WO2021255895A1 - 冷媒回収システム及び冷媒回収方法 - Google Patents

冷媒回収システム及び冷媒回収方法 Download PDF

Info

Publication number
WO2021255895A1
WO2021255895A1 PCT/JP2020/023964 JP2020023964W WO2021255895A1 WO 2021255895 A1 WO2021255895 A1 WO 2021255895A1 JP 2020023964 W JP2020023964 W JP 2020023964W WO 2021255895 A1 WO2021255895 A1 WO 2021255895A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
recovery
recovery cylinder
air
cylinder
Prior art date
Application number
PCT/JP2020/023964
Other languages
English (en)
French (fr)
Inventor
正樹 近藤
勝也 谷口
亜加音 野村
幸治 太田
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN202080101986.5A priority Critical patent/CN115867757B/zh
Priority to PCT/JP2020/023964 priority patent/WO2021255895A1/ja
Priority to JP2020568576A priority patent/JP6840906B1/ja
Publication of WO2021255895A1 publication Critical patent/WO2021255895A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present invention relates to a refrigerant recovery system and a refrigerant recovery method.
  • the worker collects the refrigerant filled in the air conditioner in a recovery cylinder.
  • a recovery device equipped with a pump compresses the refrigerant recovered from the air conditioner, liquefies it, and then fills the recovery cylinder.
  • the refrigerant When pressure is applied to the gaseous refrigerant, the refrigerant is compressed and the temperature rises. Further, the pressure further increases due to the expansion of the refrigerant due to the temperature rise and the evaporation of the refrigerant in the liquefied state. Therefore, the temperature of the recovery cylinder rises while the refrigerant is being recovered.
  • Patent Document 1 the recovery cylinder is covered with a housing having a ventilation function, and water is supplied to the recovery cylinder in the housing. Then, by sending air into the housing, the vaporization of water is promoted.
  • Patent Document 1 the recovery efficiency of the refrigerant is improved by cooling the recovery cylinder in this way.
  • An object of the present invention is to realize a refrigerant recovery system and a refrigerant recovery method capable of further improving the refrigerant recovery efficiency.
  • the refrigerant recovery system is a refrigerant recovery system that recovers a refrigerant in a recovery cylinder, a blower that blows air to the recovery cylinder and a wind that guides the air blown by the blower to the recovery cylinder. It is provided with an air passage forming portion that forms a path.
  • the refrigerant recovery method comprises a step of mounting a blower in the vicinity of the recovery cylinder mounted near the air conditioner in the refrigerant recovery method for recovering the refrigerant of the air conditioner in the recovery cylinder. It includes a step of forming an air passage from the blower device to the recovery cylinder, and a blower step of driving the blower device and blowing air toward the recovery cylinder to the recovery cylinder.
  • the refrigerant recovery efficiency can be further improved.
  • FIG. 1 It is a figure which shows the schematic structure of the refrigerant recovery system in Embodiment 1. It is a block block diagram of the recovery device in Embodiment 1.
  • FIG. It is a schematic diagram when the positional relationship between the refrigerant recovery system shown in FIG. 1 and the recovery cylinder is seen from above.
  • FIG. 1 It is a schematic diagram when the other modification of the refrigerant recovery system is seen from the side. It is a schematic diagram when the other modification of the refrigerant recovery system is seen from above. It is a figure which shows the schematic structure of the refrigerant recovery system in Embodiment 2. It is a figure which shows the schematic structure of the refrigerant recovery system in Embodiment 3. FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a refrigerant recovery system according to the present embodiment.
  • the refrigerant recovery system in the present embodiment is a system for recovering the refrigerant of the air conditioner in a recovery cylinder.
  • FIG. 1 shows an air conditioner 1, a recovery cylinder 2, a recovery device 3, a blower device 4, a pair of air passage forming members 5, and a weighing scale 6.
  • the air conditioner 1 is a device that cools or heats the target space using a refrigerant.
  • the target space is, for example, an internal space such as a building such as a building or a house, a vehicle, or a moving body such as an elevator.
  • the refrigerant is, for example, Freons.
  • the air conditioner 1 is illustrated as an example of a device using a refrigerant.
  • the recovery cylinder 2 is a pressure-resistant container for recovering the refrigerant brought into the space where the air conditioner 1 is located by a worker who recovers the refrigerant.
  • the recovery cylinder 2 is placed on the weighing scale 6 when the refrigerant is recovered.
  • various sizes can be used.
  • a cylinder for 20 kg, which is easy to carry, can be used.
  • a small capacity for 10 kg, a large capacity for 40 kg, a large capacity for 100 kg, and the like can be mentioned.
  • the capacity of the recovery cylinder 2 is smaller than the amount of the refrigerant used in the air conditioner 1, the refrigerant is recovered while exchanging a plurality of recovery cylinders 2.
  • the recovery cylinder 2 includes a pressure sensor (not shown) for measuring an internal pressure and a float sensor for measuring the liquid level height of the filled refrigerant.
  • the output value of each sensor can be read directly by the operator, or can be transmitted to the collection device 3 by wire or wirelessly.
  • the recovery cylinder 2 may further include a temperature sensor or the like for measuring the temperature of the filled refrigerant.
  • FIG. 2 is a diagram showing a block configuration of the recovery device 3 in the present embodiment.
  • the recovery device 3 has a built-in computer. That is, the recovery device 3 includes storage means such as a CPU, ROM, RAM, and a hard disk drive (HDD), and communication means with an external device. Further, it may be provided with a user interface for the operator to operate and provide information to the operator, if necessary.
  • storage means such as a CPU, ROM, RAM, and a hard disk drive (HDD)
  • HDD hard disk drive
  • FIG. 2 is a diagram showing a block configuration of the recovery device 3 in the present embodiment.
  • the recovery device 3 has a built-in computer. That is, the recovery device 3 includes storage means such as a CPU, ROM, RAM, and a hard disk drive (HDD), and communication means with an external device. Further, it may be provided with a user interface for the operator to operate and provide information to the operator, if necessary.
  • HDD hard disk drive
  • the recovery device 3 is a device for recovering the refrigerant from the air conditioner 1 and filling the recovery cylinder 2.
  • the recovery device 3 includes tubes 32a and 32b.
  • the tube 32a is a hollow component that connects the refrigerant recovery pump 38 and the air conditioner 1.
  • the tube 32a serves as a path for delivering the refrigerant inside the air conditioner 1 toward the refrigerant recovery pump 38.
  • the refrigerant flowing through the tube 32a is usually in a gaseous state.
  • the tube 32b is a hollow component that connects the heat exchanger 39 and the recovery cylinder 2.
  • the tube 32b serves as a path for sending the refrigerant flowing out of the heat exchanger 39 to the recovery cylinder 2.
  • the refrigerant flowing through the tube 32b is usually in a liquid state.
  • the recovery device 3 further includes a pressure sensor 34, a temperature sensor 36, a refrigerant recovery pump 38, a heat exchanger 39, an outside air temperature sensor 40, a fan 41, a communication unit 42, a filling state data acquisition unit 44, and a control unit 46. ..
  • the recovery device 3 Since the pressure and temperature of the refrigerant sent from the recovery device 3 to the recovery cylinder 2 are closely related to the pressure and temperature of the refrigerant in the recovery cylinder 2, the recovery device 3 is the refrigerant to be sent out through the tube 32b.
  • a sensor for measuring pressure may be provided.
  • the recovery device 3 may include a sensor for measuring the temperature of the refrigerant delivered through the tube 32b.
  • the control unit 46 controls the refrigerant recovery by referring to one or both of the pressure and temperature of the refrigerant measured by the sensor.
  • a sensor for measuring the internal pressure and temperature in the recovery cylinder 2 is provided, and the control unit 46 controls the refrigerant recovery by referring to one or both of the internal pressure and temperature in the recovery cylinder 2 measured by the sensor. You may.
  • the pressure sensor 34 is a sensor that measures the pressure of the refrigerant in a gaseous state sucked from the air conditioner 1 through the tube 32a.
  • the temperature sensor 36 is a sensor that measures the temperature of the refrigerant in a gaseous state sucked from the air conditioner 1 through the tube 32a.
  • the temperature and pressure of the sucked refrigerant are related to the compression of the refrigerant by the refrigerant recovery pump 38 and the liquefaction of the refrigerant by the heat exchanger 39. Therefore, it is preferable that the control unit 46 controls the refrigerant recovery with reference to the measured pressure and temperature.
  • the refrigerant recovery pump 38 is a device for transporting the refrigerant.
  • An example of the refrigerant recovery pump 38 is a device using an electric motor as a drive source.
  • the refrigerant recovery pump 38 sucks the gaseous refrigerant from the air conditioner 1 through the tube 32a, compresses the sucked refrigerant, and sends it to the heat exchanger 39.
  • the refrigerant recovery pump 38 compresses the refrigerant, the temperature and pressure of the refrigerant are increased. Some refrigerants may liquefy.
  • the heat exchanger 39 is a device that cools and liquefies the refrigerant.
  • the heat exchanger 39 cools and liquefies the refrigerant by releasing the heat of the high-temperature and high-pressure refrigerant flowing from the refrigerant recovery pump 38 to the outside.
  • the outside air temperature sensor 40 is a sensor that measures the ambient air temperature of the recovery device 3. Refrigerant recovery efficiency also depends on the outside air temperature. Therefore, it is preferable that the control unit 46 controls the refrigerant recovery with reference to the outside air temperature.
  • the fan 41 is a device that blows outside air to the heat exchanger 39.
  • An example of the fan 41 is a propeller type fan that rotates under the power of an electric motor.
  • the fan 41 blows air to the heat exchanger 39 to cool the heat exchanger 39 and promote the liquefaction of the refrigerant in the heat exchanger 39.
  • the communication unit 42, the filling state data acquisition unit 44, and the control unit 46 are realized by a cooperative operation between the computer built in the recovery device 3 and the program operated by the CPU mounted on the computer.
  • the communication unit 42 communicates with an external device such as a blower device 4 or a weight scale 6 by wired or wireless communication.
  • the communication unit 42 can also communicate with the server of the organization to which the worker belongs.
  • the filling state data acquisition unit 44 acquires data (referred to as “filling state data”) regarding the filling state of the refrigerant in the recovery cylinder 2. Examples of the filling state data include the filling amount of the refrigerant, the filling speed, the pressure, the temperature, and the like.
  • the filling state data acquisition unit 44 may acquire filling state data from the sensors of the recovery cylinder 2, or may acquire the weight of the recovery cylinder 2 measured by the weighing scale 6 as filling state data. Further, it is also possible to acquire the filling state data by performing an appropriate calculation based on the acquired filling state data (for example, an embodiment in which the filling amount is obtained by integrating the flow rates).
  • the control unit 46 controls the recovery device 3 in various ways.
  • One of the controlled objects of the control unit 46 is the refrigerant recovery pump 38.
