WO2021256079A1 - ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 - Google Patents
ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 Download PDFInfo
- Publication number
- WO2021256079A1 WO2021256079A1 PCT/JP2021/016193 JP2021016193W WO2021256079A1 WO 2021256079 A1 WO2021256079 A1 WO 2021256079A1 JP 2021016193 W JP2021016193 W JP 2021016193W WO 2021256079 A1 WO2021256079 A1 WO 2021256079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle member
- nozzle
- slit
- gas wiping
- divided
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 93
- 239000002184 metal Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title abstract description 26
- 239000000463 material Substances 0.000 claims description 56
- 239000002131 composite material Substances 0.000 claims description 38
- 239000000919 ceramic Substances 0.000 claims description 25
- 229910010293 ceramic material Inorganic materials 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000003575 carbonaceous material Substances 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 18
- 239000004917 carbon fiber Substances 0.000 claims description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 238000005507 spraying Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 109
- 239000010959 steel Substances 0.000 description 109
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 54
- 238000007747 plating Methods 0.000 description 38
- 239000000853 adhesive Substances 0.000 description 32
- 230000001070 adhesive effect Effects 0.000 description 32
- 238000012986 modification Methods 0.000 description 29
- 230000004048 modification Effects 0.000 description 29
- 239000000377 silicon dioxide Substances 0.000 description 27
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 21
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 20
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 20
- 229910052750 molybdenum Inorganic materials 0.000 description 20
- 239000011733 molybdenum Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 13
- 229910001335 Galvanized steel Inorganic materials 0.000 description 6
- 239000008397 galvanized steel Substances 0.000 description 6
- 238000005246 galvanizing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 210000004894 snout Anatomy 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
Definitions
- the present invention manufactures a gas wiping nozzle for adjusting the amount of molten metal adhering to the surface of the metal band by blowing gas onto the metal band pulled up from the molten metal bath, and a molten metal-plated metal band using the gas wiping nozzle. Regarding the method.
- Hot-dip galvanized steel sheets which are a type of hot-dip galvanized steel sheets, are widely used in fields such as building materials, automobiles, and home appliances. Further, in these applications, excellent appearance is required for the hot-dip galvanized steel sheet. Here, since the appearance after painting is strongly affected by surface defects such as uneven plating thickness, flaws, and adhesion of foreign matter, it is important that the hot-dip galvanized steel sheet has no surface defects.
- a steel strip as a metal strip annealed in a continuous annealing furnace in a reducing atmosphere passes through a snout and is introduced into a molten metal bath in a plating tank. Then, the steel strip is pulled up above the molten metal bath via the sink roll and the support roll in the molten metal bath. After that, the wiping gas is blown onto the surface of the steel strip from the gas wiping nozzles arranged on both sides of the steel strip to scrape off the excess molten metal that has adhered to the surface of the steel strip and has been pulled up, so that the molten metal adheres.
- the amount (hereinafter, also referred to as a grain amount) is adjusted.
- the gas wiping nozzle is usually configured to be wider than the steel strip width in the width direction of the steel strip in order to cope with various steel strip widths and the positional deviation in the width direction when the steel strip is pulled up. It extends from the end to the outside.
- corrugated flow pattern hot water wrinkles also called hot water dripping
- corrugated flow pattern hot water wrinkles are generated on the plating surface due to minute vibration of the steel strip due to spraying of the wiping gas and irregular hot water flow of the plating layer. I often do it.
- the plated surface of the plated steel sheet with such hot water wrinkles is used as the coating base surface for exterior coating, the surface texture of the coating film, especially the smoothness, is impaired, and it should be suitable for coating treatment with excellent appearance. It cannot be used for exterior plates and has a great effect on the yield of plated steel sheets.
- Patent Document 1 In order to solve this problem, conventionally, for example, those shown in Patent Document 1 are known.
- a steel strip is continuously immersed in a molten metal plating bath, and gas is sprayed from a gas wiping nozzle onto the steel strip immediately after being drawn out from the molten metal plating bath to obtain a plating adhesion amount. Is to control.
- the temperature T of the wiping gas injected from the gas wiping nozzle is controlled according to the D / B value represented by the ratio of the distance D between the tip of the gas wiping nozzle and the steel strip and the gas wiping nozzle gap B. I have to.
- Patent Document 2 In order to solve this problem, conventionally, for example, those shown in Patent Document 2 are known.
- the wiping gas is used in the wiping method in continuous hot-dip galvanizing shown in Patent Document 2, when wiping gas is injected from a gas wiping nozzle in continuous hot-dip galvanizing to wipe the hot-dip zinc adhering to the front and back of the steel strip to be plated, the wiping gas is used.
- the wiping gas is heated between the temperature TG (° C.) and the plate thickness D (mm) of the steel strip to be plated so as to satisfy the following equation (1). Wiping gas temperature TG (° C) ⁇ ⁇ 400D + 400... (1)
- the gas wiping nozzle shown in Patent Document 3 adjusts the film thickness of the molten metal film adhering to the surface of the steel strip by blowing gas onto the steel strip pulled upward from the molten metal plating bath.
- the gas wiping nozzles are provided so as to face each other, and serve as a first lip portion and a second lip portion forming a nozzle chamber into which gas is introduced, and as an injection port for gas injected from the nozzle chamber.
- a slit formed between the ends of the first lip portion and the second lip portion on the steel strip side, and the first lip portion and the second lip portion provided on the slit side in the nozzle chamber. It is provided with a fixing member for fixing.
- the fixing member is provided with a plurality of first communication holes that communicate the slit side and the opposite side of the slit with respect to the fixing member along the width direction of the steel strip.
- Patent Document 1 the conventional continuous hot-dip metal plating method shown in Patent Document 1, the wiping method in continuous hot-dip galvanizing shown in Patent Document 2, and the gas wiping nozzle shown in Patent Document 3 have the following problems.
- the wiping gas is heated and the surroundings of the gas wiping nozzle become a high temperature atmosphere. Along with this, the gas wiping nozzle itself is also heated.
- the gas wiping nozzle is integrally manufactured along the length direction of the slit as the gas injection port provided at the end of the gas wiping nozzle on the steel strip side. There is no description as to whether it is manufactured separately or separately.
- the gas wiping nozzle When manufacturing a gas wiping nozzle, it may be difficult to manufacture it as an integral part depending on the material of the gas wiping nozzle, and it may be necessary to divide the gas wiping nozzle along the length direction of the slit. .. In this case, when the gas wiping nozzle is divided along the length direction of the slit and manufactured, if the surroundings of the gas wiping nozzle become a high temperature atmosphere, the slit as a gas injection port may be used depending on how the gas wiping nozzle is assembled. There is a problem that the gap in the width direction orthogonal to the length direction becomes non-uniform, and the plating adhesion amount of the steel strip along the width direction of the steel strip becomes non-uniform.
- each of the upper first lip portion and the second lip portion is manufactured as an integral piece along the length direction of the slit as the gas injection port. It is not manufactured by dividing each of the first lip portion and the second lip portion along the length direction of the slit. Therefore, when each of the first lip portion and the second lip portion is divided along the length direction of the slit, the gas wiping nozzle described above is divided along the length direction of the slit. The same problem occurs when it is manufactured.
- an object of the present invention is that when the metal is divided along the length direction of the slit as a gas injection port and manufactured, it is manufactured under a high temperature atmosphere. Even if there is, the gap in the width direction orthogonal to the length direction of the slit can be uniformly held along the length direction of the slit, and the plating adhesion amount of the steel strip along the width direction of the steel strip is made uniform. It is an object of the present invention to provide a gas wiping nozzle capable of being formed and a method for manufacturing a molten metal-plated metal band using the gas wiping nozzle.
- the gas wiping nozzle blows the wiping gas onto the metal band pulled up from the molten metal bath to reduce the amount of molten metal adhering to the surface of the metal band.
- a gas wiping nozzle to be adjusted wherein the gas wiping nozzle includes a first nozzle member and a second nozzle member, and at an end portion of the gas wiping nozzle on the metal band side, the first nozzle member and the first nozzle member.
- a slit as a gas injection port is formed between the two nozzle members, and each of the first nozzle member and the second nozzle member is divided into a plurality of nozzle members in the length direction of the slit.
- the slit is along the length direction of the slit.
- the first nozzle member and the second nozzle in each cross section of the first nozzle member and the second nozzle member cut at at least one of the depth directions orthogonal to the length direction of the first nozzle member and the second nozzle member.
- the gist is that the length of each divided surface of the member is 1.5T1 or more for the first nozzle member and 1.5T2 or more for the second nozzle member.
- the above-mentioned gas wiping nozzles are arranged on both sides of the metal band pulled up from the molten metal bath, and these pair of gas wiping nozzles are arranged.
- the gist is to continuously produce a molten metal-plated metal band by spraying a wiping gas on each surface of the metal band from each slit of the metal band to adjust the amount of molten metal adhering to both sides of the metal band.
- the method for manufacturing a gas wiping nozzle and a molten metal-plated metal band according to the present invention, when the gas is divided and manufactured along the length direction of the slit as a gas injection port, the slit is formed even in a high temperature atmosphere. Gas wiping that can uniformly hold the gap in the width direction orthogonal to the length direction of the steel strip along the length direction of the slit and can make the amount of plating of the steel strip along the width direction of the steel strip uniform. It is possible to provide a nozzle and a method for manufacturing a molten metal-plated metal band using the gas wiping nozzle.
- FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on a reference example. It is sectional drawing for demonstrating how the division surface of each of the 1st nozzle member and the 2nd nozzle member is displaced in the gas wiping nozzle which concerns on the reference example shown in FIG.
- FIG. 4 of the gas wiping nozzle which concerns on 1st modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 2nd modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 3rd modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 4th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 5th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 6th modification. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 7th modification.
