WO2021256079A1 - ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 - Google Patents

ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 Download PDF

Info

Publication number
WO2021256079A1
WO2021256079A1 PCT/JP2021/016193 JP2021016193W WO2021256079A1 WO 2021256079 A1 WO2021256079 A1 WO 2021256079A1 JP 2021016193 W JP2021016193 W JP 2021016193W WO 2021256079 A1 WO2021256079 A1 WO 2021256079A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle member
nozzle
slit
gas wiping
divided
Prior art date
Application number
PCT/JP2021/016193
Other languages
English (en)
French (fr)
Inventor
研二 山城
秀行 ▲高▼橋
琢実 小山
英俊 井上
周平 西中
俊希 藤井
玲於奈 相嶋
豊 柳澤
正博 吉川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US18/008,487 priority Critical patent/US12084774B2/en
Priority to JP2021540072A priority patent/JP6977914B1/ja
Priority to CN202180042002.5A priority patent/CN115997044A/zh
Priority to EP21825278.1A priority patent/EP4170057B1/en
Priority to MX2022016140A priority patent/MX2022016140A/es
Publication of WO2021256079A1 publication Critical patent/WO2021256079A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing

Definitions

  • the present invention manufactures a gas wiping nozzle for adjusting the amount of molten metal adhering to the surface of the metal band by blowing gas onto the metal band pulled up from the molten metal bath, and a molten metal-plated metal band using the gas wiping nozzle. Regarding the method.
  • Hot-dip galvanized steel sheets which are a type of hot-dip galvanized steel sheets, are widely used in fields such as building materials, automobiles, and home appliances. Further, in these applications, excellent appearance is required for the hot-dip galvanized steel sheet. Here, since the appearance after painting is strongly affected by surface defects such as uneven plating thickness, flaws, and adhesion of foreign matter, it is important that the hot-dip galvanized steel sheet has no surface defects.
  • a steel strip as a metal strip annealed in a continuous annealing furnace in a reducing atmosphere passes through a snout and is introduced into a molten metal bath in a plating tank. Then, the steel strip is pulled up above the molten metal bath via the sink roll and the support roll in the molten metal bath. After that, the wiping gas is blown onto the surface of the steel strip from the gas wiping nozzles arranged on both sides of the steel strip to scrape off the excess molten metal that has adhered to the surface of the steel strip and has been pulled up, so that the molten metal adheres.
  • the amount (hereinafter, also referred to as a grain amount) is adjusted.
  • the gas wiping nozzle is usually configured to be wider than the steel strip width in the width direction of the steel strip in order to cope with various steel strip widths and the positional deviation in the width direction when the steel strip is pulled up. It extends from the end to the outside.
  • corrugated flow pattern hot water wrinkles also called hot water dripping
  • corrugated flow pattern hot water wrinkles are generated on the plating surface due to minute vibration of the steel strip due to spraying of the wiping gas and irregular hot water flow of the plating layer. I often do it.
  • the plated surface of the plated steel sheet with such hot water wrinkles is used as the coating base surface for exterior coating, the surface texture of the coating film, especially the smoothness, is impaired, and it should be suitable for coating treatment with excellent appearance. It cannot be used for exterior plates and has a great effect on the yield of plated steel sheets.
  • Patent Document 1 In order to solve this problem, conventionally, for example, those shown in Patent Document 1 are known.
  • a steel strip is continuously immersed in a molten metal plating bath, and gas is sprayed from a gas wiping nozzle onto the steel strip immediately after being drawn out from the molten metal plating bath to obtain a plating adhesion amount. Is to control.
  • the temperature T of the wiping gas injected from the gas wiping nozzle is controlled according to the D / B value represented by the ratio of the distance D between the tip of the gas wiping nozzle and the steel strip and the gas wiping nozzle gap B. I have to.
  • Patent Document 2 In order to solve this problem, conventionally, for example, those shown in Patent Document 2 are known.
  • the wiping gas is used in the wiping method in continuous hot-dip galvanizing shown in Patent Document 2, when wiping gas is injected from a gas wiping nozzle in continuous hot-dip galvanizing to wipe the hot-dip zinc adhering to the front and back of the steel strip to be plated, the wiping gas is used.
  • the wiping gas is heated between the temperature TG (° C.) and the plate thickness D (mm) of the steel strip to be plated so as to satisfy the following equation (1). Wiping gas temperature TG (° C) ⁇ ⁇ 400D + 400... (1)
  • the gas wiping nozzle shown in Patent Document 3 adjusts the film thickness of the molten metal film adhering to the surface of the steel strip by blowing gas onto the steel strip pulled upward from the molten metal plating bath.
  • the gas wiping nozzles are provided so as to face each other, and serve as a first lip portion and a second lip portion forming a nozzle chamber into which gas is introduced, and as an injection port for gas injected from the nozzle chamber.
  • a slit formed between the ends of the first lip portion and the second lip portion on the steel strip side, and the first lip portion and the second lip portion provided on the slit side in the nozzle chamber. It is provided with a fixing member for fixing.
  • the fixing member is provided with a plurality of first communication holes that communicate the slit side and the opposite side of the slit with respect to the fixing member along the width direction of the steel strip.
  • Patent Document 1 the conventional continuous hot-dip metal plating method shown in Patent Document 1, the wiping method in continuous hot-dip galvanizing shown in Patent Document 2, and the gas wiping nozzle shown in Patent Document 3 have the following problems.
  • the wiping gas is heated and the surroundings of the gas wiping nozzle become a high temperature atmosphere. Along with this, the gas wiping nozzle itself is also heated.
  • the gas wiping nozzle is integrally manufactured along the length direction of the slit as the gas injection port provided at the end of the gas wiping nozzle on the steel strip side. There is no description as to whether it is manufactured separately or separately.
  • the gas wiping nozzle When manufacturing a gas wiping nozzle, it may be difficult to manufacture it as an integral part depending on the material of the gas wiping nozzle, and it may be necessary to divide the gas wiping nozzle along the length direction of the slit. .. In this case, when the gas wiping nozzle is divided along the length direction of the slit and manufactured, if the surroundings of the gas wiping nozzle become a high temperature atmosphere, the slit as a gas injection port may be used depending on how the gas wiping nozzle is assembled. There is a problem that the gap in the width direction orthogonal to the length direction becomes non-uniform, and the plating adhesion amount of the steel strip along the width direction of the steel strip becomes non-uniform.
  • each of the upper first lip portion and the second lip portion is manufactured as an integral piece along the length direction of the slit as the gas injection port. It is not manufactured by dividing each of the first lip portion and the second lip portion along the length direction of the slit. Therefore, when each of the first lip portion and the second lip portion is divided along the length direction of the slit, the gas wiping nozzle described above is divided along the length direction of the slit. The same problem occurs when it is manufactured.
  • an object of the present invention is that when the metal is divided along the length direction of the slit as a gas injection port and manufactured, it is manufactured under a high temperature atmosphere. Even if there is, the gap in the width direction orthogonal to the length direction of the slit can be uniformly held along the length direction of the slit, and the plating adhesion amount of the steel strip along the width direction of the steel strip is made uniform. It is an object of the present invention to provide a gas wiping nozzle capable of being formed and a method for manufacturing a molten metal-plated metal band using the gas wiping nozzle.
  • the gas wiping nozzle blows the wiping gas onto the metal band pulled up from the molten metal bath to reduce the amount of molten metal adhering to the surface of the metal band.
  • a gas wiping nozzle to be adjusted wherein the gas wiping nozzle includes a first nozzle member and a second nozzle member, and at an end portion of the gas wiping nozzle on the metal band side, the first nozzle member and the first nozzle member.
  • a slit as a gas injection port is formed between the two nozzle members, and each of the first nozzle member and the second nozzle member is divided into a plurality of nozzle members in the length direction of the slit.
  • the slit is along the length direction of the slit.
  • the first nozzle member and the second nozzle in each cross section of the first nozzle member and the second nozzle member cut at at least one of the depth directions orthogonal to the length direction of the first nozzle member and the second nozzle member.
  • the gist is that the length of each divided surface of the member is 1.5T1 or more for the first nozzle member and 1.5T2 or more for the second nozzle member.
  • the above-mentioned gas wiping nozzles are arranged on both sides of the metal band pulled up from the molten metal bath, and these pair of gas wiping nozzles are arranged.
  • the gist is to continuously produce a molten metal-plated metal band by spraying a wiping gas on each surface of the metal band from each slit of the metal band to adjust the amount of molten metal adhering to both sides of the metal band.
  • the method for manufacturing a gas wiping nozzle and a molten metal-plated metal band according to the present invention, when the gas is divided and manufactured along the length direction of the slit as a gas injection port, the slit is formed even in a high temperature atmosphere. Gas wiping that can uniformly hold the gap in the width direction orthogonal to the length direction of the steel strip along the length direction of the slit and can make the amount of plating of the steel strip along the width direction of the steel strip uniform. It is possible to provide a nozzle and a method for manufacturing a molten metal-plated metal band using the gas wiping nozzle.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on a reference example. It is sectional drawing for demonstrating how the division surface of each of the 1st nozzle member and the 2nd nozzle member is displaced in the gas wiping nozzle which concerns on the reference example shown in FIG.
  • FIG. 4 of the gas wiping nozzle which concerns on 1st modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 2nd modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 3rd modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 4th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 5th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 6th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 7th modification.
  • FIG. 4 of the gas wiping nozzle It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 8th modification. It is a schematic plan view of the gas wiping nozzle which concerns on the 7th modification shown in FIG. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 9th modification. 16 is an enlarged view showing the vicinity of the groove portion of the first nozzle member, the groove portion of the second nozzle member, the shim member, and the pin in FIG. 16.
  • FIG. 1 shows a schematic configuration of a continuous molten metal plating facility provided with a gas wiping nozzle according to an embodiment of the present invention.
  • the molten metal is continuously adhered to the surface of the steel strip S by immersing the steel strip S as the metal strip in the molten metal bath 4 made of the molten metal. After that, it is a facility for adjusting the amount of molten metal to a predetermined amount.
  • the continuous molten metal plating equipment 1 includes a snout 2, a plating tank 3, a sink roll 5, and a support roll 6.
  • the snout 2 is a member having a rectangular cross section perpendicular to the traveling direction of the steel strip S, which partitions a space through which the steel strip S passes.
  • the upper end thereof is connected to, for example, the outlet side of a continuous annealing furnace, and the lower end is plated. It is immersed in the molten metal bath 4 stored in the tank 3.
  • the steel strip S annealed in the continuous annealing furnace in a reducing atmosphere passes through the snout 2 and is continuously introduced into the molten metal bath 4 in the plating tank 3. After that, the steel strip S is pulled upward from the molten metal bath 4 via the sink roll 5 and the support roll 6 in the molten metal bath 4.
  • wiping gas is sprayed onto both sides of the steel strip S pulled upward from the molten metal bath 4 from a pair of gas wiping nozzles 10 (slits 14 described later) arranged on both sides of the steel strip S.
  • the amount of molten metal adhering to both sides of the steel strip S is adjusted.
  • the steel strip S is cooled by a cooling facility (not shown) and guided to a subsequent process, and the molten metal plated steel strip S is continuously manufactured.
  • each of the pair of gas wiping nozzles 10 arranged on both sides of the steel strip S is the nozzle header 15 and the first arranged on the upper side connected to the nozzle header 15. It includes a nozzle member 11 and a second nozzle member 12 arranged on the lower side.
  • the first nozzle member 11 and the second nozzle member 12 are provided so as to face each other, and a slit 14 as a gas injection port is provided between the inclined end portions (end portions) 11c and 12c on the steel strip S side. It is formed so as to extend elongated in the length direction X.
  • the length direction X of the slit 14 is along the plate width direction of the steel strip S
  • the width direction Z orthogonal to the length direction X of the slit 14 is the plate length direction of the steel strip S (conveyance).
  • the depth direction Y orthogonal to the length direction X of the slit 14 is arranged on each surface side of the steel strip S so as to be along the plate thickness direction of the steel strip S.
  • the width direction Z of the slit is the same as the vertical direction of the gas wiping nozzle 10. Then, from one of the gas wiping nozzles 10, the wiping gas is sprayed from the slit 14 toward one side of the steel strip S.
  • each gas wiping nozzle 10 corresponds to the plate width of various steel strips S, and the length of the slit 14 is a plate of the steel strip S in order to cope with the positional deviation in the width direction when the steel strip S is pulled up. It is configured to be longer than the plate width of the steel strip S so as to be longer than the width, and extends to the outside from the widthwise end of the steel strip S.
  • the nozzle header 15 of each gas wiping nozzle 10 is formed in a substantially rectangular shape extending in the length direction X, the depth direction Y, and the width direction Y, and the material thereof is a metal such as chrome molybdenum steel.
  • a gas supply pipe 17 is connected to the base end portion (rear end portion) of the nozzle header 15, and a gas supply path 16 that connects the gas supply pipe 27 and the hollow portion 13 described later is formed. ..
  • the first nozzle member 11 arranged on the upper side is a plurality of divided surfaces 20 along the length direction X of the slit 14, as shown in FIG. 2 in detail later (in the present embodiment). It is divided into nozzle members 11A, 11B, and 11C. Then, as shown in FIGS. 2 to 4, each nozzle member 11A, 11B, 11C has a flat plate portion 11a extending with a predetermined thickness T1 in the length direction X and the depth direction (front-back direction) Y, and the flat plate portion 11a. It includes a flange portion 11b that protrudes upward from the rear end, and the above-mentioned inclined end portion 11c that extends diagonally downward from the front end of the flat plate portion 11a. A hollow portion forming space 13a for forming a hollow portion, which will be described later, is formed below the flat plate portion 11a of each nozzle member 11A, 11B, 11C.
  • each nozzle member 12A, 12B, 12C has a flat plate portion 12a extending with a predetermined thickness T2 in the length direction X and the depth direction (front-back direction) Y, and the flat plate portion 12a. It includes a flange portion 12b that projects upward from the rear end, and the above-mentioned inclined end portion 12c that extends diagonally downward from the front end of the flat plate portion 12a.
  • the first nozzle member 11 and the second nozzle member 12 are vertically aligned and fixed by a shim member 30 described later, and the rear end surface 11ba and the second nozzle member of the flange portion 11b of the first nozzle member 11 are joined.
  • Each of the rear end surfaces 12ba of the flange portion 12b of the 12 is connected to the front surface of the nozzle header 15.
  • the hollow portion 13 is formed by the hollow portion forming space 13a formed in the first nozzle member 11 and the hollow portion forming space 13b formed in the second nozzle member 12.
  • the lower surface of the inclined end portion 11c on the steel strip S side of the first nozzle member 11 and the upper surface of the inclined end portion 12c on the steel strip S side of the second nozzle member 12 are opposed flat surfaces.
  • the space between the planes is the slit 14 as the gas injection port described above.
  • the slit 14 is elongated in the length direction X, the length of the length direction X is L1 (see FIG. 2), and the width of the width direction Z orthogonal to the length direction X, that is, the gap is L3. (See FIG. 3), the depth in the depth direction Y orthogonal to the length direction X is L2 (see FIG. 3).
  • the dimensions of the slit 14 are not particularly limited, but the length L1 of the slit 14 is set with a margin according to the width of the steel strip S, and may be, for example, about 1500 to 2500 mm. Further, the gap L3 of the slit 14 can be set to, for example, about 0.5 to 3.0 mm. Further, the depth of the slit 14 can be, for example, about 5 to 30 mm for L2.
  • the slit 14 communicates with the hollow portion 13 in the depth direction Y.
  • the hollow portion 13 functions as a pressure equalizing portion, and the wiping gas introduced into the hollow portion 13 from the gas supply pipe 17 via the gas supply path 16 is uniform over the entire length direction X of the slit 14. It is injected with pressure.
  • each gas wiping nozzle 10 includes a pair of shim members 30 for adjusting the gap L3 in the width direction Y orthogonal to the length direction X of the slit 14.
  • These shim members 30 also have a function of fixing the first nozzle member 11 and the second nozzle member 12.
  • the first nozzle member 11 and the second nozzle member 12 respectively, specifically, the nozzle members 11A and 11C and As shown in FIG. 4, each of the nozzle members 12A and 12C has grooves 28 and 29 into which the shim members 30 are fitted.
  • first nozzle member 11, the second nozzle member 12, and each shim member 30 are ceramic materials having low wettability with respect to molten metal such as molten zinc, being hard to be plastically deformed, and having a low coefficient of linear expansion.
  • Carbon material, carbon fiber reinforced carbon composite material, or ceramics-based composite material is used.
