WO2021256224A1 - Multilayer polyester film - Google Patents

Multilayer polyester film Download PDF

Info

Publication number
WO2021256224A1
WO2021256224A1 PCT/JP2021/020518 JP2021020518W WO2021256224A1 WO 2021256224 A1 WO2021256224 A1 WO 2021256224A1 JP 2021020518 W JP2021020518 W JP 2021020518W WO 2021256224 A1 WO2021256224 A1 WO 2021256224A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
water
blocked isocyanate
acid
Prior art date
Application number
PCT/JP2021/020518
Other languages
French (fr)
Japanese (ja)
Inventor
博 多喜
紀志 ▲高▼木
功 瀧井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202180037538.8A priority Critical patent/CN115697706A/en
Priority to JP2021545794A priority patent/JPWO2021256224A1/ja
Priority to KR1020227035605A priority patent/KR20230029591A/en
Publication of WO2021256224A1 publication Critical patent/WO2021256224A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a laminated polyester film. More specifically, the present invention relates to a laminated polyester film having easy adhesiveness, which is most suitable for all fields such as optics, packaging, and labels having a coating layer having excellent transparency (low haze), durability, and few coating film defects.
  • Thermoplastic resin films especially polyester films, have excellent mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., and therefore have excellent properties such as magnetic recording materials, packaging materials, solar cell applications, and flat displays. It is widely used in antireflection films, diffusion sheets, optical films such as prism sheets, and label printing films. However, since the surface of the polyester film is highly crystallinely oriented, it has a drawback of poor adhesion to various paints, resins, and inks in processing for these applications.
  • a nonionic or anionic hydrophilic group is introduced into the skeleton in order to develop water dispersibility in the cross-linking agent itself. If the amount of this hydrophilic group introduced is low, the water dispersibility of the cross-linking agent itself is lowered, and as a result, the storage stability of the coating material is deteriorated. Further, when the amount of the hydrophilic group introduced is increased, the amount of blocked isocyanate in the cross-linking agent is relatively reduced, so that the performance such as durability of the coating film is insufficient.
  • These core-shell structure emulsions improve the dispersion stability of the coating liquid, and when applied to a polyester film substrate or the like and sufficiently cured, good adhesion is exhibited, but when the curing is insufficient. It was found that the coating film had a peeling defect due to contact with a traveling roll or the like.
  • a tension control roll is often provided in order to suppress tension fluctuations in the stretching process such as in the width direction after coating and drying. There is a tendency for the coating layer to have frequent peeling defects.
  • the present invention is intended to solve the above-mentioned problems of the polyester film, and is used for optics and packaging, which has a coating layer having excellent transparency (low haze), excellent durability, and few coating film defects. It is intended to provide a laminated polyester film having optimum easy adhesiveness for all fields such as for labels.
  • the present invention has the following configuration.
  • 1. It has a coating film formed from a coating liquid containing an aqueous dispersion of a hydrophobic block isocyanate compound hydrophilized by an anionic emulsifier, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin. Laminated polyester film with less than 5.0 pieces / m 2 of peeling defects.
  • 2. The laminated polyester film according to the first item above, wherein the anionic emulsifier that hydrophilizes the aqueous dispersion of the hydrophobic blocked isocyanate compound is an aqueous dispersible polyurethane resin having a carboxyl group.
  • 3. The laminated polyester film according to the first or second above, which has a core-shell structure having a hydrophobic blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell.
  • the laminated polyester film of the present invention is excellent in adhesiveness to ultraviolet (UV) curable resins such as a hard coat layer, a lens layer, and ink, but is particularly excellent in adhesiveness to a high level of UV ink.
  • UV ultraviolet
  • the polyester resin constituting the polyester film base material includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. It is a copolymerized polyester resin in which a part of the above is replaced with the following copolymerization component.
  • a diol component such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol, etc.
  • the polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate.
  • polyethylene terephthalate is most preferable from the viewpoint of the balance between physical properties and cost.
  • the polyester film base material composed of these polyester resins is preferably a biaxially stretched polyester film, and can improve chemical resistance, heat resistance, mechanical strength and the like.
  • the catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is an inexpensive catalyst and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferable polycondensation catalysts include catalysts containing aluminum and / or its compounds and phenolic compounds, catalysts containing aluminum and / or its compounds and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
  • the polyester film base material in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film or a two-layer structure having different components from each other, and the outer layer and the inner layer may be formed. It may be a polyester film base material having at least three layers.
  • the laminated polyester film of the present invention is made of a hydrophobic blocked isocyanate compound, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin in order to improve the adhesiveness to a hard coat layer, a lens layer, an ink and the like. It is preferable that the formed coating layers are laminated.
  • the coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film, and a different type of resin coating layer may be provided on the other side.
  • the coating layer of the present invention is preferably formed mainly from a hydrophobic block isocyanate compound hydrolyzed by an anionic emulsifier, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin, but the hydrophobic block.
  • the anionic emulsifier that hydrophilizes the isocyanate compound is preferably an water-dispersible polyurethane resin having a carboxyl group, and as a particularly desirable form, a hydrophobic blocked isocyanate compound and a water-dispersible polyurethane resin having a carboxyl group are hydrophobic.
  • a core-shell structure having a blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell It is preferable to have a core-shell structure having a blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell.
  • the above-mentioned hydrophilization does not mean only complete hydrophilization, but can be said to achieve the purpose if water dispersibility is provided so that an aqueous coating liquid can be prepared.
  • the water-dispersible polyurethane resin having a hydrophobic blocked isocyanate compound and a carboxyl group preferably has a mass ratio in the range of 5/95 to 80/20, more preferably 10/90 to 70/30, and further 20 /. The range of 80 to 60/40 is preferable.
  • the hydrophobic blocked isocyanate compound is 5 parts by mass or more because durability such as moisture resistance is improved.
  • the total of the hydrophobic block isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group is 100 parts by mass, if the water-dispersible polyurethane resin having a carboxyl group is 20 parts by mass or more, the stability of the coating liquid with time is determined. It is preferable because the transparency (low haze) and the adhesiveness to the hard coat layer, the lens layer, the ink and the like are improved. Further, the total of the above-mentioned hydrophobic block isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group and the polyester resin are preferably in the range of 10/90 to 90/10 as a mass ratio, and more preferably 20/80 to 80/.
  • the hydrophobic blocked isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group and the total of the polyester resin are 100 parts by mass, the hydrophobic blocked isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group
  • the total amount is 10 parts by mass or more, the adhesiveness to the hard coat layer, the lens layer, the ink and the like is improved, which is preferable.
  • the polyester resin is 10 parts by mass or more, it is preferable that the peeling defect of the coating film is easily suppressed.
  • the peeling defect is preferably less than 5.0 pieces / m 2 , more preferably less than 4.0 pieces / m 2 , and further preferably less than 3.0 pieces / m 2. be.
  • the peeling defect is less than 5.0 pieces / m 2 , the yield of the accepted product due to the peeling defect becomes a satisfactory level, which is preferable, especially in optical applications.
  • an aqueous dispersion of a hydrophobic blocked isocyanate compound in which the coating film is hydrophilized by an anionic emulsifier, an aqueous dispersion polyurethane resin having a carboxyl group, and water It is preferably formed from a coating liquid containing a dispersible polyester resin, and more preferably the ratio of the compound, the resin and the compound as described above.
  • the defect of peeling is most preferably 0 pieces / m 2 , but 0.5 pieces / m 2 or more may be used.
  • each composition of the coating layer will be described in detail.
  • hydrophobic blocked isocyanate compound In the present invention, a hydrophobic blocked isocyanate compound is used. Hydrophobicity means that no hydrophilic group is introduced into the molecule of the blocked isocyanate compound so as to allow self-emulsification or water dispersion of the compound alone. Examples of these hydrophilic groups include a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphonic acid group, a polyoxyethylene group and the like. However, the presence of a small amount of hydrophilic groups is not excluded when the compound is introduced for the purpose of adjusting the physical characteristics of the compound or when it is derived from the synthetic reaction residue of the compound or the impurities of the raw material. In the present invention, by using a hydrophobic blocked isocyanate compound, moisture resistance such as adhesiveness can be further improved.
  • the blocking agent examples include pyrazole compounds such as 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole and 4-nitro-3,5-dimethylpyrazole, and phenolic compounds such as phenol and cresol.
  • pyrazole compounds such as 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole and 4-nitro-3,5-dimethylpyrazole
  • phenolic compounds such as phenol and cresol.
  • An aliphatic alcohol system such as methanol and ethanol, an active methylene system such as dimethyl malonate and acetylacetone, a mercaptan system such as butyl mercaptan and dodecyl mercaptan, an acid amide system such as acetanilide and acetate amide, ⁇ -caprolactam, ⁇ -valerolactam.
  • a blocking agent in which the reaction product with the isocyanate group becomes a hydrophilic group is not so preferable, and examples thereof include compounds such as sulfites, bicarbonates, and diethanolamine.
  • the upper limit of the dissociation temperature of the blocking agent is preferably 200 ° C, more preferably 180 ° C, still more preferably 160 ° C, particularly preferably 150 ° C, and most preferably 120 ° C.
  • the blocking agent is dissociated by heat addition in the drying step after the coating liquid is applied or in the case of the in-line coating method in the film forming step, and a regenerated isocyanate group is generated. As a result, the cross-linking reaction with other polyurethane resins and the like in the coating film proceeds, and the cross-linking state of the coating film is improved.
  • Examples of the blocking agent having a dissociation temperature of 120 ° C. or lower that the hydrophobic blocked isocyanate in the present invention can preferably contain include the above-mentioned pyrazole compounds such as 3,5-dimethylpyrazole and 3-methylpyrazole, and dimethyl malonate.
  • Examples thereof include malonic acid ester compounds such as diethyl malonate, acetone oxime, and methyl ethyl keto oxime. Of these, methyl ethyl ketooxime, malonic acid ester compounds, or pyrazole compounds are preferable from the viewpoint of moisture resistance and heat resistance and yellowing.
  • the hydrophobic blocked isocyanate is preferably bifunctional or higher, and trifunctional or higher functional blocked isocyanate is more preferable from the viewpoint of crosslinkability of the coating film.
  • the trifunctional or higher functional polyisocyanate which is a precursor of the hydrophobic blocked isocyanate in the present invention can be suitably obtained by introducing an isocyanate monomer.
  • an isocyanate monomer examples thereof include a bullet form, an isocyanurate form, and an adduct form obtained by modifying an isocyanate monomer such as an aromatic diisocyanate having two isocyanate groups, an aliphatic diisocyanate, an aromatic aliphatic diisocyanate, or an alicyclic diisocyanate.
  • the burette body is a self-condensate having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate.
  • the isocyanurate form is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, and a trimer of tolylene diisocyanate.
  • the adduct is a trifunctional or higher functional isocyanate compound obtained by reacting an isocyanate monomer with a trifunctional or higher low molecular weight active hydrogen-containing compound, for example, a compound obtained by reacting trimethylolpropane with hexamethylene diisocyanate.
  • Examples thereof include a compound obtained by reacting trimethylolpropane with tolylene diisocyanate, a compound obtained by reacting trimethylolpropane with xylylene diisocyanate, and a compound obtained by reacting trimethylolpropane with isophorone diisocyanate.
  • isocyanate monomer examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, and 1,5.
  • Aromatic diisocyanates isophorone diisocyanates and 4,4-dicyclohexylmethane diisocyanates, alicyclic diisocyanates such as 1,3-bis (isocyanatemethyl) cyclohexane, hexamethylene diisocyanates, and 2,2,4-trimethylhexamethylene diisocyanates.
  • aliphatic diisocyanates such as. Aliphatic compounds, alicyclic isocyanates, and modified products thereof are preferable from the viewpoints of transparency, yellowing resistance, adhesiveness, and moisture heat resistance.
  • the blocked isocyanate compound itself in the present invention is hydrophobic and does not have water dispersibility. Therefore, it is necessary to use an emulsifier or the like separately from the blocked isocyanate compound to develop water dispersibility.
  • an emulsifier anionic, cationic, nonionic, amphoteric surfactants and the like can be used, but in this case, it is preferable to use anionic.
  • anionic surfactant By using an anionic surfactant, the dispersion stability of the blocked isocyanate compound can be improved.
  • a low molecular weight or high molecular weight type can be used as the anionic surfactant in the present invention.
  • Low-molecular-weight anionic surfactants include carboxylic acid type, sulfate ester type, sulfonic acid type, and phosphoric acid ester type.
  • carboxylic acid type include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsulfosin salts and N-acylglutamine salts
  • sulfate ester types include alkyl sulfates and polyoxys.
  • Examples of the sulfonic acid type include ethylene alkyl ether sulfate, oil and fat sulfate ester salt, and examples of the sulfonic acid type include dialkyl sulfosuccinate, alkane sulfonate, alpha olefin sulfonate, alkylbenzene sulfonate, alkylnaphthalene sulfonate, and N-acyl. Examples thereof include N-acyltaurine salts, and examples of the phosphate ester type include alkyl phosphates, polyoxyethylene alkyl ether phosphates, and polyoxyethylene alkyl phenyl ether phosphates.
  • the polymer anionic surfactant includes polymers or copolymers such as acrylic acid, maleic acid and styrene sulfonic acid, which are unsaturated monomers having an anionic group, sulfonic acid groups, carboxylic acids, phosphinic acid and the like. Examples thereof include polyesters and polyurethane resins obtained by copolymerizing the monomers having the same.
  • a polyurethane resin having a carboxyl group it is preferable to use. More preferably, it has a core-shell structure in which a hydrophobic blocked isocyanate compound is used as a core and a polyurethane resin having a carboxyl group is used as a shell. These make it possible to maintain the long-term dispersion stability of the blocked isocyanate compound, and the dispersion stability is unlikely to decrease even when mixed with other resins or additives. Details of the core-shell structure will be described later.
  • the polyurethane resin in the present invention is preferably a water-dispersible polyurethane resin having at least a polyol component, a polyisocyanate component, and, if necessary, a carboxyl group consisting of a chain extender.
  • the carboxyl group of the polyurethane resin in the present invention is present in the molecule or in the side chain in order to impart water solubility or water dispersibility to the polyurethane resin.
  • the term "in the molecule” as used herein means a substance present in the main chain or at the end of the polyurethane resin.
  • the side chain is introduced onto the branched molecular chain after being synthesized and polymerized due to the presence of three or more terminal functional groups of any of the raw material components constituting the molecular chain. It is a thing. In the present invention, there is no problem even if a hydrophilic group other than the carboxyl group is introduced into the polyurethane resin.
  • a hydrophilic group other than the carboxyl group an anionic group typified by sulfonic acid, phosphonic acid, etc., a cationic group typified by a quaternary amine, and a nonionic group typified by an oxyalkylene group may be used. However, a nonionic group typified by an oxyalkylene group is preferable because it is easy to introduce and does not react with a carboxyl group.
  • the polyurethane resin having a carboxyl group in the present invention is mainly obtained by using a carboxyl group-containing polyol component as a component of the urethane resin.
  • a carboxyl group-containing polyol component include the following. Those having a relatively high molecular weight, for example, a carboxyl group-containing polyalkylene glycol, a carboxyl group-containing acrylic polyol, a carboxyl group-containing polyolefin polyol, a carboxyl group-containing polyester polyol, and the like can be used.
  • those having a relatively low molecular weight for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpropane valeric acid and the like can be used. ..
  • dimethylolpropionic acid and dimethylolbutanoic acid are preferably used for introducing a carboxyl group.
  • the polyurethane resin having a carboxyl group preferably has an acid value of 10 to 60 mgKOH / g, and more preferably an acid value of 20 to 50 mgKOH / g.
  • the acid value is 10 mgKOH / g or more, the hydrophilicity of the polyurethane resin itself is improved, and water solubility or water dispersibility is maintained, which is preferable.
  • the acid value is 60 mgKOH / g or less, the water resistance of the coating layer is improved and there is no blocking problem due to moisture absorption, which is preferable.
  • hydrophilic groups other than the carboxyl group such as hydroxyl groups, oxyalkyl groups, sulfonic acids and phosphonic acids, are used.
  • a quaternary amine or the like may be introduced within a range in which the performance does not deteriorate.
  • the carboxyl group in the polyurethane resin may be neutralized with a basic compound.
  • the basic compound used for neutralization include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, and organic amine compounds.
  • an organic amine compound that easily dissociates from a carboxyl group by heating is preferable.
  • the organic amine compound include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine and triethylamine.
  • Linear and branched 1,2 or tertiary amines with 1 to 20 carbon atoms such as triisopropylamine, tributylamine and ethylenediamine, cyclic amines such as morpholin, N-alkylmorpholin and pyridine, monoisopropanolamine and methylethanol.
  • cyclic amines such as morpholin, N-alkylmorpholin and pyridine
  • monoisopropanolamine and methylethanol examples thereof include hydroxyl group-containing amines such as amines, methylisopropanolamines, dimethylethanolamines, diisopropanolamines, diethanolamines, triethanolamines, diethylethanolamines and triethanolamines.
  • polyester polyol or a polycarbonate polyol in addition to the above-mentioned polyoxyalkylene glycol as the main polyol component used for synthesizing and polymerizing the urethane resin having a carboxyl group in the present invention.
  • the number average molecular weight of the polyester polyol or the polycarbonate polyol in the present invention is preferably 300 to 5000. It is more preferably 400 to 4000, and most preferably 500 to 3000. When it is 300 or more, the adhesiveness can be improved, which is preferable. When it is 5000 or less, fusion between the coating layers can be prevented (blocking resistance is improved), which is preferable.
  • the polyester polyol in the present invention is preferably an aliphatic or alicyclic group. Therefore, the dicarboxylic acid components of the polyester polyol include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Can be mentioned.
  • the diol component includes ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. , 1,7-Heptanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, neopentyl glycol and other aliphatic diols, cyclohexanedimethanol and other fats Examples include cyclic diols.
  • a long-chain fatty acid of adipic acid or higher and a long-chain diol of pentanediol or higher it is preferable to mainly use a long-chain fatty acid of adipic acid or higher and a long-chain diol of pentanediol or higher.
  • a trifunctional or higher functional polycarboxylic acid, polyol, unsaturated type, or aromatic component may be used as long as the physical properties are not deteriorated.
  • polycarbonate polyol in the present invention it is preferable to use an aliphatic polycarbonate polyol.
  • the aliphatic polycarbonate polyol include an aliphatic polycarbonate diol and an aliphatic polycarbonate triol, and an aliphatic polycarbonate diol can be preferably used.
  • the aliphatic polycarbonate diol used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,5.
  • -Pentanediol 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol and other diols
  • examples thereof include aliphatic polycarbonate diols obtained by reacting one or more of them with carbonates such as dimethyl carbonate, ethylene carbonate and phosgene.
  • polyol components other than the above can also be used.
  • examples of other polyol components include polyether polyols, polyolefin polyols, dimer polyols, silicone polyols and the like.
  • Examples of the polyisocyanate used for the synthesis and polymerization of the water-dispersible urethane resin having a carboxyl group in the present invention include aromatic diisocyanates containing an aromatic ring such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate. , 1,3-Bis (isocyanatemethyl) cyclohexane and other alicyclic diisocyanates, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate and other aliphatic diisocyanates, or isocyanates produced from diisocyanates.
  • aromatic diisocyanates containing an aromatic ring such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate.
  • Examples thereof include modified polyisocyanates containing a nurate bond, a biurette bond or an allophanate bond, and polyisocyanates in which a single or a plurality of diisocyanates are previously added to trimethylol propane or the like.
  • modified polyisocyanates containing a nurate bond, a biurette bond or an allophanate bond and polyisocyanates in which a single or a plurality of diisocyanates are previously added to trimethylol propane or the like.
  • chain extender examples include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, and ethylenediamine. , Hexamethylenediamine, diamines such as piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thioglycols such as thiodiethyleneglycol, and water. Further, if the amount is small, a polyol having three or more functional groups, a polyamine, or the like may be used.
  • glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol
  • polyhydric alcohols such as glycerin, trimethylolpropane, and
  • the solvent system is preferable from the viewpoint of using it as an emulsifier for the above-mentioned hydrophobic blocked isocyanate compound.
  • the solvent may remain in the aqueous dispersion or the solvent may be removed, it is preferable to remove the solvent from the viewpoint of the environment.
  • the method for producing a dispersion of a blocked isocyanate compound using a water-dispersible polyurethane resin having a carboxyl group as an emulsifier is not particularly limited, but water dispersion is carried out after mixing the hydrophobic blocked isocyanate compound and the polyurethane resin having a carboxyl group. It is preferable to do so from the viewpoint of dispersion stability of the blocked isocyanate compound.
  • a blocked isocyanate compound is used as a core and polyurethane resin, such that it is mixed with a blocked isocyanate compound, water-dispersed, and then polyamine or the like is added to form a chain extender in a water-dispersed state to form a polyurethane resin.
  • An aqueous dispersion having a core-shell structure having a shell is preferable.
  • the water-dispersible polyurethane resin having a carboxyl group in the present invention may have a reactive group such as blocked isocyanate at the terminal or side chain in order to improve the hardness.
  • polyester resin used in combination with the coating layer in the present invention is not particularly limited, but a polyester resin containing 50 mol% or more of the aromatic dicarboxylic acid in the acid component is preferable from the viewpoint of hydrolysis resistance and physical characteristics.
  • aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid and the like.
  • Other acid components include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, acid anhydrides such as maleic anhydride, or trimellitic acid and trimesin, as required.
  • a tricarboxylic acid such as an acid can be used.
  • the diol component it is preferable that ethylene glycol is contained in an amount of 30 mol% or more in the diol component.
  • Other diol components include linear aliphatic diols such as 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol, or 1,2-propanezyl and 1,3-butane.
  • Diol branched aliphatic diols such as 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, alicyclic diols such as cyclohexanedimethanol, diethylene glycol, dipropylene glycol and the like.
  • alicyclic diols such as cyclohexanedimethanol, diethylene glycol, dipropylene glycol and the like.
  • examples thereof include polyoxyalkylene glycols such as diglycol and polyethylene glycol, and polyoxyalkylene glycol derivatives such as bisphenol A.
  • a hydrophilic group is present on the molecular skeleton in order to impart water dispersibility to the polyester resin.
  • a dicarboxylic acid in which a phosphonic acid group, a sulfonic acid group or the like is introduced into a dicarboxylic acid component may be used, or a polyether such as polyethylene glycol may be used as a diol component.
  • the carboxyl group may be introduced into the polyester skeleton by reacting the hydroxyl group terminal of the polymerized polyester with the polycarboxylic acid anhydride.
  • the sulfonic acid group-containing dicarboxylic acid in the dicarboxylic acid component in the range of 1 to 10 mol%, and examples of the sulfonic acid group-containing dicarboxylic acid include sulfoterephthalic acid, 5-sulfoisophthalic acid, and 5-sodium sulfoisophthalic acid. Acids and the like can be mentioned.
  • the present invention may be used in combination with other resins as long as the performance is not affected.
  • the resin to be used in combination include a non-carboxyl group-containing polyurethane resin, an alkyd resin, an acrylic resin, a cellulose resin, a polyolefin resin, and a polyacetal resin.
  • a cross-linking agent other than the hydrophobic blocked isocyanate compound in the present invention may be used in combination.
  • cross-linking agents hydrophilic blocked isocyanate-based, epoxy-based, melamine-based, oxazoline-based, carbodiimide-based and the like can be used.
  • another cross-linking agent in the range of 20% by mass or less, the cross-linking state can be adjusted to reduce the influence on the adhesiveness and the like, and the durability such as moisture and heat resistance can be further improved.
  • the hydrophobic blocked isocyanate compound can adjust the cross-linking state by changing the cross-linking reaction start temperature depending on the composition of the blocking agent. It is preferable to select different blocking agents.
  • additives such as surfactants, antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, organic lubricants, and pigments are used as long as the effects of the present invention are not impaired.
  • Dyes, organic or inorganic particles, antistatic agents, nucleating agents and the like may be added.
  • the particles contained in the coating layer include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay and the like, or a mixture thereof, and other general ones.
  • Inorganic particles such as calcium phosphate, mica, hectrite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride and others, and organic particles such as styrene, acrylic, melamine, benzoguanamine and silicone. Examples include polymer particles.
  • the average particle size of the other particles in the coating layer is preferably 0.02 to 2.00 ⁇ m, more preferably 0.04 to 1. It is 0.00 ⁇ m.
  • the average particle size of the inert particles is 0.04 ⁇ m or more, it becomes easy to form irregularities on the film surface, so that the handleability such as slipperiness and winding property of the film is further improved, and the film is bonded. The workability of the above is good and is preferable.
  • the average particle size of the inert particles is 2.00 ⁇ m or less, the particles are less likely to fall off, which is preferable.
  • the particle concentration in the coating layer is preferably 1 to 20% by mass in the solid component.
  • the average particle size of the other particles was measured by observing the particles in the cross section of the laminated polyester film with a scanning electron microscope, observing 30 particles, and using the average value as the average particle size.
  • the shape of the other particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and amorphous non-spherical particles can be used.
  • the particle size of the amorphous particles can be calculated as the equivalent circle diameter.
  • the equivalent circle diameter is a value obtained by dividing the observed particle area by ⁇ , calculating the square root, and doubling it.
  • PET film base material a polyethylene terephthalate (hereinafter, may be abbreviated as PET) film base material. Not limited to.
  • the PET resin After the PET resin is sufficiently vacuum-dried, it is supplied to an extruder, and the molten PET resin at about 280 ° C. is melt-extruded into a sheet on a rotary cooling roll, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet.
  • the unstretched PET sheet may have a single-layer structure or a multi-layer structure by a coextrusion method.
  • the obtained unstretched PET sheet is uniaxially stretched or biaxially stretched to orient the crystals.
  • a roll heated to 80 to 120 ° C. is stretched 3.0 to 5.0 times in the longitudinal direction to obtain a uniaxially stretched PET film, and then the end of the film is gripped with a clip. Then, it is guided to a hot air zone heated to 80 to 180 ° C. and stretched 3.0 to 5.0 times in the width direction.
  • the unstretched PET sheet is stretched 3.0 to 5.0 times in the tenter. After stretching, the crystals are continuously led to a heat treatment zone at 180 to 230 ° C. and heat-treated to complete the crystal orientation.
  • any known method can be used as the method for applying the coating liquid to the PET film.
  • reverse roll coat method gravure coat method, kiss coat method, die coater method, roll brush method, spray coat method, air knife coat method, wire bar coat method, pipe doctor method, impregnation coat method, curtain coat method, etc. Be done. These methods can be applied alone or in combination.
  • the thickness of the coating layer can be appropriately set in the range of 0.001 to 2.00 ⁇ m, but the range of 0.01 to 1.00 ⁇ m is preferable in order to achieve both workability and adhesiveness. It is more preferably 0.02 to 0.80 ⁇ m, and even more preferably 0.05 to 0.50 ⁇ m.
  • the thickness of the coating layer is 0.001 ⁇ m or more, the adhesiveness is good and it is preferable.
  • the thickness of the coating layer is 2.00 ⁇ m or less, blocking is less likely to occur, which is preferable.
  • the upper limit of the haze of the laminated polyester film of the present invention is preferably 2.0%, more preferably 1.8%, still more preferably 1.5%, and particularly preferably 1.2%.
  • the haze is 2.0% or less, it is preferable in terms of transparency, and it can be suitably used for optical film applications where transparency is required.
  • the haze is preferably small, but may be 0.1% or more, or 0.3% or more.
  • a closed curve that does not intersect with themselves, and those surrounded by a maximum width of 200 ⁇ m or more a.
  • the inside of a closed curve is a recess c.
  • the maximum depth of the outer peripheral part and the inner part of the closed curve is 70% or more of the coating layer thickness.
  • Workman The depth variation of the internal region of the closed curve is in the range of less than 50% of the coating layer thickness.
  • 50% or more of the closed curve has a gradient of 60 ° or more from the horizontal plane inside the curve. The number of peeling defects determined above was converted per 1 m 2.
  • coating film thickness it is possible to use a value calculated from the total solid content concentration of the coating liquid, a resin content specific gravity, a coating amount, a draw ratio, etc., or an analysis value from an SEM photograph of a film cross section.
  • Adhesion with UV ink A UV ink [manufactured by T & K TOKA Co., Ltd., trade name "BEST CURE UV161 indigo S” or “BEST CURE UV161 white S”] is used on the coating layer of the laminated polyester film. Printing was performed with an ink pipette 4 scales and a 2-split roll using a printing machine [manufactured by Ming Seisakusho Co., Ltd., trade name "RI tester”], and then 100 mJ / cm 2 using a high-pressure mercury lamp on the film coated with the ink layer. The UV curable ink was cured by irradiating with the ultraviolet rays of.
  • a cellophane adhesive tape (manufactured by Nichiban, No. 405; 24 mm width) is attached to the cut surface in the shape of a grid. After that, the cellophane adhesive tape is vertically peeled off from the ink layer surface of the ink laminated film, the number of squares peeled off from the ink layer surface of the ink laminated film is visually counted, and the ink layer and the film substrate adhere to each other from the following formula. Seeking sex.
  • Ink adhesion (%) 100- (number of peeled squares) Ink adhesion (%) was classified as follows, and ⁇ and ⁇ were regarded as acceptable. ⁇ : 100%, ⁇ : 99-96%, ⁇ : 95-80%, ⁇ : 79-0%
  • Adhesion to the hard coat layer Opstar Z7503 (manufactured by Arakawa Chemical Industry Co., Ltd.), which is a UV curable hard coat agent, is applied onto the coated layer of the laminated polyester film using a # 5 wire bar, and 80 It was dried at ° C for 1 minute.
  • the applied film was irradiated with ultraviolet rays of 100 mj / cm 2 using a high-pressure mercury lamp to obtain a hard-coated film.
  • using a cutter guide with a gap spacing of 2 mm 100 grid-like cuts that penetrate the hardcourt layer and reach the film substrate are made on the hardcourt layer surface.
  • a cellophane adhesive tape (manufactured by Nichiban, No.
  • the cellophane adhesive tape is vertically peeled off from the hard coat layer surface of the hard coat laminated film, and the number of squares peeled off from the hard coat layer surface of the hard coat laminated film is visually counted, and the hard coat layer and the film are counted from the following formula.
  • those that were partially peeled out among the squares were also counted as the peeled squares, and the hard coat adhesion was obtained as shown in the following formula.
  • the hard coat adhesion was 100 (%).
  • Hardcourt adhesion (%) 100- (number of peeled squares) Hardcourt adhesion (%) was classified as follows, and ⁇ and ⁇ were judged as acceptable. ⁇ : 100%, ⁇ : 99-96%, ⁇ : 95-80%, ⁇ : 79-0%
  • a UV ink-coated or hard-coated film prepared in the same manner as in (5) and (6) above is placed in an environment of 80 ° C. and 80% RH so that the coated surface is vertical and another film is applied to the coated surface. It was left for 500 hours without any contact. After the treatment, it was left in an environment of 23 ° C. and 65% RH for 10 minutes without contact with other films or the like on the coated surface. Immediately after the lapse of time, the adhesion of the coated surface was evaluated in the same manner as described above.
  • reaction was further stirred at 80 ° C. for 2 hours. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-5 having a nonionic group was obtained.
  • This polyurethane resin CS-1 is a polyurethane in which the core is a blocked isocyanate compound BI-1 and the shell is formed from an anionic prepolymer P-1.
  • This polyurethane resin CS-2 is a polyurethane in which the core is a blocked isocyanate compound BI-2 and the shell is formed from an anionic prepolymer P-2.
  • This polyurethane resin CS-3 is a polyurethane in which the core is a blocked isocyanate compound BI-3 and the shell is formed from an anionic prepolymer P-3.
  • aqueous dispersion (CS-4WD) of a core-shell type aqueous polyurethane resin CS-4 having a solid content concentration of 30% by mass was prepared. Obtained.
  • This polyurethane resin CS-4 is a polyurethane in which the core is a blocked isocyanate compound BI-4 and the shell is formed from an anionic prepolymer P-1.
  • This polyurethane resin CS-5 is a polyurethane having a core of a blocked isocyanate compound BI-1 and a shell made of a nonionic prepolymer P-4.
  • an aqueous dispersion (CS-6WD) of a core-shell type aqueous polyurethane resin CS-6 having a solid content concentration of 30% by mass was prepared. Obtained.
  • the polyurethane resin CS-6 is a polyurethane having a nonionic blocked isocyanate compound BI-5 as a core and an anionic prepolymer P-1 as a shell.
  • Polyurethane resin [Manufacturing of polyurethane resin PU-1] 437.2 parts by mass of polycarbonate diol with a number average molecular weight of 2000, 192.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, 60.8 parts by mass of dimethylolpropionic acid in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube. , 13.0 parts by mass of 1,6-hexanediol and 250 parts by mass of methyl ethyl ketone as a solvent were charged, stirred at 80 ° C.
  • polyester resin PE-1 (Manufacturing of polyester resin PE-1] 95 parts by mass of dimethyl terephthalate, 95 parts by mass of dimethyl isophthalate, 35 parts by mass of ethylene glycol, 145 parts by mass of neopentyl glycol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide were charged into a reaction vessel and 180 ° C. The transesterification reaction was carried out over 3 hours. Next, 6.0 parts by mass of 5-sodium sulfoisophthalic acid was added, and the esterification reaction was carried out at 240 ° C. for 1 hour, and then under reduced pressure at 250 ° C. (1.33 to 0.027 kPa) for 2 hours.
  • the polycondensation reaction was carried out to obtain a polyester resin (PE-1) having a molecular weight of 19,500. 300 parts by mass of this polyester resin (PE-1) and 140 parts by mass of butyl cellosolve were stirred at 160 ° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt to give a uniform pale white color after 1 hour.
  • a polyester resin aqueous dispersion (PE-1WD) having a solid content of 15% by mass was prepared.
  • polyester resin PE-2 [Manufacturing of polyester resin PE-2] Add 105 parts by mass of dimethyl 2,6-naphthalenedicarboxylate, 50 parts by mass of ethylene glycol, 36 parts by mass of hexanediol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide into the reaction vessel, and 3 at 180 ° C. The transesterification reaction was carried out over time. Next, 8.6 parts by mass of 5-sodium sulfoisophthalic acid and 8 parts by mass of sebacic acid were added, and an esterification reaction was carried out at 240 ° C. for 1 hour, and then 1.33 to 0.
  • a polycondensation reaction was carried out at 027 kPa) for 2 hours to obtain a polyester resin (PE-2) having a molecular weight of 18,000. 300 parts by mass of this polyester resin (PE-2) and 140 parts by mass of butyl cellosolve were stirred at 160 ° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt to give a uniform pale white color after 1 hour.
  • a polyester resin aqueous dispersion (PE-2WD) having a solid content of 15% by mass was prepared.
  • a monomer mixture consisting of parts by mass and a polymerization initiator solution consisting of 18.0 parts by mass of 2,2'-azobis (2-amidinopropane) dihydrochloride and 170.0 parts by mass of water as a polymerization initiator are added dropwise.
  • the solution was dropped from the funnel under a nitrogen atmosphere over 2 hours while keeping the inside of the flask at 80 ° C. After completion of the dropping, the mixture was stirred at 80 ° C. for 5 hours and then cooled to room temperature.
  • An appropriate amount of water was added to prepare an oxazoline-based cross-linking agent aqueous dispersion (OX-1WD) having a solid content of 40% by mass.
  • OX-1WD oxazoline-based cross-linking agent aqueous dispersion
  • (acrylic resin) T-butylperoxy-2-ethylhexano as a polymerization initiator in 356 parts by mass of methyl methacrylate, 16 parts by mass of acrylic acid, 5 parts by mass of normal butyl acrylate, 10 parts by mass of 2-hydroxyethyl methacrylate, and 372 parts by mass of methyl ethyl ketone. While stirring by adding 2 parts by mass of ate, the temperature was raised to 50 ° C. and held for 120 minutes, and then the temperature was raised to 70 ° C. and held for 180 minutes.
  • particle PA-1 colloidal silica (Snowtex ZL; manufactured by Nissan Chemical Industries, Ltd.) having an average particle size of 80 nm and a solid content concentration of 40% by mass was used as it was as the particles (PA-1) solution.
  • Particle PA-2 As the particles (PA-2), colloidal silica (Snowtex XL; manufactured by Nissan Chemical Industries, Ltd.) having an average particle size of 40 to 60 nm having a solid content concentration of 40% by mass was used as it was as the particles (PA-2) solution.
  • colloidal silica Snowtex XL; manufactured by Nissan Chemical Industries, Ltd.
  • the above antimony trioxide solution was used as a polycondensation catalyst in this BHET mixture, and the amount of antimony atoms was added to 0.04 mol% with respect to the acid component in the polyester, and then 250 under normal pressure under a nitrogen atmosphere. The mixture was stirred at ° C for 10 minutes. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 280 ° C. over 60 minutes, and the polycondensation reaction was further carried out at 280 ° C. and 13.3 Pa for 68 minutes to carry out the intrinsic polycondensation reaction.
  • polyester resin E-2 for base material
  • antimony trioxide solution As a polycondensation catalyst, a mixture of the above-mentioned aluminum compound solution and phosphorus compound solution was used, and 0.014 mol% and phosphorus atoms were used as aluminum atoms and phosphorus atoms, respectively, with respect to the acid component in the polyester. It was polymerized in the same manner as the polyester resin E-1 except that it was added so as to be 0.028 mol%. However, by setting the polymerization time to 68 minutes, a polyester resin E-2 having an intrinsic viscosity (IV) of 0.61 dl / g and substantially containing no particles was obtained.
  • IV intrinsic viscosity
  • Example 1 (1) Preparation of coating liquid
  • the following coating agent was mixed with a mixed solvent (80/20 parts by mass) of water and isopropanol to adjust the total amount to 100 parts by mass.
  • the solid content mass ratio of the aqueous dispersion of the blocked isocyanate compound BI-1 (BI-1WD-A) / the aqueous dispersion of the polyurethane resin (PU-1WD) / the aqueous dispersion of the polyester resin (PE-1WD) is 25/45. / 30,
  • the total solid resin content concentration was 4% by mass.
  • the solid content mass ratios of the particles PA-1 and the particles PA-2 were set to 0.5 and 8, respectively, with respect to the solid content 100 of the above-mentioned resin or the like.
  • a 10% aqueous solution of a silicone-based surfactant was added to the coating liquid in an amount of 1% by mass.
  • Table 1 shows the compounding ratios of the resins and the like in the coating liquids of Examples and Comparative Examples.
  • Mixed solvent water / isopropanol
  • 20 parts by mass water dispersion of polyester resin (PE-1WD) 8.00 parts by mass particles
  • PA-1 solution 0.05 parts by mass particles
  • PA- 2 solutions 0.80 parts by mass
  • This unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially stretched PET film.
  • the coating liquid was applied to one side of the PET film so that the coating amount was 6.0 g / m 2, and heat-treated at 90 ° C. for 3 seconds and 40 ° C. for 3 seconds to dry. Further, the surface of the coating layer of the film was brought into contact with a tension control roll (surface roughness: 0.4S) having a diameter of 200 mm and having been hard chrome plated.
  • the running conditions at this time were a running speed of 20 m / min, a winding angle of 60 degrees, and a running tension of 400 to 500 N / m.
  • the film was stretched 4.0 times in the width direction at 110 ° C., and heated at 230 ° C. for 5 seconds with the width direction of the film fixed. Further, a relaxation treatment in the width direction of 3% was performed to obtain a 100 ⁇ m laminated polyester film.
  • Table 2 The evaluation results of this film are shown in Table 2.
  • Examples 2 to 9 A laminated polyester film was obtained in the same manner as in Example 1 except that the coating liquid of Example 1 was changed according to the types of resins and additives of each Example of Table 1 and the mixing amount ratio of each.
  • Example 10 A laminated polyester film was obtained in the same manner as in Example 1 except that E-2 was used instead of the polyester resin E-1 as the film raw material polymer.
  • Example 1 A laminated polyester film was obtained in the same manner as in Example 1 except that the coating liquid of Example 1 was changed according to the types of resins and additives of each Comparative Example in Table 1 and the mixing amount ratios.
  • Table 2 summarizes the evaluation results of each example and comparative example.

