WO2021256212A1 - 電子顕微鏡解析システム - Google Patents

電子顕微鏡解析システム Download PDF

Info

Publication number
WO2021256212A1
WO2021256212A1 PCT/JP2021/020294 JP2021020294W WO2021256212A1 WO 2021256212 A1 WO2021256212 A1 WO 2021256212A1 JP 2021020294 W JP2021020294 W JP 2021020294W WO 2021256212 A1 WO2021256212 A1 WO 2021256212A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
sample
electron microscope
analysis system
image
Prior art date
Application number
PCT/JP2021/020294
Other languages
English (en)
French (fr)
Inventor
大輔 進藤
健 富田
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2022532450A priority Critical patent/JPWO2021256212A1/ja
Priority to US18/010,088 priority patent/US20230223232A1/en
Publication of WO2021256212A1 publication Critical patent/WO2021256212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/263Contrast, resolution or power of penetration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24455Transmitted particle detectors

Definitions

  • the present invention relates to an electron microscope analysis system, particularly a low dose electron microscope analysis technique by generalized orbital calculation.
  • an electron microscope using an electron beam inspired by an optical microscope can obtain a magnified transmission image of a sample, a secondary electron image, and a diffraction pattern, and interacts with the sample by providing various analyzers.
  • Various physical quantities are evaluated and observed, such as electron beam energy analysis, imaging with energy-selected electrons, and observation of electromagnetic fields inside and around the sample.
  • the interpretation of the high-magnification transmission image, diffraction pattern, etc. of the sample expresses the electron as a wave by the wave function used in quantum mechanics, and the electromagnetic field created by the expected structure of the substance.
  • An interference image or an electron diffraction pattern between a wave that has undergone phase modulation due to the interaction of The structure is confirmed and identified by conducting a comparative study.
  • electrons emitted from an electron source is, e - as particles (point) with a charge, appropriate irradiation angle, so as to illuminate the sample with an electron beam density, the electrostatic lens of the illumination system, the magnetic field
  • the trajectory is controlled by a lens, a deflection system, etc. (see Non-Patent Document 1).
  • the analysis and evaluation of the image is performed by calculating and evaluating the particle orbits of the electrons scattered by the sample for the irradiation conditions of each electron beam.
  • the contrast of the image is calculated by replacing the electrons incident on the sample with a plane wave at the time of incident, assuming that the contrast of the image is mainly due to the phase rather than the amplitude of the electron beam (see Non-Patent Document 2). .. That is, as shown in FIG.
  • the particle orbits of electrons are calculated and evaluated up to the crossover directly above the sample (Speci), but the electrons are used as spherical waves from the light source or the crossover directly above the sample, which is sufficient.
  • a sample surface located at a distance from the sample surface is treated as a plane wave as if it can be approximated by a plane wave.
  • each electron can be treated as an individual electron consistently from the light source to the detection surface, and it is assumed that the wave nature of the electron is involved in its orbit.
  • the traveling direction of electrons does not change the phase of a de Broglie wave (hereinafter, de Broglie wave) and is smoothly connected.
  • the state and direction (stable state) to be used are selected. That is, in (a) of the figure, if the orbit of the electron is an integral multiple of the de Broglie wave ⁇ , the orbit is stably maintained, and in (b), the optical path difference proceeds in the direction of an integral multiple of the de Broglie wave ⁇ .
  • the electron irradiating the sample is treated as a plane wave of de Broglie by using a wave function in quantum mechanics. Specifically, a plane wave is divided into a wave that is incident on the sample and transmitted as it is and a wave that is diffracted by the electromagnetic field of the sample, and these two waves are overlapped on the image plane by an objective lens to interfere with each other. , Form an image.
  • Non-Patent Document 2 The image or diffraction pattern is calculated using the wave function ⁇
  • an image on the detection surface is formed by detecting the position of each electron that has reached the detection surface through the electron orbit 11 and performing the integration. Therefore, as shown in FIGS. 3A and 3B, the contrast is continuously smooth when the diffraction pattern or image of the sample actually detected by the electron is compared with the diffraction pattern or image by simulation. Requires a large amount of electron beam irradiation. For this reason, in the case of a sample such as a polymer sample or a biopolymer sample in which the sample is severely damaged by irradiation electrons, the sample is often damaged before the irradiation amount for obtaining reliable sample information is reached.
  • the problem to be solved by the present invention is to treat the electrons incident on the sample and the electrons that interact with the sample and reach the detection surface with the existence probability by using the wave function. Not inconsistent with the actual state of detection, from the stage where the amount of current irradiating the sample is small, it is easy to compare with the detection data, and it is easy to obtain the information of the sample.
  • the purpose is to make it possible to obtain maximum sample information while minimizing sample damage.
  • an electron microscope detection image provided with a detection unit for detecting an electron microscope image formed on a detection surface by irradiating an observation sample with an electron beam and transmitting the observation sample, and rotation. It is an electron microscope analysis system for comparison and examination using an electron model simulation image of a linear matter wave, and the above-mentioned unique electron model enables comparison with an electron detection image from a stage where the electron irradiation dose is small. ..
  • the electron Is not represented by a wave function, but as shown in FIG. 9, it is assumed that the charge is linearly distributed and rotating at high speed (corresponding to the spin angle momentum h / 4 ⁇ ), and the electron position is at the center of the line. As a point represents, it is considered as a rotating linear material wave (de Broglie wave). With such electrons, the individual electron positions are detected as the center of the rotating linear matter wave, so it matches the actual detection state, and it is possible to compare simulation and actual measurement from a state with a small irradiation dose. Become.
  • the electron microscope analysis system of the present invention uses an electron microscope (electron gun) capable of controlling single-electron irradiation using the photoelectric effect, a diffraction pattern, and sample image simulation software, and uses information technology (IT).
  • the sample held in the sample holder is irradiated while controlling the number of incident electrons, the obtained diffraction pattern is compared with the image simulation, and the sample damage due to irradiation is confirmed. It is possible to perform an analysis.
  • the electrons incident on the sample can be regarded as individual electrons unlike the incident of a plane wave by forming a linear rotating body having a deBroglie wave, and satisfy the charge conservation law.
  • the interaction with the sample inside the sample can also be calculated.
  • it since it is not evaluated as a presence establishment with a spread on the detection surface, but is expressed as a detection point, it is easy to compare with the measured data even when the number of electrons is small, and the sample damage due to the electron beam is reduced. This makes it easier to obtain sample information from the stage where the irradiation dose is small.
  • FIG. The figure which shows one configuration example of the secondary electron manipulator which concerns on Example 1.
  • FIG. The figure for demonstrating the difference between the conventional and the sample incident wave of this Example 1.
  • FIG. The figure which shows an example of the comparative analysis procedure of the Low Dose electron microscope analysis system which concerns on Example 1.
  • FIG. The figure which shows the relationship between the incident electron beam and the biprism wire.
  • Example 1 is an example of an electron microscope analysis system. That is, it is an electron microscope analysis system, provided with a detector that irradiates a sample with an electron beam to transmit it and captures an electron microscope image formed on a detection surface, and an electron beam forming an electron microscope image is transmitted on the irradiation line.
  • This is an example of an electron microscope analysis system that analyzes using an electronic model having a linear material wave (de Broglie wave) that rotates around a predetermined point.
  • a linear material wave de Broglie wave