  • the control unit 46 controls the start, stop, output change, and the like of the refrigerant recovery pump 38 according to the instruction of the operator or according to a predetermined program. Further, for example, when the pressure or the float height input from the recovery cylinder 2 exceeds a predetermined reference value, the refrigerant recovery pump 38 is stopped from the viewpoint of ensuring safety.
  • the control unit 46 may further control the start, stop, output change, and the like of the blower device 4 according to the instruction of the operator or according to a predetermined program. In the present embodiment, as shown in FIG.
  • the control unit 46 and the like are provided in the recovery device 3, but the control function for recovering the refrigerant may be realized by another device.
  • the recovery device 3 includes only a refrigerant recovery pump 38, a heat exchanger 39, and a fan 41
  • a control device provided separately from the recovery device 3 includes a pressure sensor 34, a temperature sensor 36, an outside temperature sensor 40, and a communication unit. 42, the filling state data acquisition unit 44 and the control unit 46 may be provided.
  • the recovery device 3 may include a pressure sensor 34, a temperature sensor 36, an outside air temperature sensor 40, a refrigerant recovery pump 38, a heat exchanger 39, and a fan 41, and the control device may have other configurations.
  • a terminal device PC, tablet, smartphone, etc.
  • the weight scale 6 is a device for measuring the weight of the recovery cylinder 2.
  • the weight scale 6 displays the measured weight on a display unit (not shown) of the weight scale 6. Further, the weight scale 6 can also transmit the measured weight to the recovery device 3.
  • the weigh scale 6 By using the weigh scale 6, the amount of recovered refrigerant can be clarified when recovering fluorocarbons and the like.
  • FIG. 3 is a schematic view of the positional relationship between the refrigerant recovery system shown in FIG. 1 and the recovery cylinder 2 when viewed from above.
  • the blower 4 blows air from one direction to the recovery cylinder 2.
  • the air flow between the air passage forming members 5 is indicated by an arrow.
  • the blower 4 includes, for example, one or a plurality of fans 4a.
  • As the fan a propeller type fan that rotates under the power of an electric motor may be used.
  • the blower device 4 uses an on-board battery or a commercial power source as a drive source.
  • the pair of air passage forming members 5 are provided as air passage forming portions that form an air passage that guides the air blown by the blower 4 to the recovery cylinder 2.
  • the pair of air passage forming members 5 are each formed in a plate shape, and are erected apart from each other in an intersecting direction intersecting the blowing direction in which the air blowing device 4 blows air.
  • an opening 7 is formed which is an outlet of an air passage for guiding the air blown from the blower device 4 to the outside. That is, the downstream end portion on the downstream side of the pair of air passage forming members 5 in the blowing direction of the blowing device 4 constitutes the opening 7. Since the pair of air passage forming members 5 are formed with the same structure and do not need to be distinguished from each other, the term "air passage forming member 5" is simply referred to as a pair of air passage forming members in the following description. Point to 5.
  • the air passage forming member 5 includes a bent portion 5a that can be bent along the erection direction.
  • a bent portion 5a is provided so that the width of the air passage between the recovery cylinder 2 and the inner wall of the air passage forming member 5 and the width of the opening 7 can be adjusted. Therefore, when the air passage forming member 5 is installed, it is preferable to provide the bent portion 5a in the vicinity of the position facing the recovery cylinder 2. If the bent portion 5a is formed with a hinge structure so that the air passage forming member 5 can be folded in two, it is convenient to carry.
  • the material of the air passage forming member 5 does not need to be particularly limited. However, since the air passage forming member 5 is carried by an operator, a lightweight material is preferable. On the other hand, since the air passage forming member 5 may fall due to the air volume of the blower device 4, the air passage forming member 5 may have an appropriate weight. However, instead of being made of a heavy material, a fall prevention member such as a leg may be provided on the air passage forming member 5 to have a structure that does not lose to the air volume. Further, since the air passage forming member 5 is often used outdoors, it may be formed of a durable metal.
  • the recovery of the refrigerant from the air conditioner 1 is usually performed through the outdoor unit of the air conditioner 1.
  • the worker brings in a recovery cylinder 2, a recovery device 3, a blower device 4, an air passage forming member 5, and a weight scale 6 and heads for a work place such as a rooftop where an outdoor unit is installed.
  • the work vehicle installs the refrigerant recovery system according to the following procedure (step 110).
  • the worker installs the weighing scale 6 near the outdoor unit and places the recovery cylinder 2 on the weighing scale 6. Since the recovery cylinder 2 is in an empty state before the recovery of the refrigerant is started, the weight of only the recovery cylinder 2 is measured. Subsequently, the operator connects the tube 32a of the recovery device 3 to the outdoor unit, and connects the tube 32b to the recovery cylinder 2. Further, in the case of wired communication, the operator sets the communication such as connecting a cable so that the pressure sensor and float sensor of the recovery cylinder 2 and the measurement data of the weight scale 6 are input to the recovery device 3.
  • the worker installs the blower 4 in the vicinity of the recovery cylinder 2.
  • the blower 4 is installed so that air is sent toward the recovery cylinder 2.
  • the air passage forming member 5 is erected at a position sandwiching the blower device 4 and the recovery cylinder 2 so that the air blown from the blower device 4 toward the recovery cylinder 2 efficiently hits the recovery cylinder 2.
  • the air passage device 4 is installed on one end side of the air passage forming member 5 so that the position of the bent portion 5a of the air passage forming member 5 matches the installation position of the recovery cylinder 2.
  • An opening 7 that is installed so as to match the position and serves as an outlet of the air passage is formed on the other end side of the air passage forming member 5.
  • the air passage forming member 5 forms an air passage so that the air blown by the blower 4 can escape from one direction side to the other direction side of the recovery cylinder 2.
  • the recovery device 3 After installing the refrigerant recovery system as described above, the operator turns on the power of the recovery device 3 and starts it. As a result, the recovery device 3 starts recovery of the refrigerant (step 120).
  • the refrigerant recovery pump 38 sucks the refrigerant in a gaseous state into the refrigerant recovery pump 38 through the tube 32a, pressurizes the refrigerant, and sends it out to the heat exchanger 39.
  • the heat exchanger 39 receives the air blown by the fan 41, lowers the temperature of the refrigerant to a low temperature, liquefies it, and sends it to the recovery cylinder 2. In this way, the refrigerant is filled in the recovery cylinder 2 and recovered.
  • the refrigerant When pressure is applied to a gaseous refrigerant, the refrigerant is compressed and its temperature rises. Further, the pressure further increases due to the expansion of the refrigerant due to the temperature rise and the evaporation of the refrigerant in the liquefied state. In this way, the temperature of the recovery cylinder 2 rises while the refrigerant is being recovered.
  • the blower device 4 starts blowing when the power is turned on.
  • the air sent out from the blower device 4 faces the recovery cylinder 2 and hits the outer wall of the recovery cylinder 2.
  • the blower device 4 and the air passage forming member 5 may be installed so as to open a gap between the blower device 4 and the air passage forming member 5 and increase the air volume by utilizing the effect of entraining air.
  • a cavity may be provided at the bottom of the housing of the blower device 4.
  • the air that hits the recovery cylinder 2 suppresses the temperature rise of the recovery cylinder 2 by taking heat from the surface of the recovery cylinder 2, and also lowers the temperature.
  • the recovery cylinder 2 is replaced as appropriate. Then, the recovery operation is completed when the refrigerant of the air conditioner 1 is recovered (step 140).
  • the operator turns off the power of the recovery device 3 and the blower device 4. Further, the recovery cylinder 2 is closed, and the tubes 32a and 32b are removed from the recovery device 3 and the recovery cylinder 2, respectively. Then, the worker records the final weight of the recovery cylinder 2. As a result, the weight of the recovered refrigerant can be obtained.
  • the operator takes the recovery cylinder 2, the recovery device 3, the blower device 4, the air passage forming member 5, and the weight scale 6 and withdraws them from the work place (step 150).
  • FIG. 5 is a flowchart showing a refrigerant recovery procedure different from that of FIG. The same procedure will be given the same step number, and the description will be omitted as appropriate.
  • the compressed liquid refrigerant is filled in the recovery cylinder 2. Therefore, the temperature of the recovery cylinder 2 begins to rise at the same time as the start of recovery of the refrigerant.
  • the blower device 4 Since the recovery speed of the refrigerant is high when the temperature is low, when the refrigerant recovery system is installed (step 110), the blower device 4 is turned on and started in accordance with the recovery device 3. In this way, cooling of the recovery cylinder 2 is started at the same time as the recovery of the refrigerant (step 160). Alternatively, the power of the blower device 4 may be turned on and the cooling of the recovery cylinder 2 may be started before the refrigerant is recovered. By keeping the temperature of the recovery cylinder 2 at a low temperature in this way, it is possible to suppress an increase in the pressure and temperature of the refrigerant in the recovery cylinder 2 and prevent a decrease in the refrigerant recovery rate in advance.
  • the temperature rise of the recovery cylinder 2 is suppressed by applying the air blown from the blower 4 to the recovery cylinder 2.
  • FIG. 6A is a diagram when two fans 4a are mounted side by side in the horizontal direction.
  • FIG. 6B is a diagram when three fans 4a are mounted side by side in the horizontal direction.
  • FIG. 6C is a diagram when three fans 4a are mounted side by side in the vertical direction.
  • the air volume of the blower device 4 may be increased by mounting a plurality of fans 4a side by side in at least one vertical or horizontal direction. Further, as shown in FIG.
  • the fan 4a-1 located above the position of the shoulder 2a of the recovery cylinder 2 is installed so that the blown air hits the position of the shoulder 2a of the recovery cylinder 2 at a right angle as much as possible.
  • the blower device 4 in a state where the position of the fan 4a-1 is tilted may be prepared, or the portion of the fan 4a-1 of the blower device 4 may be foldable. In this way, the cooling effect is enhanced by applying the air to the recovery cylinder 2 from the upper side to the lower side of the blower device 4, and the air that tries to escape from above the air passage forming member 5 instead of from the opening 7. Can be suppressed.
  • 6A to 6C show a blower device 4 including a plurality of fans. As shown in FIG.
  • the blower device 4 is composed of a plurality of fans 4a having separate housings, and the plurality of fans 4a. May be arranged side by side to form a structure for blowing air. Since the weight of each fan 4a is lighter than the weight of the plurality of fans 4a combined, it is more convenient to carry than the blower device 4 in which the plurality of fans 4a are integrated. Further, in the refrigerant recovery work, there are many cases where the outdoor unit is arranged in a place where sufficient space cannot be secured, such as the rooftop of a building (including a house) or a narrow part between buildings. Therefore, by forming the plurality of fans 4a in separate housings, it is possible to flexibly cope with the situation of the place where the refrigerant recovery system is installed, such as a narrow place.