Abstract

 The present invention addresses the problem of providing a multilayer polyester film which has a coating layer that has excellent transparency (low haze) and excellent durability, while being suppressed in coating film defects, and which has high adhesiveness that is most suitable in various fields such as optical materials, packages and labels. The present invention is a multilayer polyester film which has a coating film that is formed from a coating liquid containing an aqueous dispersion of a hydrophobic blocked isocyanate compound that is hydrophilized by means of an anionic emulsifying agent, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin, wherein the separation defects of the coating film is less than 5.0 defects/m2.

Description

積層ポリエステルフィルムLaminated polyester film
 本発明は、積層ポリエステルフィルムに関する。更に詳しくは、透明性(低ヘイズ)、耐久性に優れ、塗膜欠点の少ない塗布層を有する光学用、包装用、ラベル用などあらゆる分野に最適な易接着性を有する積層ポリエステルフィルムに関する。 The present invention relates to a laminated polyester film. More specifically, the present invention relates to a laminated polyester film having easy adhesiveness, which is most suitable for all fields such as optics, packaging, and labels having a coating layer having excellent transparency (low haze), durability, and few coating film defects.
従来の技術Conventional technology
 熱可塑性樹脂フィルム、中でもポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有することから磁気記録材料、包装材料、太陽電池用途、フラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム、及びラベル印刷用フィルムなどに幅広く使用されている。しかし、ポリエステルフィルムは表面が高度に結晶配向しているため、これらの用途での加工において、各種塗料や樹脂、インクとの接着性に乏しいという欠点を有している。そのため、ポリエステルフィルムの表面にポリウレタン樹脂またはポリウレタン樹脂とイソシアネート系架橋剤とを併用して塗布し、易接着性能を持つ塗布層を設ける方法が知られている(特許文献1参照)。 Thermoplastic resin films, especially polyester films, have excellent mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., and therefore have excellent properties such as magnetic recording materials, packaging materials, solar cell applications, and flat displays. It is widely used in antireflection films, diffusion sheets, optical films such as prism sheets, and label printing films. However, since the surface of the polyester film is highly crystallinely oriented, it has a drawback of poor adhesion to various paints, resins, and inks in processing for these applications. Therefore, a method is known in which a polyurethane resin or a polyurethane resin and an isocyanate-based cross-linking agent are applied in combination on the surface of a polyester film to provide a coating layer having easy-adhesion performance (see Patent Document 1).
 また、近年、大気や排水に対する環境保全性及び製造工程や施工の際の作業安全性の観点から、有機溶剤を使用しない水系(水性)の組成物の使用が重視されている。そのため、水との反応性を抑制するためにブロック化剤を使用した水分散性ブロックイソシアネート系架橋剤が提案されている(特許文献2参照)。 In recent years, the use of water-based (water-based) compositions that do not use organic solvents has been emphasized from the viewpoint of environmental protection against air and wastewater and work safety during manufacturing processes and construction. Therefore, a water-dispersible blocked isocyanate-based cross-linking agent using a blocking agent to suppress the reactivity with water has been proposed (see Patent Document 2).
 これらの水分散性ブロックイソシアネート系架橋剤では、架橋剤自体に水分散性を発現させるためにノニオン性またはアニオン性の親水性基を骨格に導入している。この親水性基導入量が低いと架橋剤自体の水分散性が低下し、結果として塗剤の貯蔵安定性が悪くなる。また、親水性基導入量を高くすると、架橋剤中のブロックイソシアネート量が相対的に低下するため、塗膜の耐久性等の性能が不足する。 In these water-dispersible blocked isocyanate-based cross-linking agents, a nonionic or anionic hydrophilic group is introduced into the skeleton in order to develop water dispersibility in the cross-linking agent itself. If the amount of this hydrophilic group introduced is low, the water dispersibility of the cross-linking agent itself is lowered, and as a result, the storage stability of the coating material is deteriorated. Further, when the amount of the hydrophilic group introduced is increased, the amount of blocked isocyanate in the cross-linking agent is relatively reduced, so that the performance such as durability of the coating film is insufficient.
 また、架橋剤自体に水分散性を発現させるのではなく、乳化剤等を使用した強制水分散性ブロックイソシアネートも使用されているが、他の水系樹脂または添加剤との組合せ等によっては分散安定性が低下し、問題となることがある。 In addition, instead of developing water dispersibility in the cross-linking agent itself, forced water-dispersible blocked isocyanate using an emulsifier or the like is also used, but dispersion stability may occur depending on the combination with other water-based resins or additives. May be a problem.
 これら水分散性ブロックイソシアネート系架橋剤の分散安定性確保の解決方法として、ブロックポリイソシアネート成分と中和されたカルボキシル基含有イソシアネート基末端ウレタンプレポリマーの混合物を、水に乳化させ、鎖延長剤により鎖延長反応を行ってブロックイソシアネート系化合物をコア成分とし、カルボキシル基含有イソシアネート基末端ウレタンプレポリマーを鎖延長させたポリウレタン樹脂がシェル成分となるコア・シェル構造のエマルジョンが提案されている(特許文献3参照)。これらのコア・シェル構造のエマルジョンにより、塗液の分散安定性が向上し、ポリエステルフィルム基材等へ塗布し、硬化が十分な場合では良好な密着性が発現するが、硬化が不十分な場合には塗膜が走行ロール等との接触により、ハガレ欠点が発生することが判った。特に、フィルム製膜工程中に塗布層を設けるインラインコートフィルムにおいては、塗布、乾燥後に幅方向等の延伸工程での張力変動を抑えるため、テンション制御ロールを設けることが多いことから、該当ロールでの塗布層のハガレ欠点が多発傾向である。また、塗布、乾燥工程全般において、省エネまたは生産性向上の観点から生産ライン速度を上げることが多いため、塗布層を十分に硬化させる熱量及び時間をとることが困難になってきており、前記の様なハガレ欠点の発生の懸念が大きくなっている。 As a solution for ensuring the dispersion stability of these water-dispersible blocked isocyanate-based cross-linking agents, a mixture of a blocked polyisocyanate component and a neutralized carboxyl group-containing isocyanate group-terminated urethane prepolymer is emulsified in water, and a chain extender is used. Emulsions having a core-shell structure in which a blocked isocyanate compound is used as a core component by performing a chain extension reaction and a polyurethane resin in which a carboxyl group-containing isocyanate group-terminated urethane prepolymer is chain-extended as a shell component have been proposed (Patent Documents). 3). These core-shell structure emulsions improve the dispersion stability of the coating liquid, and when applied to a polyester film substrate or the like and sufficiently cured, good adhesion is exhibited, but when the curing is insufficient. It was found that the coating film had a peeling defect due to contact with a traveling roll or the like. In particular, in an in-line coat film in which a coating layer is provided during the film forming process, a tension control roll is often provided in order to suppress tension fluctuations in the stretching process such as in the width direction after coating and drying. There is a tendency for the coating layer to have frequent peeling defects. In addition, in the entire coating and drying processes, the production line speed is often increased from the viewpoint of energy saving or productivity improvement, so that it is becoming difficult to take the amount of heat and time to sufficiently cure the coating layer. There is a growing concern about the occurrence of such peeling defects.
特開昭60-199648号公報Japanese Unexamined Patent Publication No. 60-199648 特開2005-154674号公報Japanese Unexamined Patent Publication No. 2005-154674 国際公開第2009/113412号International Publication No. 2009/1132412
 本発明は、上記のようなポリエステルフィルムの問題点を解決しようとするものであって、透明性(低ヘイズ)、耐久性に優れ、塗膜欠点の少ない塗布層を有する光学用、包装用、ラベル用などあらゆる分野に最適な易接着性を有する積層ポリエステルフィルムを提供しようとするものである。 The present invention is intended to solve the above-mentioned problems of the polyester film, and is used for optics and packaging, which has a coating layer having excellent transparency (low haze), excellent durability, and few coating film defects. It is intended to provide a laminated polyester film having optimum easy adhesiveness for all fields such as for labels.
 即ち、本発明は、以下の構成よりなる。
1. アニオン性乳化剤により親水化された疎水性ブロックイソシアネート化合物の水分散体、カルボキシル基を有する水分散性ポリウレタン樹脂、及び水分散性ポリエステル樹脂を含む塗布液から形成された塗膜を有し、塗膜のハガレ欠点が5.0個/m未満である積層ポリエステルフィルム。
2. 疎水性ブロックイソシアネート化合物の水分散体を親水化するアニオン性乳化剤が、カルボキシル基を有する水分散性ポリウレタン樹脂である上記第1に記載の積層ポリエステルフィルム。
3. 疎水性ブロックイソシアネート化合物をコアとし、カルボキシル基を有する水分散性ポリウレタン樹脂をシェルとするコア・シェル構造を有する上記第1または第2に記載の積層ポリエステルフィルム。
That is, the present invention has the following configuration.
1. 1. It has a coating film formed from a coating liquid containing an aqueous dispersion of a hydrophobic block isocyanate compound hydrophilized by an anionic emulsifier, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin. Laminated polyester film with less than 5.0 pieces / m 2 of peeling defects.
2. 2. The laminated polyester film according to the first item above, wherein the anionic emulsifier that hydrophilizes the aqueous dispersion of the hydrophobic blocked isocyanate compound is an aqueous dispersible polyurethane resin having a carboxyl group.
3. 3. The laminated polyester film according to the first or second above, which has a core-shell structure having a hydrophobic blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell.
  本発明によって、透明性(低ヘイズ)、耐久性に優れ、塗膜欠点の少ない塗布層を有する光学用、包装用、ラベル用などあらゆる分野に最適な易接着性を有する積層ポリエステルフィルムの提供が可能となった。
 特に、本発明の積層ポリエステルフィルムは、ハードコート層、レンズ層、インキ等の紫外線(UV)硬化樹脂への接着性に優れるが、とりわけUVインキに対して高いレベルの接着性に優れる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a laminated polyester film having an optimum easy-adhesion property for all fields such as optics, packaging, and labels having a coating layer having excellent transparency (low haze), durability, and few coating film defects. It has become possible.
In particular, the laminated polyester film of the present invention is excellent in adhesiveness to ultraviolet (UV) curable resins such as a hard coat layer, a lens layer, and ink, but is particularly excellent in adhesiveness to a high level of UV ink.
(ポリエステルフィルム基材)
 本発明においてポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。
(Polyester film base material)
In the present invention, the polyester resin constituting the polyester film base material includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. It is a copolymerized polyester resin in which a part of the above is replaced with the following copolymerization component. For example, as the copolymerization component, a diol component such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol, etc. , Adipic acid, sebatic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid and the like can be mentioned.
 本発明においてポリエステルフィルム基材のために好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートから選ばれるものである。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステル樹脂から構成されたポリエステルフィルム基材は二軸延伸ポリエステルフィルムであることが好ましく、耐薬品性、耐熱性、機械的強度などを向上させることができる。 The polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate. Among these polyester resins, polyethylene terephthalate is most preferable from the viewpoint of the balance between physical properties and cost. Further, the polyester film base material composed of these polyester resins is preferably a biaxially stretched polyester film, and can improve chemical resistance, heat resistance, mechanical strength and the like.
 ポリエステル樹脂の製造の際に用いられる重縮合のための触媒としては特に限定されないが、三酸化アンチモンが安価で、かつ優れた触媒活性をもつ触媒であるため好適である。また、ゲルマニウム化合物、又はチタン化合物を用いることも好ましい。さらに好ましい重縮合触媒としては、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒が挙げられる。 The catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is an inexpensive catalyst and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferable polycondensation catalysts include catalysts containing aluminum and / or its compounds and phenolic compounds, catalysts containing aluminum and / or its compounds and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
 また、本発明におけるポリエステルフィルム基材は、その層構成について特に限定されるものではなく、単層のポリエステルフィルムであってもよいし、相互に成分が異なる2層構成でもよく、外層と内層を有する、少なくとも3層からなるポリエステルフィルム基材であってもよい。 Further, the polyester film base material in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film or a two-layer structure having different components from each other, and the outer layer and the inner layer may be formed. It may be a polyester film base material having at least three layers.
(塗布層)
 本発明の積層ポリエステルフィルムは、ハードコート層、レンズ層、インキ等への接着性を向上させるために、疎水性ブロックイソシアネート化合物、カルボキシル基を有する水分散性ポリウレタン樹脂、及び水分散性ポリエステル樹脂から形成されている塗布層が積層されていることが好ましい。塗布層は、ポリエステルフィルムの両面に設けてもよく、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。
(Coating layer)
The laminated polyester film of the present invention is made of a hydrophobic blocked isocyanate compound, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin in order to improve the adhesiveness to a hard coat layer, a lens layer, an ink and the like. It is preferable that the formed coating layers are laminated. The coating layer may be provided on both sides of the polyester film, or may be provided on only one side of the polyester film, and a different type of resin coating layer may be provided on the other side.
 本発明の塗布層は主にアニオン性乳化剤により親水化された疎水性ブロックイソシアネート化合物、カルボキシル基を有する水分散性ポリウレタン樹脂、及び水分散性ポリエステル樹脂から形成されることが好ましいが、疎水性ブロックイソシアネート化合物を親水化するアニオン性乳化剤が、カルボキシル基を有する水分散性ポリウレタン樹脂であることが好ましく、特に望ましい形態としては疎水性ブロックイソシアネート化合物、カルボキシル基を有する水分散性ポリウレタン樹脂が、疎水性ブロックイソシアネート化合物をコアとし、カルボキシル基を有する水分散性ポリウレタン樹脂をシェルとするコア・シェル構造を有することが好ましい。前記の親水化は、完全な親水化だけを意味するものではなく、水系の塗布液を調製できる水分散性を与えられれば、その目的を達するものと言える。 The coating layer of the present invention is preferably formed mainly from a hydrophobic block isocyanate compound hydrolyzed by an anionic emulsifier, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin, but the hydrophobic block. The anionic emulsifier that hydrophilizes the isocyanate compound is preferably an water-dispersible polyurethane resin having a carboxyl group, and as a particularly desirable form, a hydrophobic blocked isocyanate compound and a water-dispersible polyurethane resin having a carboxyl group are hydrophobic. It is preferable to have a core-shell structure having a blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell. The above-mentioned hydrophilization does not mean only complete hydrophilization, but can be said to achieve the purpose if water dispersibility is provided so that an aqueous coating liquid can be prepared.
 疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂は質量比として5/95~80/20の範囲が好ましく、より好ましくは10/90~70/30の範囲であり、さらには20/80~60/40の範囲が好ましい。疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂の合計を100質量部とするとき、疎水性ブロックイソシアネート化合物が5質量部以上であると、耐湿熱性等の耐久性が向上し好ましい。疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂の合計を100質量部とするとき、カルボキシル基を有する水分散性ポリウレタン樹脂が20質量部以上であると、塗布液の経時安定性、透明性(低ヘイズ)及びハードコート層、レンズ層、インキ等への接着性が向上し好ましい。また、上記の疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂の合計と、ポリエステル樹脂は質量比として10/90~90/10の範囲が好ましく、より好ましくは20/80~80/20の範囲であり、さらには30/70~70/30の範囲が好ましい。上記の疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂の合計と、ポリエステル樹脂の総合計を100質量部とするとき、疎水性ブロックイソシアネート化合物とカルボキシル基を有する水分散性ポリウレタン樹脂の合計が10質量部以上であると、ハードコート層、レンズ層、インキ等への接着性が向上し好ましい。また、ポリエステル樹脂が10質量部以上であると、塗膜のハガレ欠点が抑制され易く好ましい。 The water-dispersible polyurethane resin having a hydrophobic blocked isocyanate compound and a carboxyl group preferably has a mass ratio in the range of 5/95 to 80/20, more preferably 10/90 to 70/30, and further 20 /. The range of 80 to 60/40 is preferable. When the total amount of the hydrophobic blocked isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group is 100 parts by mass, it is preferable that the hydrophobic blocked isocyanate compound is 5 parts by mass or more because durability such as moisture resistance is improved. When the total of the hydrophobic block isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group is 100 parts by mass, if the water-dispersible polyurethane resin having a carboxyl group is 20 parts by mass or more, the stability of the coating liquid with time is determined. It is preferable because the transparency (low haze) and the adhesiveness to the hard coat layer, the lens layer, the ink and the like are improved. Further, the total of the above-mentioned hydrophobic block isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group and the polyester resin are preferably in the range of 10/90 to 90/10 as a mass ratio, and more preferably 20/80 to 80/. It is in the range of 20, and more preferably in the range of 30/70 to 70/30. When the total of the above hydrophobic blocked isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group and the total of the polyester resin are 100 parts by mass, the hydrophobic blocked isocyanate compound and the water-dispersible polyurethane resin having a carboxyl group When the total amount is 10 parts by mass or more, the adhesiveness to the hard coat layer, the lens layer, the ink and the like is improved, which is preferable. Further, when the polyester resin is 10 parts by mass or more, it is preferable that the peeling defect of the coating film is easily suppressed.
 本発明における塗膜では、ハガレ欠点が5.0個/m未満であることが好ましく、より好ましくは4.0個/m未満であり、さらに好ましくは3.0個/m未満である。ハガレ欠点が5.0個/m未満であると、特に光学用途においてはハガレ欠点による合格品の歩留まりが満足し得るレベルとなり好ましい。ハガレ欠点を5.0個/m未満にするためには、塗膜がアニオン性乳化剤により親水化された疎水性ブロックイソシアネート化合物の水分散体、カルボキシル基を有する水分散性ポリウレタン樹脂、及び水分散性ポリエステル樹脂を含む塗布液から形成されることが好ましく、特に先述の様な化合物及び樹脂、化合物の比率であることがさらに好ましい。ハガレ欠点は0個/mであることが最も好ましいが、0.5個/m以上であっても構わない。
 以下、塗布層の各組成について詳説する。
In the coating film of the present invention, the peeling defect is preferably less than 5.0 pieces / m 2 , more preferably less than 4.0 pieces / m 2 , and further preferably less than 3.0 pieces / m 2. be. When the peeling defect is less than 5.0 pieces / m 2 , the yield of the accepted product due to the peeling defect becomes a satisfactory level, which is preferable, especially in optical applications. In order to reduce the peeling defect to less than 5.0 pieces / m 2 , an aqueous dispersion of a hydrophobic blocked isocyanate compound in which the coating film is hydrophilized by an anionic emulsifier, an aqueous dispersion polyurethane resin having a carboxyl group, and water It is preferably formed from a coating liquid containing a dispersible polyester resin, and more preferably the ratio of the compound, the resin and the compound as described above. The defect of peeling is most preferably 0 pieces / m 2 , but 0.5 pieces / m 2 or more may be used.
Hereinafter, each composition of the coating layer will be described in detail.
(疎水性ブロックイソシアネート化合物) 
 本発明では疎水性ブロックイソシアネート化合物を使用する。疎水性とは、ブロックイソシアネート化合物の分子中に化合物単体での自己乳化または水分散が可能とする量の親水性基を導入していないことである。これらの親水性基としては、水酸基、カルボキシル基、スルホン酸基、ホスホン酸基、ポリオキシエチレン基等とが挙げられる。但し、化合物の物性調整のために導入する場合または化合物の合成反応残渣または原料不純物等に由来する場合の少量の親水性基の存在を除外するものではない。
 本発明においては疎水性ブロックイソシアネート化合物を使用することにより、接着性等の耐湿熱性をさらに向上させることができる。
(Hydrophobic blocked isocyanate compound)
In the present invention, a hydrophobic blocked isocyanate compound is used. Hydrophobicity means that no hydrophilic group is introduced into the molecule of the blocked isocyanate compound so as to allow self-emulsification or water dispersion of the compound alone. Examples of these hydrophilic groups include a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphonic acid group, a polyoxyethylene group and the like. However, the presence of a small amount of hydrophilic groups is not excluded when the compound is introduced for the purpose of adjusting the physical characteristics of the compound or when it is derived from the synthetic reaction residue of the compound or the impurities of the raw material.
In the present invention, by using a hydrophobic blocked isocyanate compound, moisture resistance such as adhesiveness can be further improved.
 ブロック化剤としては、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモー3,5-ジメチルピラゾール、4-ニトロー3,5-ジメチルピラゾールなどのピラゾール系化合物、フェノール、クレゾール等のフェノール系、メタノール、エタノール等の脂肪族アルコール系、マロン酸ジメチル、アセチルアセトン等の活性メチレン系、ブチルメルカプタン、ドデシルメルカプタン等のメルカプタン系、アセトアニリド、酢酸アミド等の酸アミド系、ε - カプロラクタム、δ - バレロラクタム等のラクタム系、コハク酸イミド、マレイン酸イミド等の酸イミド系、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム等のオキシム系、ジフェニルアニリン、アニリン、エチレンイミン等のアミン系等のブロック化剤が挙げられる。但し、イソシアネート基との反応物が親水性基となるブロック化剤はあまり好ましくなく、例えば、亜硫酸塩、炭酸水素塩、ジエタノールアミン等の化合物が挙げられる。 Examples of the blocking agent include pyrazole compounds such as 3,5-dimethylpyrazole, 3-methylpyrazole, 4-bromo-3,5-dimethylpyrazole and 4-nitro-3,5-dimethylpyrazole, and phenolic compounds such as phenol and cresol. , An aliphatic alcohol system such as methanol and ethanol, an active methylene system such as dimethyl malonate and acetylacetone, a mercaptan system such as butyl mercaptan and dodecyl mercaptan, an acid amide system such as acetanilide and acetate amide, ε-caprolactam, δ-valerolactam. Lactam-based, succinic acid imide, acid-imide-based such as maleate imide, oxime-based such as acetaldoxime, acetone oxime, and methyl ethyl keto-oxime, and amine-based blocking agents such as diphenylaniline, aniline, and ethyleneimine. Be done. However, a blocking agent in which the reaction product with the isocyanate group becomes a hydrophilic group is not so preferable, and examples thereof include compounds such as sulfites, bicarbonates, and diethanolamine.
 ブロック化剤の解離温度の上限は好ましくは200℃であり、より好ましくは180℃であり、さらに好ましくは160℃であり、特に好ましくは150℃であり、最も好ましくは120℃である。ブロック化剤は塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加によりブロック化剤が解離し、再生イソシアネート基が生成される。これにより、塗膜中の他のポリウレタン樹脂などとの架橋反応が進行し、塗膜の架橋状態が向上する。 The upper limit of the dissociation temperature of the blocking agent is preferably 200 ° C, more preferably 180 ° C, still more preferably 160 ° C, particularly preferably 150 ° C, and most preferably 120 ° C. As for the blocking agent, the blocking agent is dissociated by heat addition in the drying step after the coating liquid is applied or in the case of the in-line coating method in the film forming step, and a regenerated isocyanate group is generated. As a result, the cross-linking reaction with other polyurethane resins and the like in the coating film proceeds, and the cross-linking state of the coating film is improved.
 本発明における疎水性ブロックイソシアネートが好ましく含むことができる解離温度が120℃以下であるブロック化剤としては、前述の3,5-ジメチルピラゾール、3-メチルピラゾールなどのピラゾール系化合物、マロン酸ジメチル、マロン酸ジエチルなどのマロン酸エステル系化合物、アセトンオキシム、メチルエチルケトオキシムなどが挙げられる。なかでも、耐湿熱性、黄変の点から、メチルエチルケトオキシム、マロン酸エステル系化合物またはピラゾール系化合物が好ましい。 Examples of the blocking agent having a dissociation temperature of 120 ° C. or lower that the hydrophobic blocked isocyanate in the present invention can preferably contain include the above-mentioned pyrazole compounds such as 3,5-dimethylpyrazole and 3-methylpyrazole, and dimethyl malonate. Examples thereof include malonic acid ester compounds such as diethyl malonate, acetone oxime, and methyl ethyl keto oxime. Of these, methyl ethyl ketooxime, malonic acid ester compounds, or pyrazole compounds are preferable from the viewpoint of moisture resistance and heat resistance and yellowing.
 前記疎水性ブロックイソシアネートは2官能以上ものが好ましく、3官能以上のブロックイソシアネートが塗膜の架橋性の点からさらに好ましい。 The hydrophobic blocked isocyanate is preferably bifunctional or higher, and trifunctional or higher functional blocked isocyanate is more preferable from the viewpoint of crosslinkability of the coating film.
 本発明における疎水性ブロックイソシアネートの前駆体である3官能以上のポリイソシアネートは、イソシアネートモノマーを導入して好適に得ることができる。例えば、2個のイソシアネート基を有する芳香族ジイソシアネート、脂肪族ジイソシアネート、芳香脂肪族ジイソシアネート、又は脂環族ジイソシアネート等のイソシアネートモノマーを変性したビュレット体、イソシアヌレート体、およびアダクト体等が挙げられる。
 ビュレット体とは、イソシアネートモノマーが自己縮合して形成したビュレット結合を有する自己縮合物であり、例えば、ヘキサメチレンジイソシアネートのビュレット体などが挙げられる。
 イソシアヌレート体とは、イソシアネートモノマーの3量体であり、例えば、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネートの3量体、トリレンジイソシアネートの3量体などが挙げられる。
 アダクト体とは、イソシアネートモノマーと3官能以上の低分子活性水素含有化合物とを反応させてなる、3官能以上のイソシアネート化合物をいい、例えば、トリメチロールプロパンとヘキサメチレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとトリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとキシリレンジイソシアネートとを反応させた化合物、トリメチロールプロパンとイソホロンジイソシアネートとを反応させた化合物、などが挙げられる。
The trifunctional or higher functional polyisocyanate which is a precursor of the hydrophobic blocked isocyanate in the present invention can be suitably obtained by introducing an isocyanate monomer. Examples thereof include a bullet form, an isocyanurate form, and an adduct form obtained by modifying an isocyanate monomer such as an aromatic diisocyanate having two isocyanate groups, an aliphatic diisocyanate, an aromatic aliphatic diisocyanate, or an alicyclic diisocyanate.
The burette body is a self-condensate having a burette bond formed by self-condensation of an isocyanate monomer, and examples thereof include a burette body of hexamethylene diisocyanate.
The isocyanurate form is a trimer of an isocyanate monomer, and examples thereof include a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate, and a trimer of tolylene diisocyanate.
The adduct is a trifunctional or higher functional isocyanate compound obtained by reacting an isocyanate monomer with a trifunctional or higher low molecular weight active hydrogen-containing compound, for example, a compound obtained by reacting trimethylolpropane with hexamethylene diisocyanate. Examples thereof include a compound obtained by reacting trimethylolpropane with tolylene diisocyanate, a compound obtained by reacting trimethylolpropane with xylylene diisocyanate, and a compound obtained by reacting trimethylolpropane with isophorone diisocyanate.
 前記のイソシアネートモノマーとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4′-ジフェニルメタンジイソシアネート、2,2′-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、フェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4′-ジイソシアネート、2,2′-ジフェニルプロパン-4,4′-ジイソシアネート、3,3′-ジメチルジフェニルメタン-4,4′-ジイソシアネート、4,4′-ジフェニルプロパンジイソシアネート、3,3′-ジメトキシジフェニル-4,4′-ジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。透明性、耐黄変性、接着性、耐湿熱性の点から、脂肪族、脂環式イソシアネートやこれらの変性体が好ましい。 Examples of the isocyanate monomer include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, and 1,5. -Naftylene diisocyanate, 1,4-naphthylene diisocyanate, phenylenedi isocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane- 4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropanediisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, xylylene diisocyanate, etc. Aromatic diisocyanates, isophorone diisocyanates and 4,4-dicyclohexylmethane diisocyanates, alicyclic diisocyanates such as 1,3-bis (isocyanatemethyl) cyclohexane, hexamethylene diisocyanates, and 2,2,4-trimethylhexamethylene diisocyanates. Examples thereof include aliphatic diisocyanates such as. Aliphatic compounds, alicyclic isocyanates, and modified products thereof are preferable from the viewpoints of transparency, yellowing resistance, adhesiveness, and moisture heat resistance.