  • Specific examples of the ceramic material include alumina, sialon, silicon nitride, zirconia, barium titanate, hydroxyapatite, silicon carbide (SiC), and fluorite
  • examples of the carbon material include graphite, but the carbon material is limited to these. It's not something. Further, since graphite oxidizes and volatilizes in a highly oxidizing atmosphere, it is preferable to coat the surface layer with silica or the like.
  • Invar and tungsten have a low coefficient of linear expansion, but are plastically deformed. Therefore, as the material of the first nozzle member 11, the second nozzle member 12, and each shim member 30, in particular, the material of each shim member 30. Is not suitable as.
  • the ceramic material carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material, those having a bending strength of 600 MPa are preferable, and those having a bending strength of 800 MPa or more are more preferable. Therefore, it is preferable to use zirconia, silicon nitride, sialon, or the like as the ceramic material. If these materials are used, plastic deformation is difficult, and if the fracture strength is lower than that, substantial deformation can be suppressed.
  • the ceramic material, carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material preferably has a Vickers hardness of 800 Hv or more, and more preferably 1000 Hv or more.
  • the ceramic material, a carbon material, that the fracture toughness of reinforced carbon-carbon or ceramic matrix composite is preferably at 5 MPa ⁇ m 1/2 or more, 5 MPa ⁇ m 1/2 or more Is more preferable.
  • thermal impact resistance of the nozzle material is lower than the high temperature gas temperature.
  • the thermal impact resistance of the ceramic material, carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material is preferably at or above the temperature used as the wiping gas, preferably at 430 ° C or higher, and is thermally impact resistant. The temperature of 600 ° C. or higher is more preferable.
  • the linear expansion coefficient of the first nozzle member 11 (nozzle member 11A, 11B, 11C) and the second nozzle member 12 (nozzle member 12A, 12B, 12C) is
  • the coefficient of linear expansion of the nozzle header 15 fixed to the first nozzle member 11 and the second nozzle member 12 is preferably 1/2 or less, and more preferably 1/3 or less.
  • stainless steel is applied as the material of the nozzle header 15, and the coefficient of linear expansion thereof is about 10 to 18 ⁇ 10 -6 / K.
  • a general nozzle width of 1500 mm or more is integrated due to restrictions such as the size of the furnace in which the ceramics are sintered. It is difficult to manufacture as. Further, when the carbon material is selected as the material that is hard to be plastically deformed when the first nozzle member 11 and the second nozzle member 12 are manufactured, similarly, a general nozzle is used for reasons such as mold size restrictions used for molding. It is difficult to manufacture an integral product with a width of 1500 mm or more.
  • the general nozzle width is 1500 mm due to the limitation of the molding furnace. It is difficult to manufacture the above as an integral piece. Therefore, when the first nozzle member 11 and the second nozzle member 12 are manufactured by selecting a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, as described above, the first The nozzle member 11 is divided into a plurality of nozzle members 11A, 11B, 11C (three in the present embodiment) by a plurality of dividing surfaces 20 along the length direction X of the slit 14, and a second nozzle member is used. 12 is manufactured by dividing 12 into a plurality of nozzle members 12A, 12B, 12C (three in the present embodiment) by a plurality of divided surfaces 20 along the length direction X of the slit 14.
  • the slit 14 is cut at at least one of the depth directions Y orthogonal to the length direction X of the slit 14 along the length direction X of the slit 14.
  • the length (D1 + D2 + D3) of each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 in each cross section of the first nozzle member 11 and the second nozzle member 12 is the first.
  • T1 and T2 have the same thickness. However, they may have different thicknesses.
  • Each of the first nozzle member 11 and the second nozzle member 12 is divided into a plurality of nozzle members 11A, 11B, 11C, 12A, 12B, 12C by a plurality of dividing surfaces 20 along the length direction X of the slit 14.
  • the shape of the divided surface 20 is a linear shape parallel to the nozzle thickness direction (width direction Z of the slit 14), and the length thereof is set to the first nozzle member 11 and the second nozzle member 11.
  • a method is conceivable in which the thickness of each slit 14 of the nozzle member 12 is the same as the thickness in the width direction Z, and an adhesive is applied to the divided surface 20 to combine them.
  • the central nozzle members 11B and 12B in the length direction X of the slit 14 whose upper and lower sides are not fixed by the pair of shim members 30 are in the width direction orthogonal to the length direction of the slit 14 (Z in FIG. 1). It is weak against the force of (direction), and as shown in FIG. 6, a deviation 31 occurs in the direction in which the gap of the slit 14 widens on the split surface 20 due to thermal deformation when discharging the high temperature gas. In addition to this, the divided surface 20 is displaced 31 due to the nozzle cleaning performed to remove the zinc clogged in the slit 14 and the influence of the internal pressure of the gas. As shown in FIG.
  • this deviation 31 changes the shape of the hollow portion 13, and the shape of the gap of the slit 14 changes in the nozzle width direction. If the shape of the gap of the slit 14 is different, the amount of gas discharged in the length direction X of the slit 14 will be different, and the wiping ability will be different in the length direction X of the slit 14. As a result, the amount of plating adhered to the steel strip S along the width direction of the steel strip S cannot be made uniform. Further, as shown in FIG. 6, when the gap of the slit 14 is widened, the probability that zinc splashed by the wiping gas invades the slit 14 increases. As a result, linear adhesion amount unevenness (linear mark) caused by the blockage of zinc in the slit 14 is likely to occur.
  • the deformation of the central nozzle members 11B and 12B in the length direction X of the slit 14 in the width direction Z of the slit 14 is hindered, that is, the nozzle members 11A, 11B, 11C and 12A, respectively. It is necessary to strengthen the fastening force of 12B and 12C. Therefore, in the present embodiment, as shown in FIG. 4, the first nozzle member 11 and the first nozzle member 11 cut at at least one of the depth directions Y along the length direction X of the slit 14.
  • the length (D1 + D2 + D3) of each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 in each cross section of the second nozzle member 12 is the width direction of the slit 14 of the first nozzle member 11.
  • the thickness of Z (thickness of the flat plate portion 11a) is T1
  • the thickness of the slit 14 of the second nozzle member 12 in the width direction Z (thickness of the flat plate portion 12a) is T2
  • the first nozzle member 11 1.5T1 or more, and 1.5T2 or more for the second nozzle member 12.
  • each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 is a shape having a step 20b. That is, each divided surface 20 of the first nozzle member 11 has a first linear portion 20a extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and a first linear portion 20a. A step 20b extending linearly outward in the length direction X of the slit 14 from the lower end, and a second step extending linearly downward from the tip of the step 20b toward the lower surface of the first nozzle member 11 (flat plate portion 11a). It is provided with a linear portion 20c.
  • each divided surface 20 of the second nozzle member 12 has a first linear portion 20a extending linearly upward from the lower surface of the second nozzle member 12 (flat plate portion 12a) and a first linear portion 20a.
  • a step 20b extending linearly outward in the length direction X of the slit 14 from the upper end, and a second step extending linearly upward from the tip of the step 20b toward the upper surface of the second nozzle member 12 (flat plate portion 12a). It is provided with a linear portion 20c.
  • the length ((D1 + D2 + D3)) obtained by adding the length D1 of the first linear portion 20a of each divided surface 20, the length D2 of the step 20b, and the length D3 of the second linear portion 20c is the first nozzle.
  • the member 11 has 1.5T1 or more
  • the second nozzle member 12 has 1.5T2 or more.
  • the length (D1 + D2 + D3) of each divided surface 20 is less than 1.5T1 or 1.5T2, the shape of the divided surface 20 approaches the case shown in FIG.
  • the slits 14 of the nozzle members 11B and 12B can be easily moved in the width direction Z, and it is difficult to exert the effect of processing the nozzle members 11B and 12B into a shape having a step 20b.
  • each divided surface 20 when the length (D1 + D2 + D3) of each divided surface 20 is larger than 5T1 or 5T2, the effect of improving the fastening force of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C is saturated, and further, each division is further performed. If the length of the surface 20 becomes too long, there is a concern about cracking. Therefore, it is preferable that the upper limit of the length of the divided surface 20 of the first nozzle member 11 is 5T1 and the upper limit of the length of the divided surface 20 of the second nozzle member 12 is 5T2.
  • each divided surface 20 may be a tapered shape that is inclined with respect to the width direction Z (vertical direction) of the slit 14.
  • the division surface 20 is tilted so that the length E1 of each division surface 20 is 1.5T1 or more for the first nozzle member 11 and 1.5T2 or more for the second nozzle member 12.
  • the upper limit of the length E1 of each divided surface 20 is 5T1 or 5T2.
  • the nozzle division is based on the idea of suppressing the gap expansion of the slit 14. It is designed.
  • the gap reduction of the slit 14 may be a problem. In such a case, the gap reduction of the slit 14 can be avoided by making the shape of the divided surface 20 as shown in FIG. 8 or 9.
  • FIG. 8 shows a cross section of the gas wiping nozzle according to the second modification, and the shapes of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 are shown in FIG. It has a symmetrical shape with the shape of the divided surface 20. That is, each divided surface 20 of the first nozzle member 11 has a first linear portion 20a extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and a first linear portion 20a. A step 20b extending linearly inward in the length direction X of the slit 14 from the lower end, and a second step extending linearly downward from the tip of the step 20b toward the lower surface of the first nozzle member 11 (flat plate portion 11a).
  • each of the divided surfaces 20 of the second nozzle member 12 also has a first linear portion 20a extending linearly upward from the lower surface of the second nozzle member 12 (flat plate portion 11a).
  • a step 20b extending linearly inward in the length direction X of the slit 14 from the upper end of the first linear portion 20a, and the tip of the step 20b toward the upper surface of the second nozzle member 12 (flat plate portion 12a).
  • the length ((D1 + D2 + D3)) obtained by adding the length D1 of the first linear portion 20a of each divided surface 20, the length D2 of the step 20b, and the length D3 of the second linear portion 20c is the first nozzle.
  • the member 11 has 1.5T1 or more
  • the second nozzle member 12 has 1.5T2 or more.
  • FIG. 9 shows a cross section of the gas wiping nozzle according to the third modification
  • FIG. 7 shows the shapes of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12.
  • the shape is symmetrical to the shape of the divided surface 20 of each of the first nozzle member 11 and the second nozzle member 12 in the gas wiping nozzle 10 according to the first modification shown.
  • each of the first nozzle member 11 and the second nozzle member 12 is divided into a plurality of parts by a plurality of dividing surfaces 20 along the length direction X of the slit 14, the case shown in FIG. 4 (three pieces). Even if it is divided into four nozzle members 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D as in the gas wiping nozzle according to the fourth modification shown in FIG. good.
  • each divided surface 20 of the nozzle member 12 is divided into the concave surface 20d and the convex surface 20e of the adjacent nozzle members 11A, 11B, 11B, 11C, 11C, 11D, 12A, 12B, 12B, 12C, 12C, 12D. It may be the shape of the fitting surface to which is fitted.
  • the shape of the divided surface 20 is a key type in which the concave surface 20d formed on the nozzle member 11A and the convex surface 20e formed on the nozzle member 11B are fitted. It has a shape.
  • each divided surface 20 is the same, and the length of the divided surface 20 formed on the first nozzle member 11 will be described. ..
  • the length of the divided surface 20 is the length F1 of the first linear portion extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and the slit 14 from the lower end of the first linear portion.
  • the length F2 of the second linear portion extending linearly outward in the length direction X of, and the length F3 of the third linear portion extending linearly downward from the tip of the second linear portion.
  • the nozzle members 11A, 11B, 11C, 12A, 12B, 12C can be formed.
  • the fastening force can be made stronger, and even if an external force such as an expansion or contraction of the gap of the slit 14 acts on the divided surface 20, it is possible to appropriately avoid the expansion or contraction of the gap.
  • a dogleg shape may be used in order to make the shape of each divided surface 20 a fitting surface shape.
  • each divided surface 20 may be fitted by the divided adjacent nozzle members 11A, 11B, 11B, 11C, 11C, 11D, 12A, 12B, 12B, 12C, 12C, 12D.
  • the length of each divided surface 20 is the same as that of the gas wiping nozzle 10 shown in FIG. 4, the length D1 of the first linear portion 20a and the step 20b. It is a length (D1 + D2 + D3) obtained by adding the length D2 of the first nozzle member 11 and the length D3 of the second linear portion 20c, and is 1.5T1 or more for the first nozzle member 11 and 1.5T2 or more for the second nozzle member 12. ing.
  • the gas wiping nozzle 10 according to the second modification shown in FIG. 11 is an example in which the nozzle is divided into four, but when the nozzle is divided into five, for example, the gas wiping nozzle 10 according to the sixth modification shown in FIG. 12 is used. It can be a structure.
  • the gas wiping nozzle according to the seventh modification shown in FIG. 13 and the gas wiping according to the eighth modification shown in FIG. Pins for connecting the divided nozzle members 11A, 11B, 11B, 11C of the first nozzle member 11 and the divided nozzle members 12A, 12B, 12B, 12C of the second nozzle member 12 like a nozzle. 32 may be used. Thereby, the fastening force between the divided nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C can be further increased.
  • the cross-sectional shape of the pin 32 may be rectangular or circular.
  • the width of the slit length direction X of the pin 32 is the length of the step 20b.
  • D2 the width of the slit length direction X of the pin 32 is the length of the step 20b.
  • the width of the slit length direction X of the pin 32 is tapered. Must be less than the width between the tip and tail of the split surface 20 of.
  • the pin 32 when the pin 32 is inserted as shown in FIG. 15, the pin 32 has a slit length. It can be inserted into any number and any position in the vertical direction X and the slit depth direction Y.
  • each of the first nozzle member 11 and the second nozzle member 12 is assembled. Prior to assembling each of the first nozzle member 11 and the second nozzle member 12, the nozzle members 11A and 11C of the first nozzle member 11 are grooved from the rear end surface 11ba to form a groove 28. The nozzle members 12A and 12C of the second nozzle member 12 are grooved from the rear end surface 12ba to form the groove portion 29.
  • the adjacent nozzle members 11A and 11B are aligned on the dividing surface 20, and the adjacent nozzle members 11A and 11B are fixed by applying an adhesive for ceramics. Further, the adjacent nozzle members 11B and 11C are aligned on the dividing surface 20, and the adjacent nozzle members 11B and 11C are fixed by applying an adhesive for ceramics. This completes the assembly of the first nozzle member 11.
  • the adjacent nozzle members 12A and 12B are aligned on the dividing surface 20, and the adjacent nozzle members 12A and 12B are fixed by applying an adhesive for ceramics.
  • the adjacent nozzle members 12B and 12C are aligned on the dividing surface 20, and the adjacent nozzle members 12B and 12C are fixed by applying an adhesive for ceramics.
  • the adhesive used for assembling the first nozzle member 11 and the second nozzle member 12 contains zirconia / silica as a main component, alumina as a main component, and silica as a main component. However, it is not limited to this.
  • the assembled first nozzle member 11 is arranged on the upper side
  • the assembled second nozzle member 12 is arranged on the lower side
  • the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12 are respectively.
  • the shim member 30 is fitted into the shim member 30 in a direction parallel to the direction in which the groove portions 28, 29 extend from the rear end surfaces 11ba, 12ba side of the first nozzle member 11 and the second nozzle member 12.
  • the same adhesive as described above is applied to each of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12.
  • the first nozzle member 11 and the second nozzle member 12 are fixed.
  • the fixed rear end surface 11ba of the first nozzle member 11 and the rear end surface 12ba of the second nozzle member 12 may be connected to the front end surface of the nozzle header 15 by a fixing member such as a screw (not shown).
  • the gap L3 of the slit 14 shifts to the split surface 20 in the direction of expansion due to thermal deformation at that time. Is about to occur.
  • the first in each cross section of the first nozzle member 11 and the second nozzle member 12 cut along the length direction X of the slit 14.
  • the length (D1 + D2 + D3) of each of the divided surfaces 20 of the nozzle member 11 and the second nozzle member 12 is T1 with the thickness (thickness of the flat plate portion 11a) of the slit 14 of the first nozzle member 11 in the width direction Z.
  • the first nozzle member 11 is 1.5T1 or more, and the second nozzle member 12 is 1. It is set to .5T2 or higher. Therefore, the inhibition of the deformation of the nozzle members 11B and 12B in the central portion in the length direction X of the slit 14 in the width direction Z of the slit 14, that is, the fastening force of the nozzle members 11A, 11B, 11C, 12A, 12B and 12C. has been strengthened.
  • the gap L3 in the width direction Z orthogonal to the length direction X of the slit 14 is formed in the length direction X of the slit 14 without causing a shift in the direction in which the gap L3 of the slit 14 expands on the divided surface 20 due to thermal deformation. Can be held uniformly along the line.
  • the amount of gas discharged in the length direction X of the slit 14 becomes uniform, and the wiping ability of the steel strip S along the width direction of the steel strip S does not differ in the length direction X of the slit 14.
  • the amount of plating adhesion can be made uniform.
  • the upper limit of the length (D1 + D2 + D3) of the divided surface 20 of the first nozzle member 11 is 5T1
  • the length of the divided surface 20 of the second nozzle member 12 is 5T2.