- FIG. 4 of the gas wiping nozzle It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 8th modification. It is a schematic plan view of the gas wiping nozzle which concerns on the 7th modification shown in FIG. It is the same cross-sectional view as FIG. 4 of the gas wiping nozzle which concerns on 9th modification. 16 is an enlarged view showing the vicinity of the groove portion of the first nozzle member, the groove portion of the second nozzle member, the shim member, and the pin in FIG. 16.
- FIG. 1 shows a schematic configuration of a continuous molten metal plating facility provided with a gas wiping nozzle according to an embodiment of the present invention.
- the molten metal is continuously adhered to the surface of the steel strip S by immersing the steel strip S as the metal strip in the molten metal bath 4 made of the molten metal. After that, it is a facility for adjusting the amount of molten metal to a predetermined amount.
- the continuous molten metal plating equipment 1 includes a snout 2, a plating tank 3, a sink roll 5, and a support roll 6.
- the snout 2 is a member having a rectangular cross section perpendicular to the traveling direction of the steel strip S, which partitions a space through which the steel strip S passes.
- the upper end thereof is connected to, for example, the outlet side of a continuous annealing furnace, and the lower end is plated. It is immersed in the molten metal bath 4 stored in the tank 3.
- the steel strip S annealed in the continuous annealing furnace in a reducing atmosphere passes through the snout 2 and is continuously introduced into the molten metal bath 4 in the plating tank 3. After that, the steel strip S is pulled upward from the molten metal bath 4 via the sink roll 5 and the support roll 6 in the molten metal bath 4.
- wiping gas is sprayed onto both sides of the steel strip S pulled upward from the molten metal bath 4 from a pair of gas wiping nozzles 10 (slits 14 described later) arranged on both sides of the steel strip S.
- the amount of molten metal adhering to both sides of the steel strip S is adjusted.
- the steel strip S is cooled by a cooling facility (not shown) and guided to a subsequent process, and the molten metal plated steel strip S is continuously manufactured.
- each of the pair of gas wiping nozzles 10 arranged on both sides of the steel strip S is the nozzle header 15 and the first arranged on the upper side connected to the nozzle header 15. It includes a nozzle member 11 and a second nozzle member 12 arranged on the lower side.
- the first nozzle member 11 and the second nozzle member 12 are provided so as to face each other, and a slit 14 as a gas injection port is provided between the inclined end portions (end portions) 11c and 12c on the steel strip S side. It is formed so as to extend elongated in the length direction X.
- the length direction X of the slit 14 is along the plate width direction of the steel strip S
- the width direction Z orthogonal to the length direction X of the slit 14 is the plate length direction of the steel strip S (conveyance).
- the depth direction Y orthogonal to the length direction X of the slit 14 is arranged on each surface side of the steel strip S so as to be along the plate thickness direction of the steel strip S.
- the width direction Z of the slit is the same as the vertical direction of the gas wiping nozzle 10. Then, from one of the gas wiping nozzles 10, the wiping gas is sprayed from the slit 14 toward one side of the steel strip S.
- each gas wiping nozzle 10 corresponds to the plate width of various steel strips S, and the length of the slit 14 is a plate of the steel strip S in order to cope with the positional deviation in the width direction when the steel strip S is pulled up. It is configured to be longer than the plate width of the steel strip S so as to be longer than the width, and extends to the outside from the widthwise end of the steel strip S.
- the nozzle header 15 of each gas wiping nozzle 10 is formed in a substantially rectangular shape extending in the length direction X, the depth direction Y, and the width direction Y, and the material thereof is a metal such as chrome molybdenum steel.
- a gas supply pipe 17 is connected to the base end portion (rear end portion) of the nozzle header 15, and a gas supply path 16 that connects the gas supply pipe 27 and the hollow portion 13 described later is formed. ..
- the first nozzle member 11 arranged on the upper side is a plurality of divided surfaces 20 along the length direction X of the slit 14, as shown in FIG. 2 in detail later (in the present embodiment). It is divided into nozzle members 11A, 11B, and 11C. Then, as shown in FIGS. 2 to 4, each nozzle member 11A, 11B, 11C has a flat plate portion 11a extending with a predetermined thickness T1 in the length direction X and the depth direction (front-back direction) Y, and the flat plate portion 11a. It includes a flange portion 11b that protrudes upward from the rear end, and the above-mentioned inclined end portion 11c that extends diagonally downward from the front end of the flat plate portion 11a. A hollow portion forming space 13a for forming a hollow portion, which will be described later, is formed below the flat plate portion 11a of each nozzle member 11A, 11B, 11C.
- each nozzle member 12A, 12B, 12C has a flat plate portion 12a extending with a predetermined thickness T2 in the length direction X and the depth direction (front-back direction) Y, and the flat plate portion 12a. It includes a flange portion 12b that projects upward from the rear end, and the above-mentioned inclined end portion 12c that extends diagonally downward from the front end of the flat plate portion 12a.
- the first nozzle member 11 and the second nozzle member 12 are vertically aligned and fixed by a shim member 30 described later, and the rear end surface 11ba and the second nozzle member of the flange portion 11b of the first nozzle member 11 are joined.
- Each of the rear end surfaces 12ba of the flange portion 12b of the 12 is connected to the front surface of the nozzle header 15.
- the hollow portion 13 is formed by the hollow portion forming space 13a formed in the first nozzle member 11 and the hollow portion forming space 13b formed in the second nozzle member 12.
- the lower surface of the inclined end portion 11c on the steel strip S side of the first nozzle member 11 and the upper surface of the inclined end portion 12c on the steel strip S side of the second nozzle member 12 are opposed flat surfaces.
- the space between the planes is the slit 14 as the gas injection port described above.
- the slit 14 is elongated in the length direction X, the length of the length direction X is L1 (see FIG. 2), and the width of the width direction Z orthogonal to the length direction X, that is, the gap is L3. (See FIG. 3), the depth in the depth direction Y orthogonal to the length direction X is L2 (see FIG. 3).
- the dimensions of the slit 14 are not particularly limited, but the length L1 of the slit 14 is set with a margin according to the width of the steel strip S, and may be, for example, about 1500 to 2500 mm. Further, the gap L3 of the slit 14 can be set to, for example, about 0.5 to 3.0 mm. Further, the depth of the slit 14 can be, for example, about 5 to 30 mm for L2.
- the slit 14 communicates with the hollow portion 13 in the depth direction Y.
- the hollow portion 13 functions as a pressure equalizing portion, and the wiping gas introduced into the hollow portion 13 from the gas supply pipe 17 via the gas supply path 16 is uniform over the entire length direction X of the slit 14. It is injected with pressure.
- each gas wiping nozzle 10 includes a pair of shim members 30 for adjusting the gap L3 in the width direction Y orthogonal to the length direction X of the slit 14.
- These shim members 30 also have a function of fixing the first nozzle member 11 and the second nozzle member 12.
- the first nozzle member 11 and the second nozzle member 12 respectively, specifically, the nozzle members 11A and 11C and As shown in FIG. 4, each of the nozzle members 12A and 12C has grooves 28 and 29 into which the shim members 30 are fitted.
- first nozzle member 11, the second nozzle member 12, and each shim member 30 are ceramic materials having low wettability with respect to molten metal such as molten zinc, being hard to be plastically deformed, and having a low coefficient of linear expansion.
- Carbon material, carbon fiber reinforced carbon composite material, or ceramics-based composite material is used.
- Specific examples of the ceramic material include alumina, sialon, silicon nitride, zirconia, barium titanate, hydroxyapatite, silicon carbide (SiC), and fluorite
- examples of the carbon material include graphite, but the carbon material is limited to these. It's not something. Further, since graphite oxidizes and volatilizes in a highly oxidizing atmosphere, it is preferable to coat the surface layer with silica or the like.
- Invar and tungsten have a low coefficient of linear expansion, but are plastically deformed. Therefore, as the material of the first nozzle member 11, the second nozzle member 12, and each shim member 30, in particular, the material of each shim member 30. Is not suitable as.
- the ceramic material carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material, those having a bending strength of 600 MPa are preferable, and those having a bending strength of 800 MPa or more are more preferable. Therefore, it is preferable to use zirconia, silicon nitride, sialon, or the like as the ceramic material. If these materials are used, plastic deformation is difficult, and if the fracture strength is lower than that, substantial deformation can be suppressed.
- the ceramic material, carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material preferably has a Vickers hardness of 800 Hv or more, and more preferably 1000 Hv or more.
- the ceramic material, a carbon material, that the fracture toughness of reinforced carbon-carbon or ceramic matrix composite is preferably at 5 MPa ⁇ m 1/2 or more, 5 MPa ⁇ m 1/2 or more Is more preferable.
- thermal impact resistance of the nozzle material is lower than the high temperature gas temperature.
- the thermal impact resistance of the ceramic material, carbon material, carbon fiber reinforced carbon composite material, or ceramic-based composite material is preferably at or above the temperature used as the wiping gas, preferably at 430 ° C or higher, and is thermally impact resistant. The temperature of 600 ° C. or higher is more preferable.
- the linear expansion coefficient of the first nozzle member 11 (nozzle member 11A, 11B, 11C) and the second nozzle member 12 (nozzle member 12A, 12B, 12C) is
- the coefficient of linear expansion of the nozzle header 15 fixed to the first nozzle member 11 and the second nozzle member 12 is preferably 1/2 or less, and more preferably 1/3 or less.
- stainless steel is applied as the material of the nozzle header 15, and the coefficient of linear expansion thereof is about 10 to 18 ⁇ 10 -6 / K.
- a general nozzle width of 1500 mm or more is integrated due to restrictions such as the size of the furnace in which the ceramics are sintered. It is difficult to manufacture as. Further, when the carbon material is selected as the material that is hard to be plastically deformed when the first nozzle member 11 and the second nozzle member 12 are manufactured, similarly, a general nozzle is used for reasons such as mold size restrictions used for molding. It is difficult to manufacture an integral product with a width of 1500 mm or more.