 先述の様に、本発明におけるブロックイソシアネート化合物自身は疎水性であり水分散性を有していない。そのため、ブロックイソシアネート化合物とは別に乳化剤等を使用して水分散性を発現させる必要がある。乳化剤としては、アニオン性、カチオン性、ノニオン性、両性界面活性剤等を使用することができるが、本件ではアニオン性を使用することが好ましい。アニオン性界面活性剤を使用することにより、ブロックイソシアネート化合物の分散安定性を向上させることができる。本発明におけるアニオン性界面活性剤として低分子または高分子タイプを使用することができる。 As described above, the blocked isocyanate compound itself in the present invention is hydrophobic and does not have water dispersibility. Therefore, it is necessary to use an emulsifier or the like separately from the blocked isocyanate compound to develop water dispersibility. As the emulsifier, anionic, cationic, nonionic, amphoteric surfactants and the like can be used, but in this case, it is preferable to use anionic. By using an anionic surfactant, the dispersion stability of the blocked isocyanate compound can be improved. A low molecular weight or high molecular weight type can be used as the anionic surfactant in the present invention.
 低分子のアニオン性界面活性剤は、カルボン酸型、硫酸エステル型、スルホン酸型、リン酸エステル型等がある。例えば、カルボン酸型として、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン塩、N-アシルグルタミン塩などが挙げられ、硫酸エステル型として、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、油脂硫酸エステル塩などが挙げられ、スルホン酸型として、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、N-アシルN-アシルタウリン塩などが挙げられ、リン酸エステル型として、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩などが挙げられる。 Low-molecular-weight anionic surfactants include carboxylic acid type, sulfate ester type, sulfonic acid type, and phosphoric acid ester type. For example, examples of the carboxylic acid type include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsulfosin salts and N-acylglutamine salts, and examples of sulfate ester types include alkyl sulfates and polyoxys. Examples of the sulfonic acid type include ethylene alkyl ether sulfate, oil and fat sulfate ester salt, and examples of the sulfonic acid type include dialkyl sulfosuccinate, alkane sulfonate, alpha olefin sulfonate, alkylbenzene sulfonate, alkylnaphthalene sulfonate, and N-acyl. Examples thereof include N-acyltaurine salts, and examples of the phosphate ester type include alkyl phosphates, polyoxyethylene alkyl ether phosphates, and polyoxyethylene alkyl phenyl ether phosphates.
 高分子のアニオン性界面活性剤は、アニオン性基を有する不飽和モノマーであるアクリル酸、マレイン酸、スチレンスルホン酸等の重合体または共重合体、スルホン酸基、カルボン酸、またはホスフィン酸等を有するモノマーを共重合したポリエステル、ポリウレタン樹脂等が挙げられる。 The polymer anionic surfactant includes polymers or copolymers such as acrylic acid, maleic acid and styrene sulfonic acid, which are unsaturated monomers having an anionic group, sulfonic acid groups, carboxylic acids, phosphinic acid and the like. Examples thereof include polyesters and polyurethane resins obtained by copolymerizing the monomers having the same.
 本発明においては、カルボキシル基を有するポリウレタン樹脂を使用することが好ましい。さらに好ましくは、疎水性ブロックイソシアネート化合物をコア、カルボキシル基を有するポリウレタン樹脂をシェルとするコア・シェル構造であることである。これらにより、ブロックイソシアネート化合物の長期での分散安定性を維持することが可能となり、他の樹脂または添加剤と混合させても分散安定性が低下しにくい。コア・シェル構造についての詳細は後述する。 In the present invention, it is preferable to use a polyurethane resin having a carboxyl group. More preferably, it has a core-shell structure in which a hydrophobic blocked isocyanate compound is used as a core and a polyurethane resin having a carboxyl group is used as a shell. These make it possible to maintain the long-term dispersion stability of the blocked isocyanate compound, and the dispersion stability is unlikely to decrease even when mixed with other resins or additives. Details of the core-shell structure will be described later.
(ポリウレタン樹脂)
 本発明におけるポリウレタン樹脂とは、少なくともポリオール成分とポリイソシアネート成分、さらに必要に応じて鎖延長剤からなるカルボキシル基を有する水分散性ポリウレタン樹脂であることが好ましい。本発明におけるポリウレタン樹脂が有するカルボキシル基は、ポリウレタン樹脂に水溶性または水分散性を付与するために、分子中または側鎖に有するものである。ここでいう分子中とは前記ポリウレタン樹脂の主鎖中または末端に存在するものをいう。また、側鎖とは、分子鎖を構成する前記のようないずれかの原料成分の末端官能基数が3個以上存在することによって、合成、重合された後に枝分かれ上の分子鎖上に導入されたものである。本発明においてはカルボキシル基以外の親水性基をポリウレタン樹脂に導入しても問題はない。カルボキシル基以外の親水性基としては、スルホン酸、ホスホン酸等に代表されるアニオン性基、4級アミンに代表されるカチオン性基、オキシアルキレン基に代表されるノニオン性基を使用することができるが、導入が容易でカルボキシル基と反応しない点で、オキシアルキレン基に代表されるノニオン性基が好ましい。
(Polyurethane resin)
The polyurethane resin in the present invention is preferably a water-dispersible polyurethane resin having at least a polyol component, a polyisocyanate component, and, if necessary, a carboxyl group consisting of a chain extender. The carboxyl group of the polyurethane resin in the present invention is present in the molecule or in the side chain in order to impart water solubility or water dispersibility to the polyurethane resin. The term "in the molecule" as used herein means a substance present in the main chain or at the end of the polyurethane resin. Further, the side chain is introduced onto the branched molecular chain after being synthesized and polymerized due to the presence of three or more terminal functional groups of any of the raw material components constituting the molecular chain. It is a thing. In the present invention, there is no problem even if a hydrophilic group other than the carboxyl group is introduced into the polyurethane resin. As the hydrophilic group other than the carboxyl group, an anionic group typified by sulfonic acid, phosphonic acid, etc., a cationic group typified by a quaternary amine, and a nonionic group typified by an oxyalkylene group may be used. However, a nonionic group typified by an oxyalkylene group is preferable because it is easy to introduce and does not react with a carboxyl group.
 本発明におけるカルボキシル基を有するポリウレタン樹脂は主にウレタン樹脂の成分としてカルボキシル基含有ポリオール成分を使用することで得られる。かかる、カルボキシル基含有ポリオール成分としては下記のようなものが挙げられる。比較的高分子量なもの、例えば、カルボキシル基含有ポリアルキレングリコール、カルボキシル基含有アクリルポリオール、カルボキシル基含有ポリオレフィンポリオール、カルボキシル基含有ポリエステルポリオール等が使用することができる。また、比較的低分子量なもの、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール酪酸、2,2-ジメチロール吉草酸等を使用することができる。カルボキシル基導入には、特に、ジメチロールプロピオン酸、ジメチロールブタン酸が好適に使用される。 The polyurethane resin having a carboxyl group in the present invention is mainly obtained by using a carboxyl group-containing polyol component as a component of the urethane resin. Examples of the carboxyl group-containing polyol component include the following. Those having a relatively high molecular weight, for example, a carboxyl group-containing polyalkylene glycol, a carboxyl group-containing acrylic polyol, a carboxyl group-containing polyolefin polyol, a carboxyl group-containing polyester polyol, and the like can be used. Further, those having a relatively low molecular weight, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpropane valeric acid and the like can be used. .. In particular, dimethylolpropionic acid and dimethylolbutanoic acid are preferably used for introducing a carboxyl group.
 カルボキシル基を有するポリウレタン樹脂は、酸価10~60mgKOH/g が好ましく、酸価20~50mgKOH/g がより好ましい。酸価が10 mgKOH/g以上であると、ポリウレタン樹脂自体の親水性が向上し、水溶性または水分散性が保持されて好ましい。酸価が60 mgKOH/g以下であると、塗布層の耐水性が向上し、吸湿によるブロッキング問題がなく好ましい。但し、本発明におけるカルボキシル基を有するポリウレタン樹脂では、ポリウレタン樹脂の水溶性あるいは水分散性を補填するためにカルボキシル基以外の他の親水性基、例えば、水酸基、オキシアルキル基、スルホン酸、ホスホン酸、4級アミン等を性能が悪化しない範囲内で導入してもよい。 The polyurethane resin having a carboxyl group preferably has an acid value of 10 to 60 mgKOH / g, and more preferably an acid value of 20 to 50 mgKOH / g. When the acid value is 10 mgKOH / g or more, the hydrophilicity of the polyurethane resin itself is improved, and water solubility or water dispersibility is maintained, which is preferable. When the acid value is 60 mgKOH / g or less, the water resistance of the coating layer is improved and there is no blocking problem due to moisture absorption, which is preferable. However, in the polyurethane resin having a carboxyl group in the present invention, in order to supplement the water solubility or water dispersibility of the polyurethane resin, hydrophilic groups other than the carboxyl group, such as hydroxyl groups, oxyalkyl groups, sulfonic acids and phosphonic acids, are used. A quaternary amine or the like may be introduced within a range in which the performance does not deteriorate.
 ポリウレタン樹脂中のカルボキシル基は塩基性化合物で中和されていてもよい。中和に使用する塩基性化合物としては、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、有機アミン化合物が挙げられる。これらの中でも、加熱により容易にカルボキシル基と解離する有機アミン化合物が好ましい。有機アミン化合物としては、例えば、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、エチレンジアミンなどの炭素数1から20の直鎖状、分岐状の1,2または3級アミン、モルホリン、N-アルキルモルホリン、ピリジンなどの環状アミン、モノイソプロパノールアミン、メチルエタノールアミン、メチルイソプロパノールアミン、ジメチルエタノールアミン、ジイソプロパノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、トリエタノールアミンなどの水酸基含有アミンなどが挙げられる。 The carboxyl group in the polyurethane resin may be neutralized with a basic compound. Examples of the basic compound used for neutralization include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, and organic amine compounds. Among these, an organic amine compound that easily dissociates from a carboxyl group by heating is preferable. Examples of the organic amine compound include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine and triethylamine. Linear and branched 1,2 or tertiary amines with 1 to 20 carbon atoms such as triisopropylamine, tributylamine and ethylenediamine, cyclic amines such as morpholin, N-alkylmorpholin and pyridine, monoisopropanolamine and methylethanol. Examples thereof include hydroxyl group-containing amines such as amines, methylisopropanolamines, dimethylethanolamines, diisopropanolamines, diethanolamines, triethanolamines, diethylethanolamines and triethanolamines.
 本発明におけるカルボキシル基を有するウレタン樹脂を合成、重合するために用いる主なポリオール成分には、先述のポリオキシアルキレングリコール以外にポリエステルポリオール、ポリカーボネートポリオールを使用することが好ましい。 It is preferable to use a polyester polyol or a polycarbonate polyol in addition to the above-mentioned polyoxyalkylene glycol as the main polyol component used for synthesizing and polymerizing the urethane resin having a carboxyl group in the present invention.
 本発明における前記のポリエステルポリオールまたはポリカーボネートポリオールの数平均分子量としては、好ましくは300~5000である。より好ましくは400~4000、最も好ましくは500~3000である。300以上であると、接着性を向上でき好ましい。5000以下であると、塗布層同士の融着を防止(耐ブロッキング性を向上)でき好ましい。 The number average molecular weight of the polyester polyol or the polycarbonate polyol in the present invention is preferably 300 to 5000. It is more preferably 400 to 4000, and most preferably 500 to 3000. When it is 300 or more, the adhesiveness can be improved, which is preferable. When it is 5000 or less, fusion between the coating layers can be prevented (blocking resistance is improved), which is preferable.
 本発明におけるポリエステルポリオールとしては、脂肪族または脂環族系であることが好ましい。そのためポリエステルポリオールのジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。また、ジオール成分としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-へプタンジオール、1,8-オクタンジーオル、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール等の脂肪族ジオール、シクロヘキサンジメタノール等の脂環族ジオールが挙げられる。これらの内、本発明においてはアジピン酸以上の長鎖脂肪酸とペンタンジオール以上の長鎖ジオールを主に使用することが好ましい。但し、物性を悪化させない程度であれば、3官能以上のポリカルボン酸、ポリオールまたは、不飽和系、芳香族系成分を使用してもよい。 The polyester polyol in the present invention is preferably an aliphatic or alicyclic group. Therefore, the dicarboxylic acid components of the polyester polyol include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Can be mentioned. The diol component includes ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. , 1,7-Heptanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, neopentyl glycol and other aliphatic diols, cyclohexanedimethanol and other fats Examples include cyclic diols. Of these, in the present invention, it is preferable to mainly use a long-chain fatty acid of adipic acid or higher and a long-chain diol of pentanediol or higher. However, a trifunctional or higher functional polycarboxylic acid, polyol, unsaturated type, or aromatic component may be used as long as the physical properties are not deteriorated.
 本発明におけるポリカーボネートポリオールとしては、脂肪族系ポリカーボネートポリオールを使用することが好ましい。脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明におけるポリカーボネート構造を有するウレタン樹脂を合成、重合するために用いる脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類を反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。 As the polycarbonate polyol in the present invention, it is preferable to use an aliphatic polycarbonate polyol. Examples of the aliphatic polycarbonate polyol include an aliphatic polycarbonate diol and an aliphatic polycarbonate triol, and an aliphatic polycarbonate diol can be preferably used. Examples of the aliphatic polycarbonate diol used for synthesizing and polymerizing the urethane resin having a polycarbonate structure in the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,5. -Pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol and other diols Examples thereof include aliphatic polycarbonate diols obtained by reacting one or more of them with carbonates such as dimethyl carbonate, ethylene carbonate and phosgene.
 本発明におけるウレタン樹脂を合成、重合するためには上記以外の他のポリオール成分も使用することができる。他のポリオール成分としては、例えば、ポリエーテルポリオール、ポリオレフィンポリオール、ダイマーポリオール、シリコーンポリオールなどが挙げられる。 In order to synthesize and polymerize the urethane resin in the present invention, other polyol components other than the above can also be used. Examples of other polyol components include polyether polyols, polyolefin polyols, dimer polyols, silicone polyols and the like.
 本発明におけるカルボキシル基を有する水分散性ウレタン樹脂の合成、重合に用いるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香環を含有する芳香族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいは、ジイソシアネート類から製造されたイソシアヌレート結合、ビユレット結合またはアロファネート結合含有変性ポリイソシアネート類、ジイソシアネート類を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。前記の芳香環を含有する芳香族ジイソシアネート類よりも、脂環式ジイソシアネート類または脂肪族ジイソシアネート類等を使用した場合、黄変の問題が少なく好ましい。 Examples of the polyisocyanate used for the synthesis and polymerization of the water-dispersible urethane resin having a carboxyl group in the present invention include aromatic diisocyanates containing an aromatic ring such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate. , 1,3-Bis (isocyanatemethyl) cyclohexane and other alicyclic diisocyanates, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate and other aliphatic diisocyanates, or isocyanates produced from diisocyanates. Examples thereof include modified polyisocyanates containing a nurate bond, a biurette bond or an allophanate bond, and polyisocyanates in which a single or a plurality of diisocyanates are previously added to trimethylol propane or the like. When alicyclic diisocyanates or aliphatic diisocyanates are used rather than the aromatic diisocyanates containing the aromatic ring, the problem of yellowing is less likely to occur, which is preferable.
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオグリコール類、あるいは水が挙げられる。また、少量であれば、3官能基以上のポリオール、ポリアミン等を使用してもよい。 Examples of the chain extender include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, and ethylenediamine. , Hexamethylenediamine, diamines such as piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thioglycols such as thiodiethyleneglycol, and water. Further, if the amount is small, a polyol having three or more functional groups, a polyamine, or the like may be used.
 カルボキシル基を有するポリウレタン樹脂の重合方法には特に制約はなく、無溶剤でも溶剤を使用しても良い。本発明においては、前述の疎水性ブロックイソシアネート化合物の乳化剤として使用する観点からは溶剤系の方が好ましい。水分散体中に溶剤が残存しても、溶剤を除去しても良いが、環境の点からは溶剤を除去することが好ましい。 There are no particular restrictions on the polymerization method of the polyurethane resin having a carboxyl group, and a solvent may be used or a solvent may be used. In the present invention, the solvent system is preferable from the viewpoint of using it as an emulsifier for the above-mentioned hydrophobic blocked isocyanate compound. Although the solvent may remain in the aqueous dispersion or the solvent may be removed, it is preferable to remove the solvent from the viewpoint of the environment.
 カルボキシル基を有する水分散性ポリウレタン樹脂を乳化剤とするブロックイソシアネート化合物の分散体の作製方法には特に制約はないが、疎水性ブロックイソシアネート化合物とカルボキシル基を有するポリウレタン樹脂を混合後、水分散を実施することがブロックイソシアネート化合物の分散安定性の点から好ましい。特に、ポリウレタンプレポリマーの段階で、ブロックイソシアネート化合物と混合、水分散後にポリアミン等を添加して水分散の状態で鎖延長剤させてポリウレタン樹脂を形成させる様な、ブロックイソシアネート化合物をコア、ポリウレタン樹脂をシェルとするコア・シェル構造の水分散体が好ましい。 The method for producing a dispersion of a blocked isocyanate compound using a water-dispersible polyurethane resin having a carboxyl group as an emulsifier is not particularly limited, but water dispersion is carried out after mixing the hydrophobic blocked isocyanate compound and the polyurethane resin having a carboxyl group. It is preferable to do so from the viewpoint of dispersion stability of the blocked isocyanate compound. In particular, at the stage of polyurethane prepolymer, a blocked isocyanate compound is used as a core and polyurethane resin, such that it is mixed with a blocked isocyanate compound, water-dispersed, and then polyamine or the like is added to form a chain extender in a water-dispersed state to form a polyurethane resin. An aqueous dispersion having a core-shell structure having a shell is preferable.
 本発明におけるカルボキシル基を有する水分散性ポリウレタン樹脂は、強硬性向上のため末端または側鎖にブロックイソシアネート等の反応性基を有していてもよい。 The water-dispersible polyurethane resin having a carboxyl group in the present invention may have a reactive group such as blocked isocyanate at the terminal or side chain in order to improve the hardness.
(ポリエステル樹脂)
 本発明における塗布層に併用するポリエステル樹脂には特に制限はないが、耐加水分解性および物性上からは芳香族ジカルボン酸を酸成分中50モル%以上含有しているものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。その他の酸成分としては、必要に応じて、アジピン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、無水マレイン酸等の酸無水物、またはトリメリット酸、トリメシン酸等のトリカルボン酸を使用することができる。ジオール成分としては、エチレングリコールがジオール成分中30モル%以上含有していることが好ましい。その他のジオール成分としては、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等の直鎖上の脂肪族ジオールまたは、1,2-プロパンジール、1,3-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール等の分岐した脂肪族ジオール、シクロヘキサンジメタノール等の脂環族ジオール、ジエチレングリコール、ジプロピレングリコール等のジグリコール、ポリエチレングルコール等のポリオキシアルキレングリコール、ビスフェノールA等のポリオキシアルキレングリコール誘導体などが挙げられる。
(Polyester resin)
The polyester resin used in combination with the coating layer in the present invention is not particularly limited, but a polyester resin containing 50 mol% or more of the aromatic dicarboxylic acid in the acid component is preferable from the viewpoint of hydrolysis resistance and physical characteristics. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid and the like. Other acid components include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, acid anhydrides such as maleic anhydride, or trimellitic acid and trimesin, as required. A tricarboxylic acid such as an acid can be used. As the diol component, it is preferable that ethylene glycol is contained in an amount of 30 mol% or more in the diol component. Other diol components include linear aliphatic diols such as 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol, or 1,2-propanezyl and 1,3-butane. Diol, branched aliphatic diols such as 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, alicyclic diols such as cyclohexanedimethanol, diethylene glycol, dipropylene glycol and the like. Examples thereof include polyoxyalkylene glycols such as diglycol and polyethylene glycol, and polyoxyalkylene glycol derivatives such as bisphenol A.
 上記ポリエステル樹脂に水分散性を付与するため、分子骨格上に親水性基が存在することが好ましい。親水性基としては、ジカルボン酸成分にホスホン酸基、スルホン酸基等を導入したジカルボン酸を使用するか、ジオール成分にポリエチレングリコール等のポリエーテル等を使用して良い。また、重合したポリエステルの水酸基末端と無水ポリカルボン酸とを反応させてカルボキシル基をポリエステル骨格中に導入させても良い。本発明においては、分散安定性の点からは親水性基としてスルホン酸基を使用することが好ましい。スルホン酸基含有ジカルボン酸をジカルボン酸成分中に1~10モル%の範囲で重合させることが好ましく、スルホン酸基含有ジカルボン酸としては、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸等を挙げることができる。 It is preferable that a hydrophilic group is present on the molecular skeleton in order to impart water dispersibility to the polyester resin. As the hydrophilic group, a dicarboxylic acid in which a phosphonic acid group, a sulfonic acid group or the like is introduced into a dicarboxylic acid component may be used, or a polyether such as polyethylene glycol may be used as a diol component. Further, the carboxyl group may be introduced into the polyester skeleton by reacting the hydroxyl group terminal of the polymerized polyester with the polycarboxylic acid anhydride. In the present invention, it is preferable to use a sulfonic acid group as the hydrophilic group from the viewpoint of dispersion stability. It is preferable to polymerize the sulfonic acid group-containing dicarboxylic acid in the dicarboxylic acid component in the range of 1 to 10 mol%, and examples of the sulfonic acid group-containing dicarboxylic acid include sulfoterephthalic acid, 5-sulfoisophthalic acid, and 5-sodium sulfoisophthalic acid. Acids and the like can be mentioned.
 また、本発明においては性能に影響を与えない範囲で他の樹脂と併用しても良い。併用する樹脂としては、非カルボキシル基含有ポリウレタン樹脂、アルキッド樹脂、アクリル樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリアセタール樹脂等が挙げられる。 Further, in the present invention, it may be used in combination with other resins as long as the performance is not affected. Examples of the resin to be used in combination include a non-carboxyl group-containing polyurethane resin, an alkyd resin, an acrylic resin, a cellulose resin, a polyolefin resin, and a polyacetal resin.
 本発明における疎水性ブロックイソシアネート化合物以外の他の架橋剤を併用しても良い。他の架橋剤としては親水性ブロックイソシアネート系、エポキシ系、メラミン系、オキサゾリン系、カルボジイミド系等を使用することが可能である。他の架橋剤を20質量%以下の範囲で適宜使用することにより、架橋状態を調整して接着性等への影響を少なくしつつ、耐湿熱性等の耐久性をさらに向上させることができる。また、架橋剤として、親水性ブロックイソシアネート系を使用する場合には、ブロック化剤の組成によって架橋反応開始温度を変化させて、架橋状態を調整可能となる点から、疎水性ブロックイソシアネート化合物とは異なるブロック化剤を選択することが好ましい。 A cross-linking agent other than the hydrophobic blocked isocyanate compound in the present invention may be used in combination. As other cross-linking agents, hydrophilic blocked isocyanate-based, epoxy-based, melamine-based, oxazoline-based, carbodiimide-based and the like can be used. By appropriately using another cross-linking agent in the range of 20% by mass or less, the cross-linking state can be adjusted to reduce the influence on the adhesiveness and the like, and the durability such as moisture and heat resistance can be further improved. Further, when a hydrophilic blocked isocyanate system is used as the cross-linking agent, the hydrophobic blocked isocyanate compound can adjust the cross-linking state by changing the cross-linking reaction start temperature depending on the composition of the blocking agent. It is preferable to select different blocking agents.
(添加剤)
 本発明における塗布層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、顔料、染料、有機または無機の粒子、帯電防止剤、核剤等を添加しても良い。
(Additive)
In the coating layer in the present invention, known additives such as surfactants, antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, ultraviolet absorbers, organic lubricants, and pigments are used as long as the effects of the present invention are not impaired. , Dyes, organic or inorganic particles, antistatic agents, nucleating agents and the like may be added.
 本発明においては、塗布層の耐ブロッキング性をより向上させるために、塗布層に前述以外の他の粒子を添加することも好ましい態様である。本発明において塗布層中に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレーなど或いはこれらの混合物であり、更に、他の一般的無機粒子、例えばリン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウムその他と併用、等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。 In the present invention, it is also a preferred embodiment to add particles other than those described above to the coating layer in order to further improve the blocking resistance of the coating layer. In the present invention, the particles contained in the coating layer include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay and the like, or a mixture thereof, and other general ones. Inorganic particles such as calcium phosphate, mica, hectrite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride and others, and organic particles such as styrene, acrylic, melamine, benzoguanamine and silicone. Examples include polymer particles.
 塗布層中の他の粒子の平均粒径(走査型電子顕微鏡(SEM)による個数基準の平均粒径。以下同じ)は、0.02~2.00μmが好ましく、さらに好ましくは0.04~1.00μmである。不活性粒子の平均粒径が0.04μm以上であると、フィルム表面への凹凸の形成が容易となるため、フィルムの滑り性や巻き取り性などのハンドリング性がより向上し、貼り合せの際の加工性が良好であって好ましい。一方、不活性粒子の平均粒径が2.00μm以下であると、粒子の脱落が生じ難く好ましい。塗布層中の粒子濃度は、固形成分中1~20質量%であることが好ましい。 The average particle size of the other particles in the coating layer (average particle size based on the number of particles by a scanning electron microscope (SEM); the same applies hereinafter) is preferably 0.02 to 2.00 μm, more preferably 0.04 to 1. It is 0.00 μm. When the average particle size of the inert particles is 0.04 μm or more, it becomes easy to form irregularities on the film surface, so that the handleability such as slipperiness and winding property of the film is further improved, and the film is bonded. The workability of the above is good and is preferable. On the other hand, when the average particle size of the inert particles is 2.00 μm or less, the particles are less likely to fall off, which is preferable. The particle concentration in the coating layer is preferably 1 to 20% by mass in the solid component.
  他の粒子の平均粒径の測定方法は、積層ポリエステルフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子30個を観察し、その平均値をもって平均粒径とする方法で行った。 The average particle size of the other particles was measured by observing the particles in the cross section of the laminated polyester film with a scanning electron microscope, observing 30 particles, and using the average value as the average particle size.
  本発明の目的を満たすものであれば、他の粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。 The shape of the other particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and amorphous non-spherical particles can be used. The particle size of the amorphous particles can be calculated as the equivalent circle diameter. The equivalent circle diameter is a value obtained by dividing the observed particle area by π, calculating the square root, and doubling it.
(積層ポリエステルフィルムの製造)
 本発明の積層ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルム基材を用いて、製膜工程中に塗布層を設ける例を挙げて説明するが、当然これに限定されるものではない。
(Manufacturing of laminated polyester film)
The method for producing a laminated polyester film of the present invention will be described with reference to an example in which a coating layer is provided during a film forming process using a polyethylene terephthalate (hereinafter, may be abbreviated as PET) film base material. Not limited to.
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化して未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。 After the PET resin is sufficiently vacuum-dried, it is supplied to an extruder, and the molten PET resin at about 280 ° C. is melt-extruded into a sheet on a rotary cooling roll, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet. The unstretched PET sheet may have a single-layer structure or a multi-layer structure by a coextrusion method.
