WO2021255849A1 - Power conversion apparatus, motor drive device, and air conditioner - Google Patents

Power conversion apparatus, motor drive device, and air conditioner Download PDF

Info

Publication number
WO2021255849A1
WO2021255849A1 PCT/JP2020/023725 JP2020023725W WO2021255849A1 WO 2021255849 A1 WO2021255849 A1 WO 2021255849A1 JP 2020023725 W JP2020023725 W JP 2020023725W WO 2021255849 A1 WO2021255849 A1 WO 2021255849A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power supply
switching element
polarity
Prior art date
Application number
PCT/JP2020/023725
Other languages
French (fr)
Japanese (ja)
Inventor
厚司 土谷
和徳 畠山
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022531161A priority Critical patent/JP7455207B2/en
Priority to PCT/JP2020/023725 priority patent/WO2021255849A1/en
Publication of WO2021255849A1 publication Critical patent/WO2021255849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power converter, a motor drive device, and an air conditioner that convert AC power into DC power.
  • Patent Document 1 describes a power conversion circuit having a configuration in which a series circuit of a first switching element and a second switching element and a series circuit of a first diode and a second diode are connected in parallel to each other.
  • a power conversion device comprising the above is disclosed.
  • An AC power supply is connected between the connection points of the first and second switching elements and the connection points of the first and second diodes via a reactor, and the first switching element and the first diode are connected.
  • a smoothing capacitor is connected between the connection point of the above and the connection point of the second switching element and the second diode.
  • the first switching element and the first diode are elements connected to the positive electrode side of the smoothing capacitor
  • the second switching element and the second diode are elements connected to the negative electrode side of the smoothing capacitor.
  • the series circuit by the first and second diodes is connected to the side of the smoothing capacitor more than the series circuit by the first and second switching elements.
  • a current detection unit for detecting the current for charging the smoothing capacitor is provided between the second diode and the negative electrode side of the smoothing capacitor. Further, one of both ends of the current detection unit is connected to GND.
  • Patent Document 1 does not consider reverse power flow to the AC power supply and an arm short circuit in which the switching elements of the upper and lower arms are turned on at the same time.
  • Reverse power flow to the AC power supply may cause distortion due to harmonics in the power supply voltage.
  • the reverse power flow to the AC power supply is an operation of returning the electric energy charged in the smoothing capacitor to the AC power supply side, which may reduce the efficiency of the power conversion device.
  • An arm short circuit shortens the life of the switching element and may damage the switching element.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of controlling to suppress reverse power flow to an AC power supply and an arm short circuit.
  • the power conversion device includes a reactor in which one end is connected to an AC power supply and a first voltage of AC output from the AC power supply is applied. And a converter circuit having a second leg and converting a first voltage into a second DC voltage.
  • the first switching element of the upper arm and the second switching element of the lower arm are connected in series, and the connection point between the first switching element and the second switching element is the other end of the reactor.
  • the second leg is connected in parallel with the first leg, the third switching element of the upper arm and the fourth switching element of the lower arm are connected in series, and the third switching element and the fourth switching are connected.
  • the connection point with the element is connected to the AC power supply.
  • the power converter has a capacitor that smoothes the second voltage, a first voltage detector that detects the first voltage, and a first current that detects a first current of both polarities flowing between the converter circuit and the capacitor. It is equipped with a current detector. When the polarity of the first current determined based on the detection signal of the first current and the polarity of the first voltage determined based on the detection signal of the first voltage do not match, the first to fourth switching elements operate. Stop.
  • FIG. 1 is a circuit diagram showing the configuration of the power conversion device 100 according to the first embodiment.
  • the power conversion device 100 according to the first embodiment converts the AC power supplied from the AC power supply 1 into DC power and supplies it to the load 500.
  • An example of a load 500 is a motor built into a blower or compressor of an air conditioner.
  • the power conversion device 100 includes a reactor 2, a converter circuit 3, a capacitor 4, and a control unit 8. Further, the power converter 100 includes a voltage detector 5 which is a first voltage detector, a voltage detector 7 which is a second voltage detector, a current detector 10 which is a first current detector, and the like. It includes a current detector 6 which is a second current detector, and a zero cross detector 9.
  • the current detector 10 includes a shunt resistor 11 and a current detection conversion unit 12.
  • One end of the reactor 2 is connected to one end of the AC power supply 1, and the other end of the reactor 2 is connected to the converter circuit 3.
  • the converter circuit 3 converts the AC voltage output from the AC power supply 1 into a DC voltage.
  • the converter circuit 3 includes a first leg 31 and a second leg 32.
  • the first leg 31 and the second leg 32 are connected in parallel.
  • the switching element 311 of the upper arm and the switching element 312 of the lower arm are connected in series.
  • the switching element 321 of the upper arm and the switching element 322 of the lower arm are connected in series.
  • the switching element 311 may be referred to as a "first switching element”
  • the switching element 312 may be referred to as a "second switching element”.
  • the switching element 321 may be referred to as a "third switching element”
  • the switching element 322 may be referred to as a "fourth switching element".
  • connection point 3a between the switching element 311 and the switching element 312 in the first leg 31.
  • connection point 3b between the switching element 321 and the switching element 322 is connected to the other end of the AC power supply 1.
  • the connection points 3a and 3b form an AC terminal.
  • the reactor 2 is connected between one end of the AC power supply 1 and the connection point 3a, but is connected between the other end of the AC power supply 1 and the connection point 3b. May be good.
  • the AC voltage output from the AC power supply 1 is called the "power supply voltage”.
  • the power supply voltage may be referred to as a "first voltage”, and the cycle of the power supply voltage may be referred to as a "power supply cycle”.
  • the switching element 311 includes a transistor Q1 and a diode D1 connected in antiparallel to the transistor Q1.
  • the switching element 312 includes a transistor Q2 and a diode D2 connected in antiparallel to the transistor Q2.
  • the switching element 321 includes a transistor Q3 and a diode D3 connected in antiparallel to the transistor Q3.
  • the switching element 322 includes a transistor Q4 and a diode D4 connected in antiparallel to the transistor Q4.
  • FIG. 1 exemplifies a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET) for each of the transistors Q1, Q2, Q3, and Q4, but is not limited to MOSFETs.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a MOSFET is a switching element capable of passing a current in both directions between a drain and a source. Any semiconductor element can be used as long as it is a semiconductor element capable of bidirectionally flowing a current between the first terminal corresponding to the drain and the second terminal corresponding to the source, that is, a bidirectional element.
  • antiparallel means that the first terminal corresponding to the drain of the MOSFET and the cathode of the diode are connected, and the second terminal corresponding to the source of the MOSFET and the anode of the diode are connected.
  • diode a parasitic diode contained in the MOSFET itself may be used. Parasitic diodes are also called body diodes.
  • At least one of the switching elements 311, 312, 321, 322 is not limited to the MOSFET formed of the silicon-based material, but is formed of a wide bandgap semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond. It may be a MOSFET.
  • wide bandgap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide bandgap semiconductor for at least one of the switching elements 311, 312, 321, 322, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized. Can be changed.
  • the capacitor 4 is connected to the DC bus 16a on the high potential side.
  • the DC bus 16a is drawn from the connection point 3c between the switching element 311 in the first leg 31 and the switching element 321 in the second leg 32.
  • the other end of the capacitor 4 is connected to the DC bus 16b on the low potential side.
  • the DC bus 16b is drawn from the connection point 3d between the switching element 312 in the first leg 31 and the switching element 322 in the second leg 32.
  • the connection points 3c and 3d form a DC terminal.
  • the output voltage of the converter circuit 3 is applied to both ends of the capacitor 4.
  • the capacitor 4 is a smoothing capacitor that smoothes the output voltage of the converter circuit 3.
  • the voltage smoothed by the capacitor 4 may be referred to as "bus voltage”. Further, the bus voltage may be referred to as a "second voltage”.
  • the bus voltage is also the voltage applied to the load 500.
  • the voltage detector 5 detects the power supply voltage Vs and outputs the detection signal of the power supply voltage Vs to the control unit 8.
  • the voltage detector 7 detects the bus voltage Vdc and outputs the detection signal of the bus voltage Vdc to the control unit 8.
  • the shunt resistor 11 is arranged on the DC bus 16b.
  • the connection portion between the shunt resistor 11 and the negative electrode side terminal of the capacitor 4 is connected to GND.
  • the shunt resistor 11 detects the current Id flowing between the negative electrode side terminal of the capacitor 4 and the connection point 3d of the converter circuit 3, and outputs the detection signal of the current Id to the current detection conversion unit 12.
  • the current detection conversion unit 12 converts the detection signal of the current Id into a signal capable of discriminating between positive and negative polarities and outputs the signal to the control unit 8.
  • the current detector 10 provided with the shunt resistor 11 and the current detection conversion unit 12 detects the current Id of both polarities flowing between the converter circuit 3 and the capacitor 4, and sends the detection signal of the current Id to the control unit 8. Output.
  • the current Id may be referred to as a "first current”.
  • the detailed contents of the current detection conversion unit 12 will be described later.
  • the current detector 6 detects the power supply current Is flowing in and out of the AC power supply 1.
  • the power supply current Is is also the reactor current flowing through the reactor 2. In FIG. 1, the direction in which the arrow points is the positive direction of the power supply current Is.
  • the current detector 6 outputs a detection signal of the power supply current Is to the control unit 8.
  • An example of the current detector 6 is a current transformer (CT).
  • CT current transformer
  • the power supply current Is may be referred to as a "second current”.
  • the zero-cross detection unit 9 outputs a “High” or “Low” power supply polarity signal according to the power supply voltage Vs to the control unit 8.
  • the polarity of the power supply voltage Vs is abbreviated as "power supply polarity”.
  • FIG. 2 is a diagram showing a power supply polarity signal output by the zero-cross detection unit 9 of the power conversion device 100 according to the first embodiment.
  • the zero cross detection unit 9 outputs a “Low” signal when the power supply voltage Vs is positive, and outputs a “High” signal when the power supply voltage Vs is negative.
  • the zero cross detection unit 9 outputs a “High” signal when the power supply voltage Vs is positive, and outputs a “Low” signal when the power supply voltage Vs is negative. It may be configured to output.
  • the control unit 8 constitutes a converter circuit 3 based on the detection signal of the voltage detector 5, the detection signal of the current detector 6, the detection signal of the voltage detector 7, the power supply polarity signal, and the detection signal of the current detector 10.
  • Control signals S1 to S4 for controlling each switching element are generated.
  • the control signal S1 is a control signal for controlling the continuity of the transistor Q1
  • the control signal S2 is a control signal for controlling the continuity of the transistor Q2.
  • the control signal S3 is a control signal for controlling the continuity of the transistor Q3, and the control signal S4 is a control signal for controlling the continuity of the transistor Q4. More detailed operation of the control unit 8 will be described later.
  • the processor 8a is a calculation means called a microprocessor, a microcomputer, a microcomputer, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the memory 8b may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark).
  • the memory 8b stores a program that executes the functions of the control unit 8 described above and the functions of the control unit 8 described later.
  • the processor 8a exchanges necessary information via an interface including an analog-to-digital converter and a digital-to-digital converter (not shown), and the processor 8a executes a program stored in the memory 8b to perform necessary processing.
  • the calculation result by the processor 8a is stored in the memory 8b.
  • FIG. 3 is a diagram showing the timing at which each switching element of the converter circuit 3 conducts in the power conversion device 100 according to the first embodiment.
  • 4 to 9 are diagrams showing first to sixth examples of current paths that may occur in the converter circuit 3 in the power conversion device according to the first embodiment, respectively.
  • FIG. 3 shows the waveforms of the power supply voltage Vs and the power supply current Is.
  • the horizontal axis of FIG. 3 represents time.
  • current synchronization "311” and “312” are current synchronization in which the switching elements 311, 312 are controlled to be turned on or off according to the polarity of the power supply current Is. It is shown that it is a switching element of.
  • voltage synchronization "321” and “322” indicate that the switching elements 321 and 322 are voltage synchronization switching elements whose on or off is controlled according to the power supply polarity. ..
  • Ith represents a current threshold value.
  • the control unit 8 controls the switching element 322 to be on and the switching element 321 to be turned off. Further, when the power supply polarity is negative, the control unit 8 controls the switching element 321 to be on and the switching element 322 to be turned off.
  • the timing at which the switching element 322 is turned from on to off and the timing at which the switching element 321 is turned from off to on are the same timing, but the timing is not limited to this.
  • the control unit 8 may provide a dead time during which the switching elements 321 and 322 are both turned off between the timing at which the switching element 322 is turned from on to off and the timing at which the switching element 321 is turned from off to on.
  • the control unit 8 provides a dead time during which the switching elements 321 and 322 are both turned off between the timing at which the switching element 321 is turned from on to off and the timing at which the switching element 322 is turned from off to on. May be good.
  • the current path when the power supply polarity is positive and the absolute value of the power supply current Is is less than the current threshold value Is is shown by a thick line.
  • the switching element 311 is not controlled to be ON. Therefore, the power supply current Is flows on the diode D1 side in the switching element 311 and flows on the transistor Q4 side in the switching element 322.
  • the control unit 8 controls the switching element 311 to be turned on when the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is.
  • the current path in this case is shown by a thick line.
  • control unit 8 controls the switching element 311 to be turned off when the absolute value of the power supply current Is becomes smaller and the absolute value of the power supply current Is becomes smaller than the current threshold value Is.
  • the current path when the power supply polarity is negative and the absolute value of the power supply current Is is less than the current threshold value Is is shown by a thick line.
  • the switching element 312 is not controlled to be ON. Therefore, the power supply current Is flows on the diode D2 side in the switching element 312, and flows on the transistor Q3 side in the switching element 321.
  • the control unit 8 controls the switching element 312 to be turned on when the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is.
  • the current path in this case is shown by a thick line.
  • control unit 8 controls the switching element 312 to be turned off when the absolute value of the power supply current Is becomes smaller and the absolute value of the power supply current Is becomes smaller than the current threshold value Is.
  • control for turning on switching elements connected in parallel when a current is flowing through the diode of each switching element is called “synchronous rectification”.
  • the control that leaves the corresponding switching element off is called “full-wave rectification”. Since the voltage drop due to the on-resistance of the transistor is smaller than the voltage drop in the forward direction of the diode, the loss in each switching element can be reduced by performing synchronous rectification. As a result, the efficiency of the power conversion device 100 can be improved.
  • the power conversion device 100 can perform power factor improvement control and bus voltage boost control of the AC power supply 1.
  • the converter circuit 3 performs an operation called a power short circuit.
  • FIG. 8 shows an example of a power supply short-circuit operation when the power supply voltage Vs is positive. From the state of FIG. 5, the switching element 322 is controlled from on to off, and the switching element 321 is controlled from off to on. Then, the power supply current Is flows in the order of the reactor 2, the switching element 311 and the switching element 321. At this time, electric energy is stored in the reactor 2.
  • the period in which the power supply current Is flows can be extended, so that the power factor of the AC power supply 1 can be improved. Further, if the capacitor 4 is charged by using the electric energy stored in the reactor 2, the bus voltage can be boosted.
  • FIG. 9 shows an example of a power supply short-circuit operation when the power supply voltage Vs is negative. From the state of FIG. 7, the switching element 321 is controlled from on to off, and the switching element 322 is controlled from off to on. Then, the power supply current Is flows in the order of the switching element 322, the switching element 312, and the reactor 2. At this time, electric energy is stored in the reactor 2. If the power supply short-circuit operation is performed, the period in which the power supply current Is flows can be extended, so that the power factor of the AC power supply 1 can be improved. Further, if the capacitor 4 is charged by using the electric energy stored in the reactor 2, the bus voltage can be boosted.
  • FIG. 10 is a diagram showing a connection relationship between the current detection and conversion unit 12 according to the first embodiment and an external component.
  • FIG. 11 is a diagram showing an example of the internal configuration of the current detection conversion unit 12 according to the first embodiment.
  • the external components are designated by the same reference numerals as those in FIG.
  • the current detection conversion unit 12 includes a level shift circuit 14.
  • the level shift circuit 14 shifts the level of the shunt resistance voltage Vsh so that the shunt resistance voltage Vsh, which is the detection voltage detected by the shunt resistance 11, becomes a level that can be input to the processor 8a.
  • the shunt resistance voltage Vsh is a voltage generated in the shunt resistor 11 by the current Id flowing in the shunt resistor 11.
  • the detected value of the current flowing from the connection point 3d side to the negative electrode side terminal of the capacitor 4 is a positive voltage.
  • the detected value of the current flowing from the negative electrode side terminal of the capacitor 4 to the connection point 3d side is the negative electrode voltage.
  • a typical example of the processor 8a is a microcomputer.
  • a microcomputer is assumed as the processor 8a.
  • the voltage output from the level shift circuit 14 and input to the processor 8a is referred to as "microcomputer input voltage” and is referred to as "Vsh_micon”.
  • the microcomputer is generally designed to detect a positive voltage of about 0 to 5 [V], but it does not support detecting a negative voltage.
  • the microcomputer since the shunt resistor 11 generates a voltage of both polarities, the microcomputer needs to accept the voltage of both polarities. Therefore, the current detection conversion unit 12 is provided with a level shift circuit 14. For example, when the maximum value of the input voltage to the microcomputer is 5 [V], the level shift circuit 14 has an offset of about 2.5 [V] to set the zero point. Then, the level shift circuit 14 outputs 0 to 2.5 [V] as a negative voltage and 2.5 to 5 [V] as a positive voltage to the microcomputer.
  • the level shift circuit 14 can be configured by a differential amplification unit 14a and an offset voltage generation unit 14b.
  • the differential amplification unit 14a includes an operational amplifier 15a and resistors R3 to R6 which are resistance elements.
  • the offset voltage generation unit 14b includes an operational amplifier 15b and resistors R1 and R2 which are resistance elements.
  • the negative terminal (-), which is the reference terminal of the operational amplifier 15a, is grounded via the resistor R4.
  • the shunt resistance voltage Vsh detected by the shunt resistor 11 is input to the positive terminal (+), which is the signal input terminal of the operational amplifier 15a, via the resistor R3.
  • the amplification factor of the operational amplifier 15a is determined based on the ratio of the resistance values of the resistors R4 and R6. That is, the amplification factor of the operational amplifier 15a can be changed by changing the ratio of the resistance values of the resistors R4 and R6.
  • the negative terminal (-) of the operational amplifier 15b is connected to the output terminal of the operational amplifier 15b to form a voltage follower circuit. Further, the voltage divider voltage divided by the resistors R1 and R2 is input to the positive terminal (+) of the operational amplifier 15b. When the resistance values of the resistors R1 and R2 are equal, a voltage of 2.5 [V] is input to the positive terminal (+) of the operational amplifier 15b. From the output terminal of the operational amplifier 15b, the same voltage as the voltage dividing voltage input to the positive terminal (+) of the operational amplifier 15b is output. This voltage is output as an offset voltage from the offset voltage generation unit 14b.
  • the offset voltage output from the offset voltage generation unit 14b is input to the positive terminal (+) of the operational amplifier 15a via the resistor R5. With this configuration, an offset voltage is superimposed on the shunt resistance voltage Vsh and input to the positive terminal (+) of the operational amplifier 15a.
  • the level shift circuit 14 has the offset voltage generation unit 14b that generates the offset voltage that shifts the level of the detection voltage of the shunt resistor 11, and the differential amplification that increases the difference voltage between the detection voltage and the offset voltage.
  • a unit 14a is provided.
  • the circuit configuration in FIG. 11 is an example, and the circuit configuration is not limited to this. If the stability of the circuit operation can be ensured by the characteristics of the operational amplifier 15a of the differential amplification unit 14a, the relationship between the resistance values of the resistors R3 and R5 and the shunt resistor 11, the operational amplifier 15b operating as the voltage follower circuit may be omitted. .. That is, the offset voltage generation unit 14b may be composed of only the voltage dividing circuits of the resistors R1 and R2.
  • the configuration is not limited to this.
  • a configuration may be used in which 0 to 2.5 [V] is input to the microcomputer as a positive voltage and 2.5 to 5 [V] is input to the microcomputer as a negative voltage.
  • the positive / negative inversion process may be performed in the microcomputer, and it is not necessary to significantly change the process in the microcomputer.
  • FIG. 12 is a diagram showing specific waveform examples of the shunt resistance voltage Vsh and the microcomputer input voltage Vsh_micon when the current in the path shown in FIGS. 4 to 7 flows.
  • the horizontal axis represents time.
  • the offset voltage Vsh_offset is 2.5 [V].
  • the microcomputer input voltage Vsh_micon is detected as a voltage that changes from 0 [V] to the offset voltage Vsh_offset, which is 2.5 [V], as shown in the upper part of FIG. ..
  • the power conversion device 100 according to the first embodiment controls to suppress reverse power flow to the AC power supply 1 and short circuit of the arm. Therefore, in the present specification, two “abnormal states”, “first abnormal state” and “second abnormal state”, are defined.
  • the first abnormal state is a state in which reverse power flow to the AC power supply 1 is occurring.
  • the second abnormal state is a state in which an "arm short circuit” occurs in any of the legs of the converter circuit 3.
  • “reverse power flow to AC power supply 1” can be paraphrased as "power supply regeneration”. In the following description, the expression “power regeneration” is used.
  • FIG. 13 is a diagram showing various operation waveforms when the power conversion device 100 according to the first embodiment performs a full-wave rectification operation or a synchronous rectification operation.
  • the waveforms of the power supply voltage Vs, the power supply current Is, the power supply polarity signal Sig (Vs), the shunt resistance voltage Vsh, and the microcomputer input voltage Vsh_micon are shown in order from the upper part. The characteristics of the individual waveforms have already been described, and the description thereof is omitted here.
  • FIG. 14 is a diagram showing various operation waveforms when the power conversion device 100 according to the first embodiment performs a synchronous rectification operation and a power supply short circuit operation.
  • the types of operation waveforms are the same as those in FIG. In FIG. 14, the power supply short-circuit operation is performed a plurality of times over a half cycle of the power supply cycle.
  • the polarity of the shunt resistance voltage Vsh is positive, and the waveform of the microcomputer input voltage Vsh_micon is also a voltage value equal to or less than the offset voltage Vsh_offset.
  • FIG. 15 is a diagram showing changes in the operation waveform when the first abnormal state occurs in the power conversion device 100 according to the first embodiment.
  • a control signal S1 for controlling the continuity of the switching element 311 and a control signal S2 for controlling the continuity of the switching element 312 are added. ..
  • FIG. 15 shows an operation waveform when the on-width T2 of the control signal S1 is wider than the flow section T1 of the power supply current Is.
  • the on-width T2 is wider than the flow section T1
  • power supply regeneration occurs in the portion indicated by the broken line circle, and the polarity of the power supply current Is is reversed.
  • the waveform of the shunt resistance voltage Vsh is inverted in the portion indicated by the broken line ellipse.
  • the microcomputer input voltage Vsh_micon is a voltage that exceeds the offset voltage Vsh_offset.
  • FIG. 16 is a diagram showing an example of a current path when the power conversion device 100 according to the first embodiment is in the first abnormal state.
  • the section in which the power supply current Is does not flow is a section in which the bus voltage Vdc is larger than the power supply voltage Vs. Therefore, as shown in FIG. 15, when the switching element 311 is controlled to be ON in the section where the power supply current Is does not flow, the power supply regeneration in which the electric charge of the capacitor 4 flows into the AC power supply 1 occurs.
  • the power supply current Is due to power supply regeneration flows in the order of the switching element 311, the reactor 2, the AC power supply 1, the switching element 322, and the shunt resistor 11. Since the power supply current Is due to power supply regeneration flows from the connection point 3d side to the negative electrode side terminal of the capacitor 4, the shunt resistance voltage Vsh becomes a positive voltage.
  • FIG. 17 is a diagram showing an example of a current path when the power conversion device 100 according to the first embodiment is in the second abnormal state.
  • a set of switching elements 321 and 322 causes an arm short circuit.
  • the shunt resistor 11 is steep because there is no circuit element other than the shunt resistor 11 between the positive electrode side terminal and the negative electrode side terminal of the capacitor 4. Current flows. Further, since the current due to the arm short circuit flows from the connection point 3d side to the negative electrode side terminal of the capacitor 4, the shunt resistance voltage Vsh becomes a positive electrode voltage.
  • FIG. 18 is a diagram showing an example of a waveform of the shunt resistance voltage Vsh when power regeneration and arm short circuit occur in the power conversion device 100 of the first embodiment.
  • FIG. 18 shows a state in which a power supply regeneration occurs at time t1 and the power supply regeneration is periodically repeated, and a state in which an arm short circuit occurs at time t2 and the arm short circuit is periodically repeated.
  • the reactor 2 is an element having a high impedance among the circuit elements of the converter circuit 3. Therefore, the rate of change of the abnormal current flowing in the first abnormal state is smaller than the rate of change of the abnormal current flowing in the second abnormal state. Therefore, the distinction between the first abnormal state and the second abnormal state can be made based on the rate of change of the current.
  • the rate of change in current is generally described as "di / dt".
  • the current Id is converted into a shunt resistance voltage Vsh by the shunt resistor 11. Therefore, using the determination index of "di / dt" is equivalent to using the determination index of "dv / dt", which is the rate of change in voltage.
  • the method for determining the abnormal state will be described.
  • the following methods are common to the determination of the first abnormal state and the second abnormal state. That is, the following method is a method for discriminating between the first abnormal state and the second abnormal state without distinguishing between them.
  • FIG. 19 is a diagram used for explaining an abnormal state determination method in the power conversion device 100 according to the first embodiment.
  • the waveform of the polarity determination voltage Vp is shown instead of the waveforms of the control signals S1 and S2.
  • the polarity determination voltage Vp is defined by the following equation (1).
  • Vp (Vsh_micon-Vsh_offset) x sig (Vs) ... (1)
  • the code of the value of the polarity determination voltage Vp is described together with the waveform of the polarity determination voltage Vp.
  • the sign of the polarity judgment voltage Vp at the place where the power supply regeneration occurs is "minus (-)", whereas the polarity judgment at the place where the power supply regeneration does not occur.
  • the sign of the voltage Vp is "plus (+)”.
  • the sign of the polarity determination voltage Vp in the place where the power supply regeneration occurs is "plus (+)”
  • the sign of the polarity determination voltage Vp is “minus ( ⁇ )”. Therefore, it can be determined whether or not the power conversion device 100 is in an abnormal state based on the following determination conditions.
  • FIG. 20 is a flowchart for explaining a processing procedure for determining an abnormal state in the power conversion device 100 according to the first embodiment.
  • the current detector 10 detects the current Id (step S101), and the voltage detector 5 detects the power supply voltage Vs (step S102).
  • the control unit 8 calculates the polarity determination voltage Vp based on the polarity of the current Id determined based on the detected value of the current Id and the polarity of the power supply voltage Vs determined based on the detected value of the power supply voltage Vs (step S103). .. As described above, the polarity determination voltage Vp can be calculated using the above equation (1). Information on the polarity of the power supply voltage Vs is obtained from the power supply polarity signal Sig (Vs), and information on the polarity of the current Id is obtained by "Vsh_micon-Vsh_offset" which is a difference value between the microcomputer input voltage Vsh_micon and the offset voltage Vsh_offset. Be done.
  • the control unit 8 determines whether the polarity of the current Id and the polarity of the power supply voltage Vs match or do not match based on the polarity determination voltage Vp (step S104). When the mutual polarities match, that is, when the polarities of the current Id and the polarities of the power supply voltage Vs match (steps S105, Yes), the control unit 8 continues the normal operation (step S106). ). After that, the processes of steps S101 to S105 are repeated.
  • step S105 when the polarities do not match each other, that is, when the polarities of the current Id and the polarities of the power supply voltage Vs do not match (steps S105, No), the power conversion device 100 is the first control unit 8. It is determined that the first or second abnormal state is present (step S107).
  • the control unit 8 calculates the rate of change dI / dt of the current Id (step S108).
  • the control unit 8 compares the rate of change of the current Id with the determination value (step S109). When the rate of change of the current Id is equal to or less than the determination value (step S109, No), the control unit 8 determines that the power conversion device 100 is in the first abnormal state (step S110), and each of the power conversion devices 100 The switching control for the switching element is stopped (step S111). After that, the processes of steps S101 to S109 are repeated.
  • step S111 the power conversion device 100 shifts from the synchronous rectification operation to the full-wave rectification operation.
  • the application example of the power conversion device 100 is an air conditioner, the operation efficiency is lowered, but the operation of the device can be continued.
  • step S109 when the rate of change of the current Id exceeds the determination value (step S109, Yes), the control unit 8 determines that the power conversion device 100 is in the second abnormal state (step S112). , The operation of the power conversion device 100 and the load 500 is stopped (step S113), and the processing of the flowchart of FIG. 20 is completed.
  • step S109 the case where the rate of change of the current Id is equal to the determination value is determined as "No", but it may be determined as "Yes”. That is, the case where the rate of change of the current Id is equal to the determination value may be determined by either "Yes” or "No".
  • the processing procedure is more complicated than that in FIG. 20, but there is an effect that the operation of the power conversion device 100 and the load 500 can be stopped quickly.
  • the power conversion device detects the first current of both polarities flowing between the converter circuit and the capacitor and the first voltage output from the AC power supply 1. Further, the power conversion device is provided in the converter circuit when the polarity of the first current determined based on the detection signal of the first current and the polarity of the first voltage determined based on the detection signal of the first voltage do not match.
  • the first to fourth switching elements are configured to stop operating. This has the effect of enabling control to suppress reverse power flow to the AC power supply and short circuit of the arm.
  • the processor of the control unit is a microcomputer, it is possible to detect the first current of both polarities by providing a level shift circuit in the current detector.
  • Embodiment 2 The power conversion device described in the first embodiment can be used as a motor drive device for supplying DC power to the inverter.
  • a motor drive device for supplying DC power to the inverter.
  • FIG. 21 is a diagram showing a configuration example of the motor drive device 101 according to the second embodiment.
  • the motor drive device 101 according to the second embodiment is configured by using the power conversion device 100 shown in the first embodiment.
  • an inverter 500a is connected to the power conversion device 100.
  • the power conversion device 100 is a device that converts AC power into DC power.
  • the inverter 500a is a device that converts DC power output from the power conversion device 100 into AC power.
  • a motor 500b is connected to the output side of the inverter 500a.
  • the inverter 500a drives the motor 500b by supplying the converted AC power to the motor 500b.
  • the motor drive device 101 shown in FIG. 21 can be applied to a blower of an air conditioner and a compressor of an air conditioner.
  • FIG. 22 is a diagram showing an example in which the motor drive device 101 shown in FIG. 21 is applied to an air conditioner.
  • a motor 500b is connected to the output side of the motor drive device 101, and the motor 500b is connected to the compression element 504.
  • the compressor 505 includes a motor 500b and a compression element 504.
  • the refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
  • the flow path of the refrigerant circulating inside the air conditioner is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. , It is configured to return to the compression element 504.
  • the motor drive device 101 receives AC power from the AC power supply 1 and rotates the motor 500b.
  • the compression element 504 executes a compression operation of the refrigerant by rotating the motor 500b, and circulates the refrigerant inside the refrigeration cycle unit 506.
  • the power conversion device according to the first embodiment is used because the power conversion device according to the first embodiment is used. It is possible to enjoy the effects that it possesses.
  • the configuration shown in the above embodiment is an example, and can be combined with another known technique, or a part of the configuration may be omitted or changed without departing from the gist. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

This power conversion apparatus (100) comprises a reactor (2) to which a power supply voltage Vs is applied, and a converter circuit (3) that converts the power supply voltage Vs to a bus voltage Vdc. The converter circuit (3) comprises four switching elements (311 to 322). A connection point (3a) of the switching elements (311, 312) is connected to one end of an AC power supply (1) with the reactor (2) interposed therebetween, and a connection point (3b) of the switching elements (321, 322) is connected to the other end of the AC power supply (1). The power conversion apparatus (100) comprises a voltage detector (5) that detects the power supply voltage Vs, and a current detector (10) that detects the current Id of both polarities flowing between the converter circuit (3) and a capacitor (4). When there is a mismatch between the polarity of the current Id determined based on the detection signal of the current Id, and the polarity of the power supply voltage Vs determined based on the detection signal of the power supply voltage Vs, the operation of the switching elements (311 to 322) is stopped.

Description

電力変換装置、モータ駆動装置及び空気調和機Power converter, motor drive and air conditioner
 本開示は、交流電力を直流電力に変換する電力変換装置、モータ駆動装置及び空気調和機に関する。 The present disclosure relates to a power converter, a motor drive device, and an air conditioner that convert AC power into DC power.
 下記特許文献1には、第1のスイッチング素子と第2のスイッチング素子との直列回路と、第1のダイオードと第2のダイオードとの直列回路とが互いに並列に接続される構成の電力変換回路を備えた電力変換装置が開示されている。第1及び第2のスイッチング素子の接続点と、第1及第2のダイオードの接続点との間には、リアクタを介して交流電源が接続され、第1のスイッチング素子と第1のダイオードとの接続点と、第2のスイッチング素子と第2のダイオードとの接続点との間には、平滑コンデンサが接続されている。 The following Patent Document 1 describes a power conversion circuit having a configuration in which a series circuit of a first switching element and a second switching element and a series circuit of a first diode and a second diode are connected in parallel to each other. A power conversion device comprising the above is disclosed. An AC power supply is connected between the connection points of the first and second switching elements and the connection points of the first and second diodes via a reactor, and the first switching element and the first diode are connected. A smoothing capacitor is connected between the connection point of the above and the connection point of the second switching element and the second diode.
 第1のスイッチング素子及び第1のダイオードは平滑コンデンサの正極側に接続される素子であり、第2のスイッチング素子及び第2のダイオードは平滑コンデンサの負極側に接続される素子である。第1及び第2のダイオードによる直列回路は、第1及び第2のスイッチング素子による直列回路よりも、平滑コンデンサの側に接続されている。また、第2のダイオードと平滑コンデンサの負極側との間には、平滑コンデンサに電荷をチャージする電流を検出するための電流検出部が設けられている。更に、電流検出部の両端部のうちの何れか一方は、GNDに接続されている。 The first switching element and the first diode are elements connected to the positive electrode side of the smoothing capacitor, and the second switching element and the second diode are elements connected to the negative electrode side of the smoothing capacitor. The series circuit by the first and second diodes is connected to the side of the smoothing capacitor more than the series circuit by the first and second switching elements. Further, a current detection unit for detecting the current for charging the smoothing capacitor is provided between the second diode and the negative electrode side of the smoothing capacitor. Further, one of both ends of the current detection unit is connected to GND.
特開2017-34829号公報Japanese Unexamined Patent Publication No. 2017-34829
 しかしながら、特許文献1には、交流電源への逆潮流、及び上下アームのスイッチング素子が同時にオンするアーム短絡についての考慮はなされていない。交流電源への逆潮流は、電源電圧に高調波による歪みを発生させるおそれがある。また、交流電源への逆潮流は、平滑コンデンサにチャージされた電気エネルギーを交流電源側に戻してしまう動作であり、電力変換装置の効率を低下させるおそれがある。アーム短絡は、スイッチング素子の寿命を低下させ、スイッチング素子を損傷させるおそれがある。 However, Patent Document 1 does not consider reverse power flow to the AC power supply and an arm short circuit in which the switching elements of the upper and lower arms are turned on at the same time. Reverse power flow to the AC power supply may cause distortion due to harmonics in the power supply voltage. Further, the reverse power flow to the AC power supply is an operation of returning the electric energy charged in the smoothing capacitor to the AC power supply side, which may reduce the efficiency of the power conversion device. An arm short circuit shortens the life of the switching element and may damage the switching element.
 また、特許文献1に記載の構成では、何れか一方の極性の電流しか検出できない。このため、特許文献1に記載の電力変換装置では、電流検出部の検出値に基づいて、交流電源への逆潮流及びアーム短絡を抑止する制御を行うことは困難である。 Further, in the configuration described in Patent Document 1, only the current of one of the polarities can be detected. Therefore, in the power conversion device described in Patent Document 1, it is difficult to control the reverse power flow to the AC power supply and the short circuit of the arm based on the detection value of the current detection unit.
 本開示は、上記に鑑みてなされたものであって、交流電源への逆潮流及びアーム短絡を抑止する制御を可能とする電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of controlling to suppress reverse power flow to an AC power supply and an arm short circuit.
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、一端が交流電源に接続され、交流電源から出力される交流の第1電圧が印加されるリアクタと、第1及び第2のレグを有し、第1電圧を直流の第2電圧に変換するコンバータ回路と、を備える。第1のレグは、上アームの第1のスイッチング素子と下アームの第2のスイッチング素子とが直列に接続され、第1のスイッチング素子と第2のスイッチング素子との接続点がリアクタの他端に接続される。第2のレグは、第1のレグと並列に接続され、上アームの第3のスイッチング素子と下アームの第4のスイッチング素子とが直列に接続され、第3のスイッチング素子と第4のスイッチング素子との接続点が交流電源に接続される。また、電力変換装置は、第2電圧を平滑するコンデンサと、第1電圧を検出する第1の電圧検出器と、コンバータ回路とコンデンサとの間に流れる両極性の第1電流を検出する第1の電流検出器と、を備える。第1電流の検出信号に基づいて定まる第1電流の極性と、第1電圧の検出信号に基づいて定まる第1電圧の極性とが不一致の場合、第1から第4のスイッチング素子は、動作を停止する。 In order to solve the above-mentioned problems and achieve the object, the power conversion device according to the present disclosure includes a reactor in which one end is connected to an AC power supply and a first voltage of AC output from the AC power supply is applied. And a converter circuit having a second leg and converting a first voltage into a second DC voltage. In the first leg, the first switching element of the upper arm and the second switching element of the lower arm are connected in series, and the connection point between the first switching element and the second switching element is the other end of the reactor. Connected to. The second leg is connected in parallel with the first leg, the third switching element of the upper arm and the fourth switching element of the lower arm are connected in series, and the third switching element and the fourth switching are connected. The connection point with the element is connected to the AC power supply. Further, the power converter has a capacitor that smoothes the second voltage, a first voltage detector that detects the first voltage, and a first current that detects a first current of both polarities flowing between the converter circuit and the capacitor. It is equipped with a current detector. When the polarity of the first current determined based on the detection signal of the first current and the polarity of the first voltage determined based on the detection signal of the first voltage do not match, the first to fourth switching elements operate. Stop.
 本開示に係る電力変換装置によれば、交流電源への逆潮流及びアーム短絡を抑止する制御が可能になるという効果を奏する。 According to the power conversion device according to the present disclosure, there is an effect that control for suppressing reverse power flow to the AC power supply and short circuit of the arm becomes possible.
実施の形態1に係る電力変換装置の構成を示す回路図A circuit diagram showing the configuration of the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置のゼロクロス検出部が出力する電源極性信号を示す図The figure which shows the power supply polarity signal output by the zero cross detection part of the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路の各スイッチング素子が導通するタイミングを示す図The figure which shows the timing which each switching element of a converter circuit conducts in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第1の例を示す図The figure which shows the 1st example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第2の例を示す図The figure which shows the 2nd example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第3の例を示す図The figure which shows the 3rd example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第4の例を示す図The figure which shows the 4th example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第5の例を示す図The figure which shows the 5th example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置においてコンバータ回路に生じ得る電流経路の第6の例を示す図The figure which shows the sixth example of the current path which can occur in the converter circuit in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電流検出変換部と外部の構成要素との間の接続関係を示す図The figure which shows the connection relationship between the current detection conversion part which concerns on Embodiment 1 and an external component. 実施の形態1に係る電流検出変換部の内部の構成例を示す図The figure which shows the structural example of the inside of the current detection conversion part which concerns on Embodiment 1. 図4から図7に示す経路の電流が流れた場合におけるシャント抵抗電圧及びマイコン入力電圧の具体的な波形例を示す図The figure which shows the specific waveform example of the shunt resistance voltage and the microcomputer input voltage when the current of the path shown in FIG. 4 to FIG. 7 flows. 実施の形態1に係る電力変換装置が全波整流動作又は同期整流動作を実施している場合の各種の動作波形を示す図The figure which shows various operation waveforms when the power conversion apparatus which concerns on Embodiment 1 performs a full-wave rectification operation or a synchronous rectification operation. 実施の形態1に係る電力変換装置が同期整流動作及び電源短絡動作を実施している場合の各種の動作波形を示す図The figure which shows various operation waveforms when the power conversion apparatus which concerns on Embodiment 1 performs a synchronous rectification operation and a power supply short-circuit operation. 実施の形態1に係る電力変換装置に第1の異常状態が生じたときの動作波形の変化を示す図The figure which shows the change of the operation waveform when the first abnormal state occurs in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置が第1の異常状態であるときの電流経路の例を示す図The figure which shows the example of the current path when the power conversion apparatus which concerns on Embodiment 1 is a 1st abnormal state. 実施の形態1に係る電力変換装置が第2の異常状態であるときの電流経路の例を示す図The figure which shows the example of the current path when the power conversion apparatus which concerns on Embodiment 1 is a 2nd abnormal state. 実施の形態1の電力変換装置において電源回生とアーム短絡とが生じた場合のシャント抵抗電圧の波形例を示す図The figure which shows the waveform example of the shunt resistance voltage when the power supply regeneration and the arm short circuit occur in the power conversion apparatus of Embodiment 1. 実施の形態1に係る電力変換装置における異常状態の判定手法の説明に供する図The figure which provides the explanation of the abnormality state determination method in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1に係る電力変換装置における異常状態判定の処理手順の説明に供するフローチャートA flowchart used to explain the processing procedure for determining an abnormal state in the power conversion device according to the first embodiment. 実施の形態2に係るモータ駆動装置の構成例を示す図The figure which shows the structural example of the motor drive device which concerns on Embodiment 2. 図21に示したモータ駆動装置を空気調和機に適用した例を示す図The figure which shows the example which applied the motor drive device shown in FIG. 21 to an air conditioner.
 以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置、モータ駆動装置及び空気調和機について詳細に説明する。 The power conversion device, the motor drive device, and the air conditioner according to the embodiment of the present disclosure will be described in detail with reference to the attached drawings below.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置100の構成を示す回路図である。実施の形態1に係る電力変換装置100は、交流電源1から供給される交流電力を直流電力に変換して負荷500に供給する。負荷500の例は、空気調和機の送風機又は圧縮機に内蔵されるモータである。
Embodiment 1.
FIG. 1 is a circuit diagram showing the configuration of the power conversion device 100 according to the first embodiment. The power conversion device 100 according to the first embodiment converts the AC power supplied from the AC power supply 1 into DC power and supplies it to the load 500. An example of a load 500 is a motor built into a blower or compressor of an air conditioner.
 実施の形態1に係る電力変換装置100は、図1に示すように、リアクタ2と、コンバータ回路3と、コンデンサ4と、制御部8とを備える。また、電力変換装置100は、第1の電圧検出器である電圧検出器5と、第2の電圧検出器である電圧検出器7と、第1の電流検出器である電流検出器10と、第2の電流検出器である電流検出器6と、ゼロクロス検出部9とを備える。電流検出器10は、シャント抵抗11と、電流検出変換部12とを備える。 As shown in FIG. 1, the power conversion device 100 according to the first embodiment includes a reactor 2, a converter circuit 3, a capacitor 4, and a control unit 8. Further, the power converter 100 includes a voltage detector 5 which is a first voltage detector, a voltage detector 7 which is a second voltage detector, a current detector 10 which is a first current detector, and the like. It includes a current detector 6 which is a second current detector, and a zero cross detector 9. The current detector 10 includes a shunt resistor 11 and a current detection conversion unit 12.
 リアクタ2の一端は交流電源1の一端に接続され、リアクタ2の他端はコンバータ回路3に接続される。コンバータ回路3は、交流電源1から出力される交流電圧を直流電圧に変換する。 One end of the reactor 2 is connected to one end of the AC power supply 1, and the other end of the reactor 2 is connected to the converter circuit 3. The converter circuit 3 converts the AC voltage output from the AC power supply 1 into a DC voltage.
 コンバータ回路3は、第1のレグ31と、第2のレグ32とを備える。第1のレグ31と第2のレグ32とは、並列に接続されている。第1のレグ31では、上アームのスイッチング素子311と、下アームのスイッチング素子312とが直列に接続されている。第2のレグ32では、上アームのスイッチング素子321と、下アームのスイッチング素子322とが直列に接続されている。なお、スイッチング素子311を「第1のスイッチング素子」と呼び、スイッチング素子312を「第2のスイッチング素子」と呼ぶ場合がある。また、スイッチング素子321を「第3のスイッチング素子」と呼び、スイッチング素子322を「第4のスイッチング素子」と呼ぶ場合がある。 The converter circuit 3 includes a first leg 31 and a second leg 32. The first leg 31 and the second leg 32 are connected in parallel. In the first leg 31, the switching element 311 of the upper arm and the switching element 312 of the lower arm are connected in series. In the second leg 32, the switching element 321 of the upper arm and the switching element 322 of the lower arm are connected in series. The switching element 311 may be referred to as a "first switching element", and the switching element 312 may be referred to as a "second switching element". Further, the switching element 321 may be referred to as a "third switching element", and the switching element 322 may be referred to as a "fourth switching element".
 リアクタ2の他端は、第1のレグ31におけるスイッチング素子311とスイッチング素子312との接続点3aに接続されている。スイッチング素子321とスイッチング素子322との接続点3bは、交流電源1の他端に接続されている。コンバータ回路3において、接続点3a,3bは、交流端子を構成する。 The other end of the reactor 2 is connected to the connection point 3a between the switching element 311 and the switching element 312 in the first leg 31. The connection point 3b between the switching element 321 and the switching element 322 is connected to the other end of the AC power supply 1. In the converter circuit 3, the connection points 3a and 3b form an AC terminal.
 なお、図1において、リアクタ2は、交流電源1の一端と、接続点3aとの間に接続されているが、交流電源1の別の一端と、接続点3bとの間に接続されていてもよい。 In FIG. 1, the reactor 2 is connected between one end of the AC power supply 1 and the connection point 3a, but is connected between the other end of the AC power supply 1 and the connection point 3b. May be good.
 交流電源1から出力される交流電圧を「電源電圧」と呼ぶ。なお、電源電圧を「第1電圧」と呼び、電源電圧の周期を「電源周期」と呼ぶ場合がある。 The AC voltage output from the AC power supply 1 is called the "power supply voltage". The power supply voltage may be referred to as a "first voltage", and the cycle of the power supply voltage may be referred to as a "power supply cycle".
 スイッチング素子311は、トランジスタQ1と、トランジスタQ1に逆並列に接続されるダイオードD1とを含む。スイッチング素子312は、トランジスタQ2と、トランジスタQ2に逆並列に接続されるダイオードD2とを含む。スイッチング素子321は、トランジスタQ3と、トランジスタQ3に逆並列に接続されるダイオードD3とを含む。スイッチング素子322は、トランジスタQ4と、トランジスタQ4に逆並列に接続されるダイオードD4とを含む。 The switching element 311 includes a transistor Q1 and a diode D1 connected in antiparallel to the transistor Q1. The switching element 312 includes a transistor Q2 and a diode D2 connected in antiparallel to the transistor Q2. The switching element 321 includes a transistor Q3 and a diode D3 connected in antiparallel to the transistor Q3. The switching element 322 includes a transistor Q4 and a diode D4 connected in antiparallel to the transistor Q4.
 図1では、トランジスタQ1,Q2,Q3,Q4のそれぞれに金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)を例示しているが、MOSFETに限定されない。MOSFETは、ドレインとソースとの間で双方向に電流を流すことができるスイッチング素子である。ドレインに相当する第1端子とソースに相当する第2端子との間で双方向に電流を流すことができる半導体素子、即ち双方向素子であれば、どのような半導体素子でもよい。 FIG. 1 exemplifies a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET) for each of the transistors Q1, Q2, Q3, and Q4, but is not limited to MOSFETs. A MOSFET is a switching element capable of passing a current in both directions between a drain and a source. Any semiconductor element can be used as long as it is a semiconductor element capable of bidirectionally flowing a current between the first terminal corresponding to the drain and the second terminal corresponding to the source, that is, a bidirectional element.
 また、逆並列とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。 Also, antiparallel means that the first terminal corresponding to the drain of the MOSFET and the cathode of the diode are connected, and the second terminal corresponding to the source of the MOSFET and the anode of the diode are connected. As the diode, a parasitic diode contained in the MOSFET itself may be used. Parasitic diodes are also called body diodes.
 また、スイッチング素子311,312,321,322のうちの少なくとも1つは、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。 Further, at least one of the switching elements 311, 312, 321, 322 is not limited to the MOSFET formed of the silicon-based material, but is formed of a wide bandgap semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond. It may be a MOSFET.
 一般的にワイドバンドギャップ半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、スイッチング素子311,312,321,322のうちの少なくとも1つにワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。 Generally, wide bandgap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide bandgap semiconductor for at least one of the switching elements 311, 312, 321, 322, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized. Can be changed.
 コンデンサ4の一端は、高電位側の直流母線16aに接続されている。直流母線16aは、第1のレグ31におけるスイッチング素子311と、第2のレグ32におけるスイッチング素子321との接続点3cから引き出されている。コンデンサ4の他端は、低電位側の直流母線16bに接続されている。直流母線16bは、第1のレグ31におけるスイッチング素子312と、第2のレグ32におけるスイッチング素子322との接続点3dから引き出されている。コンバータ回路3において、接続点3c,3dは、直流端子を構成する。 One end of the capacitor 4 is connected to the DC bus 16a on the high potential side. The DC bus 16a is drawn from the connection point 3c between the switching element 311 in the first leg 31 and the switching element 321 in the second leg 32. The other end of the capacitor 4 is connected to the DC bus 16b on the low potential side. The DC bus 16b is drawn from the connection point 3d between the switching element 312 in the first leg 31 and the switching element 322 in the second leg 32. In the converter circuit 3, the connection points 3c and 3d form a DC terminal.
 コンバータ回路3の出力電圧は、コンデンサ4の両端に印加される。コンデンサ4は、コンバータ回路3の出力電圧を平滑する平滑コンデンサである。なお、コンデンサ4で平滑された電圧を「母線電圧」と呼ぶ場合がある。また、母線電圧を「第2電圧」と呼ぶ場合がある。母線電圧は、負荷500への印加電圧でもある。 The output voltage of the converter circuit 3 is applied to both ends of the capacitor 4. The capacitor 4 is a smoothing capacitor that smoothes the output voltage of the converter circuit 3. The voltage smoothed by the capacitor 4 may be referred to as "bus voltage". Further, the bus voltage may be referred to as a "second voltage". The bus voltage is also the voltage applied to the load 500.
 電圧検出器5は、電源電圧Vsを検出し、電源電圧Vsの検出信号を制御部8に出力する。電圧検出器7は、母線電圧Vdcを検出し、母線電圧Vdcの検出信号を制御部8に出力する。 The voltage detector 5 detects the power supply voltage Vs and outputs the detection signal of the power supply voltage Vs to the control unit 8. The voltage detector 7 detects the bus voltage Vdc and outputs the detection signal of the bus voltage Vdc to the control unit 8.
 シャント抵抗11は、直流母線16bに配置される。シャント抵抗11とコンデンサ4の負極側端子との接続部はGNDに接続されている。シャント抵抗11は、コンデンサ4の負極側端子とコンバータ回路3の接続点3dとの間に流れる電流Idを検出し、電流Idの検出信号を電流検出変換部12に出力する。電流検出変換部12は、電流Idの検出信号を正又は負の極性を判別可能な信号に変換して制御部8に出力する。即ち、シャント抵抗11及び電流検出変換部12を備えた電流検出器10は、コンバータ回路3とコンデンサ4との間に流れる両極性の電流Idを検出し、電流Idの検出信号を制御部8に出力する。電流Idを「第1電流」と呼ぶ場合がある。電流検出変換部12の詳細な内容は、後述する。 The shunt resistor 11 is arranged on the DC bus 16b. The connection portion between the shunt resistor 11 and the negative electrode side terminal of the capacitor 4 is connected to GND. The shunt resistor 11 detects the current Id flowing between the negative electrode side terminal of the capacitor 4 and the connection point 3d of the converter circuit 3, and outputs the detection signal of the current Id to the current detection conversion unit 12. The current detection conversion unit 12 converts the detection signal of the current Id into a signal capable of discriminating between positive and negative polarities and outputs the signal to the control unit 8. That is, the current detector 10 provided with the shunt resistor 11 and the current detection conversion unit 12 detects the current Id of both polarities flowing between the converter circuit 3 and the capacitor 4, and sends the detection signal of the current Id to the control unit 8. Output. The current Id may be referred to as a "first current". The detailed contents of the current detection conversion unit 12 will be described later.
 電流検出器6は、交流電源1に流出入する電源電流Isを検出する。電源電流Isは、リアクタ2に流れるリアクタ電流でもある。図1において、矢印が向いている方向を電源電流Isの正方向とする。電流検出器6は、電源電流Isの検出信号を制御部8に出力する。電流検出器6の一例は、変流器(Current Transformer:CT)である。なお、説明の簡便化のため、電源電流Isを「第2電流」と呼ぶ場合がある。 The current detector 6 detects the power supply current Is flowing in and out of the AC power supply 1. The power supply current Is is also the reactor current flowing through the reactor 2. In FIG. 1, the direction in which the arrow points is the positive direction of the power supply current Is. The current detector 6 outputs a detection signal of the power supply current Is to the control unit 8. An example of the current detector 6 is a current transformer (CT). For the sake of simplicity of explanation, the power supply current Is may be referred to as a "second current".
 ゼロクロス検出部9は、電源電圧Vsに応じた“High”又は“Low”の電源極性信号を制御部8に出力する。なお、以下では、説明の簡便化のため、電源電圧Vsの極性を「電源極性」と略す。 The zero-cross detection unit 9 outputs a “High” or “Low” power supply polarity signal according to the power supply voltage Vs to the control unit 8. In the following, for the sake of simplicity of explanation, the polarity of the power supply voltage Vs is abbreviated as "power supply polarity".
 図2は、実施の形態1に係る電力変換装置100のゼロクロス検出部9が出力する電源極性信号を示す図である。図2に示すように、ゼロクロス検出部9は、電源電圧Vsが正極性のときは“Low”の信号を出力し、電源電圧Vsが負極性のときは“High”の信号を出力する。なお、図2の例に限定されず、ゼロクロス検出部9は、電源電圧Vsが正極性のときに“High”の信号を出力し、電源電圧Vsが負極性のときに“Low”の信号を出力するように構成されていてもよい。 FIG. 2 is a diagram showing a power supply polarity signal output by the zero-cross detection unit 9 of the power conversion device 100 according to the first embodiment. As shown in FIG. 2, the zero cross detection unit 9 outputs a “Low” signal when the power supply voltage Vs is positive, and outputs a “High” signal when the power supply voltage Vs is negative. Not limited to the example of FIG. 2, the zero cross detection unit 9 outputs a “High” signal when the power supply voltage Vs is positive, and outputs a “Low” signal when the power supply voltage Vs is negative. It may be configured to output.
 制御部8は、電圧検出器5の検出信号、電流検出器6の検出信号、電圧検出器7の検出信号、電源極性信号及び電流検出器10の検出信号に基づいて、コンバータ回路3を構成する各スイッチング素子を制御するための制御信号S1~S4を生成する。制御信号S1はトランジスタQ1の導通を制御するための制御信号であり、制御信号S2はトランジスタQ2の導通を制御するための制御信号である。制御信号S3はトランジスタQ3の導通を制御するための制御信号であり、制御信号S4はトランジスタQ4の導通を制御するための制御信号である。制御部8の更に詳細な動作は後述する。 The control unit 8 constitutes a converter circuit 3 based on the detection signal of the voltage detector 5, the detection signal of the current detector 6, the detection signal of the voltage detector 7, the power supply polarity signal, and the detection signal of the current detector 10. Control signals S1 to S4 for controlling each switching element are generated. The control signal S1 is a control signal for controlling the continuity of the transistor Q1, and the control signal S2 is a control signal for controlling the continuity of the transistor Q2. The control signal S3 is a control signal for controlling the continuity of the transistor Q3, and the control signal S4 is a control signal for controlling the continuity of the transistor Q4. More detailed operation of the control unit 8 will be described later.
 制御部8において、プロセッサ8aは、マイクロプロセッサ、マイクロコンピュータ、マイコン、CPU(Central Processing Unit)、DSP(Digital Signal Processor)などと称される演算手段である。メモリ8bは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリを例示できる。 In the control unit 8, the processor 8a is a calculation means called a microprocessor, a microcomputer, a microcomputer, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like. The memory 8b may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark).
 メモリ8bには、上述した制御部8の機能、及び後述する制御部8の機能を実行するプログラムが格納されている。プロセッサ8aは、図示しないアナログディジタル変換器及びディジタルアナログ変換器を含むインタフェースを介して必要な情報を授受し、メモリ8bに格納されたプログラムをプロセッサ8aが実行することにより、所要の処理を行う。プロセッサ8aによる演算結果は、メモリ8bに記憶される。 The memory 8b stores a program that executes the functions of the control unit 8 described above and the functions of the control unit 8 described later. The processor 8a exchanges necessary information via an interface including an analog-to-digital converter and a digital-to-digital converter (not shown), and the processor 8a executes a program stored in the memory 8b to perform necessary processing. The calculation result by the processor 8a is stored in the memory 8b.
 次に、実施の形態1に係る電力変換装置100の基本的な動作について、図3から図9の図面を参照して説明する。図3は、実施の形態1に係る電力変換装置100において、コンバータ回路3の各スイッチング素子が導通するタイミングを示す図である。また、図4から図9は、それぞれ実施の形態1に係る電力変換装置において、コンバータ回路3に生じ得る電流経路の第1から第6の例を示す図である。 Next, the basic operation of the power conversion device 100 according to the first embodiment will be described with reference to the drawings of FIGS. 3 to 9. FIG. 3 is a diagram showing the timing at which each switching element of the converter circuit 3 conducts in the power conversion device 100 according to the first embodiment. 4 to 9 are diagrams showing first to sixth examples of current paths that may occur in the converter circuit 3 in the power conversion device according to the first embodiment, respectively.
 図3の上段部には、電源電圧Vs及び電源電流Isの各波形が示されている。図3の横軸は、時間を表している。また、図3の下段部において、“電流同期”、“311”及び“312”とあるのは、スイッチング素子311,312が、電源電流Isの極性に応じてオン又はオフが制御される電流同期のスイッチング素子であることを示している。また、“電圧同期”、“321”及び“322”とあるのは、スイッチング素子321,322が、電源極性に応じてオン又はオフが制御される電圧同期のスイッチング素子であることを示している。更に、図3において、“Ith”は電流閾値を表している。 The upper part of FIG. 3 shows the waveforms of the power supply voltage Vs and the power supply current Is. The horizontal axis of FIG. 3 represents time. Further, in the lower part of FIG. 3, "current synchronization", "311" and "312" are current synchronization in which the switching elements 311, 312 are controlled to be turned on or off according to the polarity of the power supply current Is. It is shown that it is a switching element of. Further, "voltage synchronization", "321" and "322" indicate that the switching elements 321 and 322 are voltage synchronization switching elements whose on or off is controlled according to the power supply polarity. .. Further, in FIG. 3, “Ith” represents a current threshold value.
 制御部8は、電源極性が正の場合、スイッチング素子322をオンに制御し、スイッチング素子321をオフに制御する。また、制御部8は、電源極性が負の場合、スイッチング素子321をオンに制御し、スイッチング素子322をオフに制御する。なお、図3では、スイッチング素子322がオンからオフになるタイミングと、スイッチング素子321がオフからオンになるタイミングとが同じタイミングであるが、これに限定されない。制御部8は、スイッチング素子322がオンからオフになるタイミングと、スイッチング素子321がオフからオンになるタイミングとの間に、スイッチング素子321,322が共にオフになるデッドタイムを設けてもよい。同様に、制御部8は、スイッチング素子321がオンからオフになるタイミングと、スイッチング素子322がオフからオンになるタイミングとの間に、スイッチング素子321,322が共にオフになるデッドタイムを設けてもよい。 When the power supply polarity is positive, the control unit 8 controls the switching element 322 to be on and the switching element 321 to be turned off. Further, when the power supply polarity is negative, the control unit 8 controls the switching element 321 to be on and the switching element 322 to be turned off. In FIG. 3, the timing at which the switching element 322 is turned from on to off and the timing at which the switching element 321 is turned from off to on are the same timing, but the timing is not limited to this. The control unit 8 may provide a dead time during which the switching elements 321 and 322 are both turned off between the timing at which the switching element 322 is turned from on to off and the timing at which the switching element 321 is turned from off to on. Similarly, the control unit 8 provides a dead time during which the switching elements 321 and 322 are both turned off between the timing at which the switching element 321 is turned from on to off and the timing at which the switching element 322 is turned from off to on. May be good.
 図4には、電源極性が正であり、且つ、電源電流Isの絶対値が電流閾値Ith未満の場合の電流経路が太線で示されている。電源電流Isの絶対値が電流閾値Ith未満の場合、スイッチング素子311はオンに制御されていない。このため、電源電流Isは、スイッチング素子311においてはダイオードD1側を流れ、スイッチング素子322においてはトランジスタQ4側を流れる。 In FIG. 4, the current path when the power supply polarity is positive and the absolute value of the power supply current Is is less than the current threshold value Is is shown by a thick line. When the absolute value of the power supply current Is is less than the current threshold value Is, the switching element 311 is not controlled to be ON. Therefore, the power supply current Is flows on the diode D1 side in the switching element 311 and flows on the transistor Q4 side in the switching element 322.
 制御部8は、電源極性が正の場合、電源電流Isの絶対値が電流閾値Ith以上になると、スイッチング素子311をオンに制御する。図5には、この場合の電流経路が太線で示されている。電源電流Isの絶対値が電流閾値Ith以上になると、スイッチング素子311はオンに制御されるので、電源電流Isは、スイッチング素子311においても、トランジスタQ1側を流れるようになる。 When the power supply polarity is positive, the control unit 8 controls the switching element 311 to be turned on when the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is. In FIG. 5, the current path in this case is shown by a thick line. When the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is, the switching element 311 is controlled to be ON, so that the power supply current Is also flows on the transistor Q1 side in the switching element 311.
 その後、制御部8は、電源電流Isの絶対値が小さくなり、電源電流Isの絶対値が電流閾値Ithよりも小さくなると、スイッチング素子311をオフに制御する。 After that, the control unit 8 controls the switching element 311 to be turned off when the absolute value of the power supply current Is becomes smaller and the absolute value of the power supply current Is becomes smaller than the current threshold value Is.
 図6には、電源極性が負であり、且つ、電源電流Isの絶対値が電流閾値Ith未満の場合の電流経路が太線で示されている。電源電流Isの絶対値が電流閾値Ith未満の場合、スイッチング素子312はオンに制御されていない。このため、電源電流Isは、スイッチング素子312においてはダイオードD2側を流れ、スイッチング素子321においてはトランジスタQ3側を流れる。 In FIG. 6, the current path when the power supply polarity is negative and the absolute value of the power supply current Is is less than the current threshold value Is is shown by a thick line. When the absolute value of the power supply current Is is less than the current threshold value Is, the switching element 312 is not controlled to be ON. Therefore, the power supply current Is flows on the diode D2 side in the switching element 312, and flows on the transistor Q3 side in the switching element 321.
 制御部8は、電源極性が負の場合、電源電流Isの絶対値が電流閾値Ith以上になると、スイッチング素子312をオンに制御する。図7には、この場合の電流経路が太線で示されている。電源電流Isの絶対値が電流閾値Ith以上になると、スイッチング素子312はオンに制御されるので、電源電流Isは、スイッチング素子312においても、トランジスタQ2側を流れるようになる。 When the power supply polarity is negative, the control unit 8 controls the switching element 312 to be turned on when the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is. In FIG. 7, the current path in this case is shown by a thick line. When the absolute value of the power supply current Is becomes equal to or higher than the current threshold value Is, the switching element 312 is controlled to be ON, so that the power supply current Is also flows on the transistor Q2 side in the switching element 312.
 その後、制御部8は、電源電流Isの絶対値が小さくなり、電源電流Isの絶対値が電流閾値Ithよりも小さくなると、スイッチング素子312をオフに制御する。 After that, the control unit 8 controls the switching element 312 to be turned off when the absolute value of the power supply current Is becomes smaller and the absolute value of the power supply current Is becomes smaller than the current threshold value Is.
 図5及び図7のように、各スイッチング素子のダイオードに電流が流れているときに、並列接続されるスイッチング素子をオンにする制御は「同期整流」と呼ばれる。なお、この同期整流と区別するため、該当するスイッチング素子をオフのままとする制御を「全波整流」と呼ぶ。トランジスタのオン抵抗による電圧降下は、ダイオードの順方向の電圧降下よりも小さいので、同期整流を行うことで、各スイッチング素子での損失を低減することができる。これにより、電力変換装置100の高効率化を図ることができる。 As shown in FIGS. 5 and 7, control for turning on switching elements connected in parallel when a current is flowing through the diode of each switching element is called "synchronous rectification". In order to distinguish it from this synchronous rectification, the control that leaves the corresponding switching element off is called "full-wave rectification". Since the voltage drop due to the on-resistance of the transistor is smaller than the voltage drop in the forward direction of the diode, the loss in each switching element can be reduced by performing synchronous rectification. As a result, the efficiency of the power conversion device 100 can be improved.
 なお、電力変換装置100が交流電力から直流電力への電力変換を行う過程で、交流電源1の力率改善制御及び母線電圧の昇圧制御を行うことが可能である。力率改善制御及び昇圧制御を行う場合、コンバータ回路3は、電源短絡と称される動作を行う。図8には、電源電圧Vsが正極性の場合の電源短絡動作の一例が示されている。図5の状態から、スイッチング素子322をオンからオフに制御し、スイッチング素子321をオフからオンに制御する。すると、電源電流Isは、リアクタ2、スイッチング素子311及びスイッチング素子321の順で流れる。このとき、リアクタ2に電気エネルギーが蓄積される。電源短絡動作を行えば、電源電流Isが流れる期間を拡大できるので、交流電源1の力率を改善することが可能となる。また、リアクタ2に蓄積された電気エネルギーを利用してコンデンサ4を充電すれば、母線電圧の昇圧が可能となる。 In the process of power conversion from AC power to DC power, the power conversion device 100 can perform power factor improvement control and bus voltage boost control of the AC power supply 1. When performing power factor improvement control and boost control, the converter circuit 3 performs an operation called a power short circuit. FIG. 8 shows an example of a power supply short-circuit operation when the power supply voltage Vs is positive. From the state of FIG. 5, the switching element 322 is controlled from on to off, and the switching element 321 is controlled from off to on. Then, the power supply current Is flows in the order of the reactor 2, the switching element 311 and the switching element 321. At this time, electric energy is stored in the reactor 2. If the power supply short-circuit operation is performed, the period in which the power supply current Is flows can be extended, so that the power factor of the AC power supply 1 can be improved. Further, if the capacitor 4 is charged by using the electric energy stored in the reactor 2, the bus voltage can be boosted.
 図9には、電源電圧Vsが負極性の場合の電源短絡動作の一例が示されている。図7の状態から、スイッチング素子321をオンからオフに制御し、スイッチング素子322をオフからオンに制御する。すると、電源電流Isは、スイッチング素子322、スイッチング素子312及びリアクタ2の順で流れる。このとき、リアクタ2に電気エネルギーが蓄積される。電源短絡動作を行えば、電源電流Isが流れる期間を拡大できるので、交流電源1の力率を改善することが可能となる。また、リアクタ2に蓄積された電気エネルギーを利用してコンデンサ4を充電すれば、母線電圧の昇圧が可能となる。 FIG. 9 shows an example of a power supply short-circuit operation when the power supply voltage Vs is negative. From the state of FIG. 7, the switching element 321 is controlled from on to off, and the switching element 322 is controlled from off to on. Then, the power supply current Is flows in the order of the switching element 322, the switching element 312, and the reactor 2. At this time, electric energy is stored in the reactor 2. If the power supply short-circuit operation is performed, the period in which the power supply current Is flows can be extended, so that the power factor of the AC power supply 1 can be improved. Further, if the capacitor 4 is charged by using the electric energy stored in the reactor 2, the bus voltage can be boosted.
 次に、実施の形態1に係る電流検出変換部12について説明する。図10は、実施の形態1に係る電流検出変換部12と外部の構成要素との間の接続関係を示す図である。図11は、実施の形態1に係る電流検出変換部12の内部の構成例を示す図である。なお、図10及び図11において、外部の構成要素には、図1と同一の符号を付している。 Next, the current detection conversion unit 12 according to the first embodiment will be described. FIG. 10 is a diagram showing a connection relationship between the current detection and conversion unit 12 according to the first embodiment and an external component. FIG. 11 is a diagram showing an example of the internal configuration of the current detection conversion unit 12 according to the first embodiment. In FIGS. 10 and 11, the external components are designated by the same reference numerals as those in FIG.
 図10に示すように、電流検出変換部12は、レベルシフト回路14を備える。レベルシフト回路14は、シャント抵抗11によって検出された検出電圧であるシャント抵抗電圧Vshがプロセッサ8aに入力可能なレベルとなるように、シャント抵抗電圧Vshのレベルをシフトさせる。シャント抵抗電圧Vshは、シャント抵抗11に流れる電流Idによってシャント抵抗11に生ずる電圧である。図1に示すように、コンデンサ4の負極側端子はGNDに接続されているので、接続点3d側からコンデンサ4の負極側端子に流れる電流の検出値は、正極性の電圧となる。これとは逆に、コンデンサ4の負極側端子から接続点3d側に流れる電流の検出値は、負極性の電圧となる。 As shown in FIG. 10, the current detection conversion unit 12 includes a level shift circuit 14. The level shift circuit 14 shifts the level of the shunt resistance voltage Vsh so that the shunt resistance voltage Vsh, which is the detection voltage detected by the shunt resistance 11, becomes a level that can be input to the processor 8a. The shunt resistance voltage Vsh is a voltage generated in the shunt resistor 11 by the current Id flowing in the shunt resistor 11. As shown in FIG. 1, since the negative electrode side terminal of the capacitor 4 is connected to GND, the detected value of the current flowing from the connection point 3d side to the negative electrode side terminal of the capacitor 4 is a positive voltage. On the contrary, the detected value of the current flowing from the negative electrode side terminal of the capacitor 4 to the connection point 3d side is the negative electrode voltage.
 プロセッサ8aの典型的な例は、マイコンである。実施の形態1に係る電力変換装置100では、プロセッサ8aとしてマイコンを想定する。以下、レベルシフト回路14から出力されてプロセッサ8aに入力される電圧を「マイコン入力電圧」と呼び、「Vsh_micon」と表記する。 A typical example of the processor 8a is a microcomputer. In the power conversion device 100 according to the first embodiment, a microcomputer is assumed as the processor 8a. Hereinafter, the voltage output from the level shift circuit 14 and input to the processor 8a is referred to as "microcomputer input voltage" and is referred to as "Vsh_micon".
 マイコンは、一般的に0~5[V]程度の正の電圧を検出するようにできているが、負の電圧を検出することには対応していない。一方、前述したように、シャント抵抗11には両極性の電圧が発生するので、マイコンは、両極性の電圧を受け入れる必要がある。このため、電流検出変換部12には、レベルシフト回路14が設けられている。レベルシフト回路14は、例えばマイコンへの入力電圧の最大値が5[V]の場合には、2.5[V]程度のオフセットを持たせてゼロ点とする。そして、レベルシフト回路14は、0~2.5[V]までを負極性の電圧とし、2.5~5[V]までを正極性の電圧としてマイコンへ出力する。 The microcomputer is generally designed to detect a positive voltage of about 0 to 5 [V], but it does not support detecting a negative voltage. On the other hand, as described above, since the shunt resistor 11 generates a voltage of both polarities, the microcomputer needs to accept the voltage of both polarities. Therefore, the current detection conversion unit 12 is provided with a level shift circuit 14. For example, when the maximum value of the input voltage to the microcomputer is 5 [V], the level shift circuit 14 has an offset of about 2.5 [V] to set the zero point. Then, the level shift circuit 14 outputs 0 to 2.5 [V] as a negative voltage and 2.5 to 5 [V] as a positive voltage to the microcomputer.
 レベルシフト回路14は、図11に示すように、差動増幅部14aと、オフセット電圧生成部14bとによって構成することができる。差動増幅部14aは、図示のように、オペアンプ15aと、抵抗素子である抵抗R3~R6とを備える。オフセット電圧生成部14bは、オペアンプ15bと、抵抗素子である抵抗R1,R2とを備える。 As shown in FIG. 11, the level shift circuit 14 can be configured by a differential amplification unit 14a and an offset voltage generation unit 14b. As shown in the figure, the differential amplification unit 14a includes an operational amplifier 15a and resistors R3 to R6 which are resistance elements. The offset voltage generation unit 14b includes an operational amplifier 15b and resistors R1 and R2 which are resistance elements.
 オペアンプ15aの基準端子である負側端子(-)は、抵抗R4を介して接地される。シャント抵抗11で検出されたシャント抵抗電圧Vshは、抵抗R3を介してオペアンプ15aの信号入力端子である正側端子(+)に入力される。抵抗R4,R6の抵抗値の比に基づいて、オペアンプ15aの増幅率が決定される。即ち、抵抗R4,R6の抵抗値の比を変えることで、オペアンプ15aの増幅率を変更することが可能である。 The negative terminal (-), which is the reference terminal of the operational amplifier 15a, is grounded via the resistor R4. The shunt resistance voltage Vsh detected by the shunt resistor 11 is input to the positive terminal (+), which is the signal input terminal of the operational amplifier 15a, via the resistor R3. The amplification factor of the operational amplifier 15a is determined based on the ratio of the resistance values of the resistors R4 and R6. That is, the amplification factor of the operational amplifier 15a can be changed by changing the ratio of the resistance values of the resistors R4 and R6.
 オフセット電圧生成部14bにおいて、オペアンプ15bの負側端子(-)は、オペアンプ15bの出力端子と接続されて、ボルテージフォロワ回路を構成する。また、オペアンプ15bの正側端子(+)には、抵抗R1,R2で分圧された分圧電圧が入力される。抵抗R1,R2の抵抗値が等しい場合、オペアンプ15bの正側端子(+)には、2.5[V]の電圧が入力される。オペアンプ15bの出力端子からは、オペアンプ15bの正側端子(+)に入力される分圧電圧と同じ電圧が出力される。この電圧がオフセット電圧として、オフセット電圧生成部14bから出力される。 In the offset voltage generation unit 14b, the negative terminal (-) of the operational amplifier 15b is connected to the output terminal of the operational amplifier 15b to form a voltage follower circuit. Further, the voltage divider voltage divided by the resistors R1 and R2 is input to the positive terminal (+) of the operational amplifier 15b. When the resistance values of the resistors R1 and R2 are equal, a voltage of 2.5 [V] is input to the positive terminal (+) of the operational amplifier 15b. From the output terminal of the operational amplifier 15b, the same voltage as the voltage dividing voltage input to the positive terminal (+) of the operational amplifier 15b is output. This voltage is output as an offset voltage from the offset voltage generation unit 14b.
 オフセット電圧生成部14bから出力されるオフセット電圧は、抵抗R5を介してオペアンプ15aの正側端子(+)に入力される。この構成により、オペアンプ15aの正側端子(+)には、シャント抵抗電圧Vshにオフセット電圧が重畳されて入力される。 The offset voltage output from the offset voltage generation unit 14b is input to the positive terminal (+) of the operational amplifier 15a via the resistor R5. With this configuration, an offset voltage is superimposed on the shunt resistance voltage Vsh and input to the positive terminal (+) of the operational amplifier 15a.
 以上のように、レベルシフト回路14は、シャント抵抗11の検出電圧のレベルをシフトさせるオフセット電圧を生成するオフセット電圧生成部14bと、検出電圧とオフセット電圧との差電圧を増複する差動増幅部14aとを備える。これにより、前述したレベルシフト回路14によるレベルシフト機能が実現できる。 As described above, the level shift circuit 14 has the offset voltage generation unit 14b that generates the offset voltage that shifts the level of the detection voltage of the shunt resistor 11, and the differential amplification that increases the difference voltage between the detection voltage and the offset voltage. A unit 14a is provided. As a result, the level shift function by the level shift circuit 14 described above can be realized.
 なお、図11の回路構成は一例であり、これに限定されない。差動増幅部14aのオペアンプ15aの特性、抵抗R3,R5及びシャント抵抗11の抵抗値の関係等によって、回路動作の安定化を担保できれば、ボルテージフォロワ回路として動作するオペアンプ15bを省略してもよい。即ち、オフセット電圧生成部14bは、抵抗R1,R2の分圧回路のみで構成されていてもよい。 Note that the circuit configuration in FIG. 11 is an example, and the circuit configuration is not limited to this. If the stability of the circuit operation can be ensured by the characteristics of the operational amplifier 15a of the differential amplification unit 14a, the relationship between the resistance values of the resistors R3 and R5 and the shunt resistor 11, the operational amplifier 15b operating as the voltage follower circuit may be omitted. .. That is, the offset voltage generation unit 14b may be composed of only the voltage dividing circuits of the resistors R1 and R2.
 また、図11は、オフセット電圧が2.5[V]である場合に、0~2.5[V]までを負極性の電圧とし、2.5~5[V]までを正極性の電圧としてマイコンへ入力する構成であるが、これに限定されない。0~2.5[V]までを正極性の電圧、2.5~5[V]までを負極性の電圧としてマイコンへ入力する構成でもよい。この構成の場合、マイコン内で正負反転の処理を行えばよく、マイコン内の処理を大きく変更する必要はない。 Further, in FIG. 11, when the offset voltage is 2.5 [V], 0 to 2.5 [V] is a negative voltage, and 2.5 to 5 [V] is a positive voltage. However, the configuration is not limited to this. A configuration may be used in which 0 to 2.5 [V] is input to the microcomputer as a positive voltage and 2.5 to 5 [V] is input to the microcomputer as a negative voltage. In the case of this configuration, the positive / negative inversion process may be performed in the microcomputer, and it is not necessary to significantly change the process in the microcomputer.
 図12は、図4から図7に示す経路の電流が流れた場合におけるシャント抵抗電圧Vsh及びマイコン入力電圧Vsh_miconの具体的な波形例を示す図である。図12において、横軸は時間を表している。また、オフセット電圧Vsh_offsetは、2.5[V]としている。 FIG. 12 is a diagram showing specific waveform examples of the shunt resistance voltage Vsh and the microcomputer input voltage Vsh_micon when the current in the path shown in FIGS. 4 to 7 flows. In FIG. 12, the horizontal axis represents time. The offset voltage Vsh_offset is 2.5 [V].
 図4から図7に示す電流経路の場合、シャント抵抗電圧Vshは、図12の下段部にも示されるような負極性の電圧となる。このため、マイコン入力電圧Vsh_miconは、図12の上段部に示されるように、2.5[V]であるオフセット電圧Vsh_offsetを基準に、0[V]までの間で変化する電圧として検出される。 In the case of the current path shown in FIGS. 4 to 7, the shunt resistance voltage Vsh is a negative voltage as shown in the lower part of FIG. Therefore, the microcomputer input voltage Vsh_micon is detected as a voltage that changes from 0 [V] to the offset voltage Vsh_offset, which is 2.5 [V], as shown in the upper part of FIG. ..
 次に、実施の形態1に係る電力変換装置100の要部の動作について説明する。前述したように、実施の形態1に係る電力変換装置100は、交流電源1への逆潮流及びアーム短絡を抑止する制御を行う。そこで、本明細書においては、「第1の異常状態」及び「第2の異常状態」という2つの「異常状態」を定義する。第1の異常状態は、交流電源1への逆潮流が生じている状態である。第2の異常状態は、コンバータ回路3の各レグの何れかに「アーム短絡」が生じている状態である。なお、「交流電源1への逆潮流」は、「電源回生」と言い替えることもできる。以下の説明では、「電源回生」という表現を使用する。 Next, the operation of the main part of the power conversion device 100 according to the first embodiment will be described. As described above, the power conversion device 100 according to the first embodiment controls to suppress reverse power flow to the AC power supply 1 and short circuit of the arm. Therefore, in the present specification, two "abnormal states", "first abnormal state" and "second abnormal state", are defined. The first abnormal state is a state in which reverse power flow to the AC power supply 1 is occurring. The second abnormal state is a state in which an "arm short circuit" occurs in any of the legs of the converter circuit 3. In addition, "reverse power flow to AC power supply 1" can be paraphrased as "power supply regeneration". In the following description, the expression "power regeneration" is used.
 図13は、実施の形態1に係る電力変換装置100が全波整流動作又は同期整流動作を実施している場合の各種の動作波形を示す図である。図13には、上段部から順に、電源電圧Vs、電源電流Is、電源極性信号Sig(Vs)、シャント抵抗電圧Vsh及びマイコン入力電圧Vsh_miconの波形が示されている。個々の波形の特徴は既に説明した通りであり、ここでの説明は省略する。 FIG. 13 is a diagram showing various operation waveforms when the power conversion device 100 according to the first embodiment performs a full-wave rectification operation or a synchronous rectification operation. In FIG. 13, the waveforms of the power supply voltage Vs, the power supply current Is, the power supply polarity signal Sig (Vs), the shunt resistance voltage Vsh, and the microcomputer input voltage Vsh_micon are shown in order from the upper part. The characteristics of the individual waveforms have already been described, and the description thereof is omitted here.
 図14は、実施の形態1に係る電力変換装置100が同期整流動作及び電源短絡動作を実施している場合の各種の動作波形を示す図である。動作波形の種類は、図13と同じである。図14では、電源周期の半周期に亘って、電源短絡動作が複数回実施されている。これにより、電源電流Isの波形は正弦波に近くなり、交流電源1の力率が改善されていることが分かる。なお、シャント抵抗電圧Vshの極性は正極性であり、マイコン入力電圧Vsh_miconの波形も、オフセット電圧Vsh_offset以下の電圧値となっている。 FIG. 14 is a diagram showing various operation waveforms when the power conversion device 100 according to the first embodiment performs a synchronous rectification operation and a power supply short circuit operation. The types of operation waveforms are the same as those in FIG. In FIG. 14, the power supply short-circuit operation is performed a plurality of times over a half cycle of the power supply cycle. As a result, it can be seen that the waveform of the power supply current Is becomes close to a sine wave, and the power factor of the AC power supply 1 is improved. The polarity of the shunt resistance voltage Vsh is positive, and the waveform of the microcomputer input voltage Vsh_micon is also a voltage value equal to or less than the offset voltage Vsh_offset.
 図15は、実施の形態1に係る電力変換装置100に第1の異常状態が生じたときの動作波形の変化を示す図である。図15においては、図13及び図14の動作波形に加え、スイッチング素子311の導通を制御するための制御信号S1と、スイッチング素子312の導通を制御するための制御信号S2とが追加されている。 FIG. 15 is a diagram showing changes in the operation waveform when the first abnormal state occurs in the power conversion device 100 according to the first embodiment. In FIG. 15, in addition to the operation waveforms of FIGS. 13 and 14, a control signal S1 for controlling the continuity of the switching element 311 and a control signal S2 for controlling the continuity of the switching element 312 are added. ..
 図15には、電源電流Isの通流区間T1よりも、制御信号S1のオン幅T2の方が広くなった場合の動作波形が示されている。通流区間T1よりもオン幅T2が広くなると、破線の円で示される部分において電源回生が生じており、電源電流Isの極性が反転している。このとき、破線の楕円で示される部分においては、シャント抵抗電圧Vshの波形が反転している。また、マイコン入力電圧Vsh_miconは、オフセット電圧Vsh_offsetを超えた電圧となる。なお、図15では、電源極性が正である電源半周期の区間のみに破線の円及び楕円を示しているが、電源極性が負である電源半周期の区間においても、電源回生が生じている。 FIG. 15 shows an operation waveform when the on-width T2 of the control signal S1 is wider than the flow section T1 of the power supply current Is. When the on-width T2 is wider than the flow section T1, power supply regeneration occurs in the portion indicated by the broken line circle, and the polarity of the power supply current Is is reversed. At this time, the waveform of the shunt resistance voltage Vsh is inverted in the portion indicated by the broken line ellipse. Further, the microcomputer input voltage Vsh_micon is a voltage that exceeds the offset voltage Vsh_offset. In addition, in FIG. 15, although the broken line circle and the ellipse are shown only in the section of the power supply half cycle in which the power supply polarity is positive, the power supply regeneration occurs also in the section of the power supply half cycle in which the power supply polarity is negative. ..
 図16は、実施の形態1に係る電力変換装置100が第1の異常状態であるときの電流経路の例を示す図である。電源電流Isが通流しない区間は、電源電圧Vsよりも母線電圧Vdcの方が大きい区間である。このため、図15に示されるように、電源電流Isが通流しない区間において、スイッチング素子311がオンに制御されると、コンデンサ4の電荷が交流電源1に流れ込む電源回生が生起する。電源回生による電源電流Isは、スイッチング素子311、リアクタ2、交流電源1、スイッチング素子322及びシャント抵抗11の順で流れる。電源回生による電源電流Isは、接続点3d側からコンデンサ4の負極側端子に流れるので、シャント抵抗電圧Vshは、正極性の電圧となる。 FIG. 16 is a diagram showing an example of a current path when the power conversion device 100 according to the first embodiment is in the first abnormal state. The section in which the power supply current Is does not flow is a section in which the bus voltage Vdc is larger than the power supply voltage Vs. Therefore, as shown in FIG. 15, when the switching element 311 is controlled to be ON in the section where the power supply current Is does not flow, the power supply regeneration in which the electric charge of the capacitor 4 flows into the AC power supply 1 occurs. The power supply current Is due to power supply regeneration flows in the order of the switching element 311, the reactor 2, the AC power supply 1, the switching element 322, and the shunt resistor 11. Since the power supply current Is due to power supply regeneration flows from the connection point 3d side to the negative electrode side terminal of the capacitor 4, the shunt resistance voltage Vsh becomes a positive voltage.
 次に、第2の異常状態について説明する。図17は、実施の形態1に係る電力変換装置100が第2の異常状態であるときの電流経路の例を示す図である。図17では、スイッチング素子321,322の組がアーム短絡を起こした場合を想定している。スイッチング素子321,322の組がアーム短絡を起こした場合、コンデンサ4の正極側端子と負極側端子との間には、シャント抵抗11以外の回路要素が存在しないので、シャント抵抗11には急峻な電流が流れる。また、アーム短絡による電流は、接続点3d側からコンデンサ4の負極側端子に流れるので、シャント抵抗電圧Vshは、正極性の電圧となる。 Next, the second abnormal state will be described. FIG. 17 is a diagram showing an example of a current path when the power conversion device 100 according to the first embodiment is in the second abnormal state. In FIG. 17, it is assumed that a set of switching elements 321 and 322 causes an arm short circuit. When the set of switching elements 321 and 322 causes an arm short circuit, the shunt resistor 11 is steep because there is no circuit element other than the shunt resistor 11 between the positive electrode side terminal and the negative electrode side terminal of the capacitor 4. Current flows. Further, since the current due to the arm short circuit flows from the connection point 3d side to the negative electrode side terminal of the capacitor 4, the shunt resistance voltage Vsh becomes a positive electrode voltage.
 図18は、実施の形態1の電力変換装置100において、電源回生とアーム短絡とが生じた場合のシャント抵抗電圧Vshの波形例を示す図である。図18には、時刻t1において電源回生が生じ、この電源回生が周期的に繰り返される様子と、時刻t2においてアーム短絡が生じ、このアーム短絡が周期的に繰り返される様子とが示されている。 FIG. 18 is a diagram showing an example of a waveform of the shunt resistance voltage Vsh when power regeneration and arm short circuit occur in the power conversion device 100 of the first embodiment. FIG. 18 shows a state in which a power supply regeneration occurs at time t1 and the power supply regeneration is periodically repeated, and a state in which an arm short circuit occurs at time t2 and the arm short circuit is periodically repeated.
 電源回生が生じる第1の異常状態では、図16に示したように、リアクタ2を介して電流が流れる。これに対し、アーム短絡が生じる第2の異常状態では、図17に示したように、リアクタ2を介さずに電流が流れる。リアクタ2は、コンバータ回路3の回路素子の中では、インピーダンスの高い素子である。このため、第1の異常状態時に流れる異常電流の変化率は、第2の異常状態時に流れる異常電流の変化率よりも小さい。従って、第1の異常状態と第2の異常状態との区別は、電流の変化率に基づいて行うことができる。 In the first abnormal state where power supply regeneration occurs, a current flows through the reactor 2 as shown in FIG. On the other hand, in the second abnormal state where an arm short circuit occurs, as shown in FIG. 17, a current flows without going through the reactor 2. The reactor 2 is an element having a high impedance among the circuit elements of the converter circuit 3. Therefore, the rate of change of the abnormal current flowing in the first abnormal state is smaller than the rate of change of the abnormal current flowing in the second abnormal state. Therefore, the distinction between the first abnormal state and the second abnormal state can be made based on the rate of change of the current.
 なお、電流の変化率は、一般的に「di/dt」と記載される。実施の形態1に係る電力変換装置100では、電流Idをシャント抵抗11によって、シャント抵抗電圧Vshに変換する。従って、「di/dt」という判定指標を用いることは、電圧の変化率である「dv/dt」という判定指標を用いることと等価である。 The rate of change in current is generally described as "di / dt". In the power conversion device 100 according to the first embodiment, the current Id is converted into a shunt resistance voltage Vsh by the shunt resistor 11. Therefore, using the determination index of "di / dt" is equivalent to using the determination index of "dv / dt", which is the rate of change in voltage.
 次に、異常状態の判定手法について説明する。以下の手法は、第1の異常状態及び第2の異常状態の判別に共通する手法である。即ち、以下の手法は、第1の異常状態であるか、第2の異常状態であるかを区別せずに判別する手法である。 Next, the method for determining the abnormal state will be described. The following methods are common to the determination of the first abnormal state and the second abnormal state. That is, the following method is a method for discriminating between the first abnormal state and the second abnormal state without distinguishing between them.
 図19は、実施の形態1に係る電力変換装置100における異常状態の判定手法の説明に使用する図である。図19においては、図15に示す7つの波形の中で、制御信号S1,S2の波形に代えて、極性判定電圧Vpの波形が示されている。実施の形態1では、極性判定電圧Vpを、以下の(1)式で定義する。 FIG. 19 is a diagram used for explaining an abnormal state determination method in the power conversion device 100 according to the first embodiment. In FIG. 19, among the seven waveforms shown in FIG. 15, the waveform of the polarity determination voltage Vp is shown instead of the waveforms of the control signals S1 and S2. In the first embodiment, the polarity determination voltage Vp is defined by the following equation (1).
 Vp=(Vsh_micon-Vsh_offset)×sig(Vs) …(1) Vp = (Vsh_micon-Vsh_offset) x sig (Vs) ... (1)
 図19の下段部には、極性判定電圧Vpの波形と共に、極性判定電圧Vpの値の符号が記載されている。電源極性が正の電源半周期において、電源回生が生じている箇所における極性判定電圧Vpの符号は、“マイナス(-)”になっているのに対し、電源回生が生じていない箇所における極性判定電圧Vpの符号は、“プラス(+)”になっている。また、電源極性が負の電源半周期において、電源回生が生じている箇所における極性判定電圧Vpの符号は、“プラス(+)”になっているのに対し、電源回生が生じていない箇所における極性判定電圧Vpの符号は、“マイナス(-)”になっている。従って、以下の判定条件に基づいて、電力変換装置100が異常状態であるか否かを判定することができる。 In the lower part of FIG. 19, the code of the value of the polarity determination voltage Vp is described together with the waveform of the polarity determination voltage Vp. In the power supply half cycle where the power supply polarity is positive, the sign of the polarity judgment voltage Vp at the place where the power supply regeneration occurs is "minus (-)", whereas the polarity judgment at the place where the power supply regeneration does not occur. The sign of the voltage Vp is "plus (+)". Further, in the power supply half cycle in which the power supply polarity is negative, the sign of the polarity determination voltage Vp in the place where the power supply regeneration occurs is "plus (+)", whereas in the place where the power supply regeneration does not occur. The sign of the polarity determination voltage Vp is “minus (−)”. Therefore, it can be determined whether or not the power conversion device 100 is in an abnormal state based on the following determination conditions.
 ・Vs>0、且つ、Vp<0の場合、又はVs<0、且つ、Vp>0の場合
 異常状態であると判定
 ・上記以外の場合
 異常状態ではないと判定
・ If Vs> 0 and Vp <0, or if Vs <0 and Vp> 0, it is judged to be in an abnormal state. ・ In cases other than the above, it is judged not to be in an abnormal state.
 次に、異常状態判定の処理手順について説明する。図20は、実施の形態1に係る電力変換装置100における異常状態判定の処理手順の説明に供するフローチャートである。 Next, the processing procedure for determining the abnormal state will be described. FIG. 20 is a flowchart for explaining a processing procedure for determining an abnormal state in the power conversion device 100 according to the first embodiment.
 電流検出器10は電流Idを検出し(ステップS101)、電圧検出器5は電源電圧Vsを検出する(ステップS102)。 The current detector 10 detects the current Id (step S101), and the voltage detector 5 detects the power supply voltage Vs (step S102).
 制御部8は、電流Idの検出値に基づいて定まる電流Idの極性と、電源電圧Vsの検出値に基づいて定まる電源電圧Vsの極性とに基づいて極性判定電圧Vpを演算する(ステップS103)。前述の通り、極性判定電圧Vpは、上記(1)式を用いて演算することができる。電源電圧Vsの極性に関する情報は電源極性信号Sig(Vs)で得られ、電流Idの極性に関する情報は、マイコン入力電圧Vsh_miconとオフセット電圧Vsh_offsetとの間の差分値である「Vsh_micon-Vsh_offset」で得られる。 The control unit 8 calculates the polarity determination voltage Vp based on the polarity of the current Id determined based on the detected value of the current Id and the polarity of the power supply voltage Vs determined based on the detected value of the power supply voltage Vs (step S103). .. As described above, the polarity determination voltage Vp can be calculated using the above equation (1). Information on the polarity of the power supply voltage Vs is obtained from the power supply polarity signal Sig (Vs), and information on the polarity of the current Id is obtained by "Vsh_micon-Vsh_offset" which is a difference value between the microcomputer input voltage Vsh_micon and the offset voltage Vsh_offset. Be done.
 制御部8は、極性判定電圧Vpに基づいて電流Idの極性と電源電圧Vsの極性の一致、不一致を判定する(ステップS104)。相互の極性が一致している場合、即ち電流Idの極性と電源電圧Vsの極性とが一致している場合(ステップS105,Yes)、制御部8は、平常時の動作を継続する(ステップS106)。以降、ステップS101からステップS105の処理が繰り返される。 The control unit 8 determines whether the polarity of the current Id and the polarity of the power supply voltage Vs match or do not match based on the polarity determination voltage Vp (step S104). When the mutual polarities match, that is, when the polarities of the current Id and the polarities of the power supply voltage Vs match (steps S105, Yes), the control unit 8 continues the normal operation (step S106). ). After that, the processes of steps S101 to S105 are repeated.
 一方、ステップS105において、相互の極性が不一致の場合、即ち電流Idの極性と電源電圧Vsの極性とが一致していない場合(ステップS105,No)、制御部8は、電力変換装置100が第1又は第2の異常状態であると判定する(ステップS107)。 On the other hand, in step S105, when the polarities do not match each other, that is, when the polarities of the current Id and the polarities of the power supply voltage Vs do not match (steps S105, No), the power conversion device 100 is the first control unit 8. It is determined that the first or second abnormal state is present (step S107).
 制御部8は、電流Idの変化率dI/dtを演算する(ステップS108)。制御部8は、電流Idの変化率を判定値と比較する(ステップS109)。電流Idの変化率が判定値以下である場合(ステップS109,No)、制御部8は、電力変換装置100が第1の異常状態であると判定し(ステップS110)、電力変換装置100の各スイッチング素子に対するスイッチング制御を停止する(ステップS111)。以降、ステップS101からステップS109の処理が繰り返される。ステップS111の処理により、電力変換装置100は、同期整流動作から全波整流動作に移行する。電力変換装置100の適用例が空気調和機である場合、運転効率は低下するが、装置の運転は継続することが可能である。 The control unit 8 calculates the rate of change dI / dt of the current Id (step S108). The control unit 8 compares the rate of change of the current Id with the determination value (step S109). When the rate of change of the current Id is equal to or less than the determination value (step S109, No), the control unit 8 determines that the power conversion device 100 is in the first abnormal state (step S110), and each of the power conversion devices 100 The switching control for the switching element is stopped (step S111). After that, the processes of steps S101 to S109 are repeated. By the process of step S111, the power conversion device 100 shifts from the synchronous rectification operation to the full-wave rectification operation. When the application example of the power conversion device 100 is an air conditioner, the operation efficiency is lowered, but the operation of the device can be continued.
 また、ステップS109において、電流Idの変化率が判定値を超えている場合(ステップS109,Yes)、制御部8は、電力変換装置100が第2の異常状態であると判定し(ステップS112)、電力変換装置100及び負荷500の動作を停止して(ステップS113)、図20のフローチャートの処理を終了する。 Further, in step S109, when the rate of change of the current Id exceeds the determination value (step S109, Yes), the control unit 8 determines that the power conversion device 100 is in the second abnormal state (step S112). , The operation of the power conversion device 100 and the load 500 is stopped (step S113), and the processing of the flowchart of FIG. 20 is completed.
 なお、上記ステップS109の処理では、電流Idの変化率が判定値に等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、電流Idの変化率が判定値に等しい場合を“Yes”又は“No”の何れで判定してもよい。 In the process of step S109, the case where the rate of change of the current Id is equal to the determination value is determined as "No", but it may be determined as "Yes". That is, the case where the rate of change of the current Id is equal to the determination value may be determined by either "Yes" or "No".
 また、図20のフローチャートでは、第1又は第2の異常状態であるかを判定してから、第1の異常状態と第2の異常状態との切り分けを行っているが、これに限定されない。電流Idの変化率dI/dtを先に演算し、変化率dI/dtに基づいて第2の異常状態であるか否かを判定し、その後に第1の異常状態であるか否かの判定を行ってもよい。このフローの場合、処理手順は図20のものよりも複雑になるが、電力変換装置100及び負荷500の動作を迅速に停止できるという効果がある。 Further, in the flowchart of FIG. 20, after determining whether it is the first or second abnormal state, the first abnormal state and the second abnormal state are separated, but the present invention is not limited to this. The rate of change dI / dt of the current Id is calculated first, and based on the rate of change dI / dt, it is determined whether or not it is in the second abnormal state, and then it is determined whether or not it is in the first abnormal state. May be done. In the case of this flow, the processing procedure is more complicated than that in FIG. 20, but there is an effect that the operation of the power conversion device 100 and the load 500 can be stopped quickly.
 以上説明したように、実施の形態1に係る電力変換装置は、コンバータ回路とコンデンサとの間に流れる両極性の第1電流と、交流電源1から出力される第1電圧を検出する。また、電力変換装置は、第1電流の検出信号に基づいて定まる第1電流の極性と、第1電圧の検出信号に基づいて定まる第1電圧の極性とが不一致の場合、コンバータ回路に具備される第1から第4のスイッチング素子が動作を停止するように構成されている。これにより、交流電源への逆潮流及びアーム短絡を抑止する制御が可能になるという効果が得られる。 As described above, the power conversion device according to the first embodiment detects the first current of both polarities flowing between the converter circuit and the capacitor and the first voltage output from the AC power supply 1. Further, the power conversion device is provided in the converter circuit when the polarity of the first current determined based on the detection signal of the first current and the polarity of the first voltage determined based on the detection signal of the first voltage do not match. The first to fourth switching elements are configured to stop operating. This has the effect of enabling control to suppress reverse power flow to the AC power supply and short circuit of the arm.
 なお、実施の形態1に係る電力変換装置において、制御部のプロセッサがマイコンである場合、電流検出器にレベルシフト回路を設けることで、両極性の第1電流を検出することが可能となる。 In the power conversion device according to the first embodiment, when the processor of the control unit is a microcomputer, it is possible to detect the first current of both polarities by providing a level shift circuit in the current detector.
実施の形態2.
 実施の形態1で説明した電力変換装置は、インバータに直流電力を供給するモータ駆動装置として用いることができる。以下、実施の形態1に係る電力変換装置100のモータ駆動装置への適用例を説明する。
Embodiment 2.
The power conversion device described in the first embodiment can be used as a motor drive device for supplying DC power to the inverter. Hereinafter, an example of application of the power conversion device 100 according to the first embodiment to a motor drive device will be described.
 図21は、実施の形態2に係るモータ駆動装置101の構成例を示す図である。図21に示されるように、実施の形態2に係るモータ駆動装置101は、実施の形態1に示した電力変換装置100を用いて構成されている。図21において、電力変換装置100には、インバータ500aが接続されている。前述したように、電力変換装置100は、交流電力を直流電力に変換する装置である。また、インバータ500aは、電力変換装置100から出力される直流電力を交流電力に変換する装置である。 FIG. 21 is a diagram showing a configuration example of the motor drive device 101 according to the second embodiment. As shown in FIG. 21, the motor drive device 101 according to the second embodiment is configured by using the power conversion device 100 shown in the first embodiment. In FIG. 21, an inverter 500a is connected to the power conversion device 100. As described above, the power conversion device 100 is a device that converts AC power into DC power. Further, the inverter 500a is a device that converts DC power output from the power conversion device 100 into AC power.
 インバータ500aの出力側には、モータ500bが接続されている。インバータ500aは、変換した交流電力をモータ500bに供給することでモータ500bを駆動する。 A motor 500b is connected to the output side of the inverter 500a. The inverter 500a drives the motor 500b by supplying the converted AC power to the motor 500b.
 図21に示すモータ駆動装置101は、空気調和機の送風機、及び空気調和機の圧縮機に適用することが可能である。 The motor drive device 101 shown in FIG. 21 can be applied to a blower of an air conditioner and a compressor of an air conditioner.
 図22は、図21に示したモータ駆動装置101を空気調和機に適用した例を示す図である。モータ駆動装置101の出力側にはモータ500bが接続されており、モータ500bは、圧縮要素504に連結されている。圧縮機505は、モータ500bと圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506c及び室外熱交換器506dを含む態様で構成されている。 FIG. 22 is a diagram showing an example in which the motor drive device 101 shown in FIG. 21 is applied to an air conditioner. A motor 500b is connected to the output side of the motor drive device 101, and the motor 500b is connected to the compression element 504. The compressor 505 includes a motor 500b and a compression element 504. The refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
 空気調和機の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置101は、交流電源1より交流電力の供給を受け、モータ500bを回転させる。圧縮要素504は、モータ500bが回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させる。 The flow path of the refrigerant circulating inside the air conditioner is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. , It is configured to return to the compression element 504. The motor drive device 101 receives AC power from the AC power supply 1 and rotates the motor 500b. The compression element 504 executes a compression operation of the refrigerant by rotating the motor 500b, and circulates the refrigerant inside the refrigeration cycle unit 506.
 以上のように、実施の形態2に係るモータ駆動装置及び空気調和機によれば、実施の形態1に係る電力変換装置を用いて構成されているので、実施の形態1に係る電力変換装置が具備する効果を享受することが可能となる。 As described above, according to the motor drive device and the air conditioner according to the second embodiment, the power conversion device according to the first embodiment is used because the power conversion device according to the first embodiment is used. It is possible to enjoy the effects that it possesses.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, or a part of the configuration may be omitted or changed without departing from the gist. It is possible.
 1 交流電源、2 リアクタ、3 コンバータ回路、3a,3b,3c,3d 接続点、4 コンデンサ、5,7 電圧検出器、6,10 電流検出器、8 制御部、8a プロセッサ、8b メモリ、9 ゼロクロス検出部、11 シャント抵抗、12 電流検出変換部、14 レベルシフト回路、14a 差動増幅部、14b オフセット電圧生成部、15a,15b オペアンプ、16a,16b 直流母線、31 第1のレグ、32 第2のレグ、100 電力変換装置、101 モータ駆動装置、311,312,321,322 スイッチング素子、500 負荷、500a インバータ、500b モータ、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器、D1,D2,D3,D4 ダイオード、Q1,Q2,Q3,Q4 トランジスタ、R1,R2,R3,R4,R5,R6 抵抗。 1 AC power supply, 2 reactor, 3 converter circuit, 3a, 3b, 3c, 3d connection point, 4 capacitor, 5,7 voltage detector, 6,10 current detector, 8 control unit, 8a processor, 8b memory, 9 zero cross Detection unit, 11 shunt resistance, 12 current detection conversion unit, 14 level shift circuit, 14a differential amplification unit, 14b offset voltage generation unit, 15a, 15b operational amplifier, 16a, 16b DC bus, 31 first leg, 32 second Leg, 100 power converter, 101 motor drive, 311, 312, 321, 322 switching element, 500 load, 500a inverter, 500b motor, 504 compression element, 505 compressor, 506 refrigeration cycle section, 506a four-way valve, 506b Indoor heat exchanger, 506c expansion valve, 506d outdoor heat exchanger, D1, D2, D3, D4 diode, Q1, Q2, Q3, Q4 transistor, R1, R2, R3, R4, R5, R6 resistance.

Claims (8)

  1.  一端が交流電源に接続され、前記交流電源から出力される交流の第1電圧が印加されるリアクタと、上アームの第1のスイッチング素子と下アームの第2のスイッチング素子とが直列に接続され、前記第1のスイッチング素子と前記第2のスイッチング素子との接続点が前記リアクタの他端に接続される第1のレグと、前記第1のレグと並列に接続され、上アームの第3のスイッチング素子と下アームの第4のスイッチング素子とが直列に接続され、前記第3のスイッチング素子と前記第4のスイッチング素子との接続点が前記交流電源に接続される第2のレグと、を有し、前記第1電圧を直流の第2電圧に変換するコンバータ回路と、
     前記第2電圧を平滑するコンデンサと、
     前記第1電圧を検出する第1の電圧検出器と、
     前記コンバータ回路と前記コンデンサとの間に流れる両極性の第1電流を検出する第1の電流検出器と、
     を備え、
     前記第1電流の検出信号に基づいて定まる前記第1電流の極性と、前記第1電圧の検出信号に基づいて定まる前記第1電圧の極性とが不一致の場合、前記第1から第4のスイッチング素子は動作を停止する
     電力変換装置。
    One end is connected to an AC power supply, and the reactor to which the first AC voltage output from the AC power supply is applied, and the first switching element of the upper arm and the second switching element of the lower arm are connected in series. The first leg in which the connection point between the first switching element and the second switching element is connected to the other end of the reactor is connected in parallel with the first leg, and the third leg of the upper arm is connected. A second leg in which the switching element of the above and the fourth switching element of the lower arm are connected in series, and the connection point between the third switching element and the fourth switching element is connected to the AC power supply. A converter circuit that converts the first voltage into a second DC voltage.
    A capacitor that smoothes the second voltage and
    The first voltage detector that detects the first voltage and
    A first current detector that detects a first current of both polarities flowing between the converter circuit and the capacitor,
    Equipped with
    When the polarity of the first current determined based on the detection signal of the first current and the polarity of the first voltage determined based on the detection signal of the first voltage do not match, the first to fourth switchings are performed. The element is a power conversion device that stops its operation.
  2.  前記第1電流の極性と前記第1電圧の極性とが不一致であり、且つ、前記第1電流の変化率が判定値を超えた場合、前記コンバータ回路は動作を停止する
     請求項1に記載の電力変換装置。
    The converter circuit stops operating when the polarity of the first current and the polarity of the first voltage do not match and the rate of change of the first current exceeds the determination value. Power converter.
  3.  前記第1電流の極性に関する情報と、前記第1電圧の極性に関する情報とに基づいて極性判定電圧を演算する制御部を備え、
     前記制御部は、前記極性判定電圧に基づいて、前記第1から第4のスイッチング素子の導通を制御する
     請求項1又は2に記載の電力変換装置。
    A control unit for calculating the polarity determination voltage based on the information regarding the polarity of the first current and the information regarding the polarity of the first voltage is provided.
    The power conversion device according to claim 1 or 2, wherein the control unit controls the continuity of the first to fourth switching elements based on the polarity determination voltage.
  4.  前記第1の電流検出器は、
     前記第1電流を検出するシャント抵抗と、
     前記シャント抵抗の検出信号を正又は負の極性を判別可能な信号に変換して前記制御部に出力する電流検出変換部と、
     を備えている
     請求項3に記載の電力変換装置。
    The first current detector is
    The shunt resistor that detects the first current and
    A current detection and conversion unit that converts the shunt resistance detection signal into a signal that can discriminate between positive and negative polarities and outputs it to the control unit.
    The power conversion device according to claim 3.
  5.  前記電流検出変換部は、
     前記シャント抵抗によって検出された検出電圧が前記制御部のプロセッサに入力可能なレベルとなるように、前記検出電圧のレベルをシフトさせるレベルシフト回路を備えている
     請求項4に記載の電力変換装置。
    The current detection conversion unit is
    The power conversion device according to claim 4, further comprising a level shift circuit that shifts the level of the detected voltage so that the detected voltage detected by the shunt resistance becomes a level that can be input to the processor of the control unit.
  6.  前記レベルシフト回路は、
     前記検出電圧のレベルをシフトさせるオフセット電圧を生成するオフセット電圧生成部と、
     前記検出電圧と前記オフセット電圧との差電圧を増複する差動増幅部と、
     を備えている
     請求項5に記載の電力変換装置。
    The level shift circuit is
    An offset voltage generator that generates an offset voltage that shifts the level of the detected voltage,
    A differential amplifier that increases or decreases the difference voltage between the detected voltage and the offset voltage,
    The power conversion device according to claim 5.
  7.  請求項1から6の何れか1項に記載の電力変換装置と、
     前記電力変換装置から出力される直流電力を交流電力に変換するインバータと
     を備えるモータ駆動装置。
    The power conversion device according to any one of claims 1 to 6.
    A motor drive device including an inverter that converts DC power output from the power conversion device into AC power.
  8.  請求項7に記載のモータ駆動装置を備える空気調和機。 An air conditioner including the motor drive device according to claim 7.
PCT/JP2020/023725 2020-06-17 2020-06-17 Power conversion apparatus, motor drive device, and air conditioner WO2021255849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531161A JP7455207B2 (en) 2020-06-17 2020-06-17 Power conversion equipment, motor drive equipment, and air conditioners
PCT/JP2020/023725 WO2021255849A1 (en) 2020-06-17 2020-06-17 Power conversion apparatus, motor drive device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023725 WO2021255849A1 (en) 2020-06-17 2020-06-17 Power conversion apparatus, motor drive device, and air conditioner

Publications (1)

Publication Number Publication Date
WO2021255849A1 true WO2021255849A1 (en) 2021-12-23

Family

ID=79268708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023725 WO2021255849A1 (en) 2020-06-17 2020-06-17 Power conversion apparatus, motor drive device, and air conditioner

Country Status (2)

Country Link
JP (1) JP7455207B2 (en)
WO (1) WO2021255849A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104088A (en) * 2008-10-21 2010-05-06 Seiko Epson Corp Rectification control device, full-wave rectification circuit, power receiving device, electronic apparatus, contactless power transmission system, and rectification control method
JP2013198388A (en) * 2012-03-23 2013-09-30 Shindengen Electric Mfg Co Ltd Synchronous-rectification type bridge
WO2020066030A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Dc power supply device, motor drive device, blower, compressor and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104088A (en) * 2008-10-21 2010-05-06 Seiko Epson Corp Rectification control device, full-wave rectification circuit, power receiving device, electronic apparatus, contactless power transmission system, and rectification control method
JP2013198388A (en) * 2012-03-23 2013-09-30 Shindengen Electric Mfg Co Ltd Synchronous-rectification type bridge
WO2020066030A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Dc power supply device, motor drive device, blower, compressor and air conditioner

Also Published As

Publication number Publication date
JPWO2021255849A1 (en) 2021-12-23
JP7455207B2 (en) 2024-03-25

Similar Documents

Publication Publication Date Title
JP5631499B2 (en) Power converter
JP5284447B2 (en) Distributed power system
KR20210003815A (en) Uninterruptible power supply
JP4706349B2 (en) DC power supply device and compressor drive device
JP5415387B2 (en) Power converter
WO2014030181A1 (en) Power conversion device
JP6964793B2 (en) Motor drive, blower, compressor and air conditioner
CN112567618B (en) DC power supply device, motor drive control device, blower, compressor and air conditioner
JPWO2019123716A1 (en) Power converter
WO2021255849A1 (en) Power conversion apparatus, motor drive device, and air conditioner
Unruh et al. 1-MW full-bridge MMC for high-current low-voltage (100V-400V) DC-applications
JP6921335B2 (en) DC power supply, motor drive, blower, compressor and air conditioner
JP4765015B2 (en) Power converter
JPWO2020183553A1 (en) DC power supply, power conversion device and refrigeration cycle device
JP5400956B2 (en) Power converter
JP6016836B2 (en) Power conversion device and power conversion control method
JP7166449B2 (en) Motor drives, blowers, compressors and air conditioners
JP7490089B2 (en) Air conditioners
WO2022254746A1 (en) Power conversion device
WO2022208593A1 (en) Power conversion device, motor driving device, and air conditioner
JP7086016B2 (en) Power converter, motor drive, refrigeration cycle device, blower, air conditioner, refrigeration equipment
JP5546605B2 (en) Power converter
WO2021095216A1 (en) Power conversion device, motor drive device, blower, compressor, and air conditioner
JPWO2020066027A1 (en) DC power supply, motor drive, blower, compressor and air conditioner
JP2023135387A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940927

Country of ref document: EP

Kind code of ref document: A1