increases, regardless of the difference in the gas component. Output XT. C and the true calorific value increase.
  • the reference gas ((CH 4- H 2 ) gas) to which the interference gas (hydrogen gas) is added to the methane gas has the output XT. It was found that C and the true calorific value decreased.
  • the output XT in the case of a reference gas consisting only of paraffinic hydrocarbon gas, the output XT. There is no difference in C (small), while in the case of a reference gas containing hydrogen gas ((CH 4- H 2 ) gas), the output XT. It was found that there was a difference in C (a difference in output occurred), and the difference in output was linear with respect to the concentration of hydrogen gas.
  • the applicant of the present application corrects the error due to the hydrogen gas for the target gas in which hydrogen gas is mixed with methane gas, even if the concentration of the contained hydrogen gas is unknown, and determines the calorific value of the target gas. Considering that it is possible to calculate, the present invention could be achieved.
  • the calorific value measuring device 10 (for example, the thermal conductivity converted calorific value measuring means 12) has an output XT.
  • a relational expression (a linear relational expression shown by a solid line in FIG. 2) showing the correlation between C and the true value of heat quantity is acquired in advance and stored in the storage means.
  • the relational expression is shown by the following formula 1, and this relational expression is hereinafter referred to as a "calorific value calculation formula". Is.
  • the correction means 14 makes the plot ride on the straight line of the calorific value calculation formula.
  • the output of the thermal conductivity measuring means 13 by the correcting means 14 XT. Correct C.
  • the correction means 14 measures the output XT.I. It has a difference calculation means 141 for calculating the difference (output difference) of C, and a correction output value calculation means 142 for calculating the correction output value of the target gas by a correction formula set based on the difference (see FIG. 1).
  • the difference calculating means 141 applies a first output obtained by applying a first voltage (for example, 1.0 V) to the thermal conductivity measuring means 13 and a second voltage (for example, 0.5 V).
  • a first voltage for example, 1.0 V
  • a second voltage for example, 0.5 V.
  • the corrected output value calculating means 142 uses a correction formula based on the output difference to obtain the output XT.
  • Correct C (measurement result of the first output).
  • the correction formula is set according to the type of the second gas, and is held in the storage means of the calorific value measuring device 10 (for example, the thermal conductivity converted calorific value measuring means 12).
  • the correction formula for obtaining the correction output value (hereinafter referred to as “correction output value (H 2 )”) when the second gas is hydrogen gas is represented by the following formula 2. Is.
  • the corrected output value (H 2 ) is standardized output XT.
  • the result plotted on the horizontal axis as C is FIG. 2 (B).
  • the converted calorific value calculation means 15 corrects based on the corrected output value (H 2 ) and the calorific value calculation formula of Equation 1 (the linear relational expression shown by a straight line in FIG.
  • the output value (H 2 ) is the output of the calorific value calculation formula XT. Calculating the heat quantity Q A of the target gas by substituting the C.
  • the calculated amount of heat is configured to be output via the output means 18.
  • the thermal conductivity measuring means 13 for a reference gas a mixed gas in which another paraffinic hydrocarbon gas is added to methane gas at different ratios
  • the relational expression (calorific value calculation formula (Equation 1)) showing the correlation between the measured value (output XTC) and the actual calorific value is acquired.
  • the first gas for example, a plurality having different methane and ethane concentration (CH 4 -C 2 H 6) gas, a plurality of having different concentrations of methane and propane gas (CH 4 -C 3 H 8 ) Gas, a plurality of (CH 4- C 4 H 10 ) gases having different concentrations of methane gas and butane gas.
  • CH 4 -C 2 H 6 a plurality having different methane and ethane concentration
  • propane gas CH 4 -C 3 H 8
  • CH 4- C 4 H 10 gases having different concentrations of methane gas and butane gas.
  • the concentration of the other component is, for example, 0 vol% to 20 vol%, and is changed in steps of 2.5 vol% (the concentration of methane gas is, for example, 100 vol% to 80 vol%).
  • the true calorific value of each mixed gas obtained by analysis using a gas chromatograph and the output result measured by the thermal conductivity measuring means 13 are acquired. Then, the output measured by the thermal conductivity measuring means 13 of the gas (pure methane gas) having a methane gas concentration of 100 vol% becomes "0", and the heat conduction is shown by a substantially linear relationship between the output and the true calorific value.
  • the output of the rate measuring means 13 is standardized (normalized), and the calorific value calculation formula (formula 1) showing the correlation between the two is obtained (see the solid line in FIG. 2 (A)).
  • the target gas circulating in the gas pipeline 11 (for example, methane gas containing hydrogen gas) is supplied to the thermal conductivity converted calorific value measuring means 12 via the gas flow path.
  • the thermal conductivity-converted calorific value measuring means 12 calculates the calorific value of the target gas by correcting the error due to the second gas (hydrogen gas) based on the calorific value calculation formula (formula 1 above).
  • This amount of heat is the amount of heat obtained from the thermal conductivity, and can be said to be the amount of heat converted to thermal conductivity.
  • a first voltage for example, 1.0 V
  • a second voltage for example, 0.5 V
  • the difference (output difference) between the first output and the second output is calculated. Then, after correcting the correction output value (H 2 ) (error due to hydrogen gas) of the target gas by the correction formula set for each type of the second gas (in the case of hydrogen gas, the correction formula of the above formula 2).
  • the standardized output XTC ) of the thermal conductivity measuring means 13 of the above is calculated. Then, the corrected output value (H 2 ) is set to the normalized output XT.
  • the second gas is hydrogen gas
  • the same can be performed even if the second gas is nitrogen gas or carbon dioxide gas.
  • FIG. 3 is a diagram illustrating correction of an error due to the inclusion of the second gas when the second gas is nitrogen gas, and shows the output result of the thermal conductivity measuring means 13 corresponding to FIG. It is a graph which shows the relationship of the calorific value true value.
  • FIG. 6A is a graph before correction of an error due to the inclusion of a second gas in various reference gases
  • FIG. 6B is a graph after correction.
  • Figure hydrogen gas in 2 the are the same except for changing the nitrogen gas, ⁇ mark plots in the graph, methane nitrogen gas contained in the reference gas when the applied voltage is 1.0V ((CH 4 - It is the result of N 2 ) gas), and the ⁇ mark is the reference gas ((CH 4- N 2 ) gas) when the applied voltage is 0.5V.
  • correction output value (N 2 ) when the second gas is nitrogen gas is represented by the following formula 3. Is.
  • corrected output value (H 2 ) a corrected output value when the second gas is carbon dioxide gas by the same method as in the case of hydrogen gas and nitrogen gas described above.
  • corrected output value (H 2 ) a corrected output value when the second gas is carbon dioxide gas by the same method as in the case of hydrogen gas and nitrogen gas described above.
  • the calorific value measuring device 10 of the present embodiment holds at least one of the correction formulas represented by the above formulas 2 to 4 in the storage means.
  • the target gas contains a paraffinic hydrocarbon gas as a main component and any of hydrogen gas, nitrogen gas and carbon dioxide gas as an interference gas.
  • a paraffinic hydrocarbon gas as a main component
  • any of hydrogen gas, nitrogen gas and carbon dioxide gas as an interference gas.
  • the amount of heat can be calculated from the measurement results of only the thermal conductivity meter, so it is possible to realize a reduction in price by downsizing the device and simplifying the configuration.
  • the calorific value measuring device 10 of the present embodiment has the first gas (paraffin). It is also possible to measure a gas containing only (based hydrocarbon gas).
  • target gases such as coke oven gas (COG), coal gasification, and naphtha gasification (all of which contain hydrogen gas and nitrogen gas as the second gas) can also be measured.
  • the target gas for measurement in the second embodiment is also natural gas, biogas, or the like, but the first embodiment measures the target gas containing one type of interference gas, whereas the second embodiment measures the target gas.
  • It is a gas containing (paraffin-based hydrocarbon gas) as a main component and containing a third gas (hydrogen gas) and a fourth gas (at least one of nitrogen gas or carbon dioxide gas) which are measurement error components. ..
  • it is a mixed gas of methane gas, hydrogen gas, and nitrogen gas (CH 4- H 2- N 2 ) gas, or a mixed gas of methane gas, hydrogen gas, and carbon dioxide gas (CH 4- H). It is possible to measure the calorific value of 2- CO 2 ) gas) and further, a mixed gas of methane gas and hydrogen gas, nitrogen gas and carbon dioxide gas (CH 4- H 2- N 2- CO 2) gas).
  • FIG. 4A and 4B are views showing an outline of the calorific value measuring device 30 of the second embodiment
  • FIG. 4A is a block diagram showing an outline of an overall configuration
  • FIG. 4B is a refractive index-converted calorific value measuring means. It is a schematic diagram which shows 32.
  • the same configurations as those of the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
  • the calorific value measuring device 30 measures, for example, the calorific value of the target gas flowing in the gas pipeline 11 in the direction of the arrow in FIG.
  • the heat conductivity-converted heat quantity measuring means 31 capable of measuring the heat conductivity-converted heat quantity obtained from the above
  • the refractive index-converted calorie measuring means 32 capable of measuring the refractive index converted heat quantity obtained from the refractive index of the target gas
  • the calorific value calculating means It has 33, an output means 18, and the like.
  • the gas pipeline 11, the thermal conductivity-converted calorific value measuring means 31, and the refractive index-converted calorific value measuring means 32 are each connected by a gas flow path 19, and the target gas in the gas pipeline 11 is the thermal conductivity-converted calorific value measuring means 31 and the refractive index. It is supplied to each of the converted heat quantity measuring means 32.
  • the thermal conductivity-converted calorific value measuring means 31, the refractive index-converted calorific value measuring means 32, and the calorific value calculating means 33 are arranged in, for example, an explosion-proof container 50.
  • the thermal conductivity-converted heat quantity measuring means 31 includes, for example, a thermal conductivity measuring means 13, a correction means 14 for realizing the function of the thermal conductivity-converted calorific value measurement, and a converted calorific value calculating means (heat conductivity-converted calorific value calculating means).
  • the output XT.I. Based on the relational expression showing the correlation between the actual amount of heat as C, calculate configured to allow the third gas and fourth thermal conductivity in terms of heat quantity Q A and corrects the error due to gas. That is, the calorific value measuring device 30 (heat conductivity converted calorific value measuring means 31) can correct errors in the storage means for at least a third gas (hydrogen gas in this example) and a fourth gas (for example, nitrogen gas). At least retains the corrective formula.
  • the configuration of the thermal conductivity-converted calorific value measuring means 31 is the same as that of the thermal conductivity-converted calorific value measuring means 12 of the first embodiment.
  • the correction means 14 has a difference calculation means 143 (141) and a correction output value calculation means 142, and when calculating the thermal conductivity-converted calorific value of the target gas, the interference gas (third gas (hydrogen gas) and fourth gas). ) Has a function to correct the error due to the existence.
  • the thermal conductivity-converted calorific value calculation means 15 has an output XT. It has a function of acquiring (calculating) the thermal conductivity-converted calorific value of the target gas based on the relational expression (calorific value calculation formula represented by the above equation 1) showing the correlation between C and the actual calorific value. That is, the heat conduction of the target gas is based on the value (corrected output value) corrected by the correction means 14 due to the inclusion of the interference gas in the target gas and the heat quantity calculation formula (Equation 1) obtained from the thermal conductivity. obtaining the rate conversion heat Q a is (calculated).
  • the calorific value calculation formula obtained from the thermal conductivity (the linear relational expression (formula 1) shown by a straight line in FIG. 2B) is referred to as the first calorific value calculation formula.
  • the refractive index conversion calorific value measuring means 32 interferes with the difference in the refractive index of light between, for example, a target gas and a standard gas such as air by a signal (applied voltage) output from an external device (power supply device or the like) 34. it is detected as the displacement is a device configured to measure the refractive index in terms of heat quantity Q B of the target gas based on the amount of displacement of the interference fringes (refractive index calorimeter).
  • the figure (B) shows a specific example of the apparatus constituting the refractive index conversion calorific value measuring means 32.
  • the refractive index converted calorific value measuring means 32 is, for example, a chamber 321 in which a target gas cell portion 322 for introducing the target gas and a standard gas cell portion 323A and 323B for filling a standard gas such as air are partitioned.
  • the parallel plane mirror 325 that divides the light from the light source 324, and the parallel plane mirror 325 divides the light and changes the traveling direction by reflecting the light that has passed through the chamber 321.
  • the prism 328 which is adjusted and arranged so that it can be superimposed on the plane mirror 325 to generate interference fringes, and the interference fringe detecting means 326 that receives the combined light (interference light) superimposed on the parallel plane mirror 325.
  • a plane mirror 327 that reflects the synthetic light
  • a condenser lens 329 for condensing the synthetic light and an interference fringe detecting means 326 are arranged at the focal position of the condenser lens 329.
  • the alternate long and short dash arrow indicates the path until the light from the light source 324 is received by the interference fringe detecting means 326.
  • the calorific value calculation means 33 has an error due to a thermal conductivity-converted calorific value Q A , a refractive index-converted calorific value Q B, and a fourth gas (at least one of nitrogen gas and carbon dioxide gas).
  • the calorific value of the target gas is calculated by a coefficient for correcting the above and a formula for calculating the calorific value described later (hereinafter referred to as "second calorific value calculation formula").
  • the calorific value measuring device 30 includes a data transmission path, a calculation means, a control means, a storage means, and the like having known configurations, and the thermal conductivity converted calorific value measuring means 12. Each means (function) of the above cooperates to measure the target gas and perform arithmetic processing.
  • the calculated amount of heat is configured to be able to be output to the outside via the output means 18.
  • the output means 18 is, for example, a display means, a printing means, or a transmission means capable of outputting (transmitting) predetermined data by communication with the outside.
  • the calorific value measuring device 30 may be separately provided with a communication means capable of transmitting and receiving predetermined data to and from an external device.
  • FIG. 5 shows the correction of the error due to the inclusion of the interference gas (third gas and fourth gas)
  • the figure shows the output XT.
  • the thermal conductivity measuring means 13 for various reference gases. It is a graph which shows the relationship between C and the true value of calorific value, FIG. It is a graph after correcting the error due to the inclusion of hydrogen gas when only hydrogen gas is contained (corrected by the correction means 14 having the difference calculation means 141 for correcting the error due to hydrogen gas of the first embodiment). ..
  • the vertical axis is the true calorific value [MJ / Nm 3 ] of various reference gases obtained by analysis using, for example, a gas chromatograph, and the horizontal axis is the output of various reference gases measured by the thermal conductivity measuring means 13. Standardized output) XT. It is C.
  • the various reference gases are mixed gases in which one other component is added to methane gas in different proportions, and the composition (concentration) and the true calorific value are clear.
  • the other components to be added are ethane gas, propane gas, butane gas paraffin hydrocarbon gas, and hydrogen gas, nitrogen gas, and carbon dioxide gas as interference gases, respectively, and the concentration of methane gas is 100 vol% to 80 vol. %, The concentration of other components is 0 vol% to 20 vol%.
  • FIGS. 2 and 3 of the first embodiment are reprinted. That is, FIG. 2A is a superposition of the data of FIG. 2 (A) when the interfering gas is only hydrogen gas and FIG. 3 (A) when the interfering gas is only nitrogen gas. Yes, and the data when the interference gas is only carbon dioxide gas is added. Further, the hydrogen gas in FIG. 2 (B) is the same as in FIG. 2 (B).
  • the reference gas including carbon dioxide gas will be specifically described.
  • the plot marked with a star is the result of a mixed gas of methane gas and carbon dioxide gas (CH 4- CO 2 ) when the applied voltage is 1.0 V. In this case, the output XT.
  • C increases from "0" (pure methane gas)
  • the concentration of methane gas decreases in 2.5 vol% increments (methane gas 97.5 vol% -carbon dioxide gas 2.5 vol%, methane gas 95 vol% -carbon dioxide gas 5 vol. %, Methane gas 92.5 vol% -Carbon dioxide gas 7.5 vol% ...) Mixed gas is shown.
  • the plot marked with a star is the result of a mixed gas of methane gas and carbon dioxide (CH 4- CO 2 ) when the applied voltage is 0.5 V, and the output XT.
  • C increases from "0" (pure methane gas)
  • concentration of methane gas decreases in 2.5 vol% increments (methane gas 97.5 vol% -carbon dioxide gas 2.5 vol%, methane gas 95 vol% -carbon dioxide gas 5 vol. %, Methane gas 92.5 vol% -Carbon dioxide gas 7.5 vol% ...)
  • Mixed gas is shown.
  • the calorific value measuring device 10 of the first embodiment corrects the error of the interference gas in the case of the target gas containing one kind of interference gas selected from hydrogen gas, nitrogen gas and carbon dioxide gas in the paraffin hydrocarbon gas. After that, it is configured so that the amount of heat can be measured.
  • the calorific value measuring device 30 of the present embodiment includes the refractive index converted calorific value measuring means 32 in addition to the thermal conductivity converted calorific value measuring means 31, so that the target gas containing hydrogen gas and an interference gas of a different type from the same can be used. It is possible to measure the amount of heat after correcting the error of the interference gas.
  • the normalized output XTC In order to eliminate the error of hydrogen gas (correct the normalized output XTC in the case of hydrogen gas only), the normalized output XTC. When the output difference of C is ⁇ 0, the normalized output XT. Correct C. On the other hand, the standardized output XT. When the output difference of C> 0, the normalized output XT. The correction of C is not performed (the following equation 5 is used as the correction output value).
  • the above equations 2 and 5 are held in the storage means of the calorific value measuring device 30 (for example, the thermal conductivity converted calorific value measuring means 31).
  • the figure (B) shows the results of plotting the corrected output values on the horizontal axis for these various reference gases.
  • the linear relational expression shown by a straight line in FIG. 3B is a calorific value calculation formula obtained from thermal conductivity (first calorific value calculation formula represented by formula 1) excluding an error due to the inclusion of only hydrogen gas as an interference gas. ).
  • the refractive index in terms of calorimetry means 32 is a result of measuring the above-described various reference gas
  • the vertical axis represents the refractive index in terms of heat quantity Q B
  • the horizontal axis represents the refractive index.
  • the mixed gas consisting only of paraffinic hydrocarbon gas and the mixed gas containing only hydrogen gas as an interfering gas have the same calorific value in terms of refraction and refraction regardless of the composition (concentration).
  • the relationship is out of the linear relationship.
  • FIG. 3B shows the above-mentioned various reference gases by the heat conductivity-converted calorie measuring means 31 holding the first calorific value calculation formula (having the difference calculating means 141 for correcting the error of the hydrogen gas of the first embodiment).
  • the horizontal axis (standardized output) so that the linear relationship (slope of a line) shown in the graph of FIG. 5 (B) is aligned with the linear relationship (slope of a line) of FIG. 6 (A). It is a graph which adjusted XTC).
  • an error when the gas containing nitrogen gas is measured by the thermal conductivity-converted calorific value measuring means 31 and an error when measured by the refractive index-converted calorific value measuring means 32.
  • the ratio of can be calculated. Further, it is possible to obtain the ratio between the error measured by the thermal conductivity-converted calorific value measuring means 31 and the error measured by the refractive index-converted calorific value measuring means 32 for the gas containing carbon dioxide gas. Since the ratio of these measurement errors has a predetermined relationship, the error is corrected when only nitrogen gas is contained as an interfering gas (hydrogen gas is not included or hydrogen gas is included, but the error is included) by utilizing the relationship. The error can be corrected when it contains only carbon dioxide gas (when it does not contain hydrogen gas or when it contains hydrogen gas but the error is corrected).
  • the calorific value is calculated by using an appropriate correction coefficient CF corresponding to the composition of the target gas.
  • the means 33 calculates the calorific value Q of the target gas by correcting the error due to the presence of an interfering gas (nitrogen gas and / or carbon dioxide gas) other than the hydrogen gas.
  • an interfering gas nitrogen gas and / or carbon dioxide gas
  • the correction of the error due to the presence of nitrogen gas and / or carbon dioxide gas is described in detail in the patent by the applicant of the present application (Patent No. 5308842). Is.
  • the value of the correction coefficient CF is 2.91 ⁇ correction coefficient CF ⁇ 3.75, and more preferably 2.96 ⁇ correction coefficient CF ⁇ 3.15.
  • FIG. 7 is a graph for verifying the measurement results of a plurality of reference gases having a clear composition by the calorific value measuring device 30 of the present embodiment (having the difference calculating means 141 of the first embodiment).
  • the vertical axis of the figure is the true calorific value [MJ / Nm 3 ] obtained by analysis using, for example, a gas chromatograph, and the horizontal axis is the measured value (measured calorific value) by the calorific value measuring device 30.
  • the solid line in the graph is the second calorific value calculation formula represented by the formula 6.
  • the calorific value measuring device 30 of the present embodiment contains a paraffinic hydrocarbon gas as a main component, a hydrogen gas as an interfering gas, and further contains either a nitrogen gas or a carbon dioxide gas.
  • mixed gas e.g., (CH 4 -H 2 -N 2 gas)
  • hydrogen gas and carbon dioxide gas is a mixed gas as an interference gas (e.g., (CH 4 -H 2 - For N 2 ) gas)
  • the calorific value Q can be measured by reducing the influence of the error due to the interfering gas even if the composition of each is unknown.
  • the calorific value can be measured by excluding the error component due to hydrogen gas (assuming that hydrogen gas is not contained), it is natural to measure the target gas that does not contain hydrogen gas.
  • the target gas containing at least one of nitrogen gas and carbon dioxide gas as an interference gas (specifically, for example, a mixed gas of methane gas and nitrogen gas ((CH 4- N 2 gas)). ), Mixed gas of methane gas and carbon dioxide gas (CH 4- CO 2 ) gas), mixed gas of methane gas and nitrogen gas and carbon dioxide gas (CH 4- N 2- CO 2 ) gas), although not shown. It is possible to measure the amount of heat in either case.
  • a target gas containing hydrogen gas as an interference gas in two types of paraffin hydrocarbon gas specifically, for example, a mixed gas of methane gas, ethane and hydrogen gas ((CH 4- H 2-)).
  • a mixed gas of methane gas, ethane and hydrogen gas (CH 4- H 2-)
  • C 2 H 6 gas accurate calorific value measurement is possible by correcting the error due to hydrogen gas.
  • a target gas for example, methane gas containing hydrogen gas and nitrogen gas
  • the thermal conductivity converted calorific value measuring means 31 is supplied to the thermal conductivity converted calorific value measuring means 31 via the gas flow path 19.
  • the thermal conductivity in terms of calorimetry means 31 calculates the thermal conductivity in terms of heat quantity Q A of the target gas by correcting the error caused by the third gas (hydrogen gas).
  • a first voltage for example, 1.0 V
  • a second voltage for example, 0.5 V
  • the difference (output difference) between the first output and the second output is calculated.
  • the corrected output value of the target gas normalized output of the thermal conductivity measuring means 13 after correcting the error due to hydrogen gas
  • the corrected output value is used as the standardized output value, and the output XT.
  • the target gas was supplied to the refractive index in terms of calorimetry means 32 through the gas passage 19, to obtain the refractive index in terms of heat quantity Q B on the target gas. Then, the calorific value Q of the target gas is calculated by the obtained refractive index converted calorific value Q B , the thermal conductivity converted calorific value Q A, and the second calorific value calculation formula shown in the above formula 6.
  • a third embodiment of the present invention will be described with reference to FIGS. 8 to 18.
  • the third embodiment further reduces the influence of the error of the interference gas in the configuration of the second embodiment, and is an application example of the first embodiment and the second embodiment. Detailed explanation will be omitted.
  • FIG. 8 shows the standardized output XT.