 得られた未延伸PETシートを一軸延伸、もしくは二軸延伸を施すことで結晶配向化させる。例えば二軸延伸の場合は、80~120℃に加熱したロールで長手方向に3.0~5.0倍に延伸して、一軸延伸PETフィルムを得たのち、フィルムの端部をクリップで把持して、80~180℃に加熱された熱風ゾーンに導き、幅方向に3.0~5.0倍に延伸する。また、一軸延伸の場合は、テンター内で未延伸PETシートを3.0~5.0倍に延伸する。延伸後引き続き、180~230℃の熱処理ゾーンに導き、熱処理を行ない、結晶配向を完了させる。 The obtained unstretched PET sheet is uniaxially stretched or biaxially stretched to orient the crystals. For example, in the case of biaxial stretching, a roll heated to 80 to 120 ° C. is stretched 3.0 to 5.0 times in the longitudinal direction to obtain a uniaxially stretched PET film, and then the end of the film is gripped with a clip. Then, it is guided to a hot air zone heated to 80 to 180 ° C. and stretched 3.0 to 5.0 times in the width direction. In the case of uniaxial stretching, the unstretched PET sheet is stretched 3.0 to 5.0 times in the tenter. After stretching, the crystals are continuously led to a heat treatment zone at 180 to 230 ° C. and heat-treated to complete the crystal orientation.
 塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工することができる。 Any known method can be used as the method for applying the coating liquid to the PET film. For example, reverse roll coat method, gravure coat method, kiss coat method, die coater method, roll brush method, spray coat method, air knife coat method, wire bar coat method, pipe doctor method, impregnation coat method, curtain coat method, etc. Be done. These methods can be applied alone or in combination.
 本発明において塗布層の厚みは、0.001~2.00μmの範囲で適宜設定することができるが、加工性と接着性とを両立させるには0.01~1.00μmの範囲が好ましく、より好ましくは0.02~0.80μm、さらに好ましくは0.05~0.50μmである。塗布層の厚みが0.001μm以上であると、接着性が良好であり好ましい。塗布層の厚みが2.00μm以下であると、ブロッキングを生じ難く好ましい。 In the present invention, the thickness of the coating layer can be appropriately set in the range of 0.001 to 2.00 μm, but the range of 0.01 to 1.00 μm is preferable in order to achieve both workability and adhesiveness. It is more preferably 0.02 to 0.80 μm, and even more preferably 0.05 to 0.50 μm. When the thickness of the coating layer is 0.001 μm or more, the adhesiveness is good and it is preferable. When the thickness of the coating layer is 2.00 μm or less, blocking is less likely to occur, which is preferable.
 本発明の積層ポリエステルフィルムのヘイズの上限は好ましくは2.0%であり、より好ましくは1.8%であり、さらに好ましくは1.5%であり、特に好ましくは1.2%である。ヘイズが2.0%以下であると、透明性の点で好ましく、透明性が求められる光学フィルム用途へも好適に用いることができる。ヘイズは小さいことが好ましいが0.1%以上であっても構わず、0.3%以上であっても構わない。 The upper limit of the haze of the laminated polyester film of the present invention is preferably 2.0%, more preferably 1.8%, still more preferably 1.5%, and particularly preferably 1.2%. When the haze is 2.0% or less, it is preferable in terms of transparency, and it can be suitably used for optical film applications where transparency is required. The haze is preferably small, but may be 0.1% or more, or 0.3% or more.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。まず、以下に本発明で用いた評価方法について説明する。 Next, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. First, the evaluation method used in the present invention will be described below.
(1)ハガレ欠点検出方法
 実施例及び比較例で得られた製品フィルムロールから取り出した幅1m、長さ10mのサンプルフィルムロールを、暗室内で垂直方向に垂らした。次いでフィルム背面の全面に光沢の無い黒色の布を配置し、前面(被覆層面)からLEDライト(1000ルーメン))を用い、積層フィルムを巻き出しながらフィルム面に対し約10°から45°の範囲で該ライトの角度を変えながらフィルム正面から観察し、評価面積10mについて長径100μm以上の欠点を目視または拡大率10倍のスケール付きルーペ(PEAK社製SCALE  LUPE  ×10)を用いて検出し、マーキングを行った。
(1) Method for detecting peeling defects A sample film roll having a width of 1 m and a length of 10 m taken out from the product film rolls obtained in Examples and Comparative Examples was vertically hung in a dark room. Next, a matte black cloth is placed on the entire back surface of the film, and an LED light (1000 lumens) is used from the front surface (coating layer surface) to unwind the laminated film in the range of about 10 ° to 45 ° with respect to the film surface. Observe from the front of the film while changing the angle of the light, and detect defects with a major axis of 100 μm or more visually or using a scaled loupe (SCALE LUPE × 10 manufactured by PEAK) with a magnification of 10 times for an evaluation area of 10 m 2. Marking was done.
(2)ハガレ欠点判定方法
 前述の方法でマーキングした欠点部位を切出し、 非接触表面形状計測システム(菱化システム社製、VertScan  R550H-M100)を用いて、下記の条件で測定した。
 (測定条件)
    ・測定モード:WAVEモード
    ・対物レンズ:10倍
    ・0.5×Tubeレンズ
    ・測定面積  936μm×702μm
  (解析条件)
    ・面補正:    4次補正
    測定した欠点が下記基準ア.~オ.をすべて満たすものをハガレ欠点と判定した。
欠点の深さ方向の数値は上記測定データの断面解析を行って求めた。
ア.自身と交わらない閉じた曲線に囲まれたものと観察され、かつ囲まれたものの最大幅が200μm以上であるもの
イ.閉じた曲線の内部が凹部であるもの
ウ.閉じた曲線の外周部分と内部の最大深さが塗布層厚みの70%以上であるもの。
エ.閉じた曲線の内部領域の深さ変動が塗布層厚みの50%未満の範囲であるもの。
オ.閉じた曲線の50%以上が曲線内部の水平面から60°以上の勾配を有するもの
    上記で判定したハガレ欠点の個数を1m当たりに換算した。前述の塗膜厚みは塗布液の総固形分濃度、樹脂分比重、塗布量、延伸倍率等からの算出値またはフィルム断面のSEM写真等からの解析値を用いることが可能である。
(2) Defect determination method for peeling The defect portion marked by the above method was cut out and measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100 manufactured by Ryoka System Co., Ltd.).
(Measurement condition)
・ Measurement mode: WAVE mode ・ Objective lens: 10x ・ 0.5 × Tube lens ・ Measurement area 936μm × 702μm
(Analysis conditions)
・ Surface correction: 4th correction The measured defects are the following criteria a. ~ E. Those that satisfy all of the above were judged to be the defects of peeling.
The numerical value in the depth direction of the defect was obtained by performing cross-sectional analysis of the above measurement data.
Ah. Those observed to be surrounded by a closed curve that does not intersect with themselves, and those surrounded by a maximum width of 200 μm or more a. The inside of a closed curve is a recess c. The maximum depth of the outer peripheral part and the inner part of the closed curve is 70% or more of the coating layer thickness.
Workman. The depth variation of the internal region of the closed curve is in the range of less than 50% of the coating layer thickness.
E. 50% or more of the closed curve has a gradient of 60 ° or more from the horizontal plane inside the curve. The number of peeling defects determined above was converted per 1 m 2. For the above-mentioned coating film thickness, it is possible to use a value calculated from the total solid content concentration of the coating liquid, a resin content specific gravity, a coating amount, a draw ratio, etc., or an analysis value from an SEM photograph of a film cross section.
(3)ヘイズ
 得られた積層ポリエステルフィルムのヘイズはJIS K 7136:2000に準拠し、濁度計(日本電色製、NDH5000)を用いて測定した。
(3) Haze The haze of the obtained laminated polyester film was measured using a turbidity meter (NDH5000, manufactured by Nippon Denshoku) in accordance with JIS K 7136: 2000.
(4)ブロッキング耐性
 2枚のフィルム試料を塗布層面同士が対向するように重ね合わせ、98kPaの荷重を掛け、これを50℃の雰囲気下で24時間密着させ、放置した。その後、フィルムを剥離し、その剥離状態を下記の基準で判定した。
   ○:塗布層の転移がなく軽く剥離できる。
   △:塗布層は維持されているが、部分的に塗布層の表層が相手面に転移している。
   ×:2枚のフィルムが固着し剥離できないもの、あるいは剥離できてもフィルム基材が劈開している。
(4) Blocking resistance Two film samples were superposed so that the coated layer surfaces faced each other, a load of 98 kPa was applied, and the two film samples were brought into close contact with each other for 24 hours in an atmosphere of 50 ° C. and left to stand. Then, the film was peeled off, and the peeled state was judged according to the following criteria.
◯: The coating layer does not transfer and can be peeled off lightly.
Δ: The coating layer is maintained, but the surface layer of the coating layer is partially transferred to the mating surface.
X: Two films are stuck and cannot be peeled off, or even if they can be peeled off, the film base material is cleaved.
(5)UVインキとの密着性
 積層ポリエステルフィルムの塗布層上に、UVインキ[T&K TOKA(株)製、商品名「BEST CURE UV161藍S」または「BEST CURE UV161白S」]を用いて、印刷機[(株)明製作所製、商品名「RIテスター」]でインクピペット4目盛、2分割ロールにて印刷を施し、次いで、インキ層を塗布したフィルムに高圧水銀灯を用いて100mJ/cmの紫外線を照射し、紫外線硬化型インキを硬化させた。次いで、隙間間隔2mmのカッターガイドを用いて、インキ層を貫通してフィルム基材に達する100個のマス目状の切り傷をインキ層面につける。次いで、セロハン粘着テープ(ニチバン製、405番;24mm幅)をマス目状の切り傷面に貼り付ける。その後、垂直にセロハン粘着テープをインキ積層フィルムのインキ層面から引き剥がして、インキ積層フィルムのインキ層面から剥がれたマス目の数を目視で数え、下記の式からインキ層とフィルム基材との密着性を求める。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数えて、下記式の様にインキ密着性を求めた。
  インキ密着性(%)=100-(剥がれたマス目の数)
 インキ密着性(%)を下記の様に区分し、◎及び〇を合格とした。
  ◎:100%、○:99~96%、△:95~80%、×:79~0%
(5) Adhesion with UV ink A UV ink [manufactured by T & K TOKA Co., Ltd., trade name "BEST CURE UV161 indigo S" or "BEST CURE UV161 white S"] is used on the coating layer of the laminated polyester film. Printing was performed with an ink pipette 4 scales and a 2-split roll using a printing machine [manufactured by Ming Seisakusho Co., Ltd., trade name "RI tester"], and then 100 mJ / cm 2 using a high-pressure mercury lamp on the film coated with the ink layer. The UV curable ink was cured by irradiating with the ultraviolet rays of. Next, using a cutter guide with a gap spacing of 2 mm, 100 grid-like cuts that penetrate the ink layer and reach the film substrate are made on the ink layer surface. Next, a cellophane adhesive tape (manufactured by Nichiban, No. 405; 24 mm width) is attached to the cut surface in the shape of a grid. After that, the cellophane adhesive tape is vertically peeled off from the ink layer surface of the ink laminated film, the number of squares peeled off from the ink layer surface of the ink laminated film is visually counted, and the ink layer and the film substrate adhere to each other from the following formula. Seeking sex. In addition, those that were partially peeled out among the squares were also counted as the peeled squares, and the ink adhesion was obtained as shown in the following formula.
Ink adhesion (%) = 100- (number of peeled squares)
Ink adhesion (%) was classified as follows, and ◎ and 〇 were regarded as acceptable.
⊚: 100%, ○: 99-96%, Δ: 95-80%, ×: 79-0%
(6)ハードコート層との密着性
 積層ポリエステルフィルムの塗布層上に、UV硬化型ハードコート剤であるオプスターZ7503(荒川化学工業(株)製)を#5ワイヤーバーを用いて塗布し、80℃で1分間乾燥した。次いで、塗布したフィルムに高圧水銀灯を用いて100mj/cmの紫外線を照射し、ハードコートフィルムを得た。次いで、隙間間隔2mmのカッターガイドを用いて、ハードコート層を貫通してフィルム基材に達する100個のマス目状の切り傷をハードコート層面につける。次いで、セロハン粘着テープ(ニチバン製、405番;24mm幅)をマス目状の切り傷面に貼り付け、消しゴムでこすって完全に付着させる。その後、垂直にセロハン粘着テープをハードコート積層フィルムのハードコート層面から引き剥がして、ハードコート積層フィルムのハードコート層面から剥がれたマス目の数を目視で数え、下記の式からハードコート層とフィルム基材との密着性を求める。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数えて、下記式の様にハードコート密着性を求めた。ハードコート密着性は100(%)を合格とした。
 ハードコート密着性(%)=100-(剥がれたマス目の数)
ハードコート密着性(%)を下記の様に区分し、◎及び〇を合格とした。
◎:100%、○:99~96%、△:95~80%、×:79~0%
(6) Adhesion to the hard coat layer Opstar Z7503 (manufactured by Arakawa Chemical Industry Co., Ltd.), which is a UV curable hard coat agent, is applied onto the coated layer of the laminated polyester film using a # 5 wire bar, and 80 It was dried at ° C for 1 minute. Next, the applied film was irradiated with ultraviolet rays of 100 mj / cm 2 using a high-pressure mercury lamp to obtain a hard-coated film. Next, using a cutter guide with a gap spacing of 2 mm, 100 grid-like cuts that penetrate the hardcourt layer and reach the film substrate are made on the hardcourt layer surface. Next, a cellophane adhesive tape (manufactured by Nichiban, No. 405; 24 mm width) is attached to the cut surface in the shape of a grid, and rubbed with an eraser to completely adhere. After that, the cellophane adhesive tape is vertically peeled off from the hard coat layer surface of the hard coat laminated film, and the number of squares peeled off from the hard coat layer surface of the hard coat laminated film is visually counted, and the hard coat layer and the film are counted from the following formula. Obtaining adhesion to the base material. In addition, those that were partially peeled out among the squares were also counted as the peeled squares, and the hard coat adhesion was obtained as shown in the following formula. The hard coat adhesion was 100 (%).
Hardcourt adhesion (%) = 100- (number of peeled squares)
Hardcourt adhesion (%) was classified as follows, and ◎ and 〇 were judged as acceptable.
⊚: 100%, ○: 99-96%, Δ: 95-80%, ×: 79-0%
(7)耐湿熱性
 上記(5)及び(6)と同様に作製したUVインキ塗布またはハードコート塗布フィルムを80℃、80%RHの環境下で塗布面を垂直にし、かつ塗布面に他のフィルム等の接触がない状態で500時間放置した。処理後、23℃、65%RHの環境下に、塗布面に他のフィルム等の接触がない状態で10分間放置した。時間経過直後に塗布面の密着性を先述と同様に評価した。
(7) Moisture and heat resistance A UV ink-coated or hard-coated film prepared in the same manner as in (5) and (6) above is placed in an environment of 80 ° C. and 80% RH so that the coated surface is vertical and another film is applied to the coated surface. It was left for 500 hours without any contact. After the treatment, it was left in an environment of 23 ° C. and 65% RH for 10 minutes without contact with other films or the like on the coated surface. Immediately after the lapse of time, the adhesion of the coated surface was evaluated in the same manner as described above.
 以下には本発明で用いた塗布液に用いた各種樹脂等について説明する。 Hereinafter, various resins and the like used in the coating liquid used in the present invention will be described.
(ブロックイソシアネート化合物)[BI-1]~[BI-6]
〔ブロックイソシアネート化合物BI-1の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートのイソシアヌレート三量化物(イソシアネート含量21.8%)514.1質量部、2-ブタノンオキシム235.9質量部と溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、80℃で5時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、ブロックイソシアネート化合物BI-1のメチルエチルケトン溶液を得た。
(Blocked Isocyanate Compound) [BI-1] to [BI-6]
[Synthesis of blocked isocyanate compound BI-1]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 514.1 parts by mass of isocyanurate trimeride (isocyanate content 21.8%) of hexamethylene diisocyanate and 235.9 parts by mass of 2-butanone oxime and methyl ethyl ketone as a solvent. 250 parts by mass were charged, and the mixture was stirred and reacted at 80 ° C. for 5 hours under a nitrogen atmosphere. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-1 was obtained.
〔ブロックイソシアネート化合物BI-2の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートのイソシアヌレート三量化物(イソシアネート含量21.8%)506.4質量部、2-ブタノンオキシム230.9質量、数平均分子量2000のポリテトラメチレングリコール12.7質量部と溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、80℃で5時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、ブロックイソシアネート化合物BI-2のメチルエチルケトン溶液を得た。
[Synthesis of blocked isocyanate compound BI-2]
Hexamethylene diisocyanate isocyanurate trimeride (isocyanate content 21.8%) 506.4 parts by mass, 2-butanone oxime 230.9 mass, number average molecular weight 2000 in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube. 12.7 parts by mass of polytetramethylene glycol and 250 parts by mass of methyl ethyl ketone as a solvent were charged, and the mixture was stirred and reacted at 80 ° C. for 5 hours under a nitrogen atmosphere. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-2 was obtained.
〔ブロックイソシアネート化合物BI-3の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートから得られるビウレット構造を有するポリイソシアネート((イソシアネート含量23.5%)495.6質量部、数平均分子量400のポリプロピレングリコール14.6質量部、溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、80℃で2時間攪拌後、2-ブタノンオキシム239.8質量を加えて、さらに、80℃で5時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、ブロックイソシアネート化合物BI-3のメチルエチルケトン溶液を得た。
[Synthesis of blocked isocyanate compound BI-3]
Polyisocyanate having a biuret structure obtained from hexamethylene diisocyanate in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube ((isocyanate content 23.5%) 495.6 parts by mass, number average molecular weight 400 polypropylene glycol 14. 6 parts by mass and 250 parts by mass of methyl ethyl ketone as a solvent were charged, stirred at 80 ° C. for 2 hours under a nitrogen atmosphere, 2-butanone oxime 239.8 mass was added, and the mixture was further stirred at 80 ° C. for 5 hours to react. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group had disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-3 was obtained.
〔ブロックイソシアネート化合物BI-4の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにイソホロンジイソシアネート402.09質量部、3,5-ジメチルピラゾール347.89質量部と溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、80℃で5時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、ブロックイソシアネート化合物BI-4のメチルエチルケトン溶液を得た。
[Synthesis of blocked isocyanate compound BI-4]
A flask equipped with a stirrer, a thermometer, and a reflux condenser is charged with 402.09 parts by mass of isophorone diisocyanate, 347.89 parts by mass of 3,5-dimethylpyrazole, and 250 parts by mass of methyl ethyl ketone as a solvent at 80 ° C. under a nitrogen atmosphere. The mixture was stirred for 5 hours and reacted. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-4 was obtained.
〔ブロックイソシアネート化合物BI-5の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートのイソシアヌレート三量化物(イソシアネート含量21.8%) 474.0質量部、水酸基価 8 1 m g K O H / gのメトキシポリエチレングリコール78質量部、ウレタン化触媒としてジオクチルチンラウレート0.003質量部と溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、85℃で3時間攪拌後、2-ブタノンオキシム198.0質量を加えて、さらに、80℃で2時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、ノニオン性基を有するブロックイソシアネート化合物BI-5のメチルエチルケトン溶液を得た。
[Synthesis of blocked isocyanate compound BI-5]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, an isocyanurate trimerid of hexamethylene diisocyanate (isocyanate content 21.8%) 474.0 parts by mass, hydroxyl value 81 mg KOH / g methoxy 78 parts by mass of polyethylene glycol, 0.003 parts by mass of dioctyltin laurate as a urethanization catalyst and 250 parts by mass of methyl ethyl ketone as a solvent were charged, and after stirring at 85 ° C. for 3 hours under a nitrogen atmosphere, 2-butanone oxime 198.0 mass was added. In addition, the reaction was further stirred at 80 ° C. for 2 hours. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-5 having a nonionic group was obtained.
〔ブロックイソシアネート化合物BI-6の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートのイソシアヌレート三量化物(イソシアネート含量21.8%) 495.5質量部、ジメチロールプロピオン酸57.5質量部と溶剤としてメチルエチルケトン250質量部を仕込み、窒素雰囲気下、85℃で3時間攪拌後、2-ブタノンオキシム152.4質量を加えて、さらに、80℃で2時間攪拌して反応させた。その後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、アニオン性基を有するブロックイソシアネート化合物BI-6のメチルエチルケトン溶液を得た。
[Synthesis of blocked isocyanate compound BI-6]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 495.5 parts by mass of isocyanurate trimeride of hexamethylene diisocyanate (isocyanate content 21.8%), 57.5 parts by mass of dimethylol propionic acid, and methyl ethyl ketone as a solvent. 250 parts by mass was charged, and the mixture was stirred at 85 ° C. for 3 hours under a nitrogen atmosphere, 152.4 mass of 2-butanone oxime was added, and the mixture was further stirred at 80 ° C. for 2 hours for reaction. After that, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of the isocyanate group disappeared. As a result, a methyl ethyl ketone solution of the blocked isocyanate compound BI-6 having an anionic group was obtained.
(ブロックイソシアネート化合物の水分散体)
〔BI-1WD、BI-5WD、BI-6WDの調製〕
〔ブロックイソシアネート化合物BI-1の水分散体A(BI-1WD-A)の製造〕
ブロックイソシアネート化合物BI-1のメチルエチルケトン溶液100質量部に固形分濃度50質量%のアニオン性界面活性剤ペレックスSS-H(花王(株))15質量部を加えて、攪拌しつつ水225質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%のアニオン性界面活性剤で乳化されたブロックイソシアネート化合物BI-1の水分散体A(BI-1WD-A)を得た。
(Aqueous dispersion of blocked isocyanate compound)
[Preparation of BI-1WD, BI-5WD, BI-6WD]
[Manufacture of Water Dispersion A (BI-1WD-A) of Blocked Isocyanate Compound BI-1]
To 100 parts by mass of the methyl ethyl ketone solution of the blocked isocyanate compound BI-1, 15 parts by mass of the anionic surfactant Perex SS-H (Kao Corporation) having a solid content concentration of 50% by mass was added, and 225 parts by mass of water was added with stirring. Added gradually. An aqueous dispersion of the blocked isocyanate compound BI-1 emulsified with an anionic surfactant having a solid content of 25% by mass by removing the methyl ethyl ketone under reduced pressure of this solution under the condition of 50 ° C. or lower and adjusting the concentration with water. A (BI-1WD-A) was obtained.
〔ブロックイソシアネート化合物BI-1の水分散体B(BI-1WD-B)の製造〕
 ブロックイソシアネート化合物BI-1のメチルエチルケトン溶液100質量部に固形分濃度100質量%のノニオン性界面活性剤エマルゲン430(花王(株))7.5質量部を加えて、攪拌しつつ水225質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%のノニオン性界面活性剤で乳化されたブロックイソシアネート化合物BI-1の水分散体B(BI-1WD-B)を得た。
[Production of Aqueous Dispersion B (BI-1WD-B) of Blocked Isocyanate Compound BI-1]
To 100 parts by mass of the methyl ethyl ketone solution of the blocked isocyanate compound BI-1, 7.5 parts by mass of the nonionic surfactant Emulgen 430 (Kao Corporation) having a solid content concentration of 100% by mass was added, and 225 parts by mass of water was added while stirring. Added gradually. An aqueous dispersion of the blocked isocyanate compound BI-1 emulsified with a nonionic surfactant having a solid content of 25% by mass by removing the methyl ethyl ketone under reduced pressure of this solution at 50 ° C. or lower and adjusting the concentration with water. B (BI-1WD-B) was obtained.
〔ブロックイソシアネート化合物BI-5の水分散体(BI-5WD)の製造〕
 ブロックイソシアネート化合物BI-5のメチルエチルケトン溶液100質量部に攪拌しつつ水225質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%の自己乳化型ノニオン性ブロックイソシアネート化合物BI-5の水分散体(BI-5WD)を得た。
[Production of an aqueous dispersion (BI-5WD) of the blocked isocyanate compound BI-5]
225 parts by mass of water was gradually added to 100 parts by mass of a methyl ethyl ketone solution of the blocked isocyanate compound BI-5 with stirring. Methyl ethyl ketone was removed from this solution under reduced pressure under the condition of 50 ° C. or lower, and the concentration was adjusted with water to carry out an aqueous dispersion (BI-5WD) of a self-emulsifying nonionic blocked isocyanate compound BI-5 having a solid content of 25% by mass. ) Was obtained.
ブロックイソシアネート化合物BI-6の水分散体(BI-6WD)の製造
 ブロックイソシアネート化合物BI-6のメチルエチルケトン溶液100質量部に攪拌しつつ水225質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%の自己乳化型アニオン性ブロックイソシアネート化合物BI-6の水分散体(BI-6WD)を得た。
Preparation of Aqueous Dispersion (BI-6WD) of Blocked Isocyanate Compound BI-6 225 parts by mass of water was gradually added to 100 parts by mass of a methyl ethyl ketone solution of blocked isocyanate compound BI-6 with stirring. Under reduced pressure of this solution, methyl ethyl ketone was removed under the condition of 50 ° C. or lower, and the concentration was adjusted with water to carry out an aqueous dispersion (BI-6WD) of a self-emulsifying anionic blocked isocyanate compound BI-6 having a solid content of 25% by mass. ) Was obtained.
(プレポリマー)[P-1]~[P-4]
〔プレポリマーP-1の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコに数平均分子量2000のポリカーボネートジオール498.5質量部、(シクロヘキサン‐1,2‐ジイルビスメチレン)ジイソシアナート 154.3質量部、ジメチロールプロピオン酸48.7質量部、溶剤としてメチルエチルケトン250質量部を仕込み、80℃で5時間撹拌して反応させ、固形分が73.7質量%のアニオン性のカルボキシル基を有するプレポリマーP-1溶液を製造した。
(Prepolymer) [P-1] to [P-4]
[Synthesis of prepolymer P-1]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 498.5 parts by mass of a polycarbonate diol having a number average molecular weight of 2000, 154.3 parts by mass of (cyclohexane-1,2-diylbismethylene) diisosianate, dimethylolpropion. A prepolymer P-1 solution having an anionic carboxyl group having a solid content of 73.7% by mass was prepared by charging 48.7 parts by mass of an acid and 250 parts by mass of a methyl ethyl ketone as a solvent and stirring at 80 ° C. for 5 hours to react. Manufactured.
〔プレポリマーP-2の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコに数平均分子量2000のポリカーボネートジオール369.9質量部、ジシクロヘキシルメタン-4,4’-ジイソシアネート266.4質量部、ジメチロールプロピオン酸59.6質量部 、メチルエチルケトオキシム9.2質量部、溶剤としてメチルエチルケトン250質量部、とメチルエチルケトオキシム9.2質量部を仕込み、80℃で5時間撹拌し反応させ、固形分が73.8質量%のアニオン性のカルボキシル基を有するプレポリマーP-1溶液を製造した。
[Synthesis of prepolymer P-2]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 369.9 parts by mass of a polycarbonate diol having a number average molecular weight of 2000, 266.4 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, and 59.6 parts by mass of dimethylolpropionic acid. 9.2 parts by mass of methyl ethyl ketooxime, 250 parts by mass of methyl ethyl ketone as a solvent, and 9.2 parts by mass of methyl ethyl ketooxime were charged and stirred at 80 ° C. for 5 hours to react, and the solid content was 73.8% by mass of anionic. A prepolymer P-1 solution having a carboxyl group was produced.
〔プレポリマーP-3の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコに エチレングリコール/ ネオペンチルグリコール=1/1( モル比)と、テレフタル酸/イソフタル酸=1/1(モル比)の混合ジカルボン酸から得られる数平均分子量500のポリエステルジオール293.4質量部、ジシクロヘキシルメタン-4,4’-ジイソシアネート322.2質量部、ジメチロールブタン酸85.0質量部、溶剤としてメチルエチルケトン250質量部を仕込み、80℃で5時間撹拌して反応させ、固形分が73.7質量%のアニオン性のカルボキシル基を有するプレポリマーP-3溶液を製造した。
[Synthesis of prepolymer P-3]
Obtained from a mixed dicarboxylic acid of ethylene glycol / neopentyl glycol = 1/1 (molar ratio) and terephthalic acid / isophthalic acid = 1/1 (molar ratio) in a flask equipped with a stirrer, thermometer and reflux cooling tube. 293.4 parts by mass of polyester diol having a number average molecular weight of 500, 322.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, 85.0 parts by mass of dimethylolbutanoic acid, and 250 parts by mass of methyl ethyl ketone as a solvent were charged at 80 ° C. The mixture was stirred and reacted for 5 hours to prepare a prepolymer P-3 solution having an anionic carboxyl group having a solid content of 73.7% by mass.
〔プレポリマーP-4の合成〕
 撹拌機、温度計、還流冷却管を備えたフラスコに数平均分子量2000のポリエチレングリコール486.5質量部、(シクロヘキサン‐1,2‐ジイルビスメチレン)ジイソシアナート 157.3質量部、1,6-ヘキサンジオール50.2質量部、溶剤としてメチルエチルケトン250質量部を仕込み、80℃で5時間撹拌して反応させ、固形分が73.5質量%のノニオン性のプレポリマーP-4溶液を製造した。
[Synthesis of prepolymer P-4]
486.5 parts by mass of polyethylene glycol with a number average molecular weight of 2000, 157.3 parts by mass of (cyclohexane-1,2-diylbismethylene) diisosianate, 1,6 in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube. -A hexanediol (50.2 parts by mass) and a methyl ethyl ketone (250 parts by mass) as a solvent were charged and reacted at 80 ° C. for 5 hours to prepare a nonionic prepolymer P-4 solution having a solid content of 73.5% by mass. ..
(コア・シェル型水系ポリウレタン樹脂)[CS-1]~[CS-6]
〔コア・シェル型水系ポリウレタン樹脂CS-1の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、アニオン性のカルボキシル基を有するプレポリマーP-1溶液66.20質量部、トリエチルアミン2.11質量部とブロックイソシアネート化合物BI-1のメチルエチルケトン溶液30質量部を仕込み、5分間撹拌して混合物を得た。撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加え40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。その後、25質量%のエチレンジアミン水溶液0.250質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-1の水分散液(CS-1WD)を得た。このポリウレタン樹脂CS-1は、コアがブロックイソシアネート化合物BI-1であり、シェルをアニオン性のプレポリマーP-1からの形成されたポリウレタンである。
(Core-shell type water-based polyurethane resin) [CS-1] to [CS-6]
[Manufacturing of core-shell type water-based polyurethane resin CS-1]