  • the length of the divided surface 20 of 1.5T1 or 1.5T2 or more is secured at at least one of the depth directions Y of the first nozzle member 11 and the second nozzle member 12. If possible, it is possible to keep the gap of the slit 14 constant. However, under this condition, the first nozzle member 11 (nozzle member 11A, 11B, 11C) and the second nozzle member 12 (nozzle member 12A, 12B, 12C) may be cracked. In order to suppress this cracking, the length of each divided surface 20 of the first nozzle member 11 and the second nozzle member 12 is 1.5T1 or more for the first nozzle member 11 and for the second nozzle member 12.
  • the region of the depth direction Y of 1.5T2 or more is a region having a size of 1/3 or more of the total length L (see FIG. 3) in the depth direction of each of the first nozzle member 11 and the second nozzle member 12. It is preferable that there is a region, and it is more preferable that the region has a size equal to the total length L.
  • the first nozzle member 11, the second nozzle member 12, and the shim member 30 are all ceramic materials, carbon materials, carbon fiber reinforced carbon composite materials, or ceramics. Since it is a basic composite material, the coefficient of linear expansion is small, and there is no difference in the coefficient of linear expansion between them. Therefore, even in a high temperature atmosphere, the gap L3 in the width direction orthogonal to the length direction X of the slit 14 as the gas injection port can be uniformly held along the length direction X of the slit.
  • the nozzle header 15 is also made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material, it is more effective to uniformly hold the gap L3 of the slit 14, but high-pressure wiping. Since it is difficult to make a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material that can withstand gas (at least 60 kPa), the nozzle header 15 is made of a ceramic material, a carbon material, or carbon. It was not used as a fiber-reinforced carbon composite material or a ceramics-based composite material.
  • the gas wiping nozzle shown in Patent Document 3 since the first lip portion and the second lip portion are fixed on the slit side in the nozzle chamber by the fixing member, the gas wiping nozzle is configured. It is possible to suppress variations in the slit gap after assembly for each assembly when replacing a part or all of the parts.
  • the fixing member for fixing the upper and lower nozzle members in the gas wiping nozzle shown in Patent Document 3 and the bolt used for fixing the fixing member are made of metal, the fixing member and the bolt extend in a high temperature atmosphere. As a result, the slit gap changes, and there is a problem that the slit gap cannot be uniformly held along the length direction of the slit.
  • the first nozzle member 11 and the second nozzle member 12 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite.
  • the shim member 30 is made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, and further, the shim member 30 is provided with a first nozzle member 11 and a second nozzle. It also has a fixing function for the member 12. Therefore, there is no member for fixing the first nozzle member 11 and the second nozzle member 12 that act to widen the gap L3 of the slit 14 in a high temperature atmosphere.
  • the shim member 30 is made of a material that is not easily plastically deformed, the gap L3 of the slit 14 as a gas injection port can be uniformly held along the length direction X of the slit 14 even in a high temperature atmosphere. ..
  • the shim member 30 did not have the function of fixing the first nozzle member 11 and the second nozzle member 12, but the first nozzle member 11 and the second nozzle member 12 of the ceramic material were fixed by metal bolts. And. In this case, it is necessary to make a bolt hole in the first nozzle member 11 and the second nozzle member 12 of the ceramic material and close the metal bolt into the bolt hole. In this case, the first nozzle member 11 and the second nozzle member 12, which are ceramic materials, may be damaged by the torque or thermal expansion when the metal bolt is tightened.
  • the first nozzle member 11 and the second nozzle member 12 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite.
  • the shim member 30 is made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, and further, the shim member 30 is provided with a first nozzle member 11 and a second nozzle. It also has a fixing function for the member 12. Therefore, the first nozzle member 11 and the second nozzle member 12 are not damaged by the torque or thermal expansion when the metal bolt is tightened.
  • the gas wiping nozzle 10 shown in FIGS. 16 and 17 has the same basic configuration as the gas wiping nozzle 10 shown in FIG. 4, but a pin 33 is used to connect the groove 28 of the first nozzle member 11 and the shim member 30. In addition, it differs from the gas wiping nozzle 10 shown in FIG. 4 in that a pin 33 is used for connecting the groove portion 29 of the second nozzle member 12 and the shim member 30.
  • the cross-sectional shapes of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12 shown in FIGS. 16 and 17 are rectangular.
  • the groove 28 of the first nozzle member 11 extends forward from the rear end surface 11ba (see FIG. 3).
  • the groove portion 29 of the second nozzle member 12 extends forward from the rear end surface 12ba (see FIG. 3).
  • the corner portion 28a in the groove portion 28 and the corner portion 29a in the groove portion 29 may be formed in a rounded shape. As a result, it is possible to prevent the concentration of stress and prevent the shim member 30 from being damaged.
  • the shim member 30 has a rectangular parallelepiped shape, and its cross-sectional shape is a shape that is fitted into each of the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12. As shown in FIG. 17, the width C1 of the shim member 30 corresponding to the widths of the grooves 28 and 29 is about 5 to 20 mm, and the height C2 of the shim member 30 is about 5 to 40 mm.
  • the shim member 30 is fitted into each of the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12. Further, a plurality of pins 33 are used to connect the groove 28 of the first nozzle member 11 to the shim member 30, and to connect the groove 29 of the second nozzle member 12 to the shim member 30.
  • the shim member 70 can be fitted before the first nozzle member 11 and the second nozzle member 12 are combined, so that the shim member 70 can be fitted into the first nozzle member 11 and the first nozzle member 11.
  • the shim member 70 may be provided at a plurality of positions in the depth direction Y of the first nozzle member 11 and the second nozzle member 12, whereby the gap L3 of the slit 14 can be held with higher accuracy.
  • the pins 33 are, as shown in FIG. 16, two pins used for connecting the groove 28 of the first nozzle member 11 and the shim member 30, and the second nozzle member. A total of four pins 33, two pins used to connect the groove 29 of the twelve and the shim member 30, are used.
  • the number of pins used may be increased according to the number of shim members 30.
  • the pin 33 is the first after the shim member 30 is fitted into the grooves 28 and 29 as shown in FIGS. 16 and 17. It is inserted into the shim member 30 from the side surface of the nozzle member 11 up to a predetermined depth C3.
  • the pin 33 is set after the shim member 30 is fitted into the grooves 28 and 29 as shown in FIGS. 16 and 17. It is inserted from the side surface of the nozzle member 12 of 2 to a predetermined depth C3 with respect to the shim member 30.
  • each pin 33 is formed of a cylinder, its diameter C4 is about ⁇ 1 to 10 mm, and the insertion depth C3 of the pin 33 is about 1 to 15 mm.
  • the insertion depth C3 of the pin 33 ⁇ the width C1 of the shim member 30 and the diameter C4 of the pin 33 ⁇ the height C2 of the shim member 30.
  • a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic-based composite material is preferable.
  • the bending strength of each pin 33 is preferably 600 MPa or more, more preferably 800 MPa or more. Therefore, it is preferable to use zirconia, silicon nitride, sialon, or the like as the ceramic material.
  • the metal Nozzle header 15 (see FIGS. 1 and 2) is about to extend in the vertical direction, that is, in the width direction Z of the slit 14 due to thermal expansion.
  • the first nozzle member 11 and the second nozzle member 12 are also pulled by the first nozzle member 11 and tend to move up and down.
  • the first nozzle member 11 and the second nozzle member 12 are connected to the shim member 30 by the pin 33 and the shim member 30 is made of a material that is not easily plastically deformed, the first nozzle member 11 and the second nozzle The member 12 does not separate up and down. Since the first nozzle member 11 and the second nozzle member 12 are not separated from each other in the vertical direction, they are formed between the inclined end portions 11c and 12c on the steel strip S side of the first nozzle member 11 and the second nozzle member 12. The gap L3 of the slit 14 is held.
  • the temperature T of the wiping gas (°C) is too low below T M -150 ° C., since it does not affect the fluidity of the molten metal, no effect on suppressing the occurrence of hot wrinkles. Further, when the temperature T (° C.) of the wiping gas is higher than TM + 250 ° C., alloying is promoted and the appearance of the steel sheet is deteriorated. Further, the method for raising the temperature of the wiping gas supplied to the gas wiping nozzle 10 is not particularly limited. For example, a method of heating and raising the temperature with a heat exchanger to supply the heat, and a method of mixing the combustion exhaust gas of the annealing furnace with air can be mentioned.
  • examples of the hot-dip galvanized metal strip manufactured by applying the method for manufacturing the gas wiping nozzle and the hot-dip metal-plated metal strip according to the present embodiment include a hot-dip galvanized steel strip.
  • the hot-dip galvanized steel strip includes both a plated steel sheet (GI) that is not alloyed after the hot-dip galvanized treatment and a plated steel sheet (GA) that is alloyed.
  • GI plated steel sheet
  • GA plated steel sheet
  • the molten metal-plated metal band manufactured by applying the gas wiping nozzle and the method for manufacturing a molten metal-plated metal band according to the present embodiment is not limited to this, and other molten metals such as aluminum and tin other than zinc are not limited to this. It includes all hot metal plated steel strips including.
  • the number of divisions of the first nozzle member 11 and the second nozzle member 12 may be two or five or more, although the above description describes three and four.
  • the length of the surface 20 is the first when the thickness of the slit 14 of the first nozzle member 11 in the width direction Z is T1 and the thickness of the slit 14 of the second nozzle member 12 in the width direction Z is T2.
  • the nozzle member 11 may be 1.5T1 or more
  • the second nozzle member 12 may be 1.5T2 or more
  • the shapes of the divided surfaces 20 are FIGS. 4, 7, 8, 10, and 11. , And the shape shown in FIG.
  • the thickness of the flat plate portion 11a of the first nozzle member 11 and the thickness of the flat plate portion 12a of the second nozzle member 12 are set to be constant, they do not have to be constant.
  • the upper limit of the length of the divided surface 20 of the first nozzle member 11 is 5T1
  • the upper limit of the length of the divided surface 20 of the second nozzle member 12 is 5T2. May be good.
  • all of the first nozzle member 11, the second nozzle member 12, and the shim member 30 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material, but the first nozzle member. 11.
  • Each of the second nozzle member 12, and the shim member 30 does not have to be a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material.
  • first nozzle member 11, the second nozzle member 12, and the shim member are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material. It is a concept that the nozzle member 11, the second nozzle member 12, and the shim member do not all have to be made of the same material. However, it is preferable that the first nozzle member 11, the second nozzle member 12, and the shim member are all made of the same material. This makes it possible to reliably eliminate the difference in the coefficient of linear expansion between the first nozzle member 11, the second nozzle member 12, and the shim member.
  • the shim member is not limited to the mode in which two shim members are provided as independent members in the length direction X of the slit 14.
  • the shim member connects the portions fitted into the groove portion of each nozzle member.
  • a connecting portion may be provided to form an integral member.
  • the cross-sectional shape of is not limited to a rectangular shape, but may be a dovetail groove shape, a T-shaped groove shape, or any other shape. Further, the cross-sectional shape of the shim member 30 may be changed according to the cross-sectional shape of the groove portions 28 and 29. Further, the shape of the pin 33 does not have to be a cylinder, and may be a rectangular parallelepiped or another shape.
  • a steel strip S having a plate thickness of 1.0 mm and a plate width of 1200 mm is passed through a molten zinc bath at a plate speed of 2.0 m / s to enter the molten zinc bath.
  • Manufactured plated steel strips are 1800 mm in length L1, 20 mm in depth L2, and 1.2 mm in width (gap) L3.
  • the value obtained by dividing the thickness of the divided surface 20 of the nozzle members 11A to 11C and 12A to 12C by the nozzle thickness T is as shown in Table 1 over the entire length in the depth direction Y.
  • the hot-dip galvanizing bath temperature at the time of the experiment was 460 ° C.
  • the gas temperature T at the tip of the wiping nozzle was 500 ° C.
  • As the wiping gas a gas prepared by mixing the exhaust gas of the combustor and air was used.
  • the melting point T M of the galvanizing bath is 420 ° C..
  • the gas wiping nozzles of Invention Examples 1 to 14 and Comparative Examples 1 to 5 will be described.
  • the bending strength of Sialon described in the following Invention Examples 1 to 14 and Comparative Examples 1 to 5 is 980 MPa
  • Vickers hardness is 1620 HV
  • fracture toughness is 6 MPa ⁇ m 1/2
  • thermal impact resistance is 650 ° C
  • linear expansion The coefficient is 3.2 ⁇ 10-6 / K.
  • the yield stress of chromium molybdenum steel is 400 MPa
  • the Vickers hardness is 300 HV
  • the fracture toughness is 236 MPa ⁇ m 1/2
  • the linear expansion coefficient is 11.2 ⁇ 10 -6 / K.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • the assembled first nozzle member 11 is arranged on the upper side
  • the assembled second nozzle member 12 is arranged on the lower side
  • the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12 are arranged.
  • the same adhesive as described above is applied to each of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12, and the rectangular parallelepiped shim member 30 is applied to the first nozzle member 11 and the first nozzle member 12. It was fitted into the grooves 28 and 29 of the nozzle member 12 of 2.
  • the nozzle header 15, the first nozzle member 11 and the second nozzle member 12 were fixed.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is assembled, and the rectangular shim member 30 is first attached via an adhesive containing alumina / silica as a main component.
  • the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 are fixed by fitting into the grooves 28 and 29 of the nozzle member 11 and the second nozzle member 12.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • the definitions of D1, D2, D3, and T are the same as in FIG. Then, on each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12, drilling was performed at two locations in the nozzle depth direction Y with a tolerance of 8 ⁇ m + 10 ⁇ m.
  • the adjacent nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C are mainly zirconia silica on the dividing surface 20. It was fixed with an adhesive as an ingredient. Next, an adhesive containing zirconia silica as a main component was applied to the drilled portion, and two pins 32 manufactured with a tolerance of 8 mm to 10 ⁇ m in diameter were drilled in the slit depth direction Y as shown in FIGS. 13 and 15. It was inserted into the processed part.
  • the rectangular parallelepiped shim member 30 is fitted into the grooves 28 and 29 of the first nozzle member 11 and the second nozzle member 12 via an adhesive containing alumina / silica as a main component, and finally, the nozzle header 15 And the first nozzle member 11 and the second nozzle member 12 were fixed.
  • the definitions of E1 and T are the same as those in FIG.
  • drilling was performed at two locations in the nozzle depth direction Y with a tolerance of 8 ⁇ m + 10 ⁇ m.
  • the adjacent nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C are mainly zirconia silica on the dividing surface 20. It was fixed with an adhesive as an ingredient.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
  • Comparative Example 1 In Comparative Example 1, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 5, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • the shape of the divided surface 20 is a linear shape parallel to the nozzle thickness direction, and the length of each divided surface 20 is set to the thickness T1 of the first nozzle member 11 in the cut cross section and the thickness T1.
  • T 20 mm.
  • each of the first nozzle member 11 and the second nozzle member 12 is assembled by applying an adhesive containing alumina / silica as a main component, and the rectangular shim member 30 has an alumina / silica as a main component. It was fitted into the grooves 28 and 29 of the first nozzle member 11 and the second nozzle member 12 via an adhesive, and the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 were fixed.
  • Comparative Example 2 In Comparative Example 2, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 4, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • Comparative Example 3 In Comparative Example 3, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 7, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
  • each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm).
  • each of the first nozzle member 11 and the second nozzle member 12 is assembled, and the rectangular shim member 30 is first attached via an adhesive containing alumina / silica as a main component.
  • the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 are fixed by fitting into the grooves 28 and 29 of the nozzle member 11 and the second nozzle member 12.
  • the gap change rate of the slit 14 is a value (%) indicated by the maximum gap amount / minimum gap amount ⁇ 100 in the length direction X of the slit 14, and if it is less than 110 (%), it is acceptable.
  • the widthwise plating adhesion amount deviation (%) of the steel strip S is a value (%) indicated by the maximum plating adhesion amount / minimum plating adhesion amount ⁇ 100 in the width direction of the steel strip S, and is less than 120 (%).
  • the linear mark generation rate (%) is the ratio of the length of the steel strip S visually determined to have a linear mark defect to the length of the steel strip S passed under each manufacturing condition. Passed with less than 0.4 (%). The results are shown in Table 1.
  • the slit 14 as a gas injection port is divided along the length direction X and manufactured, the atmosphere is high.
  • the gap L3 in the width direction Z orthogonal to the length direction X of the slit 14 can be uniformly held along the length direction X of the slit 14, and the steel strip S along the width direction of the steel strip S can be held uniformly. It was confirmed that the amount of plating adhered could be made uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