- the general nozzle width is 1500 mm due to the limitation of the molding furnace. It is difficult to manufacture the above as an integral piece. Therefore, when the first nozzle member 11 and the second nozzle member 12 are manufactured by selecting a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, as described above, the first The nozzle member 11 is divided into a plurality of nozzle members 11A, 11B, 11C (three in the present embodiment) by a plurality of dividing surfaces 20 along the length direction X of the slit 14, and a second nozzle member is used. 12 is manufactured by dividing 12 into a plurality of nozzle members 12A, 12B, 12C (three in the present embodiment) by a plurality of divided surfaces 20 along the length direction X of the slit 14.
- the slit 14 is cut at at least one of the depth directions Y orthogonal to the length direction X of the slit 14 along the length direction X of the slit 14.
- the length (D1 + D2 + D3) of each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 in each cross section of the first nozzle member 11 and the second nozzle member 12 is the first.
- T1 and T2 have the same thickness. However, they may have different thicknesses.
- Each of the first nozzle member 11 and the second nozzle member 12 is divided into a plurality of nozzle members 11A, 11B, 11C, 12A, 12B, 12C by a plurality of dividing surfaces 20 along the length direction X of the slit 14.
- the shape of the divided surface 20 is a linear shape parallel to the nozzle thickness direction (width direction Z of the slit 14), and the length thereof is set to the first nozzle member 11 and the second nozzle member 11.
- a method is conceivable in which the thickness of each slit 14 of the nozzle member 12 is the same as the thickness in the width direction Z, and an adhesive is applied to the divided surface 20 to combine them.
- the central nozzle members 11B and 12B in the length direction X of the slit 14 whose upper and lower sides are not fixed by the pair of shim members 30 are in the width direction orthogonal to the length direction of the slit 14 (Z in FIG. 1). It is weak against the force of (direction), and as shown in FIG. 6, a deviation 31 occurs in the direction in which the gap of the slit 14 widens on the split surface 20 due to thermal deformation when discharging the high temperature gas. In addition to this, the divided surface 20 is displaced 31 due to the nozzle cleaning performed to remove the zinc clogged in the slit 14 and the influence of the internal pressure of the gas. As shown in FIG.
- this deviation 31 changes the shape of the hollow portion 13, and the shape of the gap of the slit 14 changes in the nozzle width direction. If the shape of the gap of the slit 14 is different, the amount of gas discharged in the length direction X of the slit 14 will be different, and the wiping ability will be different in the length direction X of the slit 14. As a result, the amount of plating adhered to the steel strip S along the width direction of the steel strip S cannot be made uniform. Further, as shown in FIG. 6, when the gap of the slit 14 is widened, the probability that zinc splashed by the wiping gas invades the slit 14 increases. As a result, linear adhesion amount unevenness (linear mark) caused by the blockage of zinc in the slit 14 is likely to occur.
- the deformation of the central nozzle members 11B and 12B in the length direction X of the slit 14 in the width direction Z of the slit 14 is hindered, that is, the nozzle members 11A, 11B, 11C and 12A, respectively. It is necessary to strengthen the fastening force of 12B and 12C. Therefore, in the present embodiment, as shown in FIG. 4, the first nozzle member 11 and the first nozzle member 11 cut at at least one of the depth directions Y along the length direction X of the slit 14.
- the length (D1 + D2 + D3) of each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 in each cross section of the second nozzle member 12 is the width direction of the slit 14 of the first nozzle member 11.
- the thickness of Z (thickness of the flat plate portion 11a) is T1
- the thickness of the slit 14 of the second nozzle member 12 in the width direction Z (thickness of the flat plate portion 12a) is T2
- the first nozzle member 11 1.5T1 or more, and 1.5T2 or more for the second nozzle member 12.
- each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 is a shape having a step 20b. That is, each divided surface 20 of the first nozzle member 11 has a first linear portion 20a extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and a first linear portion 20a. A step 20b extending linearly outward in the length direction X of the slit 14 from the lower end, and a second step extending linearly downward from the tip of the step 20b toward the lower surface of the first nozzle member 11 (flat plate portion 11a). It is provided with a linear portion 20c.
- each divided surface 20 of the second nozzle member 12 has a first linear portion 20a extending linearly upward from the lower surface of the second nozzle member 12 (flat plate portion 12a) and a first linear portion 20a.
- a step 20b extending linearly outward in the length direction X of the slit 14 from the upper end, and a second step extending linearly upward from the tip of the step 20b toward the upper surface of the second nozzle member 12 (flat plate portion 12a). It is provided with a linear portion 20c.
- the length ((D1 + D2 + D3)) obtained by adding the length D1 of the first linear portion 20a of each divided surface 20, the length D2 of the step 20b, and the length D3 of the second linear portion 20c is the first nozzle.
- the member 11 has 1.5T1 or more
- the second nozzle member 12 has 1.5T2 or more.
- the length (D1 + D2 + D3) of each divided surface 20 is less than 1.5T1 or 1.5T2, the shape of the divided surface 20 approaches the case shown in FIG.
- the slits 14 of the nozzle members 11B and 12B can be easily moved in the width direction Z, and it is difficult to exert the effect of processing the nozzle members 11B and 12B into a shape having a step 20b.
- each divided surface 20 when the length (D1 + D2 + D3) of each divided surface 20 is larger than 5T1 or 5T2, the effect of improving the fastening force of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C is saturated, and further, each division is further performed. If the length of the surface 20 becomes too long, there is a concern about cracking. Therefore, it is preferable that the upper limit of the length of the divided surface 20 of the first nozzle member 11 is 5T1 and the upper limit of the length of the divided surface 20 of the second nozzle member 12 is 5T2.
- each divided surface 20 may be a tapered shape that is inclined with respect to the width direction Z (vertical direction) of the slit 14.
- the division surface 20 is tilted so that the length E1 of each division surface 20 is 1.5T1 or more for the first nozzle member 11 and 1.5T2 or more for the second nozzle member 12.
- the upper limit of the length E1 of each divided surface 20 is 5T1 or 5T2.
- the nozzle division is based on the idea of suppressing the gap expansion of the slit 14. It is designed.
- the gap reduction of the slit 14 may be a problem. In such a case, the gap reduction of the slit 14 can be avoided by making the shape of the divided surface 20 as shown in FIG. 8 or 9.
- FIG. 8 shows a cross section of the gas wiping nozzle according to the second modification, and the shapes of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12 are shown in FIG. It has a symmetrical shape with the shape of the divided surface 20. That is, each divided surface 20 of the first nozzle member 11 has a first linear portion 20a extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and a first linear portion 20a. A step 20b extending linearly inward in the length direction X of the slit 14 from the lower end, and a second step extending linearly downward from the tip of the step 20b toward the lower surface of the first nozzle member 11 (flat plate portion 11a).
- each of the divided surfaces 20 of the second nozzle member 12 also has a first linear portion 20a extending linearly upward from the lower surface of the second nozzle member 12 (flat plate portion 11a).
- a step 20b extending linearly inward in the length direction X of the slit 14 from the upper end of the first linear portion 20a, and the tip of the step 20b toward the upper surface of the second nozzle member 12 (flat plate portion 12a).
- the length ((D1 + D2 + D3)) obtained by adding the length D1 of the first linear portion 20a of each divided surface 20, the length D2 of the step 20b, and the length D3 of the second linear portion 20c is the first nozzle.
- the member 11 has 1.5T1 or more
- the second nozzle member 12 has 1.5T2 or more.
- FIG. 9 shows a cross section of the gas wiping nozzle according to the third modification
- FIG. 7 shows the shapes of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12.
- the shape is symmetrical to the shape of the divided surface 20 of each of the first nozzle member 11 and the second nozzle member 12 in the gas wiping nozzle 10 according to the first modification shown.
- each of the first nozzle member 11 and the second nozzle member 12 is divided into a plurality of parts by a plurality of dividing surfaces 20 along the length direction X of the slit 14, the case shown in FIG. 4 (three pieces). Even if it is divided into four nozzle members 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D as in the gas wiping nozzle according to the fourth modification shown in FIG. good.
- each divided surface 20 of the nozzle member 12 is divided into the concave surface 20d and the convex surface 20e of the adjacent nozzle members 11A, 11B, 11B, 11C, 11C, 11D, 12A, 12B, 12B, 12C, 12C, 12D. It may be the shape of the fitting surface to which is fitted.
- the shape of the divided surface 20 is a key type in which the concave surface 20d formed on the nozzle member 11A and the convex surface 20e formed on the nozzle member 11B are fitted. It has a shape.
- each divided surface 20 is the same, and the length of the divided surface 20 formed on the first nozzle member 11 will be described. ..
- the length of the divided surface 20 is the length F1 of the first linear portion extending linearly downward from the upper surface of the first nozzle member 11 (flat plate portion 11a) and the slit 14 from the lower end of the first linear portion.
- the length F2 of the second linear portion extending linearly outward in the length direction X of, and the length F3 of the third linear portion extending linearly downward from the tip of the second linear portion.
- the nozzle members 11A, 11B, 11C, 12A, 12B, 12C can be formed.
- the fastening force can be made stronger, and even if an external force such as an expansion or contraction of the gap of the slit 14 acts on the divided surface 20, it is possible to appropriately avoid the expansion or contraction of the gap.
- a dogleg shape may be used in order to make the shape of each divided surface 20 a fitting surface shape.
- each divided surface 20 may be fitted by the divided adjacent nozzle members 11A, 11B, 11B, 11C, 11C, 11D, 12A, 12B, 12B, 12C, 12C, 12D.
- the length of each divided surface 20 is the same as that of the gas wiping nozzle 10 shown in FIG. 4, the length D1 of the first linear portion 20a and the step 20b. It is a length (D1 + D2 + D3) obtained by adding the length D2 of the first nozzle member 11 and the length D3 of the second linear portion 20c, and is 1.5T1 or more for the first nozzle member 11 and 1.5T2 or more for the second nozzle member 12. ing.