In a flask equipped with a stirrer, a thermometer and a reflux cooling tube, 66.20 parts by mass of a prepolymer P-1 solution having an anionic carboxyl group, 2.11 parts by mass of triethylamine and a methyl ethyl ketone solution of a blocked isocyanate compound BI-1. 30 parts by mass was charged and stirred for 5 minutes to obtain a mixture. To a flask equipped with a stirrer and a thermometer, 150 g of water and 0.02 g of defoaming agent were added, and the mixture was added over 2 minutes while stirring at 40 ° C., and further stirred at 40 ° C. for 30 minutes. .. Then, 0.250 parts by mass of a 25% by mass ethylenediamine aqueous solution was added, and the mixture was stirred at 40 ° C. for 1 hour, and then the infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared. The ethylmethylketone solvent was removed under reduced pressure conditions, and the concentration was adjusted with water to obtain an aqueous dispersion (CS-1WD) of a core-shell type aqueous polyurethane resin CS-1 having a solid content concentration of 30% by mass. .. This polyurethane resin CS-1 is a polyurethane in which the core is a blocked isocyanate compound BI-1 and the shell is formed from an anionic prepolymer P-1.
〔コア・シェル型水系ポリウレタン樹脂CS-2の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、アニオン性のカルボキシル基を有するプレポリマーP-2溶液57.31質量部、トリエチルアミン2.69質量部、とブロックイソシアネート化合物BI-2のメチルエチルケトン溶液40質量部を仕込み、5分間撹拌して混合物を得た。撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加え40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。25質量%のエチレンジアミン水溶液0.180質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-2の水分散液(CS-2WD)を得た。このポリウレタン樹脂CS-2は、コアがブロックイソシアネート化合物BI-2であり、シェルをアニオン性のプレポリマーP-2からの形成されたポリウレタンである。
[Manufacturing of core-shell type water-based polyurethane resin CS-2]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 57.31 parts by mass of a prepolymer P-2 solution having an anionic carboxyl group, 2.69 parts by mass of triethylamine, and a methyl ethyl ketone of the blocked isocyanate compound BI-2. 40 parts by mass of the solution was charged and stirred for 5 minutes to obtain a mixture. To a flask equipped with a stirrer and a thermometer, 150 g of water and 0.02 g of defoaming agent were added, and the mixture was added over 2 minutes while stirring at 40 ° C., and further stirred at 40 ° C. for 30 minutes. .. After adding 0.180 parts by mass of a 25% by mass ethylenediamine aqueous solution and stirring at 40 ° C. for 1 hour, the infrared spectrum of the reaction solution was measured, and it was confirmed that the absorption of isocyanate groups disappeared. The ethylmethylketone solvent was removed under reduced pressure conditions, and the concentration was adjusted with water to obtain an aqueous dispersion (CS-2WD) of a core-shell type aqueous polyurethane resin CS-2 having a solid content concentration of 30% by mass. .. This polyurethane resin CS-2 is a polyurethane in which the core is a blocked isocyanate compound BI-2 and the shell is formed from an anionic prepolymer P-2.
〔コア・シェル型水系ポリウレタン樹脂CS-3の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、アニオン性のカルボキシル基を有するプレポリマーP-3溶液75.00質量部、トリエチルアミン3.64質量部とブロックイソシアネート化合物BI-3のメチルエチルケトン溶液20質量部を仕込み、5分間撹拌して混合物を得た。別途、撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加え40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。その後、25質量%のエチレンジアミン水溶液0.140質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-3の水分散液(CS-3WD)を得た。このポリウレタン樹脂CS-3は、コアがブロックイソシアネート化合物BI-3であり、シェルをアニオン性のプレポリマーP-3からの形成されたポリウレタンである。
[Manufacturing of core-shell type water-based polyurethane resin CS-3]
In a flask equipped with a stirrer, a thermometer and a reflux cooling tube, a methyl ethyl ketone solution of 75.00 parts by mass of a prepolymer P-3 solution having an anionic carboxyl group, 3.64 parts by mass of triethylamine and a blocked isocyanate compound BI-3. 20 parts by mass was charged and stirred for 5 minutes to obtain a mixture. Separately, 150 g of water and 0.02 g of defoaming agent are added to a flask equipped with a stirrer and a thermometer, and the mixture is added over 2 minutes while stirring at 40 ° C., and further at 40 ° C. for 30 minutes. Stirred. Then, 0.140 parts by mass of a 25% by mass ethylenediamine aqueous solution was added, and the mixture was stirred at 40 ° C. for 1 hour, and then the infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared. The ethylmethylketone solvent was removed under reduced pressure conditions, and the concentration was adjusted with water to obtain an aqueous dispersion (CS-3WD) of a core-shell type aqueous polyurethane resin CS-3 having a solid content concentration of 30% by mass. .. This polyurethane resin CS-3 is a polyurethane in which the core is a blocked isocyanate compound BI-3 and the shell is formed from an anionic prepolymer P-3.
〔コア・シェル型水系ポリウレタン樹脂CS-4の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、アニオン性のカルボキシル基を有するプレポリマーP-1溶液66.20質量部、トリエチルアミン2.11質量部とブロックイソシアネート化合物BI-4のメチルエチルケトン溶液30質量部を仕込み、5分間撹拌して混合物を得た。別途、撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加えて40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。その後、25質量%のエチレンジアミン水溶液0.250質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。さらに、減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-4の水分散液(CS-4WD)を得た。このポリウレタン樹脂CS-4は、コアがブロックイソシアネート化合物BI-4であり、シェルをアニオン性のプレポリマーP-1からの形成されたポリウレタンである。
[Manufacturing of core-shell type water-based polyurethane resin CS-4]
In a flask equipped with a stirrer, a thermometer and a reflux cooling tube, 66.20 parts by mass of a prepolymer P-1 solution having an anionic carboxyl group, 2.11 parts by mass of triethylamine and a methyl ethyl ketone solution of a blocked isocyanate compound BI-4. 30 parts by mass was charged and stirred for 5 minutes to obtain a mixture. Separately, 150 g of water and 0.02 g of defoaming agent are added to a flask equipped with a stirrer and a thermometer, and the mixture is added over 2 minutes while stirring at 40 ° C., and further, 30 at 40 ° C. The mixture was stirred for a minute. Then, 0.250 parts by mass of a 25% by mass ethylenediamine aqueous solution was added, and the mixture was stirred at 40 ° C. for 1 hour, and then the infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared. Further, by removing the ethylmethylketone solvent under reduced pressure conditions and adjusting the concentration with water, an aqueous dispersion (CS-4WD) of a core-shell type aqueous polyurethane resin CS-4 having a solid content concentration of 30% by mass was prepared. Obtained. This polyurethane resin CS-4 is a polyurethane in which the core is a blocked isocyanate compound BI-4 and the shell is formed from an anionic prepolymer P-1.
〔コア・シェル型水系ポリウレタン樹脂CS-5の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、ノニオン性のプレポリマーP-4溶液66.20質量部、とブロックイソシアネート化合物BI-1のメチルエチルケトン溶液30質量部を仕込み、5分間撹拌して混合物を得た。別途、撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加え40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。その後、25質量%のエチレンジアミン水溶液0.250質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。さらに、減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-5の水分散液(CS-5WD)を得た。このポリウレタン樹脂CS-5は、コアがブロックイソシアネート化合物BI-1であり、シェルをノニオン性のプレポリマーP-4からの形成されたポリウレタンである。
[Manufacturing of core-shell type water-based polyurethane resin CS-5]
In a flask equipped with a stirrer, a thermometer and a reflux cooling tube, 66.20 parts by mass of a nonionic prepolymer P-4 solution and 30 parts by mass of a methyl ethyl ketone solution of the blocked isocyanate compound BI-1 were charged and stirred for 5 minutes. The mixture was obtained. Separately, 150 g of water and 0.02 g of defoaming agent are added to a flask equipped with a stirrer and a thermometer, and the mixture is added over 2 minutes while stirring at 40 ° C., and further at 40 ° C. for 30 minutes. Stirred. Then, 0.250 parts by mass of a 25% by mass ethylenediamine aqueous solution was added, and the mixture was stirred at 40 ° C. for 1 hour, and then the infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared. Further, by removing the ethylmethylketone solvent under reduced pressure conditions and adjusting the concentration with water, an aqueous dispersion (CS-5WD) of a core-shell type aqueous polyurethane resin CS-5 having a solid content concentration of 30% by mass was prepared. Obtained. This polyurethane resin CS-5 is a polyurethane having a core of a blocked isocyanate compound BI-1 and a shell made of a nonionic prepolymer P-4.
〔コア・シェル型水系ポリウレタン樹脂CS-6の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコにアニオン性のカルボキシル基を有するプレポリマーP-1 52.40質量部とノニオン性基を有するブロックイソシアネート化合物BI-5のメチルエチルケトン溶液42質量部を仕込み、5分間撹拌して混合物を得た。別途、撹拌機、温度計を備えたフラスコに、150gの水、0.02gの消泡剤を加え40℃で撹拌しながら、前記混合物を2分間かけて添加し、更に、40℃で30分撹拌した。その後、25質量%のエチレンジアミン水溶液0.250質量部を添加して、40℃で1時間撹拌した後、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。さらに、減圧条件下でエチルメチルケトン溶剤を除去し、水で濃度を調整することにより、固形分濃度30質量%のコア・シェル型水系ポリウレタン樹脂CS-6の水分散液(CS-6WD)を得た。このポリウレタン樹脂CS-6は、コアがノニオン性のブロックイソシアネート化合物BI-5であり、シェルをアニオン性のプレポリマーP-1からの形成されたポリウレタンである。
[Manufacturing of core-shell type water-based polyurethane resin CS-6]
In a flask equipped with a stirrer, a thermometer, and a reflux cooling tube, 52.40 parts by mass of prepolymer P-1 having an anionic carboxyl group and 42 parts by mass of a methyl ethyl ketone solution of a blocked isocyanate compound BI-5 having a nonionic group were placed. The mixture was charged and stirred for 5 minutes to obtain a mixture. Separately, 150 g of water and 0.02 g of defoaming agent are added to a flask equipped with a stirrer and a thermometer, and the mixture is added over 2 minutes while stirring at 40 ° C., and further at 40 ° C. for 30 minutes. Stirred. Then, 0.250 parts by mass of a 25% by mass ethylenediamine aqueous solution was added, and the mixture was stirred at 40 ° C. for 1 hour, and then the infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared. Further, by removing the ethylmethylketone solvent under reduced pressure conditions and adjusting the concentration with water, an aqueous dispersion (CS-6WD) of a core-shell type aqueous polyurethane resin CS-6 having a solid content concentration of 30% by mass was prepared. Obtained. The polyurethane resin CS-6 is a polyurethane having a nonionic blocked isocyanate compound BI-5 as a core and an anionic prepolymer P-1 as a shell.
(複合水分散体)[BI-PU-WD]
〔ブロックイソシアネート化合物BI-1とポリウレタン樹脂PU-1(詳細後述)の複合水分散体A(BI-PU-WD-A)の製造〕
 ブロックイソシアネート化合物BI-1のメチルエチルケトン溶液66.7質量部にカルボキシル基を有するアニオン性ポリウレタン樹脂PU-1のメチルエチルケトン溶液101.8質量部を加えて、攪拌しつつ水375質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%のBI-1/PU-1=4/6の複合水分散体A(BI-PU-WD-A)を得た。
(Composite aqueous dispersion) [BI-PU-WD]
[Manufacture of a composite aqueous dispersion A (BI-PU-WD-A) of a blocked isocyanate compound BI-1 and a polyurethane resin PU-1 (details will be described later)]
To 66.7 parts by mass of the methyl ethyl ketone solution of the blocked isocyanate compound BI-1, 101.8 parts by mass of the methyl ethyl ketone solution of the anionic polyurethane resin PU-1 having a carboxyl group was added, and 375 parts by mass of water was gradually added while stirring. .. Methyl ethyl ketone was removed from this solution under reduced pressure under the condition of 50 ° C. or lower, and the concentration was adjusted with water to adjust the concentration with water. -PU-WD-A) was obtained.
〔ブロックイソシアネート化合物BI-1とポリウレタン樹脂PU-1(詳細後述)の複合水分散体B(BI-PU-WD-B)の製造〕
 ブロックイソシアネート化合物BI-1のメチルエチルケトン溶液50.0質量部にカルボキシル基を有するアニオン性ポリウレタン樹脂PU-1のメチルエチルケトン溶液118.7質量部を加えて、攪拌しつつ水380質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%のBI-1/PU-1=3/7の複合水分散体B(BI-PU-WD-B)を得た。
[Manufacture of a composite aqueous dispersion B (BI-PU-WD-B) of a blocked isocyanate compound BI-1 and a polyurethane resin PU-1 (details will be described later)]
118.7 parts by mass of the methyl ethyl ketone solution of the anionic polyurethane resin PU-1 having a carboxyl group was added to 50.0 parts by mass of the methyl ethyl ketone solution of the blocked isocyanate compound BI-1, and 380 parts by mass of water was gradually added while stirring. .. Methyl ethyl ketone was removed from this solution under reduced pressure under the condition of 50 ° C. or lower, and the concentration was adjusted with water to adjust the concentration with water. -PU-WD-B) was obtained.
(ポリウレタン樹脂)
〔ポリウレタン樹脂PU-1の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに数平均分子量2000のポリカーボネートジオール437.2質量部、ジシクロヘキシルメタン-4,4’-ジイソシアネート 192.2質量部、ジメチロールプロピオン酸60.8質量部、1,6-ヘキサンジオール13.0質量部、溶剤としてメチルエチルケトン250質量部を仕込み、80℃で5時間撹拌して反応させ、反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。これにより、固形分が73.7質量%のポリウレタン樹脂PU-1のメチルエチルケトン溶液を製造した。別途、ポリウレタン樹脂PU-1のメチルエチルケトン溶液100質量部に攪拌しつつ水225質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分25質量%のカルボキシル基を有するアニオン性ポリウレタン樹脂水分散体PU-1の水分散体(PU-1WD)を得た。
(Polyurethane resin)
[Manufacturing of polyurethane resin PU-1]
437.2 parts by mass of polycarbonate diol with a number average molecular weight of 2000, 192.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, 60.8 parts by mass of dimethylolpropionic acid in a flask equipped with a stirrer, a thermometer, and a reflux cooling tube. , 13.0 parts by mass of 1,6-hexanediol and 250 parts by mass of methyl ethyl ketone as a solvent were charged, stirred at 80 ° C. for 5 hours and reacted, the infrared spectrum of the reaction solution was measured, and the absorption of isocyanate groups disappeared. I confirmed that I did. As a result, a methyl ethyl ketone solution of the polyurethane resin PU-1 having a solid content of 73.7% by mass was produced. Separately, 225 parts by mass of water was gradually added to 100 parts by mass of the methyl ethyl ketone solution of the polyurethane resin PU-1 with stirring. Under reduced pressure of this solution, methyl ethyl ketone was removed under the condition of 50 ° C. or lower, and the concentration was adjusted with water to adjust the concentration with water. PU-1WD) was obtained.
(ポリエステル樹脂)
〔ポリエステル樹脂PE-1の製造〕
 ジメチルテレフタレート95質量部、ジメチルイソフタレート95質量部、エチレングリコール35質量部、ネオペンチルグリコール145質量部、酢酸亜鉛0.1質量部および三酸化アンチモン0.1質量部を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸6.0質量部を添加し、240℃で1時間かけてエステル化反応を行った後、250℃の減圧下(1.33~0.027kPa)で2時間かけて重縮合反応を行い、分子量19500のポリエステル樹脂(PE-1)を得た。このポリエステル樹脂(PE-1)300質量部とブチルセロソルブ140質量部を160℃ で3時間撹拌し粘稠な溶融液を得、この溶融液に水を徐々に添加し1時間後に均一な淡白色の固形分15質量% のポリエステル樹脂水分散体(PE-1WD)を調製した。
(Polyester resin)
[Manufacturing of polyester resin PE-1]
95 parts by mass of dimethyl terephthalate, 95 parts by mass of dimethyl isophthalate, 35 parts by mass of ethylene glycol, 145 parts by mass of neopentyl glycol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide were charged into a reaction vessel and 180 ° C. The transesterification reaction was carried out over 3 hours. Next, 6.0 parts by mass of 5-sodium sulfoisophthalic acid was added, and the esterification reaction was carried out at 240 ° C. for 1 hour, and then under reduced pressure at 250 ° C. (1.33 to 0.027 kPa) for 2 hours. The polycondensation reaction was carried out to obtain a polyester resin (PE-1) having a molecular weight of 19,500. 300 parts by mass of this polyester resin (PE-1) and 140 parts by mass of butyl cellosolve were stirred at 160 ° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt to give a uniform pale white color after 1 hour. A polyester resin aqueous dispersion (PE-1WD) having a solid content of 15% by mass was prepared.
〔ポリエステル樹脂PE-2の製造〕
 2,6-ナフタレンジカルボン酸ジメチル105質量部、エチレングリコール50質量部、ヘキサンジオール36質量部、酢酸亜鉛0.1質量部および三酸化アンチモン0.1質量部を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸8.6質量部とセバシン酸8質量部を添加し、240℃で1時間かけてエステル化反応を行った後、250℃の減圧下1.33~0.027kPa)で2時間かけて重縮合反応を行い、分子量18000のポリエステル樹脂(PE-2)を得た。このポリエステル樹脂(PE-2)300質量部とブチルセロソルブ140質量部を160℃ で3 時間撹拌し粘稠な溶融液を得、この溶融液に水を徐々に添加し1時間後に均一な淡白色の固形分15質量%のポリエステル樹脂水分散体(PE-2WD)を調製した。
[Manufacturing of polyester resin PE-2]
Add 105 parts by mass of dimethyl 2,6-naphthalenedicarboxylate, 50 parts by mass of ethylene glycol, 36 parts by mass of hexanediol, 0.1 part by mass of zinc acetate and 0.1 part by mass of antimony trioxide into the reaction vessel, and 3 at 180 ° C. The transesterification reaction was carried out over time. Next, 8.6 parts by mass of 5-sodium sulfoisophthalic acid and 8 parts by mass of sebacic acid were added, and an esterification reaction was carried out at 240 ° C. for 1 hour, and then 1.33 to 0. A polycondensation reaction was carried out at 027 kPa) for 2 hours to obtain a polyester resin (PE-2) having a molecular weight of 18,000. 300 parts by mass of this polyester resin (PE-2) and 140 parts by mass of butyl cellosolve were stirred at 160 ° C. for 3 hours to obtain a viscous melt, and water was gradually added to the melt to give a uniform pale white color after 1 hour. A polyester resin aqueous dispersion (PE-2WD) having a solid content of 15% by mass was prepared.
(架橋剤)
〔架橋剤OX-1の製造〕
 撹拌機、温度計、還流冷却管を備えたフラスコに、水150.0質量部およびメトキシプロピルアルコール250.0質量部を仕込み、窒素雰囲気下、80℃に加熱した。その後、メタクリル酸メチル150.0質量部、2-イソプロペニル-2-オキサゾリン180.0質量部およびメトキシポリエチレングリコールアクリレート(新中村化学(株)製、商品名:NKエステルAM-90G)90.0質量部からなる単量体混合物と、重合開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩18.0質量部および水170.0質量部からなる重合開始剤溶液をそれぞれ滴下ロートから窒素雰囲気下、フラスコ内を80℃に保持しつつ2時間かけて滴下した。滴下終了後、80℃、5時間攪拌した後、室温まで冷却した。水を適量添加して、固形分40質量%のオキサゾリン系架橋剤水分散体(OX-1WD)を調製した。
(Crosslinking agent)
[Manufacturing of cross-linking agent OX-1]
A flask equipped with a stirrer, a thermometer, and a reflux condenser was charged with 150.0 parts by mass of water and 250.0 parts by mass of methoxypropyl alcohol, and heated to 80 ° C. under a nitrogen atmosphere. After that, 150.0 parts by mass of methyl methacrylate, 180.0 parts by mass of 2-isopropenyl-2-oxazoline and methoxypolyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-90G) 90.0. A monomer mixture consisting of parts by mass and a polymerization initiator solution consisting of 18.0 parts by mass of 2,2'-azobis (2-amidinopropane) dihydrochloride and 170.0 parts by mass of water as a polymerization initiator are added dropwise. The solution was dropped from the funnel under a nitrogen atmosphere over 2 hours while keeping the inside of the flask at 80 ° C. After completion of the dropping, the mixture was stirred at 80 ° C. for 5 hours and then cooled to room temperature. An appropriate amount of water was added to prepare an oxazoline-based cross-linking agent aqueous dispersion (OX-1WD) having a solid content of 40% by mass.
(アクリル樹脂)
〔アクリル樹脂AC-1の製造〕
 メチルメタアクリレート356質量部、アクリル酸16質量部、ノルマルブチルアクリレート5質量部、2-ヒドロキシエチルメタアクリレート10質量部、メチルエチルケトン372質量部に重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート2質量部を加えて攪拌しつつ、50℃まで昇温し、120分保持し、その後70℃まで昇温して180分保持した。40℃まで冷却後、トリエチルアミン13質量部を加えて、アクリル樹脂(AC-1)のメチルエチルケトン溶液を得た。このメチルエチルケトン溶液200質量部に攪拌しつつ水150質量部を徐々に加えた。この溶液を減圧下、50℃以下の条件でメチルエチルケトンを除去し水による濃度調整を実施して、固形分40質量%のアクリル樹脂の水分散体(AC-1WD)を得た。
(acrylic resin)
[Manufacturing of acrylic resin AC-1]
T-butylperoxy-2-ethylhexano as a polymerization initiator in 356 parts by mass of methyl methacrylate, 16 parts by mass of acrylic acid, 5 parts by mass of normal butyl acrylate, 10 parts by mass of 2-hydroxyethyl methacrylate, and 372 parts by mass of methyl ethyl ketone. While stirring by adding 2 parts by mass of ate, the temperature was raised to 50 ° C. and held for 120 minutes, and then the temperature was raised to 70 ° C. and held for 180 minutes. After cooling to 40 ° C., 13 parts by mass of triethylamine was added to obtain a methyl ethyl ketone solution of an acrylic resin (AC-1). 150 parts by mass of water was gradually added to 200 parts by mass of this methyl ethyl ketone solution with stirring. Methyl ethyl ketone was removed from this solution under reduced pressure under the condition of 50 ° C. or lower, and the concentration was adjusted with water to obtain an aqueous dispersion (AC-1WD) of an acrylic resin having a solid content of 40% by mass.
(粒子)
〔粒子PA-1〕
 粒子(PA-1)として固形分濃度40質量%である平均粒径80nmのコロイダルシリカ(スノーテックスZL;日産化学(株)製)を粒子(PA-1)溶液としてそのまま用いた。
(particle)
[Particle PA-1]
As the particles (PA-1), colloidal silica (Snowtex ZL; manufactured by Nissan Chemical Industries, Ltd.) having an average particle size of 80 nm and a solid content concentration of 40% by mass was used as it was as the particles (PA-1) solution.
〔粒子PA-2〕
 粒子(PA-2)として固形分濃度40質量%である平均粒径40~60nmのコロイダルシリカ(スノーテックスXL;日産化学(株)製)を粒子(PA-2)溶液としてそのまま用いた。
[Particle PA-2]
As the particles (PA-2), colloidal silica (Snowtex XL; manufactured by Nissan Chemical Industries, Ltd.) having an average particle size of 40 to 60 nm having a solid content concentration of 40% by mass was used as it was as the particles (PA-2) solution.
(基材用ポリエステル樹脂E-1の製造)
(三酸化アンチモン溶液の調製)
 三酸化アンチモン(シグマ アルドリッチ ジャパン合同会社製)をエチレングリコールとともにフラスコに仕込み、150℃で4時間攪拌して溶解後、室温まで冷却して、20g/lの三酸化アンチモンのエチレングリコール溶液を調製した。
(Manufacturing of polyester resin E-1 for base material)
(Preparation of antimony trioxide solution)
Antimony trioxide (manufactured by Sigma-Aldrich Japan LLC) was placed in a flask together with ethylene glycol, stirred at 150 ° C. for 4 hours to dissolve, and then cooled to room temperature to prepare a 20 g / l ethylene glycol solution of antimony trioxide. ..
(基材用ポリエステル樹脂E-1の重合)
  攪拌機付き2リッターステンレス製オートクレーブに高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行いエステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重縮合触媒として、上記三酸化アンチモン溶液を用い、ポリエステル中の酸成分に対してアンチモン原子として0.04モル%になるように加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで68分間重縮合反応を実施して、固有粘度(IV)(溶媒:フェノール/テトラクロロエタン=60/40)が0.61dl/であり、粒子を実質上含有していないポリエステル樹脂E-1を得た。
(Polymerization of polyester resin E-1 for base material)
High-purity terephthalic acid and twice the molar amount of ethylene glycol are charged in a 2-liter stainless steel autoclave with a stirrer, 0.3 mol% of triethylamine is added to the acid component, and water is added at 250 ° C. under a pressure of 0.25 MPa. An esterification reaction was carried out while distilling off the system to obtain a mixture of bis (2-hydroxyethyl) terephthalate and an oligomer having an esterification rate of about 95% (hereinafter referred to as BHET mixture). The above antimony trioxide solution was used as a polycondensation catalyst in this BHET mixture, and the amount of antimony atoms was added to 0.04 mol% with respect to the acid component in the polyester, and then 250 under normal pressure under a nitrogen atmosphere. The mixture was stirred at ° C for 10 minutes. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 280 ° C. over 60 minutes, and the polycondensation reaction was further carried out at 280 ° C. and 13.3 Pa for 68 minutes to carry out the intrinsic polycondensation reaction. A polyester resin E-1 having an viscosity (IV) (solvent: phenol / tetrachloroethane = 60/40) of 0.61 dl / and substantially no particles was obtained.
(基材用ポリエステル樹脂E-2の製造)
(アルミニウム化合物溶液の調製例)
  塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート;シグマ アルドリッチ ジャパン合同会社製)の20g/l水溶液に対して等量(容量比)のエチレングリコールをともにフラスコに仕込み、室温で6時間攪拌した後、減圧(133Pa)下、70~90℃で数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を調製した。
(Manufacturing of polyester resin E-2 for base material)
(Preparation example of aluminum compound solution)
A 20 g / l aqueous solution of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by Sigma Aldrich Japan G.K.) was charged with an equal amount (volume ratio) of ethylene glycol in a flask, stirred at room temperature for 6 hours, and then depressurized. Water was distilled off from the system under 133 Pa) with stirring at 70 to 90 ° C. for several hours to prepare an ethylene glycol solution of 20 g / l of an aluminum compound.
(リン化合物溶液の調製例)
  リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸 ジエチル(Irganox1222(BASF社製))をエチレングリコールとともにフラスコに仕込み、窒素置換下攪拌しながら液温160℃で25時間加熱し、50g/lのリン化合物のエチレングリコール溶液を調製した。
(Preparation example of phosphorus compound solution)
As a phosphorus compound, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate (Irganox1222 (manufactured by BASF)) was placed in a flask together with ethylene glycol and heated at a liquid temperature of 160 ° C. for 25 hours while stirring under nitrogen substitution. Then, an ethylene glycol solution of 50 g / l of a phosphorus compound was prepared.
(アルミニウム化合物の溶液とリン化合物の溶液の混合物の調製)
  上記アルミニウム化合物の調製例および上記リン化合物の調製例で得られたそれぞれのエチレングリコール溶液をフラスコに仕込み、アルミニウム原子とリン原子がモル比で1:2となるように室温で混合し、1日間攪拌して触媒溶液を調製した。
(Preparation of a mixture of a solution of an aluminum compound and a solution of a phosphorus compound)
Each of the ethylene glycol solutions obtained in the above-mentioned preparation example of the aluminum compound and the above-mentioned preparation example of the phosphorus compound was placed in a flask and mixed at room temperature so that the aluminum atom and the phosphorus atom had a molar ratio of 1: 2 for 1 day. A catalyst solution was prepared with stirring.
(基材用ポリエステル樹脂E-2の重合)
  重縮合触媒として三酸化アンチモン溶液の代わりに、前述のアルミニウム化合物の溶液とリン化合物の溶液の混合物を用いて、ポリエステル中の酸成分に対してアルミニウム原子およびリン原子としてそれぞれ0.014モル%および0.028モル%になるように
加えた以外は、ポリエステル樹脂E-1と同様に重合した。但し、重合時間は68分間とすることで、固有粘度(IV)が0.61dl/gであり、粒子を実質上含有していないポリエステル樹脂E-2を得た。
(Polymerization of polyester resin E-2 for base material)
Instead of the antimony trioxide solution as a polycondensation catalyst, a mixture of the above-mentioned aluminum compound solution and phosphorus compound solution was used, and 0.014 mol% and phosphorus atoms were used as aluminum atoms and phosphorus atoms, respectively, with respect to the acid component in the polyester. It was polymerized in the same manner as the polyester resin E-1 except that it was added so as to be 0.028 mol%. However, by setting the polymerization time to 68 minutes, a polyester resin E-2 having an intrinsic viscosity (IV) of 0.61 dl / g and substantially containing no particles was obtained.
(実施例1)
(1)塗布液の調製
 水とイソプロパノールの混合溶媒(80/20質量部比)に、下記の塗剤を混合して計100質量部に調整した。 ブロックイソシアネート化合物BI-1の水分散体(BI-1WD-A)/ポリウレタン樹脂の水分散体(PU-1WD)/ポリエステル樹脂の水分散体(PE-1WD)の固形分質量比が25/45/30、総固形樹脂分濃度4質量%とした。 さらに、粒子PA-1と粒子PA-2が前述の樹脂等の固形分100に対してそれぞれの固形分質量比が0.5及び8とした。 塗布液にはシリコーン系界面活性剤の10%水溶液を1質量%添加した。実施例及び比較例の塗布液の樹脂等の配合比については表1に示す。
 