スリットの長さ方向に沿って分割して製作した際に、高温雰囲気下であっても、スリットの幅方向のギャップを長さ方向に沿って均一に保持することができるガスワイピングノズル及び溶融金属めっき金属帯の製造方法を提供する。ガスワイピングノズル(10)において、第1のノズル部材(11)及び第2のノズル部材(12)の各々がスリット(14)の長さ方向Xに沿って複数個のノズル部材(11A)~(11C)、(12A)~(12C)に分割される。第1のノズル部材(11)のスリット(14)の幅方向Zの厚みをT1、第2のノズル部材(12)のスリット(14)の幅方向Zの厚みをT2としたときに、第1のノズル部材(11)及び第2のノズル部材(12)の各々の断面における分割面(20)の長さは、第1のノズル部材(11)について1.5T1以上、第2のノズル部材(12)について1.5T2以上である。

Description

ガスワイピングノズル及び溶融金属めっき金属帯の製造方法
 本発明は、溶融金属浴から引上げられた金属帯にガスを吹き付けて、金属帯の表面の溶融金属の付着量を調節するガスワイピングノズル及びそのガスワイピングノズルを用いた溶融金属めっき金属帯の製造方法に関する。
 溶融金属めっき鋼板の一種である溶融亜鉛めっき鋼板は、建材、自動車、家電などの分野で広く使用されている。そして、これらの用途では、外観に優れることが溶融亜鉛めっき鋼板に対して要求される。ここで、塗装後の外観は、めっき厚むら、疵、異物付着などの表面欠陥の影響を強く受けるため、溶融亜鉛めっき鋼板には表面欠陥が存在しないことが重要である。
 連続溶融金属めっきラインでは、一般に、還元雰囲気の連続焼鈍炉で焼鈍された金属帯としての鋼帯は、スナウト内を通過して、めっき槽内の溶融金属浴中に導入される。そして、鋼帯は、溶融金属浴中のシンクロール、サポートロールを介して溶融金属浴の上方に引き上げられる。その後、鋼帯の両側に配置されたガスワイピングノズルから鋼帯の表面にワイピングガスを吹き付けて、鋼帯の表面に付着して引上げられた余剰の溶融金属を掻き取ることにより、溶融金属の付着量(以下、目付量とも称する。)が調節される。ここで、ガスワイピングノズルは、多様な鋼帯幅に対応するとともに、鋼帯引き上げ時の幅方向の位置ずれなどに対応するため、通常、鋼帯幅よりも幅広く構成され、鋼帯の幅方向端部より外側まで延びている。
 このようなガスワイピング方式では、ワイピングガスの吹き付けによる鋼帯の微小振動やめっき層の不規則な湯流れなどのために、めっき表面に波形流紋状の湯ジワ(湯ダレとも呼ばれる)を発生することが多い。このような湯ジワが生じためっき鋼板は、外塗装の用途においてめっき表面を塗装下地表面とした場合、塗膜の表面性状、特に平滑性が阻害され、外観の優れた塗装処理に適合すべき外装板に用いることができず、めっき鋼板の歩留まりに大きな影響を及ぼす。
 この問題を解決するために、従来、例えば、特許文献1に示すものが知られている。
 特許文献1に示す連続溶融金属めっき方法は、溶融金属めっき浴に連続的に鋼帯を浸漬し、溶融金属めっき浴から引き出された直後の鋼帯にガスワイピングノズルから気体を吹き付けてめっき付着量を制御するものである。そして、ガスワイピングノズル先端と鋼帯との距離Dと、ガスワイピングノズルギャップBの比で表されるD/B値に応じて、ガスワイピングノズルから噴射されるワイピングガスの温度Tを制御するようにしている。
 また、従前のガスワイピング方式では、鋼帯のエッジ部が中央部より過冷却される現象がワイピング時に発生し、鋼帯に反りが発生して幅方向のめっき付着量が不均一となり、亜鉛めっき付着量の下限を保証するために、無駄に多くの亜鉛を消費するという問題も生じることがある。
 この問題を解決するために、従来、例えば、特許文献2に示すものが知られている。
 特許文献2に示す連続溶融亜鉛めっきにおけるワイピング方法は、連続溶融亜鉛めっきにおいてガスワイピングノズルからワイピングガスを噴射させて被めっき鋼帯の表裏に付着している溶融亜鉛をワイピングするに際し、ワイピングガスの温度T(℃)と被めっき鋼帯の板厚D(mm)との間に下記の(1)式を満足させるようにワイピングガスを加熱するものである。
 ワイピングガス温度T(℃)≧-400D+400 …(1)
 また、従来のガスワイピングノズルとして、例えば、特許文献3に示すものも知られている。
 特許文献3に示すガスワイピングノズルは、溶融金属めっき浴から上方に引き上げられた鋼帯に対してガスを吹き付けて、鋼帯の表面に付着した溶融金属膜の膜厚を調節するものである。そして、このガスワイピングノズルは、互いに対向して設けられ、ガスが導入されるノズル室を形成する第1のリップ部及び第2のリップ部と、ノズル室から噴射されるガスの噴射口として、第1のリップ部及び第2のリップ部の各々の鋼帯側の端部の間に形成されるスリットと、ノズル室におけるスリット側に設けられ、第1のリップ部及び第2のリップ部を固定する固定部材と、を備えている。そして、固定部材には、固定部材に対してスリット側とスリットの逆側とを連通する第1連通孔が鋼帯の幅方向に沿って複数並設されている。
 この特許文献3に示すガスワイピングノズルによれば、ガスワイピングノズルを構成する部品の一部又は全部を交換するために、各部品を組み直す場合であっても、各組み立てについての組み立て後におけるスリットのギャップ(以下、スリットギャップとも称する)がばらつくことを抑制することができる。
特許第6011740号公報 特開平8-176776号公報 特開2018-178159号公報
 しかしながら、これら従来の特許文献1に示す連続溶融金属めっき方法、特許文献2に示す連続溶融亜鉛めっきにおけるワイピング方法及び特許文献3に示すガスワイピングノズルにあっては、以下の問題点があった。
 即ち、特許文献1に示す連続溶融金属めっき方法及び特許文献2に示す連続溶融亜鉛めっきにおけるワイピング方法の場合、ワイピングガスを加熱しガスワイピングノズルの周囲が高温雰囲気となるが、このワイピングガスの加熱に伴ってガスワイピングノズル自体も加熱される。ここで、特許文献1及び2においては、ガスワイピングノズルが、ガスワイピングノズルの鋼帯側の端部に設けられているガス噴射口としてのスリットの長さ方向に沿って一体物で製作されているか、分割されて製作されているかの記載がない。ガスワイピングノズルを製作する際に、ガスワイピングノズルの材質によっては一体物として製作することが困難であり、ガスワイピングノズルをスリットの長さ方向に沿って分割して製作しなければならない場合がある。この場合、ガスワイピングノズルをスリットの長さ方向に沿って分割して製作した際に、ガスワイピングノズルの周囲が高温雰囲気となると、ガスワイピングノズルの組み立ての仕方によってはガス噴射口としてのスリットの長さ方向に直交する幅方向のギャップが不均一となり、鋼帯の幅方向に沿う鋼帯のめっき付着量が不均一になるという問題がある。
 また、特許文献3に示すガスワイピングノズルの場合には、固定部材によって、ノズル室におけるスリット側において、第1のリップ部及び第2のリップ部を固定しているので、ガスワイピングノズルを構成する部品の一部又は全部を交換する際の各組み立てについての組み立て後におけるスリットギャップのばらつきを抑制することができる。
 しかしながら、特許文献3に示すガスワイピングノズルの場合には上側の第1のリップ部及び第2のリップ部のそれぞれは、ガス噴射口としてのスリットの長さ方向に沿って一体物で製作されており、第1のリップ部及び第2のリップ部のそれぞれをスリットの長さ方向に沿って分割して製作するものではない。このため、第1のリップ部及び第2のリップ部のそれぞれをスリットの長さ方向に沿って分割して製作した場合には、前述したガスワイピングノズルをスリットの長さ方向に沿って分割して製作した場合と同様の問題が生じる。
 従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、ガス噴射口としてのスリットの長さ方向に沿って分割して製作した際に、高温雰囲気下であっても、スリットの長さ方向に直交する幅方向のギャップをスリットの長さ方向に沿って均一に保持することができ、鋼帯の幅方向に沿う鋼帯のめっき付着量を均一にすることができるガスワイピングノズル及びこのガスワイピングノズルを用いた溶融金属めっき金属帯の製造方法を提供することにある。
 上記課題を解決するために、本発明の一態様に係るガスワイピングノズルは、溶融金属浴から引き上げられた金属帯にワイピングガスを吹き付けて、前記金属帯の表面に付着した溶融金属の付着量を調整するガスワイピングノズルであって、前記ガスワイピングノズルは第1のノズル部材及び第2のノズル部材を備え、前記ガスワイピングノズルの金属帯側の端部において、前記第1のノズル部材と前記第2のノズル部材との間にガス噴射口としてのスリットを形成し、前記第1のノズル部材及び前記第2のノズル部材の各々が前記スリットの長さ方向において複数個のノズル部材に分割され、前記第1のノズル部材の前記スリットの幅方向の厚みをT1、前記第2のノズル部材の前記スリットの幅方向の厚みをT2としたときに、前記スリットの長さ方向に沿って、前記スリットの長さ方向に直交する奥行方向のうちの少なくとも一か所で切断された前記第1のノズル部材及び前記第2のノズル部材の各々の断面における前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の長さが、前記第1のノズル部材について1.5T1以上、前記第2のノズル部材について1.5T2以上であることを要旨とする。
 また、本発明の別の態様に係る溶融金属めっき金属帯の製造方法は、前述のガスワイピングノズルを、溶融金属浴から引き上げられた金属帯の両面側に一対配置し、これら一対のガスワイピングノズルの各々のスリットから前記金属帯の各面にワイピングガスを吹き付けて、前記金属帯の両面に付着した溶融金属の付着量を調整して、連続的に溶融金属めっき金属帯を製造することを要旨とする。
 本発明に係るガスワイピングノズル及び溶融金属めっき金属帯の製造方法によれば、ガス噴射口としてのスリットの長さ方向に沿って分割して製作した際に、高温雰囲気下であっても、スリットの長さ方向に直交する幅方向のギャップをスリットの長さ方向に沿って均一に保持することができ、鋼帯の幅方向に沿う鋼帯のめっき付着量を均一にすることができるガスワイピングノズル及びこのガスワイピングノズルを用いた溶融金属めっき金属帯の製造方法を提供できる。
本発明の一実施形態に係るガスワイピングノズルを備えた連続溶融金属めっき設備の概略構成を示す模式図である。 図1に示す連続溶融金属めっき設備に用いられるガスワイピングノズルの概略構成を示す斜視図である。 図2におけるA-A線に沿う断面図である。 図3におけるB-B線に沿う断面図である。 参考例に係るガスワイピングノズルの図4と同様の断面図である。 図5に示す参考例に係るガスワイピングノズルにおいて、第1のノズル部材及び第2のノズル部材の各々の分割面にズレが生じている様子を説明するための断面図である。 第1変形例に係るガスワイピングノズルの図4と同様の断面図である。 第2変形例に係るガスワイピングノズルの図4と同様の断面図である。 第3変形例に係るガスワイピングノズルの図4と同様の断面図である。 第4変形例に係るガスワイピングノズルの図4と同様の断面図である。 第5変形例に係るガスワイピングノズルの図4と同様の断面図である。 第6変形例に係るガスワイピングノズルの図4と同様の断面図である。 第7変形例に係るガスワイピングノズルの図4と同様の断面図である。 第8変形例に係るガスワイピングノズルの図4と同様の断面図である。 図13に示す第7変形例に係るガスワイピングノズルの概略平面図である。 第9変形例に係るガスワイピングノズルの図4と同様の断面図である。 図16において、第1のノズル部材の溝部、第2のノズル部材の溝部、シム部材、及びピンの近傍を拡大して示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。
 また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 図1には、本発明の一実施形態に係るガスワイピングノズルを備えた連続溶融金属めっき設備の概略構成が示されている。
 図1に示す連続溶融金属めっき設備1は、金属帯としての鋼帯Sを、溶融金属からなる溶融金属浴4に浸漬することにより、鋼帯Sの表面に溶融金属を連続的に付着させた後、溶融金属を所定の付着量にするための設備である。
 連続溶融金属めっき設備1は、スナウト2と、めっき槽3と、シンクロール5と、サポートロール6とを備えている。
 スナウト2は、鋼帯Sが通過する空間を区画する、鋼帯Sの進行方向に垂直な断面が矩形状の部材であり、その上端が例えば連続焼鈍炉の出口側に接続され、下端がめっき槽3内に貯留された溶融金属浴4内に浸漬される。本実施形態においては、還元雰囲気の連続焼鈍炉で焼鈍された鋼帯Sは、スナウト2内を通過して、めっき槽3内の溶融金属浴4中に連続的に導入される。その後、鋼帯Sは、溶融金属浴4中のシンクロール5、サポートロール6を介して溶融金属浴4からその上方に引き上げられる。
 そして、溶融金属浴4からその上方に引き上げられた鋼帯Sの両面には、当該鋼帯Sの両面側に一対配置されたガスワイピングノズル10(後述するスリット14)からワイピングガスが吹き付けられて、鋼帯Sの両面に付着した溶融金属の付着量が調整される。その後、鋼帯Sは、図示しない冷却設備により冷却されて後工程に導かれ、連続的に溶融金属めっき鋼帯Sが製造される。
 ここで、鋼帯Sの両面側に配置された一対のガスワイピングノズル10の各々は、図2に示すように、ノズルヘッダ15と、ノズルヘッダ15に連結された上側に配置される第1のノズル部材11及び下側に配置される第2のノズル部材12とを備えている。第1のノズル部材11及び第2のノズル部材12は、互いに対向して設けられており、ガス噴射口としてのスリット14を各々の鋼帯S側の傾斜端部(端部)11c,12c間に長さ方向Xに細長く延びるように形成してある。そして、各ガスワイピングノズル10は、スリット14の長さ方向Xが鋼帯Sの板幅方向に沿い、スリット14の長さ方向Xに直交する幅方向Zが鋼帯Sの板長方向(搬送方向)に沿い、スリット14の長さ方向Xに直交する奥行方向Yが鋼帯Sの板厚方向に沿うように、鋼帯Sの各面側に配置される。スリットの幅方向Zは、ガスワイピングノズル10の上下方向と同一方向である。そして、片方のガスワイピングノズル10からはスリット14からワイピングガスが鋼帯Sの片面に向けて吹付けられる。また、他方のガスワイピングノズル10からはスリット14からワイピングガスが鋼帯Sの他面に向けて吹付けられる。これにより、鋼帯Sの両面において、余剰な溶融金属が掻き取られて、めっき(溶融金属)の付着量が調整され、かつ鋼帯Sの板幅方向及び板長方向で均一化される。各ガスワイピングノズル10は、多様な鋼帯Sの板幅に対応するとともに、鋼帯Sの引き上げ時の幅方向の位置ずれなどに対応するために、スリット14の長さが鋼帯Sの板幅よりも長くなるように、鋼帯Sの板幅よりも長く構成され、鋼帯Sの幅方向端部より外側まで延びている。
 ここで、各ガスワイピングノズル10のノズルヘッダ15は、長さ方向X、奥行方向Y及び幅方向Yに延びる略矩形状に形成され、その材質は例えばクロムモリブデン鋼などの金属製である。そして、ノズルヘッダ15の基端部(後端部)には、ガス供給管17が接続されるとともに、ガス供給管27と後述する中空部13とを連通するガス供給路16が形成されている。
 また、上側に配置される第1のノズル部材11は、後に詳細に説明するが図2に示すようにスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材11A,11B,11Cに分割されている。そして、各ノズル部材11A,11B,11Cは、図2乃至図4に示すように、長さ方向X及び奥行き方向(前後方向)Yに所定の厚みT1で延びる平板部11aと、平板部11aの後端から上方に突出するフランジ部11bと、平板部11aの前端から斜め下方に延びる前述の傾斜端部11cとを備えている。各ノズル部材11A,11B,11Cの平板部11aの下側には後述する中空部を形成する中空部形成用空間13aが形成されている。
 また、下側に配置される第2のノズル部材12も、図2に示すようにスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材12A,12B,12Cに分割されている。そして、各ノズル部材12A,12B,12Cは、図2乃至図4に示すように、長さ方向X及び奥行き方向(前後方向)Yに所定の厚みT2で延びる平板部12aと、平板部12aの後端から上方に突出するフランジ部12bと、平板部12aの前端から斜め下方に延びる前述の傾斜端部12cとを備えている。各ノズル部材12A,12B,12Cの平板部12aの上側には後述する中空部を形成する中空部形成用空間13bが形成されている。
 そして、第1のノズル部材11と第2のノズル部材12とが上下に合わされて後述するシム部材30によって固定され、第1のノズル部材11のフランジ部11bの後端面11ba及び第2のノズル部材12のフランジ部12bの後端面12baのそれぞれがノズルヘッダ15の前面に連結される。これにより、第1のノズル部材11に形成された中空部形成用空間13aと、第2のノズル部材12に形成された中空部形成用空間13bとにより中空部13が形成される。