- the gas wiping nozzle 10 according to the second modification shown in FIG. 11 is an example in which the nozzle is divided into four, but when the nozzle is divided into five, for example, the gas wiping nozzle 10 according to the sixth modification shown in FIG. 12 is used. It can be a structure.
- the gas wiping nozzle according to the seventh modification shown in FIG. 13 and the gas wiping according to the eighth modification shown in FIG. Pins for connecting the divided nozzle members 11A, 11B, 11B, 11C of the first nozzle member 11 and the divided nozzle members 12A, 12B, 12B, 12C of the second nozzle member 12 like a nozzle. 32 may be used. Thereby, the fastening force between the divided nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C can be further increased.
- the cross-sectional shape of the pin 32 may be rectangular or circular.
- the width of the slit length direction X of the pin 32 is the length of the step 20b.
- D2 the width of the slit length direction X of the pin 32 is the length of the step 20b.
- the width of the slit length direction X of the pin 32 is tapered. Must be less than the width between the tip and tail of the split surface 20 of.
- the pin 32 when the pin 32 is inserted as shown in FIG. 15, the pin 32 has a slit length. It can be inserted into any number and any position in the vertical direction X and the slit depth direction Y.
- each of the first nozzle member 11 and the second nozzle member 12 is assembled. Prior to assembling each of the first nozzle member 11 and the second nozzle member 12, the nozzle members 11A and 11C of the first nozzle member 11 are grooved from the rear end surface 11ba to form a groove 28. The nozzle members 12A and 12C of the second nozzle member 12 are grooved from the rear end surface 12ba to form the groove portion 29.
- the adjacent nozzle members 11A and 11B are aligned on the dividing surface 20, and the adjacent nozzle members 11A and 11B are fixed by applying an adhesive for ceramics. Further, the adjacent nozzle members 11B and 11C are aligned on the dividing surface 20, and the adjacent nozzle members 11B and 11C are fixed by applying an adhesive for ceramics. This completes the assembly of the first nozzle member 11.
- the adjacent nozzle members 12A and 12B are aligned on the dividing surface 20, and the adjacent nozzle members 12A and 12B are fixed by applying an adhesive for ceramics.
- the adjacent nozzle members 12B and 12C are aligned on the dividing surface 20, and the adjacent nozzle members 12B and 12C are fixed by applying an adhesive for ceramics.
- the adhesive used for assembling the first nozzle member 11 and the second nozzle member 12 contains zirconia / silica as a main component, alumina as a main component, and silica as a main component. However, it is not limited to this.
- the assembled first nozzle member 11 is arranged on the upper side
- the assembled second nozzle member 12 is arranged on the lower side
- the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12 are respectively.
- the shim member 30 is fitted into the shim member 30 in a direction parallel to the direction in which the groove portions 28, 29 extend from the rear end surfaces 11ba, 12ba side of the first nozzle member 11 and the second nozzle member 12.
- the same adhesive as described above is applied to each of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12.
- the first nozzle member 11 and the second nozzle member 12 are fixed.
- the fixed rear end surface 11ba of the first nozzle member 11 and the rear end surface 12ba of the second nozzle member 12 may be connected to the front end surface of the nozzle header 15 by a fixing member such as a screw (not shown).
- the gap L3 of the slit 14 shifts to the split surface 20 in the direction of expansion due to thermal deformation at that time. Is about to occur.
- the first in each cross section of the first nozzle member 11 and the second nozzle member 12 cut along the length direction X of the slit 14.
- the length (D1 + D2 + D3) of each of the divided surfaces 20 of the nozzle member 11 and the second nozzle member 12 is T1 with the thickness (thickness of the flat plate portion 11a) of the slit 14 of the first nozzle member 11 in the width direction Z.
- the first nozzle member 11 is 1.5T1 or more, and the second nozzle member 12 is 1. It is set to .5T2 or higher. Therefore, the inhibition of the deformation of the nozzle members 11B and 12B in the central portion in the length direction X of the slit 14 in the width direction Z of the slit 14, that is, the fastening force of the nozzle members 11A, 11B, 11C, 12A, 12B and 12C. has been strengthened.
- the gap L3 in the width direction Z orthogonal to the length direction X of the slit 14 is formed in the length direction X of the slit 14 without causing a shift in the direction in which the gap L3 of the slit 14 expands on the divided surface 20 due to thermal deformation. Can be held uniformly along the line.
- the amount of gas discharged in the length direction X of the slit 14 becomes uniform, and the wiping ability of the steel strip S along the width direction of the steel strip S does not differ in the length direction X of the slit 14.
- the amount of plating adhesion can be made uniform.
- the upper limit of the length (D1 + D2 + D3) of the divided surface 20 of the first nozzle member 11 is 5T1
- the length of the divided surface 20 of the second nozzle member 12 is 5T2.
- the length of the divided surface 20 of 1.5T1 or 1.5T2 or more is secured at at least one of the depth directions Y of the first nozzle member 11 and the second nozzle member 12. If possible, it is possible to keep the gap of the slit 14 constant. However, under this condition, the first nozzle member 11 (nozzle member 11A, 11B, 11C) and the second nozzle member 12 (nozzle member 12A, 12B, 12C) may be cracked. In order to suppress this cracking, the length of each divided surface 20 of the first nozzle member 11 and the second nozzle member 12 is 1.5T1 or more for the first nozzle member 11 and for the second nozzle member 12.
- the region of the depth direction Y of 1.5T2 or more is a region having a size of 1/3 or more of the total length L (see FIG. 3) in the depth direction of each of the first nozzle member 11 and the second nozzle member 12. It is preferable that there is a region, and it is more preferable that the region has a size equal to the total length L.
- the first nozzle member 11, the second nozzle member 12, and the shim member 30 are all ceramic materials, carbon materials, carbon fiber reinforced carbon composite materials, or ceramics. Since it is a basic composite material, the coefficient of linear expansion is small, and there is no difference in the coefficient of linear expansion between them. Therefore, even in a high temperature atmosphere, the gap L3 in the width direction orthogonal to the length direction X of the slit 14 as the gas injection port can be uniformly held along the length direction X of the slit.
- the nozzle header 15 is also made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material, it is more effective to uniformly hold the gap L3 of the slit 14, but high-pressure wiping. Since it is difficult to make a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material that can withstand gas (at least 60 kPa), the nozzle header 15 is made of a ceramic material, a carbon material, or carbon. It was not used as a fiber-reinforced carbon composite material or a ceramics-based composite material.
- the gas wiping nozzle shown in Patent Document 3 since the first lip portion and the second lip portion are fixed on the slit side in the nozzle chamber by the fixing member, the gas wiping nozzle is configured. It is possible to suppress variations in the slit gap after assembly for each assembly when replacing a part or all of the parts.
- the fixing member for fixing the upper and lower nozzle members in the gas wiping nozzle shown in Patent Document 3 and the bolt used for fixing the fixing member are made of metal, the fixing member and the bolt extend in a high temperature atmosphere. As a result, the slit gap changes, and there is a problem that the slit gap cannot be uniformly held along the length direction of the slit.
- the first nozzle member 11 and the second nozzle member 12 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite.
- the shim member 30 is made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, and further, the shim member 30 is provided with a first nozzle member 11 and a second nozzle. It also has a fixing function for the member 12. Therefore, there is no member for fixing the first nozzle member 11 and the second nozzle member 12 that act to widen the gap L3 of the slit 14 in a high temperature atmosphere.
- the shim member 30 is made of a material that is not easily plastically deformed, the gap L3 of the slit 14 as a gas injection port can be uniformly held along the length direction X of the slit 14 even in a high temperature atmosphere. ..
- the shim member 30 did not have the function of fixing the first nozzle member 11 and the second nozzle member 12, but the first nozzle member 11 and the second nozzle member 12 of the ceramic material were fixed by metal bolts. And. In this case, it is necessary to make a bolt hole in the first nozzle member 11 and the second nozzle member 12 of the ceramic material and close the metal bolt into the bolt hole. In this case, the first nozzle member 11 and the second nozzle member 12, which are ceramic materials, may be damaged by the torque or thermal expansion when the metal bolt is tightened.
- the first nozzle member 11 and the second nozzle member 12 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite.
- the shim member 30 is made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material, and further, the shim member 30 is provided with a first nozzle member 11 and a second nozzle. It also has a fixing function for the member 12. Therefore, the first nozzle member 11 and the second nozzle member 12 are not damaged by the torque or thermal expansion when the metal bolt is tightened.
- the gas wiping nozzle 10 shown in FIGS. 16 and 17 has the same basic configuration as the gas wiping nozzle 10 shown in FIG. 4, but a pin 33 is used to connect the groove 28 of the first nozzle member 11 and the shim member 30. In addition, it differs from the gas wiping nozzle 10 shown in FIG. 4 in that a pin 33 is used for connecting the groove portion 29 of the second nozzle member 12 and the shim member 30.
- the cross-sectional shapes of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12 shown in FIGS. 16 and 17 are rectangular.
- the groove 28 of the first nozzle member 11 extends forward from the rear end surface 11ba (see FIG. 3).
- the groove portion 29 of the second nozzle member 12 extends forward from the rear end surface 12ba (see FIG. 3).
- the corner portion 28a in the groove portion 28 and the corner portion 29a in the groove portion 29 may be formed in a rounded shape. As a result, it is possible to prevent the concentration of stress and prevent the shim member 30 from being damaged.
- the shim member 30 has a rectangular parallelepiped shape, and its cross-sectional shape is a shape that is fitted into each of the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12. As shown in FIG. 17, the width C1 of the shim member 30 corresponding to the widths of the grooves 28 and 29 is about 5 to 20 mm, and the height C2 of the shim member 30 is about 5 to 40 mm.
- the shim member 30 is fitted into each of the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12. Further, a plurality of pins 33 are used to connect the groove 28 of the first nozzle member 11 to the shim member 30, and to connect the groove 29 of the second nozzle member 12 to the shim member 30.