混合溶剤(水/イソプロパノール)       78.95質量部
ブロックイソシアネート化合物BI-1の水分散体(BI-1WD-A)
                        4.00質量部
ポリウレタン樹脂の水分散体(PU-1WD)   7.20質量部
ポリエステル樹脂の水分散体(PE-1WD)   8.00質量部
粒子PA-1溶液                0.05質量部
粒子PA-2溶液                0.80質量部
界面活性剤水溶液                1.00質量部
                     計100.00質量部
(Example 1)
(1) Preparation of coating liquid The following coating agent was mixed with a mixed solvent (80/20 parts by mass) of water and isopropanol to adjust the total amount to 100 parts by mass. The solid content mass ratio of the aqueous dispersion of the blocked isocyanate compound BI-1 (BI-1WD-A) / the aqueous dispersion of the polyurethane resin (PU-1WD) / the aqueous dispersion of the polyester resin (PE-1WD) is 25/45. / 30, The total solid resin content concentration was 4% by mass. Further, the solid content mass ratios of the particles PA-1 and the particles PA-2 were set to 0.5 and 8, respectively, with respect to the solid content 100 of the above-mentioned resin or the like. A 10% aqueous solution of a silicone-based surfactant was added to the coating liquid in an amount of 1% by mass. Table 1 shows the compounding ratios of the resins and the like in the coating liquids of Examples and Comparative Examples.