  • Reference gas is methane, which is mixed hydrogen gas and nitrogen gas as an interference gas ((CH 4 -H 2 -N 2 ) gas (methane concentration is 80 vol%)), for the reference gas of hydrogen gas and nitrogen gas
  • the standardized output XT When the concentrations were changed and voltages of 1.0 V and 0.5 V were applied . The difference in C (output difference) is obtained.
  • the colored circles indicate the normalized output XT.
  • gases with different concentrations of hydrogen gas and nitrogen gas CH 4- H 2- N 2).
  • the vertical axis is the output difference [mA], and the horizontal axis is the hydrogen gas concentration [vol%].
  • the interference gas is only hydrogen gas, that is, based on the solid line connecting the white circles (hereinafter referred to as "hydrogen gas concentration-output difference relational expression")
  • nitrogen gas is used as shown by the colored circles.
  • standardized output XT If included, standardized output XT.
  • the difference in C deviates from the solid line.
  • the deviation from this solid line becomes an error component due to the mixture of nitrogen gas. That is, when hydrogen gas and nitrogen gas are included as the interference gas, the standardized output XT. It was clarified that there was a difference in C and that there was a difference in the error component depending on the concentration of nitrogen gas.
  • FIG. 9 shows the voltage applied to the thermal conductivity measuring means 13 and the normalized output XT.
  • the reference gas ((CH 4- H 2- N 2 ) gas).
  • C It is a figure showing the relationship between the above, and the normalized output XT. C. Was measured.
  • the vertical axis is the normalized output XT.
  • C The horizontal axis is the applied voltage.
  • the concentration of the mixed gas of hydrogen gas and nitrogen gas (the total concentration of H 2 gas and N 2 gas) is 10 vol% for each reference gas.
  • Hydrogen gas concentration-correction can be made to match or approximate the output difference equation. Further, by the correction, in the thermal conductivity converted heat quantity measuring means 12, the heat quantity can be calculated by using the correction formula shown in the formula 2 (the correction formula when only hydrogen gas is contained as the interference gas).
  • FIG. 8 and FIG. 9 is hydrogen gas and nitrogen gas shows the relationship between the target gas mixture ((CH 4 -H 2 -N 2 ) gas) as the interference gas, and hydrogen gas as an interference gas
  • the target gas mixture ((CH 4 -H 2 -N 2 ) gas)
  • hydrogen gas as an interference gas
  • a target gas in which carbon dioxide gas is mixed ((CH 4- H 2- CO 2 ) gas)
  • hydrogen gas, nitrogen gas and carbon dioxide gas are mixed as interference gases
  • the heat quantity can be calculated by using the correction formula shown in the formula 2 (the correction formula when only hydrogen gas is contained as the interference gas).
  • the applicant of the present application calculates the concentration of the interfering gas for the target gas containing hydrogen gas, nitrogen gas and carbon dioxide gas as the interfering gas, and the composition and content of the interfering gas are unknown.
  • the hydrogen gas concentration is first calculated based on a certain relationship, and then the nitrogen gas concentration and the carbon dioxide gas concentration (the total value thereof) are calculated based on the calculated hydrogen gas concentration.
  • first method and second method for calculating the hydrogen gas concentration are included.
  • the items of those concentrations nitrogen gas concentration X N2 and / or carbon dioxide gas concentration X CO2 are included.
  • the first method of calculating the hydrogen gas concentration is a method of obtaining the hydrogen gas from the probability that it has a certain concentration.
  • the methane gas as a reference gas the mixed gas (specifically containing at least hydrogen, (CH 4 -H 2 -N 2 ) gas, (CH 4 -H 2 -CO 2 ) gas, (CH 4 - for H 2 -N 2 -CO 2) gas), the concentration (the index and made concentration) ai 0 ⁇ 20 vol% of hydrogen gas (in increments 0.5 vol%, to prepare a plurality of gas was changed to 41 ways), Measure the thermal conductivity and refractive index of each.
  • the calculation parameters w and b for obtaining the probability that the hydrogen gas has each concentration ai are acquired by the following equation 8.
  • an equation (the following equation 9) for obtaining the probability that the hydrogen gas concentration is each of the concentrations ai can be obtained.
  • the equations 8 and 9 can be obtained by, for example, machine learning, but the derivation method of the equations 8 and 9 is not limited to the one by machine learning. Is.
  • the thermal conductivity and the refractive index (input signal xi) of the hydrogen gas are measured by, for example, a thermal conductivity measuring means 13, a refractive index conversion calorific value measuring means 32, or the like, and the formula is used. 8.
  • the probability that the hydrogen gas concentration is each of the above 41 concentration (index concentration) ai is obtained by the formula 9.
  • the target hydrogen gas concentration X H2 can be calculated by multiplying each concentration ai by the probability f (ai) and adding them together.
  • Second method of calculating hydrogen gas concentration / First hydrogen concentration calculation formula is the voltage applied to the thermal conductivity meter (for example, the thermal conductivity measuring means 13) and the normalized output XT. C. Based on the above relationship, it is calculated by the hydrogen concentration calculation formula.
  • FIG. 10 shows the ratio of hydrogen gas in the (CH 4- H 2- N 2 ) gas, the voltage applied to the thermal conductivity measuring means 13, and the normalized output of the (CH 4- H 2- N 2) gas.
  • XT. C It is a graph which shows the relationship of.
  • FIG. 9A FIGS. 9A to 9F are re-plotted in FIG. 1 and fitted to a quadratic curve, and the vertical axis is the standardized output XT. C. , The horizontal axis is the applied voltage [V].
  • the curves (or straight lines) of the six types of (CH 4- H 2- N 2 ) gas shown in the figure (A) are referred to as "output-voltage function".
  • FIG (B) the output shown in Figure (A) - (.
  • slope dX T.C. / dV slope of the voltage function vertical axis, applied It is a graph which plotted the voltage [V] on the horizontal axis.
  • inclination dXT . C. It can be seen that / dV and the applied voltage have a proportional relationship according to the ratio of hydrogen gas.
  • slope-voltage function The relational expression shown by the solid line in FIG. 10B is hereinafter referred to as “slope-voltage function”.
  • FIG. 11 (A) is output shown in FIG. 10 (A) - per voltage function, the six (CH 4 -H 2 -N 2) gas each extreme point (the slope dX T.C. / dV 0 the vertical axis the ratio (H 2 ratio) of hydrogen gas becomes a point) and is a plot of the voltage applied to the extreme point [V] on the horizontal axis.
  • FIG. 11 (B) for the six types of (CH 4- H 2- N 2 ) gas shown in FIG. 10 (B), the slope of each straight line of the slope-voltage function is used as the vertical axis, and the hydrogen gas ratio is shown. (When the total concentration of hydrogen gas and nitrogen gas (H 2 + N 2 ) gas) is 10 vol%) is plotted on the horizontal axis, and an approximate straight line (hereinafter referred to as "output-H 2 ratio function") is obtained. It is a thing.
  • the "slope of the" slope-straight line of the voltage function "" shown in FIG. 10B is the slope dXT . C.
  • the results of the (CH 4- H 2- N 2 ) gas are plotted with ⁇ .
  • a reference gas and hydrogen as in the case of the six types of (CH 4- H 2- N 2 ) gas described with reference to FIGS. 9 to 10. The relationship with the gas ratio was calculated, and the former was plotted with a ⁇ mark and the latter was plotted with a ⁇ mark.
  • the reference gas ((CH 4- H 2- N 2 ) gas, (CH 4- H 2- CO 2 ) gas, (CH 4- H 2- N 2- CO 2 )). Gas) has a standardized output of XT. C. There is a correlation between the second derivative value of the above and the ratio of hydrogen gas as shown by the approximate curve.
  • the interference gas density is unknown target gas (methane)
  • the interference gas density is unknown (CH 4 - Hydrogen gas concentration for H 2 ) gas, (CH 4- H 2- N 2 ) gas, (CH 4- H 2- CO 2 ) gas, (CH 4- H 2- N 2- CO 2) gas)
  • H 4 - Hydrogen gas concentration for H 2 ) gas (CH 4- H 2- N 2 ) gas, (CH 4- H 2- CO 2 ) gas, (CH 4- H 2- N 2- CO 2) gas)
  • the H 2 ratio is the data of the (CH 4- H 2- N 2 ) gas shown in FIGS. 9 to 11 (data shown by ⁇ in FIG. 11).
  • the hydrogen gas concentration of the target gas can be calculated based on the data of the reference gas of "1".
  • the hydrogen gas concentration X H2 in any (CH 4- H 2- N 2 ) gas can be calculated by the first hydrogen concentration calculation formula represented by the following formula 10A. Is.
  • the resulting hydrogen gas concentration is proportional to the concentration of the reference gas ((CH 4 -H 2 -N 2 ) gas) in the (H 2 + N 2) gas, the reference gas (H 2 + N 2 )
  • the calculation result (hydrogen gas concentration) of Equation 10 is multiplied by N.
  • Second method of calculating hydrogen gas concentration / Second hydrogen concentration calculation formula >> Next, another example of the second method will be described. Normalized output XT. C.
  • the hydrogen concentration calculation formula using the second-order differential value of the second hydrogen concentration calculation formula represented by the following formula 10B may be used. Is.
  • Equation 10B is a standardized output XT. C. It is derived from the relationship between the second derivative value of H2 and the H2 concentration.
  • methane gas contains hydrogen gas and nitrogen gas as interfering gases, and a plurality of (here, 8 types) reference gases ((CH 4- H 2) in which the ratios (known values) of these are changed are shown.
  • -N 2 For gas, the relationship between the second-order differential value of the standardized output and the concentration of hydrogen gas contained is plotted.
  • the vertical axis is the hydrogen gas concentration [vol%], and the horizontal axis is the second derivative value of the normalized output.
  • FIG. 13 is a list of the H 2 gas concentration and the total concentration (actual measurement value) of the H 2 gas and the N 2 gas adjusted for each ratio (composition) of a plurality of types (for example, 8 types).
  • the second-order differential value of the normalized output is calculated using these reference gases, and the result of plotting the relationship with the hydrogen gas concentration is shown in FIG.
  • the results of measurement of the reference gas including (marked plot)) are shown in the same manner as in the case of FIG. 12 (A). That is, for each reference gas, the ratio of interference gas (composition: known value) is set to multiple types ( 8 types for (CH 4- H 2- N 2 ) gas and 5 types for (CH 4- H 2- CO 2 ) gas.
  • the formulas 10A and 10B may be collectively referred to as hydrogen gas concentration calculation formulas below.
  • the corrected output value (H 2 ) represented by the above formula 2 is further (additionally) corrected based on the hydrogen gas concentration X H2 calculated by the first method or the second method.
  • the "output difference (H 2 )" in the calculation formula of the corrected output value (H 2 ) shown in the above formula 2 is corrected by the following formula 11. Is.
  • the hydrogen gas concentration of the target gas containing at least hydrogen gas as an interference gas and further containing nitrogen gas and / or carbon dioxide gas is calculated. can do.
  • the concentration of nitrogen gas and / or carbon dioxide gas of the target gas can be calculated as follows.
  • the X N2 concentration and / or the X CO2 concentration is set to "0". Is.
  • Equation 2 By correcting Equation 2 based on the calculated concentrations of hydrogen gas and nitrogen gas and / or carbon dioxide gas in the interfering gas in this way, the influence of nitrogen gas and / or carbon dioxide gas is eliminated. , Hydrogen gas concentration-Can be matched or approximated to the power difference equation.
  • the correction output value (H 2 ) of the formula 2 reflecting the correction of the formulas 11 to 13 is hereinafter referred to as “additional correction output value (H 2 )”. Then, the additional correction output value (H 2 ) is used as the value of the normalized output, and the XT. C. By substituting, it is possible to calculate the thermal conductivity in terms of heat quantity Q A.
  • FIG. 14 and 15 are block diagrams showing an outline of the calorific value measuring device 35 as a specific example of the third embodiment.
  • FIG. 14 is a schematic diagram showing the overall configuration of the heat quantity measuring device 35
  • FIG. 15 is a schematic diagram mainly for explaining the correction process by the correction means 14.
  • the same configuration as that of the second embodiment is indicated by the same reference numerals, and the description thereof will be omitted.
  • the calorific value measuring device 35 includes a thermal conductivity-converted calorific value measuring means 31, a refractive index-converted calorific value measuring means 32, a calorific value calculating means 33, an output means 18, and the like.
  • the correction means 14 in the third embodiment further includes a third gas concentration calculation means 146 and an additional correction output value calculation means 147.
  • the third gas concentration calculation means 146 acquires the concentration of the third gas in the target gas (hereinafter, referred to as “third gas concentration”).
  • the third gas concentration (here, hydrogen gas concentration X H2 ) is calculated based on the first method in which the formulas 8 and 9 are retained and used.
  • the equation 10 the slope-voltage function shown in FIG. 10 (B), the H 2 ratio-voltage curve shown in FIG. 11 (A), and the output-H 2 ratio function shown in FIG. 11 (B) are retained, and these are used.
  • the third gas concentration here, hydrogen gas concentration X H2
  • Additional correction output value calculating unit 147 the output value (H 2) and the output difference of the correction output value is corrected output value calculating unit 142 has (H 2 correction equation is calculated (Formula 2) (H 2), an additional More specifically, the additional correction output value calculation means 147 is based on the third gas concentration (calculated hydrogen gas concentration X H2 ) calculated by the first method or the second method, according to the formula 11. (output difference after correction (H 2)) y for correcting the output difference equation 2 (H 2) is determined.
  • the fourth gas (here in the object gas by the equation 12, the nitrogen gas and / or dioxide
  • the concentration of (carbon gas) (hereinafter referred to as "fourth gas concentration") is calculated, and the additional correction amount is calculated by the formula 13 based on the third gas concentration and the fourth gas concentration.
  • the correction means 14 corrects the measurement result (normalized output XTC measured value) of the heat conduction measuring means 13 by the additional correction output value (H 2).
  • the thermal conductivity-converted calorific value calculation means 15 has a corrected standardized output XT.
  • C Calculating the thermal conductivity in terms of heat quantity Q A by it (adding the correction output value (H 2) was substituted as the value of the normalized output to the first heat quantity calculation formula of X T.C.) Formula 1 used.
  • the heat quantity converted to heat Q B is calculated in the same manner as in the second embodiment, and the heat quantity calculating means 33 includes a heat quantity converted to heat Q A , a heat quantity converted to refraction Q B, and a fourth gas (nitrogen gas,
  • the calorific value Q of the target gas is calculated by the coefficient CF for correcting the error due to at least one of the carbon dioxide gas) and the second calorific value calculation formula (Equation 6).
  • the calorific value calculation method according to the third embodiment is as follows. First, similarly to the second embodiment, the calorific value calculation formula (first calorific value calculation formula) shown in the formula 1 is acquired.
  • the target gas flowing in the gas pipeline 11 for example, methane gas containing hydrogen gas and nitrogen gas
  • the thermal conductivity converted calorific value measuring means 31 is supplied to the thermal conductivity converted calorific value measuring means 31 via the gas flow path 19. ..
  • the thermal conductivity in terms of calorimetry means 31 calculates the thermal conductivity in terms of heat quantity Q A of the target gas by correcting the error caused by the third gas (hydrogen gas).
  • a first voltage for example, 1.0 V
  • a second voltage for example, 0.5 V
  • a second output is obtained.
  • the correction means 14 the difference (output difference) between the first output and the second output is calculated. Then, the corrected output value (H 2 ) of the target gas (normalized output XTC of the thermal conductivity measuring means 13 after correcting the error due to hydrogen gas) is calculated by the correction formula shown in the above formula 2. ..
  • the third gas concentration calculating means 146 calculates the third gas concentration (for example, hydrogen gas concentration X H2 ) in the target gas. Based on the calculated hydrogen gas concentration X H2 , a correction value y for correcting the output difference (H 2 ) of the formula 2 is acquired (formula 11). Further, a fourth gas concentration (for example, nitrogen gas concentration and carbon dioxide gas concentration) in the target gas is calculated according to the hydrogen gas concentration X H2 (Equation 12), and an additional correction amount (Equation 13) is calculated based on various concentrations. To get. If necessary (only when y ⁇ the initial output difference (H 2 ) of the equation 2), the correction value y of the equation 11 is substituted into the output difference (H 2) of the equation 2.
  • the third gas concentration for example, hydrogen gas concentration X H2
  • the additional correction amount of the formula 13 is substituted into the output value (H 2 ) of the formula 2, and the obtained additional correction output value (H 2 ) is used as the XT. C.
  • the thermal conductivity in terms of heat quantity Q A of the target gas is calculated.
  • the target gas was supplied to the refractive index in terms of calorimetry means 32 through the gas passage 19, to obtain the refractive index in terms of heat quantity Q B on the target gas.
  • the calorific value Q of the target gas is calculated by the obtained refractive index converted calorific value Q B , the thermal conductivity converted calorific value Q A, and the second calorific value calculation formula shown in the above formula 6.
  • 16 to 18 are graphs showing the results of calculating the hydrogen gas concentration H2 and calculating the calorific value Q by the first method (for example, a method using machine learning) in the third embodiment.
  • FIG. 16 shows a hydrogen gas concentration X by the first method of the third embodiment (for example, a method using machine learning) for a reference gas containing an interfering gas ((H 2 + N 2) gas) having a clear component concentration. It is a graph which compared the result (calculated calorific value) which calculated H2 and the calorific value Q, and the measured calorific value (actual calorific value).
  • the amount of heat of the third embodiment As data for verification, wherein the preparing the six mixed gas containing at different rates, respectively hydrogen gas and nitrogen gas methane (CH 4 -H 2 -N 2) gas), the amount of heat of the third embodiment
  • the calorific value Q (calculated calorific value) [MJ / m 3 ] calculated by the calculation means 33 is shown on the vertical axis, and the measured calorific value (actual calorific value) [MJ / m 3 ] is shown on the horizontal axis.
  • the ⁇ mark is the result of the calculated calorific value.
  • the broken line shows the error range of ⁇ 1% with respect to the case where the calculated heat quantity and the actual heat quantity match (solid line).
  • the corrected output value (H2) according to Equation 2 before the error caused by containing nitrogen gas is corrected by the additional corrected output value (H2) (correcting the error caused by containing only hydrogen gas). Based on this, the result of obtaining the calorific value Q is plotted as an "output difference" with a cross.
  • FIG. 17 shows the calculation result (calculated calorific value) of the calorific value Q by the first method of the third embodiment and the actual measurement of the reference gas containing the interference gas ((H 2 + CO 2) gas) whose component concentration is clear. It is a graph comparing the amount of heat (actual amount of heat).
  • the calorific value Q (calculated calorific value) [MJ / m 3 ] calculated by the calorific value calculating means 33 is shown on the vertical axis, and the measured calorific value (actual calorific value) [MJ / m 3 ] is shown on the horizontal axis.
  • the ⁇ mark is the result of the calculated calorific value.
  • the broken line indicates the error range of ⁇ 1%.
  • the corrected output value (H2) according to Equation 2 before the error caused by containing CO 2 gas is corrected by the additional corrected output value (H2) (correcting the error caused by containing only hydrogen gas).
  • the result of obtaining the calorific value Q is plotted as an "output difference" with a cross.
  • FIG. 18 shows the calculation result (calculated calorific value) of the calorific value Q by the first method of the third embodiment for the reference gas containing the interference gas ((H 2 + N 2 + CO 2) gas) whose component concentration is clear. It is a graph comparing the measured calorific value (actual calorific value).
  • two types of mixed gas CH 4- H 2- N 2- CO 2 ) gas containing hydrogen gas, nitrogen gas and carbon dioxide gas in different proportions of methane gas are prepared here.
  • the vertical axis is the calorific value Q (calculated calorific value) [MJ / m 3 ] calculated by the calorific value calculation means 33 of the third embodiment, and the horizontal axis is the measured calorific value (actual calorific value) [MJ / m 3]. Indicated.
  • the ⁇ mark is the result of the calculated calorific value.
  • the broken line indicates the error range of ⁇ 1%.
  • the corrected output value (H2) according to Equation 2 before the error caused by containing CO 2 gas is corrected by the additional corrected output value (H2) (correcting the error caused by containing only hydrogen gas).
  • the result of obtaining the calorific value Q is plotted as an "output difference" with a cross. Also in the figure, plots are made for data in which the concentration of CO 2 gas is 4 vol% or less, which is a substantial range.
  • the hydrogen gas as an interference gas, a mixed gas containing nitrogen gas and CO 2 gas (CH 4 -H 2 -N 2 -CO 2) gas) for also, found
  • the calorific value Q can be calculated by reducing the error from the value.
  • FIG. 19 is a graph comparing the calculation result (calculated calorific value) of the calorific value Q according to the third embodiment and the measured calorific value (actual calorific value) for the reference gas containing the interference gas (H 2 gas) whose component concentration is clear.
  • the reference gas containing the interference gas H 2 gas
  • the calorific value of the third embodiment is prepared.
  • the calorific value Q (calculated calorific value) [MJ / m 3 ] calculated by the calculation means 33 is shown on the vertical axis, and the measured calorific value (actual calorific value) [MJ / m 3 ] is shown on the horizontal axis.
  • the ⁇ mark is the result of the calculated calorific value.
  • the broken line indicates the error range of ⁇ 1%.
  • adding the correction output value (H 2) to correct for errors due to contain only hydrogen gas) prior to correct an error caused by a nitrogen-containing gas by formula 2 according to the corrected output value (H 2 )
  • the result of obtaining the calorific value Q is plotted as an "output difference" with a cross.
  • the first gas is methane gas
  • the first gas may be a mixed gas of different paraffinic hydrocarbon gases
  • the first gas is ( CH 4- C 2 H 6 ) Gas, which is the calculation result of a mixed gas containing hydrogen gas as an interfering gas.
  • the interference gas is only hydrogen gas, it can be calculated with high accuracy in the first embodiment described above (heat calculation formula was corrected for by equation 2 hydrogen gas alone (calculation of heat Q A according to formula 1)).
  • the first gas is (CH 4- C 2 H 6 ) gas
  • the mixed gas containing hydrogen gas as an interfering gas is also the first gas according to the calculation method of the calorific value Q according to the third embodiment. It was clarified that the same accuracy as in the case of the embodiment can be obtained.
  • the present invention may be a program capable of executing the above-described heat quantity calculation method of the present embodiment.
  • the calorific value Q can be calculated by measuring the thermal conductivity and the refractive index of the target gas containing the interfering gas that causes an error in the calorific value calculation in the paraffin-based hydrocarbon gas. That is, since the calorific value can be calculated by a known configuration (for example, a thermal conductivity meter and a refractive index meter) capable of measuring the thermal conductivity and the refractive index as a measuring means, the calorific value can be measured with a simple configuration at low cost (for example). Calculation) is possible.
  • the interfering gas is a mixed gas of hydrogen gas and another gas (at least one of nitrogen gas and carbon dioxide gas), and even if the composition (mixing ratio, concentration) of the interfering gas is unknown, the interfering gas can be used.
  • the calorific value Q can be calculated accurately by eliminating or reducing the resulting error factors.
  • FIG. 20 is a schematic view showing the first configuration of the hydrogen gas concentration calculation device 70.
  • the same components as those in the first to third embodiments are indicated by the same reference numerals, and detailed description thereof will be omitted.
  • the hydrogen gas concentration calculation device 70 of the present embodiment can calculate the hydrogen gas concentration contained in the target gas at least based on the thermal output of the target gas containing the hydrogen gas.
  • the target gas is, for example, a paraffinic hydrocarbon gas, preferably a gas containing 80 vol% or more of methane gas in addition to hydrogen gas, and may contain nitrogen gas and / or carbon dioxide gas in addition to hydrogen gas and methane gas.
  • the thermal output is, for example, thermal conductivity.
  • the hydrogen gas concentration calculation device 70 includes a thermal conductivity measuring means 13, a gas concentration calculating means 146, an output means 18, and the like, and the gas concentration calculating means 146 is based on the thermal conductivity of the target gas.