- the shim member 70 can be fitted before the first nozzle member 11 and the second nozzle member 12 are combined, so that the shim member 70 can be fitted into the first nozzle member 11 and the first nozzle member 11.
- the shim member 70 may be provided at a plurality of positions in the depth direction Y of the first nozzle member 11 and the second nozzle member 12, whereby the gap L3 of the slit 14 can be held with higher accuracy.
- the pins 33 are, as shown in FIG. 16, two pins used for connecting the groove 28 of the first nozzle member 11 and the shim member 30, and the second nozzle member. A total of four pins 33, two pins used to connect the groove 29 of the twelve and the shim member 30, are used.
- the number of pins used may be increased according to the number of shim members 30.
- the pin 33 is the first after the shim member 30 is fitted into the grooves 28 and 29 as shown in FIGS. 16 and 17. It is inserted into the shim member 30 from the side surface of the nozzle member 11 up to a predetermined depth C3.
- the pin 33 is set after the shim member 30 is fitted into the grooves 28 and 29 as shown in FIGS. 16 and 17. It is inserted from the side surface of the nozzle member 12 of 2 to a predetermined depth C3 with respect to the shim member 30.
- each pin 33 is formed of a cylinder, its diameter C4 is about ⁇ 1 to 10 mm, and the insertion depth C3 of the pin 33 is about 1 to 15 mm.
- the insertion depth C3 of the pin 33 ⁇ the width C1 of the shim member 30 and the diameter C4 of the pin 33 ⁇ the height C2 of the shim member 30.
- a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic-based composite material is preferable.
- the bending strength of each pin 33 is preferably 600 MPa or more, more preferably 800 MPa or more. Therefore, it is preferable to use zirconia, silicon nitride, sialon, or the like as the ceramic material.
- the metal Nozzle header 15 (see FIGS. 1 and 2) is about to extend in the vertical direction, that is, in the width direction Z of the slit 14 due to thermal expansion.
- the first nozzle member 11 and the second nozzle member 12 are also pulled by the first nozzle member 11 and tend to move up and down.
- the first nozzle member 11 and the second nozzle member 12 are connected to the shim member 30 by the pin 33 and the shim member 30 is made of a material that is not easily plastically deformed, the first nozzle member 11 and the second nozzle The member 12 does not separate up and down. Since the first nozzle member 11 and the second nozzle member 12 are not separated from each other in the vertical direction, they are formed between the inclined end portions 11c and 12c on the steel strip S side of the first nozzle member 11 and the second nozzle member 12. The gap L3 of the slit 14 is held.
- the temperature T of the wiping gas (°C) is too low below T M -150 ° C., since it does not affect the fluidity of the molten metal, no effect on suppressing the occurrence of hot wrinkles. Further, when the temperature T (° C.) of the wiping gas is higher than TM + 250 ° C., alloying is promoted and the appearance of the steel sheet is deteriorated. Further, the method for raising the temperature of the wiping gas supplied to the gas wiping nozzle 10 is not particularly limited. For example, a method of heating and raising the temperature with a heat exchanger to supply the heat, and a method of mixing the combustion exhaust gas of the annealing furnace with air can be mentioned.
- examples of the hot-dip galvanized metal strip manufactured by applying the method for manufacturing the gas wiping nozzle and the hot-dip metal-plated metal strip according to the present embodiment include a hot-dip galvanized steel strip.
- the hot-dip galvanized steel strip includes both a plated steel sheet (GI) that is not alloyed after the hot-dip galvanized treatment and a plated steel sheet (GA) that is alloyed.
- GI plated steel sheet
- GA plated steel sheet
- the molten metal-plated metal band manufactured by applying the gas wiping nozzle and the method for manufacturing a molten metal-plated metal band according to the present embodiment is not limited to this, and other molten metals such as aluminum and tin other than zinc are not limited to this. It includes all hot metal plated steel strips including.
- the number of divisions of the first nozzle member 11 and the second nozzle member 12 may be two or five or more, although the above description describes three and four.
- the length of the surface 20 is the first when the thickness of the slit 14 of the first nozzle member 11 in the width direction Z is T1 and the thickness of the slit 14 of the second nozzle member 12 in the width direction Z is T2.
- the nozzle member 11 may be 1.5T1 or more
- the second nozzle member 12 may be 1.5T2 or more
- the shapes of the divided surfaces 20 are FIGS. 4, 7, 8, 10, and 11. , And the shape shown in FIG.
- the thickness of the flat plate portion 11a of the first nozzle member 11 and the thickness of the flat plate portion 12a of the second nozzle member 12 are set to be constant, they do not have to be constant.
- the upper limit of the length of the divided surface 20 of the first nozzle member 11 is 5T1
- the upper limit of the length of the divided surface 20 of the second nozzle member 12 is 5T2. May be good.
- all of the first nozzle member 11, the second nozzle member 12, and the shim member 30 are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramics-based composite material, but the first nozzle member. 11.
- Each of the second nozzle member 12, and the shim member 30 does not have to be a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material.
- first nozzle member 11, the second nozzle member 12, and the shim member are made of a ceramic material, a carbon material, a carbon fiber reinforced carbon composite material, or a ceramic base composite material. It is a concept that the nozzle member 11, the second nozzle member 12, and the shim member do not all have to be made of the same material. However, it is preferable that the first nozzle member 11, the second nozzle member 12, and the shim member are all made of the same material. This makes it possible to reliably eliminate the difference in the coefficient of linear expansion between the first nozzle member 11, the second nozzle member 12, and the shim member.
- the shim member is not limited to the mode in which two shim members are provided as independent members in the length direction X of the slit 14.
- the shim member connects the portions fitted into the groove portion of each nozzle member.
- a connecting portion may be provided to form an integral member.
- the cross-sectional shape of is not limited to a rectangular shape, but may be a dovetail groove shape, a T-shaped groove shape, or any other shape. Further, the cross-sectional shape of the shim member 30 may be changed according to the cross-sectional shape of the groove portions 28 and 29. Further, the shape of the pin 33 does not have to be a cylinder, and may be a rectangular parallelepiped or another shape.
- a steel strip S having a plate thickness of 1.0 mm and a plate width of 1200 mm is passed through a molten zinc bath at a plate speed of 2.0 m / s to enter the molten zinc bath.
- Manufactured plated steel strips are 1800 mm in length L1, 20 mm in depth L2, and 1.2 mm in width (gap) L3.
- the value obtained by dividing the thickness of the divided surface 20 of the nozzle members 11A to 11C and 12A to 12C by the nozzle thickness T is as shown in Table 1 over the entire length in the depth direction Y.
- the hot-dip galvanizing bath temperature at the time of the experiment was 460 ° C.
- the gas temperature T at the tip of the wiping nozzle was 500 ° C.
- As the wiping gas a gas prepared by mixing the exhaust gas of the combustor and air was used.
- the melting point T M of the galvanizing bath is 420 ° C..
- the gas wiping nozzles of Invention Examples 1 to 14 and Comparative Examples 1 to 5 will be described.
- the bending strength of Sialon described in the following Invention Examples 1 to 14 and Comparative Examples 1 to 5 is 980 MPa
- Vickers hardness is 1620 HV
- fracture toughness is 6 MPa ⁇ m 1/2
- thermal impact resistance is 650 ° C
- linear expansion The coefficient is 3.2 ⁇ 10-6 / K.
- the yield stress of chromium molybdenum steel is 400 MPa
- the Vickers hardness is 300 HV
- the fracture toughness is 236 MPa ⁇ m 1/2
- the linear expansion coefficient is 11.2 ⁇ 10 -6 / K.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- the assembled first nozzle member 11 is arranged on the upper side
- the assembled second nozzle member 12 is arranged on the lower side
- the groove portion 28 of the first nozzle member 11 and the groove portion 29 of the second nozzle member 12 are arranged.
- the same adhesive as described above is applied to each of the groove 28 of the first nozzle member 11 and the groove 29 of the second nozzle member 12, and the rectangular parallelepiped shim member 30 is applied to the first nozzle member 11 and the first nozzle member 12. It was fitted into the grooves 28 and 29 of the nozzle member 12 of 2.
- the nozzle header 15, the first nozzle member 11 and the second nozzle member 12 were fixed.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is assembled, and the rectangular shim member 30 is first attached via an adhesive containing alumina / silica as a main component.
- the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 are fixed by fitting into the grooves 28 and 29 of the nozzle member 11 and the second nozzle member 12.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- the definitions of D1, D2, D3, and T are the same as in FIG. Then, on each of the divided surfaces 20 of the first nozzle member 11 and the second nozzle member 12, drilling was performed at two locations in the nozzle depth direction Y with a tolerance of 8 ⁇ m + 10 ⁇ m.
- the adjacent nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C are mainly zirconia silica on the dividing surface 20. It was fixed with an adhesive as an ingredient. Next, an adhesive containing zirconia silica as a main component was applied to the drilled portion, and two pins 32 manufactured with a tolerance of 8 mm to 10 ⁇ m in diameter were drilled in the slit depth direction Y as shown in FIGS. 13 and 15. It was inserted into the processed part.
- the rectangular parallelepiped shim member 30 is fitted into the grooves 28 and 29 of the first nozzle member 11 and the second nozzle member 12 via an adhesive containing alumina / silica as a main component, and finally, the nozzle header 15 And the first nozzle member 11 and the second nozzle member 12 were fixed.
- the definitions of E1 and T are the same as those in FIG.
- drilling was performed at two locations in the nozzle depth direction Y with a tolerance of 8 ⁇ m + 10 ⁇ m.
- the adjacent nozzle members 11A, 11B, 11B, 11C, 12A, 12B, 12B, 12C are mainly zirconia silica on the dividing surface 20. It was fixed with an adhesive as an ingredient.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm). Then, as shown in FIG.