Mixed solvent (water / isopropanol) 78.95 parts by mass An aqueous dispersion of the blocked isocyanate compound BI-1 (BI-1WD-A)
4.00 parts by mass water dispersion of polyurethane resin (PU-1WD) 7. 20 parts by mass water dispersion of polyester resin (PE-1WD) 8.00 parts by mass particles PA-1 solution 0.05 parts by mass particles PA- 2 solutions 0.80 parts by mass Surface active agent aqueous solution 1.00 parts by mass Total 100.00 parts by mass
(2)積層ポリエステルフィルムの製造
 フィルム原料ポリマーとして、ポリエステル樹脂E-1の樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of Laminated Polyester Film As a film raw material polymer, resin pellets of polyester resin E-1 were dried at 135 ° C. for 6 hours under a reduced pressure of 133 Pa. Then, it was supplied to an extruder, melt-extruded into a sheet at about 280 ° C., and rapidly cooled and adhered and solidified on a rotary cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially stretched PET film.
 次いで、前記塗布液をPETフィルムの片面に、塗布量が6.0g/mになるように塗布し、90℃で3秒、40℃で3秒熱処理して乾燥させた。さらに、直径200mmのハードクロムメッキ処理された張力制御ロール(表面粗さ:0.4S)に、フィルムの被覆層表面を接触させた。この時の走行条件は、走行速度20m/分、巻付け角60度、走行張力400~500N/mとした。ついで、フィルムを110℃で幅方向に4.0倍に延伸し、フィルムの幅方向を固定した状態で、230℃で5秒間加熱した。さらに3%の幅方向の弛緩処理を行ない、100μmの積層ポリエステルフィルムを得た。このフィルムの評価結果を表2に示す。 Next, the coating liquid was applied to one side of the PET film so that the coating amount was 6.0 g / m 2, and heat-treated at 90 ° C. for 3 seconds and 40 ° C. for 3 seconds to dry. Further, the surface of the coating layer of the film was brought into contact with a tension control roll (surface roughness: 0.4S) having a diameter of 200 mm and having been hard chrome plated. The running conditions at this time were a running speed of 20 m / min, a winding angle of 60 degrees, and a running tension of 400 to 500 N / m. Then, the film was stretched 4.0 times in the width direction at 110 ° C., and heated at 230 ° C. for 5 seconds with the width direction of the film fixed. Further, a relaxation treatment in the width direction of 3% was performed to obtain a 100 μm laminated polyester film. The evaluation results of this film are shown in Table 2.
(実施例2~9)
 実施例1の塗布液を表1の各実施例の樹脂及び添加剤の種類と各配合量比に従って変更した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。
(Examples 2 to 9)
A laminated polyester film was obtained in the same manner as in Example 1 except that the coating liquid of Example 1 was changed according to the types of resins and additives of each Example of Table 1 and the mixing amount ratio of each.
(実施例10)
 フィルム原料ポリマーとして、ポリエステル樹脂E-1に替えてE-2を使用した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。
(Example 10)
A laminated polyester film was obtained in the same manner as in Example 1 except that E-2 was used instead of the polyester resin E-1 as the film raw material polymer.
(比較例1~10)
 実施例1の塗布液を表1の各比較例の樹脂及び添加剤の種類と各配合量比に従って変更した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。
(Comparative Examples 1 to 10)
A laminated polyester film was obtained in the same manner as in Example 1 except that the coating liquid of Example 1 was changed according to the types of resins and additives of each Comparative Example in Table 1 and the mixing amount ratios.
 表2に各実施例、比較例の評価結果を整理する。 Table 2 summarizes the evaluation results of each example and comparative example.
 表2に示すように、各実施例1~10においては、ヘイズ、ブロッキング耐性、UVインキとの密着性、ハードコート層との密着性及び耐湿熱性において満足できる結果が得られた。一方、比較例1~10では、結果において満足できるものではなかった。 As shown in Table 2, in each of Examples 1 to 10, satisfactory results were obtained in haze, blocking resistance, adhesion to UV ink, adhesion to the hard coat layer, and moisture heat resistance. On the other hand, in Comparative Examples 1 to 10, the results were not satisfactory.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によって、光学用途、包装用途、ラベル用途などあらゆる分野に最適な易接着性を有する積層ポリエステルフィルムの提供が可能となった。
 
INDUSTRIAL APPLICABILITY According to the present invention, it has become possible to provide a laminated polyester film having optimum easy adhesiveness in all fields such as optical applications, packaging applications, and label applications.

Claims (3)

  1.  アニオン性乳化剤により親水化された疎水性ブロックイソシアネート化合物の水分散体、カルボキシル基を有する水分散性ポリウレタン樹脂、及び水分散性ポリエステル樹脂を含む塗布液から形成された塗膜を有し、塗膜のハガレ欠点が5.0個/m未満である積層ポリエステルフィルム。 It has a coating film formed from a coating liquid containing an aqueous dispersion of a hydrophobic block isocyanate compound hydrophilized by an anionic emulsifier, a water-dispersible polyurethane resin having a carboxyl group, and a water-dispersible polyester resin. Laminated polyester film with less than 5.0 pieces / m 2 of peeling defects.
  2.  疎水性ブロックイソシアネート化合物の水分散体を親水化するアニオン性乳化剤が、カルボキシル基を有する水分散性ポリウレタン樹脂である請求項1に記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1, wherein the anionic emulsifier that hydrophilizes the aqueous dispersion of the hydrophobic blocked isocyanate compound is an aqueous dispersible polyurethane resin having a carboxyl group.
  3.  疎水性ブロックイソシアネート化合物をコアとし、カルボキシル基を有する水分散性ポリウレタン樹脂をシェルとするコア・シェル構造を有する請求項1または2に記載の積層ポリエステルフィルム。
     
    The laminated polyester film according to claim 1 or 2, which has a core-shell structure having a hydrophobic blocked isocyanate compound as a core and a water-dispersible polyurethane resin having a carboxyl group as a shell.
PCT/JP2021/020518 2020-06-19 2021-05-28 Multilayer polyester film WO2021256224A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180037538.8A CN115697706A (en) 2020-06-19 2021-05-28 Laminated polyester film
JP2021545794A JPWO2021256224A1 (en) 2020-06-19 2021-05-28
KR1020227035605A KR20230029591A (en) 2020-06-19 2021-05-28 laminated polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106013 2020-06-19
JP2020-106013 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256224A1 true WO2021256224A1 (en) 2021-12-23

Family

ID=79267837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020518 WO2021256224A1 (en) 2020-06-19 2021-05-28 Multilayer polyester film

Country Status (5)

Country Link
JP (1) JPWO2021256224A1 (en)
KR (1) KR20230029591A (en)
CN (1) CN115697706A (en)
TW (1) TW202210308A (en)
WO (1) WO2021256224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113412A1 (en) * 2008-03-14 2009-09-17 日本ポリウレタン工業株式会社 Emulsion composition containing blocked isocyanate, process for producing the same, water-based primer for porous substrate, and water-based baking coating composition
JP2011156848A (en) * 2010-02-04 2011-08-18 Toyobo Co Ltd Layered polyester film
JP2015205440A (en) * 2014-04-19 2015-11-19 三菱樹脂株式会社 laminated polyester film
JP2019503075A (en) * 2015-12-23 2019-01-31 アグフア−ゲヴエルト Back sheet for solar cell module
JP2019137757A (en) * 2018-02-08 2019-08-22 旭化成株式会社 Blocked isocyanate composition, water dispersion, aqueous coating composition, coating substrate and flocculation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199648A (en) 1984-03-23 1985-10-09 帝人株式会社 Easily adhesive polyester film
JP2005154674A (en) 2003-11-28 2005-06-16 Nippon Polyurethane Ind Co Ltd Preparation process of polyurethane emulsion for aqueous one component coating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113412A1 (en) * 2008-03-14 2009-09-17 日本ポリウレタン工業株式会社 Emulsion composition containing blocked isocyanate, process for producing the same, water-based primer for porous substrate, and water-based baking coating composition
JP2011156848A (en) * 2010-02-04 2011-08-18 Toyobo Co Ltd Layered polyester film
JP2015205440A (en) * 2014-04-19 2015-11-19 三菱樹脂株式会社 laminated polyester film
JP2019503075A (en) * 2015-12-23 2019-01-31 アグフア−ゲヴエルト Back sheet for solar cell module
JP2019137757A (en) * 2018-02-08 2019-08-22 旭化成株式会社 Blocked isocyanate composition, water dispersion, aqueous coating composition, coating substrate and flocculation method

Also Published As

Publication number Publication date
TW202210308A (en) 2022-03-16
KR20230029591A (en) 2023-03-03
JPWO2021256224A1 (en) 2021-12-23
CN115697706A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
CN113423574B (en) Laminated polyester film
WO2021024701A1 (en) White laminated polyester film
JP5493940B2 (en) Laminated polyester film
JP2024045365A (en) laminated polyester film
JP4023220B2 (en) Easy adhesion polyester film for prism lens sheet
CN114616284B (en) Laminated polyester film
WO2022004249A1 (en) Multilayered polyester film
JP5728986B2 (en) Easy-adhesive polyester film
WO2022176744A1 (en) Void-containing polyester-based film
WO2021256224A1 (en) Multilayer polyester film
KR20230073268A (en) Biaxially Oriented Polyester Film
KR20230047076A (en) laminated polyester film
WO2022004263A1 (en) Printed object
WO2024042879A1 (en) Void-containing polyester-based easy adhesion film
WO2022220043A1 (en) Antistatic polyester film
CN116438078A (en) Easy-to-adhere polyester film
JP2007254640A (en) Antistatic biaxially oriented polyester film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545794

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826574

Country of ref document: EP

Kind code of ref document: A1