  • FIG. 4 shows an example of the system configuration of this embodiment. That is, it is an electron microscope analysis system.
  • This is an electron microscope analysis system in which a biprism and a junction holder are installed in a transmission electron microscope, and the state of secondary electron accumulation can be confirmed by the amplitude contrast image of the biprism and brought closer to the sample surface.
  • the sample held in the sample holder 41 is irradiated with electrons emitted from an electron source and passed through an irradiation system, and is detected by a two-dimensional detector 42 via an imaging system including a biprism or the like.
  • the detection signal is appropriately converted into image information by the irradiation light source control system 43 and displayed on the monitor 44.
  • the irradiation light source control system 43 compares the simulation by IT with the data of the two-dimensional detector 42.
  • FIG. 10 is a diagram showing an example of a comparative analysis procedure of the low dose electron microscope analysis system according to the first embodiment, in which the electron microscope analysis system outputs irradiation beam data and outputs an image detection signal by a camera or the like.
  • the irradiation beam data output is used to perform the detection surface (image plane) intensity distribution simulation (S101) together with the sample data input.
  • the data is compared with the image detection signal for each of the small, medium, and large irradiation doses (S103 to S105), and the result is output.
  • the integrated value of the distance from the detection point closest to the simulation point is obtained and evaluated.
  • the irradiation system setting data is output (S106), and the irradiation conditions are reset (S107).
  • the irradiation light source control system 43 controls the emission and acceleration of necessary electrons by controlling the acceleration (high voltage) power supply and the pulse light source. That is, it is possible to obtain sample information while suppressing sample damage while controlling the irradiation beam amount by feeding back to the pulse light source and the acceleration power source by referring to the comparison result and the like.
  • FIG. 5 is a diagram showing a configuration example of the secondary electron manipulator according to the present embodiment, in which the sample 51 is the tip of the two-dimensional manipulator 52 that can be moved on the X-axis by the three-axis control piezoelectric element 53. Receive an electron beam irradiation. When such a two-dimensional manipulator is used, it can be observed that secondary electrons are accumulated at the tip of the Y-shape in the insulator sample having the tip of the Y-shape.
  • an insulator sample with a Y-shaped tip is fixed to one of the two-terminal holders, and the sample is attached to the other terminal facing the sample.
  • a manipulator having protrusions in which secondary electrons (0 to several tens of eV) are densely packed at the tip of several tens of nm.
  • secondary electrons (0 to several tens of eV) are densely packed at the tip of several tens of nm.
  • It is also possible to observe changes in the physical properties of the sample by bringing it closer to the surface of the sample which is a useful measurement method such as measuring the physical properties by bringing it closer to the surface of a semiconductor or the like.
  • FIG. 6 is a diagram for explaining the difference between the conventional sample incident wave and the sample incident wave of the present embodiment, and as shown in FIG. 6B, the sample incident wave of the present embodiment is a rotating linear material wave 61. Travels on the Z axis (optical axis) and is incident on the sample. As a result, as shown in (c) of the figure, when n rotating linear matter waves cross the sample surface and n approaches infinity, it becomes equivalent to a plane wave.
  • FIG. 7 is a diagram showing the simulation results according to the present embodiment and the interference fringes in the actual measurement.
  • FIG. 7A shows the simulation (black dots) according to the present embodiment
  • FIG. 7B shows the non-patent.
  • the experimental results (white spots) disclosed in Document 3 are shown. In either case, the interference fringes become clear as the number of points increases.
  • Non-Patent Document 3 demonstrates that the detection points of individual electrons are accumulated on the detection surface to form an interference image, and the detector detects each electron.
  • Non-Patent Document 4 when the sample is irradiated with an electron beam, the state of the disturbance of the electric field in which the electrons passing through the sample stay around the sample or return to the surface of the sample is observed.
  • each electron of the electron beam can be treated as an individual electron consistently from the light source to the detection surface, and the wave nature of the electron is considered to be involved in the electron orbit.
  • FIG. 8 is a diagram for explaining a conventional simulation
  • FIG. 9 is a diagram for explaining a simulation using a rotating linear material wave according to the present embodiment.
  • Equation (1) shows the wave function according to the conventional handling
  • equation (2) shows the transmission function
  • is an interaction constant determined by the wavelength and the acceleration voltage
  • ⁇ (x, y) is the potential distribution of the sample
  • ⁇ t is the sample thickness
  • Equation (3) shows the scattering (diffraction) intensity of electrons that have passed through the sample.
  • the equation (4) shows the wave function of the rotating linear material wave in this embodiment.
  • l 1 indicates a linear region on the sample.
  • Equation (5) shows the scattering (diffraction) intensity in this example.
  • the direction in which one electron is scattered (diffracted) corresponds to the direction in which the shape of the material wave is maintained without being deformed. This is treated as the degree of interference of the linear material wave with respect to the line segment region where the sample intersects, that is, the evaluation of the interference / diffraction effect through the wave function.
  • the interference fringes of the electron beam hologram can be handled in the same way as in FIG.
  • the calculation of FIG. 3B is the case where the biprism wire is placed at the sample position in FIG. 6B.
  • a plane wave passes through this wire surface, and the wavefront is inclined with respect to the optical axis due to the electric field of the wire, so that stripes are generated in the inclination direction of the wavefront.
  • the electronic model of FIG. 3B since it is expressed as a detection point rather than being evaluated as a presence establishment with a spread on the detection surface, it is compared with the measured data from the state where the number of electrons is small. It becomes easy, the sample damage due to the electron beam can be reduced, and the sample information can be easily obtained from the stage where the irradiation amount is small.
  • each electron passes through the wire surface while rotating in a random direction, and reaches the hologram surface (equivalent to the detection surface).
  • the accuracy of the direction in which the individual electrons are heading can be treated as an evaluation of the interference / diffraction effect using the wave function for the line segment region where the linear material wave intersects the wire surface, as described above.
  • FIG. 11 is a diagram showing the relationship between the incident electron beam and the biprism wire.
  • FIGS. 12 (a) to 12 (e) show the simulation results of the interference fringes caused by the above-mentioned linear rotating waves.
  • FIG. 12A the results of simulating 20 linear rotating waves that randomly cut through the wire surface and 20 electron positions detected on the observation surface corresponding to each linear rotating wave are plotted.
  • FIGS. 12 (b), 12 (c), and 12 (d) are the results of simulation of the interference fringes when the number n of electrons is 2x10 2 , 2x10 3 , and 2x10 4, respectively.
  • the fringes are rapidly becoming clearer as the number of incident electron beams increases, as in the experimental observation.
  • FIG. 12 (e) is a diagram plotted on the vertical axis with the number of detected electrons integrated in the Y-axis direction as a relative value in the simulation of FIG. 12 (d). It matches well with the intensity distribution calculated by the plane wave shown in Fig. 12 (f), and this electronic model does not contradict the experimental results so far, and also explains the actual detection status (detection of individual electrons). It can be said that it can be done.
  • the parameters shown in FIG. 13 are used for all the calculations described here.
  • a microscope image can be obtained with a small amount of electron beam irradiation, which is particularly effective for observation samples delicate to electron beam irradiation such as polymer samples and biological samples.
  • ⁇ List 1> It is an electron microscope analysis system.
  • An electron microscope analysis system characterized by interpreting the behavior of electrons with an electronic model based on a rotating linear material wave (de Broglie wave).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