 そして、第1のノズル部材11の鋼帯S側の傾斜端部11cの下面及び第2のノズル部材12の鋼帯S側の傾斜端部12cの上面は、対向した平面となっており、これら平面間が前述したガス噴射口としてのスリット14となる。このスリット14は、前述したように長さ方向Xに細長く延び、長さ方向Xの長さはL1(図2参照)、長さ方向Xに直交する幅方向Zの幅、即ちギャップは、L3(図3参照)、長さ方向Xに直交する奥行方向Yの奥行きはL2(図3参照)となっている。スリット14の寸法は、特に限定されないが、スリット14の長さL1は鋼帯Sの幅に応じて余裕を見て設定され、例えば、1500~2500mm程度とすることができる。また、スリット14のギャップL3は例えば0.5~3.0mm程度とすることができる。更に、スリット14の奥行きはL2は例えば5~30mm程度とすることができる。
 ここで、スリット14は、奥行方向Yで中空部13に連通している。中空部13は、均圧部として機能し、ガス供給管17からガス供給路16を介して中空部13内に導入されたワイピングガスは、スリット14の長さ方向Xの全体に亘って均一な圧力で噴射される。
 また、各ガスワイピングノズル10は、図2乃至図4に示すように、スリット14の長さ方向Xに直交する幅方向YのギャップL3を調整する一対のシム部材30を備えている。
 これらシム部材30は、第1のノズル部材11及び第2のノズル部材12を固定する機能をも有する。これらシム部材30によって第1のノズル部材11及び第2のノズル部材12を固定するために、第1のノズル部材11及び第2のノズル部材12の各々、具体的にはノズル部材11A,11C及びノズル部材12A,12Cの各々は、図4に示すように、これらシム部材30が嵌め込まれる溝部28,29をそれぞれ有している。
 また、第1のノズル部材11、第2のノズル部材12、及び各シム部材30は、溶融亜鉛などの溶融金属に対して濡れ性が低く、塑性変形しづらく、かつ線膨張係数の低いセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料を使用する。具体的には、セラミックス材として、アルミナ、サイアロン、窒化ケイ素、ジルコニア、チタン酸バリウム、ハイドロキシアパタイト、炭化ケイ素(SiC)、蛍石等が、カーボン材として、黒鉛が挙げられるが、これらに限定されるものではない。また、黒鉛は高酸化雰囲気では、酸化して揮発するため、表層にシリカなどのコーティングを施すことが好ましい。
 なお、インバーやタングステンは、線膨張係数は低いが、塑性変形するため、第1のノズル部材11、第2のノズル部材12、及び各シム部材30の材質として、特に、各シム部材30の材質として不適である。
 ここで、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としては、曲げ強度が600MPaのものが好ましく、800MPa以上のものがより好ましい。従って、セラミックス材としては、ジルコニア、窒化ケイ素、サイアロンなどを用いることが好ましい。これら材質を用いれば塑性変形しづらく、破壊強度以下であれば実質的な変形を抑制することができる。
 また、実機操業中に亜鉛が第1のノズル部材11及び第2のノズル部材12に付着してスリット14を閉塞すると、その箇所で部分的に亜鉛の付着量が増加し、鋼帯Sの進行方向と同じ向きに鋼帯Sには線状の欠陥が生じる。このため、第1のノズル部材11及び第2のノズル部材12に付着した亜鉛は、専用の治具によって取り除かれる。このとき、ノズル表面の硬度が低い場合には、割れや欠けが発生するおそれがある。このような割れ、欠けを回避するために、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料は、ビッカース硬さ800Hv以上が好ましく、1000Hv以上がより好ましい。同様の理由から、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料の破壊靱性は5MPa・m1/2以上であることが好ましく、5MPa・m1/2以上であることがより好ましい。
 また、ワイピングガスとして高温ガスを使用する場合、ノズル材質の耐熱衝撃性が高温ガス温度以下だと割れが発生するおそれがある。セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料の耐熱衝撃性はワイピングガスとして使用する温度以上であることが望ましく、耐熱衝撃性430℃以上のものが好ましく、耐熱衝撃性600℃以上のものがより好ましい。
 また、熱影響のノズル変形を抑制するという観点から、第1のノズル部材11(ノズル部材11A,11B,11C)及び第2のノズル部材12(ノズル部材12A,12B,12C)の線膨張係数は、これら第1のノズル部材11及び第2のノズル部材12と固定されるノズルヘッダ15の線膨張係数に対し1/2以下であることが好ましく、1/3以下であることがより好ましい。ノズルヘッダ15の材質としては例えばステンレス鋼などが適用され、その線膨張係数は10~18×10-6/K程度である。
 第1のノズル部材11及び第2のノズル部材12を製作するに際し、塑性変形しづらい材料としてセラミックスを選定した場合、セラミックスを焼結する炉サイズなどの制約から一般的ノズル幅1500mm以上を一体物として製作することが困難である。
 また、第1のノズル部材11及び第2のノズル部材12を製作するに際し、塑性変形しづらい材料としてカーボン材を選定した場合も同様に、成形に用いる金型サイズ制約などの理由から一般的ノズル幅1500mm以上を一体物として製作することが困難である。
 更に、第1のノズル部材11及び第2のノズル部材12を製作するに際し、炭素繊維強化炭素複合材料およびセラミックス基複合材料を選定した場合も同様に、成形する炉の制約により一般的ノズル幅1500mm以上を一体物として製作することが困難である。
 そのため、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料を選定して第1のノズル部材11及び第2のノズル部材12を製作する場合、前述したように、第1のノズル部材11をスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材11A,11B,11Cに分割し、第2のノズル部材12をスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材12A,12B,12Cに分割して製作している。
 そして、本実施形態にあっては、図4に示すように、スリット14の長さ方向Xに沿って、スリット14の長さ方向Xに直交する奥行方向Yのうちの少なくとも一か所で切断された第1のノズル部材11及び第2のノズル部材12の各々の断面における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さ(D1+D2+D3)は、第1のノズル部材11のスリット14の幅方向Zの厚みをT1とし、第2のノズル部材12のスリット14の幅方向Zの厚みをT2としたときに、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上としてある。
 なお、第1のノズル部材11のスリット14の幅方向Zの厚みをT1とし、第2のノズル部材12のスリット14の幅方向Zの厚みをT2としたときに、T1とT2は同一の厚みであっても、異なる厚みであってもよい。
 以下、分割面20の長さを1.5T1あるいは1.5T2以上とする理由について述べる。
 第1のノズル部材11及び第2のノズル部材12の各々をスリット14の長さ方向Xに沿って複数の分割面20で複数個のノズル部材11A,11B,11C、12A,12B,12Cに分割する場合、図5に示すように、分割面20の形状をノズル厚み方向(スリット14の幅方向Z)に平行な直線状の形状とし、その長さを第1のノズル部材11及び第2のノズル部材12の各々のスリット14の幅方向Zの厚みと同じとし、分割面20に接着剤を塗布して組み合わせる手法が考えられる。
 しかしながら、この手法では、一対のシム部材30によって上下が固定されていないスリット14の長さ方向Xにおける中央のノズル部材11B,12Bがスリット14の長さ方向に直交する幅方向(図1におけるZ方向)の力に対して弱く、図6に示すように高温ガスを吐出する際の熱変形で分割面20にスリット14のギャップが広がる方向にズレ31が生じる。これ以外にも、スリット14に詰まった亜鉛を取り除くために行うノズル清掃やガスの内圧の影響で分割面20にズレ31が生じる。このズレ31によって図6に示すように、中空部13の形状が変化してしまい、ノズル幅方向でスリット14のギャップの形状が変化する。スリット14のギャップの形状が異なればスリット14の長さ方向Xで吐出されるガス量が異なることになり、スリット14の長さ方向Xでワイピング能力に差が生じる。その結果、鋼帯Sの幅方向に沿う鋼帯Sのめっき付着量を均一にすることができないことになる。また、図6に示すようにスリット14のギャップが拡大すると、ワイピングガスで飛沫した亜鉛がスリット14内に侵入する確率が上昇する。その結果、スリット14を亜鉛が閉塞することによって生じる線状の付着量ムラ(線状マーク)が発生しやすくなる。
 この問題を解決するためには、スリット14の長さ方向Xにおける中央部のノズル部材11B,12Bのスリット14の幅方向Zへの変形の阻害、すなわち各ノズル部材11A,11B,11C、12A,12B,12Cの締結力を強化する必要がある。このため、本実施形態にあっては、図4に示すように、スリット14の長さ方向Xに沿って、奥行方向Yのうちの少なくとも一か所で切断された第1のノズル部材11及び第2のノズル部材12の各々の断面における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さ(D1+D2+D3)が、第1のノズル部材11のスリット14の幅方向Zの厚み(平板部11aの厚み)をT1とし、第2のノズル部材12のスリット14の幅方向Zの厚み(平板部12aの厚み)をT2としたときに、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上とした。
 ここで、図4においては、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状が、段差20bを有する形状となっている。つまり、第1のノズル部材11の各分割面20は、第1のノズル部材11(平板部11a)の上面から下方に直線状に延びる第1直線状部20aと、第1直線状部20aの下端からスリット14の長さ方向Xにおいて外方に直線状に延びる段差20bと、段差20bの先端から第1のノズル部材11(平板部11a)の下面に向けて下方に直線状に延びる第2直線状部20cとを備えている。また、第2のノズル部材12の各分割面20は、第2のノズル部材12(平板部12a)の下面から上方に直線状に延びる第1直線状部20aと、第1直線状部20aの上端からスリット14の長さ方向Xにおいて外方に直線状に延びる段差20bと、段差20bの先端から第2のノズル部材12(平板部12a)の上面に向けて上方に直線状に延びる第2直線状部20cとを備えている。
 そして、各分割面20の第1直線状部20aの長さD1、段差20bの長さD2及び第2直線状部20cの長さD3を加算した長さ((D1+D2+D3)が、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上となっている。
 ここで、各分割面20の長さ(D1+D2+D3)が1.5T1あるいは1.5T2未満だと、分割面20の形状が図5に示す場合に近づき、スリット14の長さ方向Xにおける中央部のノズル部材11B,12Bのスリット14の幅方向Zへの移動が容易になり、段差20bを有する形状に加工した効果が発揮され難い。
 一方、各分割面20の長さ(D1+D2+D3)が5T1あるいは5T2よりも大きいと、各ノズル部材11A,11B,11C、12A,12B,12Cの締結力の向上効果が飽和するととともに、さらに、各分割面20の長さが長くなりすぎると、割れの懸念が生じる。従って、第1のノズル部材11の分割面20の長さの上限が5T1、第2のノズル部材12の分割面20の長さの上限が5T2であることが好ましい。
 なお、各分割面20の長さを1.5T1あるいは1.5T2以上とするために、図7に示す第1変形例に係るガスワイピングノズル10のように、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状を、スリット14の幅方向Z(上下方向)に対して傾斜するテーパ形状としてもよい。この場合、各分割面20の長さE1が、第1のノズル部材11について1.5T1以上となり、第2のノズル部材12について1.5T2以上となるように、分割面20を傾斜させる。一方、この場合であっても、各分割面20の長さE1の上限が5T1あるいは5T2であることが好ましい。
 ここで、図4及び図7に示す場合においては、一般的にスリット14のギャップはガスの内圧や熱影響によって拡大傾向にあることから、ノズル分割をスリット14のギャップ拡大を抑制するという思想で設計されている。
 これに対して、スリット14のギャップ縮小が問題となる場合がある。このような場合には、分割面20の形状を図8あるいは図9に示すような形状とすることで、スリット14のギャップ縮小を回避することができる。
 図8には、第2変形例に係るガスワイピングノズルの断面が示されており、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状が、図4に示す各分割面20の形状と対称形状をなしている。つまり、第1のノズル部材11の各分割面20は、第1のノズル部材11(平板部11a)の上面から下方に直線状に延びる第1直線状部20aと、第1直線状部20aの下端からスリット14の長さ方向Xにおいて内方に直線状に延びる段差20bと、段差20bの先端から第1のノズル部材11(平板部11a)の下面に向けて下方に直線状に延びる第2直線状部20cとを備えている。また、第2のノズル部材12の各分割面20も、図8において符号は記載しないが、第2のノズル部材12(平板部11a)の下面から上方に直線状に延びる第1直線状部20aと、第1直線状部20aの上端からスリット14の長さ方向Xにおいて内方に直線状に延びる段差20bと、段差20bの先端から第2のノズル部材12(平板部12a)の上面に向けて上方に直線状に延びる第2直線状部20cとを備えている。
 そして、各分割面20の第1直線状部20aの長さD1、段差20bの長さD2及び第2直線状部20cの長さD3を加算した長さ((D1+D2+D3)が、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上となっている。
 また、図9には、第3変形例に係るガスワイピングノズルの断面が示されており、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状が、図7に示す第1変形例に係るガスワイピングノズル10における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状と対称形状となっている。
 また、第1のノズル部材11及び第2のノズル部材12の各々をスリット14の長さ方向Xに沿って複数の分割面20で複数個に分割するに際しては、図4に示す場合(3個に分割)と異なり、図10に示す第4変形例に係るガスワイピングノズルのように、4個のノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割するようにしてもよい。
 また、各分割面20の長さを1.5T1あるいは1.5T2以上とするために、図10に示す第4変形例に係るガスワイピングノズルのように、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状を、分割された隣接するノズル部材11A,11B、11B,11C、11C,11D、12A,12B、12B,12C、12C,12Dの凹面20dと凸面20eとが嵌合する嵌合面形状としてもよい。分割された隣接するノズル部材11A,11Bを例にとると、分割面20の形状は、ノズル部材11Aに形成された凹面20dと、ノズル部材11Bに形成された凸面20eとが嵌合する鍵型形状となっている。
 図10に示す第4変形例に係るガスワイピングノズル10において、各分割面20の長さは、同様の長さであり、第1のノズル部材11に形成された分割面20の長さについて述べる。この分割面20の長さは、第1のノズル部材11(平板部11a)の上面から下方に直線状に延びる第1直線状部の長さF1と、第1直線状部の下端からスリット14の長さ方向Xにおいて外方に直線状に延びる第2直線状部の長さF2と、第2直線状部の先端から下方に直線状に延びる第3直線状部の長さF3と、第3直線状部の下端からスリット14の長さ方向Xにおいて内方に直線状に延びる第4直線状部の長さF4と、第4直線状部の先端から下方に第1のノズル部材11(平板部11a)の下面に向けて直線状に延びる第5直線状部の長さF5との和である。