  • the configuration is the same as that of the third gas concentration calculating means 146 of the third embodiment.
  • the third gas concentration calculation means 146 is for calculating the hydrogen gas concentration X H2 by using, for example, the second method (hydrogen gas concentration calculation means), and is shown in FIG. 10 (B).
  • the concentration calculation formula or the second hydrogen gas concentration calculation formula of the formula 10B) is held, and the hydrogen gas concentration in the target gas is acquired based on these.
  • the hydrogen gas concentration calculation method by the hydrogen gas concentration calculation device 70 is as follows. For example, a target gas (a gas containing hydrogen gas having an unknown composition) circulating in the gas pipeline 11 is supplied to the hydrogen gas concentration calculation device 70 via the gas flow path 19.
  • a target gas a gas containing hydrogen gas having an unknown composition
  • a plurality of different voltages (for example, 2 or more, preferably 5 or more, preferably 10 or more) are applied to the thermal conductivity measuring means 13, and each standardized output XT. C. To get.
  • the third gas concentration (hydrogen gas concentration) calculation means 146 of the hydrogen gas concentration calculation device 70 in the fourth embodiment is configured to calculate the hydrogen gas concentration X H2 by, for example, the first method (formula 8 and formula 9). May be.
  • the calorific value and / or the hydrogen gas concentration can be calculated with a relatively simple configuration. It can be carried out.
  • FIG. 21 is a schematic diagram illustrating the configuration (second configuration) of the hydrogen gas concentration calculation device 71 of another example.
  • the hydrogen gas concentration calculation device 71 can calculate the concentration of hydrogen gas contained in the target gas at least based on the thermal output of the target gas containing hydrogen gas.
  • the target gas is, for example, a natural gas, preferably a mixed gas containing hydrogen gas, nitrogen gas and / or carbon dioxide gas in a paraffinic hydrocarbon gas.
  • the hydrogen gas concentration calculation device 71 has at least a means capable of thermal output (for example, a thermal conductivity measuring means 13), a difference calculating means 141, and a hydrogen gas concentration calculating means 149.
  • the standardized current values I 1 and I 2 are the standardized outputs XT. C.
  • the normalized current value I is in the following description, will be described as I 1, I 2, these normalized output X T. C. , XT. C1. , XT. C2. Can be replaced with.
  • the difference ⁇ I is an output difference (H 2 ) in the above embodiment, and is described as an output difference ⁇ I in the following description, but this can be replaced with an output difference (H 2).
  • the hydrogen gas concentration calculation means 149 has the following equation 14, and calculates the hydrogen gas concentration xH 2 in the target gas based on the output difference ⁇ I obtained by the difference calculation means 141. Is.
  • the hydrogen gas concentration calculation device 71 is highly convenient in that the target gas measurement means is only the thermal conductivity measuring means 13, and the hydrogen gas concentration calculation process is simple (not complicated).
  • FIG. 22 is a graph showing the calculation results of the hydrogen gas concentration calculation device 70 shown in FIG. 21, and hydrogen shown in FIG. 21 (using the formula 14) is shown for a plurality of reference gases having a clear component concentration, including hydrogen gas.
  • the result (measured H 2 concentration [vol%]) measured (calculated) by the gas concentration calculation device 70 is plotted on the vertical axis, and the clarified (actual) hydrogen gas concentration H 2 [vol%] is plotted on the horizontal axis. It is a graph.
  • the reference gas in FIG. 8A is a mixed gas similar to the reference gas in FIG. 8, that is, seven kinds of mixed gases containing hydrogen gas and nitrogen gas in different proportions in methane gas ((CH 4- H 2). -N 2 ) gas), a mixed gas containing hydrogen gas in methane gas ((CH 4- H 2 ) gas), and a mixed gas containing nitrogen gas in methane gas ((CH 4- N 2 ) gas). ..
  • the ⁇ mark is the result for (CH 4- H 2 ) gas
  • the ⁇ mark is the result for (CH 4- N 2 ) gas.
  • the solid line shows an error range of ⁇ 1% with respect to the case where the measured H2 concentration and the actual hydrogen gas concentration H2 match.
  • the reference gas shown in FIG. 22 contains the same type of gas as the reference gas of FIG. 8, but the concentration of each gas is different.
  • FIG. 23 shows an example of the concentrations (actually measured values) of the hydrogen gas and the nitrogen gas having the above ratios contained in the plurality of reference gases shown in FIG. 22 (A).
  • the concentration of methane gas is a value excluding the total concentration of hydrogen gas and nitrogen gas.
  • the nitrogen gas concentration actually contained in the target gas is often 5 vol% or less, and the carbon dioxide gas concentration is 2 vol% or less in many cases. Therefore, in the following description, the case where the concentration of nitrogen gas contained in the reference gas is 5 vol% or less and the concentration of carbon dioxide gas is 2 vol% or less will be described.
  • carbon dioxide gas ((CH 4 -H 2 -CO 2 ) gas, (CH 4 -H 2) gas, (CH 4 - In the case of CO 2 ) gas)
  • ⁇ mark (H 2 : CO 2 1:
  • FIG. 24 shows an example of the concentrations (measured values) of hydrogen gas and carbon dioxide gas having the above ratios contained in the plurality of reference gases shown in FIG. 22 (B). Further, in each reference gas, the concentration of methane gas is a value excluding the total concentration of hydrogen gas and carbon dioxide gas.
  • FIG. 22 (C) shows a reference gas ((CH 4- C 2 H 6- H 2 ) gas, (CH 4- H 2 ) gas, (CH 4- C 2 ) in which methane gas is mixed with ethane gas and / or hydrogen gas.
  • H 6 gas
  • ⁇ mark (H 2 : C 2 H 6 1: 0)
  • ⁇ mark (H 2 : C 2 H 6 3: 1)
  • ⁇ Mark (H 2 : C 2 H 6 2: 3)
  • ⁇ mark (H 2 : C 2 H 6 1: 3)
  • ⁇ mark (H 2 : C 2 H 6 1: 9)
  • FIG. 25 shows an example of the concentrations (measured values) of hydrogen gas and ethane gas in the above ratios contained in the plurality of reference gases shown in FIG. 22 (C). Further, in each reference gas, the concentration of methane gas is a value excluding the total concentration of hydrogen gas and ethane gas.
  • FIG. 26 shows an example of the concentrations (measured values) of hydrogen gas, nitrogen gas, and carbon dioxide gas having the above ratios contained in the plurality of reference gases shown in FIG. 22 (D). Further, in each reference gas, the concentration of methane gas is a value excluding the total concentration of hydrogen gas, nitrogen gas and carbon dioxide gas.
  • the hydrogen gas concentration calculating means 149 (equation 14) of the calculation result (measurement concentration of H 2) is in any case a reference gas, the more the content of nitrogen gas and / or carbon dioxide gas is increased, the actual It can be seen that the error from the hydrogen gas concentration of is large.
  • the hydrogen gas concentration calculation device 71 shown in FIG. 21 can be easily realized with a simple configuration, an error is likely to occur due to the inclusion of an interference gas (particularly nitrogen gas and / carbon dioxide gas), so that the interference gas is used. It can be said to be useful when the error is not exact or when the content ratio of nitrogen gas and / carbon dioxide gas is small.
  • an interference gas particularly nitrogen gas and / carbon dioxide gas
  • the hydrogen gas concentration calculation device 70 (hydrogen gas concentration calculation means 146 calculated using Equation 10) having the first configuration shown in FIG. 20 reduces errors due to the inclusion of such nitrogen gas and / carbon dioxide gas. It is a device that can be used. According to this, the second-order differential value (d 2 I / dV 2 , hereinafter also simply referred to as “second-order differential value of the normalized current value I”) based on the applied voltage V of the normalized current value I is used.
  • the target gas contains nitrogen gas and / or carbon dioxide gas by performing the calculation by the first hydrogen gas concentration calculation formula (formula 10A) or the second hydrogen gas concentration calculation formula (formula 10B).
  • the value of the hydrogen gas concentration calculated (measured H2 concentration [vol%]), it is possible to reduce the error between the actual hydrogen gas contained concentrations H 2 [vol%].
  • the slope dI / dV of the output-voltage function (FIG. 10A) and the applied voltage V have a proportional relationship according to the proportion of hydrogen gas. ..
  • This formula 15 shows the calculation by the above-mentioned first hydrogen concentration calculation formula (formula 10A) for calculating the hydrogen gas concentration. That is, “1 / f" (V) (10vol%) x 10 "in the equation 10 (a) is a constant, and the equation obtained by replacing this with the constant a is the equation 15.
  • FIG. 27 is a graph showing an error between the calculation result (measured H 2 concentration) by the first hydrogen concentration calculation formula (Equation 10A) and the actual hydrogen gas concentration (H 2 concentration).
  • Standardized current values when 16 different voltages V16 to V1 are applied to the heat conduction measuring means 13 of the hydrogen gas concentration calculation device 70 shown in FIG. 20 for each of a plurality of reference gases having a clear composition containing hydrogen gas.
  • the hydrogen gas concentration X H2 was determined by the formula 10A.
  • the reference gas, including its composition, is the same as that described in the graph shown in FIG. 22, and FIG. 27 (A) shows (CH 4- H 2- N 2 ) gas, (CH 4- H 2 ) gas and (CH 4-H 2) gas. This is the case of CH 4- N 2 ) gas, and the case of (B) is (CH 4- H 2- CO 2 ) gas, (CH 4- H 2 ) gas and (CH 4- CO 2 ) gas).
  • (C) is the case of (CH 4- C 2 H 6- H 2 ) gas, (CH 4- H 2 ) gas and (CH 4- C 2 H 6 ) gas), and the figure is the same. This is the case where (D) is (CH 4- H 2 ) gas and (CH 4- H 2- N 2- CO 2 ) gas.
  • FIG. 28 is a schematic diagram showing the configuration (third configuration) of yet another hydrogen gas concentration calculation device 72 according to the present embodiment.
  • This hydrogen gas concentration calculation device 72 can also calculate the concentration of hydrogen gas contained in the target gas based on at least the thermal output of the target gas containing hydrogen gas, and can be used for the thermal output of the target gas and a plurality of physical property values. Calculate the hydrogen gas concentration based on this.
  • the plurality of physical property values of the target gas are a plurality of physical property values having a predetermined correlation with the calorific value of the paraffinic hydrocarbon gas contained in the target gas, and as an example, the refractive index (proportional relationship with the calorific value) and It is the density (inversely proportional to the amount of heat).
  • the hydrogen gas concentration calculation device 72 includes, for example, a means capable of thermal output (for example, a thermal conductivity measuring means 13), a difference calculating means 141, a refractive index conversion calorific value calculating means 32, and a density converting calorific value calculation. It has means 55, a hydrogen gas concentration calculation means 150, and an output means 18.
  • the thermal conductivity measuring means 13 the difference calculating means 141, and the refractive index-converted calorific value calculating means 32 have the same configurations as those described in the above embodiment (FIG. 4, etc.), the description thereof will be omitted.
  • Density conversion heat calculation means 55 is a means for obtaining a density conversion heat Q C, for example, the resonant frequency when vibrated in the subject in gas vibrating tube made of thin-walled cylinder, the basis of the density of the target gas by utilizing the change Te, it can be used a device configuration for measuring the density conversion heat Q C of the target gas based on a change in the resonance frequency. Since the calorific value and the density of the paraffinic hydrocarbon gas are inversely proportional to each other, it can be converted into the calorific value by acquiring the density of the target gas.
  • a sound velocity measuring means sound wave transmitting sources and receiving sources arranged at both ends of the cylinder. Sound is emitted from the sound wave source toward the cylinder through which the target gas is flowing, and by measuring the time it takes for the sound to propagate in the by-product gas and reach the receiving source, the speed
  • Hydrogen gas concentration calculating means 150 the output difference ⁇ I of difference calculation means 141 to calculate the refractive index in terms of heat calculating means 32 calculated the refractive index in terms of heat quantity Q B, and density conversion heat calculation means 55 density conversion quantity Q calculated is
  • the hydrogen gas concentration xH 2 in the target gas is calculated by C and the following equation 16.
  • the formula 16 is hereinafter referred to as a "tritium concentration calculation formula”. Is.
  • the constants a, b, and c are values that are appropriately selected.
  • the hydrogen gas concentration X H2 in the target gas can be basically calculated if the output difference ⁇ I calculated by the thermal conductivity measuring means 13 and the difference calculating means 141 can be obtained. ..
  • the target gas also contains nitrogen gas and carbon dioxide gas, an error will occur in the calculation result. Therefore, if the nitrogen gas concentration X N2 and the carbon dioxide gas concentration X CO2 are known, it is possible to make appropriate corrections according to these concentrations. That is, as shown in Equation 16.1 (details will be described later), it is conceivable to add a correction term according to the nitrogen gas concentration X N2 and the carbon dioxide gas concentration X CO 2 on the right side of the equation 14. On the other hand, the composition (nitrogen gas concentration X N2 and carbon dioxide gas concentration X CO2 ) of the target gas to be actually measured is unknown.
  • the total value (actual value) of the nitrogen gas concentration X N2 and the carbon dioxide gas concentration X CO 2 is the carbon dioxide gas concentration. Only X CO2 can be approximated to the sum of the actual values by multiplying it by 1.55, and the approximate total value (total approximate concentration) of the nitrogen gas concentration X N2 and the carbon dioxide gas concentration X CO 2 is shown in Equation 17.
  • the hydrogen gas concentration X H2 can be calculated by correcting the error due to the influence of nitrogen gas and carbon dioxide gas by the above equation 16.1.
  • the hydrogen gas concentration X H2 can be calculated by correcting the error due to the influence of nitrogen gas and carbon dioxide gas by the above formula 16 (third hydrogen concentration calculation formula).
  • the third hydrogen concentration calculation formula also calculates the hydrogen gas concentration based on the relationship between the voltage applied to the thermal conductivity meter (for example, the thermal conductivity measuring means 13) and the standardized current value I. It is included in the second method of calculating the hydrogen gas concentration described above.
  • the above physical property value may be a sound velocity having a proportional relationship with the calorific value of the paraffinic hydrocarbon gas. That is, although not shown, the hydrogen gas concentration measuring device 72 may have a sound velocity converted calorific value measuring means instead of the density converted calorific value measuring means 55.
  • the sound velocity-converted heat quantity measuring means has a sound velocity measuring means (for example, a sound velocity sensor), and the calorific value of the target gas (sound velocity-converted calorific value) is calculated from the measurement result.
  • This sound velocity-converted heat quantity can be treated equivalently to the density-converted heat quantity QC described above, and the same effect as described above can be obtained.
  • FIG. 29 is a graph showing an error between the calculation result (measured H 2 concentration) by the third hydrogen concentration calculation formula (Equation 16) and the actual hydrogen gas concentration (H 2 concentration).
  • the third hydrogen concentration calculation formula (expression 16 ) was determined for each of the plurality of reference gases having a clear composition containing hydrogen gas.
  • two different types of voltages V1 and V2 were applied to the heat conduction measuring means 13 of the hydrogen gas concentration calculation device 72 shown in FIG. 28, and the obtained standardization was performed.
  • the output difference ⁇ I of the current values I1 and I2 was calculated.
  • the third hydrogen concentration calculation expression (expression 16 ) The hydrogen gas concentration X H2 was determined.
  • the results were plotted on the vertical axis, and the actually mixed hydrogen gas concentration (H 2 concentration [vol%]) was plotted on the horizontal axis.
  • the reference gas including its composition, is the same as that described in the graph shown in FIG. 22, and FIG. 29 (A) shows (CH 4- H 2- N 2 ) gas, (CH 4- H 2 ) gas and (CH 4-H 2) gas. This is the case of CH 4- N 2 ) gas, and the case of (B) is (CH 4- H 2- CO 2 ) gas, (CH 4- H 2 ) gas and (CH 4- CO 2 ) gas).
  • (C) is the case of (CH 4- C 2 H 6- H 2 ) gas, (CH 4- H 2 ) gas and (CH 4- C 2 H 6 ) gas), and the figure is the same. This is the case where (D) is (CH 4- H 2 ) gas and (CH 4- H 2- N 2- CO 2 ) gas.
  • a hydrogen gas concentration measuring device 70 (calculation of the first hydrogen concentration) shown in FIG. 20 is used for a reference gas prepared by preparing a plurality of mixed gases having a composition close to a realistic natural gas and mixing hydrogen gas having a clear concentration with them.
  • the hydrogen gas concentration X H2 was measured by the hydrogen gas concentration measuring device 72 (method using the third hydrogen concentration calculation formula (Equation 16)) shown in FIG. 28 (method using the formula (formula 10A)).
  • FIG. 30 is a table summarizing the compositions and calories of the prepared eight types of mixed gases (gas Nos. 1 to No. 8). Further, hydrogen gas of 0, 5, 10, 15, 20, 25, 30 [vol%] was mixed with these eight kinds of mixed gases, respectively, and used as a reference gas to be measured.
  • FIG. 31 shows the measurement results of the hydrogen gas concentration measuring device 70 (method using the first hydrogen concentration calculation formula (formula 10A)) shown in FIG. 20, and FIG. 31 (A) shows the measured (calculated) hydrogen gas. It is a graph which plots the concentration (measurement H 2 concentration) on the vertical axis, and plots the actual hydrogen gas concentration (H 2 concentration) on the horizontal axis, and compares the error of both. Further, FIG. (B) is the vertical axis the value of the error in the figure (A), and plotted the actual hydrogen gas concentration (H 2 concentration) on the horizontal axis, the variation of the error values by hydrogen gas concentration It is a graph to clarify. The hydrogen gas concentration on the horizontal axis is plotted on the horizontal axis as the result of measuring the substantially mixed hydrogen gas concentration with an optical interferometer, and the values planned for mixing (0, 5, 10, 15, There is a slight deviation from 20, 25, 30 [vol%]).
  • Gas No. 1 (gas mixed with hydrogen gas, the same applies hereinafter) is marked with a circle, and gas No. 2 is marked with ⁇ , gas No. 3 is marked with ⁇ , gas No. 4 is marked with ⁇ , gas No. 5 is marked with ⁇ , gas No. 6 is marked with ⁇ , gas No. 7 is marked with ⁇ , gas No. 8 is indicated by a ⁇ mark.
  • FIG. 32 is a measurement result of the hydrogen gas concentration measuring device 72 (method using the third hydrogen concentration calculation formula (Equation 16)) shown in FIG. 28, and FIG. 32 (A) is a graph corresponding to FIG. 31 (A). The graph (B) corresponds to FIG. 31 (B).
  • the hydrogen gas concentration measuring device 70 shown in FIG. 28 third hydrogen concentration calculating equation (method using Equation 16)), the measurement error for the actual hydrogen gas concentration (H 2 concentration), one of the hydrogen gas concentration Even so, it was possible to keep it within ⁇ 1 vol%, and it became clear that more accurate measurement was possible.
  • the hydrogen gas concentration measuring devices 70 and 72 are target gases containing at least hydrogen gas (particularly, a gas containing at least nitrogen gas and / or carbon dioxide gas in a paraffinic hydrocarbon gas). It is a device that calculates the concentration of hydrogen gas contained in the target gas based on at least the thermal output (for example, thermal conductivity) of the above. Further, the hydrogen gas concentration measuring method according to the present embodiment has at least a thermal output (for example, a gas containing at least a nitrogen gas and / or a carbon dioxide gas in a paraffinic hydrocarbon gas) containing at least hydrogen gas. , Thermal conductivity), this is a method of calculating the concentration of hydrogen gas contained in the target gas.
  • the hydrogen gas concentration measuring device 70 includes a thermal conductivity measuring means 13 and a hydrogen gas concentration calculating means 146, and the hydrogen gas concentration calculating means 146 is a first hydrogen concentration calculating formula (formula 10A) or a second. It has a hydrogen concentration calculation formula (formula 10B).
  • both the first hydrogen concentration calculation formula (formula 10A) and the second hydrogen concentration calculation formula (formula 10B) are on the second floor based on the voltage of the standardized output (normalized current value I) of the thermal conductivity measuring means 13. It is a calculation formula using a differential value.
  • the hydrogen gas concentration measuring method includes a step of measuring the thermal output (thermal conductivity) of the target gas when two or more different voltages are applied and acquiring a standardized current value, and a voltage of the standardized current value I. It is a method having a step of calculating the hydrogen gas concentration in the target gas based on the value of the second-order differential according to.
  • the calculation of the hydrogen gas concentration based on the value of the second derivative is a method performed by the first hydrogen gas concentration calculation formula (formula 10A) or the second hydrogen gas concentration calculation formula (formula 10B).
  • the hydrogen gas concentration measuring device 72 includes a thermal conductivity measuring means 13, a difference calculating means 141, a refractive index converting thermal power measuring means 32, a density converting thermal power measuring means 55, and a hydrogen gas concentration calculation.
  • the means 150 is provided, and the hydrogen gas concentration calculation means 150 has a third hydrogen concentration calculation formula (Equation 16).
  • the thermal output (thermal conductivity) of the target gas when two different voltages are applied is measured, and the difference between the standardized current values corresponding to the two voltages (output difference ⁇ I).
  • calculating a an output difference [Delta] I, based on the refractive index in terms of heat quantity Q B and the density conversion heat Q C, the third hydrogen gas concentration calculating equation by (equation 16) and calculating the hydrogen gas concentration of the target gas It is a method to have.
  • the present embodiment may be configured as a program capable of causing a computer to execute each step of the above hydrogen gas concentration measuring method.
  • the thermal output may be a thermal output other than thermal conductivity. Further, the speed of sound of the target gas may be used instead of the density of the target gas.
  • hydrogen gas may be added to the gas pipeline, and there is a request to confirm the amount of added hydrogen gas with a simple configuration. Further, for example, in the case of obtaining the compression coefficient of natural gas, there is also a request to separate and detect only the hydrogen gas concentration in natural gas, for example, for the purpose of correcting the calculation.
  • the thermal output (for example, thermal conductivity) of the target gas is measured.
  • the target gas measuring means can be configured only by the general thermal conductivity measuring means 13, it is possible to measure (calculate) the hydrogen gas concentration X H2 with high accuracy while being simple and inexpensive.
  • the hydrogen gas concentration calculation device 72 (hydrogen gas concentration calculation method by the third hydrogen gas concentration calculation formula (Equation 16)) shown in FIG. 28, in addition to the thermal output (for example, thermal conductivity) of the target gas.
  • the thermal output for example, thermal conductivity
  • the hydrogen gas concentration X H2 in the target gas can be calculated.
  • the target gas measuring means requires a refractive index and density (or sound velocity) measuring means in addition to the general thermal conductivity measuring means 13, but all of them are composed of a general optical interferometer, a sound velocity sensor, or the like.
  • the error due to nitrogen gas and carbon dioxide gas can be further reduced as compared with the hydrogen gas concentration measuring device 70 shown in FIG. Even if the composition of the target gas (particularly nitrogen gas concentration X N2 or carbon dioxide gas concentration X CO2 ) is unknown (without measuring these concentrations), the target gas itself can be measured in the target gas. The hydrogen gas concentration can be measured (calculated) with high accuracy.
  • X N2 , x N2 , and xN 2 all indicate nitrogen gas concentration
  • X CO2 , x CO2 , and xCO 2 all indicate carbon dioxide concentration
  • X H2 , x H2 , and xH 2 indicate. All indicate the hydrogen gas concentration.
  • target gas for example, natural gas and biogas are exemplified as the target gas, but the target gas is not limited to this, and the target gas is coke oven gas (COG) or coal gasification (changing solid coal into gaseous fuel gas).
  • COG coke oven gas
  • coal gasification changing solid coal into gaseous fuel gas.