電子照射による試料損傷を最小限に抑えながら最大限に試料の情報を得る。観察試料に電子線を照射して、試料を透過した電子線により検出面に形成した電子顕微鏡像を取り込むCCDカメラ等の検出器を備えた電子顕微鏡解析システムであって、ドブロイ波の波動を持つ電子の集合である、線状の回転体とすることで、平面波の入射とは異なり、個々の電子として捉えることができ、電荷保存則を満たして、試料内部での試料との相互作用が計算可能となる。また、検出面で検出点として表されるため、電子個数の少ない状態から実測データとの比較がし易くなり、電子線による試料破損を軽減でき、照射量の少ない段階から試料の情報が得やすくなる。

Description

電子顕微鏡解析システム
 本発明は電子顕微鏡解析システム、特に一般化軌道計算による低照射量(Low Dose)電子顕微鏡解析技術に関する。
 現在、数10keV~1000keV程度まで加速した電子を用いて、物質の特性、構造等を調べる様々な装置が広く利用されている。中でも、光学顕微鏡にヒントを得て電子線を用いた電子顕微鏡は、試料の拡大透過像、2次電子像、回折図形が得られる他、種々の分析装置を設けることで、試料と相互作用した電子線のエネルギー分析、エネルギー選択した電子による結像、試料内部や周辺の電磁場観察など様々な物理量の評価、観察が行われる。
 このような電子線による物質の構造解析において、試料の高倍率透過像、回折図形などの解釈は、量子力学で用いる波動関数により電子を波動として表現し、想定される物質の構造がつくる電磁場との相互作用による、位相のモジュレーションを受けた波動と、試料の場に影響されずに透過した波動の間での干渉像、あるいは電子回折図形を求め、想定された構造による像や電子回折図形との比較検討を行って、構造を確認、同定することが行われている。すなわち、電子源(電子銃)から出射する電子は、eの電荷を持つ粒子(点)として、適切な照射角度、電子線密度で試料を照射するように、照射系の静電レンズ、磁界レンズ、偏向系等で、その軌道を制御している(非特許文献1参照)。
 比較的低い倍率の像を得る場合は、像の解析、評価は個々の電子線の照射条件に対して、試料により散乱される電子の粒子軌道を計算・評価することにより行われている。しかし、高倍率の透過像の場合、像のコントラストは主に電子線の振幅ではなく、位相によるとして、試料に入射する電子を入射時点で平面波に置き換えて計算される(非特許文献2参照)。すなわち、図1の(a)に示すように、試料(Speci)直上のクロスオーバーまでは電子の粒子軌道を計算・評価するが、光源あるいは試料直上のクロスオーバーからは電子を球面波とし、充分に離れた位置にある試料面では平面波近似ができるものとして平面波で扱う。
 このように、同じ素粒子である電子を粒子として扱う場合と波動関数として扱う場合が混在している。電子線の干渉に関して今までに行われた実験では、検出面で個々の電子の検出点が蓄積されて干渉像を形成していくことが実証されており(非特許文献3参照)、検出器は個々の電子を検出しており、存在確率を検出しているわけではない。
 また、他の例として、試料を電子線照射した際、試料から放出される電子が試料の周りに滞在したり、試料表面に還流したりすることでつくり出される電場の乱れの様子が、電子線ホログラフィーを使って観察されている。(非特許文献4参照)
 したがって、個々の電子は光源から検出面まで一貫して個々の電子として取り扱うことができると考えられ、その軌道に関しては、電子の持つ波動性が関与することが想定される。例えば電子の軌道の代表的な場合として、図2の(a)、(b)に示すように、電子の進行方向はドブロイ波(以下、de Broglie波)の位相の変化がなく、スムーズに接続される状態および方向(安定状態)が選択されている。すなわち、同図の(a)では電子の軌道が de Broglie 波λの整数倍だとその軌道を安定保持する、(b)では、光路差がde Broglie 波λの整数倍となる方向に進む。
Dr. Walter Glaser, "Grundlagen der Electronenoptik", Wien Springer-Verlag, 1952 J.M.Cowly, and A.F.Moodie, "The Scattering of Electrons by Atoms and Crystals, I.A New Theoretical Approach", ActaCryst (1957)、10, 609 A. Tonomura,et.al, "Demonstration of single‐electron buildup of an interference pattern", American Journal of Physics 57, 117 (1989) Takafumi Sato, et al,"Electron Holography Study of Secondary Electron Distribution around Charged Epoxy Resin", MATERIALS TRANSACTIONS, Volume 60 (2019) Issue 10, pp.2114