  • blower devices 4 By the way, in order to increase the amount of air applied to the recovery cylinder 2, it is conceivable to install blower devices 4 on all sides of the recovery cylinder 2. However, if an attempt is made to blow air from a side other than one direction of the recovery cylinder 2, the flow of air blown from the blower device 4 is canceled out. In other words, it has been proved by experiments that the cooling effect cannot be improved by arranging the fan that tries to blow air from other than one direction.
  • FIG. 6C blows air from above to downward
  • the blower device 4 shown in FIG. 6C corresponds to one-way ventilation from the left side to the right side of the drawing, and the fan 4a-1 shown in FIG. 6C. It has been proved by experiments that the cooling effect can be improved by the arrangement of.
  • the air passage formed between the air passage forming member 5 and the recovery cylinder 2 It is preferable to install the air passage forming member 5 so that the sum of the widths d1 and d2 is the same as or narrower than the width of the opening 7.
  • the average value of the separation distances of the air passage forming members 5 in the crossing direction intersecting the ventilation direction from the blower device 4 is larger than the separation distance at the downstream end portion, that is, the opening 7. Install. Further, the average value of the separation distances of the air passage forming members 5 in the crossing direction is larger than the separation distance at the upstream end portion (that is, the blower device 4 side end) on the upstream side of the air passage forming member 5 in the ventilation direction. Install so that it also grows.
  • the blower device 4 may be installed as close as possible to the recovery cylinder 2. In this case, the air passage forming member 5 on the opening 7 side of the bent portion 5a may be formed longer than the length on the blower 4 side so that the distance from the recovery cylinder 2 to the opening 7 can be sufficiently obtained.
  • the wind speed hitting the recovery cylinder 2 is configured to be 10 m / sec or more
  • the temperature difference between the temperature around the recovery cylinder 2 and the temperature of the recovery cylinder 2 is 5 degrees or more, only the air is blown by the above configuration.
  • the temperature around the recovery cylinder 2 the temperature measured by the outside air temperature sensor 40 of the recovery device 3 is used.
  • the temperature of the recovery cylinder 2 the measured temperature of the temperature of the refrigerant filled in the recovery cylinder 2 is used.
  • FIG. 7 is a diagram showing a schematic configuration of the refrigerant recovery system according to the present embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the refrigerant recovery system according to the present embodiment is characterized in that the configuration of the first embodiment includes a water retention member 8 that supplies the retained moisture to the outer wall of the recovery cylinder 2.
  • the moisture retaining member 8 in the present embodiment has a sheet shape, is wound around the outer periphery of the recovery cylinder 2, and is installed so as to cover it.
  • the moisture retaining member 8 is fixed to the outer periphery of the recovery cylinder 2 by a method such as a pin, a button, a magnet, a fastener, or a hook-and-loop fastener.
  • the water retaining member 8 is formed of a material having a water-repellent property, that is, a water-repellent material. For example, polyester.
  • the water contained in the water retaining member 8 is assumed to be tap water, but other water may be contained.
  • the usage mode of the refrigerant recovery system in the present embodiment may be basically the same as that in the first embodiment.
  • the operator adds an operation of impregnating the moisture retaining member 8 with moisture and winding it around the outer periphery of the recovery cylinder 2 with respect to the first embodiment.
  • the work of impregnating the water retaining member 8 with water may be performed before or after winding around the outer periphery of the recovery cylinder 2.
  • the work added to the first embodiment may be performed at any time before the recovery of the refrigerant is started. However, it is easier to attach the moisture retaining member 8 to the recovery cylinder 2 before installing the air passage forming member 5.
  • the moisture contained in the moisture retaining member 8 takes heat from the recovery cylinder 2, suppresses the temperature rise of the recovery cylinder 2, and lowers the temperature.
  • the air blown from the blower device 4 toward the recovery cylinder 2 hits the moisture retention member 8, the vaporization of the moisture contained in the moisture retention member 8 is promoted.
  • the moisture retained in the moisture-retaining member 8 is easily vaporized, and thus the vaporization rate can be further improved.
  • the cooling at the time of recovery of the refrigerant in other words, the cooling at the start of cooling of the recovery cylinder 2 as compared with the first embodiment.
  • the effect can be enhanced. This makes it possible to improve the refrigerant recovery efficiency.
  • the water holding member 8 When the amount of water held in the water holding member 8 becomes low and the cooling effect cannot be expected, the water holding member 8 may be removed or water may be supplied to the water holding member 8. ..
  • FIG. 8 is a diagram showing a schematic configuration of the refrigerant recovery system according to the present embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the refrigerant recovery system according to the present embodiment is characterized in that the configuration of the first embodiment includes a spray device 9 for spraying water on the air blown by the blower device 4.
  • the spray device 9 in the present embodiment has a built-in storage tank 9a for storing water in the main body.
  • the water stored in the storage tank 9a is assumed to be tap water, but other liquids may be stored.
  • the water stored in the storage tank 9a is sprayed from the spray nozzle 9b forming the water outlet.
  • the spray nozzle 9b is positioned between the blower 4 and the recovery cylinder 2.
  • the spray device 9 is driven by an on-board battery or a commercial power source. Further, the spray device 9 is not only manually operated by an operator, but is also connected to the recovery device 3 by wire or wireless communication, and the control unit 46 of the recovery device 3 controls the start, stop, ejection amount, and the like. It may be configured to be.
  • the usage mode of the refrigerant recovery system in the present embodiment may be basically the same as that in the first embodiment.
  • an additional work is added to the first embodiment in which the operator stores water in the storage tank 9a of the spraying device 9 and positions the spraying nozzle 9b between the blower 4 and the recovery cylinder 2.
  • the work added to the first embodiment may be performed at any time before the recovery of the refrigerant is started.
  • the positioning of the spray nozzle 9b is easier after installing the blower 4 and the recovery cylinder 2.
  • the spray nozzle 9b is preferably positioned closer to the blower 4 on a straight line connecting the center of the blower 4 and the recovery cylinder 2 so that the mist-containing air reaches the outer wall of the recovery cylinder 2 evenly. ..
  • mist has a large surface area per unit mass, so evaporation is likely to occur. If the mist evaporates before reaching the recovery cylinder 2, the temperature of the air drops because the heat of vaporization is taken from the surrounding air. The cold air takes a large amount of heat from the recovery cylinder 2 and lowers the temperature of the recovery cylinder 2. Further, the water that has reached the recovery cylinder 2 in the mist state adheres to the surface of the recovery cylinder 2. Then, the heat is taken from the recovery cylinder 2 to raise the temperature, and at the same time, it is vaporized by the action of the air flowing around. At the time of vaporization, the mist deprives the recovery cylinder 2 of a large amount of heat of vaporization. In this way, the spraying device 9 suppresses the temperature rise of the recovery cylinder 2 and lowers the temperature. Some mist falls around the recovery cylinder 2. However, since the refrigerant recovery system is usually used outdoors, it does not pose a particular problem.
  • the cooling effect of the recovery cylinder 2 can be enhanced as compared with the first embodiment. This makes it possible to improve the refrigerant recovery efficiency.
  • the blower device 4 and the air passage forming member 5 are used to lower the temperature of the recovery cylinder 2.
  • the configuration in which the moisture retaining member 8 is added in the second embodiment and the spraying device 9 is added in the second embodiment is shown with respect to the configuration shown in the first embodiment.
  • the water retention member 8 and the spray device 9 described in the second and third embodiments may be used in combination.
  • the refrigerant recovery pump 38 functions sufficiently for a while, and the recovery cylinder 2 is filled with the refrigerant at a substantially constant speed. Therefore, the weight of the recovery cylinder 2 increases linearly. Then, although it depends on the output of the refrigerant recovery pump 38, it is possible to recover a considerable amount of refrigerant until about 10 to 30 minutes after the start of recovery.
  • the pressure of the recovery cylinder 2 rises rapidly due to the inflow of the refrigerant and the evaporation of the inflowing refrigerant.
  • the pressure becomes higher than the saturated vapor pressure of the refrigerant, the refrigerant condenses and the pressure drops. Therefore, thereafter, the pressure will show a value strongly dependent on the saturated vapor pressure of the refrigerant.
  • the temperature of the recovery cylinder 2 is the same as the above-mentioned change in pressure.
  • the temperature of the refrigerant rises as described above, and the saturated vapor pressure of the refrigerant also rises, so that the pressure of the recovery cylinder 2 gradually rises.
  • the discharge pressure of the refrigerant recovery pump 38 approaches the pressure of the recovery cylinder 2, and the compression efficiency of the refrigerant decreases, so that the rate of increase in the weight of the recovery cylinder 2 becomes smaller.
  • the water retention member 8 and the spray device 9 are used in combination, the water retention member 8 is used from the time when the recovery of the refrigerant is relatively efficient, and the recovery efficiency is further improved. Then, even if the water retention member 8 is used, the recovery efficiency of the refrigerant appears to decrease, and when the rate of increase in the weight of the recovery cylinder 2 becomes small, for example, about 10 to 15 minutes after the start of recovery of the refrigerant.
  • the spraying device 9 may be started from the beginning and controlled so as to suppress a decrease in the frequency efficiency of the refrigerant. In this way, the recovery efficiency of the refrigerant is improved and the recovery time of the refrigerant is shortened.
  • Moisture may be constantly sprayed from the spraying device 9 during the recovery of the refrigerant, but by delaying the start of use of the spraying device 9, the amount of water used until the recovery of the refrigerant is completed can be suppressed.
  • the control unit 46 can control the operation of the spray device 9 with reference to the measured value from the sensor of the recovery cylinder 2.
  • a blower 4 is provided to supply wind to the recovery cylinder 2 from a certain direction.
  • a means for supplying the wind to the recovery cylinder 2 from a certain direction it may be realized by a suction device that sucks air on the outlet side of the air passage formed by the air passage forming member 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

冷媒回収効率の更なる向上が可能な冷媒回収システム及び冷媒回収方法を実現する。冷媒回収システムは、空調機(1)から冷媒を回収する回収装置(3)と、回収された冷媒が充填される回収ボンベ(2)と、回収ボンベ(2)に対して一方向から空気を送風する送風装置(4)と、送風装置(4)から回収ボンベ(2)への風路を形成するよう送風装置(4)及び回収ボンベ(2)を挟むように立設される板状の一対の風路形成部材(5)と、を備える。冷媒回収システムは、送風装置(4)から回収ボンベ(2)に向けて空気を一方向から送風することで回収ボンベ(2)を冷却する。

Description

冷媒回収システム及び冷媒回収方法
 本発明は冷媒回収システム及び冷媒回収方法に関する。
 空調機を保守点検・リプレイスするなどの場合、作業者は、空調機に充填された冷媒を回収ボンベに回収する。冷媒の回収時には、ポンプを備えた回収装置が、空調機から回収した冷媒を圧縮し、液化してから回収ボンベに充填していく。
 気体状態の冷媒に圧力をかけると、冷媒は、圧縮されることで温度が上昇する。また、温度上昇による冷媒の膨張と、液化状態の冷媒の蒸発とにより、圧力はさらに上昇する。このため、冷媒を回収している間、回収ボンベの温度は上昇する。
 回収ボンベの温度が高くなると、回収ボンベ内の圧力が上昇する。このため、回収ボンベへの充填速度が低下する。
 そこで、従来では、回収ボンベを冷却する技術が種々提案されている。例えば、特許文献1では、換気機能を有したハウジングで回収ボンベを覆い、ハウジング内の回収ボンベに水を供給する。そして、空気をハウジング内に送り込むことにより、水の気化を促進させる。特許文献1では、このようにして回収ボンベを冷却することによって冷媒の回収効率の向上を図っている。
特開2010-151338号公報 特開2011-038739号公報
 しかしながら、回収ボンベに水を供給して冷却する従来技術に対し、冷媒回収の更なる効率化が求められていた。
 本発明の目的は、冷媒回収効率の更なる向上が可能な冷媒回収システム及び冷媒回収方法を実現することにある。
 本発明に係る冷媒回収システムは、回収ボンベに冷媒を回収する冷媒回収システムにおいて、前記回収ボンベに対して空気を送風する送風装置と、前記送風装置が送風した前記空気を前記回収ボンベに導く風路を形成する風路形成部と、を備えるものである。
 本発明に係る冷媒回収方法は、空調機の冷媒を回収ボンベに回収する冷媒回収方法において、前記空調機の近くに載置された前記回収ボンベの近傍に送風装置を載置するステップと、前記送風装置から前記回収ボンベへの風路を形成するステップと、前記送風装置を駆動し、前記回収ボンベに対して空気を前記回収ボンベに向けて送風する送風ステップと、を備えるものである。
 本発明によれば、冷媒回収効率の更なる向上を図ることができる。
実施の形態1における冷媒回収システムの概略構成を示す図である。 実施の形態1における回収装置のブロック構成図である。 図1に示す冷媒回収システムと回収ボンベとの位置関係を上方から見たときの模式図である。 実施の形態1における冷媒の回収手順を示すフローチャートである。 実施の形態1における冷媒の他の回収手順を示すフローチャートである。 冷媒回収システムの変形例を上方から見たときの模式図である。 冷媒回収システムの他の変形例を上方から見たときの模式図である。 冷媒回収システムの他の変形例を側方から見たときの模式図である。 冷媒回収システムの他の変形例を上方から見たときの模式図である。 実施の形態2における冷媒回収システムの概略構成を示す図である。 実施の形態3における冷媒回収システムの概略構成を示す図である。
 以下、図面に基づいて、本発明の好適な実施の形態について説明する。
実施の形態1.
 図1は、本実施の形態における冷媒回収システムの概略構成を示す図である。本実施の形態における冷媒回収システムは、空調機の冷媒を回収ボンベに回収するためのシステムである。図1には、空調機1と、回収ボンベ2と、回収装置3と、送風装置4と、一対の風路形成部材5と、重量計6と、が示されている。
 空調機1は、冷媒を用いて対象空間の冷却または加熱を行う装置である。対象空間は、例えばビル、家屋等の建築物や車両、エレベータ等の移動体等の内部空間である。冷媒は、例えばフロン類である。本実施の形態では、冷媒を用いる装置の一例として空調機1を例示している。
 回収ボンベ2は、冷媒を回収する作業者によって空調機1のある空間に持ち込まれる冷媒回収用の耐圧容器である。回収ボンベ2は、冷媒回収時には重量計6の上に載置される。回収ボンベ2は、様々なサイズのものを用いることができる。例えば、回収ボンベ2は、持ち運びが容易な20kg用のものを用いることができる。また他の例としては、小容量の10kg用、あるいは、大容量の40kg用、100kg用などが挙げられる。空調機1で使用されていた冷媒量に比べて回収ボンベ2の容量が小さいときは、複数の回収ボンベ2を交換しながら冷媒を回収することになる。回収ボンベ2は、図示しない内部の圧力を測定する圧力センサと、充填された冷媒の液面高さを測定するフロートセンサと、を備えている。各センサの出力値は、作業者が直接読み取ることもできるし、有線または無線により回収装置3に送信することもできる。回収ボンベ2は、さらに充填された冷媒の温度を測定する温度センサなどを備えてもよい。
 図2は、本実施の形態における回収装置3のブロック構成を示す図である。回収装置3には、コンピュータが内蔵されている。すなわち、回収装置3は、CPU、ROM、RAM、ハードディスクドライブ(HDD)等の記憶手段、さらに外部装置との通信手段を備えている。また、必要により作業者が操作し、作業者に情報を提供するためのユーザインタフェースを備えてもよい。
 回収装置3は、空調機1から冷媒を回収し、回収ボンベ2に充填するための装置である。回収装置3は、チューブ32a,32bを備えている。チューブ32aは、冷媒回収ポンプ38と空調機1とを接続する中空形状の部品である。チューブ32aは、空調機1の内部の冷媒を、冷媒回収ポンプ38に向けて送出する経路となる。チューブ32aを流れる冷媒は、通常、気体の状態である。チューブ32bは、の熱交換器39と回収ボンベ2とを接続する中空形状の部品である。チューブ32bは、熱交換器39から流れ出る冷媒を回収ボンベ2に送出する経路となる。チューブ32bを流れる冷媒は、通常、液体の状態である。
 作業者は、空調機1がビルなどに取り付けられた状態で冷媒の回収を行う場合、空調機1の室外機にチューブ32aを、回収ボンベ2にチューブ32bを、それぞれ接続して空調機1で使用されていた冷媒を回収する。回収装置3は、さらに圧力センサ34、温度センサ36、冷媒回収ポンプ38、熱交換器39、外気温センサ40、ファン41、通信部42、充填状態データ取得部44及び制御部46を備えている。
 なお、回収装置3から回収ボンベ2へ送出する冷媒の圧力及び温度は、回収ボンベ2内における冷媒の圧力及び温度と密接に関係しているため、回収装置3は、チューブ32bを通じて送出する冷媒の圧力を測定するセンサを備えてもよい。また、回収装置3は、チューブ32bを通じて送出する冷媒の温度を測定するセンサを備えてもよい。制御部46は、センサにより測定された冷媒の圧力と温度の一方または両方を参照して冷媒回収を制御するのが好適である。あるいは、回収ボンベ2内の内圧及び温度を測定するセンサを設け、制御部46は、センサにより測定された回収ボンベ2内の内圧と温度の一方または両方を参照して冷媒回収を制御するようにしてもよい。
 圧力センサ34は、チューブ32aを通じて空調機1から吸引される気体状態の冷媒の圧力を測定するセンサである。温度センサ36は、チューブ32aを通じて空調機1から吸引される気体状態の冷媒の温度を測定するセンサである。吸引した冷媒の温度及び圧力は、冷媒回収ポンプ38による冷媒の圧縮と、熱交換器39による冷媒の液化に関係している。そこで、制御部46が測定された圧力と温度とを参照して冷媒回収を制御するのが好適である。
 冷媒回収ポンプ38は、冷媒の輸送を行う装置である。冷媒回収ポンプ38の例としては、電動モータを駆動源とする装置が挙げられる。冷媒回収ポンプ38は、チューブ32aを通じて空調機1から気体の冷媒を吸引するとともに、吸引した冷媒を圧縮して、熱交換器39に送出する。冷媒回収ポンプ38が冷媒を圧縮した場合、冷媒は高温高圧化する。一部の冷媒が液化することもある。
 熱交換器39は、冷媒を冷却して液化する装置である。熱交換器39は、冷媒回収ポンプ38から流れ込む高温高圧の冷媒の熱を外部に放出することによって冷媒を冷却して液化する。
 外気温センサ40は、回収装置3の周囲の気温を測定するセンサである。冷媒の回収効率は、外気温にも依存する。そこで、制御部46が外気温を参照して冷媒回収を制御するのが好適である。
 ファン41は、熱交換器39に外気を送風する装置である。ファン41の例としては、電動モータの動力を受けて回転するプロペラタイプのものが挙げられる。ファン41は、熱交換器39に送風を行い、熱交換器39を冷却して、熱交換器39における冷媒の液化を促進する。
 通信部42、充填状態データ取得部44及び制御部46は、回収装置3に内蔵されたコンピュータと、コンピュータに搭載されたCPUで動作するプログラムとの協調動作により実現される。通信部42は、有線または無線での通信により、送風装置4や重量計6などの外部装置との通信を行う。通信部42は、さらに、作業者が所属する組織のサーバなどとも通信することが可能である。充填状態データ取得部44は、回収ボンベ2における冷媒の充填状態に関するデータ(「充填状態データ」という)を取得する。充填状態データの例としては、冷媒の充填量、充填速度、圧力、温度などが挙げられる。充填状態データ取得部44は、回収ボンベ2のセンサ類から充填状態データを取得してもよいし、重量計6が計測する回収ボンベ2の重量を充填状態データとして取得してもよい。また、取得した充填状態データに基づいて適当な演算(一例としては流量を積算することで充填量を求める態様が挙げられる)を行うことで、充填状態データを取得することも可能である。
 制御部46は、回収装置3の各種制御を行っている。制御部46の制御対象の一つは冷媒回収ポンプ38である。制御部46は、作業者の指示によって、または、所定のプログラムに従って冷媒回収ポンプ38の起動、停止、出力変更等の制御を行う。また、例えば、回収ボンベ2から入力された圧力やフロート高さが所定の基準値を超えた場合に、安全性確保の観点から冷媒回収ポンプ38を停止するなどの制御も行う。制御部46は、さらに作業者の指示によって、または所定のプログラムに従って送風装置4の起動、停止、出力変更等の制御を行うようにしてもよい。
 本実施の形態では、図2に示すように制御部46等を回収装置3に設けたが、冷媒回収の制御機能を別装置にて実現してもよい。例えば、回収装置3が冷媒回収ポンプ38、熱交換器39及びファン41のみを備え、回収装置3とは別個に設けた制御装置に、圧力センサ34、温度センサ36、外気温センサ40、通信部42、充填状態データ取得部44及び制御部46を備えるよう構成してもよい。あるいは、回収装置3が圧力センサ34、温度センサ36、外気温センサ40、冷媒回収ポンプ38、熱交換器39及びファン41を備え、その他の構成を制御装置に持たせてもよい。
 なお、作業者が、回収装置3の図示しないユーザインタフェースを利用せずに、例えば作業者が携帯する端末装置(PC、タブレット、スマートフォンなど)を通じて指示を出すように構成することも可能である。
 重量計6は、回収ボンベ2の重量を計測する装置である。重量計6は、計測した重量を重量計6の表示部(図示せず)に表示する。また、重量計6は、計測した重量を回収装置3に送信することもできる。重量計6を用いることで、フロン類等の回収の際に、回収冷媒量を明確にすることができる。
 図3は、図1に示す冷媒回収システムと回収ボンベ2との位置関係を上方から見たときの模式図である。
 送風装置4は、回収ボンベ2に対して一方向から空気を送風する。図3において、風路形成部材5間の空気の流れは、矢印で示している。送風装置4は、例えば、1又は複数のファン4aを内蔵する。ファンは、電動モータの動力を受けて回転するプロペラタイプのファンを用いてもよい。送風装置4は、搭載したバッテリまたは商用電源を駆動源とする。
 一対の風路形成部材5は、送風装置4が送風した空気を回収ボンベ2に導く風路を形成する風路形成部として設けられている。一対の風路形成部材5は、それぞれ板状に形成され、送風装置4が空気を送風する送風方向に交差する交差方向で離して立設される。回収ボンベ2を挟んで送風装置4の反対側には、送風装置4から送風された空気を外部に導く風路の出口となる開口部7が形成される。つまり、送風装置4の送風方向における一対の風路形成部材5の下流側の下流端部が開口部7を構成する。なお、一対の風路形成部材5は、それぞれ同等の構造で形成され、相互に区別する必要はないので、以降の説明において単に「風路形成部材5」というのは、一対の風路形成部材5を指す。
 風路形成部材5は、立設方向に沿って折り曲げ可能な折り曲げ部5aを備える。本実施の形態では、回収ボンベ2と風路形成部材5の内壁との間の風路の幅及び開口部7の幅を調整可能とするために折り曲げ部5aを設けている。従って、風路形成部材5を設置したときに、折り曲げ部5aを回収ボンベ2と対向する位置近傍に設けるのが好適である。折り曲げ部5aを蝶番の構造にて形成し、風路形成部材5を2つに折り畳むことができるように構成すれば、持ち運びにも便利である。
 風路形成部材5の素材は、特に限定する必要はない。ただ、風路形成部材5は、作業者によって持ち運ばれるので軽量の素材の方が好ましい。その一方、風路形成部材5は、送風装置4の風量に負けて倒れてしまう可能性があるので、重量を適度に持たせておくようにしてもよい。ただ、重量のある素材で構成せずに脚などの転倒防止部材を風路形成部材5に設けて風量に負けないような構造としてもよい。また、風路形成部材5は、屋外で使用される場合が多いので、耐久性のある金属で形成してもよい。
 次に、冷媒回収システムを用いた冷媒の回収手順について図4に示すフローチャートを用いて説明する。
 空調機1からの冷媒の回収は、通常、空調機1の室外機を通じて行われる。作業者は、回収ボンベ2、回収装置3、送風装置4、風路形成部材5及び重量計6を持ち込んで室外機が設置された屋上などの作業場所に向かう。そして、作業車は、次の手順にて冷媒回収システムを設置する(ステップ110)。
 作業者は、室外機の近くに重量計6を設置し、重量計6の上に回収ボンベ2を載置する。冷媒の回収を始める前の段階では、回収ボンベ2は空の状態なので、回収ボンベ2のみの重量が計測される。続いて、作業者は、回収装置3のチューブ32aを室外機に接続し、チューブ32bを回収ボンベ2に接続する。さらに、作業者は、有線による通信の場合、回収ボンベ2の圧力センサやフロートセンサ、重量計6の測定データが回収装置3に入力されるようにケーブルを接続するなど通信の設定を行う。
 作業者は、回収ボンベ2の近傍に送風装置4を設置する。送風装置4は、空気が回収ボンベ2に向けて送られるように設置される。そして、風路形成部材5は、送風装置4から回収ボンベ2に向けて送風される空気が回収ボンベ2に効率的に当たるように送風装置4及び回収ボンベ2を挟む位置に立設される。図3に示すように、風路形成部材5は、風路形成部材5の折り曲げ部5aの位置が回収ボンベ2の設置位置に合うように、風路形成部材5の一端側が送風装置4の設置位置に合うように設置される、そして、風路形成部材5の他端側で風路の出口となる開口部7が形成される。風路形成部材5は、このように送風装置4が送風する空気が回収ボンベ2の一方向側から他方向側に抜けるよう風路を形成する。
 以上のように冷媒回収システムを設置した後、作業者は、回収装置3の電源を入れて起動する。これにより、回収装置3は冷媒の回収を開始する(ステップ120)。回収過程では、冷媒回収ポンプ38は、チューブ32aを介して冷媒を気体の状態で冷媒回収ポンプ38に吸い込み、冷媒を加圧して熱交換器39に送り出す。熱交換器39は、ファン41の送風を受けて、冷媒を低温下し、液化して、回収ボンベ2に送り込む。このようにして、冷媒は、回収ボンベ2に充填され、回収される。気体状態の冷媒に圧力をかけた場合、冷媒は、圧縮されることで温度が上昇する。また、温度上昇による冷媒の膨張と、液化状態の冷媒の蒸発とにより、さらに圧力が上昇する。こうして、冷媒を回収している間、回収ボンベ2の温度が上昇することになる。
 回収ボンベ2の温度が高くなると、回収ボンベ2内の圧力が上昇する。このため、冷媒の回収ボンベ2への充填を継続することが困難になり、充填速度が低下する。そこで、作業者は、送風装置4の電源を入れることで起動し、回収ボンベ2の冷却を開始する(ステップ120)。
 送風装置4は、電源が投入されると送風を開始する。送風装置4から送り出される空気は、回収ボンベ2に向かい、回収ボンベ2の外壁に当たる。なお、送風装置4と風路形成部材5との間に隙間を開け、空気の巻き込み効果を利用して風量を増加させるように送風装置4及び風路形成部材5を設置してもよい。あるいは、送風装置4の筐体の底部に空洞を設けるようにしてもよい。回収ボンベ2に当たる空気は、回収ボンベ2の表面から熱を奪うことで回収ボンベ2の温度上昇を抑制し、また、温度を低下させる。
 設置した回収ボンベ2の容量より大量の冷媒が空調機1で用いられている場合、回収ボンベ2は、適宜取り換えられる。そして、空調機1の冷媒が回収された段階で回収作業は終了される(ステップ140)。作業者は、回収装置3及び送風装置4の電源を切断する。また、回収ボンベ2の閉栓を行い、チューブ32a,32bをそれぞれ回収装置3及び回収ボンベ2から取り外す。そして、作業者は、回収ボンベ2の最終的な重量を記録する。これにより、回収された冷媒の重量が求められることになる。作業者は、回収ボンベ2、回収装置3、送風装置4、風路形成部材5及び重量計6を持って作業場所から撤収する(ステップ150)。
 本実施の形態では、以上のようにして空調機1から冷媒を回収するが、冷媒の回収手順は、これに限る必要はない。図5は、図4と異なる冷媒の回収手順を示すフローチャートである。なお、同じ手順には同じステップ番号を付け、説明を適宜省略する。
 例えば、冷媒の回収開始と同時に、圧縮された液体冷媒は、回収ボンベ2に充填される。そのため、回収ボンベ2の温度は、冷媒回収開始と同時に上昇しはじめる。温度が低い場合は冷媒の回収速度が速いため、冷媒回収システムを設置すると(ステップ110)、回収装置3に合わせて送風装置4の電源を入れて起動する。このようにして、冷媒の回収と同時に回収ボンベ2の冷却を開始する(ステップ160)。あるいは、冷媒回収以前に送風装置4の電源を入れて回収ボンベ2の冷却を開始させてもよい。このように、回収ボンベ2を低温化しておくことで、回収ボンベ2内における冷媒の圧力及び温度の上昇を抑制し、冷媒回収速度の低下を事前に防止するようにしてもよい。
 ここで、本実施の形態において使用する送風装置4及び風路形成部材5と、回収ボンベ2に対する送風装置4及び風路形成部材5の位置関係についてさらに説明する。
 前述したように、本実施の形態では、送風装置4から送風される空気を回収ボンベ2に当てることによって回収ボンベ2の温度上昇を抑制する。この抑制効果を高めるためには、回収ボンベ2に当てる空気の風量及び風速を大きくすることが望ましい。
 まず、風量を大きくするための方法として、送風装置4に搭載するファンの数を増やすことが考えられる。図6Aは、ファン4aを横方向に2つ並べて搭載した場合の図である。図6Bは、ファン4aを横方向に3つ並べて搭載した場合の図である。また、図6Cは、ファン4aを縦方向に3つ並べて搭載した場合の図である。このように、ファン4aを縦又は横の少なくとも一方向に複数並べて搭載することで、送風装置4の風量を増加させてもよい。また、図6Cに示すように、回収ボンベ2の肩2aの位置から上方に位置するファン4a-1は、送風する空気が回収ボンベ2の肩2aの位置に極力直角に当たるように設置する。これは、ファン4a-1の位置を傾けた状態の送風装置4を用意してもよいし、送風装置4のファン4a-1の部分を可倒式としてもよい。このように、送風装置4の上方から下方に向けて空気を回収ボンベ2に当てるようにすることで冷却効果を高めるとともに開口部7からではなく風路形成部材5の上方から抜けようとする空気を抑えることが可能となる。
 図6A~図6Cには、複数のファンを備える送風装置4を示したが、図6Dに示すように、送風装置4を、筐体を別にした複数のファン4aで構成し、複数のファン4aを並べて配置して、送風する構造としてもよい。ファン4a個々の重量は、複数のファン4aをまとめた重量より軽量であるため、複数のファン4aを一体化した送風装置4に比べ、持ち運びに便利である。また、冷媒回収作業は、室外機がビル(家も含む)の屋上やビル間の狭小部等十分にスペースが確保できない場所に配置されている場合が少なくない。このため、複数のファン4aを別筐体にて形成することによって狭い場所等冷媒回収システムを設置する場所の状況に柔軟に対応することができる。
 ところで、回収ボンベ2に当てる風量を増やすために回収ボンベ2の四方に送風装置4を設置することも考えられる。しかしながら、回収ボンベ2の一方向側以外からも空気を当てようとすると、送風装置4から送風される空気の流れが相殺されてしまう。つまり、一方向側以外からも空気を当てようとするファンの配置は、冷却効果を向上できないことは、実験により実証済みである。なお、図6Cは、上方から下方に向けて送風しているが、図6Cに示す送風装置4は、図面の左側から右側への一方向の送風に該当し、図6Cに示すファン4a-1の配置によって冷却効果を向上できることは、実験により実証済みである。
 また、回収ボンベ2に当てる風速を大きくするための方法としては、前述したように一方向から空気を当てることで、回収ボンベ2の外周にコアンダ効果の現象を発生させることが有効である。また、風路における空気の流れをスムーズにし、風路形成部材5の間で空気が対流しにくいようにするために、風路形成部材5と回収ボンベ2との間に形成される風路の幅d1,d2の和が開口部7の幅と同じ若しくは狭くなるように風路形成部材5を設置するのが好ましい。より具体的には、風路形成部材5の、送風装置4からの送風方向に交差する交差方向における離隔距離の平均値が、下流側端部、すなわち開口部7における離隔距離よりも大きくなるよう設置する。また、風路形成部材5の、上記交差方向における離隔距離の平均値が、上記送風方向における風路形成部材5の上流側の上流側端部(すなわち、送風装置4側端)における離隔距離よりも大きくなるよう設置する。あるいは、送風装置4を回収ボンベ2に極力近づけて設置してもよい。この場合、回収ボンベ2から開口部7までの距離が十分にとれるように折り曲げ部5aより開口部7側の風路形成部材5を送風装置4側の長さより長く形成してもよい。
 例えば、回収ボンベ2に当たる風速が10m/秒以上となるように構成した場合、回収ボンベ2の周辺の温度と回収ボンベ2の温度との温度差が5度以上であれば、上記構成により送風だけでも十分な冷却効果が得られることは、実験により実証済である。なお、回収ボンベ2の周辺の温度は、回収装置3の外気温センサ40の測定温度を用いる。回収ボンベ2の温度は、回収ボンベ2に充填された冷媒の温度の測定温度を用いる。
 以上説明したように、本実施の形態によれば、送風装置4及び風路形成部材5という簡単な構成にて送風だけで回収ボンベ2を効率よく冷却することが可能となる。
実施の形態2.
 図7は、本実施の形態における冷媒回収システムの概略構成を示す図である。本実施の形態においては、上記実施の形態1と同じ構成要素には同じ符号を付け、説明を省略する。本実施の形態における冷媒回収システムは、実施の形態1の構成に、保持している水分を回収ボンベ2の外壁に供給する水分保持部材8を備えることを特徴とする。
 本実施の形態における水分保持部材8は、シート形状であり、回収ボンベ2の外周に巻き回され、覆うように設置される。水分保持部材8は、ピン、ボタン、磁石、ファスナー、面ファスナー等の方法にて回収ボンベ2の外周に固定される。水分保持部材8は、水をはじく性質、すなわち撥水性を有する素材により形成される。例えばポリエステルである。水分保持部材8に含める水分は、水道水を想定しているが、その他の水分を含ませてもよい。
 本実施の形態における冷媒回収システムの利用態様は、基本的には実施の形態1と同じでよい。ただ、作業者は、実施の形態1に対し、水分保持部材8に水分を含ませ、回収ボンベ2の外周に巻き回す作業が追加される。水分保持部材8に水分を含ませる作業は、回収ボンベ2の外周に巻き回す前でも後でもよい。本実施の形態において、実施の形態1に対し追加する作業は、冷媒の回収を開始させる前まであればいつ実施してもよい。ただ、風路形成部材5を設置する前の方が水分保持部材8を回収ボンベ2に取り付けやすい。
 水分保持部材8に含まれる水分は、回収ボンベ2から熱を奪って、回収ボンベ2の温度上昇を抑制し、また温度を低下させる。送風装置4から回収ボンベ2に向けて送風される空気が水分保持部材8に当たることで、水分保持部材8に含まれる水分の気化は促進される。本実施の形態では、撥水性を有する素材を水分保持部材8に用いているので、水分保持部材8に保持されている水分が気化しやすく、よって気化速度をさらに向上させることが可能となる。
 本実施の形態によれば、実施の形態1に示す構成に水分保持部材8を併用することで、実施の形態1と比較して冷媒の回収時、換言すると回収ボンベ2の冷却開始時点における冷却効果を高めることができる。これにより、冷媒回収効率を向上させることができる。
 なお、水分保持部材8に保持されている水分が少なくなって冷却効果が期待できない状態になった場合、水分保持部材8を取り外してもよいし、水分保持部材8に水分を供給してもよい。
実施の形態3.
 図8は、本実施の形態における冷媒回収システムの概略構成を示す図である。本実施の形態においては、上記実施の形態1と同じ構成要素には同じ符号を付け、説明を省略する。本実施の形態における冷媒回収システムは、実施の形態1の構成に、送風装置4が送風する空気に水を噴霧する噴霧装置9を備えることを特徴とする。
 本実施の形態における噴霧装置9は、本体部に水を貯蔵する貯蔵タンク9aが内蔵されている。貯蔵タンク9aに貯める水は、水道水を想定しているが、その他の液体を貯めてもよい。貯蔵タンク9aに貯蔵されている水は、水の噴出口を形成する噴霧ノズル9bから噴霧される。噴霧ノズル9bは、送風装置4と回収ボンベ2との間に位置付けされる。噴霧装置9は、搭載したバッテリまたは商用電源を駆動源とする。また、噴霧装置9は、作業者による手動による操作のみならず、回収装置3と有線または無線により通信可能に接続され、回収装置3の制御部46により起動、停止、噴出量等の制御が行われるように構成されてもよい。
 本実施の形態における冷媒回収システムの利用態様は、基本的には実施の形態1と同じでよい。ただ、作業者は、実施の形態1に対し、噴霧装置9の貯蔵タンク9aに水を貯蔵し、噴霧ノズル9bを、送風装置4と回収ボンベ2との間に位置決めする作業が追加される。本実施の形態において、実施の形態1に対し追加する作業は、冷媒の回収を開始させる前まであればいつ実施してもよい。ただ、送風装置4と回収ボンベ2を設置した後の方が噴霧ノズル9bの位置決めは容易である。
 噴霧装置9に電源が投入されると、貯蔵タンク9aから吸引された水は、噴霧ノズル9bからミストにされ噴出される。これにより、送風装置4から送風される空気は、噴霧ノズル9b付近においてミストを含有したミスト含有空気となり、回収ボンベ2に向かう。そして、ミスト含有空気は、回収ボンベ2の冷却を行う。なお、ミスト含有空気が回収ボンベ2の外壁に均等に到達するように、噴霧ノズル9bは、送風装置4と回収ボンベ2の各中心を結ぶ直線上の送風装置4寄りに位置決めされるのが好ましい。
 ミストは、単位質量あたりの表面積が大きいため、蒸発が起こりやすい。回収ボンベ2に到達する前にミストが蒸発する場合、周囲の空気から気化熱を奪うため、空気の温度が低下する。冷たくなった空気は、回収ボンベ2から大きな熱を奪って、回収ボンベ2の温度を低下させる。また、ミスト状態で回収ボンベ2に至った水は、回収ボンベ2の表面に付着する。そして、回収ボンベ2から熱を奪って高温化するとともに、周囲に流れる空気の作用も受けて気化する。気化の際、ミストは、回収ボンベ2から大きな気化熱を奪うことになる。このようにして、噴霧装置9は、回収ボンベ2の温度上昇を抑制し、また、温度を低下させる。なお、一部のミストは、回収ボンベ2の周囲に落下する。しかし、冷媒回収システムは、通常、屋外で使用されるため、特段問題とはならない。
 本実施の形態によれば、実施の形態1に示す構成に噴霧装置9を併用することで、実施の形態1と比較して回収ボンベ2の冷却効果を高めることができる。これにより、冷媒回収効率を向上させることができる。
 上記各実施の形態において、実施の形態1では送風装置4及び風路形成部材5を用いて回収ボンベ2の温度を低下させるようにした。そして、実施の形態1に示す構成に対して、実施の形態2では水分保持部材8を、実施の形態2では噴霧装置9を、それぞれ追加した構成を示している。ただ、各実施の形態2,3において説明した水分保持部材8と噴霧装置9を組み合わせて使用してもよい。
 ところで、作業者が回収装置3を起動すると、しばらくの期間は、冷媒回収ポンプ38が十分に機能して、ほぼ一定の速度で回収ボンベ2に対する冷媒の充填が進む。このため、回収ボンベ2の重量が線形的に上昇する。そして、冷媒回収ポンプ38の出力にもよるが、回収を開始してからの10~30分後くらいまでは、かなりの冷媒を回収することが可能である。
 回収ボンベ2の圧力は、回収が開始された直後に、冷媒の流入と流入した冷媒の蒸発とにより急速に上昇する。しかし、圧力が冷媒の飽和蒸気圧より高くなると、冷媒が凝縮して圧力が下がる。このため、以後は、圧力は冷媒の飽和蒸気圧に強く依存した値を示すことになる。回収ボンベ2の温度は、前述した圧力の変化と同様である。
 冷媒の回収が進むと、上述の通り冷媒の温度が上昇し、冷媒の飽和蒸気圧も上昇するため、回収ボンベ2の圧力は次第に上昇する。上昇の結果、冷媒回収ポンプ38による吐出圧が回収ボンベ2の圧力に近づき冷媒の圧縮効率が低下することで、回収ボンベ2の重量の増加比率が小さくなる。
 そこで、水分保持部材8と噴霧装置9を組み合わせて使用する場合、冷媒の回収が相対的に効率的な冷媒の回収開始時点から水分保持部材8を使用して回収効率をより一層高める。そして、水分保持部材8を使用しても冷媒の回収効率の低下が現れ、回収ボンベ2の重量の増加比率が小さくなる時点、例えば、冷媒の回収を開始してから10~15分経過する頃から噴霧装置9の使用を開始して冷媒の回数効率の低下を抑制するように制御してもよい。このようにして、冷媒の回収効率を高めて冷媒の回収時間の短縮を図る。冷媒の回収中、噴霧装置9から水分を常時噴霧させてもよいが、噴霧装置9の使用開始を遅らせることで、冷媒の回収が終了するまでの水の使用量を抑えることができる。制御部46は、回収ボンベ2のセンサからの測定値を参照して、噴霧装置9の動作を制御することができる。
 なお、本実施の形態では、送風装置4を設けて回収ボンベ2に対して一定方向から風を供給するようにした。ただ、一定方向から風を回収ボンベ2に供給する手段として、風路形成部材5が形成する風路の出口側において空気を吸い込む吸込装置で実現してもよい。
 1 空調機、2 回収ボンベ、2a 肩、3 回収装置、4 送風装置、4a,4a-1,41 ファン、5 風路形成部材、5a 折り曲げ部、6 重量計、7 開口部、8 水分保持部材、9 噴霧装置、9a 貯蔵タンク、9b 噴霧ノズル、32a,32b チューブ、34 圧力センサ、36 温度センサ、38 冷媒回収ポンプ、39 熱交換器、40 外気温センサ、42 通信部、44 充填状態データ取得部、46 制御部。
 

Claims (15)

  1.  回収ボンベに冷媒を回収する冷媒回収システムにおいて、
     前記回収ボンベに対して空気を送風する送風装置と、
     前記送風装置が送風した前記空気を前記回収ボンベに導く風路を形成する風路形成部と、
     を備えることを特徴とする冷媒回収システム。
  2.  前記回収ボンベを前記送風装置とで挟む場所に位置し、前記送風装置が送風して前記回収ボンベを介した前記空気を前記風路形成部の外部に導く開口部を更に備える
     ことを特徴とする請求項1に記載の冷媒回収システム。
  3.  前記風路形成部は、板状であり、前記送風装置が前記空気を送風する送風方向に交差する交差方向で離して立設される一対の風路形成部材を備え、
     前記送風方向における前記一対の風路形成部材の下流側の下流端部が前記開口部を構成する
     ことを特徴とする請求項2に記載の冷媒回収システム。
  4.  離して立設される前記一対の風路形成部材の前記交差方向における離隔距離の平均値は、前記下流端部における前記離隔距離よりも大きい
     ことを特徴とする請求項3に記載の冷媒回収システム。
  5.  離して立設される前記一対の風路形成部材の前記交差方向における離隔距離の平均値は、前記送風方向における前記一対の風路形成部材の上流側の上流側端部における前記離隔距離よりも大きい
     ことを特徴とする請求項3または4に記載の冷媒回収システム。
  6.  前記各風路形成部材は、立設方向に沿って折り曲げ可能な折り曲げ部を備えることを特徴とする請求項3から5のいずれか1項に記載の冷媒回収システム。
  7.  前記一対の風路形成部材は、前記回収ボンベの外周に沿って折り曲げられて設置されることを特徴とする請求項6に記載の冷媒回収システム。
  8.  保持している水分を前記回収ボンベの外壁に供給する水分保持部材を備えることを特徴とする請求項1から7のいずれか1項に記載の冷媒回収システム。
  9.  前記水分保持部材は、シート形状であり、前記回収ボンベの外周に巻き回して設置されることを特徴とする請求項8に記載の冷媒回収システム。
  10.  前記水分保持部材は、撥水性を有する素材により形成されることを特徴とする請求項8または9に記載の冷媒回収システム。
  11.  前記送風装置が送風する空気に水を噴霧する噴霧装置を備えることを特徴とする請求項1から10のいずれか1項に記載の冷媒回収システム。
  12.  前記噴霧装置の水の噴出口は、前記送風装置と前記回収ボンベとの間に位置付けされることを特徴とする請求項11に記載の冷媒回収システム。
  13.  空調機の冷媒を回収ボンベに回収する冷媒回収方法において、
     前記空調機の近くに載置された前記回収ボンベの近傍に送風装置を載置するステップと、
     前記送風装置から前記回収ボンベへの風路を形成するステップと、
     前記送風装置を駆動し、前記回収ボンベに対して空気を前記回収ボンベに向けて送風する送風ステップと、
     を備えることを特徴とする冷媒回収方法。
  14.  シート形状の水分保持部材を前記回収ボンベの外周に巻き回すステップを含むことを特徴とする請求項13に記載の冷媒回収方法。
  15.  前記送風装置が送風する空気に水を噴霧する噴霧装置の水の噴出口を前記送風装置と前記回収ボンベとの間に位置付けるステップを含み、
     前記送風ステップは、噴霧された水を含有する空気を前記回収ボンベに向けて送風することを特徴とする請求項13または14に記載の冷媒回収方法。
     
PCT/JP2020/023964 2020-06-18 2020-06-18 冷媒回収システム及び冷媒回収方法 WO2021255895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080101986.5A CN115867757B (zh) 2020-06-18 2020-06-18 制冷剂回收系统及制冷剂回收方法
PCT/JP2020/023964 WO2021255895A1 (ja) 2020-06-18 2020-06-18 冷媒回収システム及び冷媒回収方法
JP2020568576A JP6840906B1 (ja) 2020-06-18 2020-06-18 冷媒回収システム及び冷媒回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023964 WO2021255895A1 (ja) 2020-06-18 2020-06-18 冷媒回収システム及び冷媒回収方法

Publications (1)

Publication Number Publication Date
WO2021255895A1 true WO2021255895A1 (ja) 2021-12-23

Family

ID=74845298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023964 WO2021255895A1 (ja) 2020-06-18 2020-06-18 冷媒回収システム及び冷媒回収方法

Country Status (3)

Country Link
JP (1) JP6840906B1 (ja)
CN (1) CN115867757B (ja)
WO (1) WO2021255895A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046286B1 (ja) * 2021-04-28 2022-04-01 三菱電機ビルテクノサービス株式会社 冷却装置、冷媒回収システム、および冷却方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565025Y2 (ja) * 1976-03-11 1981-02-03
JP2001021239A (ja) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd 置換用気体の回収トラップ容器及び空気調和機の施工方法
JP2010151338A (ja) * 2008-12-24 2010-07-08 Mitsubishi Electric Building Techno Service Co Ltd 冷媒回収ボンベの冷却装置
JP3160931U (ja) * 2010-04-02 2010-07-15 株式会社エイ・シー・ピー 冷媒回収装置用の冷媒冷却器
JP2011133192A (ja) * 2009-12-25 2011-07-07 Ebara Refrigeration Equipment & Systems Co Ltd 冷媒回収装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183245A (ja) * 1997-09-12 1999-03-26 Daikin Ind Ltd 冷媒回収装置および冷媒回収方法
US6338255B1 (en) * 2000-02-09 2002-01-15 Honeywell International Inc. Refrigerant charging device
US7845178B1 (en) * 2006-12-19 2010-12-07 Spx Corporation A/C maintenance system using heat transfer from the condenser to the oil separator for improved efficiency
WO2017006462A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和機
US20190383509A1 (en) * 2017-03-02 2019-12-19 Mitsubishi Electric Corporation Refrigeration cycle device and refrigeration cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565025Y2 (ja) * 1976-03-11 1981-02-03
JP2001021239A (ja) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd 置換用気体の回収トラップ容器及び空気調和機の施工方法
JP2010151338A (ja) * 2008-12-24 2010-07-08 Mitsubishi Electric Building Techno Service Co Ltd 冷媒回収ボンベの冷却装置
JP2011133192A (ja) * 2009-12-25 2011-07-07 Ebara Refrigeration Equipment & Systems Co Ltd 冷媒回収装置
JP3160931U (ja) * 2010-04-02 2010-07-15 株式会社エイ・シー・ピー 冷媒回収装置用の冷媒冷却器

Also Published As

Publication number Publication date
JPWO2021255895A1 (ja) 2021-12-23
JP6840906B1 (ja) 2021-03-10
CN115867757A (zh) 2023-03-28
CN115867757B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2021255895A1 (ja) 冷媒回収システム及び冷媒回収方法
CN108692402A (zh) 脉冲式绝热气体冷却器
US20080104989A1 (en) Condensate evacuation system for portable monoblock air conditioner
KR20110072965A (ko) 응축수 증발장치가 구비된 일체형 에어컨
US6915654B2 (en) Portable cooling mechanism
US7155921B2 (en) Air conditioning system and air conditioning method
CN207166948U (zh) 一种通信基站机房维护设备
WO2021103382A1 (zh) 除湿机
JP7249860B2 (ja) 冷媒回収システム及び冷媒回収方法
KR102429294B1 (ko) 인버터 제습기의 제어 방법
WO2005054751A2 (en) Portable air conditioner
CN208606278U (zh) 一种调温调湿空调器
CN205957349U (zh) 室外机
CN206398862U (zh) 除湿机
JP7046286B1 (ja) 冷却装置、冷媒回収システム、および冷却方法
WO2021103386A1 (zh) 除湿机
WO2021103383A1 (zh) 除湿机
CN107355924A (zh) 空调加湿及冷凝水处理装置
CN114679115A (zh) 一种风光能源混合储能系统
CN206983668U (zh) 一套辅助汽车空调快速致冷的喷淋组件
CN205717817U (zh) 低噪音机柜空调器
KR102165336B1 (ko) 에어컨이 구비된 골프카트
WO2021103384A1 (zh) 除湿机
CN214469329U (zh) 一种防爆暖风机
US8978270B1 (en) Method for drying interstitial space

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568576

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941128

Country of ref document: EP

Kind code of ref document: A1