  • naphtha gasification change naphtha to gaseous fuel gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

主に干渉ガスとして水素ガスを含む天然ガスの熱量測定を正確に行うとともに、小型化かつ低価格化を実現可能な熱量測定装置および熱量算出方法を提供する。 本発明のガスの熱量測定装置は、対象ガスの熱量を測定する熱量測定装置10であって、対象ガスの熱伝導率から得られる熱量を測定可能な熱伝導率換算熱量測定手段12を備え、対象ガスは、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものであり、熱伝導率換算熱量測定手段12は、複数の第1のガスについて熱伝導率測定手段13で測定した出力と実際の熱量の相関とを示す関係式に基づき、第2のガスによる誤差分を補正して対象ガスの熱量を算出する。

Description

熱量測定装置および熱量算出方法
 本発明は、例えば、ガスの熱量測定装置および熱量算出方法に係り、特に、誤差成分となる干渉ガスを含むパラフィン系炭化水素ガスの熱量測定装置および熱量算出方法に関する。
 従来、一般的に流通している天然ガスは、パラフィン系炭化水素ガスを主成分とし、熱量測定において誤差成分となる窒素(N)、一酸化炭素(CO)、二酸化炭素(CO)、などの干渉ガス(雑ガス)を含んでいる。
 ここで、当該天然ガスの熱量を測定する場合において、パラフィン系炭化水素ガス(例えば、メタンガス(CH),エタンガス(C)、プロパンガス(C),ブタンガス(n-C10)など)については、熱量と屈折率、および熱量と熱伝導率がそれぞれ比例関係にあるため、熱量測定が可能である。
 また、窒素(N)、一酸化炭素(CO)、二酸化炭素(CO)などの雑ガスについては、熱量と屈折率の比例関係、および熱量と熱伝導率の比例関係はいずれも有さないが、屈折率に換算した熱量、および熱伝導に換算した熱量の両者を用いて演算処理することで、熱量計算に対する影響(誤差)をほぼ除去できることが分かっている(例えば、特許文献1参照)。
特許第5308842号公報
 しかしながら、水素ガス(H)は、熱量と熱伝導率の比例関係がないため、従来の演算処理による誤差の除去もできない。したがって、パラフィン系炭化水素ガスに水素ガスを含む場合の熱量算出においては、水素ガス(ガス)の存在が大きな誤差要因となっている。
 また、窒素(N)や一酸化炭素(CO)を含むガスの場合においても、特許文献1に記載のような熱量測定装置は、熱伝導率測定手段と屈折率測定手段の両方が必要となるため、小型化や、構成の簡素化による低価格化が進まない問題があった。
 本発明は、上記の課題に鑑みてなされ、主に干渉ガスとして水素ガスを含む天然ガスの熱量測定を正確に行うとともに、小型化かつ低価格化を実現可能な熱量測定装置および熱量算出方法を提供することを目的とする。
 本発明は、対象ガスの熱量を測定する熱量測定装置であって、前記対象ガスの熱伝導率から得られる熱量を測定可能な熱伝導率換算熱量測定手段を備え、前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものであり、前記熱伝導率換算熱量測定手段は、複数の前記第1のガスについて熱伝導率測定手段で測定した出力と実際の熱量の相関とを示す関係式に基づき、前記第2のガスによる誤差分を補正して前記対象ガスの熱量を算出する、ことを特徴とする熱量測定装置である。
 また、本発明は、ガスの熱量を測定するための熱量算出方法であって、対象ガスは、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものであり、複数の前記第1のガスについて熱伝導率の測定値と実際の熱量の相関とを示す関係式に基づき、前記第2のガスによる誤差を補正して前記対象ガスの熱量を算出する、ことを特徴とする熱量算出方法である。
 また、本発明は、対象ガスの熱量を測定する熱量測定装置であって、前記対象ガスの熱伝導率から得られる熱伝導率換算熱量を測定可能な熱伝導率換算熱量測定手段と、前記対象ガスの屈折率から得られる屈折率換算熱量を測定可能な屈折率換算熱量測定手段と、熱量算出手段と、を備え、前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第3のガスおよび第4のガスが含有されたものであり、前記熱伝導率換算熱量測定手段は、複数の前記第1のガスについて熱伝導率測定手段で測定した出力と実際の熱量の相関とを示す関係式に基づき、前記第3のガスによる誤差を補正して前記熱伝導率換算熱量を算出可能に構成され、前記熱量算出手段は、前記熱伝導率換算熱量と、前記屈折率換算熱量と、前記第4のガスによる誤差を補正する係数により前記対象ガスの熱量を算出する、
ことを特徴とする熱量測定装置である。
 また、本発明は、ガスの熱量を測定するための熱量算出方法であって、前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第3のガスおよび第4のガスが含有されたものであり、複数の前記第1のガスについて熱伝導率の測定値と実際の熱量の相関とを示す関係式に基づき、前記第3のガスによる誤差を補正して前記対象ガスの熱伝導率から得られる熱量(以下、「熱伝導率換算熱量」という。)を算出するステップと、前記対象ガスについて屈折率から得られる熱量(以下、「屈折率換算熱量」という。)を取得するステップと、前記熱伝導率換算熱量と、前記屈折率換算熱量と、前記第4のガスによる誤差を補正する係数により前記対象ガスの熱量を算出するステップと、を具備することを特徴とする熱量算出方法である。
 また、本発明は、上記の熱量算出方法をコンピュータに実行させるプログラムである。
 本発明によれば、主に干渉ガスとして水素ガスを含む天然ガスの熱量測定を正確に行うとともに、小型化かつ低価格化を実現可能な熱量測定装置および熱量算出方法を提供することができる。
本発明の第1実施形態にかかる熱量測定装置の構成を示す概要図である。 本発明の第1実施形態にかかる熱量測定装置における水素ガスについての誤差の補正方法を説明するための熱量と熱伝導率計の出力の関係を示すグラフであって(A)が補正前のグラフであり、(B)が補正後のグラフである。 本発明の第1実施形態にかかる熱量測定装置における窒素ガスについての誤差の補正方法を説明するための熱量と熱伝導率計の出力の関係を示すグラフであって(A)が補正前のグラフであり、(B)が補正後のグラフである。 本発明の第2実施形態にかかる熱量測定装置の構成を示す概要図であり、(A)が全体構成を示す概要図であり、(B)が屈折率換算熱量算出手段を示す概要図である。 本発明の第2実施形態にかかる熱量測定装置における干渉ガスについての誤差の補正方法を説明するための熱量と熱伝導率計の出力の関係を示すグラフであって(A)が水素ガスについての誤差を補正前のグラフであり、(B)が補正後のグラフである。 本発明の第2実施形態にかかる熱量測定装置における干渉ガスによる誤差の補正方法を説明するためのグラフであって(A)が熱量と屈折率の関係を示すグラフであり、(B)が熱量と熱伝導率計の出力の関係を示すグラフである。 本発明の第2実施形態にかかる熱量測定装置における干渉ガスによる誤差を補正した後の実際の熱量と、熱量測定装置における測定結果の関係を示すグラフである。 本発明の第2実施形態にかかる熱量測定装置における熱伝導率測定手段の印加電圧の差異による規格化出力の出力差と水素ガスの実測濃度の関係を示すグラフである。 本発明の第2実施形態にかかる熱量測定装置における熱伝導率測定手段の規格化出力と印加電圧の関係を示すグラフである。 本発明の第3実施形態にかかる熱量測定装置の熱量の測定方法を説明する図であり(A)出力-電圧関数を示すグラフであり、(B)傾き-電圧関数を示すグラフである。 本発明の第3実施形態にかかる熱量測定装置の熱量の測定方法を説明する図であり、(A)H割合-電圧曲線を示すグラフであり、(B)出力-H割合関数を示すグラフである。 本発明の第3実施形態にかかる熱量測定装置の熱量の測定方法を説明する図であり、水素ガス濃度と規格化出力に基づく値との関係を示すグラフである。 基準ガス中の干渉ガスの混合比率の一例を示す図である。 第3実施形態に係る熱量測定装置の構成を示す概要図である。 第3実施形態に係る熱量測定装置の構成を示す概要図である。 第3実施形態において算出した熱量と実熱量の関係を示すグラフである。 第3実施形態において算出した熱量と実熱量の関係を示すグラフである。 第3実施形態において算出した熱量と実熱量の関係を示すグラフである。 第3実施形態において算出した熱量と実熱量の関係を示すグラフである。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第一の構成を示す概要図である。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第二の構成を示す概要図である。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第二の構成による測定結果を示すグラフである。 基準ガス中の干渉ガスの混合比率の一例を示す図である。 基準ガス中の干渉ガスの混合比率の一例を示す図である。 基準ガス中の干渉ガスの混合比率の一例を示す図である。 基準ガス中の干渉ガスの混合比率の一例を示す図である。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第一の構成による測定結果を示すグラフである。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第三の構成を示す概要図である。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第三の構成による測定結果を示すグラフである。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第三の構成による測定実験を説明する表である。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第一の構成による測定結果を示すグラフである。 本発明の第4実施形態にかかる水素ガス濃度算出装置の第三の構成による測定結果を示すグラフである。
 以下、本発明の実施の形態について添付図面を参照して説明する。
 <第1実施形態>
 まず、図1~図3を参照して本発明の第1実施形態について説明する。図1は、第1実施形態にかかる熱量測定装置10の構成および機能の一例を概略的に示すブロック図である。
 熱量測定装置10は、例えばガスパイプライン11内を図1の矢印方向に流通する対象ガスの熱量を測定するものであり、対象ガスの熱伝導率から得られる熱量を測定可能な熱伝導率換算熱量測定手段12と出力手段18などを有する。ガスパイプライン11と熱伝導率換算熱量測定手段12とは、ガス流路19により接続され、ガスパイプライン11中の対象ガスが熱伝導率換算熱量測定手段12に供給される。熱伝導率換算熱量測定手段12は、例えば、防爆性容器50内に配設される。
 ここで、本実施形態の熱量測定装置10において測定の対象となるガス(対象ガス)とは、例えばガス田から産出されたばかりの天然ガスやバイオガスなどであり、具体的には、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものである。より詳細には、第1のガスは、例えばその熱量と、熱伝導率および屈折率とが特定の対応関係(具体的には、熱伝導率は熱量と反比例関係、屈折率は熱量と比例関係)にあるパラフィン系炭化水素ガス(例えば、メタンガス(CH),エタンガス(C)、プロパンガス(C),ブタンガス(n-C10)などのガス)であり、第2のガスは、その熱量と熱伝導率および屈折率と特定の対応関係を有さない水素ガス(H)ガス、窒素(N)ガスおよび二酸化炭素(CO)ガスのうちいずれか一つである。
 熱伝導率換算熱量測定手段12は、熱伝導率測定手段13を有し、基準となる複数の第1のガスについて予め取得される熱伝導率測定手段で測定した出力と実際の熱量の相関とを示す関係式に基づき、第2のガスによる誤差分を補正して対象ガスの熱量を算出する。熱伝導率換算熱量測定手段12は、例えば、熱伝導率測定手段13と、熱量測定の機能を実現するための補正手段14および換算熱量算出手段15を有する。
 熱伝導率測定手段13は、外部装置(電源装置など)17から出力される信号(熱伝導率測定手段13に印加される電圧)によって対象ガスの熱伝導率を測定可能な従来公知の熱伝導率式熱量計である。
 補正手段14は、差分算出手段141と補正出力値算出手段142を有し、対象ガスの熱量算出に際し、第2のガスが存在することによる誤差分を補正する機能を有する。
 換算熱量算出手段15は、上記の熱伝導率測定手段13の出力と実際の熱量の相関とを示す関係式に基づき、対象ガスの熱量を取得(算出)する機能を有する。第1のガス(パラフィン系炭化水素ガス)のみからなる対象ガスの場合、熱伝導率測定手段13で測定した出力と実際の熱量は所定の相関を有するが、第1のガスに第2のガス(干渉ガス)が含まれると、それによる誤差によって当該相関から外れた値となる。そこで、補正手段14によって、熱伝導率測定手段13で測定した出力を補正し、当該補正した値に基づいて、換算熱量算出手段15が対象ガスの熱量を算出する。
 なお図示は省略するが、熱量測定装置10は、既知の構成であるデータ伝送路、演算手段、制御手段、記憶手段などを有し、これらと熱伝導率換算熱量測定手段12の各手段(機能)が協働して対象ガスの測定および演算処理を行う。
 また、算出された熱量は、出力手段18を介して外部に出力可能に構成される。出力手段18は、例えば表示手段や印刷手段、あるいは外部との通信により所定のデータを出力(送信)可能な送信手段である。また、熱量測定装置10は、外部機器と所定のデータの送受信が可能な通信手段を別途備えてもよい。
 図2を参照して、第2のガスが含まれることによる誤差の補正について説明する。同図は、複数種の基準となるガス(基準ガス)の熱伝導率測定手段13の出力と実際の熱量の関係を示すグラフであり、同図(A)が第2のガスが含まれることによる誤差の補正前のグラフであり、同図(B)が補正後のグラフである。縦軸が、例えばガスクロマトグラフを用いた分析によって得られた各種基準ガスの熱量[MJ/Nm](以下、「熱量真値」ともいう。)であり、横軸が、各種基準ガスをそれぞれ熱伝導率測定手段13で測定した出力結果である。ここでは第2のガスが水素ガスである場合を例示している。
 「基準ガス」とはいずれもメタンガスに他の一の成分を異なる割合で添加した混合ガスであり、組成(濃度、混合比)と熱量真値が明らかなガスをいう。添加する他の一の成分は、それぞれエタンガス、プロパンガス、ブタンガスのパラフィン系炭化水素ガスと、水素ガスであり、メタンガスの濃度は、100vol%~80vol%、他の成分の濃度は、0vol%~20vol%である。なお、同図においては、メタンガスの濃度が100vol%のガス(純メタンガス)について熱伝導率測定手段13で測定した出力が「0」となり、出力と熱量真値とがほぼ線形の関係で示されるように、熱伝導率測定手段13の出力を規格化(正規化)している。すなわち、同図における横軸の熱伝導率計出力とは、このように規格化(正規化)された熱伝導率測定手段13の出力XT.C.であり、本実施形態ではこれを「規格化出力XT.C.」、または単に「出力XT.C.」という場合もある。同図において、規格化出力XT.Cが「0」の点から離れる(増加または減少する)ほど、メタンガスの濃度が2.5vol%刻みで減少し、添加される成分の濃度が増加することを意味する。
 同図(A)は、これらの複数種類の基準ガスについて、熱伝導率測定手段13への印加電圧を0.5Vにした場合の熱伝導率測定手段13の出力(規格化出力)XT.Cと、熱伝導率測定手段13への印加電圧を1.0Vにした場合の熱伝導率測定手段13の出力(規格化出力)XT.Cと、それぞれの熱量真値をプロットしたものである。
 具体的に、△印のプロットが、印加電圧が1.0Vの場合のメタンガスとエタンガスの混合ガス(CH-C)の結果であり、この場合、横軸の出力XT.Cが「0」(純メタンガス)から増加する方向に、メタンガスの濃度が2.5vol%刻みで少なくなる(メタンガス97.5vol%-エタンガス2.5vol%、メタンガス95vol%-エタンガス5vol%、メタンガス92.5vol%-エタンガス7.5vol%…)混合ガスが示される。
 また、▲印のプロットが、印加電圧が0.5Vの場合のメタンガスとエタンガスの混合ガス(CH-C)の結果であり、横軸の出力XT.Cが「0」(純メタンガス)から増加する方向に、メタンガスの濃度が2.5vol%刻みで少なくなる(メタンガス97.5vol%-エタンガス2.5vol%、メタンガス95vol%-エタンガス5vol%、メタンガス92.5vol%-エタンガス7.5vol%…)混合ガスが示される。
 同様に、□印のプロットが印加電圧1.0Vの場合のメタンガスとプロパンガスの混合ガス(CH-C)、■印のプロットが印加電圧0.5Vの場合のメタンガスとプロパンガスの混合ガス(CH-C)の結果であり、◇印のプロットが印加電圧1.0Vの場合の、メタンガスとブタンガスの混合ガス(CH-C10)、◆印のプロットが印加電圧0.5Vの場合の、メタンガスとブタンガスの混合ガス(CH-C10)の結果である。
 また、〇印のプロットが印加電圧1.0Vの場合の、メタンガスと水素ガスの混合ガス(CH-H)、●印のプロットが印加電圧0.5Vの場合の、メタンガスと水素ガスの混合ガス(CH-H)の結果である。水素ガス(干渉ガス)を添加した場合は、横軸の出力XT.Cが「0」(純メタンガス)から減少する方向に、メタンガスの濃度が2.5vol%刻みで少なくなる(メタンガス97.5vol%-水素ガス2.5vol%、メタンガス95vol%-水素ガス5vol%、メタンガス92.5vol%-水素ガス7.5vol%…)混合ガスが示される。
 同図(A)に示すように、パラフィン系炭化水素ガスのみからなる基準ガスの場合は、ガスの成分の違いによらず、メタンガスに添加される成分が増加するほど熱伝導率測定手段13の出力XT.Cおよび熱量真値は増加する。一方、メタンガスに干渉ガス(水素ガス)が添加された基準ガス((CH-H)ガス)は、水素ガスの成分が増加するほど熱伝導率測定手段13の出力XT.Cおよび熱量真値は減少することが分かった。
 さらに、パラフィン系炭化水素ガスのみからなる基準ガスの場合は、ガスの成分の違いによらず、概ね熱伝導率測定手段13への印加電圧の違いによる出力XT.Cの差異はない(少ない)一方、水素ガスを含む基準ガス((CH-H)ガス)の場合は、出力XT.Cに差異が生じ(出力差が生じ)、且つ当該出力差が水素ガスの濃度に対して線形的であることが分かった。
 これらのことから、本願出願人は、メタンガスに水素ガスが混合された対象ガスについて、含有される水素ガスの濃度が不明であっても、水素ガスによる誤差を補正して当該対象ガスの熱量を算出することが可能であると考え、本願発明を成し得た。
 熱量測定装置10(例えば、熱伝導率換算熱量測定手段12)は、パラフィン系炭化水素ガスのみからなる基準ガスについての、熱伝導率測定手段13による出力XT.Cと熱量真値との相関を示す関係式(図2に実線で示す線形の関係式)を予め取得して記憶手段に保持する。当該関係式は、以下の式1で示され、以下この関係式を「熱量算出式」という。
Figure JPOXMLDOC01-appb-M000001
である。
 図2に〇印および●印で示すように水素ガスを含む基準ガスの場合には、プロットがこの熱量算出式の直線から外れるため、補正手段14はプロットが熱量算出式の直線に乗るように、補正手段14によって熱伝導率測定手段13の出力XT.Cを補正する。詳細には、補正手段14は、或る一つの対象ガスについて、熱伝導率測定手段13に異なる電圧を印加して測定した出力XT.Cの差分(出力差)を演算する差分算出手段141と、差分に基づいて設定される補正式により対象ガスの補正出力値を算出する補正出力値算出手段142を有する(図1参照)。
 差分算出手段141は、熱伝導率測定手段13に第1の電圧(例えば、1.0V)を印加して得た第1の出力と、第2の電圧(例えば、0.5V)を印加して得た第2の出力の差分(以下これを「出力差」という。)を演算する。
 補正出力値算出手段142は、出力差に基づく補正式により、第1の電圧を印加時の熱伝導率測定手段13の出力XT.C(第1の出力の測定結果)を補正する。補正式は、第2のガスの種類に応じて設定され、熱量測定装置10(例えば、熱伝導率換算熱量測定手段12)の記憶手段に保持される。例えば、第2のガスが水素ガスの場合の補正出力値(以下、「補正出力値(H)」という)を求める補正式は、以下の式2で示される。
Figure JPOXMLDOC01-appb-M000002
である。
 水素ガスを含む基準ガスについて、補正出力値(H)を規格化出力XT.Cとして横軸にプロットした結果が、図2(B)である。この補正により、水素ガスを含む場合の誤差が補正され、水素ガスを含む基準ガス((CH-H)ガス)のプロットが熱量算出式(式1)の直線上に乗ることになる。つまり実際の対象ガスの測定においては、換算熱量算出手段15が、補正出力値(H)と式1の熱量算出式(同図(B)に直線で示す線形の関係式)に基づき、補正出力値(H)を熱量算出式の出力XT.Cに代入することで対象ガスの熱量Qを算出する。算出された熱量は、出力手段18を介して出力可能に構成される。
 次に、本実施形態の熱量算出方法について説明する。まず、予め、各種基準ガスのうち、複数のパラフィン系炭化水素ガスのみからなる基準ガス(メタンガスに他のパラフィン系炭化水素ガスを、それぞれ異なる割合で添加した混合ガス)について熱伝導率測定手段13による測定値(出力XT.C)と実際の熱量の相関とを示す関係式(熱量算出式(式1))を取得する。具体的に、第1のガスは、例えば、メタンガスとエタンガス濃度を異ならせた複数の(CH-C)ガス、メタンガスとプロパンガスの濃度を異ならせた複数の(CH-C)ガス、メタンガスとブタンガスの濃度を異ならせた複数の(CH-C10)ガスである。
 ここで、他の成分の濃度は例えば、0vol%~20vol%であり、2.5vol%刻みで変化させる(メタンガスの濃度は、例えば、100vol%~80vol%)。
 これらの複数の第1のガスについて、例えばガスクロマトグラフを用いた分析によって得られたそれぞれの混合ガスの熱量真値と、熱伝導率測定手段13で測定した出力結果を取得する。そして、メタンガスの濃度が100vol%のガス(純メタンガス)の熱伝導率測定手段13で測定した出力が「0」となり、出力と熱量真値とがほぼ線形の関係で示されるように、熱伝導率測定手段13の出力を規格化(正規化)し、両者の相関を示す熱量算出式(式1)を取得する(図2(A)の実線参照)。
 次に、測定動作中においては、例えばガスパイプライン11内を流通する対象ガス(例えば、水素ガスを含むメタンガス)をガス流路を介して熱伝導率換算熱量測定手段12に供給する。これにより当該熱伝導率換算熱量測定手段12において熱量算出式(上記の式1)に基づき、第2のガス(水素ガス)による誤差を補正して対象ガスの熱量を算出する。この熱量は、熱伝導率から得られる熱量であり、熱伝導率換算熱量ともいえる。
 具体的には、熱伝導率測定手段13に第1の電圧(例えば、1.0V)を印加して対象ガスを測定し、第1の出力を取得する。次に、熱伝導率測定手段13に第2の電圧(例えば、0.5V)を印加して同じ対象ガスを測定し、第2の出力を取得する。
 次に、第1の出力と第2の出力の差分(出力差)を算出する。そして、第2のガスの種類ごとに設定された補正式(水素ガスの場合は、上記式2の補正式)によって、対象ガスの補正出力値(H)(水素ガスによる誤差を補正した後の熱伝導率測定手段13の規格化出力XT.C)を算出する。そして、当該補正出力値(H)を熱量算出式(式1)の規格化出力XT.Cに代入し、対象ガスの熱量Qを算出する(図2(B)参照)。
 以上、第2のガス(干渉ガス)が水素ガスの場合を例示したが、第2のガスは窒素ガスあるいは二酸化炭素ガスであっても同様に実施できる。
 図3は、第2のガスが窒素ガスである場合において、第2のガスが含まれることによる誤差の補正について説明する図であり、図2に対応する熱伝導率測定手段13の出力結果と熱量真値の関係を示すグラフである。同図(A)が各種基準ガスに第2のガスが含まれることによる誤差の補正前のグラフであり、同図(B)が補正後のグラフである。図2における水素ガスを窒素ガスに替えた以外は同様であり、グラフ中の▽印のプロットが、印加電圧が1.0Vの場合のメタンガスに窒素ガスが含有された基準ガス((CH-N)ガス)の結果であり、▼印が印加電圧が0.5Vの場合の基準ガス((CH-N)ガス)である。
 この場合も、水素ガスの場合と同様であるので詳細な説明は省略するが、図3(A)に基づいて、各種基準ガスのうち、複数のパラフィン系炭化水素ガスのみからなる基準ガス(メタンガスに他のパラフィン系炭化水素ガスを、それぞれ異なる割合で添加した混合ガス)について熱伝導率測定手段13の測定値(出力XT.C)と実際の熱量(熱量真値)の相関とを示す関係式(熱量算出式(式1))を取得する。
 そして、(CH-N)ガスについて、熱伝導率測定手段13への印加電圧の違いによる出力差と熱量真値の相関に基づく補正式により、熱伝導率測定手段13の出力XT.Cを補正する。例えば、第2のガスが窒素ガスの場合の補正出力値(以下、「補正出力値(N)」という)を求める補正式は、以下の式3で示される。
Figure JPOXMLDOC01-appb-M000003
である。
 この補正出力値(N)を横軸にプロットすることで、窒素ガスを含む合の誤差が補正され、窒素ガスを含む基準ガス((CH-N)ガス)のプロットが熱量算出式(式1)の直線上に乗ることになる。すなわち、実際の窒素ガスを含む対象ガスの場合、補正出力値(N)を熱量算出式のXT.C.に代入することで対象ガスの熱量Qが算出できる。
 また、図示は省略するが、上記の水素ガスおよび窒素ガスの場合と同様の手法により第2のガスが二酸化炭素ガスの場合の補正出力値(以下、「補正出力値(H)」という)を求める補正式は、以下の式4で示される。
Figure JPOXMLDOC01-appb-M000004
である。
 つまり、本実施形態の熱量測定装置10は、その記憶手段に上述の式2~式4で示される補正式の少なくともいずれかを保持している。
 このように本実施形態の熱量測定装置10によれば、対象ガスがパラフィン系炭化水素ガスを主成分とし、干渉ガスとして水素ガス、窒素ガスおよび二酸化炭素ガスのいずれかが含まれる対象ガスについて、簡素な構成で高精度に熱量の測定が可能となる。例えば、その熱量が熱伝導率および屈折率と特定の対応関係を有さない干渉ガス(ここでは、水素ガス)を含有するものであっても、干渉ガスが存在することによる誤差を排除して高精度で熱量の測定ができる。
 また特に、干渉ガスとして水素ガスを含む場合においては、従来では熱伝導率に基づく熱量測定はほぼ不可能であったが、本実施形態によれば熱伝導率に基づく測定が可能となる。
 さらに、窒素や二酸化炭素を含む場合においても、熱伝導率計のみの測定結果で熱量を算出できるので、装置の小型化、構成の簡素化による低価格化を実現できる。
 また、上記の式2~式4のすべてを保持する構成とすることで、干渉ガスとして水素ガス、窒素ガスおよび二酸化炭素ガスをそれぞれに含む対象ガスについての熱量の測定が可能となる。
 以上、本実施形態では、第1のガスを主成分とし、第2のガスを含有する対象ガスの測定の場合を例示したが、本実施形態の熱量測定装置10は、第1のガス(パラフィン系炭化水素ガス)のみを含有するガスについても測定できる。またこれら以外に、コークス炉ガス(COG)、石炭ガス化、ナフサガス化等の対象ガス(いずれも第2のガスとして水素ガスおよび窒素ガスを含むガス)についても測定できる。
 <第2実施形態>
 図4~図9を参照して、本発明の第2実施形態について説明する。第2実施形態における測定の対象ガスも天然ガスやバイオガスなどであるが、第1実施形態が、1種の干渉ガスを含む対象ガスの測定を行うものであるのに対し、第2実施形態は、2種の干渉ガス(特にそのうちの1種は水素ガス)を含む対象ガスについてその影響(誤差)を低減して熱量を測定可能なものである、つまり、対象ガスは、第1のガス(パラフィン系炭化水素ガス)を主成分とし、測定誤差成分となる第3のガス(水素ガス)と、第4のガス(窒素ガスまたは二酸化炭素ガスの少なくともいずれか)が含有されたガスである。具体的には、例えば、メタンガスと水素ガスおよび窒素ガスの混合ガス(CH-H-N)ガス)であり、あるいは、メタンガスと水素ガスおよび二酸化炭素ガスの混合ガス(CH-H-CO)ガス)、さらにはメタンガスと水素ガス、窒素ガスおよび二酸化炭素ガスの混合ガス(CH-H-N-CO)ガス)の熱量測定が可能である。
 図4は、第2実施形態の熱量測定装置30の概要を示す図であり、同図(A)が全体構成の概要を示すブロック図であり、同図(B)が屈折率換算熱量測定手段32を示す概要図である。以下の説明において、第1実施形態と同一構成は同一符号で示し、その説明は省略する。
 同図(A)に示すように、熱量測定装置30は、例えばガスパイプライン11内を同図(A)の矢印方向に流通する対象ガスの熱量を測定するものであり、対象ガスの熱伝導率から得られる熱伝導率換算熱量を測定可能な熱伝導率換算熱量測定手段31と、対象ガスの屈折率から得られる屈折率換算熱量を測定可能な屈折率換算熱量測定手段32と、熱量算出手段33と、出力手段18などを有する。ガスパイプライン11と熱伝導率換算熱量測定手段31、屈折率換算熱量測定手段32はそれぞれ、ガス流路19により接続され、ガスパイプライン11中の対象ガスが熱伝導率換算熱量測定手段31および屈折率換算熱量測定手段32にそれぞれ供給される。熱伝導率換算熱量測定手段31、屈折率換算熱量測定手段32および熱量算出手段33は例えば、防爆性容器50内に配設される。
 熱伝導率換算熱量測定手段31は、例えば、熱伝導率測定手段13と、熱伝導率換算熱量測定の機能を実現するための補正手段14および換算熱量算出手段(熱伝導率換算熱量算出手段)15を有し、複数の第1のガスについて熱伝導率測定手段13で測定した出力XT.Cと実際の熱量の相関とを示す関係式に基づき、第3のガスおよび第4のガスによる誤差を補正して熱伝導率換算熱量Qを算出可能に構成される。つまり、熱量測定装置30(熱伝導率換算熱量測定手段31)はその記憶手段に少なくとも第3のガス(この例では水素ガス)および第4のガス(例えば、窒素ガス)についての誤差を補正可能な補正式を少なくとも保持している。それ以外の熱伝導率換算熱量測定手段31の構成は、第1実施形態の熱伝導率換算熱量測定手段12と同様である。
 補正手段14は、差分算出手段143(141)と補正出力値算出手段142を有し、対象ガスの熱伝導率換算熱量算出に際し、干渉ガス(第3のガス(水素ガス)および第4のガス)が存在することによる誤差分を補正する機能を有する。
 熱伝導率換算熱量算出手段15は、熱伝導率測定手段13で測定した出力XT.Cと実際の熱量の相関とを示す関係式(上記の式1で示す熱量算出式)に基づき、対象ガスの熱伝導率換算熱量を取得(算出)する機能を有する。つまり、補正手段14によって、対象ガスに干渉ガスが含まれることによる誤差を補正した値(補正出力値)と、熱伝導率から得られる熱量算出式(式1)基づいて、対象ガスの熱伝導率換算熱量Qを取得(算出)する。ここで、第2実施形態では熱伝導率から得られる熱量算出式(図2(B)に直線で示す線形の関係式(式1))を第1熱量算出式という。
 屈折率換算熱量測定手段32は、外部装置(電源装置など)34から出力される信号(印加される電圧)によって例えば対象ガスと、空気などの標準ガスとの光の屈折率の差異を干渉縞の変位として検出し、この干渉縞の変位量に基づいて対象ガスの屈折率換算熱量Qを測定する構成の装置(屈折率式熱量計)である。
 同図(B)に屈折率換算熱量測定手段32を構成する装置の具体的な一例を示す。屈折率換算熱量測定手段32は例えば、対象ガスを導入するための対象ガス用セル部322および例えば空気などの標準ガスを充填するための標準ガス用セル部323A、323Bが区画されてなるチャンバ321と、光源324からの光を分割する平行平面鏡325と、当該平行平面鏡325によって分割され、チャンバ321を通過した光を反射することによってその進行方向を変更し、再度チャンバ321を通過させた後に平行平面鏡325上において重ね合わせ、干渉縞を生じさせることのできるよう、調整されて配置されたプリズム328と、平行平面鏡325上で重ね合わせられた合成光(干渉光)を受光する干渉縞検出手段326とを備えてなる構成のものがある。さらに、合成光を反射する平面鏡327、合成光を集光するための集光レンズ329を備え、集光レンズ329の焦点位置に干渉縞検出手段326が配置されている。また、一点鎖線矢印は、光源324からの光が干渉縞検出手段326に受光されるまでの経路を示す。
 同図(A)を参照して熱量算出手段33は、熱伝導率換算熱量Qと、屈折率換算熱量Qと、第4のガス(窒素ガス、二酸化炭素ガスの少なくともいずれか)による誤差を補正する係数、および後述の熱量を算出する式(以下、「第2熱量算出式」という。)により対象ガスの熱量を算出する。
 第2実施形態においても図示は省略するが、熱量測定装置30は、既知の構成であるデータ伝送路、演算手段、制御手段、記憶手段などを有し、これらと熱伝導率換算熱量測定手段12の各手段(機能)が協働して対象ガスの測定および演算処理を行う。
 また、算出された熱量は、出力手段18を介して外部に出力可能に構成される。出力手段18は、例えば表示手段や印刷手段、あるいは外部との通信により所定のデータを出力(送信)可能な送信手段である。また、熱量測定装置30は、外部機器と所定のデータの送受信が可能な通信手段を別途備えてもよい。
 図5を参照して、干渉ガス(第3のガスおよび第4のガス)が含まれることによる誤差の補正について説明する。同図は、各種基準ガスについての熱伝導率測定手段13の出力XT.Cと熱量真値の関係を示すグラフであり、同図(A)が各種基準ガスに1種の干渉ガスが含まれることによる誤差の補正前のグラフであり、同図(B)が干渉ガスが水素ガスのみである場合に、水素ガスが含まれることによる誤差を補正(第1実施形態の水素ガスによる誤差を補正する差分算出手段141を有する補正手段14によって補正)した後のグラフである。縦軸が、例えばガスクロマトグラフを用いた分析によって得られた各種基準ガスの熱量真値[MJ/Nm]であり、横軸が、熱伝導率測定手段13で各種基準ガスを測定した出力(規格化出力)XT.Cである。
 すでに述べているように各種基準ガスとはいずれもメタンガスに他の一の成分を異なる割合で添加した混合ガスであり、組成(濃度)と熱量真値が明らかなガスである。添加する他の一の成分は、それぞれエタンガス、プロパンガス、ブタンガスのパラフィン系炭化水素ガスと、干渉ガスとしての水素ガス、窒素ガス、および二酸化炭素ガスであり、メタンガスの濃度は、100vol%~80vol%、他の成分の濃度は、0vol%~20vol%である。
 ここで干渉ガスが二酸化炭素ガス以外のデータについては、第1実施形態の図2および図3の再掲となる。すなわち、同図(A)は、干渉ガスが水素ガスのみである場合の図2(A)および、干渉ガスが窒素ガスのみである場合の図3(A)のデータを重ねて記載したものであり、さらに干渉ガスが二酸化炭素ガスのみである場合のデータを追記している。また同図(B)の水素ガスについては図2(B)と同様である。以下、干渉ガスが二酸化炭素ガスのみのデータ以外は第1実施形態と同様であり、重複する説明は省略する。
 二酸化炭素ガスを含む基準ガスについて具体的に説明する。☆印のプロットが、印加電圧が1.0Vの場合のメタンガスと二酸化炭素ガスの混合ガス(CH-CO)の結果であり、この場合、横軸の出力XT.Cが「0」(純メタンガス)から増加する方向に、メタンガスの濃度が2.5vol%刻みで少なくなる(メタンガス97.5vol%-二酸化炭素ガス2.5vol%、メタンガス95vol%-二酸化炭素ガス5vol%、メタンガス92.5vol%-二酸化炭素ガス7.5vol%…)混合ガスが示される。
 また、★印のプロットが、印加電圧が0.5Vの場合のメタンガスと二酸化炭素の混合ガス(CH-CO)の結果であり、横軸の出力XT.Cが「0」(純メタンガス)から増加する方向に、メタンガスの濃度が2.5vol%刻みで少なくなる(メタンガス97.5vol%-二酸化炭素ガス2.5vol%、メタンガス95vol%-二酸化炭素ガス5vol%、メタンガス92.5vol%-二酸化炭素ガス7.5vol%…)混合ガスが示される。
 第1実施形態の熱量測定装置10は、パラフィン系炭化水素ガスに、水素ガス、窒素ガスおよび二酸化炭素ガスから選択される1種の干渉ガスが含まれる対象ガスの場合に干渉ガスの誤差を補正したうえで熱量を測定可能に構成されている。これに対し本実施形態の熱量測定装置30は、熱伝導率換算熱量測定手段31に加えて屈折率換算熱量測定手段32を備えることで、水素ガスおよびそれと異なる種類の干渉ガスを含む対象ガスについて干渉ガスの誤差を補正したうえで熱量を測定可能となる。
 具体的には、水素ガスの誤差を排除する(水素ガスのみの場合の規格化出力XT.Cを補正する)ために、規格化出力XT.Cの出力差<0の場合に、上述の式2を用いて規格化出力XT.Cを補正する。一方、規格化出力XT.Cの出力差>0の場合は、規格化出力XT.Cの補正を行わない(補正出力値としては以下の式5を用いる)。
Figure JPOXMLDOC01-appb-M000005
 上記の式2および式5は、熱量測定装置30(例えば、熱伝導率換算熱量測定手段31)の記憶手段に保持される。
 そしてこれらの各種基準ガスについて、補正出力値を横軸にプロットした結果が、同図(B)である。同図(B)に直線で示す線形の関係式は、干渉ガスとして水素ガスのみが含まれることによる誤差を排除した、熱伝導率から得られる熱量算出式(式1で示す第1熱量算出式)である。
 図6(A)は、屈折率換算熱量測定手段32により上述の各種基準ガスを測定した結果であり、縦軸が屈折率換算熱量Qであり、横軸が屈折率である。同図に示すように、パラフィン系炭化水素ガスのみからなる混合ガス、および干渉ガスとして水素ガスのみを含む混合ガスは、組成(濃度)によらず、屈折率換算熱量と屈折率とが同図に直線で示す線形の関係(比例関係)にある。一方、窒素ガスのみ、および二酸化炭素ガスのみを含む混合ガスの場合には、線形の関係から外れている。
 同図(B)は、第1熱量算出式を保持する(第1実施形態の水素ガスの誤差が補正される差分算出手段141を有する)熱伝導率換算熱量測定手段31により上述の各種基準ガスを測定した結果であり、図5(B)のグラフに示す線形の関係(直線の傾き)が、図6(A)の線形の関係(直線の傾き)と揃うように横軸(規格化出力XT.C)を調整したグラフである。
 同図(A)、同図(B)により、窒素ガスを含有するガスについて熱伝導率換算熱量測定手段31で測定した場合の誤差と、屈折率換算熱量測定手段32で測定した場合の誤差との比を求めることができる。また、二酸化炭素ガスを含有するガスについて熱伝導率換算熱量測定手段31で測定した場合の誤差と、屈折率換算熱量測定手段32で測定した場合の誤差との比を求めることができる。そして、これらの測定誤差の比が所定の関係を有することから、その関係を利用して干渉ガスとして窒素ガスのみを含む場合(水素ガスを含まない、あるいは水素ガスも含むがその誤差が補正されている場合)、および二酸化炭素ガスのみを含む場合(水素ガスを含まない、あるいは水素ガスも含むがその誤差が補正されている場合)について、誤差を補正することができる。
 より具体的には、熱量測定装置10の記憶手段に保持される以下の式6で示される第2熱量算出式において、対象ガスの組成に対応した適宜の補正係数CFを用いることにより、熱量算出手段33が、水素ガス以外の干渉ガス(窒素ガスおよび/または二酸化炭素ガス)が存在することによる誤差を補正して対象ガスの熱量Qを算出する。この、窒素ガスおよび/または二酸化炭素ガスが存在することによる誤差の補正に関しては、本願出願人による特許(特許第5308842号)に詳細に記載している。
Figure JPOXMLDOC01-appb-M000006
である。
 補正係数CFの値は、2.91≦補正係数CF≦3.75であり、より好適には、2.96≦補正係数CF≦3.15である。
 この第2熱量算出式(式6)に上述の範囲の補正係数CFを適用することにより、従来は誤差の補正ができなかった(困難であった)水素ガスが干渉ガスとして含まれる場合であっても、その誤差による影響を低減して対象ガスの熱量Qを測定(算出)できる。
 図7は、組成が明らかな複数の基準ガスについて、本実施形態の熱量測定装置30(第1実施形態の差分算出手段141を有する)による測定結果を検証するグラフである。同図の縦軸が、例えばガスクロマトグラフを用いた分析によって得られた熱量真値[MJ/Nm]であり、横軸が熱量測定装置30による測定値(測定熱量)である。グラフ中の実線が式6で示される第2熱量算出式である。
 同図において、(CH-C)ガスを△印、(CH-C)ガスを□印、(CH-C10)ガスを◇印、(CH-H)ガスを〇印、(CH-N)ガスを▽印、(CH-CO)ガスを☆印、(CH-H-N)ガスを▼印、(CH-H-CO)ガスを★印、(CH-H-C)ガスを▲印のプロットで示している。
 この結果からも明らかなように、本実施形態の熱量測定装置30によれば、パラフィン系炭化水素ガスを主成分として干渉ガスとして水素ガスを含み、さらに窒素ガスおよび二酸化炭素ガスのいずれかを含む混合ガス(例えば、(CH-H-Nガス))または、パラフィン系炭化水素ガスに、干渉ガスとして水素ガスおよび二酸化炭素ガスが混合されたガス(例えば、(CH-H-N)ガス)について、それぞれの組成が不明であっても干渉ガスによる誤差の影響を低減して熱量Qを測定できる。
 なお、本実施形態は、水素ガスによる誤差成分を排除して(水素ガスが含まれないものとして)熱量測定を行うことができるものであるので、水素ガスを含まない対象ガスについても当然に測定は可能である。例えば、図7に示すように、干渉ガスとして、窒素ガスおよび二酸化炭素ガスの少なくともいずれかを含む対象ガス(具体的には例えば、メタンガスと窒素ガスの混合ガス((CH-Nガス))、メタンガスと二酸化炭素ガスの混合ガス(CH-CO)ガス)、図示は省略するが、メタンガスと窒素ガスおよび二酸化炭素ガスの混合ガス(CH-N-CO)ガス)のいずれかについても熱量の測定は可能である。
 また、同図に示すように2種のパラフィン系炭化水素ガスに干渉ガスとして水素ガスを含む対象ガス(具体的には例えば、メタンガスとエタンと水素ガスの混合ガス((CH-H-Cガス)では、水素ガスによる誤差を補正して正確な熱量測定が可能である。
 次に、第2実施形態の熱量算出方法について説明する。例えばガスパイプライン11内を流通する対象ガス(例えば、水素ガスおよび窒素ガスを含むメタンガス)をガス流路19を介して熱伝導率換算熱量測定手段31に供給する。これにより当該熱伝導率換算熱量測定手段31において第1熱量算出式に基づき、第3のガス(水素ガス)による誤差を補正して対象ガスの熱伝導率換算熱量Qを算出する。
 具体的には、熱伝導率測定手段13に第1の電圧(例えば、1.0V)を印加して対象ガスを測定し、第1の出力を取得する。次に、熱伝導率測定手段13に第2の電圧(例えば、0.5V)を印加して同じ対象ガスを測定し、第2の出力を取得する。
 次に、第1の出力と第2の出力の差分(出力差)を算出する。そして、上記式2で示す補正式によって、対象ガスの補正出力値(水素ガスによる誤差を補正した後の熱伝導率測定手段13の規格化出力)を算出する。そして、当該補正出力値を規格化出力値として第1熱量算出式(式1)の出力XT.Cに代入し、対象ガスの熱伝導率換算熱量Qを算出する。
 また、対象ガスをガス流路19を介して屈折率換算熱量測定手段32に供給し、対象ガスについて屈折率換算熱量Qを取得する。そして、得られた屈折率換算熱量Qと、熱伝導率換算熱量Qと上記の式6に示す第2熱量算出式により、対象ガスの熱量Qを算出する。
 <第3実施形態>
 図8~図18を参照して本発明の第3実施形態について説明する。第3実施形態は、第2実施形態の構成においてさらに干渉ガスの誤差による影響を低減するものであり、第1実施形態および第2実施形態の応用例であるので、これらと重複する部分については詳細な説明を省略する。
 図7に示すように、干渉ガスとして水素ガスとそれ以外の1種のガスを含む場合、その誤差の影響を低減させることは可能であるが、第2熱量算出式を示す線形の直線に対して依然ずれが生じている。これは、図5(A)に示すように、各種基準ガスにおいて水素ガスを含む場合と、それ以外(窒素ガスおよび二酸化炭素ガス)の場合とでは、規格化出力XT.Cの出力差が負と正の関係にあり、互いに打ち消し合う状態にあることによると考えられる。
 図8は、干渉ガスとして水素ガスと窒素ガスを含む基準ガスの規格化出力XT.Cの差に対する、窒素ガスの影響を示すグラフである。基準ガスは、干渉ガスとして水素ガスと窒素ガスが混合されたメタンガス((CH-H-N)ガス(メタンガス濃度は80vol%))であり、当該基準ガスについて水素ガスと窒素ガスの濃度をそれぞれ変化させ、1.0Vと0.5Vの電圧を印加した場合の規格化出力XT.Cの差(出力差)を求めたものである。色付きの〇印が、水素ガスと窒素ガスの濃度が異なる(CH-H-N)ガスについての規格化出力XT.Cの差であり、窒素ガスの含有割合が低い方から、水素ガスと窒素ガスの割合(H:N)で3:1、H:N=1:1、H:N=1:3、H:N=1:9、についての結果を、窒素ガスの含有割合が低い方から、含有割合が高くなるにつれて濃い色になるようにプロットしている。また、黒〇印が干渉ガスとして窒素ガスのみが混合されたメタンガス((CH-N)ガス、窒素ガス濃度:20vol%,メタンガス濃度:80vol%、すなわちH:N=0:10)についての規格化出力XT.Cの差である。また、白〇印が干渉ガスとして水素ガスのみが混合されたメタンガス((CH-H)ガス、水素ガス濃度:20vol%,メタンガス濃度:80vol%、すなわちH:N=10:0)についての規格化出力XT.Cの差である。また、縦軸が出力差[mA]であり、横軸が水素ガスの濃度[vol%]である。
 干渉ガスが水素ガスのみの場合、すなわち、白〇印を結ぶ実線(これを以下、「水素ガス濃度-出力差関係式」という。)を基準にすると、色付き〇印で示すように窒素ガスを含む場合は規格化出力XT.Cの差が実線から外れる。この実線からのズレは窒素ガスが混在することによる誤差成分になる。つまり、干渉ガスとして水素ガスと窒素ガスが含まれる場合、それらの濃度によって基準ガスの規格化出力XT.Cに差が生じ、また窒素ガスの濃度によって誤差成分に差が生じることが明らかとなった。
 また、図9は、基準ガス((CH-H-N)ガス)について、熱伝導率測定手段13への印加電圧と、規格化出力XT.C.の関係を示す図であり、干渉ガスとしての水素ガスと窒素ガスの割合を変化させた複数(ここでは6種)の基準ガスについて、それぞれ印加電圧を変化させて規格化出力XT.C.を測定した。縦軸が規格化出力XT.C.であり、横軸が印加電圧である。なお、水素ガスと窒素ガスの混合ガスの濃度(HガスとNガスの合計の濃度)は、いずれの基準ガスも10vol%である。同図(A)が水素ガスと窒素ガスの割合(H:N)=1:9の結果であり、同図(B)がH:N=1:3の結果であり、同図(C)がH:N=1:1の結果であり、同図(D)がH:N=3:2の結果であり、同図(E)がH:N=9:1の結果である。また、同図(F)がH:N=10:0の結果であり、すなわち、(CH-H)ガス(水素ガス濃度:10vol%,メタンガス濃度:90vol%)についての結果である。
 これらから、熱伝導率測定手段13への印加電圧と、(CH-H-N)ガスの規格化出力XT.C.の関係は、水素ガスと窒素ガスの割合によって変化し、印加電圧と(CH-H-N)ガスの規格化出力XT.C.の関係と、水素ガスおよび窒素ガスの割合との間には相関があることが分かった。具体的に、(CH-H-N)ガスの規格化出力XT.C.は、水素ガスおよび窒素ガスのそれぞれの濃度の関係式で以下の式7のように表せる。
Figure JPOXMLDOC01-appb-M000007
である。
 したがって、干渉ガス中の水素ガス濃度および窒素ガス濃度が分かれば、例えば図8において色付きの〇印で示される(CH-H-N)ガスのそれぞれについて窒素ガスの影響を排除して、水素ガス濃度-出力差関係式に一致または近似させるよう、補正を行うことができる。また、当該補正によって、熱伝導率換算熱量測定手段12においては、式2で示す補正式(干渉ガスとして水素ガスのみを含む場合の補正式)を用いて熱量を算出することができる。
 なお、図8および図9は、干渉ガスとして水素ガスと窒素ガスが混在する対象ガス((CH-H-N)ガス)についての関係を示しているが、干渉ガスとして水素ガスと二酸化炭素ガスが混在する対象ガス((CH-H-CO)ガス)の場合、および、干渉ガスとして水素ガス、窒素ガスおよび二酸化炭素ガスが混在する対象ガス((CH-H-N-CO)ガス)の場合も同様であることが分かった。すなわち、干渉ガス中の水素ガス、および窒素ガスおよび/または二酸化炭素ガスの濃度が分かれば、窒素ガスおよび/または二酸化炭素ガスの影響を排除して、水素ガス濃度-出力差関係式に一致または近似させるよう、補正を行うことができる。また、当該補正によって、熱伝導率換算熱量測定手段12においては、式2で示す補正式(干渉ガスとして水素ガスのみを含む場合の補正式)を用いて熱量を算出することができる。
 これらの知見から、本願出願人は、干渉ガスとして水素ガス、窒素ガスおよび二酸化炭素ガスを含む対象ガスであって、干渉ガスの組成や含有量が不明なガスについて、干渉ガスの濃度を算出する方法を検討し、以下の手法を見出した。この手法は、まずある関係に基づき水素ガス濃度を算出し、当該算出した水素ガス濃度に基づき、窒素ガス濃度および二酸化炭素ガス濃度(これらの合計値)を算出するものである。水素ガス濃度の算出には例えば、以下の第一の方法と第二の方法とがある。なお、以下に説明する各ガス濃度の算出において、窒素ガスおよび二酸化炭素ガスのいずれかを含まない場合には、それらの濃度の項目(窒素ガス濃度XN2、および/または二酸化炭素ガス濃度XCO2)を「0」として計算すればよい。
 ≪水素ガス濃度算出の第一の方法≫
 水素ガス濃度算出の第一の方法は、水素ガスがある濃度である確率から求める手法である。まず、基準ガスとしてメタンガスに、少なくとも水素ガスを含有する混合ガス(具体的には、(CH-H-N)ガス、(CH-H-CO)ガス、(CH-H-N-CO)ガス)について、水素ガスの濃度(指標となる濃度)aiを0~20vol%(0.5vol%刻み、41通り)に変化させた複数のガスを準備し、それぞれの熱伝導率および屈折率を測定する。そして以下の式8により水素ガスが各濃度aiである確率を求める演算パラメータw、bを取得する。これにより、水素ガス濃度が当該各濃度aiである確率を求める式(以下の式9)が得られる。ここで、式8、式9は例えば機械学習により得ることができるが、式8、式9の導出方法は機械学習によるものに限らない。
Figure JPOXMLDOC01-appb-M000008
である。
 ある水素ガスの濃度を算出する場合は、当該水素ガスについて、例えば、熱伝導率測定手段13、屈折率換算熱量測定手段32などにより熱伝導率および屈折率(入力信号xi)を測定し、式8、式9により当該水素ガス濃度が上記の41通りの各濃度(指標となる濃度)aiのそれぞれである確率を求める。そしてそれぞれの濃度aiにその確率f(ai)を乗じ合算することで対象の水素ガス濃度XH2が算出できる。
 ≪水素ガス濃度算出の第二の方法/第1水素濃度算出式≫
 水素ガス濃度算出の第二の方法は、熱伝導率計(例えば、熱伝導率測定手段13)への印加電圧と規格化出力XT.C.の関係に基づき、水素濃度算出式により求めるものである。
 図10は、(CH-H-N)ガス中の水素ガスの割合と、熱伝導率測定手段13への印加電圧、および(CH-H-N)ガスの規格化出力XT.C.の関係を示すグラフである。同図(A)は、図9(A)~同図(F)を1図にプロットし直し、2次曲線にフィッティングしたものであり、縦軸が規格化出力XT.C.、横軸が印加電圧[V]である。以下、同図(A)に示す6種の(CH-H-N)ガスの曲線(または直線)を「出力-電圧関数」という。同図(B)は、同図(A)に示す出力-電圧関数の傾き(曲線の場合は接線の傾き、以下、単に「傾きdXT.C./dV」という。)を縦軸、印加電圧[V]を横軸にプロットしたグラフである。同図(B)に示すように、傾きdXT.C./dVと印加電圧は、水素ガスの割合に応じた比例関係を有することが分かる。この図10(B)の実線で示される関係式を以下、「傾き-電圧関数」という。
 同図から明らかなように、6種の(CH-H-N)ガスそれぞれの出力-電圧関数の極値点(ピーク、傾きdXT.C./dVが0となる点)は、水素ガスの割合が高くなるほど、印加電圧の高電圧側にシフトすることが分かった。
 図11(A)は、図10(A)に示す出力-電圧関数につき、6種の(CH-H-N)ガスそれぞれの極値点(傾きdXT.C./dVが0となる点)の水素ガスの割合(H割合)を縦軸に、極値点の印加電圧[V]を横軸にプロットしたグラフである。この曲線を以下、「H割合-電圧曲線」という。
 また、図11(B)は、図10(B)に示す6種の(CH-H-N)ガスについて、傾き-電圧関数のそれぞれの直線の傾きを縦軸に、水素ガス割合(水素ガスと窒素ガスの合計(H+N)ガス)の濃度が10vol%の場合)を横軸にプロットし、近似直線(以下、「出力-H割合関数」という。)を求めたものである。図10(B)に示す「『傾き-電圧関数の直線」の傾き』とは、傾きdXT.C./dVの微分値(dT.C./dV)、すなわち規格化出力XT.C.の印加電圧Vによる2階微分の値であり、以下単に「規格化出力XT.C.の2階微分値」と称する場合もある。図11においては、(CH-H-N)ガスの結果を〇印でプロットしている。また、メタンガスに水素ガスと二酸化炭素ガスを含有する混合ガス(CH-H-CO)ガスと、メタンガスに水素ガスと窒素ガスおよび二酸化炭素ガスを含有する混合ガス(CH-H-N-CO)ガス)のそれぞれについても、図9~図10を用いて説明した6種の(CH-H-N)ガスの場合と同様に基準ガスを準備して水素ガスの割合との関係を求め、前者を△印でプロットし、後者を■印でプロットした。
 図11(B)に示すように、基準ガス((CH-H-N)ガス、(CH-H-CO)ガス、(CH-H-N-CO)ガス)はいずれも、規格化出力XT.C.の2階微分値と水素ガスの割合において近似曲線で示すような相関関係がある。つまり、基準ガスについてのこれらの関係に基づき、少なくとも水素ガスを干渉ガスとして含み、且つ当該干渉ガス濃度が不明な対象ガス(メタンガス)、具体的には、干渉ガス濃度が不明な(CH-H)ガス、(CH-H-N)ガス、(CH-H-CO)ガス、(CH-H-N-CO)ガス)について、水素ガス濃度を算出できることが分かった。なお、(CH-H)ガスについては、図9~図11に示す(CH-H-N)ガスのデータ(図11は〇印で示すデータ)のうち、H割合が「1」の基準ガスのデータに基づき、対象ガスの水素ガス濃度を算出可能である。
 以下、例えば水素ガス濃度、および水素ガスと窒素ガスの合計の濃度が不明な任意の対象ガス((CH-H-N)ガス)の場合を例に説明する。図11(A)に示すH割合-電圧曲線によれば、任意の(CH-H-N)ガスについて、規格化出力XT.C.を求めれば、出力-電圧関数の極値点(傾きdXT.C./dVが0となる点)に基づき、水素ガスと窒素ガスの合計(H+N)ガス)の濃度が10vol%の場合における水素ガスの割合を算出することができる。
 そして、図11(B)の出力-H割合関数に基づき、算出した水素ガスの割合(横軸)に対応する規格化出力XT.C.の2階微分値((H+N)ガス)の濃度が10vol%の場合)が算出できる。
 したがって、任意の(CH-H-N)ガス中の水素ガス濃度XH2は、以下の式10Aで示す第1水素濃度算出式により算出できる。
Figure JPOXMLDOC01-appb-M000009
である。
 なお、この結果得られる水素ガス濃度は、基準ガス((CH-H-N)ガス)中の(H+N)ガスの濃度に比例するので、基準ガス中の(H+N)ガス濃度がN倍になった場合には、式10の算出結果(水素ガス濃度)をN倍する。
 ≪水素ガス濃度算出の第二の方法/第2水素濃度算出式≫
 次に第二の方法の他の例について説明する。規格化出力XT.C.の2階微分値を用いる水素濃度算出式として以下の式10Bで示す第2水素濃度算出式を利用してもよい。
Figure JPOXMLDOC01-appb-M000010
である。
 式10Bは、図12に示す、規格化出力XT.C.の2階微分値とH2濃度の関係から導かれる。図12(A)は、メタンガスに、干渉ガスとして水素ガスと窒素ガスを含み、これらの割合(既知の値)を変化させた複数(ここでは8種)の基準ガス((CH-H-N)ガス)について、それぞれ規格化出力の2階微分値と、含まれる水素ガス濃度の関係をプロットしたものである。縦軸が、水素ガス濃度[vol%]であり、横軸が規格化出力の2階微分値である。
 水素ガスと窒素ガスの混合ガスの濃度(HガスとNガスの合計の濃度)は、8種の割合毎にそれぞれ異なり、詳細は図13に示した。図13は、複数種(例えば8種)の割合(組成)毎に調整した、Hガス濃度および、HガスとNガスの合計の濃度(実測値)の一覧である。これらの基準ガスを用いて規格化出力の2階微分値を算出し、水素ガス濃度との関係をプロットした結果が同図(A)である。水素ガスと窒素ガスの8種の割合(H:N)は、H:N=1:0、H:N=9:1、H:N=3:1、H:N=3:2、H:N=1:1、H:N=2:3、H:N=1:3、H:N=1:9、でありこれらの結果を、窒素ガスの含有割合が低い方から、含有割合が高くなるにつれて薄い色になるようにプロットしている。
 図12(A)の結果から、(CH-H-N)ガスにおいては、干渉ガスである水素ガスと窒素ガスの割合(組成)に拘わらず、規格化出力の2階微分値と水素ガス濃度に相関があることが分かった。
 また、図12(B)は、メタンガスに、水素ガスと二酸化炭素ガスを含む基準ガス((CH-H-CO)ガス:□印のプロット)、水素ガスとエタンガスを含む基準ガス((CH-H-C)ガス:△印のプロット)、水素ガスと窒素ガスと二酸化炭素ガスを含む基準ガス((CH-H-N-CO)ガス:×印のプロット)、をそれぞれ含む基準ガスについて、図12(A)の場合と同様に測定した結果を示す。つまり、それぞれの基準ガスについて干渉ガスの割合(組成:既知の値)を複数種((CH-H-N)ガスは8種、(CH-H-CO)ガスは5種、(CH-H-C)ガスは4種、(CH-H-N-CO)ガスは2種)に変化させ、規格化出力の2階微分値を横軸に、含まれる水素ガス濃度[vol%]を縦軸にプロットした。それぞれの基準ガスにおける干渉ガス(混合ガス)の濃度は、各干渉ガスの8種の割合(組成)毎にそれぞれ異なり、詳細は図13に示した。また、図12(B)において同図(A)の結果も併記している。すなわち、メタンガスに、干渉ガスとして水素ガスのみを含む基準ガス((CH-H)ガス)は、同図(A)のH2:N2=1:0の結果であり、同図(B)において●印でプロットし、干渉ガスとして水素ガスと窒素ガスを含む基準ガス((CH-H-N)ガス)の結果は、同図(B)において○印でプロットした。
 図12(B)の結果から、干渉ガスの種類、および割合(組成)に拘わらず、規格化出力の2階微分値と水素ガス濃度に相関があることが分かった。
 ここで、式10Bの係数(α、β,γ)の具体例は、α=-6.3284、β=16.903、γ=0である。つまり、式10Bの一例は以下の通りである。
     XH2= -6.3284×f"(V)+16.903×f"(V)   (式10B)
 このように、第二の方法は、式10Aに示す水素濃度算出式(第1水素濃度算出式)または、式10Bに示す水素濃度算出式(第2水素濃度算出式)を用いて水素ガス濃度を算出するものであり、以下、式10Aおよび式10Bを水素ガス濃度算出式と総称する場合がある。
 以上、第一の方法、あるいは第二の方法によって算出した水素ガス濃度XH2に基づき、上記式2で示す補正出力値(H)を更に(追加で)補正する。具体的には、以下の式11によって、上記の式2に示す補正出力値(H)の算出式における「出力差(H)」を補正する。
Figure JPOXMLDOC01-appb-M000011
である。
 なお、この補正は、補正後出力差y<補正前の出力差(式2の当初の「出力差(H)」)の場合のみ行う。すなわち、式11の補正後の出力差yが、式2の「出力差(H)」より小さい場合のみ、式2の「出力差(H)」として式11の補正後の出力差yを用いる。
 既に述べたように、水素ガス濃度算出式(式10A,式10B)によれば、干渉ガスとして少なくとも水素ガスを含み、さらに窒素ガスおよび/または二酸化炭素ガスを含む対象ガスの水素ガス濃度を算出することができる。そして当該対象ガスの窒素ガスおよび/または二酸化炭素ガスの濃度は以下のように算出可能である。
 式2における「出力差(H)」(以下、「補正前出力差(H)」という)と、式11の補正後の出力差y(以下、「補正後出力差(H)」という)、から以下の式12により窒素ガスと二酸化炭素ガスの合計濃度(XN2+XCO2)を計算する。
 なお、窒素ガスおよび/または二酸化炭素ガスを含まない場合は、XN2濃度および/またはXCO2濃度は「0」とする。
Figure JPOXMLDOC01-appb-M000012
である。
 さらに、窒素ガスと二酸化炭素ガスの合計濃度(XN2+XCO2)に基づいて以下の式13にて決定される追加補正量を、式2の出力値(H)に加算する。
Figure JPOXMLDOC01-appb-M000013
である。
 このようにして、算出した干渉ガス中の水素ガス、および窒素ガスおよび/または二酸化炭素ガスの濃度に基づき、式2を補正することで、窒素ガスおよび/または二酸化炭素ガスの影響を排除して、水素ガス濃度-出力差関係式に一致または近似させることができる。このように、式11~式13の補正を反映させた式2の補正出力値(H)を、以下「追加補正出力値(H)」という。そして、追加補正出力値(H)を規格化出力の値として第1熱量算出式のXT.C.に代入することで、熱伝導率換算熱量Qを算出することができる。
 図14および図15は、第3実施形態の具体例として、熱量測定装置35の概要を示すブロック図である。図14は、熱量測定装置35の全体構成を示す概要図であり、図15は、主に補正手段14による補正処理について説明するための概要図である。なお、第2実施形態と同一構成は同一符号で示しその説明を省略する。
 熱量測定装置35は、熱伝導率換算熱量測定手段31と、屈折率換算熱量測定手段32と、熱量算出手段33と、出力手段18などを有する。第3実施形態における補正手段14は、さらに第3ガス濃度算出手段146と、追加補正出力値算出手段147とを有する。
 図15示すように、第3ガス濃度算出手段146は、対象ガス中の第3のガスの濃度(以下、「第3のガス濃度」という。)を取得する。具体的には、式8および式9を保持し、これを用いる第一の方法に基づき、第3のガス濃度(ここでは、水素ガス濃度XH2)を算出する。あるいは、式10、図10(B)に示す傾き-電圧関数、図11(A)に示すH割合-電圧曲線、図11(B)に示す出力-H割合関数を保持し、これらを用いる第二の方法に基づき、第3のガス濃度(ここでは、水素ガス濃度XH2)を算出する。
 追加補正出力値算出手段147は、補正出力値算出手段142が有する補正出力値(Hを算出する補正式(式2)の出力値(H)および出力差(H)を、追加で補正する。より詳細には、追加補正出力値算出手段147は、第一の方法または第二の方法によって算出した第3のガス濃度(算出した水素ガス濃度XH2)に基づき、式11により、式2の出力差(H)を補正するy(補正後の出力差(H))を求める。また、式12により対象ガス中の第4のガス(ここでは、窒素ガスおよび/または二酸化炭素ガス)の濃度(以下、「第4のガス濃度」という。)を算出する。そして、第3のガス濃度と第4のガス濃度に基づいて式13により追加補正量を算出する。
 そして追加補正出力値算出手段147は、y(補正後の出力差(H))を式2の出力差(H)に代入し、追加補正量を式2の出力値(H)に代入して、式2の(当初の)補正出値(H)を更に補正した追加補正出力値(H)を取得する。
 補正手段14は、この追加補正出力値(H)によって、熱伝導測定手段13の測定結果(規格化出力XT.C.実測値)を補正する。
 熱伝導率換算熱量算出手段15は、補正後の規格化出力XT.C.を用いて(追加補正出力値(H)を規格化出力の値として第1熱量算出式のXT.C.に代入し)式1により熱伝導率換算熱量Qを算出する。また、第2実施形態と同様に屈折率換算熱量Qを算出し、熱量算出手段33は、熱伝導率換算熱量Qと、屈折率換算熱量Qと、第4のガス(窒素ガス、二酸化炭素ガスの少なくともいずれか)による誤差を補正する係数CF、および第2熱量算出式(式6)により対象ガスの熱量Qを算出する。
 第3実施形態による熱量算出方法は、具体的には以下の通りである。まず、第2実施形態と同様に、式1に示す熱量算出式(第1熱量算出式)を取得する。
 次に、測定動作中においては、例えばガスパイプライン11内を流通する対象ガス(例えば、水素ガスおよび窒素ガスを含むメタンガス)をガス流路19を介して熱伝導率換算熱量測定手段31に供給する。これにより当該熱伝導率換算熱量測定手段31において第1熱量算出式に基づき、第3のガス(水素ガス)による誤差を補正して対象ガスの熱伝導率換算熱量Qを算出する。
 具体的には、熱伝導率測定手段13に第1の電圧(例えば、1.0V)を印加して対象ガスを測定し、第1の出力(実測値)を取得する。次に、熱伝導率測定手段13に第2の電圧(例えば、0.5V)を印加して同じ対象ガスを測定し、第2の出力(実測値)を取得する。
 次に、補正手段14において、第1の出力と第2の出力の差分(出力差)を算出する。そして、上記式2で示す補正式によって、対象ガスの補正出力値(H)(水素ガスによる誤差を補正した後の熱伝導率測定手段13の規格化出力XT.C.)を算出する。
 その後、第3ガス濃度算出手段146において対象ガス中の第3のガス濃度(例えば、水素ガス濃度XH2)を算出する。当該算出した水素ガス濃度XH2に基づき、式2の出力差(H)を補正する補正値yを取得する(式11)。また、水素ガス濃度XH2に応じて、対象ガス中の第4のガス濃度(例えば窒素ガス濃度および二酸化炭素ガス濃度)を算出し(式12)、各種濃度に基づき追加補正量(式13)を取得する。必要に応じて(y<式2の当初の出力差(H)の場合のみ)式11の補正値yを式2の出力差(H)に代入する。また、式13の追加補正量を式2の出力値(H)に代入し、得た追加補正出力値(H)を第1熱量算出式(式1)のXT.C.として、対象ガスの熱伝導率換算熱量Qを算出する。
 また、対象ガスをガス流路19を介して屈折率換算熱量測定手段32に供給し、対象ガスについて屈折率換算熱量Qを取得する。
 そして、得られた屈折率換算熱量Qと、熱伝導率換算熱量Qと上記の式6に示す第2熱量算出式により、対象ガスの熱量Qを算出する。
 図16から図18は、第3実施形態において、第一の方法(例えば機械学習を用いる方法)により水素ガス濃度H2を算出し、熱量Qを計算した結果を示すグラフである。
 図16は、成分濃度が明らかな干渉ガス((H+N)ガス))を含む基準ガスについて、第3実施形態の第一の方法(例えば、機械学習を用いる方法)によって水素ガス濃度XH2を算出し、熱量Qを求めた結果(計算熱量)と、実測した熱量(実熱量)を比較したグラフである。検証用のデータとして、ここではメタンガスに水素ガスと窒素ガスとをそれぞれ異なる割合で含有する6種の混合ガス(CH-H-N)ガス)を準備し、第3実施形態の熱量算出手段33により算出した熱量Q(計算熱量)[MJ/m]を縦軸、実測した熱量(実熱量)[MJ/m]を横軸とする座標系に示した。〇印が計算熱量の結果である。また破線が、計算熱量と実熱量が一致する場合(実線)に対する±1%の誤差範囲を示している。併せて、追加補正出力値(H2)によって窒素ガスを含むことに起因する誤差を補正する以前の(水素ガスのみを含みことに起因する誤差を補正する)式2による補正出力値(H2)に基づき、熱量Qを求めた結果を「出力差」として×印にてプロットしている。
 同図(A)が水素ガスと窒素ガスの割合(H:N)=1:9の結果であり、同図(B)がH:N=1:3の結果であり、同図(C)がH:N=1:1の結果であり、同図(D)がH:N=3:2の結果であり、同図(E)がH:N=9:1の結果であり、同図(F)がH:N=10:0の結果である。同図から明らかなように、本実施形態によれば、(CH-H-N)ガスの熱量Qを実測値との誤差±1%以内の高い精度で算出できる。
 図17は、成分濃度が明らかな干渉ガス((H+CO)ガス))を含む基準ガスについて、第3実施形態の第一の方法による熱量Qの算出結果(計算熱量)と、実測した熱量(実熱量)を比較したグラフである。検証用のデータとして、ここではメタンガスに水素ガスと二酸化炭素ガスとをそれぞれ異なる割合で含有する5種の混合ガス(CH-H-CO)ガス)を準備し、第3実施形態の熱量算出手段33により算出した熱量Q(計算熱量)[MJ/m]を縦軸、実測した熱量(実熱量)[MJ/m]を横軸とする座標系に示した。〇印が計算熱量の結果である。また破線が±1%の誤差範囲を示している。併せて、追加補正出力値(H2)によってCOガスを含むことに起因する誤差を補正する以前の(水素ガスのみを含みことに起因する誤差を補正する)式2による補正出力値(H2)に基づき、熱量Qを求めた結果を「出力差」として×印にてプロットしている。
 同図(A)が水素ガスとCOガスの割合(H:CO)=2:3の結果であり、同図(B)がH:CO=1:1の結果であり、同図(C)がH:CO=3:2の結果であり、同図(D)がH:CO=9:1の結果である。なお、同図においては、COガスの濃度が実質的な範囲である4vol%以下のデータについてプロットしている。また、H:CO=1:3のデータについては、図示を省略しているが、「出力差」と算出結果にほとんど差異はなかった。同図から明らかなように、本実施形態によれば、(CH-H-CO)ガスについても実測値との誤差を低減して熱量Qを算出できる。
 図18は、成分濃度が明らかな干渉ガス((H+N+CO)ガス))を含む基準ガスについて、第3実施形態の第一の方法による熱量Qの算出結果(計算熱量)と、実測した熱量(実熱量)を比較したグラフである。検証用のデータとして、ここではメタンガスに水素ガス、窒素ガスおよび二酸化炭素ガスとをそれぞれ異なる割合で含有する2種の混合ガス(CH-H-N-CO)ガス)を準備し、第3実施形態の熱量算出手段33により算出した熱量Q(計算熱量)[MJ/m]を縦軸、実測した熱量(実熱量)[MJ/m]を横軸とする座標系に示した。〇印が計算熱量の結果である。また破線が±1%の誤差範囲を示している。併せて、追加補正出力値(H2)によってCOガスを含むことに起因する誤差を補正する以前の(水素ガスのみを含みことに起因する誤差を補正する)式2による補正出力値(H2)に基づき、熱量Qを求めた結果を「出力差」として×印にてプロットしている。同図においても、COガスの濃度が実質的な範囲である4vol%以下のデータについてプロットしている。
 同図(A)が水素ガス、窒素ガスおよびCOガスの割合(H:N:CO)=6:1:1の結果であり、同図(B)がH:N:CO=2:1:1の結果である。同図から明らかなように、本実施形態によれば、干渉ガスとして水素ガス、窒素ガスおよびCOガスを含む混合ガス(CH-H-N-CO)ガス)についても、実測値との誤差を低減して熱量Qを算出できる。
 図19は、成分濃度が明らかな干渉ガス(Hガス))を含む基準ガスについて、第3実施形態による熱量Qの算出結果(計算熱量)と、実測した熱量(実熱量)を比較したグラフである。検証用のデータとして、ここではメタンガスに、エタンガスと水素ガスを異なる割合で含有する3種の混合ガス(CH-C-H)ガス)を準備し、第3実施形態の熱量算出手段33により算出した熱量Q(計算熱量)[MJ/m]を縦軸、実測した熱量(実熱量)[MJ/m]を横軸とする座標系に示した。〇印が計算熱量の結果である。また破線が±1%の誤差範囲を示している。併せて、追加補正出力値(H)によって窒素ガスを含むことに起因する誤差を補正する以前の(水素ガスのみを含みことに起因する誤差を補正する)式2による補正出力値(H)に基づき、熱量Qを求めた結果を「出力差」として×印にてプロットしている。
 同図(A)が水素ガスとエタンガスの割合(H:C)=3:1の結果であり、同図(B)がH:C=2:3の結果であり、同図(C)がH:C=1:3の結果である。
 上述の実施形態では第1のガスがメタンガスである場合を例に説明したが、第1のガスは異なるパラフィン系炭化水素ガスの混合ガスであってもよく、同図は第1のガスが(CH-C)ガスであり、干渉ガスとして水素ガスを含む混合ガスの計算結果である。干渉ガスとして水素ガスのみであるので、上述の第1実施形態(式2による水素ガスのみの補正を行った熱量算出式(式1)による熱量Qの算出)で高い精度で計算できる。同図によれば、第1のガスが(CH-C)ガスであり、干渉ガスとして水素ガスを含む混合ガスについても、第3実施形態による熱量Qの計算方法により、第1実施形態の場合と同等の精度が得られることが明らかとなった。
 なお、本発明は、上述した本実施形態の熱量算出方法を実行可能なプログラムであってもよい。
 本実施形態によれば、パラフィン系炭化水素ガスに、熱量算出の誤差要因となる干渉ガスを含む対象ガスについて、熱伝導率と屈折率を測定することにより、熱量Qを算出することができる。すなわち、測定手段として熱伝導率および屈折率の測定が可能な既知の構成(例えば、熱伝導率計および屈折率計)によって熱量算出が可能となるため、低コストでシンプルな構成で熱量測定(算出)が可能となる。
 また、特に干渉ガスが水素ガスと他のガス(窒素ガスおよび二酸化炭素ガスの少なくともいずれか)の混合ガスであり、干渉ガスの組成(混合比、濃度)が不明であっても、干渉ガスに起因する誤差要因を排除または減少させて、熱量Qを精度よく算出することができる。
 <他の実施形態(第4実施形態)/水素ガス濃度算出装置(第一の構成)>
 図20を参照して本発明の他の実施形態について説明する。図20は、水素ガス濃度算出装置70の第一の構成を示す概略図である。第1実施形態~第3実施形態と同一構成要素は同一符号で示し、その詳細な説明は省略する。
 本実施形態の水素ガス濃度算出装置70は、少なくとも水素ガスを含む対象ガスの熱的出力に基づき、当該対象ガス中に含まれる水素ガス濃度を算出可能である。対象ガスは、水素ガスの他に例えばパラフィン系炭化水素ガス、好適にはメタンガスを80vol%以上含むガスであり、水素ガスとメタンガス以外に、窒素ガスおよび/または二酸化炭素ガスを含んでもよい。
 熱的出力は例えば、熱伝導率である。具体的に、水素ガス濃度算出装置70は、熱伝導率測定手段13と、ガス濃度算出手段146と、出力手段18などを有し、対象ガスの熱伝導率に基づいてガス濃度算出手段146は、第3実施形態の第3ガス濃度算出手段146と同様の構成である。より具体的には、第3ガス濃度算出手段146は、例えば、第二の方法を用いて水素ガス濃度XH2を算出するもの(水素ガス濃度算出手段)であり、図10(B)に示す傾き-電圧関数、図11(A)に示すH割合-電圧曲線、図11(B)に示す出力-H割合関数および、式10の水素ガス濃度算出式(式10Aの第1水素ガス濃度算出式、または式10Bの第2水素ガス濃度算出式)を保持し、これらに基づき、対象ガス中の水素ガス濃度を取得する。
 水素ガス濃度算出装置70による水素ガス濃度算出方法は、以下の通りである。例えばガスパイプライン11内を流通する対象ガス(組成が不明な水素ガスを含むガス)をガス流路19を介して水素ガス濃度算出装置70に供給する。
 そして、熱伝導率測定手段13に異なる複数(例えば2種以上、好ましくは5種以上、望ましくは10種以上)の電圧を印加し、それぞれの規格化出力XT.C.を取得する。
 その後、図10(B)に示す傾き-電圧関数、図11(A)に示すH割合-電圧曲線、図11(B)に示す出力-H割合関数および式10(式10Aまたは式10B)に基づき、対象ガス中の水素ガス濃度を算出する。
 なお、第4実施形態における水素ガス濃度算出装置70の第3ガス濃度(水素ガス濃度)算出手段146は、例えば第一の方法(式8、式9)により水素ガス濃度XH2を算出する構成であってもよい。
 近年、天然ガス由来の都市ガス等に対し、水素ガスを導入する試みが進められている。本発明によれば、天然ガスに任意の濃度で水素ガス、バイオガス、コークス炉ガスなどが導入された混合ガスについて、比較的簡素な構成で、熱量の算出および/または水素ガス濃度の算出を行うことができる。
 <水素ガス濃度算出装置>
 以下、図21~図32を参照して、水素ガス濃度算出装置について更に説明する。上記の実施形態と同一構成要素は同一符号で示し、その詳細な説明は省略する。まず、図21は、他の例の水素ガス濃度算出装置71の構成(第二の構成)を説明する概要図である。
 水素ガス濃度算出装置71は、少なくとも水素ガスを含む対象ガスの熱的出力に基づき、当該対象ガス中に含まれる水素ガス濃度を算出可能である。対象ガスは、例えば天然ガスであり、好適には、パラフィン系炭化水素ガスに水素ガスと、窒素ガスおよび/または二酸化炭素ガスを含む混合ガスである。具体的に、水素ガス濃度算出装置71は少なくとも、熱的出力が可能な手段(例えば熱伝導率測定手段13)と、差分算出手段141と、水素ガス濃度算出手段149を有する。
 差分算出手段141は、上記の実施形態と同様である。すなわち、差分算出手段141は、熱伝導率測定手段13に第1の電圧V1を印加して得た出力(電流値)を規格化(正規化)したもの(規格化電流値I)と、第2の電圧V2を印加して得た第2の出力(電流値)を規格化(正規化)したもの(規格化電流値I)との差分ΔI(=I-I)を演算する手段である。なお、規格化電流値I,Iは上記の実施形態における規格化出力XT.C.であり、以下の説明においては規格化電流値I、I,Iとして記載するがこれらを規格化出力XT.C.、T.C1.、T.C2.と置き換え可能である。また、差分ΔIは上記の実施形態における出力差(H)であり、以下の説明では出力差ΔIとして記載するが、これを出力差(H)と置き換え可能である。
 水素ガス濃度算出手段149は以下の式14を有し、差分算出手段141により求めた出力差ΔIに基づき、対象ガス中の水素ガス濃度xHを算出する。
Figure JPOXMLDOC01-appb-M000014
である。
 なお、aは適宜選択される定数であり、一例としてa=20~30、好適には、a=25~27、より好適には、a=26.4などである。
 この水素ガス濃度算出装置71は、対象ガスの測定手段が熱伝導率測定手段13のみであり、また水素ガス濃度の算出処理も簡素である(複雑でない)点で、利便性が高い。
 図22は、図21に示す水素ガス濃度算出装置70の算出結果を示すグラフであり、水素ガスを含む、成分濃度が明らかな複数の基準ガスについて、図21に示す(式14を用いる)水素ガス濃度算出装置70により測定(算出)した結果(測定H濃度[vol%])を縦軸に、明らかになっている(実際の)水素ガス濃度H[vol%]を横軸にプロットしたグラフである。
 同図(A)の基準ガスは、図8の基準ガスと同様の混合ガス、すなわちメタンガスに、水素ガスと窒素ガスとをそれぞれ異なる割合で含有する7種の混合ガス((CH-H-N)ガス)と、メタンガスに水素ガスを含有する混合ガス((CH-H)ガス)と、メタンガスに窒素ガスを含有する混合ガス((CH-N)ガス)である。同図(A)は、窒素ガスの割合の低い方から〇印(H:N=1:0)、△印(H:N=9:1)、□印(H:N=3:1)、◇印(H:N=3:2)、×印(H:N=1:1)、●印(H:N=2:3)、▲印(H:N=1:3)、■印(H:N=1:9)、◆印(H:N=0:1)で示している。〇印は、(CH-H)ガスについての結果であり、◆印は、(CH-N)ガスについての結果である。実線は、測定H2濃度と実際の水素ガス濃度H2が一致する場合に対する±1%の誤差範囲を示している。
 なお、図22に示した基準ガスは、含まれるガスの種類は図8の基準ガスと同様であるが、各ガスの濃度が異なる。図23は、図22(A)に示す複数の基準ガスに含まれる、上記比率の水素ガスと窒素ガスの濃度(実測値)の一例を示した。また、それぞれの基準ガスにおいて、メタンガスの濃度は、水素ガスおよび窒素ガスの合計の濃度を除く値となる。また、実際の対象ガスに含まれる窒素ガス濃度は5vol%以下、二酸化炭素ガス濃度は2vol%以下であることが多い。従って、以降の説明においては、基準ガスに含まれる窒素ガスはその濃度が5vol%以下、二酸化炭素ガスはその濃度は2vol%以下である場合について説明する。
 図22(B)は、同図(A)における窒素ガスを二酸化炭素ガスに代えた基準ガス((CH-H-CO)ガス、(CH-H)ガス、(CH-CO)ガス)の場合であり、二酸化炭素ガスの割合の低い方から〇印(H:CO=1:0)、△印(H:CO=9:1)、□印(H:CO=3:2)、×印(H:CO=1:1)、●印(H:CO=2:3)、▲印(H:CO=1:3)、■印(H:CO=0:1)、で示している。それ以外は同図(A)と同様である。
 図24は、図22(B)に示す複数の基準ガスに含まれる、上記比率の水素ガスと二酸化炭素ガスの濃度(実測値)の一例を示した。また、それぞれの基準ガスにおいて、メタンガスの濃度は、水素ガスおよび二酸化炭素ガスの合計の濃度を除く値となる。
 図22(C)は、メタンガスにエタンガスおよび/または水素ガスを混合した基準ガス((CH-C-H)ガス、(CH-H)ガス、(CH-C)ガス)の場合であり、エタンガスの割合の低い方から〇印(H:C=1:0)、△印(H:C=3:1)、●印(H:C=2:3)、▲印(H:C=1:3)、■印(H:C=1:9)、◆印(H:C=0:1)、で示している。
 図25は、図22(C)に示す複数の基準ガスに含まれる、上記比率の水素ガスとエタンガスの濃度(実測値)の一例を示した。また、それぞれの基準ガスにおいて、メタンガスの濃度は、水素ガスおよびエタンガスの合計の濃度を除く値となる。
 図22(D)は、メタンガスに水素ガスを混合した基準ガス((CH-H)ガス)と、メタンガスに窒素ガスおよび二酸化炭素ガスおよび水素ガスを混合した基準ガス((CH-H-N-CO)ガス)の場合であり、水素ガスの割合の高い方から〇印(H:N:CO=1:0:0)、△印(H:N:CO=6:1:1)、●印(H:N:CO=2:1:1)、で示している。
 図26は、図22(D)に示す複数の基準ガスに含まれる、上記比率の水素ガス、窒素ガス、二酸化炭素ガスの濃度(実測値)の一例を示した。また、それぞれの基準ガスにおいて、メタンガスの濃度は、水素ガス、窒素ガスおよび二酸化炭素ガスの合計の濃度を除く値となる。
 これらの結果から、水素ガス濃度算出手段149(式14)の算出結果(測定H濃度)は、いずれの基準ガスの場合も、窒素ガスおよび/または二酸化炭素ガスの含有割合が多くなるほど、実際の水素ガス濃度からの誤差が大きくなることがわかる。
 つまり、図21に示す水素ガス濃度算出装置71は、シンプルな構成で容易に実現できる一方で、干渉ガス(特に窒素ガスおよび/二酸化炭素ガス)を含むことによる誤差が生じやすいため、干渉ガスによる誤差が厳密でない場合、あるいは、窒素ガスおよび/二酸化炭素ガスの含有割合が少ない場合においては、有用であるといえる。
 図20に示す第一の構成の水素ガス濃度算出装置70(式10を用いて演算する水素ガス濃度算出手段146)は、このような窒素ガスおよび/二酸化炭素ガスを含有することによる誤差を低減できる装置である。これによれば、いずれも規格化電流値Iの印加電圧Vによる2階微分値(dI/dV、以下、単に「規格化電流値Iの2階微分値」ともいう。)を用いる、第1水素ガス濃度算出式(式10A)または第2水素ガス濃度算出式(式10B)により演算を行うことで、対象ガスに窒素ガスおよび/または二酸化炭素ガスが含有される場合であっても、算出される水素ガス濃度の値(測定H2濃度[vol%])と、実際に含まれる水素ガス濃度H[vol%]との誤差を小さくすることができる。
 繰り返しになるが、再び図10(B)を参照して、出力-電圧関数(図10(A))の傾きdI/dVと、印加電圧Vは、水素ガスの割合に応じた比例関係を有する。これは、対象ガスに窒素ガスおよび/または二酸化炭素ガスが含まれていても、図10(B)に示す「傾き-電圧関数」にすることでこれらの影響を排除できることを意味する。つまり、図10(B)の実線で示される「傾き-電圧関数」の傾きは、特に、水素ガス濃度xHが10vol%以下の場合には水素ガス濃度xHに応じた一定の値となり、以下の式15で表される。
Figure JPOXMLDOC01-appb-M000015
である。
 この式15は、水素ガス濃度を算出する上述の第1水素濃度算出式(式10A)による演算を示している。つまり式10(a)中の「1/f"(V)(10vol%)×10」は定数であり、これを定数aで置き換えた式が式15となる。
 図27は、第1水素濃度算出式(式10A)による演算結果(測定H濃度)と実際の水素ガス濃度(H濃度)の誤差を示すグラフである。水素ガスを含む組成が明らかな複数の基準ガスのそれぞれについて、図20に示す水素ガス濃度算出装置70の熱伝導測定手段13に異なる16種類の電圧V16~V1を印加した際の規格化電流値I16~I1を2次曲線に近似して「出力-電圧関数」を取得し(図10(A))、その傾きdI/dVの微分値(規格化電流値Iの2階微分値)を用いて式10Aにより水素ガス濃度XH2を求めた。その結果(測定H濃度[vol%])を縦軸に、実際に混合した水素ガス濃度(H2濃度[vol%])を横軸にプロットした。基準ガスは、その組成も含め図22に示すグラフで説明したものと同様であり、図27(A)が(CH-H-N)ガス、(CH-H)ガスおよび(CH-N)ガスの場合であり、同図(B)が(CH-H-CO)ガス、(CH-H)ガスおよび(CH-CO)ガス)の場合であり、同図(C)が(CH-C-H)ガス、(CH-H)ガスおよび(CH-C)ガス)の場合であり、同図(D)が(CH-H)ガスおよび(CH-H-N-CO)ガスの場合である。
 これらの結果からも明らかなように、図20に示す水素ガス濃度測定装置70(式10A)によれば、測定(算出)される水素ガス濃度(測定H濃度)と実際の水素ガス濃度(H濃度)の誤差を概ね±1vol%に収めることができる。
 ここで、水素ガス濃度xHが10vol%までの場合は、規格化電流値Iの2階微分値と水素ガス濃度xHが直線的に変化するため、式10A(式15)を用いる。水素ガス濃度xHが10vol%を超える場合は、規格化電流値Iの2階微分値と水素ガス濃度xHが曲線的に変化するため、近似曲線を用いた式10(B)を用いる。
 図28は本実施形態に係る、更に別の水素ガス濃度算出装置72の構成(第三の構成)を示す概要図である。この水素ガス濃度算出装置72も少なくとも水素ガスを含む対象ガスの熱的出力に基づき、当該対象ガス中に含まれる水素ガス濃度を算出可能であり、対象ガスの熱的出力と複数の物性値に基づき水素ガス濃度を算出する。
 ここで、対象ガスの複数の物性値とは、対象ガスに含まれるパラフィン系炭化水素ガスの熱量と所定の相関を有する複数の物性値であり、一例として、屈折率(熱量と比例関係)および密度(熱量と反比例関係)である。
 具体的に水素ガス濃度算出装置72は、例えば、熱的出力が可能な手段(例えば熱伝導率測定手段13)と、差分算出手段141と、屈折率換算熱量算出手段32と、密度換算熱量算出手段55と、水素ガス濃度算出手段150と出力手段18を有する。
 熱伝導率測定手段13、差分算出手段141および、屈折率換算熱量算出手段32は上記の実施形態(図4等)で説明した構成と同様であるので説明は省略する。
 密度換算熱量算出手段55は、密度換算熱量Qを取得する手段であり、例えば、薄肉円筒体よりなる振動管を対象ガス中において振動させた場合の共振周波数が、当該対象ガスの密度に基づいて変化することを利用し、共振周波数の変化量に基づいて対象ガスの密度換算熱量Qを測定する構成の装置を用いることができる。パラフィン系炭化水素ガスは、その熱量と密度が反比例関係にあるため、対象ガスの密度を取得することで熱量に換算できる。
 なお、密度換算熱量算出手段55は例えば、対象ガスが流れる筒と、当該筒の両端に配置した音波発信源と受信源を備える音速測定手段(音速センサ)を有する構成であってもよい。対象ガスが流れている筒に向かって音波発信源から音を発し、副生ガス中を伝播して受信源に達するまでの時間を測定することで、測定ガス中を伝播する音の速度を正確に求めることができる。そして、音速測定手段によって測定された音速に基づき対象ガスの密度(=比熱比×圧力/音速)を算出し、密度換算熱量Qを求めるものであってもよい。
 水素ガス濃度算出手段150は、差分算出手段141が算出した出力差ΔI,屈折率換算熱量算出手段32が算出した屈折率換算熱量Q,および密度換算熱量算出手段55が算出した密度換算熱量Qと、以下の式16により、対象ガス中の水素ガス濃度xHを算出する。式16を以下「第3水素濃度算出式」と称する。
Figure JPOXMLDOC01-appb-M000016
である。
 なお、定数a、b、cは適宜に選択される値である。一例としてa=-25~-27、好適には、a=-26~-26.5、より好適にはa=-26.4などである。また、一例としてb=0.8~1.0、好適にはb=0.85~0.95、より好適には、b=0.916などである。また、一例としてc=0.8~1.0、好適にはc=0.85~0.95、より好適には、c=0.916などである。
 ここで式16について説明する。式14に示したように、対象ガス中の水素ガス濃度XH2は、基本的には、熱伝導率測定手段13と差分算出手段141により算出される出力差ΔIが取得できれば、算出可能である。しかしながら、対象ガスに窒素ガスと二酸化炭素ガスも含まれる場合、算出結果には誤差が生じる。そこで、窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2が分かれば、これらの濃度に応じて適宜補正を行うことが可能となる。つまり、式16.1(詳細は後述する)に示すように、式14の右辺に、窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2に応じた補正項を追加することが考えられる。一方で、実際に測定する対象ガスについては、その組成(窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2)は不明である。
 ところで本願出願人は、対象ガスの屈折率から得られる屈折率換算熱量Qと、当該対象ガスの密度から得られる密度換算熱量Qとに基づいて、下記の式17により、2.40≦補正係数α≦3.11の条件にて当該対象ガスの熱量Qを算出する独自の手法を開発している(この手法については、特許第5184983号に詳細に記載されている)。
Figure JPOXMLDOC01-appb-M000017
である。
 また、本願出願人による考察の結果、天然ガスに窒素ガスと二酸化炭素ガスが含まれる場合、窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2の合計値(実際の値)は、二酸化炭素ガス濃度XCO2のみ、実際の値の1.55倍にして合算した値と近似できること、またその近似した窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2の合計値(合計近似濃度)と式17に示す屈折率換算熱量Qおよび密度換算熱量Qには、式18に示す関係があることが判明した(式18の右辺が合計近似濃度である)。
Figure JPOXMLDOC01-appb-M000018
である。
 すなわち、水素ガス濃度の算出において、窒素ガス濃度XN2と二酸化炭素ガス濃度XCO2に応じた誤差の補正項として、それぞれの濃度が不明であっても、合計近似濃度(XN2+1.55XCO2)が得られれば、上記の式16.1により窒素ガスと二酸化炭素ガスの影響による誤差を補正して、水素ガス濃度XH2を算出できる。
 さらに、実際の窒素ガス濃度xN2と二酸化炭素ガス濃度XCO2、またはこれらの合計近似濃度が不明であっても、両者の濃度の代用として屈折率換算熱量Qおよび密度換算熱量Qを用いることで、上記の式16(第3水素濃度算出式)により窒素ガスと二酸化炭素ガスの影響による誤差を補正して、水素ガス濃度XH2を算出できる。
 ここで、第3水素濃度算出式も、熱伝導率計(例えば、熱伝導率測定手段13)への印加電圧と規格化電流値Iの関係に基づき、水素ガス濃度を算出するものであり、上述の水素ガス濃度算出の第二の方法に含まれる。
 なお、上記の物性値は、パラフィン系炭化水素ガスの熱量と比例関係を有する音速であってもよい。すなわち図示は省略するが、水素ガス濃度測定装置72は、密度換算熱量測定手段55に代えて、音速換算熱量測定手段を有してもよい。音速換算熱量測定手段は、音速測定手段(例えば音速センサなど)を有し、その測定結果から、対象ガスの熱量(音速換算熱量)を算出する。この音速換算熱量は上記の密度換算熱量QCと等価に扱うことができ、上記と同様の効果が得らえる。
 図29は、第3水素濃度算出式(式16)による演算結果(測定H濃度)と実際の水素ガス濃度(H濃度)の誤差を示すグラフである。水素ガスを含む組成が明らかな複数の基準ガスのそれぞれについて、図28に示す水素ガス濃度算出装置72の熱伝導測定手段13に異なる2種類の電圧V1、V2を印加し、得られた規格化電流値I1、I2の出力差ΔIを算出した。また、当該基準ガスの屈折率を測定して屈折率換算熱量Qを取得し、該基準ガスの密度を測定して密度換算熱量Qを取得して、第3水素濃度算出式(式16)に基づき、水素ガス濃度XH2を求めた。その結果(測定H濃度[vol%])を縦軸に、実際に混合した水素ガス濃度(H濃度[vol%])を横軸にプロットした。基準ガスは、その組成も含め図22に示すグラフで説明したものと同様であり、図29(A)が(CH-H-N)ガス、(CH-H)ガスおよび(CH-N)ガスの場合であり、同図(B)が(CH-H-CO)ガス、(CH-H)ガスおよび(CH-CO)ガス)の場合であり、同図(C)が(CH-C-H)ガス、(CH-H)ガスおよび(CH-C)ガス)の場合であり、同図(D)が(CH-H)ガスおよび(CH-H-N-CO)ガスの場合である。
 これらの結果からも明らかなように、図28に示す水素ガス濃度測定装置72(式16)によれば、測定(算出)される水素ガス濃度(測定H濃度)と実際の水素ガス濃度(H濃度)の誤差を略±1vol%に収めることができる。また、この誤差は、水素ガス濃度測定装置70(式10A)の誤差よりも小さく(ばらつきがなく)、特に窒素ガス(と水素ガス)のみの場合(図29(A))では、実測値とほぼ一致する結果となった。
 次に、現実的な天然ガスの組成に近い混合ガスを複数用意し、これらに濃度が明らかな水素ガスを混合した基準ガスについて、図20に示す水素ガス濃度測定装置70(第1水素濃度算出式(式10A)を用いる方法)および、図28に示す水素ガス濃度測定装置72(第3水素濃度算出式(式16)を用いる方法)により水素ガス濃度XH2を測定した。図30は用意した8種類の混合ガス(ガスNo.1~No.8)の組成、および熱量をまとめた表である。また、これら8種類の混合ガスに、0、5、10、15、20、25、30[vol%]の水素ガスをそれぞれ混合し、測定対象の基準ガスとした。
 図31は、図20に示す水素ガス濃度測定装置70(第1水素濃度算出式(式10A)を用いる方法)の測定結果であり、同図(A)は、測定(算出)される水素ガス濃度(測定H濃度)を縦軸に、実際の水素ガス濃度(H濃度)を横軸にプロットし、両者の誤差を比較するグラフである。また、同図(B)は、同図(A)の誤差の値を縦軸に、実際の水素ガス濃度(H濃度)を横軸にプロットし、水素ガス濃度による誤差の値のバラつきを明示するグラフである。なお、横軸の水素ガス濃度は、実質的に混合された水素ガス濃度を光干渉計で測定した結果を横軸にプロットしており、混合を予定した値(0、5、10、15、20、25、30[vol%])から僅かなずれが生じている。
 ガスNo.1(に水素ガスを混合したガス、以下同様)を〇印、ガスNo.2を△印、ガスNo.3を□印、ガスNo.4を◇印、ガスNo.5を●印、ガスNo.6を▲印、ガスNo.7を■印、ガスNo.8を◆印、で示した。
 この結果、図20に示す水素ガス濃度測定装置70(第1水素濃度算出式(式10A)を用いる方法)では、実際の水素ガス濃度(H濃度)に対する測定誤差を、いずれの水素ガス濃度であっても±2vol%以内に収めることができ、精度の高い測定が可能であることが明らかとなった。
 図32は、図28に示す水素ガス濃度測定装置72(第3水素濃度算出式(式16)を用いる方法)の測定結果であり、同図(A)が図31(A)に対応するグラフであり、同図(B)が図31(B)に対応するグラフである。
 この結果、図28に示す水素ガス濃度測定装置70(第3水素濃度算出式(式16)を用いる方法)では、実際の水素ガス濃度(H濃度)に対する測定誤差を、いずれの水素ガス濃度であっても±1vol%以内に収めることができ、さらに精度の高い測定が可能であることが明らかとなった。
 以上説明したように、本実施形態に係る水素ガス濃度測定装置70、72は、少なくとも水素ガスを含む対象ガス(特にパラフィン系炭化水素ガスに、窒素ガスおよび/または二酸化炭素ガスを少なくとも含むガス)の少なくとも熱的出力(例えば、熱伝導率)に基づき、当該対象ガス中に含まれる水素ガス濃度を算出する装置である。また、本実施形態に係る水素ガス濃度測定方法は、少なくとも水素ガスを含む対象ガス(特にパラフィン系炭化水素ガスに、窒素ガスおよび/または二酸化炭素ガスを少なくとも含むガス)の少なくとも熱的出力(例えば、熱伝導率)に基づき、当該対象ガス中に含まれる水素ガス濃度を算出する方法である。
 一例として、水素ガス濃度測定装置70は、熱伝導率測定手段13と、水素ガス濃度算出手段146を含み、水素ガス濃度算出手段146は、第1水素濃度算出式(式10A)または、第2水素濃度算出式(式10B)を有するものである。
 また、第1水素濃度算出式(式10A)および、第2水素濃度算出式(式10B)はいずれも、熱伝導率測定手段13の規格化出力(規格化電流値I)の電圧による2階微分値を用いる算出式である。
 また、水素ガス濃度測定方法は、異なる2以上の電圧を印加した場合の対象ガスの熱的出力(熱伝導率)を測定し規格化電流値を取得するステップと、規格化電流値Iの電圧による2階微分の値に基づいて対象ガス中の水素ガス濃度を算出するステップとを有する方法である。
 また、当該2階微分の値に基づく水素ガス濃度の算出は、第1水素ガス濃度算出式(式10A)または第2水素ガス濃度算出式(式10B)により行う方法である。
 また、他の例として、水素ガス濃度測定装置72は、熱伝導率測定手段13と、差分算出手段141と、屈折率換算熱力測定手段32と、密度換算熱力測定手段55と、水素ガス濃度算出手段150を有し、水素ガス濃度算出手段150は、第3水素濃度算出式(式16)を有するものである。
 また、水素ガス濃度測定方法は、異なる2つの電圧を印加した場合の対象ガスの熱的出力(熱伝導率)を測定し、2つの電圧に対応する規格化電流値の差分(出力差ΔI)を算出するステップと、出力差ΔIと、屈折率換算熱量Qおよび密度換算熱量Qに基づき、第3水素ガス濃度算出式(式16)により対象ガスの水素ガス濃度を算出するステップとを有する方法である。
 また、本実施形態は、上記の水素ガス濃度測定方法の各ステップをコンピュータに実行させることが可能なプログラムとして構成されてもよい。
 なお、熱的出力は、熱伝導率以外の熱的な出力であってもよい。また、対象ガスの密度に代えて対象ガスの音速を用いてもよい。
 近年、然ガスのパイプラインに水素ガスを添加する場合があり、添加した水素ガス量を簡易な構成で確認したいという要望がある。また、例えば、天然ガスの圧縮係数を求めるような場合などにおいて、例えば演算の補正を目的として天然ガス中の水素ガス濃度のみを分離して検出するような要望もある。
 図20に示す水素ガス濃度算出装置70(第1水素ガス濃度算出式(式10A)を用いる水素ガス濃度算出方法)によれば、対象ガスの熱的出力(例えば、熱伝導率)を測定することにより対象ガス中の窒素ガスおよび二酸化炭素ガスによる誤差を低減して(これらの影響を極力排除して)対象ガス中の水素ガス濃度XH2を算出可能である。対象ガスの測定手段は、一般的な熱伝導率測定手段13のみで構成できるため、シンプルかつ安価でありながら、高精度の水素ガス濃度XH2の測定(算出)が可能となる。
 また、図28に示す水素ガス濃度算出装置72(第3水素ガス濃度算出式(式16)による水素ガス濃度算出方法)によれば、対象ガスの熱的出力(例えば、熱伝導率)に加え、対象ガスの物性値、具体的には屈折率と密度(または音速)を測定することにより、対象ガス中の窒素ガスおよび二酸化炭素ガスによる誤差をより低減して(これらの影響をほぼ排除して)対象ガス中の水素ガス濃度XH2を算出可能である。対象ガスの測定手段は、一般的な熱伝導率測定手段13に加えて屈折率および密度(または音速)の測定手段が必要となるものの、いずれも一般的な光干渉計や音速センサなどで構成でき、窒素ガスおよび二酸化炭素ガスによる誤差を、図20に示す水素ガス濃度測定装置70よりもさらに低減することができる。また、対象ガスの組成(特に窒素ガス濃度XN2や二酸化炭素ガス濃度XCO2)が不明であっても(これらの濃度を測定することなく)、対象ガスそのものの測定のみで当該対象ガス中の水素ガス濃度を高精度に測定(算出)できる。
 なお、本実施形態の各式における定数および/または係数は、それぞれの式内において有効なものとし、異なる式の間で定数および/または係数として重複する表記があってもそれらが同じ値を示すものではない。
 また、明細書および図面において、XN2、xN2、xNはいずれも窒素ガス濃度を示し、XCO2、xCO2、xCOはいずれも二酸化炭素濃度を示し、XH2、xH2、xHはいずれも水素ガス濃度を示すものとする。
 なお上記実施形態では、例えば、対象ガスとして天然ガスやバイオガスを例示したがこれに限らず、対象ガスは、コークス炉ガス(COG)、石炭ガス化(固体の石炭を気体の燃料ガスに変えたもの)、ナフサガス化(ナフサを気体の燃料ガスに変えたもの)等であっても同様に適用可能である。
 本発明は、上記実施形態に限られるものではなく、その趣旨及び技術思想を逸脱しない範囲で種々の変形が可能である。
10  熱量測定装置
11  ガスパイプライン
12  熱伝導率換算熱量測定手段
13  熱伝導率測定手段
14  補正手段
15  換算熱量算出手段
18  出力手段
30  熱量測定装置
31  熱伝導率換算熱量測定手段
32  屈折率換算熱量測定手段
33  熱量算出手段
35  熱量測定装置
70、71、72  水素ガス濃度測定装置
146、149、150    第3ガス濃度算出手段
147  追加補正出力値算出手段
50  防爆性容器
141  差分算出手段
142  補正出力値算出手段
A  熱伝導率換算熱量
  屈折率換算熱量
Q  熱量
CF  補正係数

Claims (19)

  1.  対象ガスの熱量を測定する熱量測定装置であって、
     前記対象ガスの熱伝導率から得られる熱量を測定可能な熱伝導率換算熱量測定手段を備え、
     前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものであり、
     前記熱伝導率換算熱量測定手段は、基準となる複数の前記第1のガスについて予め取得される熱伝導率測定手段で測定した出力と実際の熱量の相関とを示す関係式に基づき、測定した前記対象ガスの出力に対して前記第2のガスによる誤差分を補正して該対象ガスの熱量を算出する、
    ことを特徴とする熱量測定装置。
  2.  前記熱伝導率換算熱量測定手段は、
     補正手段と、
     換算熱量算出手段と、を有し、
     前記補正手段は、
     前記対象ガスについて、前記熱伝導率測定手段に異なる電圧を印加して測定した第1の出力と第2の出力の差分を演算する差分算出手段と、
     前記差分に基づき、前記対象ガスの補正出力値を算出する補正出力値算出手段を有し、
     前記換算熱量算出手段は、
     前記補正出力値と前記関係式に基づき、前記対象ガスの熱量を算出する、
    ことを特徴とする請求項1に記載の熱量測定装置。
  3.  前記補正手段は、前記第2のガスの種類ごとに前記差分に基づいて設定される補正式により前記補正出力値を算出する、
    ことを特徴とする請求項2に記載の熱量測定装置。
  4.  前記第1のガスは、パラフィン系炭化水素ガスであり、
     前記第2のガスは、水素ガス、二酸化炭素ガスおよび窒素ガスのうちいずれか一つである、
    ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の熱量測定装置。
  5.  ガスの熱量を算出するための熱量算出方法であって、
     対象ガスは、第1のガスを主成分とし、測定誤差成分となる第2のガスが含有されたものであり、
     複数の基準ガスにおける前記第1のガスについて予め取得される熱伝導率の測定値と実際の熱量の相関とを示す関係式に基づき、測定した前記対象ガスの出力に対して前記第2のガスによる誤差を補正して該対象ガスの熱量を算出する、
    ことを特徴とする熱量算出方法。
  6.  熱伝導率測定手段に第1の電圧を印加して前記対象ガスを測定し、第1の出力を取得するステップと、
     前記熱伝導率測定手段に第2の電圧を印加して前記対象ガスを測定し、第2の出力を取得するステップと、
     前記第1の出力と前記第2の出力の差分に基づき、前記対象ガスの補正出力値を取得するステップと、
     前記補正出力値と前記関係式に基づき、前記対象ガスの熱量を算出するステップと、
    を有することを特徴とする請求項5に記載の熱量算出方法。
  7.  前記補正出力値は、前記第2のガスの種類ごとに前記差分に基づいて設定される補正式により算出する、
    ことを特徴とする請求項6に記載の熱量算出方法。
  8.  前記第1のガスは、パラフィン系炭化水素ガスであり、
     前記第2のガスは、水素ガス、窒素ガスおよび二酸化炭素ガスのうちいずれか一つである、
    ことを特徴とする請求項5乃至請求項7のいずれか一項に記載の熱量算出方法。
  9.  対象ガスの熱量を測定する熱量測定装置であって、
     前記対象ガスの熱伝導率から得られる熱伝導率換算熱量を測定可能な熱伝導率換算熱量測定手段と、
     前記対象ガスの屈折率から得られる屈折率換算熱量を測定可能な屈折率換算熱量測定手段と、
     熱量算出手段と、を備え、
     前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第3のガスおよび第4のガスが含有されたものであり、
     前記熱伝導率換算熱量測定手段は、複数の前記第1のガスについて熱伝導率測定手段で測定した出力と実際の熱量の相関とを示す関係式に基づき、前記第3のガスによる誤差を補正して前記熱伝導率換算熱量を算出可能に構成され、
     前記熱量算出手段は、前記熱伝導率換算熱量と、前記屈折率換算熱量と、前記第4のガスによる誤差を補正する係数により前記対象ガスの熱量を算出する、
    ことを特徴とする熱量測定装置。
  10.  前記熱伝導率換算熱量測定手段は、
     補正手段と、
     換算熱量算出手段と、を有し、
     前記補正手段は、
     前記第1のガスについて、前記熱伝導率測定手段に異なる電圧を印加して測定した第1の出力と第2の出力の差分を演算する差分算出手段と、
     前記差分に基づき、前記第1のガスの補正出力値を算出する補正出力値算出手段を有し、
     前記熱伝導率換算熱量測定手段は、
     前記補正出力値と前記関係式に基づき、前記熱伝導率換算熱量を算出する、
    ことを特徴とする請求項9に記載の熱量測定装置。
  11.  前記対象ガスの熱伝導率に基づき前記対象ガス中の前記第3のガスの濃度(以下、「第3のガス濃度」という。)を取得する第3ガス濃度算出手段と、
     前記第3のガス濃度に基づく追加補正量にて前記補正出力値をさらに補正し追加補正出力値を取得する追加補正出力値算出手段と、を有し、
     前記熱伝導率換算熱量測定手段は、前記追加補正出力値と前記関係式に基づき、前記熱伝導率換算熱量を算出する、
    を有することを特徴とする請求項10に記載の熱量測定装置。
  12.  前記追加補正出力値算出手段は、前記第3のガス濃度に応じて、前記対象ガス中の前記第4のガスの濃度(以下、「第4のガス濃度」という。)を算出し、前記第3のガス濃度と前記第4のガス濃度に基づいて前記追加補正量を算出する、
    ことを特徴とする請求項11に記載の熱量測定装置。
  13.  前記第1のガスは、パラフィン系炭化水素ガスであり、
     前記第3のガスは、水素ガスであり、
     前記第4のガスは、窒素ガスまたは二酸化炭素ガスの少なくともいずれかである、
    ことを特徴とする請求項9乃至請求項12のいずれか一項に記載の熱量測定装置。
  14.  対象ガスの熱量を算出するための熱量算出方法であって、
     前記対象ガスは、第1のガスを主成分とし、測定誤差成分となる第3のガスおよび第4のガスが含有されたものであり、
     複数の前記第1のガスについて熱伝導率の測定値と実際の熱量の相関とを示す関係式に基づき、前記第3のガスによる誤差を補正して前記対象ガスの熱伝導率から得られる熱量(以下、「熱伝導率換算熱量」という。)を算出するステップと、
     前記対象ガスについて屈折率から得られる熱量(以下、「屈折率換算熱量」という。)を取得するステップと、
     前記熱伝導率換算熱量と、前記屈折率換算熱量と、前記第4のガスによる誤差を補正する係数により前記対象ガスの熱量を算出するステップと、
    を具備することを特徴とする熱量算出方法。
  15.  熱伝導率測定手段に第1の電圧を印加して前記対象ガスを測定し、第1の出力を取得するステップと、
     前記熱伝導率測定手段に第2の電圧を印加して前記対象ガスを測定し、第2の出力を取得するステップと、
     前記第1の出力と前記第2の出力の差分に基づき、前記対象ガスの補正出力値を取得するステップと、
     前記補正出力値と前記関係式に基づき、前記熱伝導率換算熱量を算出するステップと、
    を有することを特徴とする請求項14に記載の熱量算出方法。
  16.  前記対象ガスの熱伝導率に基づき前記対象ガス中の前記第3のガスの濃度(以下、「第3のガス濃度」という。)を取得するステップと、
     前記第3のガス濃度に基づく追加補正量にて前記補正出力値をさらに補正し追加補正出力値を取得するステップと、
     前記追加補正出力値と前記関係式に基づき、前記熱伝導率換算熱量を算出するステップと、
    を有することを特徴とする請求項15に記載の熱量算出方法。
  17.  前記第3のガス濃度に応じて、前記対象ガス中の前記第4のガスの濃度(以下、「第4のガス濃度」という。)を算出し、
     前記第3のガス濃度と前記第4のガス濃度に基づいて前記追加補正量を算出する、
    ことを特徴とする請求項16に記載の熱量算出方法。
  18.  前記第1のガスは、パラフィン系炭化水素ガスであり、
     前記第3のガスは、水素ガスであり、
     前記第4のガスは、二酸化炭素ガスまたは窒素ガスである、
    ことを特徴とする請求項14乃至請求項17のいずれか一項に記載の熱量算出方法。
  19.  請求項5乃至請求項8、請求項14乃至請求項18のいずれか一項に記載の熱量算出方法をコンピュータに実行させるプログラム。
PCT/JP2021/022025 2020-06-15 2021-06-10 熱量測定装置および熱量算出方法 WO2021256356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531729A JPWO2021256356A1 (ja) 2020-06-15 2021-06-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102864 2020-06-15
JP2020102864 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256356A1 true WO2021256356A1 (ja) 2021-12-23

Family

ID=79267921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022025 WO2021256356A1 (ja) 2020-06-15 2021-06-10 熱量測定装置および熱量算出方法

Country Status (2)

Country Link
JP (1) JPWO2021256356A1 (ja)
WO (1) WO2021256356A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989823A (ja) * 1995-09-21 1997-04-04 Yamatake Honeywell Co Ltd 熱量測定方法
JPH1038827A (ja) * 1996-07-19 1998-02-13 Tokyo Gas Co Ltd 熱伝導率式熱量計を用いた都市ガス原料中への雑ガスの混入監視方法
JP2004514138A (ja) * 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド 炭化水素ガスの混合物の有効組成の決定
JP2007212333A (ja) * 2006-02-10 2007-08-23 Yamatake Corp 熱量測定方法
JP2010175261A (ja) * 2009-01-27 2010-08-12 Riken Keiki Co Ltd 熱量測定方法および熱量測定装置
WO2017013897A1 (ja) * 2015-07-22 2017-01-26 理研計器株式会社 メタン価算出方法およびメタン価測定装置
JP2018025420A (ja) * 2016-08-09 2018-02-15 アズビル株式会社 発熱量測定装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989823A (ja) * 1995-09-21 1997-04-04 Yamatake Honeywell Co Ltd 熱量測定方法
JPH1038827A (ja) * 1996-07-19 1998-02-13 Tokyo Gas Co Ltd 熱伝導率式熱量計を用いた都市ガス原料中への雑ガスの混入監視方法
JP2004514138A (ja) * 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド 炭化水素ガスの混合物の有効組成の決定
JP2007212333A (ja) * 2006-02-10 2007-08-23 Yamatake Corp 熱量測定方法
JP2010175261A (ja) * 2009-01-27 2010-08-12 Riken Keiki Co Ltd 熱量測定方法および熱量測定装置
WO2017013897A1 (ja) * 2015-07-22 2017-01-26 理研計器株式会社 メタン価算出方法およびメタン価測定装置
JP2018025420A (ja) * 2016-08-09 2018-02-15 アズビル株式会社 発熱量測定装置および方法

Also Published As

Publication number Publication date
JPWO2021256356A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
US6490908B2 (en) Method and device for determining the gas properties of a combustible gas
KR102405159B1 (ko) 메탄가 산출 방법 및 메탄가 측정 장치
US7752885B2 (en) Gas analysis system and method
US7752884B2 (en) Gas analysis system and method
Murugan et al. Measurement challenges for hydrogen vehicles
US10816413B2 (en) Calorific value measuring device and calorific value measuring method
US11193917B2 (en) Composition analysis apparatus and composition analysis method
US20130233056A1 (en) Method for measuring specific gravity of combustible gases, device for measuring specific gravity, and device for measuring wobbe index
CN108377654A (zh) 用于确定含烃气体混合物的性质的方法及其装置
JP5308842B2 (ja) 熱量測定方法および熱量測定装置
WO2021256356A1 (ja) 熱量測定装置および熱量算出方法
US11360070B2 (en) Method for determining the methane index of a hydrocarbon-containing combustion gas mixture
JP5184983B2 (ja) 熱量測定方法および熱量測定装置
JP2012021837A (ja) 液化天然ガスの熱量算出システム
JP7445531B2 (ja) メタン価測定装置およびメタン価算出方法
US20240210373A1 (en) Calculation device, calculation method, and program
CA2938349A1 (en) Method and apparatus for determining heating value
Lozano-Martín et al. Thermodynamic (p, ρ, T) characterization of a reference high-calorific natural gas mixture when hydrogen is added up to 20%(mol/mol)
Jaeschke et al. Simplified GERG virial equation for field use
JP7523301B2 (ja) メタン濃度測定装置およびメタン濃度測定方法
Landry et al. Simulation of Low Level Vehicle Exhaust Emissions for Evaluation of Sampling and Analytical Systems
Steiner et al. Metering of gas flows in power to gas plants
Lord et al. Strategic Petroleum Reserve equation of state model development: current performance against measured data.
Belyakov et al. Results of inter-laboratory comparisons of two methods of determining the heat of combustion of natural gas
Belyaev et al. Standardizing the errors of indirect measurements with constriction-type variable-pressure flowmeters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022531729

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21827126

Country of ref document: EP

Kind code of ref document: A1