 上述したように、電子顕微鏡などによる高倍率の試料像にたいして、現在行われているシミュレーションでは、試料を照射する電子を de Broglie の平面波として、量子力学での波動関数を用いて扱っている。具体的には、平面波が試料に入射して、そのまま透過する波動と、試料の電磁場により回折を起こした波動とに分割され、この2つの波動を対物レンズにより像面で重ね合わせることで干渉させ、像を形成する。(非特許文献2)
 像あるいは回折図形は波動関数〈Ψ|を用いて、|Ψ|で電子の存在確率、すなわち、電子が検出される確率の位置分布として計算される。しかし、実際の像の検出においては、電子の軌道11を通り検出面に到達した1個1個の電子位置を検出し、その積算をおこなうことで検出面での像が形成されている。従って、図3の(a)、(b)に示すように、実際に検出される電子による試料の回折図形や像とシミュレーションによる回折図形や像と比較するには連続的に滑らかなコントラストとなるまで大量の電子線の照射を必要とする。このため、高分子試料、生物高分子試料など照射電子による試料損傷が激しい試料では信頼できる試料情報を得るための照射量に達するまえに試料が破損される場合が多い。
 上記の事実に鑑み、本発明が解決しようとする課題は、電子顕微鏡などで、試料に入射する電子、試料と相互作用して検出面に達する電子を、波動関数を使って存在確率で扱うのではなく、検出の実態とも矛盾がなく、試料を照射する電流量が少ない段階から、検出データとの比較がし易く、試料の情報を得やすいシミュレーションとそれに基づく電子顕微鏡解析システムにより、電子照射による試料損傷を最小限に抑えながら最大限に試料の情報を得ることを可能とすることにある。
 上記の課題を解決するため、本発明においては、観察試料に電子線を照射して透過させ、検出面に形成された電子顕微鏡像を検出する検出部を備えた電子顕微鏡による検出像と、回転する線状物質波の電子モデルによるシミュレーション像とを用いて、比較検討する電子顕微鏡解析システムであって、上記の固有の電子モデルにより、電子照射量が少ない段階から電子検出像との比較ができる。
 すなわち、本発明においては、存在確率の分布としてのみ得られる電子の位置と、実際の電子検出における明確な検出位置の存在という矛盾を解消し、電子の動きを説明できるようにするために、電子を波動関数で表すのではなく、図9に示すように、線状に電荷が分布、高速で回転している(スピン角運動量h/4πに対応する)ものとし、電子位置は線の中心の点が表すものとして、回転する線状の物質波(de Broglie波)と考える。このような電子では、個々の電子位置が、回転する線状の物質波の中心として検出されるため、実際の検出状態と一致し、照射量の少ない状態からシミュレーションと実測の比較検討が能となる。
 また、本発明の電子顕微鏡解析システムは、光電効果を利用した単電子照射制御が可能な電子光源(電子銃)と回折図形、試料像シミュレーションソフトウェアにより、情報技術(IT))を用いて電子顕微鏡をコントロールすることができるように構成し、入射電子の個数を制御しながら試料ホルダーに保持された試料に照射し、得られる回折図形と像シミュレーションの比較を行い、照射による試料損傷を確認しながら解析を実行することが可能となる。
 本発明によれば、試料に入射する電子は、de Broglie波動を持つ線状の回転体とすることで、平面波の入射とは異なり、個々の電子として捉えることができ、電荷保存則を満たして、試料内部での試料との相互作用も計算可能となる。また、検出面で広がりを持った存在確立として評価されるのではなく、検出点として表されるため、電子個数の少ない状態から実測データとの比較がし易くなり、電子線による試料破損を軽減でき、照射量の少ない段階から試料の情報が得やすくなる。
従来と本発明の回折図形と像のシミュレーションの違いを説明するための図。 電子の軌道、並びに進行方向を説明するための図。 従来と本発明のシミュレーション結果像の違いを説明するための図。 実施例1に係る Low Dose 電子顕微鏡解析システムの一構成例を示す図。 実施例1に係る、2次電子マニピュレータの一構成例を示す図。 従来と本実施例1の試料入射波の違いを説明するための図。 実施例1によるシミュレーション結果と実測での干渉縞を示す図。 従来のシミュレーションを説明するための図。 本発明に係る回転する線状の物質波によるシミュレーションを説明するための図。 実施例1に係るLow Dose 電子顕微鏡解析システムの比較解析手順の一例を示す図。 入射電子線とバイプリズムワイヤーの関係を示す図。 観察される干渉縞と計算された干渉縞の強度断面の比較を示す図。 シミュレーションに使ったパラメータと定数を示す図。
 以下、本発明を実施するための形態を図面に従い順次説明する。
 実施例1は電子顕微鏡解析システムの実施例である。すなわち、電子顕微鏡解析システムであって、試料に電子線を照射して透過させ、検出面に形成された電子顕微鏡像を取り込む検出器を備え、電子顕微鏡像を形成する電子線を、照射線上の所定点を中心に回転する線状の物質波(de Broglie 波)を持つ電子モデルを用いて解析する電子顕微鏡解析システムの実施例である。
 図4に本実施例のシステム構成の一例を示す。すなわち、電子顕微鏡解析システムであって、
透過型電子顕微鏡にバイプリズム、接合ホルダーを設置し、バイプリズムの振幅コントラスト像で2次電子の集積の様子を確認しながら試料表面に近づけることができる電子顕微鏡解析システムである。
 同図において、試料ホルダー41に保持された試料に、電子源から放出され、照射系を経由した電子が照射され、バイプリズム等を含む結像系を介して、2次元検出器42で検出される。検出信号は照射光源制御システム43で画像情報に適宜変換され、モニター44に表示される。照射光源制御システム43は、上述したように、ITによるシミュレーションと2次元検出器42のデータとの比較を行う。
 図10は、実施例1に係る低線量(Low Dose)電子顕微鏡解析システムの比較解析手順の一例を示す図であり、電子顕微鏡解析システムは、照射ビームデータ出力と、カメラ等による像検出信号出力を行う(S102)。照射ビームデータ出力は、試料データ入力と共に、検出面(像面)強度分布シミュレーション(S101)を行うために用いられる。照射量の小、中、大それぞれで、像検出信号とデータ比較され(S103~S105)、その結果が出力される。同図の(b)に示すように、データ比較にあっては、シミュレーション点に対して最も近い検出点との距離の積算値を求めて評価する。そして、結果を受け、照射系設定データ出力がなされ(S106)、照射条件再設定がなされる(S107)。
 このように、照射光源制御システム43は加速(高圧)電源やパルス光源を制御することにより、必要な電子の放出・加速制御を行う。すなわち、比較結果等を参照し、パルス光源や加速電源へのフィードバックを行い、照射ビーム量をコントロールしながら、試料損傷を抑えて試料の情報を得ることができる。
 図5は、本実施例に係る、2次電子マニピュレータの一構成例を示す図であり、試料51は、3軸制御圧電素子53でX軸上を移動可能な2次元マニピュレータ52の先端で、電子ビームの照射を受ける。このような2次元マニピュレータを用いると、先端がY字形状の絶縁物試料においてはY字形状の先端部に2次電子が集積する様子が観察できる。例えば、透過型電子顕微鏡に、バイプリズムと2端子ホルダーを同時に構成することで、2端子ホルダーの一方に上記先端がY字形状の絶縁物試料を固定、これと対向するもう一方の端子に試料を固定すれば、数10nmの先端に2次電子(0~数10eV)を密集させた突起を持つマニピュレータを構成することができる。これを試料表面に近づけて試料の物性の変化等を観測することも可能となり、半導体などの表面に近づけて物性の測定を行うなどの有用な測定方法となる。
 図6は、従来と本実施例の試料入射波の違いを説明するための図であり、図6の(b)に示すように、本実施例の試料入射波は回転する線状物質波61がZ軸(光軸)上を進み、試料に入射する。この結果、同図の(c)に示すように、n個の回転する線状物質波が試料面を横切り、nが無限大に近づくと、平面波と等価になる。
 図7は、本実施例によるシミュレーション結果と実測での干渉縞を示す図であり、同図の(a)は本実施例によるシミュレーション(黒点)を示し、同図の(b)は、非特許文献3に開示された実験結果(白点)を示している。いずれにおいても、点の数が多くなると干渉縞が明確になっている。このように、非特許文献3では、個々の電子の検出点が検出面で蓄積されて干渉像が形成されていくことが実証されており、検出器は個々の電子を検出している。
 また、非特許文献4では、試料に電子線を照射した際、試料を経た電子が試料周囲に滞留したり、試料表面を還流したりする電場の乱れの様子が観察されている。
 電子線の個々の電子は光源から検出面まで一貫して個々の電子として取り扱うことができると考えられ、電子の軌道には、電子の持つ波動性の関与が考えられる。
 続いて、図8、図9を用いて、従来と本実施例の回折図形と像のシミュレーションの違いを式を用いて説明する。図8は、従来のシミュレーションを説明するための図、図9は本実施例に係る回転する線状の物質波によるシミュレーションを説明するための図である。
 まず、図8に示される従来の入射電子の取り扱いを式(1)、(2)、(3)を使って説明する。式(1)は従来の取り扱いによる波動関数を示し、式(2)はその透過関数を示す。ここで、σは波長、加速電圧で決まる相互作用定数、φ(x、y)は試料の電位分布、Δtは試料厚を示す。式(3)は試料を透過した電子の散乱(回折)強度を示している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 一方、式(4)は、本実施例における回転する線状物質波の波動関数を示している。ここでl は試料上の線状領域を示している。図9に示すように、本実施例の場合は、線状電荷の光速レベルの回転により、中心に電荷があるように見做せる。この電子モデルを用いて、物質の電子回折図形や電子波干渉像を解釈する。式(4)における透過関数は、式(2)に示す通りである。式(5)は、本実施例における散乱(回折)強度を示している。
 本実施例では、1個の電子の散乱(回折)される方向は、物質波の形が崩れず保持される方向に対応する。このことは、線状の物質波が試料と交差する線分領域に対する波の干渉の度合い、すなわち、波動関数を通した干渉・回折効果の評価として取り扱っている。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 電子線ホログラムの干渉縞についても図9と同様の取り扱いができる。図3の(b)の計算は、図6の(b)において、試料位置にバイプリズムワイヤーが置かれている場合である。従来のモデルでは、平面波がこのワイヤー面を通過し、ワイヤーの電場により波面が光軸に対して傾斜するため、波面の傾斜方向に縞を生じている。図3の(b)の電子モデルにおいては、検出面で広がりを持った存在確立として評価されるのではなく、検出点として表されるため、電子個数の少ない状態から実測データとの比較がし易くなり、電子線による試料破損を軽減でき、照射量の少ない段階から試料の情報が得やすくなる。
 本電子モデルでは、個々の電子がランダムな方向に回転しながらワイヤー面を通過し、ホログラム面(検出面と等価)に至る。このとき、個々の電子が向かう方向の確度は上述のように、線状の物質波がワイヤー面と交差する線分領域に対する波動関数を使った干渉・回折効果の評価として取り扱うことができる。
 図11は、入射電子線とバイプリズムワイヤーの関係を示した図である。回転線状波がワイヤー面を垂直に切るとき、観察面での強度断面干渉縞の一部が示してある。図12(a)~(e)は上述した線状回転波による干渉縞のシミュレーション結果を示す。図12(a)には、ランダムにワイヤー面をきる線状回転波20本と、その各線状回転波に対応する観察面で検出された20個の電子位置をシュミレートした結果をプロットした。
 式(6)によれば、像面での20個の電子は回転線状波のランダムな通過跡のトレースによって電子を検出する確率を見積もり、プロットできる。図12(b),(c),(d)はそれぞれ、電子の個数nが2x102, 2x103, 2x104 の場合の干渉縞のシミュレーションの結果である。干渉縞は、実験観察と同様に、入射電子線が増えるにつれて、急速に明瞭になっている。
Figure JPOXMLDOC01-appb-M000006
 図12(e)は、図12(d)のシミュレーションにおいて、Y軸方向に積算した検出電子数を相対値として縦軸にプロットした図である。図12(f)に示す平面波で計算された強度分布によく合致しており、本電子モデルが今までの実験結果とも矛盾することなく、更に、実際の検出実態(電子個々の検出)も説明できると言える。なお、ここに記す計算にはすべて図13に記すパラメータを使っている。
 上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。更に、上述した各構成、機能、システム等は、それらの一部又は全部を実現するプログラムを作成する例を中心に説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。すなわち、処理部の全部または一部の機能は、プログラムに代え、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路などにより実現してもよい。
 以上詳述した本発明によれば、少ない電子線の照射量で、顕微鏡像が得られるものであり、高分子試料、生物試料等の電子線照射に対してデリケートな観察試料では、特に有効な手法を提供できる。
 なお、本明細書に開示された発明は、特許請求の範囲に記載された発明のみならず数々の発明が含まれる。その一部を下記に列記する。
 <列記1>
電子顕微鏡解析システムであって、
電子の挙動を、回転する線状の物質波(de Broglie波)に基づく電子モデルで解釈する、ことを特徴とする電子顕微鏡解析システム。
 <列記2>
列記1に記載の電子顕微鏡解析システムであって、
試料に入射する電子線と試料との相互作用、試料から放出される電子の振る舞いを前記電子モデルを用いて解析する、ことを特徴とする電子顕微鏡解析システム。
 <列記3>
列記1に記載の電子顕微鏡解析システムであって、
透過型電子顕微鏡にバイプリズム、接合ホルダーを構成し、バイプリズムの振幅コントラスト像で2次電子の集積の様子を確認しながら試料表面に近づけることが可能である、
ことを特徴とする電子顕微鏡解析システム。
 <列記4>
列記1に記載の電子顕微鏡解析システムであって、
前記電子モデルを用いて、物質の電子回折図形や電子波干渉像を解釈する、
ことを特徴とする電子顕微鏡解析システム。
 <列記5>
列記1に記載の電子顕微鏡解析システムであって、
電子線を用いて、試料から得られる電子回折図形や電子顕微鏡像を得る装置において、得られた結果を前記電子モデルの解釈に基づいて解析し、試料の構造、構成原子等をシミュレーションする、
ことを特徴とする電子顕微鏡解析システム。
 <列記6>
列記1に記載の電子顕微鏡解析システムであって、
前記電子モデルを用いた電子回折図形や電子顕微鏡像などのシミュレーションと実際に得られる電子回折図形や電子顕微鏡像を比較することにより試料の電子線照射部の微細構造情報を得る、
ことを特徴とする電子顕微鏡解析システム。
 <列記7>
列記1に記載の電子顕微鏡解析システムであって、
前記電子モデルを用いた電子回折図形、電子顕微鏡像などのシミュレーションと実際に得られる電 子回折図形、電子顕微鏡像を比較することにより、低い電子照射量で試料の照射の情報を得る、
ことを特徴とする電子顕微鏡解析システム。
11 電子の軌道
31 ルート(軌跡)
41 試料ホルダー
42 2次元検出器
43 照射光源制御システム
44 モニター
51 試料
52 2次元マニピュレータ
53 2次元制御圧電素子
61 回転する線状物質波

Claims (7)

  1. 電子顕微鏡解析システムであって、
    試料に電子線を照射して透過させ、検出面に形成された電子顕微鏡像を取り込む検出器を備え、
    前記電子顕微鏡像を形成する前記電子線を、照射線上の所定点を中心に回転する線状の物質波(ドブロイ波)を持つ電子モデルを用いて解析する、
    ことを特徴とする電子顕微鏡解析システム。
  2. 請求項1に記載の電子顕微鏡解析システムであって、
    透過型電子顕微鏡にバイプリズム、接合ホルダーを構成し、前記バイプリズムの振幅コントラスト像で2次電子の集積の様子を確認しながら前記試料の表面に近づけることができるようにした、
    ことを特徴とする電子顕微鏡解析システム。
  3. 請求項1に記載の電子顕微鏡解析システムであって、
    前記電子モデルを用いて、物質の電子回折図形や電子波干渉像を解釈する、
    ことを特徴とする電子顕微鏡解析システム。
  4. 請求項1に記載の電子顕微鏡解析システムであって、
    前記電子モデルを用いた電子回折図形、電子顕微鏡像のシミュレーションと、実際に得られる電子回折図形、電子顕微鏡像を比較することにより、低い電子照射量で試料の照射部の情報を得る、
    ことを特徴とする電子顕微鏡解析システム。
  5. 請求項1に記載の電子顕微鏡解析システムであって、
    電子線を用いて前記試料から得られる電子回折図形や電子顕微鏡像を、前記 電子モデルに基づいて解析し、前記試料の構造、構成原子等をシミュレーションする,
    ことを特徴とする電子顕微鏡解析システム。
  6. 請求項1に記載の電子顕微鏡解析システムであって、
    前記電子モデルを用いた電子回折図形や電子顕微鏡像のシミュレーションと、実際に得られる前記試料の電子回折図形や電子顕微鏡像を比較することにより、
    前記試料の電子線照射部分の微細構造情報を得る、
    ことを特徴とする電子顕微鏡解析システム。
  7. 請求項1に記載の電子顕微鏡解析システムであって、
    前記電子モデルを用いた電子回折図形、電子顕微鏡像のシミュレーションと、実際に得られる前記試料の電子回折図形、電子顕微鏡像を比較することにより、低い電子照射量で前記試料の照射部分の情報を得る電子顕微鏡解析システム。
PCT/JP2021/020294 2020-06-18 2021-05-27 電子顕微鏡解析システム WO2021256212A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022532450A JPWO2021256212A1 (ja) 2020-06-18 2021-05-27
US18/010,088 US20230223232A1 (en) 2020-06-18 2021-05-27 Electron microscope analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020105201 2020-06-18
JP2020-105201 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021256212A1 true WO2021256212A1 (ja) 2021-12-23

Family

ID=79267858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020294 WO2021256212A1 (ja) 2020-06-18 2021-05-27 電子顕微鏡解析システム

Country Status (3)

Country Link
US (1) US20230223232A1 (ja)
JP (1) JPWO2021256212A1 (ja)
WO (1) WO2021256212A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114464A1 (ja) * 2012-02-03 2013-08-08 株式会社日立製作所 電子線干渉装置および電子線干渉法
US9551674B1 (en) * 2015-10-30 2017-01-24 GlobalFoundries, Inc. Method of producing an un-distorted dark field strain map at high spatial resolution through dark field electron holography
JP2017117612A (ja) * 2015-12-24 2017-06-29 国立研究開発法人理化学研究所 バイプリズム装置、及び荷電粒子線装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114464A1 (ja) * 2012-02-03 2013-08-08 株式会社日立製作所 電子線干渉装置および電子線干渉法
US9551674B1 (en) * 2015-10-30 2017-01-24 GlobalFoundries, Inc. Method of producing an un-distorted dark field strain map at high spatial resolution through dark field electron holography
JP2017117612A (ja) * 2015-12-24 2017-06-29 国立研究開発法人理化学研究所 バイプリズム装置、及び荷電粒子線装置

Also Published As

Publication number Publication date
US20230223232A1 (en) 2023-07-13
JPWO2021256212A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
Lubk et al. Differential phase contrast: An integral perspective
JP5934965B2 (ja) 電子線装置
JPH02181639A (ja) 表面分析方法および装置
US6777674B2 (en) Method for manipulating microscopic particles and analyzing
US9978559B2 (en) Method and device for time-resolved pump-probe electron microscopy
Okamoto Possible use of a Cooper-pair box for low-dose electron microscopy
Liu Advances and applications of atomic-resolution scanning transmission electron microscopy
US20130163076A1 (en) Transmission interference microscope
JP6051596B2 (ja) 干渉電子顕微鏡
WO2021256212A1 (ja) 電子顕微鏡解析システム
US11011344B2 (en) Interferometric electron microscope
US11460419B2 (en) Electron diffraction holography
EP1754049A2 (en) Method for manipulating microscopic particles and analyzing the composition thereof
Pennycook et al. Atomic-resolution electron energy loss spectroscopy in crystalline solids
US10629410B2 (en) Electron microscope for magnetic field measurement and magnetic field measurement method
Matteucci et al. Electron holography of long-range electrostatic fields
JP5480621B2 (ja) 表面の特性を決定するデバイスと方法
JP6913344B2 (ja) 荷電粒子ビーム装置
JP6418706B2 (ja) 荷電粒子画像化システム用の調整可能なアンペア位相板
JPWO2021256212A5 (ja)
Duchamp et al. Fine electron biprism on a Si-on-insulator chip for off-axis electron holography
Okada et al. Triboelectricity evaluation of single toner particle by electron holography
Zuo et al. Instrumentation and experimental techniques
WO2022202586A1 (ja) 3次元像観察装置、及び方法
JP6786121B2 (ja) 電子線ホログラムの作成方法、磁場情報測定方法および磁場情報測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825143

Country of ref document: EP

Kind code of ref document: A1