- Comparative Example 1 In Comparative Example 1, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 5, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- the shape of the divided surface 20 is a linear shape parallel to the nozzle thickness direction, and the length of each divided surface 20 is set to the thickness T1 of the first nozzle member 11 in the cut cross section and the thickness T1.
- T 20 mm.
- each of the first nozzle member 11 and the second nozzle member 12 is assembled by applying an adhesive containing alumina / silica as a main component, and the rectangular shim member 30 has an alumina / silica as a main component. It was fitted into the grooves 28 and 29 of the first nozzle member 11 and the second nozzle member 12 via an adhesive, and the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 were fixed.
- Comparative Example 2 In Comparative Example 2, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 4, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- Comparative Example 3 In Comparative Example 3, the materials of the first nozzle member 11, the second nozzle member 12, and the shim member 30 were all Sialon, and the material of the nozzle header 15 was chrome molybdenum steel. Further, as shown in FIG. 7, each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with three nozzle members 11A, 11B, 11C, 12A, along the length direction X of the slit 14. It was divided into 12B and 12C (the length of each nozzle member 11A, 11B, 11C, 12A, 12B, 12C in the slit length direction X is 600 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 is uniformly provided with four nozzle members 11A, 11B, 11C, 11D along the length direction X of the slit 14. It was divided into 12A, 12B, 12C, and 12D (the length of each nozzle member 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D in the slit length direction X is 450 mm). Then, as shown in FIG.
- each of the first nozzle member 11 and the second nozzle member 12 has five nozzle members 11A, 11B, 11C, 11D, evenly along the length direction X of the slit 14. It was divided into 11E, 12A, 12B, 12C, 12D, and 12E (the length of each nozzle member 11A, 11B, 11C, 11D, 11E, 12A, 12B, 12C, 12D, 12E in the slit length direction X is 450 mm).
- each of the first nozzle member 11 and the second nozzle member 12 is assembled, and the rectangular shim member 30 is first attached via an adhesive containing alumina / silica as a main component.
- the nozzle header 15 and the first nozzle member 11 and the second nozzle member 12 are fixed by fitting into the grooves 28 and 29 of the nozzle member 11 and the second nozzle member 12.
- the gap change rate of the slit 14 is a value (%) indicated by the maximum gap amount / minimum gap amount ⁇ 100 in the length direction X of the slit 14, and if it is less than 110 (%), it is acceptable.
- the widthwise plating adhesion amount deviation (%) of the steel strip S is a value (%) indicated by the maximum plating adhesion amount / minimum plating adhesion amount ⁇ 100 in the width direction of the steel strip S, and is less than 120 (%).
- the linear mark generation rate (%) is the ratio of the length of the steel strip S visually determined to have a linear mark defect to the length of the steel strip S passed under each manufacturing condition. Passed with less than 0.4 (%). The results are shown in Table 1.
- the slit 14 as a gas injection port is divided along the length direction X and manufactured, the atmosphere is high.
- the gap L3 in the width direction Z orthogonal to the length direction X of the slit 14 can be uniformly held along the length direction X of the slit 14, and the steel strip S along the width direction of the steel strip S can be held uniformly. It was confirmed that the amount of plating adhered could be made uniform.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
特許文献1に示す連続溶融金属めっき方法は、溶融金属めっき浴に連続的に鋼帯を浸漬し、溶融金属めっき浴から引き出された直後の鋼帯にガスワイピングノズルから気体を吹き付けてめっき付着量を制御するものである。そして、ガスワイピングノズル先端と鋼帯との距離Dと、ガスワイピングノズルギャップBの比で表されるD/B値に応じて、ガスワイピングノズルから噴射されるワイピングガスの温度Tを制御するようにしている。
また、従前のガスワイピング方式では、鋼帯のエッジ部が中央部より過冷却される現象がワイピング時に発生し、鋼帯に反りが発生して幅方向のめっき付着量が不均一となり、亜鉛めっき付着量の下限を保証するために、無駄に多くの亜鉛を消費するという問題も生じることがある。
特許文献2に示す連続溶融亜鉛めっきにおけるワイピング方法は、連続溶融亜鉛めっきにおいてガスワイピングノズルからワイピングガスを噴射させて被めっき鋼帯の表裏に付着している溶融亜鉛をワイピングするに際し、ワイピングガスの温度TG(℃)と被めっき鋼帯の板厚D(mm)との間に下記の(1)式を満足させるようにワイピングガスを加熱するものである。
ワイピングガス温度TG(℃)≧-400D+400 …(1)
特許文献3に示すガスワイピングノズルは、溶融金属めっき浴から上方に引き上げられた鋼帯に対してガスを吹き付けて、鋼帯の表面に付着した溶融金属膜の膜厚を調節するものである。そして、このガスワイピングノズルは、互いに対向して設けられ、ガスが導入されるノズル室を形成する第1のリップ部及び第2のリップ部と、ノズル室から噴射されるガスの噴射口として、第1のリップ部及び第2のリップ部の各々の鋼帯側の端部の間に形成されるスリットと、ノズル室におけるスリット側に設けられ、第1のリップ部及び第2のリップ部を固定する固定部材と、を備えている。そして、固定部材には、固定部材に対してスリット側とスリットの逆側とを連通する第1連通孔が鋼帯の幅方向に沿って複数並設されている。
しかしながら、特許文献3に示すガスワイピングノズルの場合には上側の第1のリップ部及び第2のリップ部のそれぞれは、ガス噴射口としてのスリットの長さ方向に沿って一体物で製作されており、第1のリップ部及び第2のリップ部のそれぞれをスリットの長さ方向に沿って分割して製作するものではない。このため、第1のリップ部及び第2のリップ部のそれぞれをスリットの長さ方向に沿って分割して製作した場合には、前述したガスワイピングノズルをスリットの長さ方向に沿って分割して製作した場合と同様の問題が生じる。
また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
図1に示す連続溶融金属めっき設備1は、金属帯としての鋼帯Sを、溶融金属からなる溶融金属浴4に浸漬することにより、鋼帯Sの表面に溶融金属を連続的に付着させた後、溶融金属を所定の付着量にするための設備である。
連続溶融金属めっき設備1は、スナウト2と、めっき槽3と、シンクロール5と、サポートロール6とを備えている。
ここで、スリット14は、奥行方向Yで中空部13に連通している。中空部13は、均圧部として機能し、ガス供給管17からガス供給路16を介して中空部13内に導入されたワイピングガスは、スリット14の長さ方向Xの全体に亘って均一な圧力で噴射される。
これらシム部材30は、第1のノズル部材11及び第2のノズル部材12を固定する機能をも有する。これらシム部材30によって第1のノズル部材11及び第2のノズル部材12を固定するために、第1のノズル部材11及び第2のノズル部材12の各々、具体的にはノズル部材11A,11C及びノズル部材12A,12Cの各々は、図4に示すように、これらシム部材30が嵌め込まれる溝部28,29をそれぞれ有している。
ここで、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としては、曲げ強度が600MPaのものが好ましく、800MPa以上のものがより好ましい。従って、セラミックス材としては、ジルコニア、窒化ケイ素、サイアロンなどを用いることが好ましい。これら材質を用いれば塑性変形しづらく、破壊強度以下であれば実質的な変形を抑制することができる。
また、熱影響のノズル変形を抑制するという観点から、第1のノズル部材11(ノズル部材11A,11B,11C)及び第2のノズル部材12(ノズル部材12A,12B,12C)の線膨張係数は、これら第1のノズル部材11及び第2のノズル部材12と固定されるノズルヘッダ15の線膨張係数に対し1/2以下であることが好ましく、1/3以下であることがより好ましい。ノズルヘッダ15の材質としては例えばステンレス鋼などが適用され、その線膨張係数は10~18×10-6/K程度である。
また、第1のノズル部材11及び第2のノズル部材12を製作するに際し、塑性変形しづらい材料としてカーボン材を選定した場合も同様に、成形に用いる金型サイズ制約などの理由から一般的ノズル幅1500mm以上を一体物として製作することが困難である。
そのため、セラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料を選定して第1のノズル部材11及び第2のノズル部材12を製作する場合、前述したように、第1のノズル部材11をスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材11A,11B,11Cに分割し、第2のノズル部材12をスリット14の長さ方向Xに沿って複数の分割面20で複数個(本実施形態にあっては3個)のノズル部材12A,12B,12Cに分割して製作している。
なお、第1のノズル部材11のスリット14の幅方向Zの厚みをT1とし、第2のノズル部材12のスリット14の幅方向Zの厚みをT2としたときに、T1とT2は同一の厚みであっても、異なる厚みであってもよい。
第1のノズル部材11及び第2のノズル部材12の各々をスリット14の長さ方向Xに沿って複数の分割面20で複数個のノズル部材11A,11B,11C、12A,12B,12Cに分割する場合、図5に示すように、分割面20の形状をノズル厚み方向(スリット14の幅方向Z)に平行な直線状の形状とし、その長さを第1のノズル部材11及び第2のノズル部材12の各々のスリット14の幅方向Zの厚みと同じとし、分割面20に接着剤を塗布して組み合わせる手法が考えられる。
ここで、各分割面20の長さ(D1+D2+D3)が1.5T1あるいは1.5T2未満だと、分割面20の形状が図5に示す場合に近づき、スリット14の長さ方向Xにおける中央部のノズル部材11B,12Bのスリット14の幅方向Zへの移動が容易になり、段差20bを有する形状に加工した効果が発揮され難い。
これに対して、スリット14のギャップ縮小が問題となる場合がある。このような場合には、分割面20の形状を図8あるいは図9に示すような形状とすることで、スリット14のギャップ縮小を回避することができる。
そして、各分割面20の第1直線状部20aの長さD1、段差20bの長さD2及び第2直線状部20cの長さD3を加算した長さ((D1+D2+D3)が、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上となっている。
また、第1のノズル部材11及び第2のノズル部材12の各々をスリット14の長さ方向Xに沿って複数の分割面20で複数個に分割するに際しては、図4に示す場合(3個に分割)と異なり、図10に示す第4変形例に係るガスワイピングノズルのように、4個のノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割するようにしてもよい。
なお、各分割面20の形状を嵌合面形状とするためにくの字形の形状としてもよい。
また、各分割面20の長さを1.5T1あるいは1.5T2以上とするために、図11に示す第5変形例に係るガスワイピングノズルのように、第1のノズル部材11及び第2のノズル部材12の各々の分割面20の形状を、分割された隣接するノズル部材11A,11B、11B,11C、11C,11D、12A,12B、12B,12C、12C,12Dではめ合わせてもよい。
ここで、ピン32の断面形状は矩形でも円形でもよい。図13に示す第7変形例に係るガスワイピングノズルにおいて、ピン32をスリット14の幅方向Zに分割面20の段差20bに差し込む場合、ピン32のスリット長さ方向Xの幅は段差20bの長さD2未満でなければならない。
また、図13に示す第7変形例に係るガスワイピングノズル及び図14に示す第8変形例に係るガスワイピングノズルにおいて、図15に示すように、ピン32を挿し込む場合、ピン32はスリット長さ方向X、スリット奥行方向Yに任意の数、任意の位置に差し込むことができる。
先ず、第1のノズル部材11及び第2のノズル部材12の各々を組み立てる。この第1のノズル部材11及び第2のノズル部材12の各々を組み立てに先立ち、第1のノズル部材11のノズル部材11A及び11Cに後端面11baから溝加工を施して溝部28を形成するとともに、第2のノズル部材12のノズル部材12A及び12Cに後端面12baから溝加工を施して溝部29を形成しておく。
これにより、第1のノズル部材11及び第2のノズル部材12は固定される。
そして、固定された第1のノズル部材11の後端面11ba及び第2のノズル部材12の後端面12baを図示しないねじ等の固定部材によりノズルヘッダ15の前端面に連結すればよい。
しかしながら、特許文献3に示すガスワイピングノズルにおける上下ノズル部材を固定する固定部材やこの固定部材を固定する際に用いるボルトなどが金属製であるため、高温雰囲気下で当該固定部材やボルトなどが延び、これによってスリットギャップが変化し、スリットのギャップをスリットの長さ方向に沿って均一に保持することができないという問題がある。
図16及び図17に示すガスワイピングノズル10は、図4に示すガスワイピングノズル10と基本構成は同様であるが、第1のノズル部材11の溝部28とシム部材30の接続にピン33を使用するとともに、第2のノズル部材12の溝部29とシム部材30の接続にピン33を使用する点で図4に示すガスワイピングノズル10と相違している。
また、シム部材30は、直方体形状であり、その断面形状は第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29の各々に嵌め込まれる形状となっている。そして、図17に示すように、溝部28,29の幅に対応したシム部材30の幅C1は5~20mm程度、シム部材30の高さC2は5~40mm程度としてある。
また、ガスワイピングノズル10に供給するワイピングガスの昇温方法については、特に限定されない。例えば、熱交換器で加熱昇温して供給する方法、焼鈍炉の燃焼排ガスと空気とを混合する方法が挙げられる。
例えば、第1のノズル部材11及び第2のノズル部材12の各々の分割数は、以上の説明では3つ及び4つについて説明してあるが、2つあるいは5つ以上であってもよい。
また、スリット14の長さ方向Xに沿って切断された第1のノズル部材11及び第2のノズル部材12の各々の断面における第1のノズル部材11及び第2のノズル部材12の各々の分割面20の長さが、第1のノズル部材11のスリット14の幅方向Zの厚みをT1、第2のノズル部材12のスリット14の幅方向Zの厚みをT2としたときに、第1のノズル部材11について1.5T1以上、第2のノズル部材12について1.5T2以上であればよく、各分割面20の形状は、図4、図7、図8、図9、図10、図11、及び図12に示した形状に限られない。
また、第1のノズル部材11の分割面20の長さの上限が5T1、第2のノズル部材12の分割面20の長さの上限が5T2としてあるが、それぞれ5T1あるいは5T2よりも大きくしてもよい。
また、第1のノズル部材11、第2のノズル部材12、及びシム部材30の全てをセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としてあるが、第1のノズル部材11、第2のノズル部材12、及びシム部材30の各々をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、あるいはセラミックス基複合材料としなくてもよい。
また、ピン33を使用して第1のノズル部材11の溝部28とシム部材30との接続、及び第2のノズル部材12の溝部29とシム部材30との接続を行う場合、溝部28、29の断面形状は、長方形状に限らず、アリ溝形状、T型溝形状、その他の形状であってもよい。また、シム部材30の断面形状は、その溝部28、29の断面形状に対応して変更すればよい。また、ピン33の形状は円柱である必要はなく、直方体や他の形状であってもよい。
なお、以下の発明例1~14及び比較例1~5に記載のサイアロンの曲げ強度は980MPa、ビッカース硬さは1620HV、破壊靱性は6MPa・m1/2、耐熱衝撃性は650℃、線膨張係数は3.2×10-6/Kである。クロムモリブデン鋼の降伏応力は400MPa、ビッカース硬さは300HV、破壊靱性は236MPa・m1/2、線膨張係数は11.2×10-6/Kである。
発明例1では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、第1のノズル部材11及び第2のノズル部材12の各々を組み立てた。この際に、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士をジルコニア・シリカを主成分とする接着剤で固定した。次に、組み立てた第1のノズル部材11を上側、組み立てた第2のノズル部材12を下側に配置するとともに、第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに、前述と同様の接着材を第1のノズル部材11の溝部28及び第2のノズル部材12の溝部29のそれぞれに塗布し、直方体形状のシム部材30を第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込んだ。最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例2では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例3では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=32mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例4では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=98mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例5では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図13に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図13に示すように、分割面20の形状は段差20bを有する形状状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。D1,D2、D3、Tの定義は図4と同様である。そして、第1のノズル部材11及び第2のノズル部材12の各々の分割面20において、ノズル奥行方向Yに2か所、8μm+10μmの公差で穴あけ加工を行った。次に、第1のノズル部材11及び第2のノズル部材12の各々において、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士を分割面20でジルコニア・シリカを主成分とする接着剤で固定した。次に、穴あけ加工部にジルコニア・シリカを主成分とする接着剤を塗布し、直径8mm-10μmの公差で製作したピン32を図13及び図15に示すようにスリット奥行方向Yへ2本穴あけ加工部に差し込んだ。次に、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例6では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図14に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図14に示すように、分割面20の形状はテーパ形状とし、E1=32mmとした。切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。E1、Tの定義は図7と同様である。そして、第1のノズル部材11及び第2のノズル部材12の各々の分割面20において、ノズル奥行方向Yに2か所、8μm+10μmの公差で穴あけ加工を行った。次に、第1のノズル部材11及び第2のノズル部材12の各々において、隣接するノズル部材11A,11B、11B,11C、12A,12B、12B,12C同士を分割面20でジルコニア・シリカを主成分とする接着剤で固定した。次に、穴あけ加工部にジルコニア・シリカを主成分とする接着剤を塗布し、直径8mm-10μmの公差で製作したピン32を図14及び図15に示すようにスリット奥行方向Yへ2本穴あけ加工部に差し込んだ。次に、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、最後に、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例7では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例8では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=102mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例9では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例10では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例11では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例12では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=12mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例12では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=78mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
発明例14では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=82mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
比較例1では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図5に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図5に示すように、分割面20の形状はノズル厚方向に平行な直線状の形状とし、各分割面20の長さを、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2と同じくT=20mmとした。そして、第1のノズル部材11及び第2のノズル部材12の各々をアルミナ・シリカを主成分とする接着剤を塗布して組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
比較例2では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図4に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図4に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
比較例3では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図7に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に3つのノズル部材11A,11B,11C、12A,12B,12Cに分割した(各ノズル部材11A,11B,11C、12A,12B,12Cのスリット長さ方向Xの長さは600mm)。そして、図7に示すように、分割面20の形状はテーパ形状とし、E1=28mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
比較例4では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図11に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に4つのノズル部材11A,11B,11C,11D、12A,12B,12C,12Dに分割した(各ノズル部材11A,11B,11C,11D、12A,12B,12C,12Dのスリット長さ方向Xの長さは450mm)。そして、図11に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
比較例5では、第1のノズル部材11、第2のノズル部材12、及びシム部材30の材質は全てサイアロン、ノズルヘッダ15の材質はクロムモリブデン鋼とした。また、図12に示すように、第1のノズル部材11及び第2のノズル部材12の各々を、スリット14の長さ方向Xに沿って均等に5つのノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eに分割した(各ノズル部材11A,11B,11C,11D,11E、12A,12B,12C,12D,12Eのスリット長さ方向Xの長さは450mm)。そして、図12に示すように、分割面20の形状は段差20bを有する形状とし、D1=10mm、D2=8mm、D3=10mmとした。ここで、切断した断面における第1のノズル部材11の厚みT1及び第2のノズル部材12の厚みT2はともにT=20mmである。そして、発明例1と同様に、第1のノズル部材11及び第2のノズル部材12の各々を組み立てるとともに、直方体形状のシム部材30をアルミナ・シリカを主成分とする接着剤を介して第1のノズル部材11及び第2のノズル部材12の溝部28,29に嵌め込み、ノズルヘッダ15と第1のノズル部材11及び第2のノズル部材12とを固定した。