 このように、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状を嵌合面形状とすることで、各ノズル部材11A,11B,11C、12A,12B,12Cの締結力をより強力にすることができ、分割面20にスリット14のギャップが拡大したりあるいは縮小したりするような外力が作用したとしても適切にギャップの拡大、縮小を回避することができる。
 なお、各分割面20の形状を嵌合面形状とするためにくの字形の形状としてもよい。
 また、各分割面20の長さを1.5T1あるいは1.5T2以上とするために、図11に示す第5変形例に係るガスワイピングノズルのように、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状を、分割された隣接するノズル部材11A,11B、11B,11C、11C,11D、12A,12B、12B,12C、12C,12Dではめ合わせてもよい。
 図11に示す第5変形例に係るガスワイピングノズル10において、各分割面20の長さは、図4に示すガスワイピングノズル10と同様に、第1直線状部20aの長さD1、段差20bの長さD2及び第2直線状部20cの長さD3を加算した長さ(D1+D2+D3)であり、第1のノズル部材11について1.5T1以上、第2ノズル部材12について1.5T2以上となっている。図11に示す第2変形例に係るガスワイピングノズル10はノズルを4分割した例であるが、例えばノズルを5分割する場合は図12に示す第6変形例に係るガスワイピングノズル10のような構造とすることができる。
 また、各ノズル部材11A,11B,11C、12A,12B,12Cの締結力を高めるために、図13に示す第7変形例に係るガスワイピングノズルや図14に示す第8変形例に係るガスワイピングノズルのように、第1のノズル部材11の分割されたノズル部材11A,11B、11B,11C同士、第2のノズル部材12の分割されたノズル部材12A,12B、12B,12C同士の接続にピン32を使用するようにしてもよい。これにより、分割されたノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士の締結力をより高めることができる。
 ここで、ピン32の断面形状は矩形でも円形でもよい。図13に示す第7変形例に係るガスワイピングノズルにおいて、ピン32をスリット14の幅方向Zに分割面20の段差20bに差し込む場合、ピン32のスリット長さ方向Xの幅は段差20bの長さD2未満でなければならない。
 また、図14に示す第8変形例に係るガスワイピングノズルにおいて、ピン32をスリット14の幅方向Zにテーパ形状の分割面20に差し込む場合、ピン32のスリット長さ方向Xの幅はテーパ形状の分割面20の先端と尾端との間の幅未満でなければならない。
 また、図13に示す第7変形例に係るガスワイピングノズル及び図14に示す第8変形例に係るガスワイピングノズルにおいて、図15に示すように、ピン32を挿し込む場合、ピン32はスリット長さ方向X、スリット奥行方向Yに任意の数、任意の位置に差し込むことができる。
 次に、第1のノズル部材11及び第2のノズル部材12を固定する方法について図1乃至図4を参照して説明する。
 先ず、第1のノズル部材11及び第2のノズル部材12の各々を組み立てる。この第1のノズル部材11及び第2のノズル部材12の各々を組み立てに先立ち、第1のノズル部材11のノズル部材11A及び11Cに後端面11baから溝加工を施して溝部28を形成するとともに、第2のノズル部材12のノズル部材12A及び12Cに後端面12baから溝加工を施して溝部29を形成しておく。
 そして、第1のノズル部材11を組み立てるには、隣接するノズル部材11A,11Bを分割面20で合わせ、セラミックス用の接着剤を塗布することによって隣接するノズル部材11A,11Bを固定する。また、隣接するノズル部材11B,11Cを分割面20で合わせ、セラミックス用の接着剤を塗布することによって隣接するノズル部材11B,11Cを固定する。これにより、第1のノズル部材11の組み立てが完了する。
 また、第2のノズル部材12を組み立てるには、隣接するノズル部材12A,12Bを分割面20で合わせ、セラミックス用の接着剤を塗布することによって隣接するノズル部材12A,12Bを固定する。また、隣接するノズル部材12B,12Cを分割面20で合わせ、セラミックス用の接着剤を塗布することによって隣接するノズル部材12B,12Cを固定する。これにより、第2のノズル部材12の組み立てが完了する。なお、第1のノズル部材11及び第2のノズル部材12の組み立てに使用する接着剤としては、ジルコニア・シリカを主成分とするもの、アルミナを主成分とするもの、シリカを主成分とするものなどが挙げられるが、これに限定されない。
 その後、組み立てた第1のノズル部材11を上側、組み立てた第2のノズル部材12を下側に配置するとともに、第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに、シム部材30を第1のノズル部材11及び第2のノズル部材12の後端面11ba、12ba側から溝部28,29が延びる方向と平行な方向に嵌め込む。この際に、前述と同様の接着材を第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに塗布する。
 これにより、第1のノズル部材11及び第2のノズル部材12は固定される。
 そして、固定された第1のノズル部材11の後端面11ba及び第2のノズル部材12の後端面12baを図示しないねじ等の固定部材によりノズルヘッダ15の前端面に連結すればよい。
 本実施形態に係るガスワイピングノズル10が高温雰囲気下に置かれ、スリット14から高温ガスを吐出する際には、その際の熱変形で分割面20にスリット14のギャップL3が拡大する方向にずれが生じようとする。しかし、本実施形態にあっては、図4に示すように、スリット14の長さ方向Xに沿って切断された第1のノズル部材11及び第2のノズル部材12の各々の断面における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さ(D1+D2+D3)が、第1のノズル部材11のスリット14の幅方向Zの厚み(平板部11aの厚み)をT1とし、第2のノズル部材12のスリット14の幅方向Zの厚み(平板部12aの厚み)をT2としたときに、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上としてある。このため、スリット14の長さ方向Xにおける中央部のノズル部材11B,12Bのスリット14の幅方向Zへの変形の阻害、すなわち各ノズル部材11A,11B,11C、12A,12B,12Cの締結力が強化されている。これにより、熱変形で分割面20にスリット14のギャップL3が拡大する方向にずれが生じることなく、スリット14の長さ方向Xに直交する幅方向ZのギャップL3をスリット14の長さ方向Xに沿って均一に保持することができる。これにより、スリット14の長さ方向Xで吐出されるガス量が均一になり、スリット14の長さ方向Xでワイピング能力に差が生じることなく、鋼帯Sの幅方向に沿う鋼帯Sのめっき付着量を均一にすることができる。
 また、本実施形態に係るガスワイピングノズル10によれば、第1のノズル部材11の分割面20の長さ(D1+D2+D3)の上限が5T1、第2のノズル部材12の分割面20の長さ(D1+D2+D3)の上限が5T2である。これにより、第1のノズル部材11及び第2のノズル部材12の各々を構成するノズル部材11A,11B,11C、12A,12B,12Cの割れを防止することができる。
 また、図2において、第1のノズル部材11及び第2のノズル部材12の各々の奥行方向Yのうちの少なくとも一か所において1.5T1あるいは1.5T2以上の分割面20の長さを確保することができれば、スリット14のギャップを一定に保持することが可能である。しかし、この条件では第1のノズル部材11(ノズル部材11A,11B,11C)及び第2のノズル部材12(ノスル部材12A,12B,12C)に割れが発生する可能性がある。この割れを抑制するために、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さを第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上とする奥行方向Yの領域は、第1のノズル部材11及び第2のノズル部材12の各々の奥行方向の全長L(図3参照)の1/3以上の大きさの領域であることが好ましく、全長Lと等しい大きさの領域であることがより好ましい。
 また、本実施形態に係るガスワイピングノズル10にあっては、第1のノズル部材11、第2のノズル部材12及びシム部材30が全てセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料なので、線膨張係数が小さく、かつそれぞれの間で線膨張係数の差はない。このため、高温雰囲気下であっても、ガス噴射口としてのスリット14の長さ方向Xに直交する幅方向のギャップL3をスリットの長さ方向Xに沿って均一に保持することができる。
 ここで、ノズルヘッダ15もセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とすれば、スリット14のギャップL3を均一に保持するのにより効果的であるが、高圧のワイピングガスに耐えられる(最低でも60kPaに耐え得る)セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とするのが困難であるため、ノズルヘッダ15はセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としなかった。
 また、特許文献3に示すガスワイピングノズルの場合には、固定部材によって、ノズル室におけるスリット側において、第1のリップ部及び第2のリップ部を固定しているので、ガスワイピングノズルを構成する部品の一部又は全部を交換する際の各組み立てについての組み立て後におけるスリットギャップのばらつきを抑制することができる。
 しかしながら、特許文献3に示すガスワイピングノズルにおける上下ノズル部材を固定する固定部材やこの固定部材を固定する際に用いるボルトなどが金属製であるため、高温雰囲気下で当該固定部材やボルトなどが延び、これによってスリットギャップが変化し、スリットのギャップをスリットの長さ方向に沿って均一に保持することができないという問題がある。
 これに対して、本実施形態に係るガスワイピングノズル10にあっては、第1のノズル部材11及び第2のノズル部材12をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とするだけでなく、シム部材30をもセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とし、さらに、シム部材30に、第1のノズル部材11及び第2のノズル部材12の固定機能をも持たせている。このため、高温雰囲気下でスリット14のギャップL3を広げように作用する第1のノズル部材11及び第2のノズル部材12を固定するための部材が存在しない。シム部材30は、塑性変形しづらい材質であるため、高温雰囲気下であっても、ガス噴射口としてのスリット14のギャップL3をスリット14の長さ方向Xに沿って均一に保持することができる。
 また、シム部材30に第1のノズル部材11及び第2のノズル部材12の固定機能を持たせずに、セラミックス材の第1のノズル部材11及び第2のノズル部材12を金属ボルトにより固定したとする。この場合、セラミックス材の第1のノズル部材11及び第2のノズル部材12にボルト穴を開け、金属ボルトを当該ボルト穴に閉め込む必要がある。この場合、金属ボルトの締め込み時のトルクや熱膨張によってセラミックス材である第1のノズル部材11及び第2のノズル部材12が破損してしまうおそれがある。
 これに対して、本実施形態に係るガスワイピングノズル10にあっては、第1のノズル部材11及び第2のノズル部材12をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とするだけでなく、シム部材30をもセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料とし、さらに、シム部材30に、第1のノズル部材11及び第2のノズル部材12の固定機能をも持たせている。このため、金属ボルトの締め込み時のトルクや熱膨張によって第1のノズル部材11及び第2のノズル部材12が破損してしまうことはない。
 次に、図16及び図17を参照して、第9変形例に係るガスワイピングノズルについて説明する。
 図16及び図17に示すガスワイピングノズル10は、図4に示すガスワイピングノズル10と基本構成は同様であるが、第1のノズル部材11の溝部28とシム部材30の接続にピン33を使用するとともに、第2のノズル部材12の溝部29とシム部材30の接続にピン33を使用する点で図4に示すガスワイピングノズル10と相違している。
 図16及び図17に示す第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29の各々の断面形状は、長方形状となっている。そして、第1のノズル部材11の溝部28は後端面11ba(図3参照)から前方に向かって延びている。また、第2のノズル部材12の溝部29は後端面12ba(図3参照)から前方に向かって延びている。また、溝部28における角部28a及び溝部29における角部29aはアール状に形成してもよい。これにより、応力の集中を防止し、シム部材30の破損を防止することができる。
 また、シム部材30は、直方体形状であり、その断面形状は第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29の各々に嵌め込まれる形状となっている。そして、図17に示すように、溝部28,29の幅に対応したシム部材30の幅C1は5~20mm程度、シム部材30の高さC2は5~40mm程度としてある。
 そして、第1のノズル部材11及び第2のノズル部材12の固定に際し、第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29の各々にシム部材30を嵌め込む。更に、複数のピン33を用いて第1のノズル部材11の溝部28とシム部材30との接続、及び第2のノズル部材12の溝部29とシム部材30との接続を行う。このように、第7変形例においては、第1のノズル部材11及び第2のノズル部材12を組み合わせる前にシム部材70を嵌め込むことができるので、シム部材70を第1のノズル部材11及び第2のノズル部材12の各々の後端面11ba、12baから溝部28、29に挿入しなくても組み立てが可能となる。従って、シム部材70は、第1のノズル部材11及び第2のノズル部材12の奥行方向Yにおいて複数個所設けてもよく、これによりスリット14のギャップL3をより高精度に保持することができる。
 ここで、ピン33は、本実施形態にあっては、図16に示すように、第1のノズル部材11の溝部28とシム部材30との接続に用いられる2つのピンと、第2のノズル部材12の溝部29とシム部材30との接続に用いられる2つのピンの合計4つのピン33が用いられる。シム部材30を第1のノズル部材11及び第2のノズル部材12の奥行方向Yにおいて複数個所設ける場合、シム部材30の個数に応じて用いるピンの数を増やせば良い。
 そして、第1のノズル部材11の溝部28とシム部材30との接続に際し、ピン33は、図16及び図17に示すように、溝部28,29にシム部材30が嵌め込まれた後、第1のノズル部材11の側面からシム部材30に所定の深さC3に至るまで差し込まれる。同様に、第2のノズル部材12の溝部29とシム部材30との接続に際し、ピン33は、図16及び図17に示すように、溝部28,29にシム部材30が嵌め込まれた後、第2のノズル部材12の側面からシム部材30に対し所定の深さC3に至るまで差し込まれる。
 なお、各ピン33は、本実施形態では、円柱で形成され、その直径C4はΦ1~10mm程度、ピン33の差し込み深さC3は1~15mm程度とする。但し、ピン33の差し込み深さC3<シム部材30の幅C1、ピン33の直径C4<シム部材30の高さC2とする。各ピン33の材質としても同様に、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料が好ましい。また、各ピン33の曲げ強度は、600MPa以上のものが好ましく、800MPa以上のものがより好ましい。従って、セラミックス材としてはジルコニア、窒化ケイ素、サイアロンなどを用いることが好ましい。
 そして、図16及び図17に示すガスワイピングノズル10が高温雰囲気下に置かれた場合、例えば、ワイピングガスを加熱しこのワイピングガスの加熱に伴ってガスワイピングノズル10自体も加熱された場合、金属製のノズルヘッダ15(図1及び図2参照)が熱膨張により上下方向、即ちスリット14の幅方向Zに延びようとする。これにより、第1のノズル部材11及び第2のノズル部材12もそれに引張られ、上下に離れようとする。しかし、第1のノズル部材11及び第2のノズル部材12がピン33によってシム部材30に接続されており、シム部材30は塑性変形しづらい材質なので、第1のノズル部材11及び第2のノズル部材12は上下に離れない。第1のノズル部材11及び第2のノズル部材12が上下に離れないことから、第1のノズル部材11及び第2のノズル部材12の鋼帯S側の傾斜端部11c,12c間に形成されるスリット14のギャップL3が保持される。
 次に、鋼帯Sの製造においては、ガスワイピングノズル10のスリット14から噴射した直後のワイピングガスの温度T(℃)が、溶融金属の融点T(℃)との関係で、T-150≦T≦T+250を満たすように、ワイピングガスの温度制御を行うことが好ましい。当該ワイピングガスの温度T(℃)をこの範囲で制御すると、溶融金属の冷却及び凝固を抑制できるため、粘度ムラが生じにくくなり、湯ジワの発生を抑制することができる。一方、当該ワイピングガスの温度T(℃)がT-150℃未満で低すぎると、溶融金属の流動性に影響を及ぼさないため、湯ジワの発生抑制には効果がない。また、当該ワイピングガスの温度T(℃)がT+250℃よりも高いと、合金化が促進して、鋼板の外観が悪化してしまう。
 また、ガスワイピングノズル10に供給するワイピングガスの昇温方法については、特に限定されない。例えば、熱交換器で加熱昇温して供給する方法、焼鈍炉の燃焼排ガスと空気とを混合する方法が挙げられる。
 また、本実施形態に係るガスワイピングノズル及び溶融金属めっき金属帯の製造方法を適用して製造される溶融金属めっき金属帯としては、溶融亜鉛めっき鋼帯が挙げられる。この溶融亜鉛めっき鋼帯は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(GI)と、合金化処理を施すめっき鋼板(GA)のいずれをも含む。但し、本実施形態に係るガスワイピングノズル及び溶融金属めっき金属帯の製造方法を適用して製造される溶融金属めっき金属帯は、これに限らず、亜鉛以外のアルミニウム、スズなどの他の溶融金属を含む溶融金属めっき鋼帯全般を含むものである。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 例えば、第1のノズル部材11及び第2のノズル部材12の各々の分割数は、以上の説明では3つ及び4つについて説明してあるが、2つあるいは5つ以上であってもよい。
 また、スリット14の長さ方向Xに沿って切断された第1のノズル部材11及び第2のノズル部材12の各々の断面における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さが、第1のノズル部材11のスリット14の幅方向Zの厚みをT1、第2のノズル部材12のスリット14の幅方向Zの厚みをT2としたときに、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上であればよく、各分割面20の形状は、図4、図7、図8、図9、図10、図11、及び図12に示した形状に限られない。
 また、第1のノズル部材11の平板部11aの厚み及び第2のノズル部材12の平板部12aの厚みは一定の厚みに設定されているが、一定の厚みでなくてもよい。
 また、第1のノズル部材11の分割面20の長さの上限が5T1、第2のノズル部材12の分割面20の長さの上限が5T2としてあるが、それぞれ5T1あるいは5T2よりも大きくしてもよい。
 また、第1のノズル部材11、第2のノズル部材12、及びシム部材30の全てをセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としてあるが、第1のノズル部材11、第2のノズル部材12、及びシム部材30の各々をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としなくてもよい。
 また、第1のノズル部材11、第2のノズル部材12、及びシム部材の全てをセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としてあるが、これは、第1のノズル部材11、第2のノズル部材12、及びシム部材の全てを同一の材質としなくてもよい概念である。但し、第1のノズル部材11、第2のノズル部材12、及びシム部材が全て同じ材質であることが好ましい。これにより、第1のノズル部材11、第2のノズル部材12、及びシム部材の間で線膨張係数の差を確実になくすことができる。
 また、シム部材は、スリット14の長さ方向Xにおいて独立した部材として二つ設ける態様に限られない。例えば、シム部材の一部が第1のノズル部材11の溝部及び第2のノズル部材12の溝部の各々に嵌め込まれさえすれば、シム部材は各ノズル部材の溝部に嵌め込まれる部位同士を連結する連結部を設け、一体の部材としてもよい。
 また、ピン33を使用して第1のノズル部材11の溝部28とシム部材30との接続、及び第2のノズル部材12の溝部29とシム部材30との接続を行う場合、溝部28、29の断面形状は、長方形状に限らず、アリ溝形状、T型溝形状、その他の形状であってもよい。また、シム部材30の断面形状は、その溝部28、29の断面形状に対応して変更すればよい。また、ピン33の形状は円柱である必要はなく、直方体や他の形状であってもよい。
 図1に示す基本構成の連続溶融金属めっき設備1を用いて、板厚1.0mm、板幅1200mmの鋼帯Sを通板速度2.0m/sで溶融亜鉛浴に進入させて、溶融亜鉛めっき鋼帯を製造した。ガスワイピングノズル10のスリット14の寸法は、長さL1が1800mm、奥行きL2が20mm、幅(ギャップ)L3が1.2mmである。ノズル部材11A~11C、12A~12Cの分割面20の厚さをノズル厚みTで除した値は、奥行方向Yの全長にわたって表1に示す通りとした。また、実験時の溶融亜鉛めっき浴温度は460℃、ワイピングノズル先端のガス温度Tは500℃で実施した。ワイピングガスは、燃焼器の排ガスと空気とを混合して調整したガスを使用した。また、溶融亜鉛めっき浴の融点Tは420℃である。
 以下、発明例1~14及び比較例1~5のガスワイピングノズルについて説明する。
 なお、以下の発明例1~14及び比較例1~5に記載のサイアロンの曲げ強度は980MPa、ビッカース硬さは1620HV、破壊靱性は6MPa・m1/2、耐熱衝撃性は650℃、線膨張係数は3.2×10-6/Kである。クロムモリブデン鋼の降伏応力は400MPa、ビッカース硬さは300HV、破壊靱性は236MPa・m1/2、線膨張係数は11.2×10-6/Kである。
(発明例1)
 発明例1では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、第1のノズル部材11及び第2のノズル部材12の各々を組み立てた。この際に、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士をジルコニア・シリカを主成分とする接着剤で固定した。次に、組み立てた第1のノズル部材11を上側、組み立てた第2のノズル部材12を下側に配置するとともに、第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに、前述と同様の接着材を第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに塗布し、直方体形状のシム部材30を第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込んだ。最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例2)
 発明例2では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例3)
 発明例3では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=32mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例4)
 発明例4では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=98mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例5)
 発明例5では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図13に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図13に示すように、分割面20の形状は段差20bを有する形状状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。D1,D2、D3、Tの定義は図4と同様である。そして、第1のノズル部材11及び第2のノズル部材12の各々の分割面20において、ノズル奥行方向Yに2か所、8μm+10μmの公差で穴あけ加工を行った。次に、第1のノズル部材11及び第2のノズル部材12の各々において、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士を分割面20でジルコニア・シリカを主成分とする接着剤で固定した。次に、穴あけ加工部にジルコニア・シリカを主成分とする接着剤を塗布し、直径8mm-10μmの公差で製作したピン32を図13及び図15に示すようにスリット奥行方向Yへ2本穴あけ加工部に差し込んだ。次に、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例6)
 発明例6では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図14に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図14に示すように、分割面20の形状はテーパ形状とし、E1=32mmとした。切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。E1、Tの定義は図7と同様である。そして、第1のノズル部材11及び第2のノズル部材12の各々の分割面20において、ノズル奥行方向Yに2か所、8μm+10μmの公差で穴あけ加工を行った。次に、第1のノズル部材11及び第2のノズル部材12の各々において、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士を分割面20でジルコニア・シリカを主成分とする接着剤で固定した。次に、穴あけ加工部にジルコニア・シリカを主成分とする接着剤を塗布し、直径8mm-10μmの公差で製作したピン32を図14及び図15に示すようにスリット奥行方向Yへ2本穴あけ加工部に差し込んだ。次に、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例7)
 発明例7では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例8)
 発明例8では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=102mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例9)
 発明例9では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例10)
 発明例10では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例11)
 発明例11では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例12)
 発明例12では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例13)
 発明例12では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(発明例14)
 発明例14では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(比較例1)
 比較例1では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図5に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図5に示すように、分割面20の形状はノズル厚方向に平行な直線状の形状とし、各分割面20の長さを、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2と同じくT=20mmとした。そして、第1のノズル部材11及び第2のノズル部材12の各々をアルミナ・シリカを主成分とする接着剤を塗布して組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(比較例2)
 比較例2では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(比較例3)
 比較例3では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=28mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(比較例4)
 比較例4では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
(比較例5)
 比較例5では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
 そして、発明例1~14及び比較例1~5において、スリット14のギャップ変化率、鋼帯Sの幅方向めっき付着量偏差、線状マーク発生率、及びノズル破損状況(割れ)を評価した。ここで、スリット14のギャップ変化率(%)は、スリット14の長さ方向Xにおける最大のギャップ量/最小のギャップ量×100で示される値(%)で、110(%)未満で合格となる。また、鋼帯Sの幅方向めっき付着量偏差(%)は、鋼帯Sの幅方向における最大めっき付着量/最小めっき付着量×100で示される値(%)であり、120(%)未満で合格である。さらに、線状マーク発生率(%)は、各製造条件で通過した鋼帯Sの長さに対する検査工程で目視により線状マーク欠陥有と判定された鋼帯Sの長さの比率であり、0.4(%)未満で合格である。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、分割面の長さが1.5T以上の発明例1~14では、分割面の長さが1~1.4Tの比較例1~5よりもスリット14のギャップ変化率、鋼帯Sの幅方向めっき付着量偏差、及び線状マーク発生率を大幅に低減でき、すべて合格となった。
 また、分割面の形状をノズル厚方向に平行な直線状の形状として分割面の長さを1Tとした比較例1、分割面の形状を段差を有する形状としたが分割面の長さが1.4Tである比較例2,4,5及び分割面の形状をテーパ形状としたが分割面の長さが1.4Tである比較例3では、スリット14のギャップ変化率、鋼帯Sの幅方向めっき付着量偏差、及び線状マーク発生率のいずれも合格基準値を超過し、不合格となった。
 なお、発明例7,8,11,14では、分割面の長さが5Tを超過しており、製造後のノズル分解検査で第1のノズル部材11及び第2のノズル部材12の各々に割れが観察されたが、スリット14のギャップ変化率、鋼帯Sの幅方向めっき付着量偏差、及び線状マーク発生率は合格基準を満たしており合格となった。
 また、発明例1~14及び比較例1~5のいずれにおいても、ガスワイピングノズル10のスリット14から噴射した直後のワイピングガスの温度T(℃)が、溶融金属の融点T(℃)との関係で、T-150≦T≦T+250を満たすように、ワイピングガスの温度制御がなされている。このため、発明例1~14及び比較例1~5のいずれにおいても、湯ジワ欠陥は発生しなかった。
 従って、本発明に係るガスワイピングノズル及び溶融金属めっき金属帯の製造方法によれば、ガス噴射口としてのスリット14の長さ方向Xに沿って分割して製作した際に、高温雰囲気下であっても、スリット14の長さ方向Xに直交する幅方向ZのギャップL3をスリット14の長さ方向Xに沿って均一に保持することができ、鋼帯Sの幅方向に沿う鋼帯Sのめっき付着量を均一にすることができることが確認できた。
 1 連続溶融金属めっき設備
 2 スナウト
 3 めっき槽
 4 溶融金属浴
 5 シンクロール
 6 サポートロール
 10 ガスワイピングノズル
 11 第1のノズル部材
 11A,11B,11C,11D,11E ノズル部材
 11a 平板部
 11b フランジ部
 11c 傾斜端部
 12 第2のノズル部材
 12A,12B,12C,12D,12E ノズル部材
 12a 平板部
 12b フランジ部
 12c 傾斜端部
 13 中空部
 13a 中空部形成用空間
 13b 中空部形成用空間
 14 スリット
 15 ノズルヘッダ
 16 ガス供給路
 17 ガス供給管
 20 分割面
 20a 第1直線状部
 20b 段差
 20c 第2直線状部
 20d 凹面
 20e 凸面
 28,29 溝部
 28a,29a 角部
 30 シム部材
 31 ズレ
 32 ピン
 33 ピン
 L1 スリットの長さ
 L2 スリットの奥行き
 L3 スリットの幅(スリットのギャップ)
 S 鋼帯(金属帯)
 X スリットの長さ方向(鋼帯の幅方向)
 Y スリットの奥行方向(鋼帯の板厚方向)
 Z スリットの幅方向(鋼帯の板長方向)

Claims (10)

  1.  溶融金属浴から引き上げられた金属帯にワイピングガスを吹き付けて、前記金属帯の表面に付着した溶融金属の付着量を調整するガスワイピングノズルであって、
     前記ガスワイピングノズルは第1のノズル部材及び第2のノズル部材を備え、
     前記ガスワイピングノズルの金属帯側の端部において、前記第1のノズル部材と前記第2のノズル部材との間にガス噴射口としてのスリットを形成し、
     前記第1のノズル部材及び前記第2のノズル部材の各々が前記スリットの長さ方向において複数個のノズル部材に分割され、
     前記第1のノズル部材の前記スリットの幅方向の厚みをT1、前記第2のノズル部材の前記スリットの幅方向の厚みをT2としたときに、前記スリットの長さ方向に沿って、前記スリットの長さ方向に直交する奥行方向のうちの少なくとも一か所で切断された前記第1のノズル部材及び前記第2のノズル部材の各々の断面における前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の長さが、前記第1のノズル部材について1.5T1以上、前記第2のノズル部材について1.5T2以上であることを特徴とするガスワイピングノズル。
  2.  前記スリットの長さ方向に直交する幅方向のギャップを調整するシム部材を備えていることを特徴とする請求項1に記載のガスワイピングノズル。
  3.  前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の長さを前記第1のノズル部材について1.5T1以上、前記第2のノズル部材について1.5T2以上とする前記奥行方向の領域は、前記第1のノズル部材及び前記第2のノズル部材の各々の前記奥行方向の全長の1/3以上の大きさの領域であることを特徴とする請求項1又は2に記載のガスワイピングノズル。
  4.  前記第1のノズル部材の分割面の長さの上限が5T1、前記第2のノズル部材の分割面の長さの上限が5T2であることを特徴とする請求項1乃至3のうちいずれか一項に記載のガスワイピングノズル。
  5.  前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、段差を有する形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
  6.  前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、前記スリットの幅方向に対して傾斜するテーパ形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
  7.  前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、分割された隣接するノズル部材の凹面と凸面とが嵌合する嵌合面形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
  8.  前記第1のノズル部材、前記第2のノズル部材、及び前記シム部材の材質をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、又はセラミックス基複合材料とすることを特徴とする請求項1乃至7のうちいずれか一項に記載のガスワイピングノズル。
  9.  前記第1のノズル部材の分割されたノズル部材同士、前記第2のノズル部材の分割されたノズル部材同士の接続にピンを使用することを特徴とする請求項1乃至8のうちいずれか一項に記載のガスワイピングノズル。
  10.  請求項1乃至9のうちいずれか一項に記載のガスワイピングノズルを、溶融金属浴から引き上げられた金属帯の両面側に一対配置し、これら一対のガスワイピングノズルの各々のスリットから前記金属帯の各面にワイピングガスを吹き付けて、前記金属帯の両面に付着した溶融金属の付着量を調整して、連続的に溶融金属めっき金属帯を製造することを特徴とする溶融金属めっき金属帯の製造方法。
PCT/JP2021/016193 2020-06-19 2021-04-21 ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 WO2021256079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/008,487 US12084774B2 (en) 2020-06-19 2021-04-21 Gas wiping nozzle and method for manufacturing hot-dip metal coated metal strip
JP2021540072A JP6977914B1 (ja) 2020-06-19 2021-04-21 ガスワイピングノズル及び溶融金属めっき金属帯の製造方法
CN202180042002.5A CN115997044A (zh) 2020-06-19 2021-04-21 气体擦拭喷嘴和熔融金属镀覆金属带的制造方法
EP21825278.1A EP4170057B1 (en) 2020-06-19 2021-04-21 Gas wiping nozzle and method for manufacturing hot-dip coated metal strip
MX2022016140A MX2022016140A (es) 2020-06-19 2021-04-21 Boquilla de limpieza de gas y metodo para fabricar una tira de metal recubierta con metal por inmersion en caliente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020105965 2020-06-19
JP2020-105965 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256079A1 true WO2021256079A1 (ja) 2021-12-23

Family

ID=79267731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016193 WO2021256079A1 (ja) 2020-06-19 2021-04-21 ガスワイピングノズル及び溶融金属めっき金属帯の製造方法

Country Status (1)

Country Link
WO (1) WO2021256079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4267779B1 (en) * 2020-12-22 2024-09-04 Tata Steel Nederland Technology B.V. Multi-jet air knife to control the thickness of metallic coatings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285668A (ja) * 2009-06-15 2010-12-24 Mitsubishi-Hitachi Metals Machinery Inc ガスワイピング装置
JP6011740B2 (ja) 2014-10-08 2016-10-19 Jfeスチール株式会社 連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備
JP2017222923A (ja) * 2016-06-17 2017-12-21 Jfeスチール株式会社 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
JP2018178159A (ja) * 2017-04-05 2018-11-15 新日鐵住金株式会社 ガスワイピングノズル
WO2019065453A1 (ja) * 2017-09-29 2019-04-04 新日鐵住金株式会社 ガスワイピングノズルの製造方法及びガスワイピングノズル
JP6702519B1 (ja) * 2019-02-26 2020-06-03 Jfeスチール株式会社 ガスワイピングノズル及び溶融金属めっき金属帯の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285668A (ja) * 2009-06-15 2010-12-24 Mitsubishi-Hitachi Metals Machinery Inc ガスワイピング装置
JP6011740B2 (ja) 2014-10-08 2016-10-19 Jfeスチール株式会社 連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備
JP2017222923A (ja) * 2016-06-17 2017-12-21 Jfeスチール株式会社 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
JP2018178159A (ja) * 2017-04-05 2018-11-15 新日鐵住金株式会社 ガスワイピングノズル
WO2019065453A1 (ja) * 2017-09-29 2019-04-04 新日鐵住金株式会社 ガスワイピングノズルの製造方法及びガスワイピングノズル
JP6702519B1 (ja) * 2019-02-26 2020-06-03 Jfeスチール株式会社 ガスワイピングノズル及び溶融金属めっき金属帯の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4267779B1 (en) * 2020-12-22 2024-09-04 Tata Steel Nederland Technology B.V. Multi-jet air knife to control the thickness of metallic coatings

Similar Documents

Publication Publication Date Title
WO2021256079A1 (ja) ガスワイピングノズル及び溶融金属めっき金属帯の製造方法
JP6702519B1 (ja) ガスワイピングノズル及び溶融金属めっき金属帯の製造方法
WO2019065453A1 (ja) ガスワイピングノズルの製造方法及びガスワイピングノズル
JP6977914B1 (ja) ガスワイピングノズル及び溶融金属めっき金属帯の製造方法
EP2017365B1 (en) Method for manufacturing molten-metal plated steel band
CN113544305B (zh) 气体擦拭喷嘴及熔融金属镀覆金属带的制造方法
CN108868899B (zh) 冲击插入件
EP2956623B1 (en) Tapered thermal barrier coating on convex and concave trailing edge surfaces
TWI313622B (ja)
JP2018178146A (ja) ガスワイピングノズル
CN118355144A (zh) 气体擦拭喷嘴及热浸镀金属钢带和气体擦拭喷嘴的制造方法
EP3187275B1 (en) Thick steel plate manufacturing method
JP4076918B2 (ja) めっき厚調整用ガス噴射ノズル
JP2024051681A (ja) バッフルプレート、及びめっき鋼板の製造方法
JP2008105068A (ja) 連続鋳造用鋳型
JP6350487B2 (ja) モルタル塗布方法、モルタル塗布用ノズル、およびモルタル塗布用アーム型ロボット
KR20200069681A (ko) 강판 냉각 장치
KR0129969Y1 (ko) 세라믹이 코팅된 부쉬
JPS6369963A (ja) 複合表面硬化法
EP1462612A1 (de) Kühlbares Schichtsystem und Verfahren zur Herstellung eines gekühlten Schichtsystems
KR20130077483A (ko) 용탕온도 저하 방지용 노즐

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540072

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217070107

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021825278

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE