WO2021256279A1 - Cemented carbide cutting blade - Google Patents

Cemented carbide cutting blade Download PDF

Info

Publication number
WO2021256279A1
WO2021256279A1 PCT/JP2021/021200 JP2021021200W WO2021256279A1 WO 2021256279 A1 WO2021256279 A1 WO 2021256279A1 JP 2021021200 W JP2021021200 W JP 2021021200W WO 2021256279 A1 WO2021256279 A1 WO 2021256279A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cutting
cutting edge
cemented carbide
thickness
Prior art date
Application number
PCT/JP2021/021200
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 小林
武彦 林
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2022500068A priority Critical patent/JP7142801B2/en
Priority to CN202180039209.7A priority patent/CN115697656A/en
Priority to KR1020227038502A priority patent/KR102691169B1/en
Publication of WO2021256279A1 publication Critical patent/WO2021256279A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • B23D35/001Tools for shearing machines or shearing devices; Holders or chucks for shearing tools cutting members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/0053Cutting members therefor having a special cutting edge section or blade section

Definitions

  • the cutting blade has been, for example, Japanese Patent Application Laid-Open No. 10-217181 (Patent Document 1), Japanese Patent Application Laid-Open No. 2001-158016 (Patent Document 2), International Publication No. 2014/050883 (Patent Document 3), International Publication No. 2014. / 050884 (Patent Document 4), JP-A-2017-4-2911 (Patent Document 5) and JP-A-2004-17444 (Patent Document 6).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-217181
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-158016
  • Patent Document 3 International Publication No. 2014/050883
  • Patent Document 4 International Publication No. 2014. / 050884
  • JP-A-2017-4-2911 Patent Document 5
  • JP-A-2004-17444 Patent Document 6
  • the cemented carbide cutting blade of the present disclosure includes a base portion and a blade portion provided on an extension of the base portion and having a cutting edge which is the most advanced portion, and has a Vickers hardness HV of 1250 or more and 2030 or less, from the cutting edge to the base.
  • the thickness of the blade at the position of 1 ⁇ m is T1 ⁇ m
  • the thickness of the blade at the position of 3 ⁇ m from the cutting edge to the base is T2 ⁇ m
  • T1 is 0.6 or more and 2.2 or less.
  • FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment.
  • FIG. 2 is a graph showing the relationship between the thickness T1 ⁇ m of the blade portion 120 at the position 1 ⁇ m from the cutting edge 121t and the thickness T2 ⁇ m of the blade portion 120 at the position 3 ⁇ m from the cutting edge 121t in the cemented carbide cutting blade 1.
  • FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment.
  • FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment.
  • FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment.
  • FIG. 6 is a perspective view of an apparatus for explaining a cutting test.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a microscope observation image showing a chipping of the cutting blade
  • FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment.
  • the cemented carbide cutting blade 1 has a cutting edge 121t extending in the blade crossing direction.
  • FIG. 1 is a cross section in a direction orthogonal to the blade crossing direction.
  • the flat-blade-shaped cemented carbide cutting blade 1 has a base portion 110 and a blade portion 120 which is a cutting execution portion.
  • a connecting portion may be provided between the base portion 110 and the blade portion 120.
  • the material used for the cemented carbide cutting blade 1 is a cemented carbide containing tungsten carbide and cobalt as main components.
  • the content of cobalt used in cemented carbide ranges from 3 to 25% by mass.
  • the cobalt content is preferably in the range of 5 to 20% by mass.
  • the composition of the constituent elements in the cemented carbide is specified by ICP emission spectroscopic analysis and Co titration.
  • the cemented carbide in the present disclosure may contain elements such as chromium, vanadium, tantalum, and niobium in order to adjust the characteristics such as particle size, in addition to the main components tungsten carbide and cobalt.
  • the size of the tungsten carbide crystals in the cemented carbide is preferably 0.1 ⁇ m to 4 ⁇ m. It is more preferable that the crystal size is 2 ⁇ m or less.
  • the cemented carbide has a component TaC (tantalum carbide) for suppressing the growth of crystal grains of tungsten carbide, and the content thereof is 0.1 to 2% by mass.
  • the additive for suppressing the grain growth may be V 8 C 7 (vanadium carbide) or Cr 3 C 2 (chromium carbide). At least one of TaC, V 8 C 7 , and Cr 3 C 2 can be replaced and combined. In that case, the content of each is 0.1 to 2% by mass.
  • the Vickers hardness HV of cemented carbide is 1250 or more and 2030 or less. Vickers hardness is measured by a Vickers hardness tester.
  • the shape of the cemented carbide cutting blade 1 is basically a rectangular plate shape.
  • the shortest side of the board is the thickness.
  • the cemented carbide cutting blade 1 includes a base 110 and a blade 120 that is provided on an extension of the base 110 and has a shape that becomes thinner toward the cutting edge 121t, which is the most advanced portion.
  • the thickness of the base 110 is constant.
  • the base 110 has a thickness of, for example, 50 to 1000 ⁇ m, and the required thickness varies depending on the size of the cut piece to be cut.
  • the blade portion 120 for cutting is formed on one side extending from the base portion 110.
  • the dimension of the blade portion 120 in the direction from the blade portion 120 toward the base portion 110 (Z-axis direction) is expressed as the width of the blade portion 120.
  • the dimension in the direction perpendicular to the blade crossing direction and the width direction of the blade portion 120 (Y-axis direction) is expressed as the thickness of the blade portion 120.
  • the outer shape of the blade portion 120 has a convex portion 120t in the outward direction within a range of 3 ⁇ m from the cutting edge, and the convex 120t portion has a width direction distance from the cutting edge 121t and the cutting edge 121t (H2). It is located outside the straight line S connecting the positions of 3 ⁇ m). Since the convex 120t portion is present, the strength of the blade portion 120 can be increased as compared with the straight-shaped cutting blade in which the convex 120t portion is not present.
  • the convex 120t may be a square shape or a curved surface shape.
  • the blade portion 120 has a first portion 121 and a second portion 122.
  • the first portion 121 and the second portion 122 have outer surfaces 121s and 122s.
  • the outer surfaces 121s and 122s have a linear shape.
  • the outer surfaces 121s and 122s may have a curved shape. Comparing the angle ⁇ formed by the two outer surfaces 121s facing each other and the angle formed by the two outer surfaces 122s facing each other, the angle formed by the outer surface 122s is larger than the angle formed by the outer surface 121s. small. The angle increases as the cutting edge approaches 121t.
  • the outer surfaces 121s and 122s are symmetrical with respect to the center line C.
  • the outer surfaces 121s and 122s may be asymmetrical with respect to the center line C.
  • the inclination of the outer surface 121s is different between the portion having a distance H1 (1 ⁇ m) from the cutting edge 121t and the portion having a distance H2 (3 ⁇ m) from the cutting edge 121t.
  • the object to be cut by the cemented carbide cutting blade 1 is, for example, a ceramic green sheet before firing such as a laminated capacitor or a laminated inductor, a metal foil, or a hard resin.
  • the present inventor focused on the cutting edge shapes of 1 ⁇ m (H1 in FIG. 1) and 3 ⁇ m (H2 in FIG. 1) in the direction of the base 110 from the cutting edge of the cutting edge 121t. .. Through trial and error by the present inventors, it was discovered that the initial chipping occurs in the range of 1 to 3 ⁇ m from the cutting edge 121t toward the base, and the size of the chipping increases as the cutting is continued.
  • the cause of the chipping may be processing scratches or deformation due to local composition variation of the material, but the following cemented carbide cutting blade 1 is a countermeasure against chipping by the test excluding such factors. It turned out to be effective as.
  • FIG. 2 is a graph showing the relationship between the thickness T1 ⁇ m of the blade portion 120 at the position 1 ⁇ m from the cutting edge 121t and the thickness T2 ⁇ m of the blade portion 120 at the position 3 ⁇ m from the cutting edge 121t in the cemented carbide cutting blade 1.
  • T1 is 0.6 or more and 2.2 or less. If T1 is less than 0.6, the thickness becomes too small and the strength of the cemented carbide cutting blade 1 cannot be obtained. If T1 exceeds 2.2, the width of the tip of the blade portion 120 becomes too large and a crack occurs on the cut surface of the object to be cut. When T exceeds 2.2, the tip of the blade portion 120 becomes flat. In this case, it was found that the strength of the cutting edge 121t is high, but the stress generated at the time of cutting on the cutting edge 121t becomes excessive and the cutting edge 121t is easily chipped.
  • the "region where the strength of the blade cannot be obtained” means the range of T2 ⁇ 3T1. In this range, it means a region where a recess is formed in the region from the cutting edge 121t to H2.
  • the "regional life region (reattachment, rough cut surface) where the angle of the tip increases and the cutting resistance increases” is a phenomenon in which the cut workpiece reattaches. Roughness of the cut surface means that the cut surface has minute cracks and becomes a rough surface. Among them, the rough cut surface defect is a serious defect because the characteristics cannot be obtained if it is a ceramic capacitor.
  • T1 is T1 + 0.6 ⁇ T2 ⁇ (15/13) T1 + (39/25) in the range of 0.9 to 2.2. If T1 + 0.6> T2, the angle of the tip of the blade portion 120 becomes small and chipping is likely to occur. If T2> (15/13) T1 + (39/25), the angle of the tip of the blade portion 120 becomes large and the cutting resistance increases. As a result, rough cut surface defects are likely to occur.
  • the cemented carbide cutting blade 1 has a shape having a cutting execution portion that contributes to cutting, that is, a cutting edge portion, and a base portion (also referred to as a shank) having parallel surfaces for fixing the cutting blade to the cutting device. .. More specific required properties include sharpness, wear resistance, welding resistance to the object to be cut, strength against buckling, and long life.
  • the shape of the cutting edge is particularly important, and considering damage to the object to be cut, it is better to have a thin blade and a small angle at the tip of the cutting edge (acute angle). However, it is inevitable that the strength deteriorates as the blade becomes thinner. Therefore, the cutting blades currently used have been devised to increase the cutting edge angle at the cutting edge by providing a one-step or multiple-step angle between the cutting edge and the base.
  • hard materials such as cemented carbide are used in addition to high carbon steel, for example.
  • cemented carbide is used in addition to high carbon steel, for example.
  • the initial chipping occurs at a position of about 3 ⁇ m in the direction of the base 110 from the cutting edge 121t.
  • CAE Computer Aided Engineering
  • the part where stress is concentrated even if the angle of the cutting edge 121t is changed is not the tip of the cutting edge 121t but the position of about 3 ⁇ m in the direction of the base 110.
  • the initial chipping of the cutting edge 121t may be about 5 ⁇ m in some cases, but it was presumed to be due to the growth of cracks. That is, it can be said that the strength that can withstand the stress concentration in this portion is required.
  • the outer shape By forming the outer shape into a curved shape so that the width of the blade portion becomes narrower as it approaches the cutting edge in the vertical cross section, chipping at the stress concentration portion can be suppressed most effectively. It is preferable that the outer shape is curved so that the width of the blade portion becomes narrower as it approaches the cutting edge in the vertical cross section.
  • the present disclosure optimizes the combination of the above-mentioned materials, the cutting edge angle, and the shape of the cutting edge, that is, the cutting edge thickness, which are factors that affect chipping, and chipping is likely to occur by satisfying all of these. Was found.
  • the cutting edge 121t is sharp, but there is a risk in the occurrence of chipping, and in order to further reduce this risk, it is effective that the tip of the blade 120 has a curved surface. be. It is clear that the cutting edge 121t wears as the cutting continues, and it is more desirable that the cutting edge 121t satisfies the above-mentioned range of T1 and has a roundness.
  • the same effect can be obtained even if the blade surface of the blade portion 120, which is a cutting execution portion formed in the direction of the base portion 110, has one blade surface or a plurality of blade surfaces. Further, the same effect can be obtained when the outer shape is composed of a straight line in the vertical cross-sectional shape, or even if the outer shape is partially curved.
  • the method of processing the blade portion 120 to obtain the above shape is, for example, by polishing with a grindstone as in the conventional method. Further, a blast method can be used as a method for forming a minute curved surface. Further, a microcurved surface can be formed by cutting a clay or the like which is softer than the object to be cut, for example, in which an abrasive is dispersed.
  • the hard material in the solid material containing a hard abrasive and the blade portion 120 are brought into contact with each other for processing.
  • the blade portion 120 can be formed.
  • examples of the solid substance containing a hard abrasive include a clayey material.
  • examples of the hard material include powders of diamond, W, Mo, WC, Al 2 O 3 , TiO 2 , TiC, TiCN, SiC, Si 3 N 4 , BN and the like.
  • the average particle size of the secondary particles is 1 ⁇ m or less in the Fsss (Fisher Sub-Sieve Sizer) particle size.
  • Fsss Fisher Sub-Sieve Sizer
  • the method for manufacturing the cemented carbide cutting blade 1 is not limited to the above.
  • FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment.
  • the position where the distance from the cutting edge 121t is H1 (1 ⁇ m) is the boundary where the inclination changes discontinuously on the outer surface 121s. This is different from the cemented carbide cutting blade 1 according to the first embodiment.
  • the boundary where the inclination of the outer surface 121s changes discontinuously may be located at a position where the distance from the cutting edge 121t is less than H1 (1 ⁇ m), may be between H1 and H2 as shown in FIG. The distance of may be at the position of H2 (3 ⁇ m).
  • FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment.
  • the cemented carbide according to the first embodiment has a sharp cutting edge 121t in that the cutting edge 121t is rounded. It is different from the manufacturing cutting blade 1.
  • the radius of curvature of the cutting edge 121t may be single.
  • the cutting edge 121t may have a plurality of radii of curvature and may have a so-called composite R shape.
  • the outer surface 121s In the portion of the first portion 121 near the base 110, the outer surface 121s has a linear shape, but as it approaches the cutting edge 121t, it becomes a curved shape and the radius of curvature becomes smaller.
  • the slope of the outer surface 121s changes continuously from the straight line portion to the curved line portion.
  • FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment.
  • the cutting edge 121t is rounded in the first portion 121.
  • the outer surface 121s of the first portion 121 has a linear portion on the side close to the second portion 122 and a curved portion on the side close to the cutting edge 121t, and at the boundary portion between the linear portion and the curved shape, The inclination of the outer surface 121s changes discontinuously.
  • FIG. 6 is a perspective view of an apparatus for explaining a cutting test.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • the super hard alloy cutting blade 1 flat blade-shaped cutting blade used in the test has a blade crossing direction (X-axis direction) of 40 mm, a base thickness (Y-axis direction) of 0.1 mm, and a blade height (Z-axis direction) of 22. It was 0 mm, and the blade processing height of the cutting execution portion (height of the blade portion 122 in the Z-axis direction) was set to 1.8 mm.
  • the basic composition of the material is tungsten carbide and cobalt, and the particle size of tungsten carbide is adjusted by using metal carbides such as chromium carbide, vanadium carbide, and tantalum carbide as additives, and the amount of cobalt added is adjusted to bake the cemented carbide. I got a bond.
  • metal carbides such as chromium carbide, vanadium carbide, and tantalum carbide
  • the amount of cobalt added is adjusted to bake the cemented carbide. I got a bond.
  • a cemented carbide material having a Vickers hardness of 1580 was used. To change the hardness, the particle size of tungsten carbide was adjusted and the amount of cobalt added was adjusted.
  • the manufactured sintered body was machined into a plate shape having a thickness of 100 ⁇ m, a blade height of 22 mm, and a length in the blade length direction of 40 mm by a grindstone using a diamond grindstone, and used as a material for processing the tip blade portion.
  • the tip blade portion was formed using the above material.
  • the material was fixed to a dedicated work rest whose angle could be adjusted using a dedicated grinder using a diamond cylindrical grindstone.
  • the processing is performed on the first portion 121 having the tip angle at the most tip with respect to one side in the direction of the long side length of the material, and the second portion 122 which is arranged in a row and continuous with the base 110.
  • the blade portion 120 having the above was formed.
  • ⁇ Convex curved outer surface molding> In order to form the outer surface 121s which is a convex curved surface as shown in FIG. 4, hard particles such as diamond and WC particles are made into a clay-like block, and the cutting edge is continuously pressed against the block at high speed to form a convex shape. was molded. To adjust the size of the convexity, the number of pressings, speed, and angle were adjusted.
  • the arithmetic average roughness Sa (arithmetic mean height ISO25178) of the outer surfaces 121s and 122s was 0.02 ⁇ m or less.
  • the surface roughness Ra of the outer surfaces 121s and 122s is measured by using a non-contact type surface roughness measuring device using a white interferometer. Specifically, a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation is used, and the measurement range in the vertical cross section is 0.15 mm in the X direction and 0.05 mm in the Z direction. ..
  • the magnification of the zoom lens was set to 2 times, and the magnification of the objective lens was set to 50 times.
  • ⁇ Cross section confirmation> The cross-sectional confirmation was imaged at 10,000 times using a JEOL Schottky field emission scanning electron microscope JSM-7900F, and the machine coordinates and length measurement function were utilized to capture the part 1 ⁇ m and 3 ⁇ m from the cutting edge 121t.
  • the blade thickness (thickness of the blade portion 120) was measured.
  • the Vickers hardness was measured using a PICODETOR HM500 manufactured by Fisher Instruments. The results are shown in Tables 1 to 3.
  • Hardness HV in Tables 1 to 3 refers to the Vickers hardness of the cemented carbide cutting blade 1.
  • the "coordinate position” indicates the plot coordinates in the T1-T2 coordinates of FIG. 2, where the thickness of 1 ⁇ m from the cutting edge is T1 and the thickness of 3 ⁇ m from the cutting edge is T2.
  • “Curved surface C non-curved surface N” is defined as “C” when the ratio of curved surface on the blade surface (outer surface 121s, 122s) is larger than the ratio of non-curved surface, and is non-curved surface (outer surface 121s, 122s).
  • the ratio of the curved surface is larger than the ratio of the curved surface, it is set as "N”.
  • Presence / absence of roundness at the cutting edge of the cutting edge is set to "Y" if the cutting edge 121t has a curved surface as shown in FIG. 4, and "N” if the cutting edge 121t does not have a curved surface as shown in FIG.
  • Figure indicates a drawing that most closely resembles the shape of each sample.
  • sample number 2 has a small proportion of curved surfaces and is the closest to FIG. 3 as a whole. It was confirmed that in all the samples, there was a convex 120t located outside the straight line S.
  • the cutting evaluation test has various uses, but focusing on uniform composition and hardness, the object to be cut was a generally available PVC plate. It was fixed using an adhesive sheet having a thickness of 0.1 mm or more and 3.0 mm or less. Further, the adhesive sheet has a function of preventing the cutting edge of the cutting edge from coming into contact with the table supporting the object to be cut and chipping during push-cutting.
  • the width in the X-axis direction is 30 mm and the thickness in the Z-axis direction is 0.5 mm.
  • the cutting speed was set to 300 mm / sec in the Z-axis direction.
  • Cutting conditions Cutting speed 300 mm / sec, cutting interval 2.5 mm, pushing amount 0.55 mm, longitudinal work and blade angle ⁇ 0.5 °, work and blade cross-sectional angle 90 ° ⁇ 0.5 °, number of cuts 100 Times (2.5 mm intervals) Items to be confirmed: Chip (depth 3 ⁇ m or more or width 10 ⁇ m or more), cutting surface condition
  • the cemented carbide cutting blade 1 was held by chucks 3001 and 3002 with the equipment shown in FIGS. 6 and 7.
  • the cemented carbide cutting blade 1 was continuously cut at a descent speed of 300 mm / sec.
  • the cutting position can be moved each time the cemented carbide cutting blade 1 is raised so as not to cut the same position of the vinyl chloride plate 100 which is the object to be cut in order to continuously cut.
  • the state of the cutting edge after the above cutting was performed 100 times was evaluated by the number of chips generated in the entire blade crossing direction.
  • the definition of chipping to be counted is that chips exceeding either the width of 10 ⁇ m or the depth of 3 ⁇ m (FIG. 8) are counted at the ridgeline portion of the cutting edge.
  • FIG. 8 is a microscope observation image showing a chipping of the cutting blade. Care should be taken so that the cutting edge 121t of the cutting blade shown in FIG. 8 and the measuring stage are parallel to each other. Focus on the cutting edge 121t, align the cutting edge 121t located at both ends of 121k, which is missing from the reference line in the X-axis direction of the measuring instrument, and set the measured value of Y to "0" and use it as a reference.
  • the distance between the two points where the reference line in the X-axis direction of FIG. 8 and the end of the chip 121k intersect is defined as the width of the chip 121k.
  • the lowest point in the Y direction of the chip 121k measured from the X axis is defined as the depth of the chip 121k. At this time, it was defined that a chipping 121k was generated at the cutting edge when either the width of 10 ⁇ m or more and the depth of 3 ⁇ m or more were applicable.
  • the evaluation when the cutting edge 121t has 3 or less chips is "A"
  • the evaluation when the chipping is 4 to 6 is "B”
  • the evaluation when the chipping is 7 to 10 is “C”.
  • the evaluation when the number of chips was 11 to 30 was "D”
  • the evaluation when the number of chips was 31 or more was "E”.
  • the state of the cut surface is evaluated by surface roughness Sa (arithmetic average roughness), and the evaluation when Sa is 0.02 ⁇ m or less is regarded as “A”, and the evaluation when Sa is more than 0.02 ⁇ m and 0.05 ⁇ m or less is evaluated.
  • Is "B” the evaluation when Sa is more than 0.05 ⁇ m and 0.1 ⁇ m or less is “C”
  • the evaluation when Sa is more than 0.1 ⁇ m and 0.2 ⁇ m or less is “D”
  • Sa is The evaluation when it exceeds 0.2 ⁇ m was set as “E”. Evaluation up to "C” was allowed.
  • the surface roughness Sa of the cut surface was measured by the same device as the outer surface 121s. Specifically, the surface roughness Sa was evaluated in a square area having a side of 60 ⁇ m on an arbitrary cross section of the cut surface using Nexview (registered trademark) of Zygo.
  • Cemented carbide cutting blade 100 vinyl chloride plate, 110 base, 120 blade, 120t convex, 121 first part, 121k chipped, 121s, 122s, 123s outer surface, 121t cutting edge, 122 second part, 2001 double-sided adhesive sheet , 2002 acrylic plate, 2003 cutting power meter, 2004 stage, 3001,3002 chuck.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Nonmetal Cutting Devices (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A cemented carbide cutting blade according to the present invention comprises a base section, and a blade section that is provided along a line extending from the base section and has a blade edge which is a leading-edge portion, wherein a Vickers hardness HV is 1250-2030, inclusive, the thickness of the blade section at a position 1 µm towards the base section from the blade edge is set to be T1 µm, the thickness of the blade section at a position 3 µm towards the base section from the blade edge is set to be T2 µm, T1 is 0.6-2.2, inclusive, T1+0.6≤T2≤(10/3)T1-0.4 when T1 is in the range of 0.6 to 0.9, and T1+0.6≤T2≤(15/13)T1+(39/25) when T1 is in the range of 0.9 to 2.2.

Description

超硬合金製切断刃Cemented carbide cutting blade
 本開示は、超硬合金製切断刃に関する。本出願は、2020年6月19日に出願した日本特許出願である特願2020-106045号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This disclosure relates to a cemented carbide cutting blade. This application claims priority based on Japanese Patent Application No. 2020-1006045, which is a Japanese patent application filed on June 19, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
 従来、切断刃は、たとえば特開平10-217181号公報(特許文献1)、特開2001-158016号公報(特許文献2)、国際公開第2014/050883号(特許文献3)、国際公開第2014/050884号(特許文献4)、特開2017-42911号公報(特許文献5)および特開2004-17444号公報(特許文献6)に開示されている。 Conventionally, the cutting blade has been, for example, Japanese Patent Application Laid-Open No. 10-217181 (Patent Document 1), Japanese Patent Application Laid-Open No. 2001-158016 (Patent Document 2), International Publication No. 2014/050883 (Patent Document 3), International Publication No. 2014. / 050884 (Patent Document 4), JP-A-2017-4-2911 (Patent Document 5) and JP-A-2004-17444 (Patent Document 6).
特開平10-217181号公報Japanese Unexamined Patent Publication No. 10-217181 特開2001-158016号公報Japanese Unexamined Patent Publication No. 2001-158016 国際公開第2014/050883号International Publication No. 2014/050883 国際公開第2014/050884号International Publication No. 2014/050884 特開2017-42911号公報Japanese Unexamined Patent Publication No. 2017-42911 特開2004-17444号公報Japanese Unexamined Patent Publication No. 2004-17444
 本開示の超硬合金製切断刃は、基部と、基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、ビッカース硬度HVが1250以上2030以下であり、刃先から基部に向けて1μmの位置の刃部の厚みをT1μmとし、刃先から基部に向けて3μmの位置の刃部の厚みをT2μmとし、T1は0.6以上2.2以下である。T1が0.6から0.9の範囲においてT1+0.6≦T2≦(10/3)T1-0.4であり、T1が0.9から2.2の範囲においてT1+0.6≦T2≦(15/13)T1+(39/25)である。 The cemented carbide cutting blade of the present disclosure includes a base portion and a blade portion provided on an extension of the base portion and having a cutting edge which is the most advanced portion, and has a Vickers hardness HV of 1250 or more and 2030 or less, from the cutting edge to the base. The thickness of the blade at the position of 1 μm is T1 μm, the thickness of the blade at the position of 3 μm from the cutting edge to the base is T2 μm, and T1 is 0.6 or more and 2.2 or less. T1 + 0.6 ≦ T2 ≦ (10/3) T1-0.4 in the range of T1 from 0.6 to 0.9, and T1 + 0.6 ≦ T2 ≦ (T1 + 0.6 ≦ T2 ≦ in the range of T1 from 0.9 to 2.2. 15/13) T1 + (39/25).
図1は、実施の形態1に従った超硬合金製切断刃1の縦断面図である。FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment. 図2は、超硬合金製切断刃1において、刃先121tから1μmの位置の刃部120の厚みT1μmと、刃先121tから3μmの位置の刃部120の厚みT2μmとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the thickness T1 μm of the blade portion 120 at the position 1 μm from the cutting edge 121t and the thickness T2 μm of the blade portion 120 at the position 3 μm from the cutting edge 121t in the cemented carbide cutting blade 1. 図3は、実施の形態2に従った超硬合金製切断刃1の縦断面図である。FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment. 図4は、実施の形態3に従った超硬合金製切断刃1の縦断面図である。FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment. 図5は、実施の形態4に従った超硬合金製切断刃1の縦断面図である。FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment. 図6は、切断試験を説明するための装置の斜視図である。FIG. 6 is a perspective view of an apparatus for explaining a cutting test. 図7は、図6中のVII-VII線に沿った断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 図8は、切断刃の欠けを示す顕微鏡観察写真(マイクロスコープ)観察像である。FIG. 8 is a microscope observation image showing a chipping of the cutting blade.
[本開示が解決しようとする課題]
 刃厚が薄いと、カット衝撃に刃先が耐えられず、チッピングが発生するという問題があった。刃厚が厚いと、切断抵抗が高く、断面品質悪くなり断面が荒れるという問題があった。
[Issues to be resolved by this disclosure]
If the blade thickness is thin, the cutting edge cannot withstand the cutting impact, and there is a problem that chipping occurs. When the blade thickness is thick, there is a problem that the cutting resistance is high, the cross-sectional quality is deteriorated, and the cross-section is rough.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (実施の形態1)
 図1は、実施の形態1に従った超硬合金製切断刃1の縦断面図である。図1で示すように、超硬合金製切断刃1は刃渡り方向に延びる刃先121tを有する。図1は、刃渡り方向に直交する方向の断面である。平刃状の超硬合金製切断刃1は、図1に示すように基部110、および切断実行部である刃部120を有する。基部110と刃部120との間に連結部を有していてもよい。
(Embodiment 1)
FIG. 1 is a vertical cross-sectional view of a cemented carbide cutting blade 1 according to the first embodiment. As shown in FIG. 1, the cemented carbide cutting blade 1 has a cutting edge 121t extending in the blade crossing direction. FIG. 1 is a cross section in a direction orthogonal to the blade crossing direction. As shown in FIG. 1, the flat-blade-shaped cemented carbide cutting blade 1 has a base portion 110 and a blade portion 120 which is a cutting execution portion. A connecting portion may be provided between the base portion 110 and the blade portion 120.
[規則91に基づく訂正 14.10.2021] 
 (材質)
 超硬合金製切断刃1に用いた材質はタングステンカーバイドとコバルトを主成分とした超硬合金である。超硬合金に使用されるコバルトの含有率は3~25質量%の範囲である。コバルトの含有率は5~20質量%の範囲であることが好ましい。超硬合金中を構成する元素の組成の特定は、ICP発光分光分析、Co滴定によって行う。本開示における超硬合金とは主成分タングステンカーバイド、コバルトの他、粒度等の特性調整の為、クロム、バナジウム、タンタル、ニオブ等の元素を含む場合もある。超硬合金中のタングステンカーバイド結晶の大きさが0.1μm~4μmであることが好ましい。結晶の大きさが2μm以下がより好ましい。
[Correction under Rule 91 14.10.2021]
(Material)
The material used for the cemented carbide cutting blade 1 is a cemented carbide containing tungsten carbide and cobalt as main components. The content of cobalt used in cemented carbide ranges from 3 to 25% by mass. The cobalt content is preferably in the range of 5 to 20% by mass. The composition of the constituent elements in the cemented carbide is specified by ICP emission spectroscopic analysis and Co titration. The cemented carbide in the present disclosure may contain elements such as chromium, vanadium, tantalum, and niobium in order to adjust the characteristics such as particle size, in addition to the main components tungsten carbide and cobalt. The size of the tungsten carbide crystals in the cemented carbide is preferably 0.1 μm to 4 μm. It is more preferable that the crystal size is 2 μm or less.
 また、超硬合金中のタングステンカーバイトの結晶粒成長抑制のための成分TaC(タンタルカーバイド)を有し、その含有率が0.1~2質量%であることが好ましい。結晶粒成長を抑制するための添加剤はV(バナジウムカーバイド)、Cr(クロムカーバイド)であってもよい。TaC、V、Crの少なくとも一種類の置き替え、及び組み合わせる事ができる。その場合は各々の含有率が0.1~2質量%となる。超硬合金のビッカース硬度HVは1250以上2030以下である。ビッカース硬度はビッカース硬さ試験機により測定する。 Further, it is preferable that the cemented carbide has a component TaC (tantalum carbide) for suppressing the growth of crystal grains of tungsten carbide, and the content thereof is 0.1 to 2% by mass. The additive for suppressing the grain growth may be V 8 C 7 (vanadium carbide) or Cr 3 C 2 (chromium carbide). At least one of TaC, V 8 C 7 , and Cr 3 C 2 can be replaced and combined. In that case, the content of each is 0.1 to 2% by mass. The Vickers hardness HV of cemented carbide is 1250 or more and 2030 or less. Vickers hardness is measured by a Vickers hardness tester.
 (形状)
 超硬合金製切断刃1の形状は基本的に矩形の板形状である。板の最も短い辺を厚さとする。
(shape)
The shape of the cemented carbide cutting blade 1 is basically a rectangular plate shape. The shortest side of the board is the thickness.
 超硬合金製切断刃1は、基部110と、基部110の延長線上に設けられ、最先端部である刃先121tに向けて厚みが薄くなる形状を有する刃部120とを備える。 The cemented carbide cutting blade 1 includes a base 110 and a blade 120 that is provided on an extension of the base 110 and has a shape that becomes thinner toward the cutting edge 121t, which is the most advanced portion.
 基部110の厚さは一定であることが好ましい。基部110は、たとえば50~1000μmの厚みがあり、切断される切断物の大きさにより必要とされる厚みが変わる。また切断を行う刃部120は基部110から延長される一辺に形成される。刃部120から基部110に向かう方向(Z軸方向)の刃部120の寸法を刃部120の幅と表す。刃渡り方向および刃部120の幅方向に対して垂直な方向(Y軸方向)の寸法を刃部120の厚みと表す。 It is preferable that the thickness of the base 110 is constant. The base 110 has a thickness of, for example, 50 to 1000 μm, and the required thickness varies depending on the size of the cut piece to be cut. Further, the blade portion 120 for cutting is formed on one side extending from the base portion 110. The dimension of the blade portion 120 in the direction from the blade portion 120 toward the base portion 110 (Z-axis direction) is expressed as the width of the blade portion 120. The dimension in the direction perpendicular to the blade crossing direction and the width direction of the blade portion 120 (Y-axis direction) is expressed as the thickness of the blade portion 120.
[規則91に基づく訂正 14.10.2021] 
 刃渡り方向に直交する縦断面において刃先から3μmの範囲において刃部120の外形が外方向に凸120tの部分を有し、凸120tの部分は刃先121tおよび刃先121tからの幅方向の距離がH2(3μm)の位置を結ぶ直線Sよりも外側に位置する。凸120tの部分が存在することで凸120tの部分が存在しないストレート形状の切断刃と比較して刃部120の強度を高くすることができる。凸120tは角形であってもよいし、曲面形状であってもよい。
[Correction under Rule 91 14.10.2021]
In the vertical cross section orthogonal to the blade crossing direction, the outer shape of the blade portion 120 has a convex portion 120t in the outward direction within a range of 3 μm from the cutting edge, and the convex 120t portion has a width direction distance from the cutting edge 121t and the cutting edge 121t (H2). It is located outside the straight line S connecting the positions of 3 μm). Since the convex 120t portion is present, the strength of the blade portion 120 can be increased as compared with the straight-shaped cutting blade in which the convex 120t portion is not present. The convex 120t may be a square shape or a curved surface shape.
 刃部120は、第一部分121と第二部分122とを有する。第一部分121および第二部分122は外表面121s、122sを有する。外表面121s,122sは直線形状である。外表面121s,122sが湾曲した形状であってもよい。互いに対向する位置にある2つの外表面121sのなす角度θ、および互いに対向する位置にある2つの外表面122sのなす角度を比較すると、外表面122sのなす角度は外表面121sのなす角度よりも小さい。刃先121tに近づくにつれて当該角度は大きくなる。この実施の形態では、外表面121s、122sは中心線Cに対して左右対称である。しかしながら、外表面121s,122sは中心線Cに対して左右非対称であってもよい。刃先121tからの距離H1(1μm)の部分と、刃先121tからの距離H2(3μm)の部分とでは、外表面121sの傾斜が異なる。 The blade portion 120 has a first portion 121 and a second portion 122. The first portion 121 and the second portion 122 have outer surfaces 121s and 122s. The outer surfaces 121s and 122s have a linear shape. The outer surfaces 121s and 122s may have a curved shape. Comparing the angle θ formed by the two outer surfaces 121s facing each other and the angle formed by the two outer surfaces 122s facing each other, the angle formed by the outer surface 122s is larger than the angle formed by the outer surface 121s. small. The angle increases as the cutting edge approaches 121t. In this embodiment, the outer surfaces 121s and 122s are symmetrical with respect to the center line C. However, the outer surfaces 121s and 122s may be asymmetrical with respect to the center line C. The inclination of the outer surface 121s is different between the portion having a distance H1 (1 μm) from the cutting edge 121t and the portion having a distance H2 (3 μm) from the cutting edge 121t.
 超硬合金製切断刃1の切断対象物は、たとえば、積層コンデンサ若しくは積層インダクタなどの焼成前のセラミックグリーンシート、金属箔、または、硬質樹脂などである。 The object to be cut by the cemented carbide cutting blade 1 is, for example, a ceramic green sheet before firing such as a laminated capacitor or a laminated inductor, a metal foil, or a hard resin.
 押切りによる切断の場合、切断対象物を押し広げながら切断する。切断対象物である、例えばセラミックグリーンシートは高密度化等を行うため、硬度が増加し、切断刃に欠けが発生し易くなっている。 In the case of cutting by push cutting, cut while spreading the object to be cut. Since the ceramic green sheet, which is the object to be cut, is densified, the hardness is increased and the cutting blade is liable to be chipped.
 図1に示すように、Z軸方向に超硬合金製切断刃1を下降し、切断を行う超硬合金製切断刃1においては、刃先に大きな負荷がかかる。薄刃で且つ2つの外表面121sがなす角度が小さい方、即ち鋭角とした場合、欠け(チッピングとも言う)が発生し易い。欠けが発生すると当然ながら切れ味は悪くなり、切断対象物の切断断面には傷がつき易くなり不適となる。このような刃先121t最先端部が極めて鋭角である場合、他の材料に比較し高硬度且つ靱性が低い超硬合金は、耐座屈性、耐摩耗性に優れるものの、特に欠け易い課題がある。 As shown in FIG. 1, in the cemented carbide cutting blade 1 that lowers the cemented carbide cutting blade 1 in the Z-axis direction to perform cutting, a large load is applied to the cutting edge. If the blade is thin and the angle formed by the two outer surfaces 121s is small, that is, an acute angle is used, chipping (also referred to as chipping) is likely to occur. When chipping occurs, the sharpness naturally deteriorates, and the cut cross section of the object to be cut is easily scratched, which makes it unsuitable. When the cutting edge of the cutting edge 121t has an extremely acute angle, the cemented carbide, which has higher hardness and lower toughness than other materials, has excellent buckling resistance and wear resistance, but has a problem of being particularly easily chipped. ..
 本発明者は刃先121tの欠けを防止するために、刃先121tの最先端から基部110方向に1μm(図1中のH1)および3μm(図1中のH2)の刃先形状に着目したものである。本発明者らが試行錯誤する中、初期に発生する欠けは、刃先121tから基部方向に1~3μmの範囲において発生し、切断を継続する中、欠けの大きさが大きくなることを発見した。 In order to prevent the cutting edge 121t from being chipped, the present inventor focused on the cutting edge shapes of 1 μm (H1 in FIG. 1) and 3 μm (H2 in FIG. 1) in the direction of the base 110 from the cutting edge of the cutting edge 121t. .. Through trial and error by the present inventors, it was discovered that the initial chipping occurs in the range of 1 to 3 μm from the cutting edge 121t toward the base, and the size of the chipping increases as the cutting is continued.
 欠けの原因としては、加工傷、または、材質が局所的な組成のばらつきにより変形が発生することもあるが、このような要因を除いた試験により以下の超硬合金製切断刃1が欠け対策として有効であることが判明した。 The cause of the chipping may be processing scratches or deformation due to local composition variation of the material, but the following cemented carbide cutting blade 1 is a countermeasure against chipping by the test excluding such factors. It turned out to be effective as.
 図2は、超硬合金製切断刃1において、刃先121tから1μmの位置の刃部120の厚みT1μmと、刃先121tから3μmの位置の刃部120の厚みT2μmとの関係を示すグラフである。T1は0.6以上2.2以下である。T1が0.6未満であれば厚みが小さくなりすぎて超硬合金製切断刃1の強度が得られない。T1が2.2を超えると刃部120の先端の幅が大きくなりすぎて切断対象物の切断面に亀裂が生じる。Tが2.2を超えると刃部120の先端が平らとなる。この場合には刃先121tの強度が大きいが切断時に発生する刃先121tへの応力が過大となり刃先121tが欠け易いことが分かった。 FIG. 2 is a graph showing the relationship between the thickness T1 μm of the blade portion 120 at the position 1 μm from the cutting edge 121t and the thickness T2 μm of the blade portion 120 at the position 3 μm from the cutting edge 121t in the cemented carbide cutting blade 1. T1 is 0.6 or more and 2.2 or less. If T1 is less than 0.6, the thickness becomes too small and the strength of the cemented carbide cutting blade 1 cannot be obtained. If T1 exceeds 2.2, the width of the tip of the blade portion 120 becomes too large and a crack occurs on the cut surface of the object to be cut. When T exceeds 2.2, the tip of the blade portion 120 becomes flat. In this case, it was found that the strength of the cutting edge 121t is high, but the stress generated at the time of cutting on the cutting edge 121t becomes excessive and the cutting edge 121t is easily chipped.
 T1が0.6から0.9の範囲においてT1+0.6≦T2≦(10/3)T1-0.4である。T1+0.6>T2であれば刃部120の先端の角度が小さくなり切れ味は良くなるが、チッピングが生じやすくなる。T2>(10/3)T1-0.4であれば刃部120のT1に対してT2が大きくなりすぎるため切れ味が低下し切断面に応力を生じ亀裂や傷がつきやすくなる。 T1 + 0.6 ≦ T2 ≦ (10/3) T1-0.4 in the range of T1 from 0.6 to 0.9. If T1 + 0.6> T2, the angle of the tip of the blade portion 120 becomes small and the sharpness is improved, but chipping is likely to occur. If T2> (10/3) T1-0.4, T2 becomes too large with respect to T1 of the blade portion 120, so that the sharpness is lowered, stress is generated on the cut surface, and cracks and scratches are likely to occur.
 「刃の強度が得られない領域」とはT2<3T1の範囲をいう。この範囲においては、刃先121tからH2までの領域に凹部が形成される領域をいう。「先端の角度が大きくなり切断抵抗が増える領域寿命領域(再付着、切断面荒れ)」とは切断した加工物が再付着する現象である。また、切断面荒れとは、切断面に微小亀裂が入り、荒れた面になる。中でも切断面荒れ不良はセラミックコンデンサであれば特性が得られなくなるため深刻な不良である。 The "region where the strength of the blade cannot be obtained" means the range of T2 <3T1. In this range, it means a region where a recess is formed in the region from the cutting edge 121t to H2. The "regional life region (reattachment, rough cut surface) where the angle of the tip increases and the cutting resistance increases" is a phenomenon in which the cut workpiece reattaches. Roughness of the cut surface means that the cut surface has minute cracks and becomes a rough surface. Among them, the rough cut surface defect is a serious defect because the characteristics cannot be obtained if it is a ceramic capacitor.
 T1が0.9から2.2の範囲においてT1+0.6≦T2≦(15/13)T1+(39/25)である。T1+0.6>T2であれば刃部120の先端の角度が小さくなりチッピングが生じやすくなる。T2>(15/13)T1+(39/25)であれば刃部120の先端の角度が大きくなり切断抵抗が増加する。その結果、切断面荒れ不良が生じやすくなる。 T1 is T1 + 0.6 ≦ T2 ≦ (15/13) T1 + (39/25) in the range of 0.9 to 2.2. If T1 + 0.6> T2, the angle of the tip of the blade portion 120 becomes small and chipping is likely to occur. If T2> (15/13) T1 + (39/25), the angle of the tip of the blade portion 120 becomes large and the cutting resistance increases. As a result, rough cut surface defects are likely to occur.
 ここで、超硬合金製切断刃1は、切断に寄与する切断実行部即ち刃先部およびこの切断刃を切断装置に固定するために平行な面を有する基部(シャンクとも呼ぶ)を持つ形状である。より具体的な必要特性としては、切れ味よく、耐摩耗性があり、切断対象物に対する耐溶着性があり、座屈に対し強度があり、更に長寿命であることなどが求められている。 Here, the cemented carbide cutting blade 1 has a shape having a cutting execution portion that contributes to cutting, that is, a cutting edge portion, and a base portion (also referred to as a shank) having parallel surfaces for fixing the cutting blade to the cutting device. .. More specific required properties include sharpness, wear resistance, welding resistance to the object to be cut, strength against buckling, and long life.
 切れ味に関しては、特に刃先の形状が重要とされ、被切断物への損傷をも考慮し、薄刃で且つ刃先先端の角度は小さい方(鋭角)がよい。しかし薄刃になるほど強度が悪化することは避けられない。そのため現在用いられている切断刃は刃先から基部までの間に一段又は複数段の角度を付けることにより、最先端の刃先角度を大きくするなどの工夫がされている。 Regarding the sharpness, the shape of the cutting edge is particularly important, and considering damage to the object to be cut, it is better to have a thin blade and a small angle at the tip of the cutting edge (acute angle). However, it is inevitable that the strength deteriorates as the blade becomes thinner. Therefore, the cutting blades currently used have been devised to increase the cutting edge angle at the cutting edge by providing a one-step or multiple-step angle between the cutting edge and the base.
 このような薄刃は、例えば高炭素鋼の他、超硬合金などの硬質材料が用いられている。しかし加工が容易ではなくその原因として、特に材質が硬質材料である場合、剛性はあるものの、難切削性であり且つ靱性が低く欠け易い。また製品使用時にも欠け易くなる。 For such thin blades, hard materials such as cemented carbide are used in addition to high carbon steel, for example. However, it is not easy to process, and as a cause thereof, especially when the material is a hard material, although it has rigidity, it is difficult to cut and has low toughness and is easily chipped. It also tends to chip when the product is used.
 従来、上述の特性を満たすために種々の切断刃が提案されているが、欠け難い材質と刃先形状についての詳細な知見がなかった。 Conventionally, various cutting blades have been proposed to satisfy the above-mentioned characteristics, but there is no detailed knowledge about the material that is hard to chip and the shape of the cutting edge.
 前述したように初期欠けの発生は、刃先121tから基部110方向に約3μmの位置となる。CAE(Computer Aided Engineering)解析の結果においても刃先121t角度を変更しても応力が集中する部位は、刃先121t先端ではなく基部110方向約3μmの位置であった。刃先121tの初期の欠けは場合によっては5μm程度であることもあるが、亀裂の進展によると推定された。即ちこの部位の応力集中に耐えられる強度が必要と言える。縦断面において刃先に近づくにつれて刃部の幅が細くなるように外形が曲線形状とされることで、応力集中部位における欠けを最も効果的に抑制できる。縦断面において刃先に近づくにつれて刃部の幅が細くなるように外形が曲線形状とされることが好ましい。 As described above, the initial chipping occurs at a position of about 3 μm in the direction of the base 110 from the cutting edge 121t. As a result of CAE (Computer Aided Engineering) analysis, the part where stress is concentrated even if the angle of the cutting edge 121t is changed is not the tip of the cutting edge 121t but the position of about 3 μm in the direction of the base 110. The initial chipping of the cutting edge 121t may be about 5 μm in some cases, but it was presumed to be due to the growth of cracks. That is, it can be said that the strength that can withstand the stress concentration in this portion is required. By forming the outer shape into a curved shape so that the width of the blade portion becomes narrower as it approaches the cutting edge in the vertical cross section, chipping at the stress concentration portion can be suppressed most effectively. It is preferable that the outer shape is curved so that the width of the blade portion becomes narrower as it approaches the cutting edge in the vertical cross section.
 本開示は、欠けに影響する因子である、上記、材質、刃先角度、および最先端部形状、即ち刃厚の組み合わせを最適化したものであり、これらを全て満たすことにより欠けが発生し易いことを見出したものである。 The present disclosure optimizes the combination of the above-mentioned materials, the cutting edge angle, and the shape of the cutting edge, that is, the cutting edge thickness, which are factors that affect chipping, and chipping is likely to occur by satisfying all of these. Was found.
 また、耐欠け性に関しては、刃先121tが鋭利であることは切れ味良いが、欠け発生においてはリスクあり、このリスクをさらに軽減するためには刃部120先端部が曲面を有することが効果的である。刃先121tは切断継続するに従い摩耗することは明白であり、上述のT1の範囲を満たし且つ丸みを持たせる方がより望ましい。 Regarding chipping resistance, it is sharp that the cutting edge 121t is sharp, but there is a risk in the occurrence of chipping, and in order to further reduce this risk, it is effective that the tip of the blade 120 has a curved surface. be. It is clear that the cutting edge 121t wears as the cutting continues, and it is more desirable that the cutting edge 121t satisfies the above-mentioned range of T1 and has a roundness.
 基部110方向に形成する切断実行部である刃部120の刃面がひとつの刃面、また複数の刃面を有しても同様の効果が得られる。また、縦断面形状においてその外形が直線から成る場合、また一部に曲線を有していても同様の効果が得られる。 The same effect can be obtained even if the blade surface of the blade portion 120, which is a cutting execution portion formed in the direction of the base portion 110, has one blade surface or a plurality of blade surfaces. Further, the same effect can be obtained when the outer shape is composed of a straight line in the vertical cross-sectional shape, or even if the outer shape is partially curved.
 刃部120を加工して上記の形状を得る方法は、たとえば、従来法と同様に砥石による研磨によりなされる。また微小曲面の形成手法としてブラスト手法を用いることができる。さらに、切断対象物より柔らかい、例えば研磨剤を分散させた粘土等を切断することで微小曲面を形成することができる。 The method of processing the blade portion 120 to obtain the above shape is, for example, by polishing with a grindstone as in the conventional method. Further, a blast method can be used as a method for forming a minute curved surface. Further, a microcurved surface can be formed by cutting a clay or the like which is softer than the object to be cut, for example, in which an abrasive is dispersed.
 例えば、硬質材料粉を混合した硬質研磨剤入り固形物を超硬合金製切断刃1で切断することにより、硬質研磨剤入り固形物中の硬質材料と刃部120を接触させて加工を行い、刃部120を形成することができる。 For example, by cutting a solid material containing a hard abrasive mixed with hard material powder with a cemented carbide cutting blade 1, the hard material in the solid material containing a hard abrasive and the blade portion 120 are brought into contact with each other for processing. The blade portion 120 can be formed.
 ここで、硬質研磨剤入り固形物としては、例えば、粘土質材料が挙げられる。また、硬質材料としてはダイヤモンド、W、Mo、WC、Al、TiO、TiC、TiCN、SiC、Si、BN等の粉末が例として挙げられる。 Here, examples of the solid substance containing a hard abrasive include a clayey material. Examples of the hard material include powders of diamond, W, Mo, WC, Al 2 O 3 , TiO 2 , TiC, TiCN, SiC, Si 3 N 4 , BN and the like.
 これらの硬質材料の粉末粒径は、二次粒子の平均粒径がFsss(Fisher Sub-Sieve Sizer)粒度で1μm以下であるのが好ましい。特に仕上げとして硬質材料粒子の種類、サイズ、固形物への添加量並びに加工時間を調整して得ることができる。なお、超硬合金製切断刃1の製造方法は、上述のものに限定されない。 As for the powder particle size of these hard materials, it is preferable that the average particle size of the secondary particles is 1 μm or less in the Fsss (Fisher Sub-Sieve Sizer) particle size. In particular, as a finish, it can be obtained by adjusting the type and size of hard material particles, the amount added to solid matter, and the processing time. The method for manufacturing the cemented carbide cutting blade 1 is not limited to the above.
 (実施の形態2)
 図3は、実施の形態2に従った超硬合金製切断刃1の縦断面図である。図3で示すように、実施の形態2に従った超硬合金製切断刃1においては、刃先121tからの距離がH1(1μm)の位置が外表面121sにおいて傾きが不連続に変化する境界となっている点において、実施の形態1に従った超硬合金製切断刃1と異なる。外表面121sの傾きが不連続に変化する境界は、刃先121tからの距離がH1(1μm)未満の位置にあってもよく、図1のようにH1からH2の間にあってもよく、刃先121tからの距離がH2(3μm)の位置にあってもよい。
(Embodiment 2)
FIG. 3 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the second embodiment. As shown in FIG. 3, in the cemented carbide cutting blade 1 according to the second embodiment, the position where the distance from the cutting edge 121t is H1 (1 μm) is the boundary where the inclination changes discontinuously on the outer surface 121s. This is different from the cemented carbide cutting blade 1 according to the first embodiment. The boundary where the inclination of the outer surface 121s changes discontinuously may be located at a position where the distance from the cutting edge 121t is less than H1 (1 μm), may be between H1 and H2 as shown in FIG. The distance of may be at the position of H2 (3 μm).
 (実施の形態3)
 図4は、実施の形態3に従った超硬合金製切断刃1の縦断面図である。図4で示すように、実施の形態3に従った超硬合金製切断刃1においては、刃先121tが丸くされている点において、刃先121tが尖っている実施の形態1に従った超硬合金製切断刃1と異なる。刃先121tの曲率半径は単一であってもよい。刃先121tの曲率半径は複数存在して、いわゆる複合R形状とされていてもよい。
(Embodiment 3)
FIG. 4 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the third embodiment. As shown in FIG. 4, in the cemented carbide cutting blade 1 according to the third embodiment, the cemented carbide according to the first embodiment has a sharp cutting edge 121t in that the cutting edge 121t is rounded. It is different from the manufacturing cutting blade 1. The radius of curvature of the cutting edge 121t may be single. The cutting edge 121t may have a plurality of radii of curvature and may have a so-called composite R shape.
 第一部分121において基部110に近い部分では外表面121sは直線形状であるが、刃先121tに近づくにつれて曲線形状となり、かつ曲率半径が小さくなる。直線部分から曲線部分へ、外表面121sの傾斜が連続的に変化している。 In the portion of the first portion 121 near the base 110, the outer surface 121s has a linear shape, but as it approaches the cutting edge 121t, it becomes a curved shape and the radius of curvature becomes smaller. The slope of the outer surface 121s changes continuously from the straight line portion to the curved line portion.
 (実施の形態4)
 図5は、実施の形態4に従った超硬合金製切断刃1の縦断面図である。図5で示すように、実施の形態4に従った超硬合金製切断刃1においては、第一部分121において刃先121tが丸くされている。第一部分121の外表面121sは、第二部分122に近い側の直線状の部分と刃先121tに近い側の曲線状の部分とを有し、直線状の部分と曲線状との境界部分において、外表面121sの傾斜が不連続に変化する。
(Embodiment 4)
FIG. 5 is a vertical cross-sectional view of the cemented carbide cutting blade 1 according to the fourth embodiment. As shown in FIG. 5, in the cemented carbide cutting blade 1 according to the fourth embodiment, the cutting edge 121t is rounded in the first portion 121. The outer surface 121s of the first portion 121 has a linear portion on the side close to the second portion 122 and a curved portion on the side close to the cutting edge 121t, and at the boundary portion between the linear portion and the curved shape, The inclination of the outer surface 121s changes discontinuously.
 [本開示の実施形態の詳細]
 (実施例1)
 図6は、切断試験を説明するための装置の斜視図である。図7は、図6中のVII-VII線に沿った断面図である。試験に用いる超硬合金製切断刃1(平刃状切断刃)は、刃渡り方向(X軸方向)40mm、基部厚さ(Y軸方向)0.1mm、刃高さ(Z軸方向)22.0mmであり、切断実行部の刃加工高さ(刃部122のZ軸方向高さ)1.8mmとした。材質は炭化タングステンおよびコバルトを基本組成としており、炭化クロム、炭化バナジウム、および炭化タンタル等の金属炭化物を添加剤として炭化タングステンの粒径を調整、更にコバルト添加量を調整して超硬合金の焼結体を得た。一例としてビッカース硬度1580の超硬合金素材を使用した。硬度を変更するには炭化タングステンの粒径調整とコバルトの添加量を調整し行った。
[Details of Embodiments of the present disclosure]
(Example 1)
FIG. 6 is a perspective view of an apparatus for explaining a cutting test. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. The super hard alloy cutting blade 1 (flat blade-shaped cutting blade) used in the test has a blade crossing direction (X-axis direction) of 40 mm, a base thickness (Y-axis direction) of 0.1 mm, and a blade height (Z-axis direction) of 22. It was 0 mm, and the blade processing height of the cutting execution portion (height of the blade portion 122 in the Z-axis direction) was set to 1.8 mm. The basic composition of the material is tungsten carbide and cobalt, and the particle size of tungsten carbide is adjusted by using metal carbides such as chromium carbide, vanadium carbide, and tantalum carbide as additives, and the amount of cobalt added is adjusted to bake the cemented carbide. I got a bond. As an example, a cemented carbide material having a Vickers hardness of 1580 was used. To change the hardness, the particle size of tungsten carbide was adjusted and the amount of cobalt added was adjusted.
 <研磨>
 製造された焼結体はダイヤモンド砥石を用いた研削機により厚さ100μm、刃高さ22mm、刃渡り方向長さ40mmの板形状に削り出し先端刃部加工用の素材とした。
<Polishing>
The manufactured sintered body was machined into a plate shape having a thickness of 100 μm, a blade height of 22 mm, and a length in the blade length direction of 40 mm by a grindstone using a diamond grindstone, and used as a material for processing the tip blade portion.
 <刃付け>
 続いて上記素材を用いて先端刃部の形成加工行った。形成加工に於いてはダイヤモンド円筒砥石を使用した専用の研削機を用い角度調整可能な専用のワークレストに素材を固定して加工を行った。刃部が2段である場合には、加工は素材長辺長さ40mm方向の一辺に対して最も先端にある先端角を持つ第一部分121、それに連なり配置され基部110に連続する第二部分122を有する刃部120を形成した。
<Blade>
Subsequently, the tip blade portion was formed using the above material. In the forming process, the material was fixed to a dedicated work rest whose angle could be adjusted using a dedicated grinder using a diamond cylindrical grindstone. When the blade portion has two stages, the processing is performed on the first portion 121 having the tip angle at the most tip with respect to one side in the direction of the long side length of the material, and the second portion 122 which is arranged in a row and continuous with the base 110. The blade portion 120 having the above was formed.
 <平面の外表面成形>
 図1で示すような平面の外表面121s、122sを形成するためには、円筒砥石を用いて最先端部に対して凸形状加工を両面に施した。
<Plane outer surface molding>
In order to form the flat outer surfaces 121s and 122s as shown in FIG. 1, a cylindrical grindstone was used to perform convex processing on both sides of the cutting edge.
 <凸湾曲の外表面成形>
 図4で示すような凸湾曲面である外表面121sを形成するためには、ダイヤモンド、WC粒子などの硬質粒子を粘土状のブロックにし、そのブロックに刃先を高速で連続的に押し付け凸型形状を成形した。凸の大きさを調整するには押し付け回数、速度、角度により調整を行った。
<Convex curved outer surface molding>
In order to form the outer surface 121s which is a convex curved surface as shown in FIG. 4, hard particles such as diamond and WC particles are made into a clay-like block, and the cutting edge is continuously pressed against the block at high speed to form a convex shape. Was molded. To adjust the size of the convexity, the number of pressings, speed, and angle were adjusted.
 外表面121s,122sの算術平均粗さSa(算術平均高さISO25178)は0.02μm以下とした。外表面121s,122sの表面粗さRaは、白色干渉計を用いた非接触式の面粗さ測定装置を用いて測定する。具体的には、Zygo Corporation製の非接触三次元粗さ測定装置(Nexview(登録商標))を用い、上記縦断面における測定範囲を、X方向に0.15mm、Z方向に0.05mmとする。測定視野は、ズームレンズの倍率を2倍、対物レンズの倍率を50倍とした。 The arithmetic average roughness Sa (arithmetic mean height ISO25178) of the outer surfaces 121s and 122s was 0.02 μm or less. The surface roughness Ra of the outer surfaces 121s and 122s is measured by using a non-contact type surface roughness measuring device using a white interferometer. Specifically, a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation is used, and the measurement range in the vertical cross section is 0.15 mm in the X direction and 0.05 mm in the Z direction. .. As for the measurement field of view, the magnification of the zoom lens was set to 2 times, and the magnification of the objective lens was set to 50 times.
 <断面確認>
 断面確認を日本電子社製のショットキー電界放出形走査電子顕微鏡JSM-7900Fを用いて10,000倍にて撮像し、機械座標と測長機能を活用し、刃先121tから1μmおよび3μmの部分の刃厚(刃部120の厚み)を測定した。ビッカース換算硬さは、フィッシャー・インストルメンツ社製PICODENTOR HM500を用いて測定した。それらの結果を表1から3に示す。
<Cross section confirmation>
The cross-sectional confirmation was imaged at 10,000 times using a JEOL Schottky field emission scanning electron microscope JSM-7900F, and the machine coordinates and length measurement function were utilized to capture the part 1 μm and 3 μm from the cutting edge 121t. The blade thickness (thickness of the blade portion 120) was measured. The Vickers hardness was measured using a PICODETOR HM500 manufactured by Fisher Instruments. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から3における「硬度HV」とは超硬合金製切断刃1のビッカース硬度をいう。「座標位置」とは、刃先から1μmの厚さをT1とし、刃先から3μmの厚さをT2として図2のT1-T2座標にプロット座標を示す。 "Hardness HV" in Tables 1 to 3 refers to the Vickers hardness of the cemented carbide cutting blade 1. The "coordinate position" indicates the plot coordinates in the T1-T2 coordinates of FIG. 2, where the thickness of 1 μm from the cutting edge is T1 and the thickness of 3 μm from the cutting edge is T2.
 「刃面の曲面C非曲面N」とは刃面(外表面121s,122s)における曲面の割合が非曲面の割合より大きい場合に「C」とし、刃面(外表面121s,122s)における非曲面の割合が曲面の割合よりも大きい場合に「N」とした。 "Curved surface C non-curved surface N" is defined as "C" when the ratio of curved surface on the blade surface ( outer surface 121s, 122s) is larger than the ratio of non-curved surface, and is non-curved surface ( outer surface 121s, 122s). When the ratio of the curved surface is larger than the ratio of the curved surface, it is set as "N".
 「刃先最先端部の丸みの有無」とは刃先121tに図4のような曲面があれば「Y」とし、図1のように刃先121tに曲面がなければ「N」とした。 "Presence / absence of roundness at the cutting edge of the cutting edge" is set to "Y" if the cutting edge 121t has a curved surface as shown in FIG. 4, and "N" if the cutting edge 121t does not have a curved surface as shown in FIG.
 「図」とは各試料の形状に最も近似する図面を示す。たとえば、試料番号2は曲面の割合が小さく全体として見れば図3に最も近似している。すべての試料において、直線Sよりも外側に位置する凸120tが存在することを確認した。 "Figure" indicates a drawing that most closely resembles the shape of each sample. For example, sample number 2 has a small proportion of curved surfaces and is the closest to FIG. 3 as a whole. It was confirmed that in all the samples, there was a convex 120t located outside the straight line S.
 切断評価試験は、用途として種々挙げられるが、均一な組成と硬度に着目して、切断対象物は一般的に入手可能な塩ビ板とした。厚みが0.1mm以上3.0mm以下の粘着シートを用いて固定した。また、粘着シートは、押切切断時に刃先最先端部が切断対象物を支持するテーブルと接触して欠けることを防ぐ機能を有している。切断対象物においては、X軸方向の幅が30mm、Z軸方向の厚さが0.5mm、である。切断速度は、Z軸方向に300mm/秒とした。 The cutting evaluation test has various uses, but focusing on uniform composition and hardness, the object to be cut was a generally available PVC plate. It was fixed using an adhesive sheet having a thickness of 0.1 mm or more and 3.0 mm or less. Further, the adhesive sheet has a function of preventing the cutting edge of the cutting edge from coming into contact with the table supporting the object to be cut and chipping during push-cutting. In the object to be cut, the width in the X-axis direction is 30 mm and the thickness in the Z-axis direction is 0.5 mm. The cutting speed was set to 300 mm / sec in the Z-axis direction.
 本テストの条件(図6および図7)
 ワーク材質:塩化ビニル板100 厚み0.5mm、幅290mm、長さ30mm、ビッカース換算硬さHVが15
 テスト装置:牧野フライス製作所製マシニングセンタV55(ステージ2004)にキスラー製切削動力計9255(切削動力計2003)をセットしたもの
 ワークセット:下から厚み10mmのアクリル板2002、厚み1mmの両面粘着シート2001、ワークとしての塩化ビニル板100を積層した。
Conditions for this test (Fig. 6 and Fig. 7)
Work material: Vinyl chloride plate 100 Thickness 0.5 mm, width 290 mm, length 30 mm, Vickers equivalent hardness HV is 15
Test equipment: Makino milling center V55 (stage 2004) with Kistler cutting power meter 9255 (cutting power meter 2003) set Work set: Acrylic plate 2002 with a thickness of 10 mm from the bottom, double-sided adhesive sheet 2001 with a thickness of 1 mm, A vinyl chloride plate 100 as a work was laminated.
 切断条件:切断速度300mm/秒、切断間隔2.5mm、押込み量0.55mm、長手方向のワークと刃角度±0.5°、ワークと刃断面角度90°±0.5°、切断回数100回(2.5mm間隔)
 確認事項:欠け(深さ3μm以上または幅10μm以上)、切断面状態
 図6および7に示すような装置にて、チャック3001,3002により超硬合金製切断刃1を保持した。超硬合金製切断刃1の降下速度を300mm/秒として連続的に切断した。ここで連続的に切断するために切断対象物である塩化ビニル板100の同じ位置を切断しないように、超硬合金製切断刃1が上昇するたびに切断位置が移動できるようにした。
Cutting conditions: Cutting speed 300 mm / sec, cutting interval 2.5 mm, pushing amount 0.55 mm, longitudinal work and blade angle ± 0.5 °, work and blade cross-sectional angle 90 ° ± 0.5 °, number of cuts 100 Times (2.5 mm intervals)
Items to be confirmed: Chip (depth 3 μm or more or width 10 μm or more), cutting surface condition The cemented carbide cutting blade 1 was held by chucks 3001 and 3002 with the equipment shown in FIGS. 6 and 7. The cemented carbide cutting blade 1 was continuously cut at a descent speed of 300 mm / sec. Here, the cutting position can be moved each time the cemented carbide cutting blade 1 is raised so as not to cut the same position of the vinyl chloride plate 100 which is the object to be cut in order to continuously cut.
 上記切断を100回行った後の刃先の状態を、刃渡り方向全体の欠けの発生数により評価した。カウントする欠けの定義は、刃先の稜線部において、欠けの幅10μm、深さ3μmのいずれかを超えた欠け(図8)をカウントした。 The state of the cutting edge after the above cutting was performed 100 times was evaluated by the number of chips generated in the entire blade crossing direction. The definition of chipping to be counted is that chips exceeding either the width of 10 μm or the depth of 3 μm (FIG. 8) are counted at the ridgeline portion of the cutting edge.
 欠けの測定方法では、測定顕微鏡を用いた。具体的には、オリンパス製の測定顕微鏡(STM6-LM)に、50倍の接眼レンズおよび20倍の対物レンズを取り付け、切断刃(XZ面)を平面に置く。図8は、切断刃の欠けを示すマイクロスコープ観察像である。図8の切断刃の刃先121tと測定ステージが平行になるように注意する。刃先121tに焦点を合わせ、測定器のX軸方向の基準線に欠け121kの両端に位置する刃先121tを合わせ、Yの測定値を「0」とし、基準にする。図8のX軸方向の基準線と欠け121kの端との交わる2点の間の距離を欠け121kの幅とする。X軸から測定して欠け121kのY方向に一番低い箇所を欠け121kの深さとする。この時、幅10μm以上、深さ3μm以上のいずれか一方でも該当した場合に刃先に欠け121kが発生したと定義した。 A measuring microscope was used as a method for measuring the chipping. Specifically, a 50x eyepiece and a 20x objective lens are attached to an Olympus measuring microscope (STM6-LM), and the cutting blade (XZ surface) is placed on a flat surface. FIG. 8 is a microscope observation image showing a chipping of the cutting blade. Care should be taken so that the cutting edge 121t of the cutting blade shown in FIG. 8 and the measuring stage are parallel to each other. Focus on the cutting edge 121t, align the cutting edge 121t located at both ends of 121k, which is missing from the reference line in the X-axis direction of the measuring instrument, and set the measured value of Y to "0" and use it as a reference. The distance between the two points where the reference line in the X-axis direction of FIG. 8 and the end of the chip 121k intersect is defined as the width of the chip 121k. The lowest point in the Y direction of the chip 121k measured from the X axis is defined as the depth of the chip 121k. At this time, it was defined that a chipping 121k was generated at the cutting edge when either the width of 10 μm or more and the depth of 3 μm or more were applicable.
 刃先121tの欠けが3個以内の場合の評価を「A」とし、欠けが4から6個の場合の評価を「B」とし、欠けが7から10個の場合の評価を「C」とし、欠けが11から30個の場合の評価を「D」とし、欠けが31個以上の場合の評価を「E」とした。 The evaluation when the cutting edge 121t has 3 or less chips is "A", the evaluation when the chipping is 4 to 6 is "B", and the evaluation when the chipping is 7 to 10 is "C". The evaluation when the number of chips was 11 to 30 was "D", and the evaluation when the number of chips was 31 or more was "E".
 切断面状態については、表面粗さSa(算術平均粗さ)で評価しSaが0.02μm以下の場合の評価を「A」とし、Saが0.02μmを超え0.05μm以下の場合の評価を「B」とし、Saが0.05μmを超え0.1μm以下の場合の評価を「C」とし、Saが0.1μmを超え0.2μm以下の場合の評価を「D」とし、Saが0.2μmを超える場合の評価を「E」とした。評価「C」までを許容とした。切断面の表面粗さSaは、外表面121sと同様の装置で測定した。具体的には、Zygo社のNexview(登録商標)を用いて切断面の任意断面を一辺が60μmの正方形のエリアにて表面粗さSaを評価した。 The state of the cut surface is evaluated by surface roughness Sa (arithmetic average roughness), and the evaluation when Sa is 0.02 μm or less is regarded as “A”, and the evaluation when Sa is more than 0.02 μm and 0.05 μm or less is evaluated. Is "B", the evaluation when Sa is more than 0.05 μm and 0.1 μm or less is “C”, the evaluation when Sa is more than 0.1 μm and 0.2 μm or less is “D”, and Sa is The evaluation when it exceeds 0.2 μm was set as “E”. Evaluation up to "C" was allowed. The surface roughness Sa of the cut surface was measured by the same device as the outer surface 121s. Specifically, the surface roughness Sa was evaluated in a square area having a side of 60 μm on an arbitrary cross section of the cut surface using Nexview (registered trademark) of Zygo.
 ビッカース硬度が1200である試料番号1から14においては、硬度が低いため刃先に欠けが生じる。その結果、切断面状態も悪化する。 In sample numbers 1 to 14 having a Vickers hardness of 1200, the cutting edge is chipped due to the low hardness. As a result, the state of the cut surface also deteriorates.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 超硬合金製切断刃、100 塩化ビニル板、110 基部、120 刃部、120t 凸、121 第一部分、121k 欠け、121s,122s,123s 外表面、121t 刃先、122 第二部分、2001 両面粘着シート、2002 アクリル板、2003 切削動力計、2004 ステージ、3001,3002 チャック。 1 Cemented carbide cutting blade, 100 vinyl chloride plate, 110 base, 120 blade, 120t convex, 121 first part, 121k chipped, 121s, 122s, 123s outer surface, 121t cutting edge, 122 second part, 2001 double-sided adhesive sheet , 2002 acrylic plate, 2003 cutting power meter, 2004 stage, 3001,3002 chuck.

Claims (2)

  1.  基部と、
     前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、
     ビッカース硬度HVが1250以上2030以下であり、
     前記刃先から前記基部に向けて1μmの位置の前記刃部の厚みをT1μmとし、前記刃先から前記基部に向けて3μmの位置の前記刃部の厚みをT2μmとし、T1は0.6以上2.2以下であり、
     T1が0.6から0.9の範囲においてT1+0.6≦T2≦(10/3)T1-0.4であり、T1が0.9から2.2の範囲においてT1+0.6≦T2≦(15/13)T1+(39/25)である、超硬合金製切断刃。
    At the base,
    It is provided on the extension line of the base portion, and is provided with a blade portion having a cutting edge which is the most advanced portion.
    Vickers hardness HV is 1250 or more and 2030 or less,
    The thickness of the blade at a position of 1 μm from the blade to the base is T1 μm, the thickness of the blade at a position of 3 μm from the blade to the base is T2 μm, and T1 is 0.6 or more. 2 or less,
    T1 + 0.6 ≦ T2 ≦ (10/3) T1-0.4 in the range of T1 from 0.6 to 0.9, and T1 + 0.6 ≦ T2 ≦ (T1 + 0.6 ≦ T2 ≦ in the range of T1 from 0.9 to 2.2. 15/13) T1 + (39/25), cemented carbide cutting blade.
  2.  刃渡り方向に直交する縦断面において前記刃先に近づくにつれて前記刃部の幅が細くなるように外形が曲線形状とされる、請求項1に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to claim 1, wherein the outer shape is curved so that the width of the blade portion becomes narrower as the blade edge approaches the blade edge in a vertical cross section orthogonal to the blade crossing direction.
PCT/JP2021/021200 2020-06-19 2021-06-03 Cemented carbide cutting blade WO2021256279A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022500068A JP7142801B2 (en) 2020-06-19 2021-06-03 Cemented carbide cutting blade
CN202180039209.7A CN115697656A (en) 2020-06-19 2021-06-03 Cutting edge made of superhard alloy
KR1020227038502A KR102691169B1 (en) 2020-06-19 2021-06-03 Cemented carbide cutting blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106045 2020-06-19
JP2020-106045 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256279A1 true WO2021256279A1 (en) 2021-12-23

Family

ID=79267888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021200 WO2021256279A1 (en) 2020-06-19 2021-06-03 Cemented carbide cutting blade

Country Status (5)

Country Link
JP (1) JP7142801B2 (en)
KR (1) KR102691169B1 (en)
CN (1) CN115697656A (en)
TW (1) TWI810584B (en)
WO (1) WO2021256279A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024143062A1 (en) * 2022-12-26 2024-07-04 株式会社アライドマテリアル Flat-blade-shaped cutting blade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719221B2 (en) * 1990-07-11 1998-02-25 三菱マテリアル株式会社 Cutting cutter
JP4183080B2 (en) * 2003-09-26 2008-11-19 株式会社大阪チタニウムテクノロジーズ Cutting blade for sponge-like titanium block
JP2012071374A (en) * 2010-09-28 2012-04-12 Tdk Corp Cutting blade and method for manufacturing multilayer ceramic electronic component
JP2017094474A (en) * 2015-11-27 2017-06-01 株式会社Amc Cutter made of cemented carbide and manufacturing method thereof
JP2020001164A (en) * 2018-06-29 2020-01-09 フェーストアルピーネ・プレシジョン・ストリップ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing strip steel cutter and strip steel cutter for tool
JP2020185648A (en) * 2019-05-16 2020-11-19 株式会社村田製作所 Cutting blade and electronic component manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100217181B1 (en) 1997-01-21 1999-09-01 윤종용 Method of track buffering and system decoder for high speed data transmiting
JP4187397B2 (en) 2000-10-06 2008-11-26 Uht株式会社 Cutting blade
KR20040017444A (en) 2002-08-21 2004-02-27 엘지전자 주식회사 Structure for fixing refrigerant pipe of regenerator
JP4529185B2 (en) * 2006-03-30 2010-08-25 日本電気硝子株式会社 Glass fiber cutting blade, manufacturing method thereof and cutting apparatus
CN104684700B (en) * 2012-09-28 2016-11-02 联合材料公司 There is the raw cook cutting knife of flat bladed cutting knife
CN104684699B (en) 2012-09-28 2017-05-17 联合材料公司 Green sheet cutting blade with flat blade-shaped cutting blade
KR20170042911A (en) 2015-10-12 2017-04-20 태평양정기(주) Suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719221B2 (en) * 1990-07-11 1998-02-25 三菱マテリアル株式会社 Cutting cutter
JP4183080B2 (en) * 2003-09-26 2008-11-19 株式会社大阪チタニウムテクノロジーズ Cutting blade for sponge-like titanium block
JP2012071374A (en) * 2010-09-28 2012-04-12 Tdk Corp Cutting blade and method for manufacturing multilayer ceramic electronic component
JP2017094474A (en) * 2015-11-27 2017-06-01 株式会社Amc Cutter made of cemented carbide and manufacturing method thereof
JP2020001164A (en) * 2018-06-29 2020-01-09 フェーストアルピーネ・プレシジョン・ストリップ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for manufacturing strip steel cutter and strip steel cutter for tool
JP2020185648A (en) * 2019-05-16 2020-11-19 株式会社村田製作所 Cutting blade and electronic component manufacturing method

Also Published As

Publication number Publication date
TW202210258A (en) 2022-03-16
KR102691169B1 (en) 2024-08-05
JP7142801B2 (en) 2022-09-27
TWI810584B (en) 2023-08-01
CN115697656A (en) 2023-02-03
KR20220162784A (en) 2022-12-08
JPWO2021256279A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
TWI584928B (en) Flat cutting blade and green sheet cutting blade
KR102214373B1 (en) Cutting insert
WO2021256282A1 (en) Cemented carbide cutting blade
TWI544998B (en) Flat cutting blade and green sheet cutting blade
WO2021256279A1 (en) Cemented carbide cutting blade
WO2021256280A1 (en) Cemented carbide cutting blade
JP6938781B2 (en) Flat blade cutting blade
JP7292487B2 (en) Cemented carbide cutting blade
JP7144641B2 (en) Cemented carbide cutting blade
JP5240624B2 (en) Blade-tip-exchangeable tip and method for manufacturing the same
WO2023176819A9 (en) Cutting blade made of super-hard alloy
JP7544990B2 (en) Carbide cutting blade
KR20180125520A (en) Cutting inserts and cutting tools
CN118871266A (en) Hard alloy cutter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022500068

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227038502

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824844

Country of ref document: EP

Kind code of ref document: A1