その結果を表1に示す。
また、分割面の形状をノズル厚方向に平行な直線状の形状として分割面の長さを1Tとした比較例1、分割面の形状を段差を有する形状としたが分割面の長さが1.4Tである比較例2,4,5及び分割面の形状をテーパ形状としたが分割面の長さが1.4Tである比較例3では、スリット14のギャップ変化率、鋼帯Sの幅方向めっき付着量偏差、及び線状マーク発生率のいずれも合格基準値を超過し、不合格となった。
また、発明例1~14及び比較例1~5のいずれにおいても、ガスワイピングノズル10のスリット14から噴射した直後のワイピングガスの温度T(℃)が、溶融金属の融点TM(℃)との関係で、TM-150≦T≦TM+250を満たすように、ワイピングガスの温度制御がなされている。このため、発明例1~14及び比較例1~5のいずれにおいても、湯ジワ欠陥は発生しなかった。
2 スナウト
3 めっき槽
4 溶融金属浴
5 シンクロール
6 サポートロール
10 ガスワイピングノズル
11 第1のノズル部材
11A,11B,11C,11D,11E ノズル部材
11a 平板部
11b フランジ部
11c 傾斜端部
12 第2のノズル部材
12A,12B,12C,12D,12E ノズル部材
12a 平板部
12b フランジ部
12c 傾斜端部
13 中空部
13a 中空部形成用空間
13b 中空部形成用空間
14 スリット
15 ノズルヘッダ
16 ガス供給路
17 ガス供給管
20 分割面
20a 第1直線状部
20b 段差
20c 第2直線状部
20d 凹面
20e 凸面
28,29 溝部
28a,29a 角部
30 シム部材
31 ズレ
32 ピン
33 ピン
L1 スリットの長さ
L2 スリットの奥行き
L3 スリットの幅(スリットのギャップ)
S 鋼帯(金属帯)
X スリットの長さ方向(鋼帯の幅方向)
Y スリットの奥行方向(鋼帯の板厚方向)
Z スリットの幅方向(鋼帯の板長方向)
Claims (10)
- 溶融金属浴から引き上げられた金属帯にワイピングガスを吹き付けて、前記金属帯の表面に付着した溶融金属の付着量を調整するガスワイピングノズルであって、
前記ガスワイピングノズルは第1のノズル部材及び第2のノズル部材を備え、
前記ガスワイピングノズルの金属帯側の端部において、前記第1のノズル部材と前記第2のノズル部材との間にガス噴射口としてのスリットを形成し、
前記第1のノズル部材及び前記第2のノズル部材の各々が前記スリットの長さ方向において複数個のノズル部材に分割され、
前記第1のノズル部材の前記スリットの幅方向の厚みをT1、前記第2のノズル部材の前記スリットの幅方向の厚みをT2としたときに、前記スリットの長さ方向に沿って、前記スリットの長さ方向に直交する奥行方向のうちの少なくとも一か所で切断された前記第1のノズル部材及び前記第2のノズル部材の各々の断面における前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の長さが、前記第1のノズル部材について1.5T1以上、前記第2のノズル部材について1.5T2以上であることを特徴とするガスワイピングノズル。 - 前記スリットの長さ方向に直交する幅方向のギャップを調整するシム部材を備えていることを特徴とする請求項1に記載のガスワイピングノズル。
- 前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の長さを前記第1のノズル部材について1.5T1以上、前記第2のノズル部材について1.5T2以上とする前記奥行方向の領域は、前記第1のノズル部材及び前記第2のノズル部材の各々の前記奥行方向の全長の1/3以上の大きさの領域であることを特徴とする請求項1又は2に記載のガスワイピングノズル。
- 前記第1のノズル部材の分割面の長さの上限が5T1、前記第2のノズル部材の分割面の長さの上限が5T2であることを特徴とする請求項1乃至3のうちいずれか一項に記載のガスワイピングノズル。
- 前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、段差を有する形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
- 前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、前記スリットの幅方向に対して傾斜するテーパ形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
- 前記第1のノズル部材及び前記第2のノズル部材の各々の分割面の形状が、分割された隣接するノズル部材の凹面と凸面とが嵌合する嵌合面形状であることを特徴とする請求項1乃至4のうちいずれか一項に記載のガスワイピングノズル。
- 前記第1のノズル部材、前記第2のノズル部材、及び前記シム部材の材質をセラミックス材、カーボン材、炭素繊維強化炭素複合材料、又はセラミックス基複合材料とすることを特徴とする請求項1乃至7のうちいずれか一項に記載のガスワイピングノズル。
- 前記第1のノズル部材の分割されたノズル部材同士、前記第2のノズル部材の分割されたノズル部材同士の接続にピンを使用することを特徴とする請求項1乃至8のうちいずれか一項に記載のガスワイピングノズル。
- 請求項1乃至9のうちいずれか一項に記載のガスワイピングノズルを、溶融金属浴から引き上げられた金属帯の両面側に一対配置し、これら一対のガスワイピングノズルの各々のスリットから前記金属帯の各面にワイピングガスを吹き付けて、前記金属帯の両面に付着した溶融金属の付着量を調整して、連続的に溶融金属めっき金属帯を製造することを特徴とする溶融金属めっき金属帯の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/008,487 US12084774B2 (en) | 2020-06-19 | 2021-04-21 | Gas wiping nozzle and method for manufacturing hot-dip metal coated metal strip |
JP2021540072A JP6977914B1 (ja) | 2020-06-19 | 2021-04-21 | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 |
CN202180042002.5A CN115997044A (zh) | 2020-06-19 | 2021-04-21 | 气体擦拭喷嘴和熔融金属镀覆金属带的制造方法 |
EP21825278.1A EP4170057B1 (en) | 2020-06-19 | 2021-04-21 | Gas wiping nozzle and method for manufacturing hot-dip coated metal strip |
MX2022016140A MX2022016140A (es) | 2020-06-19 | 2021-04-21 | Boquilla de limpieza de gas y metodo para fabricar una tira de metal recubierta con metal por inmersion en caliente. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020105965 | 2020-06-19 | ||
JP2020-105965 | 2020-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256079A1 true WO2021256079A1 (ja) | 2021-12-23 |
Family
ID=79267731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016193 WO2021256079A1 (ja) | 2020-06-19 | 2021-04-21 | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021256079A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4267779B1 (en) * | 2020-12-22 | 2024-09-04 | Tata Steel Nederland Technology B.V. | Multi-jet air knife to control the thickness of metallic coatings |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010285668A (ja) * | 2009-06-15 | 2010-12-24 | Mitsubishi-Hitachi Metals Machinery Inc | ガスワイピング装置 |
JP6011740B2 (ja) | 2014-10-08 | 2016-10-19 | Jfeスチール株式会社 | 連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備 |
JP2017222923A (ja) * | 2016-06-17 | 2017-12-21 | Jfeスチール株式会社 | 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備 |
JP2018178159A (ja) * | 2017-04-05 | 2018-11-15 | 新日鐵住金株式会社 | ガスワイピングノズル |
WO2019065453A1 (ja) * | 2017-09-29 | 2019-04-04 | 新日鐵住金株式会社 | ガスワイピングノズルの製造方法及びガスワイピングノズル |
JP6702519B1 (ja) * | 2019-02-26 | 2020-06-03 | Jfeスチール株式会社 | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 |
-
2021
- 2021-04-21 WO PCT/JP2021/016193 patent/WO2021256079A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010285668A (ja) * | 2009-06-15 | 2010-12-24 | Mitsubishi-Hitachi Metals Machinery Inc | ガスワイピング装置 |
JP6011740B2 (ja) | 2014-10-08 | 2016-10-19 | Jfeスチール株式会社 | 連続溶融金属めっき方法および溶融亜鉛めっき鋼帯ならびに連続溶融金属めっき設備 |
JP2017222923A (ja) * | 2016-06-17 | 2017-12-21 | Jfeスチール株式会社 | 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備 |
JP2018178159A (ja) * | 2017-04-05 | 2018-11-15 | 新日鐵住金株式会社 | ガスワイピングノズル |
WO2019065453A1 (ja) * | 2017-09-29 | 2019-04-04 | 新日鐵住金株式会社 | ガスワイピングノズルの製造方法及びガスワイピングノズル |
JP6702519B1 (ja) * | 2019-02-26 | 2020-06-03 | Jfeスチール株式会社 | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4267779B1 (en) * | 2020-12-22 | 2024-09-04 | Tata Steel Nederland Technology B.V. | Multi-jet air knife to control the thickness of metallic coatings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021256079A1 (ja) | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 | |
JP6702519B1 (ja) | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 | |
WO2019065453A1 (ja) | ガスワイピングノズルの製造方法及びガスワイピングノズル | |
JP6977914B1 (ja) | ガスワイピングノズル及び溶融金属めっき金属帯の製造方法 | |
EP2017365B1 (en) | Method for manufacturing molten-metal plated steel band | |
CN113544305B (zh) | 气体擦拭喷嘴及熔融金属镀覆金属带的制造方法 | |
CN108868899B (zh) | 冲击插入件 | |
EP2956623B1 (en) | Tapered thermal barrier coating on convex and concave trailing edge surfaces | |
TWI313622B (ja) | ||
JP2018178146A (ja) | ガスワイピングノズル | |
CN118355144A (zh) | 气体擦拭喷嘴及热浸镀金属钢带和气体擦拭喷嘴的制造方法 | |
EP3187275B1 (en) | Thick steel plate manufacturing method | |
JP4076918B2 (ja) | めっき厚調整用ガス噴射ノズル | |
JP2024051681A (ja) | バッフルプレート、及びめっき鋼板の製造方法 | |
JP2008105068A (ja) | 連続鋳造用鋳型 | |
JP6350487B2 (ja) | モルタル塗布方法、モルタル塗布用ノズル、およびモルタル塗布用アーム型ロボット | |
KR20200069681A (ko) | 강판 냉각 장치 | |
KR0129969Y1 (ko) | 세라믹이 코팅된 부쉬 | |
JPS6369963A (ja) | 複合表面硬化法 | |
EP1462612A1 (de) | Kühlbares Schichtsystem und Verfahren zur Herstellung eines gekühlten Schichtsystems | |
KR20130077483A (ko) | 용탕온도 저하 방지용 노즐 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021540072 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21825278 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217070107 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2021825278 Country of ref document: EP Effective date: 20230119 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |