WO2021255793A1 - 検査測定用照明装置及び検査測定システム及び検査測定方式 - Google Patents

検査測定用照明装置及び検査測定システム及び検査測定方式 Download PDF

Info

Publication number
WO2021255793A1
WO2021255793A1 PCT/JP2020/023440 JP2020023440W WO2021255793A1 WO 2021255793 A1 WO2021255793 A1 WO 2021255793A1 JP 2020023440 W JP2020023440 W JP 2020023440W WO 2021255793 A1 WO2021255793 A1 WO 2021255793A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solid angle
inspection
point
inspection target
Prior art date
Application number
PCT/JP2020/023440
Other languages
English (en)
French (fr)
Inventor
増村茂樹
Original Assignee
マシンビジョンライティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マシンビジョンライティング株式会社 filed Critical マシンビジョンライティング株式会社
Priority to EP20939470.9A priority Critical patent/EP4166933A4/en
Priority to KR1020217040248A priority patent/KR102361860B1/ko
Priority to US17/618,216 priority patent/US11630070B2/en
Priority to CN202080045025.7A priority patent/CN114144661B/zh
Publication of WO2021255793A1 publication Critical patent/WO2021255793A1/ja
Priority to IL299032A priority patent/IL299032B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention is, for example, an inspection measurement lighting device, an inspection measurement system, and an inspection used for irradiating an inspection target with inspection light to inspect the appearance, scratches, defects, etc. of the product, and to measure the surface shape. It is related to the measurement method.
  • Patent Document 1 As an example of a lighting device for inspection and measurement used for visual inspection of a product, measurement of surface shape, etc., the shape of an irradiation solid angle with respect to an inspection object as shown in Patent Document 1, Patent Document 2, and Patent Document 3. There are some that can control and irradiate solid-angle regions with different light attributes and angles.
  • the inspection lighting device as described above, it is possible to detect feature points such as defects that are difficult to detect with ordinary irradiation light from the captured image, but the information contained in the image. It may be required to measure the shape of the feature point more quantitatively using.
  • the object light returned from the object surface to be inspected has few direct light components corresponding to the specularly reflected light and the positive transmitted light to the irradiation light, and the light and dark information is acquired mainly by observing the scattered light component. teeth, If the irradiation conditions such as the tilt of the optical axis of the irradiation light for each point of the object surface cannot be kept constant, the tilt direction and tilt angle of the minute area near each point of the object surface are quantitatively determined by the scattered light. It becomes difficult to quantitatively reflect the light attributes and changes in light and darkness.
  • the object light returned from the object surface to be inspected has many direct light components and the light and dark information is obtained mainly by observing the direct light components
  • the surface texture of the object surface has a three-dimensional shape with a relatively large change, for example, when the inclination of each minute surface of the surface becomes more than a certain level, the positive irradiation light among the object lights returned from the object surface is positive.
  • the tilt of the optical axis of the direct light, which is the reflected light becomes large, and it goes out of the range of the observation stereoscopic angle formed by the observation optical system from above the object, and the direct light from the tilted surface cannot be captured by the observation optical system. Therefore, the direct light returned from the object makes it impossible to obtain the shading information of that part. It becomes difficult to obtain the surface shape of the object surface continuously and quantitatively.
  • light is irradiated from a plurality of different directions to cause a change in illuminance with respect to the minute tilted surface, and the tilt angle of the tilted surface is determined from the light and dark information.
  • the tilt angle of the tilted surface is determined from the light and dark information.
  • each point on the object surface is irradiated with irradiation light capable of forming the same irradiation solid angle.
  • irradiation light capable of forming the same irradiation solid angle.
  • the scattered light component other than the specular reflected light or the direct transmitted light corresponding to the specularly transmitted light is observed with respect to the irradiation light, and the light and dark information is used to obtain the light and dark information.
  • the light and dark information generated by the change in the inclusion relationship between the solid angle formed by the direct light and the observation solid angle formed by the observation optical system for observing the direct light is obtained, and the surface shape of the object surface is acquired. If you do, The inclination of the minute surface near each point of the object surface becomes more than half of the sum of the irradiation solid angle and the plane half angle of the observation solid angle with respect to the point, and the observation optical system is from the object surface. Regarding the surface shape of the region adjacent to the region where the shade information due to the returned direct light cannot be continuously obtained. For example, it is an object of the present invention to provide an inspection measurement system and an inspection measurement method capable of acquiring a relative relationship of three-dimensional shape information such as height, inclination, and inclination direction.
  • the present invention In the irradiation light applied to the inspection target, When observing scattered light among the object light returned from the inspection target, If the illuminance of the minute surface near each point on the object surface has the same inclination direction and inclination angle of the minute surface, the same illuminance distribution is used. In response to changes in the tilt direction and tilt angle of the microplane, the optical attributes and lightness and darkness of the scattered light component of the object light returned from the microplane are quantitatively changed, and the three-dimensional shape of the object surface is changed. Is formed so that the irradiation solid angle of the irradiation light can be obtained.
  • the light / dark information of the object light is used. It was made based on a new idea of making it possible to acquire a three-dimensional shape of a discontinuous region.
  • the lighting device for inspection and measurement in the present invention is It is an inspection measurement lighting device that irradiates an inspection target with inspection light, and is applied to an inspection measurement system including an image pickup device that captures light reflected, transmitted or scattered in the inspection target, that is, object light returned from an object.
  • a surface light source that emits inspection light is provided between the surface light source and the inspection target.
  • a lens for forming an irradiation solid angle for the inspection target is provided before and after the focal position of the lens.
  • a first light-shielding mask that forms a light-shielding solid angle of irradiation light to be applied to each point of the inspection target.
  • the first filter means for dividing the inspection light into a plurality of solid angle regions having partially different optical attributes by light having a different wavelength band, different planes of polarization, or light having a different amount of light.
  • an irradiation solid angle forming means having both a first light-shielding mask and a first filter means is provided. So that the desired change in the brightness of each point can be obtained with respect to the observation solid angle for each point of the inspection target formed when the light from the inspection target is imaged by the image pickup device.
  • the shape or size or inclination of the irradiation solid angle When the inside of the irradiation solid angle is composed of the solid angle regions having different light attributes, The solid angle regions having different light attributes in the irradiation solid angle are obtained as combination information of changes in the object light for each different light attribute returned from the object based on the irradiation light emitted from the respective solid angle regions.
  • the feature is that the light attribute and shape of the solid angle region, the region division within the irradiation solid angle, and the like can be appropriately set.
  • the object light is direct light corresponding to specularly reflected light or positively transmitted light with respect to the irradiation light
  • the solid angle of the direct light formed reflecting the irradiation solid angle or the inclusion relationship between the observation solid angle and the solid angle region having different optical attributes.
  • the object light is scattered light other than direct light corresponding to specular reflected light or positive transmitted light with respect to the irradiation light, Due to the change in illuminance near each point caused by light irradiation due to the irradiation solid angle, or the change in illuminance for light with different light attributes.
  • the change of only one or both of the specular reflected light with respect to the irradiation light, the direct light component corresponding to the specular transmitted light, and the other scattered light component is acquired. Even in the region where the direct light is not returned from the inspection target or in the vicinity of the discontinuous region where the direct light is not continuously returned, the three-dimensional shape of the discontinuous region can be acquired by the brightness information of the object light. , Inspection and measurement system, and inspection and measurement method.
  • the lighting device for inspection and measurement is Between the first shading mask and the surface light source, In the vicinity of the lens forming an image with respect to the inspection object, at least one of a second shading mask and a fourth filter means that transmits only light having a specific attribute is further provided.
  • the lighting device may be capable of arbitrarily generating an irradiation region and an irradiation pattern of inspection light for the inspection target by the second light-shielding mask or the fourth filter means.
  • the lens and the first shading mask or the first filter means By the lens and the first shading mask or the first filter means The irradiation solid angle of the inspection light applied to each point of the inspection target can be formed to be substantially uniform. Alternatively, to the irradiation solid angle formed substantially uniformly, The solid angle regions having different optical attributes such as different wavelength bands, planes of polarization, and light intensity are formed radially. Then, by the lens and the second light-shielding mask or the fourth filter means, The inspection light can be applied only to the necessary part of the inspection target.
  • Each of the observation solid angles is captured by changing the illuminance in the vicinity of each point for each of the solid angle regions having different optical attributes depending on the tilt direction near each point of the inspection target and the tilt angle thereof.
  • the light and darkness of each light attribute causes a quantitative change corresponding to the tilt direction and tilt angle of the minute surface near each point.
  • the different optical attributes indicate in which direction and how much the inclusion relationship between the two is changed by the inclusion relationship between the solid angle of the direct light and the observation solid angle.
  • the change can be quantitatively generated for each of the solid angle regions having the above.
  • the shape and inclination of the irradiation solid angle for each point of the inspection target are determined by the relationship between each point of the inspection target and the shape of the light source surface of the lighting device, it is difficult to obtain uniform inspection light.
  • the shape and inclination of the irradiation solid angle for each point to be inspected can be set to be substantially uniform.
  • the object light returned from each point of the inspection target is direct light
  • the solid angle region having a plurality of optical attributes similarly formed in the solid angle of the direct light is included in the observation solid angle.
  • the change in illuminance caused by the light emitted from the irradiation solid angle causes a change in the brightness of the scattered light according to the degree of inclination in the vicinity of each point, and the irradiation solid angle.
  • the tilt direction and the degree of tilt near each point are quantified as the brightness change for each different light attribute of the scattered light by the illuminance change for each different light attribute.
  • the three-dimensional shape of the inspection target is quantitatively acquired by capturing the change in the solid angle of the direct light and the change in the brightness of the scattered light according to the state of the discontinuous region. can do.
  • the changed portion may cause the change.
  • the object light returned from the inspection target is direct light
  • the light amount is changed for each solid angle region having a different light attribute, which is included in the observation solid angle of the image pickup device.
  • the irradiation solid angle shape and its angle of the inspection light irradiated to each point of the inspection target by the light-shielding mask 1 or the first filter means are referred to as the size, shape and angle of the observation solid angle of the image pickup apparatus. It can be set appropriately in a relative relationship and can be set appropriately according to the surface texture of the surface to be inspected.
  • the object light returned from the inspection target is scattered light
  • how the illuminance of the minute surface on which the scattered light is returned changes for each solid angle region having different optical attributes is described.
  • the irradiation solid angle shape and the angle thereof of the inspection light irradiated to each point of the inspection target are appropriately set by the light-shielding mask of 1 or the first filter means, and are appropriate according to the surface texture of the inspection target surface. Can be set to, and the minute change or the like can be easily detected, or conversely, it can be prevented from being detected.
  • the different solid angle regions having different optical attributes are appropriately arranged radially within the irradiation solid angle.
  • the illuminance corresponding to the solid angle region having the light attribute can be changed according to the tilt direction and the tilt angle in the vicinity of each point.
  • the tilt direction and tilt angle in the vicinity of each point can be quantitatively recognized, and the third order of the surface of the inspection target, which is a continuation of these points.
  • the original shape can be acquired as one image information at a time by the image pickup device.
  • the observation stereoscopic angle In order to capture the light and darkness of the object light returned from each point of the inspection target as the light and darkness for each of the different light attributes set within the irradiation stereoscopic angle of the irradiation light, for example, in the image pickup apparatus, the observation stereoscopic angle. It suffices to provide a second filter means capable of selectively capturing different optical attributes with respect to the object light captured inside, and the second filter means includes the image pickup device, for example, the inspection target.
  • the reflected light and the transmitted light may be selectively separated for each different light attribute, and then the amount of each light may be captured by an optical sensor, or only the light having a different light attribute for each pixel of the optical sensor.
  • a filter that selectively transmits light may be provided.
  • the solid angle region having different light attributes in the bright region is each of the inspection targets. It becomes relatively smaller than the region near each point, and the change in illuminance with respect to the tilt angle of the region near each point can be made more remarkable, and the object light returned from the vicinity of each point is scattered light.
  • the light and darkness is emphasized by the illuminance that changes more remarkably corresponding to the solid angle region having different light attributes in the bright part region of the irradiation solid angle. It is possible to capture a larger change, and it is possible to more quantitatively detect a minute inclination in the vicinity of each point of the inspection target.
  • the peripheral portion of the irradiation solid angle at each point of the inspection target is discretely and partially regarded as the bright region, and the solid angle region having different optical attributes in the bright region is each point of the inspection target. It becomes relatively smaller with respect to the tilt direction of the nearby region, and the change in illuminance with respect to the tilt direction of the region near each point can be made more remarkable, and the object light returned from the vicinity of each point is In the case of scattered light, the light and darkness is emphasized by the illuminance that changes more remarkably corresponding to the solid angle region having different light attributes in the bright region of the irradiation solid angle. It is possible to capture a larger change in brightness due to the above, and it is possible to more reliably detect a minute inclination in the vicinity of each point of the inspection target together with the inclination direction.
  • the object light returned from each point of the inspection target is direct light, In the irradiation solid angle of the plane half angle ⁇ i irradiated to each point of the inspection target and the observation solid angle of the plane half angle ⁇ o to each point of the inspection target, the light of the irradiation solid angle and the observation solid angle.
  • the limit tilt angle ⁇ e in the vicinity of each point where the direct light returned from each point to be inspected can be observed by the observation solid angle is It is 1/2 of the sum of the plane half-angle ⁇ i of the irradiation solid angle irradiated to each point of the inspection target and the plane half-angle ⁇ o of the observation solid angle for each point of the inspection target.
  • the inspection is performed by the observation solid angle. It is possible to continuously capture the direct light returned from each point of interest, Depending on the inclusion relationship between the solid angle of the direct light and the observed solid angle, the degree of the tilt angle in the vicinity of each point of the inspection target can be captured as the brightness of the direct light.
  • the observation solid angle makes it impossible to capture the direct light, and it becomes impossible to identify the three-dimensional shape of the inspection target in the discontinuous region.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial,
  • the tilt angle ⁇ s of the surface near each point of the inspection target is either the plane half angle ⁇ i of the irradiation solid angle irradiated to each point of the inspection target or the plane half angle ⁇ o of the observation solid angle for each point of the inspection target. If it is smaller than the effective plane half angle ⁇ indicated by the smaller angle, Assuming that the region sandwiching the discontinuous region is a substantially plane,
  • the value obtained by dividing the width of the discontinuous region specified by the change in brightness of the direct light captured in the discontinuous region by the tangent of the effective plane half-width ⁇ is the height difference D between the continuous regions sandwiching the discontinuous region. Become.
  • a sphere having an unknown radius R is irradiated with irradiation light which is an irradiation solid angle of a plane half angle ⁇ i, and the sphere is observed by an observation optical system which is an observation solid angle of a plane half angle ⁇ o.
  • the radius R of the sphere is It can be obtained as the value R1 obtained by dividing the radius r1 of the circular range in which the direct light returned from the top of the sphere is observed by the sine and cosine of the limit inclination angle ⁇ e.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial. If a sphere with an unknown radius R exists on the substantially plane portion of the inspection target, The radius R of the sphere In addition to being able to obtain the value of the radius r2 of the range where direct light is not observed, which is formed outside the circular range at the top of the sphere where direct light is observed, as R2.
  • the effective plane half-angle ⁇ is in the width r3 where there is a change in brightness of the direct light formed around the range where the direct light is not observed, which is formed outside the circular range at the top of the sphere where the direct light is observed. It can be obtained as a value R3 obtained by multiplying the cosine of the above by subtracting the cosine of the effective plane half angle ⁇ from the sine and cosine of the effective plane half angle ⁇ and adding 1 to the value R3.
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial.
  • the height D of the top of the sphere with respect to the substantially flat surface portion is The R1 obtained from the radius r1 of the circular range in which the direct light returned from the top of the sphere is observed.
  • R2 which is the radius of the range where direct light is not observed, which is formed outside the circular range at the top of the sphere.
  • the value of any of the above R3s obtained from the width r3 where there is a change in brightness of the direct light formed around the range where the direct light formed outside the circular range at the top of the sphere is not observed. It can be calculated as a double value.
  • the values of R1, R2, and R3 are all the same, but if all of these three values are not the same, it means that the sphere is not a perfect sphere, and the R1 is generally the same.
  • the value of corresponds to the height from the center of the sphere to the top
  • the value of R2 corresponds to the radius in the horizontal direction from the center of the sphere
  • the value of R3 corresponds to the height from the center of the sphere to the ground plane. From the three values, it is possible to obtain the relative position of the sphere with respect to the substantially flat surface portion of the inspection target and its approximate shape.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial.
  • the height D of the top of the sphere with respect to the substantially flat surface portion is greater than twice the radius R of the sphere.
  • the values of R1 and R2 are equal, but the value of R3 is observed to be larger than the values of R1 and R2.
  • Its height D is
  • the correction term ⁇ L is the value obtained by multiplying the radius R of the sphere, the reciprocal of the cosine of the effective plane half-width ⁇ , and the value obtained by subtracting the cosine of the effective plane half-width ⁇ from 1.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial.
  • the height D of a sphere having a radius R on the substantially flat portion of the inspection target with respect to the substantially flat portion of the top of the sphere is less than twice the radius R of the sphere and equal to the radius R of the sphere. Or if present at a higher value, The values of R1 and R2 are equal, and the value of R3 is observed to be smaller than the values of R1 and R2.
  • the height D is the value obtained by adding the value obtained by subtracting the correction term ⁇ L from the value of r3 to the value of R1 or the value of R2 and further dividing the value by the tangent of the effective plane half-width ⁇ . Can be obtained as.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial.
  • a sphere having a radius R exists in the substantially flat surface portion of the inspection target, and a height D of the top of the sphere with respect to the substantially flat surface portion exists at a value smaller than the radius R of the sphere, and the value of R1 is ,
  • the height D can be obtained as the value obtained by adding the correction term ⁇ L divided by the tangent of the effective plane half-width ⁇ to the value of R1.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial.
  • a sphere having a radius R exists in the substantially flat surface portion of the inspection target, and a height D of the top of the sphere with respect to the substantially flat surface portion exists at a value smaller than the radius R of the sphere, and the value of R1 is ,
  • the height D can be obtained as a value obtained by subtracting the square root of the value obtained by subtracting the square of the value of r2 from the square of the value of R1 with respect to the value of R1.
  • the irradiation solid angle of the inspection light to the discontinuous region of the inspection target Light in different wavelength bands, different planes of polarization, or light with different amounts of light are divided into multiple solid angle regions with partially different optical attributes.
  • the solid angle region is arranged radially with respect to the optical axis of the irradiation solid angle, in the three-dimensional shape of the discontinuous region, different shape changes are acquired in all directions with respect to the tilt direction and tilt angle of the surface. be able to.
  • the inspection target when the inspection target is irradiated with inspection light having a substantially uniform irradiation solid angle for each point of the inspection target.
  • the irradiation solid angle of the inspection light and the observation solid angle of the image pickup device so that the change in the amount of light in the observation solid angle is maximum with respect to the change in the solid angle and is minimized for other changes.
  • the illuminance change in the vicinity of each point is appropriately set, and the desired brightness change of the scattered light is obtained. It will be possible to capture it accurately.
  • the first method In order to control the size of the irradiation solid angle of the inspection light applied to each point of the inspection target substantially uniformly and to adjust the inclination distribution of the irradiation solid angle with respect to the center of the optical axis, the first method is described.
  • the light-shielding mask, the first filter means, or the third filter means that integrates the functions of both may be arranged at positions before and after the focal position of the lens.
  • the description will be represented by the first light-shielding mask, that is, by changing the opening of the first light-shielding mask, the irradiation solid angle at each point of the inspection target can be adjusted to a desired shape and size. Can be set.
  • the optical axes of the irradiation stereoscopic angle of the inspection light are all parallel to the optical axis of the inspection light, and the lens side is closer to the focal position of the lens. If it is arranged in, the irradiation stereo angle of the inspection light can be tilted in the direction in which the inspection light spreads, and if it is arranged outside the focal position of the lens, the irradiation stereo angle of the inspection light can be tilted in the direction in which the inspection light narrows.
  • the arrangement of the first light-shielding mask and the irradiation solid angle of the inspection light that directly affects the solid angle of the reflected light and the transmitted light from the inspection target by changing the opening thereof are various.
  • Can be adjusted When observing the direct light returned from the inspection target, the relative relationship between the solid angle of the direct light and the observation solid angle of the image pickup device is determined.
  • the relative relationship between the irradiation solid angle and the inclination of the surface near each point of the inspection target is determined.
  • the mode can be suitable for obtaining desired light and dark information.
  • the observation optical system used is not a telecentric optical system, but also for an optical system in which the optical axis tilt of the observed solid angle changes outside the viewing range and at the center of the optical axis, or a surface on which the inspection target is curved.
  • the arbitrary solid angle region having different optical attributes set in the irradiation solid angle further uses the inside of the irradiation solid angle uniformly set for the inspection target as an arbitrary solid angle region. It can be set, and the brightness of each point of the inspection target is simply determined by the relative relationship between the irradiation solid angle and the observation solid angle, or the irradiation solid angle and the normal line of the surface near each point of the inspection target. Instead, the slighter change in the object light for each solid angle region is separately determined by the relative relationship between the irradiation solid angle and the observation solid angle, the optical axis, etc., or the irradiation solid angle and each point to be inspected.
  • an inspection and measurement system including an inspection and measurement lighting device according to the present invention and an image pickup device that uses at least one of the inspection and measurement methods to capture light reflected, transmitted or scattered in the inspection target. It is possible to continuously obtain desired light and dark information for a feature point having a minute and complicated three-dimensional shape with respect to the inclination of the three-dimensional shape in any direction.
  • the brightness at each point of the inspection target is determined by the amount of direct light or scattered light from each point of the inspection target toward the image pickup apparatus. Since the irradiation solid angle for each point to be inspected is uniform, the amount of light is uniform.
  • Inclusion relationship between the direct light from each point of the inspection target and the observation solid angle of the image pickup device Or because it is determined by the angle formed by the irradiation solid angle and the normal of the surface near each point. It has a function to adjust the irradiation solid angle of the inspection light, which directly affects the reflected light or transmitted light from each point of the inspection target, substantially uniformly. Moreover, by dividing the irradiation solid angle into an arbitrary solid angle region having different light attributes, that is, a wavelength band, a plane of polarization, or a light amount, and arranging the solid angle region radially around the optical axis.
  • the image pickup device can selectively observe the amount of light for each division region, and the optical axis of the object light returned from each point of the inspection target is tilted in any direction with respect to the optical axis of the observation solid angle. This is because both the inclination direction and the degree of inclination can be captured as a continuous change in the amount of light for each of the plurality of division regions having different optical attributes.
  • the relative angle relationship between the irradiation solid angle applied to each point to be inspected and the normal of the surface in the vicinity of each point is Depending on the degree of change, it must be kept substantially constant. This is done by moving the first shading mask and the first filter means, or the third filter means, at positions before and after the focal position of the lens, thereby performing the inspection light.
  • the irradiation solid angle of the above and the solid angle region formed within the irradiation solid angle have a substantially uniform shape and size with respect to each point of the inspection target, and the inclination angle thereof is adjusted to adjust the inclination angle of the inspection target. Adjust to the inclination of the observed solid angle at each point, Alternatively, it can be realized by adjusting to the inclination of the normal line of the reference plane to be inspected.
  • the irradiation solid angle of the inspection light for the inspection target and an arbitrary solid angle region formed within the irradiation solid angle are applied to each point in the irradiation range. While keeping the relative relationship with the observed solid angle or the normal of the surface near each point of the inspection target substantially constant, In order to make it possible to arbitrarily generate an irradiation area, an irradiation shape, or an irradiation pattern, At least one of the first light-shielding mask or the first filter means, or in addition to the third filter means, at least one of the second light-shielding mask or the fourth filter means. It may be provided near the position where the image is formed on the inspection target by the lens.
  • the inspection light can be measured while maintaining the shape, size, and inclination of the irradiation solid angle of the inspection light and an arbitrary solid angle region formed within the irradiation solid angle so as to be substantially uniform.
  • Both the irradiation region for the inspection target and the light attribute of the irradiation region, the irradiation solid angle for each point of the inspection target, and the solid angle region having a specific light attribute can be independently adjusted.
  • the second light-shielding mask and the fourth filter means on which a predetermined mask pattern is formed may be used to form an image of this pattern on the inspection target.
  • a uniform brightness change in the image pickup apparatus is provided by the substantially uniform irradiation solid angle adjusted by the first shading mask and the first filter means and the solid angle region having a specific light attribute. If there is a problem with the shape of the inspection target, the pattern obtained as the light / dark information by the image pickup apparatus is distorted, so that the shape defect can be easily detected.
  • the brightness of the scattered light at each point to be inspected is determined by the illuminance of the surface near each point and the scattering rate of each point. If the shape and size of the irradiation solid angle of the light applied to each point are constant, and the angle formed by the optical axis of the irradiation solid angle with the normal line of the reference surface to be inspected is the same. Since the illuminance near each point is determined in proportion to the cosine of the angle formed by the normal line of the surface near each point with the optical axis of the irradiation solid angle, the brightness of the scattered light is determined at each point.
  • the brightness is proportional to the cosine of the tilt angle of the nearby surface, and the three-dimensional shape of the inspection target can be detected from the change in the brightness of the scattered light. Only certain light and dark information that depends on the angle can be obtained. Therefore, if an arbitrary solid angle region having a different wavelength band, a polarization plane, or a light amount is formed within the irradiation solid angle for each point to be inspected, and is arranged radially with respect to the optical axis of the irradiation solid angle. This is reflected in the illuminance of the surface near each point to be inspected as the illuminance having different wavelength bands and polarization planes.
  • the brightness of the scattered light returned from each point is observed as the brightness of light having a different wavelength band or plane of polarization, which direction the surface near each point is in which direction depends on the ratio of the brightness. It is possible to detect whether it is tilted to some extent.
  • a half mirror for changing the irradiation direction of the inspection light and transmitting the light from the inspection target so that the image pickup device can take an image is provided, and the irradiation solid angle of the inspection light with respect to each point of the inspection target.
  • the optical axis of the irradiation solid angle for each point to be inspected is set to the same direction.
  • the change in the brightness of the object light returned from each point of the inspection target captured by the observation solid angle is the degree of inclination of the surface in the vicinity of each point of the inspection target in any direction.
  • the observation solid angle of the image pickup device is set in a direction line-symmetrical to the normal line set on the inspection target with respect to the irradiation direction of the inspection light, and the solid angle of the reflected light or transmitted light at each point of the inspection target is set.
  • the same can be achieved by substantially matching the optical axes of the observed solid angles with respect to each point of the inspection target of the imaging device.
  • the shape and size of the irradiation solid angle with respect to each point to be inspected and the inclination of the optical axis are all the same, and the inclination direction of the surface in the vicinity of each point is changed.
  • the same can be achieved by reflecting the degree of inclination in the brightness of the scattered light returned from each point.
  • the image pickup device Light in the solid angle region having different wavelength bands, planes of polarization, or amount of light reflected within the solid angle of the reflected light or transmitted light. Alternatively, the change in illuminance with respect to the different wavelength bands and planes of polarization of the scattered light, or the amount of light.
  • the second filter means capable of selectively imaging, the brightness change or the scattering caused by the inclusion relationship between the solid angle region and the observed solid angle with respect to different wavelength bands, polarization planes, or light amounts. It is possible to detect changes in light intensity at the same time.
  • a threshold value is set for the brightness of the object light returned from each point of the inspection target, and the imaging region of the inspection target is divided into a bright region and a dark region according to the threshold.
  • the bright region is defined as a bright field region.
  • a dark field area For the bright field region, the change in brightness generated by the inclusion relationship between the solid angle of direct light and the observed solid angle, which changes depending on the tilt angle of each point, is used.
  • the dark field region the change in the brightness of the scattered light corresponding to the illuminance proportional to the cosine of the tilt angle of each point is used.
  • the three-dimensional shape of each region can be detected at the same time.
  • the image information acquired by the image pickup apparatus can be obtained in a floating point format, It is possible to identify the three-dimensional shape in the region by dividing the bright region and the dark region and applying an arithmetic operation suitable for each region.
  • the lighting device for inspection and measurement As described above, according to the lighting device for inspection and measurement, the inspection and measurement system, and the inspection and measurement method of the present invention.
  • the size and mode of the irradiation solid angle of the inspection light applied to each point of the inspection target and its dark area, and the different wavelength bands and polarization planes formed in the irradiation solid angle, or the solid angle region having the amount of light are free. Because it can be adjusted to For one thing
  • the inclusion relationship with the observation solid angle formed at each point of the inspection target can be set substantially uniformly.
  • the illuminance in the vicinity of each point is set to a plurality of irradiation solid angles and a plurality of different wavelength bands, polarization planes, or light amounts formed in the irradiation solid angle.
  • the solid angle region of the above and the surface in the vicinity of each point, it can be changed according to the inclination direction and the degree of inclination of the surface in the vicinity of each point. Defects with minute and complicated three-dimensional structures that were difficult to detect in the past, Even in a discontinuous region where the reflected light or transmitted light from each point to be inspected cannot be captured by the observation solid angle for each point.
  • the three-dimensional information of the discontinuous region If the scattered light is returned in the discontinuous region, it can be acquired as light / dark information of scattered light having a different wavelength band, a plane of polarization, or a light amount, in which the inclination information of the surface of the discontinuous region is quantitatively reflected.
  • the step and height information in the discontinuous region can be returned from each point of the step portion, and can be acquired as a brightness change of direct light having a different wavelength band, a polarization plane, or a light amount. It is possible to obtain three-dimensional information even in a discontinuous region where the surface texture is significantly different and continuous surface tilt information cannot be continuously obtained by direct light returned from the region or scattered light. It will be possible.
  • the schematic perspective view which shows the appearance of the lighting apparatus for inspection and measurement which concerns on one Embodiment of this invention, and the inspection and measurement system. Luminance difference between direct light and scattered light
  • the schematic diagram which shows the lighting apparatus for inspection measurement in the same embodiment, the internal structure of the main part which forms the irradiation solid angle of an inspection measurement system, and the irradiation solid angle at each point of an inspection object.
  • Schematic diagram showing the internal structure of the main part forming the irradiation solid angle of the inspection measurement lighting device and the inspection system installed at an angle of the inspection target in the same embodiment, and the irradiation solid angle formed at each point of the inspection target. ..
  • An object reflecting the irradiation solid angle a plurality of solid angle regions having different optical attributes formed in the irradiation solid angle, the irradiation solid angle, and the plurality of solid angle regions.
  • the inclusion relationship between the solid angle of the direct light returned from and the observation solid angle for observing the direct light, and how the inclusion relationship changes when the surface near the point where the direct light is returned is tilted.
  • the schematic diagram which shows. The schematic diagram schematically showing the relationship between the irradiation solid angle according to one embodiment of the present invention, and a plurality of solid angle regions having different light attributes formed in the irradiation solid angle, and the illuminance of the inspection surface.
  • Schematic diagram showing the change in the observed brightness of direct light in the vicinity region when the tilt angle from the vertical direction of the discontinuous region surface where direct light is not observed from the inspection target is equal to the effective plane half angle.
  • Schematic diagram showing the change in the observed brightness of direct light in the vicinity region when the tilt angle from the vertical direction of the discontinuous region surface where direct light is not observed from the inspection target is smaller than the effective plane half angle.
  • Schematic diagram showing the change in the observed brightness of direct light in the vicinity region when the tilt angle from the vertical direction of the discontinuous region surface where direct light is not observed from the inspection target is 0 degrees.
  • Schematic diagram showing the change in the observed brightness of direct light in the vicinity region when the tilt angle from the vertical direction of the discontinuous region surface where direct light is not observed from the inspection target is negative.
  • a schematic diagram showing an inspection and measurement method that enables continuous inspection and measurement of a three-dimensional shape by dividing the image into a bright field region that returns light directly and a dark field region that returns scattered light depending on the polarization state. ..
  • the inspection and measurement system 200 including the lighting device 100 for inspection and measurement of the first embodiment, the image pickup device C, and the image analysis means 300 for analyzing the image captured by the image pickup device C uses the half mirror 4. This is so-called coaxial illumination in which the direction in which the inspection target W is imaged and the direction in which the inspection target W is illuminated coincide with each other. It is used to identify the three-dimensional shape of the inspection target W and characteristic points such as defects by making it appear as a light-dark difference in the light-dark difference and analyzing the light-dark difference.
  • the first filter F1 is a means for selectively transmitting light having a specific attribute and forming a solid angle region composed of the light having the attribute, and whether the light is shielded or transmitted.
  • the first light-shielding mask M1 that forms the irradiation solid angle and the third filter means F3 that integrates the functions of both to form a single component are the same in the action of forming the solid angle.
  • the first light-shielding mask M1 is shown as a representative, and only the corresponding symbols are written side by side with F1 and F3 in M1.
  • the fourth filter means F4 that transmits only light having a specific attribute is shown in FIG. 1 with the second light-shielding mask M2 as a representative, and only the corresponding symbol is described in parallel with F4 in M2.
  • the feature points such as defects of the inspection target W include various defects such as scratches, dents, distortions on the surface, appearance shape, presence / absence of holes, and other feature types.
  • the inspection lighting device 100 has a substantially tubular housing, and reaches the inside thereof, the inspection target W, and the image pickup device C.
  • An irradiation light path L1 for irradiating the inspection target W with the inspection light from the surface light source 1 and a reflected / transmitted light path L2 for the reflected light or the transmitted light from the inspection target W to reach the image pickup apparatus C are formed in the portion.
  • the image pickup apparatus C is attached to the upper surface opening side of the housing, and the inspection target W is placed on the lower surface opening side of the housing.
  • the irradiation optical path L1 is partially reflected by the portion extending from the surface light source 1 to the half mirror 4 and the half mirror.
  • the inspection target is directly irradiated with the inspection light by the irradiation optical path L1, and in the case of FIG. 2, the transmitted light from the inspection target W is emitted.
  • the optical path leading to the image pickup device C is L2.
  • the object light returned from the inspection target W may be reflected light or scattered light, and in that case, the image pickup device C may be installed at a position where the object light can be observed.
  • a lens 2 that forms an irradiation solid angle with respect to the inspection target W from the inspection light emitted from the surface light source 1 is arranged.
  • the half mirror 4 provided at an angle with respect to the reflected / transmitted light path L2 and the irradiation light path L1 is arranged so as to partially reflect the inspection light downward.
  • a second light source 1 is located between the surface light source 1 and the first light-shielding mask and the first filter means or the third filter means in the vicinity of a position where the lens 2 forms an image on the inspection target W.
  • At least one of a light-shielding mask M2 or a fourth filter means for forming an irradiation area having a specific light attribute is installed. The inspection light is applied to the inspection target W.
  • a half mirror 4 is installed on the reflected / transmitted optical path L2, and the reflected light partially transmitted by the half mirror 4 is observed by the image pickup apparatus C. If the half mirror is not installed, In FIG. 2, the optical path from the inspection target W to the image pickup device C is L2. Or, In FIG. 3, the optical path until the reflected light or scattered light from the inspection target W reaches the image pickup apparatus C becomes L2. There is nothing on this optical path L2 other than the half mirror 4 in FIGS. 1 to 3, but in some cases, reflected light or transmitted light from the inspection target is used for the purpose of cutting stray light from the inspection target. A mask or diaphragm that partially blocks light or scattered light may be installed.
  • the surface light source 1 has a light emitting surface 11 having a substantially uniform diffusion surface formed of, for example, a chip-type LED or a diffusion plate, and the surface light source 1 is provided so that the irradiation solid angle with respect to the inspection target W is substantially uniform.
  • the injection form may be controlled. Further, as shown in FIG. 1, the surface light source 1 is attached so as to be able to move forward and backward in the direction of the irradiation optical axis in the cylindrical housing so that the irradiation start position of the inspection light can be adjusted.
  • the first light-shielding mask M1 and the first light-shielding mask M1 and the first With respect to the irradiation range of the inspection light determined by the positional relationship between the filter means F1 or the third filter means F3 having both functions, the second light-shielding mask M2, the lens 2, and the surface light source 1. It is possible to control the uniformity of the inspection light, the brightness distribution, and the like in the inspection target W.
  • the irradiation light path differs depending on the irradiation region, for example, if the surface light source 1 is provided with a predetermined luminance distribution, emission wavelength distribution, polarization characteristic distribution, or the like, the distribution can be changed depending on the irradiation region. , Can also be uniform.
  • the second light-shielding mask M2 and the fourth filter means are attached so as to be able to advance and retreat in the cylindrical housing in the direction of the irradiation optical axis, and the lens 2 and the inspection target.
  • the second light-shielding mask itself can be adjusted in the vicinity of the image formation position with respect to the inspection target depending on the distance from. By doing so, as shown in FIG. 7, the irradiation light from the surface light source 1 can be partially shielded, or only the light having a specific attribute can be shielded, and the second shading mask can be shielded.
  • the shape and size of the opening of the second light-shielding mask M2 are formed.
  • the irradiation range of the inspection light in the inspection target W or the irradiation region to irradiate the light having a specific attribute can be arbitrarily set. Further, this adjustment and setting are independent of the control of the irradiation solid angle by the first light-shielding mask M1 described later, the first filter means F1, or the third filter means F3 having both functions. Can be done.
  • the first light-shielding mask M1, the first filter means F1, or the third filter means F3 having both functions is between the lens 2 and the surface light source, and the lens 2 is provided. It is provided at a position before and after the focal position of the lens, and as shown in FIG. 1, it is attached so as to be able to move forward and backward in the direction of the irradiation optical axis inside the cylindrical housing.
  • the first light-shielding mask M1 will be described as a representative example of the first filter means F1 and the third filter means F3 having both functions.
  • the first light-shielding mask M1 will be described.
  • the size, shape, and tilt angle of the irradiation solid angle IS at each point of the inspection target W are all the same, which is shown in FIG. As shown, the same applies even when the distance between each point to be inspected and the lens 2 is different. Further, this is the same regardless of the presence or absence of the half mirror 4 and regardless of the distance between the inspection target W and the lens 2.
  • the above description of the first light-shielding mask M1 as a representative example also applies to the solid angle region formed by the first filter means F1 and the third filter means F3 having both functions. The same is true.
  • the light-shielding portion M1 that substantially blocks light opens in an arbitrary shape.
  • a portion is formed, and in FIG. 4, the periphery is a light-shielding portion and is shown as a central portion or an opening portion, but a part of the opening portion may be further a light-shielding portion. Further, the light-shielding portion may be a portion that shields only light having a specific attribute.
  • the first filter means F1 is set in the opening portion of M1, and here, three types are used.
  • Patterns F11, F12, and F13 for forming solid angle regions having different optical attributes are set.
  • the pattern is radial with the optical axis as the center, but this may also be optimized to any pattern depending on the feature points of interest of the inspection target.
  • the integration of the first light-shielding mask M1 and the first filter means F1 corresponds to the third filter means F3.
  • each point of the inspection target W is used, for example, as shown in FIG.
  • An irradiation solid angle IS can be formed with respect to P.
  • the outermost shape of the IS is determined by the opening at the center of the first light-shielding mask M1 and the irradiation solid angle is further determined by the first filter means F1 within the irradiation solid angle.
  • the solid angle regions IS1, IS2, and IS3 having different optical attributes are formed corresponding to the mask patterns F11, F12, and F13 of the first filter means F1.
  • the irradiation solid angle IS of the inspection light for each point of the inspection target W in contrast to the above-mentioned inspection lighting of the present invention in which the irradiation solid angle can be formed substantially uniformly, in the conventional lighting using only the normal light source surface, the irradiation solid angle IS of the inspection light for each point of the inspection target W.
  • the shape, size, and inclination of the light source differ depending on the point. This is because the irradiation solid angle IS for each point of the inspection target W is uniquely determined by the projection shape, size, and angle of the surface light source 1 when the illumination is viewed from each point in reverse. be.
  • the observation solid angle OS at each point of the inspection target is determined by the pupil position and pupil shape of the image pickup apparatus C, and the relative relationship between the pupil size and each point of the inspection target.
  • the brightness of each point by the image pickup apparatus C is determined by the inclusion relationship between the solid angle RS of the reflected light or the solid angle TS of the transmitted light and the observation solid angle OS that directly reflects the irradiation solid angle IS at each point.
  • FIG. 5 focuses on the point P on the inspection target W, and considers a case where the point P is irradiated with inspection light having an irradiation solid angle IS, and the surface including the point P of the inspection target is only partially ⁇ .
  • the solid angle RS of the reflected light from the point P is RS with respect to the observation solid angle OS formed by the image pickup apparatus C at the point P to see how the brightness of the point P changes when tilted. It shows what the inclusion relationship between each solid angle region and the observed solid angle OS becomes when it changes like ′.
  • the shape and size of the solid angle RS of the reflected light from the point P and the solid angle regions RS1 to 3 in the solid angle RS are the irradiation solid angle IS and the irradiation solid angle of the inspection light for the point P. It is equal to the solid angle regions IS1 to 3 in IS, and this is the same in RS'. Further, the inclination of the solid angle RS and RS'of the reflected light is the direction of the line symmetry of the irradiation solid angle IS of the inspection light with respect to the normal of the inspection surface set at the point P. It is tilted by the same amount as the tilt ⁇ of the irradiation solid angle IS. Therefore, in FIG.
  • the observation solid angle OS formed by the image pickup apparatus C with respect to the point P is the solid angle RS of the reflected light and its light.
  • the axes are aligned, and the brightness of the point P captured by the image pickup device C includes the observation solid angle OS, the solid angle RS of the reflected light, and the solid angle regions RS1 to 3 in the solid angle RS. Due to the relationship, the brightness is determined for each different light attribute.
  • FIG. 5B consider the case where the surface including the point P of the inspection target W is partially tilted by ⁇ .
  • the solid angle RS of the reflected light from the point P is tilted by 2 ⁇ as shown by the dotted line in the figure.
  • the solid angle RS'of the reflected light from the point P does not have any inclusion relationship with the observation solid angle OS formed by the image pickup device C with respect to the point P, it is seen from the image pickup device C.
  • the brightness of the point P becomes 0, but if there is a partial inclusion relationship with the observation solid angle OS formed by the image pickup device C with respect to the point P, the light included in the overlapping solid angle portion.
  • the inclusion relationship between the observed solid angle OS and the solid angle RS'of the reflected light and the solid angle regions RS1 to 3 within the solid angle RS' is the brightness of each different optical attribute of the point P. It will be reflected. That is, the plane half angle of the solid angle RS'of the reflected light from the point P is larger than the angle obtained by subtracting the plane half angle of the observation solid angle OS from the tilt angle 2 ⁇ of the reflected light, and the tilt angle of the reflected light is 2 ⁇ . When the angle is smaller than the angle obtained by adding the plane half angle of the observation solid angle OS, the brightness of the point P changes depending on the tilt angle 2 ⁇ of the reflected light.
  • the plane half angle of the irradiation solid angle IS is larger than the angle obtained by adding the plane half angle of the observation solid angle OS to the inclination angle 2 ⁇ of the reflected light generated by the partial inclination of the inspection target W, the point P The brightness of is not changed. Further, if the plane half angle of the observation solid angle OS is larger than the sum of the tilt angle 2 ⁇ of the reflected light and the plane half angle of the solid angle RS of the reflected light, the brightness of the point P does not change.
  • the brightness of the point P is determined by the inclusion relationship between the solid angle RS of the reflected light from the point P and the observation solid angle OS with respect to the point P, and the irradiation solid of the inspection light applied to the point P. It is shown that the change in the brightness of the point P can be controlled by setting the relative relationship between the angle IS and the observation solid angle OS with respect to the point P in terms of shape, size, and inclination.
  • FIG. 5 when solid angle regions having different optical attributes exist radially with respect to the optical axis of the irradiation light within the irradiation solid angle to be irradiated to the inspection target, the point on the inspection target is described. It will be described in detail how the brightness of P changes depending on the inclusion relationship between the solid angle of the reflected light reflected from the point P and the observation solid angle formed by the image pickup apparatus C with respect to the point P.
  • the illuminated solid angle IS shown in FIG. 5 is formed of solid angle regions IS1, IS2, and IS3 having different optical attributes inside.
  • the solid angle RS of the reflected light reflected from the point P on the inspection target W is the same as the irradiation solid angle IS, and the optical axis thereof is relative to the normal line set at the point P on the inspection target W.
  • solid angle regions RS1, RS2, and RS3 having the same optical attributes as each of them are formed.
  • the observation solid angle OS formed at the point P on the inspection target W by the image pickup apparatus C is formed at the solid angle RS of the reflected light and the solid angle RS of the reflected light.
  • the observation solid angle OS is considered. Is completely included in the solid angle region RS1.
  • the image pickup device C is provided with a second filter means capable of selectively detecting light having different optical properties, the brightness of the point P on the inspection target is the solid angle region.
  • the brightness is represented by a certain ratio of the light having the optical attribute of RS1, the light having the optical attribute of the solid angle region RS2, and the light having the optical attribute of the solid angle region RS3.
  • the optical axis of the solid angle RS of the reflected light is directed by 2 ⁇ , and the observation solid angle.
  • the OS is included in RS1, RS2, and RS3 of the solid angle regions having different optical properties in a certain ratio, and the ratio is such that the optical axis of the solid angle RS of the reflected light is tilted in which direction. Also have different proportions.
  • the brightness of the point P on the inspection target is supplemented to a certain brightness by a certain ratio of the light of the optical attribute of the solid angle regions RS1, RS2, and RS3, so that ratio.
  • the stereoscopic angle regions RS1, RS2, and RS3 shown in FIG. 5 having different optical properties are, for example, red light, green light, and blue light, respectively, and the image pickup device C is in color.
  • the point P on the inspection target W has the same intensity because red, green, and blue light are captured at almost equal ratios in area ratio. If there is, it looks white and has a certain brightness, and in the case of (b) of FIG. 5, the redness is deep white and looks like a certain brightness.
  • the point P on the inspection target W gradually changes from white to red as the inclination angle increases and continuously changes.
  • the irradiation stereo angle does not have a stereo angle region having different optical attributes inside, only the light and dark information determined by the inclusion relationship between the irradiation stereo angle and the observation stereo angle is obtained. Not only is it possible to continuously capture the tilt angle ⁇ of the inspection target W over a wider range, but it is also possible to identify the direction of the tilt.
  • the illuminated solid angle IS shown in FIG. 6 is formed of solid angle regions IS1, IS2, and IS3 having different optical attributes inside.
  • the scattered light returned from the point P on the inspection target W is For each different optical attribute, the brightness is determined by the illuminance determined by the relative angle formed by the solid angle regions IS1, IS2, and IS3 with the normal of the surface near the point P, and the surface near the point P is tilted by ⁇ .
  • the relative angle formed by the solid angle regions IS1, IS2, and IS3 with the normal of the surface near the point P changes, and the brightness thereof changes accordingly.
  • the solid angle regions IS1, IS2, and IS3 are arranged radially with respect to the optical axis of the irradiation solid angle IS, the solid angle regions IS1 and IS2 are arranged according to the tilt direction when the surface near the point P is tilted by ⁇ .
  • the relative angle formed by the solid angle regions IS1, IS2, and IS3 with the normal line of the surface near the point P both the tilt direction and the tilt angle of the surface near the point P can be uniquely identified. ..
  • solid angle regions IS1, IS2, and IS3 having different optical attributes are arranged continuously and radially from the optical axis of the irradiation solid angle IS.
  • the solid angle regions IS1, IS2, and IS3 having different optical attributes are radially arranged only in the peripheral portion of the irradiation solid angle away from the optical axis of the irradiation solid angle IS.
  • the solid angle regions IS1, IS2, and IS3 having different optical attributes are arranged discretely and radially with respect to the optical axis of the irradiation solid angle IS.
  • the amount of change in the brightness of the point P with respect to the change in the angle can be increased, and conversely, by optimizing the arrangement of the solid angle regions IS1, IS2, and IS3 having different optical attributes, the point to be inspected. It is possible to control the change in the brightness of the point P with respect to the direction in which the surface in the vicinity of P is tilted and the tilt angle. That is, it is possible to control the amount of change in the brightness of the point P with respect to an arbitrary tilt angle with respect to an arbitrary direction.
  • the half mirror 4 in the present invention has a very thin circular shape supported by a substantially square frame, but the shape of the half mirror does not have to be circular and the supporting frame does not have to be circular.
  • the shape does not have to be on a square, and by using such a half mirror 4, it is possible to form a very thin dissociation portion between the front surface and the back surface where reflection or transmission of the half mirror 4 occurs, and from the inspection target W. It is possible to minimize ghosts due to minute refraction, internal reflection, etc. that occur when the reflected light of the above passes through the half mirror 4.
  • the first light-shielding mask and the second light-shielding mask may be a diaphragm using a plurality of blades, which are general optical materials, or a very thin light-shielding plate and a diaphragm having an arbitrary opening.
  • a member such as a liquid crystal display that can electronically set the opening and the light-shielding portion and the attribute of the transmitted light, including the first filter means and the third filter means, may be used. Is also good.
  • the opening of the first light-shielding mask for example, by making the opening an ellipse or an elongated slit instead of a circle, the feature point to be inspected is detected.
  • the detection sensitivity can be made anisotropic. That is, at this time, the irradiation solid angle for each point to be inspected spreads in the same longitudinal direction as the slit of the first light-shielding mask, and becomes a very thin irradiation solid angle in the lateral direction.
  • the detection sensitivity of the inclination of the inspection target is low, and only the detection sensitivity in the short direction can be set high.
  • the shape, size, and inclination of the observation solid angle formed by the image pickup device at each point of the inspection target are adjusted to the lateral direction of the irradiation solid angle so as to be relatively substantially the same. Need to be set.
  • the size of the observation solid angle formed by the image pickup apparatus at each point of the inspection target is set sufficiently small, it is possible to set a threshold value for the inclination to be detected by the extent that the irradiation solid angle is widened. .. This also acts on solid angle regions with different optical attributes formed within the illuminated solid angle.
  • the width thereof may be appropriately taken. It is also possible to detect only a certain tilt angle range with respect to the partial tilt of the inspection target, and if the width is set as much as necessary in the required direction, the detection angle becomes anisotropic. If a plurality of regions having different optical attributes are set radially and the shape of the regions is changed, it is possible to extract different tilt angles in different tilt directions of the inspection surface.
  • inspection lighting is provided in multiple stages, it can be classified and detected according to the degree of inclination of the surface, and in addition, the first light-shielding mask and the third filter means can be used.
  • the member such as the liquid crystal display can be electronically set, a plurality of types of light / dark information can be obtained by dynamically switching the opening pattern, and more detailed classification detection can be performed.
  • the first filter means F1 wavelength band, polarization state, luminance and the like can be considered as the different optical attributes.
  • the light source 1 is used as a light source for emitting white light
  • the first filter means F1 is used. Therefore, it is possible to form an arbitrary stereogonal region composed of light of different wavelength bands, and at the same time, light of different wavelength bands with different patterns can be formed from any direction in any shape, and the inspection target W can be formed. It is possible to irradiate under the same conditions at all points in the viewing range.
  • the first filter means F1 is a member such as a color liquid crystal display whose pattern and transmittance can be electronically set, a plurality of types of light and dark can be obtained by dynamically switching the filter pattern. Information can be obtained and more detailed classification detection can be performed.
  • Solid angle regions having different light attributes may be clearly divided radially, or gradations may be provided so as to gradually have different light attributes.
  • the brightness may be made uniform or the brightness may be changed.
  • the change in the three-dimensional shape of the object surface is large, and the object In a discontinuous region where the inclination of a minute area near each point on the surface cannot be continuously acquired as light / dark information of the object light returned from each point, the irradiation three-dimensional angle of the irradiation light to each point on the object surface is from that point. Focusing on the fact that there is a specific region that is not reflected in the 3D angle of the returned direct light, the change in the 3D angle of the direct light with respect to the irradiation 3D angle and the change in other object light in the discontinuous region are used. , A method of obtaining a three-dimensional shape of the discontinuous region will be described.
  • FIG. 7 shows the case where the optical axes of the irradiation solid angle IS and the observation solid angle OS are coaxial.
  • the observation solid angle OS changes the optical axis.
  • the smaller of the plane half angle ⁇ i of the irradiation solid angle IS and the plane half angle ⁇ o of the observation solid angle OS is defined as the effective plane half angle ⁇ .
  • the irradiation solid angle IS may be arranged radially with respect to the optical axis of the irradiation solid angle in a plurality of solid angle regions having different optical attributes inside, and is described below. The same applies to FIGS. 8 to 19 to be described.
  • the inside is formed of solid angle regions IS1, IS2, and IS3 having different optical attributes.
  • the solid angle RS of the reflected light reflected from the point P on the inspection target W is the same as the irradiation solid angle IS, and the optical axis thereof is relative to the normal line set at the point P on the inspection target W.
  • the direction is line-symmetrical with the irradiation solid angle IS.
  • the object light returned from each point to be inspected is direct light.
  • the irradiation solid angle of the plane half angle ⁇ i irradiated to each point of the inspection target and the observation solid angle of the plane half angle ⁇ o to each point of the inspection target the light of the irradiation solid angle and the observation solid angle.
  • the limit tilt angle ⁇ e near each point where the direct light returned from each point to be inspected can be observed by the observation solid angle is the inspection.
  • the difference angle at which the inclination angle ⁇ s formed by the inclination surface of the discontinuous region of the inspection target with respect to the normal line of the plane portion changes with respect to 90 ° in the plane is the plane half angle ⁇ i and the plane half angle ⁇ o.
  • the observation solid angle makes it impossible to capture the direct light, and as a result, the brightness of the direct light that can be captured by the observation solid angle becomes 0, and the observation solid angle as it is. It is shown that the three-dimensional shape of the inspection target in the discontinuous region cannot be identified only by the amount of change in the brightness of.
  • FIG. 9 shows the case where the inclination angle ⁇ s of the surface of interest in the discontinuous region to be inspected is equal to the effective irradiation solid angle ⁇ .
  • FIG. 10 shows the case where the inclination angle ⁇ s of the discontinuous region surface is smaller than the effective irradiation solid angle ⁇ but larger than 0.
  • FIG. 11 shows the case where the inclination angle ⁇ s of the discontinuous region surface is 0.
  • FIG. 12 shows the case where the inclination angle ⁇ s of the discontinuous region surface is negative, respectively.
  • the value obtained by dividing the width of the discontinuous region specified by the change in brightness of the direct light captured in the discontinuous region by the tangent of the effective plane half-width ⁇ is between the continuous regions sandwiching the discontinuous region. It is shown that the height difference D is.
  • a sphere having an unknown radius R or a part of the sphere is irradiated with irradiation light having an irradiation solid angle of a plane half angle ⁇ i.
  • a method of identifying the height of the apex of the sphere is described.
  • a sphere having a radius R exists on a substantially flat surface portion of the inspection surface.
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial, and the observation range is reached. If the irradiation solid angle and the observation solid angle are uniformly set at each point at different heights of the inspection surface,
  • the radius R of the sphere is In addition to being able to be obtained as a value R1 obtained by dividing the radius r1 of the circular range in which the direct light returned from the top of the sphere is observed by the sine and cosine of the limit inclination angle ⁇ e.
  • the value of the radius r2 in the range where direct light is not observed, which is formed outside the circular range at the top of the sphere where direct light is observed, can also be obtained as R2.
  • the distance from the substantially flat portion of the inspection surface to the center of the sphere is formed around a range where direct light is not observed, which is formed outside the circular range at the top of the sphere where direct light is observed.
  • the width r3 where there is a change in the brightness of the direct light is multiplied by the cosine of the effective plane half-angle ⁇ , and 1 is added by subtracting the cosine of the effective plane half-angle ⁇ from the sine of the effective plane half-angle ⁇ . It can be obtained as the value R3 divided by.
  • the optical axis of the irradiation solid angle and the observation solid angle are coaxial, and a sphere having an unknown radius R exists in contact with the substantially flat surface portion of the inspection target.
  • the height D of the top of the sphere with respect to the substantially flat surface portion is The R1 obtained from the radius r1 of the circular range in which the direct light returned from the top of the sphere is observed.
  • R2 which is the radius of the range where direct light is not observed, which is formed outside the circular range at the top of the sphere.
  • the value of any of the above R3s obtained from the width r3 where there is a change in brightness of the direct light formed around the range where the direct light formed outside the circular range at the top of the sphere is not observed.
  • the values of R1, R2, and R3 are all the same, but if all of these three values are not the same, it means that the sphere is not a perfect sphere, and the R1 is generally the same.
  • the value of corresponds to the height from the center of the sphere to the top
  • the value of R2 corresponds to the radius in the horizontal direction from the center of the sphere
  • the value of R3 corresponds to the height from the center of the sphere to the ground plane. From the three values, it is possible to obtain the relative position of the sphere with respect to the substantially flat surface portion of the inspection target and its approximate shape.
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial, and a sphere having an unknown radius R is located on the substantially flat surface portion of the inspection target, and the height of the top of the sphere with respect to the substantially flat surface portion. It shows the case where D exists at a value larger than twice the radius R of the sphere. In this case, the values of R1 and R2 are equal, but the value of R3 is observed to be larger than the values of R1 and R2.
  • the correction term ⁇ L is the value obtained by multiplying the radius R of the sphere, the reciprocal of the cosine of the effective plane half-width ⁇ , and the value obtained by subtracting the cosine of the effective plane half-width ⁇ from 1. It can be obtained as a value obtained by adding a value obtained by subtracting the correction term ⁇ L from the value of r3 to the value of R1 or the value of R2 and further dividing the value by the tangent of the effective plane half-width ⁇ .
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial.
  • the height D of a sphere having a radius R on the substantially flat portion of the inspection target with respect to the substantially flat portion of the top of the sphere is less than twice the radius R of the sphere and equal to the radius R of the sphere. Or if it is present with a large value, In this case, the values of R1 and R2 are equal, and the value of R3 is observed to be smaller than the values of R1 and R2.
  • the height D is the value obtained by adding the value obtained by subtracting the correction term ⁇ L from the value of r3 to the value of R1 or the value of R2 and further dividing the value by the tangent of the effective plane half-width ⁇ . Can be obtained as.
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial.
  • a sphere having a radius R exists in the substantially flat surface portion of the inspection target, and a height D of the top of the sphere with respect to the substantially flat surface portion exists at a value smaller than the radius R of the sphere, and the value of R1 is ,
  • the case where the value of R3 is larger than the value of R2 and the value of R3 is not 0 is shown.
  • the height D of the top of the sphere can be obtained as the value obtained by adding the value of the correction term ⁇ L divided by the tangent of the effective plane half-width ⁇ to the value of R1.
  • the optical axes of the irradiation solid angle and the observation solid angle are coaxial, and a sphere having a radius R is located on the substantially flat portion of the inspection target, and the height of the top of the sphere with respect to the substantially flat portion.
  • D indicates a case where the value D exists at a value smaller than the radius R of the sphere, the value of the R1 is larger than the value of the R2, and the value of the R3 is observed to be almost 0.
  • the height D thereof can be obtained as a value obtained by subtracting the square root of the value obtained by subtracting the square of the value of r2 from the square of the value of R1 with respect to the value of R1.
  • the discontinuous region does not return the direct light as the object light but mainly returns the scattered light, or the direct light is returned but the direct light cannot be captured by the observation solid angle.
  • the irradiation light radiating to the observation range has the irradiation solid angle of the same solid angle ⁇ i
  • the irradiation light has the same solid angle ⁇ i.
  • the brightness of the point P is determined by the inclusion relationship between the solid angle RS of the direct light and the observation solid angle OS, where 1 is the reflectance, and the maximum brightness is the irradiation solid angle ⁇ i.
  • the effective irradiation solid angle EIS having the smaller effective solid angle half angle ⁇ of the observation solid angle ⁇ o, but in the case of scattered light, the light irradiated to the point P at the irradiation solid angle ⁇ i becomes the scattered light of the solid angle 2 ⁇ . Since it is converted and captured at the observed solid angle ⁇ o, as shown in FIG. 19, the ratio of the maximum brightness of the scattered light captured at the observed solid angle to the maximum brightness of the direct light is the irradiation solid angle ⁇ i.
  • the value vs. 1 is obtained by dividing the larger of the observed solid angles ⁇ o by 2 ⁇ .
  • the irradiation light irradiating the observation range is an irradiation light having an irradiation solid angle of the same solid angle ⁇ i and the observation solid angle is ⁇ o, considering normal optical requirements.
  • the plane half angle of both solid angles is about 10 ° at the maximum, and 1 ° or less if it is small, but the maximum brightness of the scattered light observed at that time is 0.015 times the maximum brightness of the direct light. From 0.00015 times.
  • the dynamic range of the brightness of the direct light that is, the range of the maximum brightness and the minimum brightness and the dynamic range of the brightness of the scattered light can be set within a range in which the two do not overlap.
  • the bright field region where the direct light of the inspection target is observed and the scattered light are observed by appropriate calculation within the range of both.
  • the three-dimensional shape is calculated by dividing it into a dark field area and performing appropriate arithmetic processing in each area, and by connecting them, the discontinuous area is reduced as much as possible, and the inspection target is described. It is possible to inspect and measure the three-dimensional shape of the surface.
  • each point of the observation region of the inspection surface W is irradiated with light having the same irradiation solid angle IS in which solid angle regions IS1, IS2, and IS3 having different optical attributes are arranged radially, and direct light is emitted.
  • the bright field area BF that returns the light and the dark field area DF that returns the scattered light are classified according to the polarization state of the returned object light by setting a threshold value for the brightness value, and each point in each area has a different optical attribute. If the three-dimensional shape is inspected and measured from the change in the brightness of the light, the three-dimensional shape cannot be continuously inspected and measured by observing only the direct light or only the scattered light. It is possible to carry out inspection and measurement of.
  • Bright field region BF that irradiates each point of the observation area of the inspection surface W with light having the same irradiation solid angle IS in which solid angle regions IS1, IS2, and IS3 with different light attributes are arranged radially and returns light directly.
  • the dark field area DF that returns scattered light is divided according to the polarization state of the returned object light by setting a threshold value for its brightness value, and from the change in brightness for each different light attribute at each point in each area. If the three-dimensional shape is inspected and measured, continuous inspection and measurement of the three-dimensional shape can be performed on the inspection surface that cannot be continuously inspected and measured by observing only direct light or scattered light. Is possible.
  • the direct light such as the positively reflected light and the positively transmitted light and the other scattered light are different.
  • the observed brightness value is set to a certain threshold or the threshold is set according to the degree of change in light and darkness, and in the region before and after the threshold, which region is used depending on the size of the region. This is because the region that returns direct light and the region that returns scattered light can be separated by determining whether or not they belong to.
  • Direct light preserves the polarized state of the irradiation light or reflects the polarization state, but scattered light is unpolarized even if the irradiation light is polarized due to its generation mechanism, so for example, a fourth filter or the like. If the irradiation light is polarized using the above, it becomes possible to observe the direct light and the scattered light separately in the observation optical system or the image pickup device regardless of the brightness of the object light. Alternatively, by using parallel Nicol to increase the difference in brightness between the dynamic range of direct light and scattered light, it is possible to stabilize the distinction between the two.
  • the fourth filter means for transmitting only light having a specific attribute is provided in the opening of the light-shielding mask. It is possible to set the light attribute for each irradiation range of the inspection light. At this time, if it is not necessary to set a range in which light is not irradiated, the irradiation range may be set for each specific light attribute to be transmitted only by the fourth filter means.
  • the opening pattern and transmission can be obtained.
  • the irradiation area of the inspection light is changed by dynamically switching the light attributes and the like, and even if the inspection target requires a different irradiation area, the inspection light is irradiated according to each area, and a plurality of inspection lights are applied. It is possible to obtain various types of light and dark information.
  • the surface light source by configuring the surface light source by combining a white light source with a color liquid crystal display or the like that can dynamically change the emission wavelength distribution, luminance distribution, and polarization state distribution of the irradiation surface, further various types of inspection targets can be obtained. It becomes possible to correspond to.
  • brightness, illuminance, and brightness used in the above description are generally photometric quantities that are a measure of light perceived by human eyes, but are appropriately used as physical quantities or according to the sensitivity characteristics of the camera used. Since it is used to mean sensor metering, it is noted here.
  • r1 Radius of the circular range where direct light returned from the top of the sphere is observed
  • r2 Radius of the range where direct light is not observed from the sphere
  • r3 Direct light is observed from the sphere Width where there is a change in the brightness of the direct light formed around the non-range
  • R1 The radius of the circular range where the direct light returned from the top of the sphere is observed is obtained from the center to the top of the sphere.
  • Value corresponding to height R2 Obtained from the radius of the range where direct light is not observed from the sphere, and value corresponding to the radius in the horizontal direction from the center of the sphere R3: Around the range where direct light is not observed from the sphere A value obtained from the width in which the light-dark change of the formed direct light exists and corresponding to the height from the center of the sphere to the ground plane BF: Bright-field region that returns direct light DF: Dark-field region that returns scattered light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】物体面の表面の傾きが一定以上になると、正反射光成分である直接光が観察光学系が形成する観察立体角の範囲外に出て、該物体面の表面形状を連続的に、なおかつ定量的に得ることが難しい。 【解決手段】本発明は、検査対象である物体の観察範囲において、照明からの距離にかかわらず、物体面の各点に対して同一の照射立体角を同時に形成することのできる照射光を照射し、直接光が返されない不連続領域において、その不連続領域近辺の特異な直接光の立体角の変化に着目し、少なくとも該不連続領域の高さ方向の変化を測定できるようにすると共に、該不連続領域における物体光の散乱光成分の変化に着目し、その明暗情報によって、不連続領域の三次元形状を連続的に取得可能にする。

Description

検査測定用照明装置及び検査測定システム及び検査測定方式
 本発明は、例えば検査対象に検査光を照射し、その製品の外観や傷、欠陥等の検査、および表面形状の測定を行うために用いられる検査測定用照明装置、及び検査測定システム、及び検査測定方式に関するものである。
 製品の外観検査や表面形状の測定等に用いられる検査測定用照明装置の一例としては、特許文献1、及び特許文献2、及び特許文献3に示されるような、検査対象に対する照射立体角の形状や角度、並びにその光属性の異なる立体角領域を、略均一に制御して照射できるものがある。
 ところで、上述したような検査用照明装置を用いると、通常の照射光では検出する事が難しい欠陥などの特徴点を、撮像された画像により検出することが可能となるが、該画像の持つ情報を用いてその特徴点の形状をより定量的に計測することが求められることがある。
 より具体的には、

検査対象である物体面から返される物体光に、照射光に対する正反射光や正透過光に対応する直接光成分が少なく、主に散乱光成分を観察することによってその明暗情報を取得する場合においては、

該物体面の各点に対する照射光の光軸傾き等の照射条件が一定に保てなければ、該物体面の各点近傍の微小面積において、その傾き方向と傾き角を定量的に該散乱光の光属性、及び明暗の変化に定量的に反映することが難しくなってしまい、

また、

検査対象である物体面から返される物体光に直接光成分が多く、主に直接光成分を観察することによってその明暗情報を取得する場合には、

該物体面の表面性状が、例えば変化の比較的大きい三次元形状を持つ場合に、その表面の各微小面の傾きが一定以上になると、物体面から返される物体光のうち、照射光の正反射光である直接光の光軸傾きが大きくなり、物体上方からの観察光学系が形成する観察立体角の範囲外に出てしまい、その傾き面からの直接光が観察光学系で捕捉できなくなって、物体から返される該直接光ではその部分の濃淡情報が得られなくなり、

該物体面の表面形状を連続的に、なおかつ定量的に得ることが難しくなってしまう。
 そのような事例に対しては、例えば、異なる複数の方向から光を照射してその微小な傾き面に対する照度の変化を生じさせて、その明暗情報で該傾き面の傾き角を判定したり、若しくは物体面の表面形状が連続的に得られる他の領域のデータを介して、それが物体面の表面形状が連続的に得られない不連続領域に隣接する領域にまで到達することができれば、不連続領域以外で、連続的に表面形状が得られる領域に関してその三次元形状を定量的に得ることができる。
 しかしながら、このような手法では、主に、物体光の内、照射光の正反射光や正透過光に対応する直接光成分ではない散乱光成分を観察している場合には、複数の方向から照射される光がそれぞれ平行光でなかったり、物体面の各点に対する照射角度が場所によって異なっていたりすると、該物体面の微小面の傾き方向と傾き角が同じであってもその照度が異なってしまい、該微小面の傾き情報を定量的に得ることが難しい場合があり、若しくは、主に、物体光の内、照射光の正反射光や正透過光に対応する直接光成分を観察している場合には、物体面の表面形状が連続的にその物体面の明暗情報として得られる領域に関してはその定量的な三次元形状を取得することが可能となるが、不連続領域で遮断された領域、乃至は不連続領域で囲まれた領域に関しては、その部分の三次元形状と他の部分の三次元形状との間において、高さ情報等の相対情報を得ることが難しい場合があり、全体として物体の三次元形状を定量的に捕捉することが難しい。
特許第5866573号 特許第5866586号 特許第6451821号
 本発明は上述したような課題を鑑みてなされたものであり、

検査対象である物体の観察範囲において、物体面の各点に対して同一の照射立体角を形成することのできる照射光を照射し、

該物体面から返される物体光のうち、主に、該照射光に対して、正反射光、若しくは正透過光に相当する直接光以外の散乱光成分を観察して、その明暗情報によって、該物体面の表面形状を取得する場合においては、

該物体面の各点近傍の微小面の傾きが、定量的に該散乱光成分の光属性、及び明暗情報の変化として反映され、

若しくは、

主に、該直接光が形成する立体角と、該直接光を観察する観察光学系が形成する観察立体角との包含関係の変化によって生じる明暗情報を得て、その物体面の表面形状を取得する場合においては、

該物体面の各点近傍の微小面の傾きが、その点に対する該照射立体角と該観察立体角の平面半角の和の2分の1以上となって、該観察光学系が該物体面から返される該直接光による濃淡情報を連続的に得られなくなる領域に隣接する領域の表面形状に関して、

例えば高さや傾き、傾き方向等の三次元形状情報の相対関係を取得することが可能となる検査測定システム、及び検査測定方式を提供することを目的とする。
 すなわち、本発明は、

前記検査対象に照射される照射光において、

前記検査対象から返される物体光のうち、散乱光を観察する場合においては、
物体面の各点近傍の微小面の照度が、該微小面の傾き方向や傾き角が同じであれば、同じ照度分布とし、
該微小面の傾き方向や傾き角の変化に対して、該微小面から返される物体光のうち、散乱光成分の光属性、及び明暗を、定量的に変化させ、該物体面の三次元形状を取得可能となるよう、該照射光の照射立体角を形成し、

若しくは、

前記検査対象から返される物体光のうち、直接光を観察する場合においては、
物体面の3D形状の変化が大きく、物体面の各点近傍の微小面積の傾きが、各点から返される物体光の明暗情報として連続的に取得できない不連続領域において、
その不連続領域近傍における物体面の各点に対する該照射光の照射立体角が、その点から返される物体光の正反射光に相当する直接光の立体角に反映されない特定の領域があることに着目し、
該照射立体角に対する該直接光の立体角の変化、及び該不連続領域における物体光の変化に着目して、その物体光の明暗情報によって、

不連続領域の三次元形状を取得可能にするという新規な発想に基づいてなされたものである。
 より具体的には、
本発明における検査測定用照明装置は、

検査対象に検査光を照射する検査測定用照明装置であって、前記検査対象において反射又は透過又は散乱する光、すなわち物体から返される物体光を撮像する撮像装置とからなる検査測定システムに適用され、

例えば、

検査光を射出する面光源と、前記面光源と前記検査対象との間に設けられ、
前記面光源から放射された光を前記検査対象に照射する検査光として、
前記検査対象に対する照射立体角を形成するためのレンズと、

前記面光源と前記レンズとの間であって、
前記レンズの焦点位置を中心としてその前後に設けられ、
前記検査対象の各点に照射される検査光の照射立体角を遮光形成する第1の遮光マスク、
及び、前記検査光を異なる波長帯域の光や異なる偏波面、若しくは異なる光量をもつ光で部分的に異なる光属性を持つ複数の立体角度領域に区分する第1のフィルター手段の、少なくともいずれか一方の手段、
若しくは、第1の遮光マスクと第1のフィルター手段とを兼ね備えた照射立体角形成手段を備えており、

前記撮像装置で前記検査対象からの光を撮像するときに形成される前記検査対象の各点に対する観察立体角に対して、各点の明暗に所望の変化が得られるように、

照射立体角の形状又は大きさや傾き、

若しくは、

照射立体角内が光属性の異なる前記立体角度領域で構成されている場合には、

該照射立体角内の光属性の異なる前記立体角度領域が、それぞれの該立体角度領域から照射される照射光を元にして物体から返される異なる光属性ごとの物体光の変化の組み合わせ情報として得られるように、前記立体角領域の光属性や形状、及び該照射立体角内における領域区分等を適切に設定できることを特徴とし、

物体光が該照射光に対する正反射光や正透過光に相当する直接光である場合には、

該照射立体角を反映して形成される該直接光の立体角、若しくは光属性の異なる立体角領域と前記観察立体角との包含関係によって、

物体光が該照射光に対する正反射光や正透過光に相当する直接光以外の散乱光である場合には、

該照射立体角による光照射によって生じる各点近傍の照度変化、若しくは光属性の異なる光に対する照度変化によって、

物体から返される物体光のうち、照射光に対する正反射光、若しくは正透過光に相当する直接光成分、及びそれ以外の散乱光成分の、どちらか一方のみ、若しくは双方の変化を取得して、

前記検査対象から前記直接光が返されない領域や、該直接光が連続的に返されない前記不連続領域近傍においても、その物体光の明暗情報によって該不連続領域の三次元形状を取得可能にする、検査測定システム、及び検査測定方式である。
 前記検査測定用照明装置は、
前記第1の遮光マスクと前記面光源との間であって、
前記レンズが前記検査対象に対して結像する近傍に、第2の遮光マスク、及び特定の属性をもつ光のみを透過する第4のフィルター手段の少なくともいずれかひとつをさらに備え、
前記第2の遮光マスク若しくは第4のフィルター手段によって、前記検査対象に対する検査光の照射領域や照射パターンを任意に生成可能な照明装置であってもよい。
 このような検査測定方式及び検査測定システムにおいて、

例えば、前記検査用照明装置であれば、
前記レンズと前記第1の遮光マスク若しくは前記第1のフィルター手段により、
前記検査対象の各点に照射される検査光の照射立体角を略均一に形成したり、
若しくは、略均一に形成された該照射立体角に、
異なる波長帯域や偏波面、若しくは光量等の、異なる光属性をもつ前記立体角度領域を放射状に形成し、

その上で、前記レンズと前記第2の遮光マスク若しくは第4のフィルター手段により、
前記検査対象の必要な部分にのみ前記検査光を照射することができ、

前記検査対象から返される物体光が散乱光の場合は、
前記検査対象の各点近傍の傾き方向、及びその傾き角によって、前記異なる光属性をもつ前記立体角度領域ごとに、該各点近傍の照度が変化することによって、前記観察立体角によって捉えられる各光属性ごとの明暗が、各点近傍の微小面の傾き方向、及び傾き角に対応して、定量的に変化を生じさせ、

若しくは、

前記物体から返される物体光が直接光の場合は、該直接光の立体角と前記観察立体角との包含関係によって、両者の包含関係がどの方向にどれだけ変化したかを、前記異なる光属性をもつ前記立体角度領域ごとに、その変化を定量的に生じさせることができ、
更に、前記不連続領域においても、その直接光の立体角の変化、及び直接光以外の明暗の変化を捕捉することにより、

該変化を識別し、前記検査対象の表面形状において、前記直接光の変化が連続帝に得られない前記不連続領域においても、前記検査対象の複雑な立体形状をした特徴点に対して、それを抽出するに足る濃淡情報を得ることができる。
 言い換えると、
例えば通常の面光源等の照明装置を用いる場合であれば、
前記検査対象の各点に対する照射立体角の形状や傾きは、前記検察対象の各点と前記照明装置の光源面の形状との関係でそれぞれ決まることから、均一な検査光を得ることが難しいし、
特許文献1、2、3に挙げた検査用照明装置では、前記検査対象の各点に対する照射立体角の形状や傾きは略均一に設定することができるものの、
前記検査対象の各点から返される物体光が直接光の場合に該直接光の立体角内に同様に形成される複数の光属性を持つ立体角領域が、前記観察立体角との包含関係において連続的に変化しなければ、前記検査対象上の微小で複雑な立体形状をした特徴点を抽出することはできないのに対して、

本願発明であれば、前記検査対象の各点に対する照射立体角の形状や傾きを略均一とし、しかもその照射立体角内を異なる波長帯域や偏波面、若しくは光量をもつ等の、異なる光属性をもつ適切な立体角度領域に区分することによって、

前記検査対象から返される物体光が直接光の場合は、
該直接光の立体角が、前記観察立体角との包含関係においてどの方向に変化した場合でも、それを前記複数の立体角領域と観察立体角との包含関係の変化による変化量として、連続的に捕捉することができるとともに、

前記検査対象から返される物体光が散乱光の場合においても、
前記検査対象の各点近傍において、該照射立体角から照射される光によって生じる照度変化によって、各点近傍の傾き度合いにお応じて該散乱光の明るさに変化を生じさせ、該照射立体角内に異なる光属性の前記立体角領域がある場合には、異なる光属性ごとの照度変化によって、各点近傍の傾き方向や傾き度合いを、該散乱光の異なる光属性ごとの明るさ変化として定量的に捕捉することができ

前記不連続領域においても、該不連続領域の状態に即して該直接光の立体角の変化や、散乱光の明暗変化を捕捉することによって、前記検査対象の三次元形状を定量的に取得することができる。
 さらに、前記検査対象における表面形状の微小な変化等により反射光や透過光又は散乱光の強度や方向がわずかに変化した場合でも、その変化する部分によって、

前記検査対象から返される物体光が直接光の場合は、前記撮像装置の観察立体角内と包含関係にある前記異なる光属性をもつ立体角度領域ごとにその光量に変化が生じるように、前記第1の遮光マスク若しくは前記第1のフィルター手段によって、前記検査対象の各点に照射される検査光の照射立体角形状及びその角度を、前記撮像装置の観察立体角の大きさや形状及び角度との相対関係で適切に設定し、前記検査対象面の表面性状に合わせて適切に設定することができ、

また、前記検査対象から返される物体光が散乱光の場合は、該散乱光が返される微小面の照度が、前記異なる光属性をもつ立体角度領域ごとにどのように変化するかを、前記第1の遮光マスク若しくは前記第1のフィルター手段によって、前記検査対象の各点に照射される検査光の照射立体角形状及びその角度を適切に設定し、前記検査対象面の表面性状に合わせて適切に設定することができ、該微小な変化等を検出しやすくしたり、または逆に検出されなくしたりすることができる。
 より具体的には、
前記検査対象の各点から返される物体光が散乱光の場合は、前記異なる光属性を持つ立体角領域を前記照射立体角内で放射状に適切に配置することにより、該各点近傍の該異なる光属性を持つ立体角領域に対応する照度を、該各点近傍の傾き方向と傾き角に対応して変化させることができ、
その変化を該異なる光属性ごとの明暗として捕捉することで、該各点近傍の傾き方向と傾き角を定量的に認識することができ、この各点の連続である前記検査対象の表面の三次元形状は、前記撮像装置によって1枚の画像情報として一度に取得することができる。
 前記検査対象の各点から返される物体光の明暗を、前記照射光の照射立体角内に設定した前記異なる光属性ごとの明暗として捕捉するには、例えば、前記撮像装置において、前記観察立体角内に捕捉した物体光に対して、異なる光属性を選択的に撮像可能な第2のフィルター手段を備えればよく、第2のフィルター手段としては、前記撮像装置において、たとえば、前記検査対象における前記反射光や前記透過光を、異なる光属性ごとに選択的に分光したあとでそのそれぞれの光量を光センサーで撮像しても良いし、光センサーの各ピクセルごとにそれぞれ異なる光属性の光のみ選択的に透過するフィルターを備えても構わない。
 また、前記検査対象の各点における照射立体角の中央部を暗部領域とし、周辺部のみが明部領域とすると、明部領域における異なる光属性をもつ前記立体角度領域が、前記検査対象の各点近傍の領域に対して、相対的により小さなものとなり、該各点近傍の領域の傾き角に対する照度変化をより顕著なものとすることができ、該各点近傍から返される物体光が散乱光の場合は、その明暗が、照射立体角の明部領域における異なる光属性をもつ前記立体角度領域に対応して、それぞれ、より顕著に変化する照度によって強調されることにより、該傾き角による明暗変化をより大きく捕捉することが可能となり、前記検査対象の各点近傍の微小な傾きを、より定量的に検出することができる。
 また、更に、前記検査対象の各点における照射立体角の周辺部を離散的に部分的に明部領域として、明部領域における異なる光属性をもつ前記立体角度領域が、前記検査対象の各点近傍の領域の傾き方向に対して、相対的により小さなものとなり、該各点近傍の領域の傾き方向に対する照度変化をより顕著なものとすることができ、該各点近傍から返される物体光が散乱光の場合は、その明暗が、照射立体角の明部領域における異なる光属性をもつ前記立体角度領域に対応して、それぞれ、より顕著に変化する照度によって強調されることにより、該傾き方向による明暗変化をより大きく捕捉することが可能となり、前記検査対象の各点近傍の微小な傾きを、その傾き方向とともに、より確実に検出することができる。
 前記検査対象の各点から返される物体光が直接光であって、
該検査対象の各点に対して照射されている平面半角θiの照射立体角と、該検査対象の各点に対する平面半角θoの観察立体角において、該照射立体角と該観察立体角との光軸が同軸、若しくは正反射方向となるように設定されているとき、

該検査対象の各点から返される直接光が該観察立体角によって観察できる該各点近傍の限界傾き角度Φeは、
該検査対象の各点に照射されている照射立体角の平面半角θiと該検査対象の各点に対する観察立体角の平面半角θoの和の1/2となり、

該検査対象の各点近傍の面が平面部の法線に対してなす傾き角θsの平面時の90°に対して変化した差分角度がΦeより小さい場合は、該観察立体角によって、該検査対象の各点から返される直接光を連続的に捕捉することができ、
該直接光の立体角と該観察立体角との包含関係に応じて、該検査対象の各点近傍の傾き角の度合いを該直接光の明暗として捕捉することができるが、

該傾き角θsの平面時の90°に対して変化した差分角度が、該平面半角θiと該平面半角θoの和の1/2より大きい場合は、
その不連続領域においては、該観察立体角によって、該直接光を捕捉することができなくなり、該不連続領域における該検査対象の三次元形状を識別することができなくなる。
 前記不連続領域において、
照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の各点近傍の面の傾き角θsが、前記検査対象の各点に照射されている照射立体角の平面半角θiと前記検査対象の各点に対する観察立体角の平面半角θoのどちらか小さいほうの角度で示される有効平面半角θより小さい場合は、
該不連続領域を挟む領域が略平面であるとすると、
不連続領域において捕捉される直接光の明暗変化によって特定される該不連続領域の幅を該有効平面半角θの正接で除した値が、その不連続領域を挟む連続領域間の高低差Dとなる。
 また、前記不連続領域の一例として、
未知の半径Rの球体に対して、平面半角θiの照射立体角である照射光が照射され、該球体が平面半角θoの観察立体角である観察光学系で観察され、なおかつ該照射立体角と該観察立体角の光軸が同軸方向である場合、
該球体の半径Rは、
該球体の頂上部から返される直接光が観察される円状の範囲の半径r1を、前記限界傾き角度Φeの正弦で除することによって得た値R1として求めることができる。
 また、照射立体角と観察立体角の光軸が同軸であって、
未知の半径Rの球体が、前記検査対象の略平面部に存在する場合は、
該球体の半径Rを、
直接光が観察される該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の半径r2の値をR2として求めることができるほか、
直接光が観察される該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅r3に前記有効平面半角θの余弦を乗じたものに対して、前記有効平面半角θの正弦から前記有効平面半角θの余弦を差し引いて1を加えたもので除した値R3として求めることができる。
 したがって、照射立体角と観察立体角の光軸が同軸であって、
未知の半径Rの球体が、前記検査対象の略平面部に接して存在している場合の該球体の頂上部の該略平面部に対する高さDは、
該球体の頂上部から返される直接光が観察される円状の範囲の半径r1から求めた前記R1、
若しくは、
該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の半径である前記R2、
若しくは、
該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅r3から求めた前記R3の、いずれかの値の2倍の値として求めることができる。
 このとき、前記R1、R2、R3の値はすべて同じ値となるが、もし、この3つの値のすべてが同じでない場合は、前記球体が完全な球体でないことを示しており、おおむね、該R1の値は該球体の中心から上部の高さに対応し、該R2の値は該球体の中心から水平方向の半径に対応し、該R3の値は該球体の中心から接地面までの高さに対応していることから、該3つの値より、該球体の前記検査対象の略平面部に対する相対位置、及びその概略形状を得ることが可能となる。
 また、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rの2倍より大きい値で存在している場合、
前記R1と前記R2の値は等しいが、前記R3の値が、前記R1、及び前記R2の値より大きく観察され、
その高さDは、
該球体の半径Rと前記有効平面半角θの余弦の逆数、及び1から該有効平面半角θの余弦を差し引いた値を乗じた値を補正項ΔLとして、
前記R1の値、若しくは前記R2の値に対して、前記r3の値から該補正項ΔLを差し引いた値をさらに前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 また、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rの2倍より小さく、かつ該球体の半径Rに等しいかまたは大きい値で存在している場合、
前記R1と前記R2の値は等しく、前記R3の値は、前記R1、及び前記R2の値より小さく観察され、
その高さDは、前記R1の値、若しくは前記R2の値に対して、前記r3の値から前記補正項ΔLを差し引いた値をさらに前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 また、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rより小さい値で存在しており、前記R1の値が、前記R2の値より大きく、前記R3の値が0でない値で観察される場合、
その高さDは、前記R1の値に対して、前記補正項ΔLを前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 また、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rより小さい値で存在しており、前記R1の値が、前記R2の値より大きく、前記R3の値がほぼ0で観察される場合、
その高さDは、前記R1の値に対して、前記R1の値の二乗から前記r2の値の二乗を差し引いた値の平方根を差し引いた値として求めることができる。
 前記検査対象の前記不連続領域に対する前記検査光の照射立体角に関し、
異なる波長帯域の光や異なる偏波面、若しくは異なる光量をもつ光で部分的に異なる光属性を持つ複数の立体角度領域に区分し、
該立体角度領域を該照射立体角の光軸に対して放射状に配置すると、該不連続領域の三次元形状において、その面の傾き方向や傾き角度について全方位的にそれぞれ異なる形状変化を取得することができる。
 本発明によって、前記検査対象の各点に対して略均一な照射立体角をもつ検査光を前記検査対象に照射した場合に、

欠陥等によりその反射方向又は透過方向が変化する際に生じる前記直接光の立体角の変化に関し、
その立体角の変化に対して、前記観察立体角内の光量変化が最大となり、それ以外の変化に対しては最小となるように、前記検査光の照射立体角と前記撮像装置の観察立体角との相対関係を、その形状や角度及び大きさに対して調整することにより、前記直接光の立体角の変化のみを選択的に捉えることが可能となり、

また、欠陥等によりその明るさに変化が生じる散乱光に関しては、
前記検査光の照射立体角と前記検査対象の各点近傍の傾きとの相対関係を調整することにより、各点近傍の照度変化を適切に設定して、該散乱光の所望の明るさ変化を的確にとらえることが可能となる。
 また、さらに、前記照射立体角内に異なる光属性をもつ任意の前記立体角度領域を適切に設定することにより、その立体角度領域ごとの光量変化を同時に観察することができ、前記検査対象の複雑な立体構造を持つ様々な特徴点における光の変化に対応して、その立体構造の各方向における変化に対して、連続的に光の変化を補足することが可能となる。
 したがって、このように微小な複雑な立体構造を持つ欠陥等によるごくわずかな光の変化を捉えることは、
その検査光の照射立体角の形状や角度、及び大きさが前記検査対象面の各点に対して異なってしまう従来の照明装置では極めて難しく、
特許文献1、及び特許文献2に示された検査用照明でも、前記物体光の立体角内に含まれる光属性の異なる複数の立体角領域と前期観察立体角との包含関係において、その包含関係の変化がどの方向に対しても検出できる立体角構造は示されておらず、
特許文献3に示された検査システム及び検査方法でも、前記検査対象の各点から返される直接光が該各点に対する観察立体角によって捕捉できなくなる不連続領域については、その三次元形状を取得する方法が示されていないが、
本発明によると、該不連続領域から返される光が直接光であっても散乱光せあっても、その微小な変化を取得することにより、全方位的にその三次元形状を捉えることができるようになる。
 前記検査対象の各点に照射される検査光の照射立体角の大きさを略均一に制御するとともに、照射立体角の傾き分布を光軸中心に対して調節できるようにするには、前記第1の遮光マスク、及び前記第1のフィルター手段、若しくは両者の機能を統合した前記第3のフィルター手段を、前記レンズの焦点位置を中心とする前後の位置に配置すればよい。

以降、前記第1の遮光マスクに代表させて記述すると、すなわち、前記第1の遮光マスクの開口部を変化させることで、前記検査対象の各点における照射立体角を所望の形状や大きさに設定することができる。また、前記第1の遮光マスクを、前記レンズの焦点位置に配置すれば、前記検査光の照射立体角の光軸はすべて前記検査光の光軸に平行となり、前記レンズの焦点位置よりレンズ側に配置すれば前記検査光が広がる方向へ、前記レンズの焦点位置より外側に配置すれば前記検査光が狭まる方向へ、それぞれ前記検査光の照射立体角を傾かせることができる。

このように、前記第1の遮光マスクの配置と、その開口部を変化させることにより、前記検査対象からの反射光や透過光の立体角に直接影響を及ぼす前記検査光の照射立体角について様々な調節が可能となり、

前記検査対象から返される直接光を観察する場合は、該直接光の立体角と前記撮像装置の観察立体角との相対関係を、
前記検査対象から返される散乱光を観察する場合は、該照射立体角と前記検査対象の各点近傍の面の傾きとの相対関係を、

所望の明暗情報を得るために適した様態とすることができる。

なぜなら、このようにすれば、

前記検査対象から返される直接光の明るさを決める、該直接光の立体角と前記撮像装置の観察立体角との包含関係の変化や、
前記検査対象から返される散乱光の明るさを決める、前記各点近傍の照度の変化を
最適化することができ、

使用する観察光学系がテレセントリック光学系ではなく、視野範囲の外側と光軸中心でその観察立体角の光軸傾きが変化するような光学系に対しても、若しくは、前記検査対象が湾曲した面を持っている場合においても、その各点に対する照射立体角と観察立体角との相対関係、若しくは該湾曲した面の各点近傍に対する照射立体角の光軸の相対関係を略一定に保つことができるようになり、微小な変化や複雑な変化をより、的確に捕捉できるようになる。
 またさらに、前記照射立体角内に設定された、異なる光属性をもつ任意の前記立体角度領域は、前記検査対象に対して均一に設定された前記照射立体角内をさらに任意の立体角度領域として設定可能であり、単に照射立体角と観察立体角、若しくは照射立体角と前記検査対象の各点近傍の面の法線との相対関係で、前記検査対象の各点の明るさが決まるだけでなく、前記立体角度領域ごとのさらに微小な物体光の変化を、別途、前記照射立体角と前記観察立体角との形状や光軸等に関する相対関係、若しくは照射立体角と前記検査対象の各点近傍の面の法線との相対関係を設定しなおすことなく、前記検査対象の視野範囲のすべての点で略同じ条件で、前記観察立体角に対する相対関係の変化、若しくは前記検査対象の各点近傍の面の法線との相対関係による照度変化による、該各点の明るさとして、定量的に同時観察することが可能となる。
 このようにして、本発明による検査測定用照明装置、及び検査測定方式の少なくともいずれかを使用し、前記検査対象において反射又は透過または散乱する光を撮像する撮像装置とからなる検査測定システムにおいて、
微小で、複雑な立体形状をした特徴点に対する所望の明暗情報をその立体形状のどの方向に対する傾きに対しても連続的に得ることができるのは、

前記検査対象の各点における明暗が、前記検査対象の各点からの直接光又は散乱光の前記撮像装置に向かう光量で決まっており、

該光量は、前記検査対象の各点に対する照射立体角がすべて均一なので、
前記検査対象の各点からの該直接光と該撮像装置の観察立体角との包含関係、
若しくは該照射立体角と該各点近傍の面の法線となす角度で決まっていることから、

前記検査対象の各点からの反射光又は透過光に直接影響する前記検査光の照射立体角を略均一に調節する機能を備え、

なおかつその照射立体角内を異なる光属性、すなわち波長帯域や偏波面、若しくは光量をもつ任意の立体角度領域に区分し、その立体角度領域を光軸を中心として放射状に配置することによって、

前記撮像装置がその区分領域ごとに選択的にその光量を観察でき、なおかつその観察立体角の光軸に対して前記検査対象の各点から返される物体光の光軸がどの方向に傾いても、その傾き方向と傾きの度合いの双方を、前記複数の異なる光属性を持つ区分領域ごとに、連続的な光量の変化として捕捉することができるようにしたことによる。
 前記撮像装置によって撮像される前記検査対象の明暗情報を、その撮像範囲全体に亘って該検査対象の面の傾きに対して略均一な変化を示すものとするためには、
前記撮像装置によって前記検査対象の各点に形成される観察立体角と、前記検査対象の各点からの反射光又は透過光の立体角との包含関係、
若しくは前記検査対象の各点に照射される前記照射立体角と各点近傍の面の法線となす相対角度関係が、

その変化の度合いに応じてが略一定に保たれなければならない。

これは、前記第1の遮光マスク、及び前記第1のフィルター手段を、乃至は前記第3のフィルター手段を、前記レンズの焦点位置を中心とする前後の位置で移動させることによって、前記検査光の照射立体角、及びその照射立体角内に形成された前記立体角度領域を、該検査対象の各点に対して、略均一な形状及び大きさとし、その傾き角度を調節して前記検査対象の各点における前記観察立体角の傾きに合わせこみ、

若しくは、該検査対象の基準面の法線の傾きにに合わせこむことで実現することができる。
 また、前記検査対象に対する検査光の前記照射立体角、及びその照射立体角内に形成された任意の前記立体角度領域を、その照射範囲の各点に対して、
前記観察立体角との相対関係、若しくは前記検査対象の各点近傍の面の法線との相対関係を略一定に保ちながら、
照射領域又は照射形状や照射パターンを任意に生成可能にするためには、
前記第1の遮光マスク、若しくは前記第1のフィルター手段の少なくともいずれかひとつ、若しくは前記第3のフィルター手段に加えて、前記第2の遮光マスク若しくは前記第4のフィルター手段の少なくともいずれかひとつを備え、前記レンズによって前記検査対象に結像する位置近傍に配置すればよい。このようにすることで、前記検査光の前記照射立体角、及びその照射立体角内に形成された任意の前記立体角度領域の形状や大きさ及び傾きを略均一に保ちながら、前記検査光の前記検査対象に対する照射領域及びその照射領域の光属性と、前記検査対象の各点に対するその照射立体角及び特定の光属性をもつ前記立体角度領域の双方を独立に調節することができる。
 また、さらに簡易に、前記検査対象の立体形状等について測定検査できるようにするには、
前記第1の遮光マスク及び第1のフィルター手段、若しくは第3のフィルター手段に加えて、
所定のマスクパターンが形成された前記第2の遮光マスク及び第4のフィルター手段を用い、このパターンを前記検査対象に対して結像させてやればよい。
このようなものであれば、前記第1の遮光マスク及び第1のフィルター手段で調節された略均一な照射立体角及び特定の光属性をもつ立体角領域によって、前記撮像装置で均一な明暗変化をもつ明暗情報を得ることができ、前記検査対象の形状に問題があれば前記撮像装置で明暗情報として得られるパターンに歪みが生じるので、簡易に形状不良を検出することができる。
 前記検査対象の各点における散乱光の明るさは、該各点近傍の面の照度、及び該各点の散乱率によって決まっており、
該各点に照射される光の照射立体角の形状や大きさが一定で、該照射立体角の光軸が、前記検査対象の基準となる面の法線となす角度がすべて同じであれば、該各点近傍の照度は、該各点近傍の面の法線が、該照射立体角の光軸となす角度の余弦に比例して決まるので、該散乱光の明るさは、該各点近傍の面の傾き角の余弦に比例した明るさとなり、該散乱光の明るさの変化より、前記検査対象の三次元形状を検知することができるが、このままでは該照射立体角の形状や大きさに依存する一定の明暗情報しか得ることができない。
そこで、前記検査対象の各点に対する照射立体角内に異なる波長帯域や偏波面、若しくは光量をもつ任意の立体角度領域を形成し、なおかつ該照射立体角の光軸に対して放射状に配置すると、それが前記検査対象の各点近傍の面の照度に、それぞれ異なる波長帯域や偏波面をもつ照度として反映されるので、
該各点から返される散乱光の明るさを、それぞれ異なる波長帯域や偏波面をもつ光の明るさとして観察すれば、その明るさの比率によって、該各点近傍の面がどちらの方向にどの程度傾いているかを検知することができる。
 このようにするためには、
ひとつは、
前記検査光の照射方向を変え、なおかつ前記検査対象からの光を透過して前記撮像装置で撮像できるようにするためのハーフミラーを備え、前記検査光の前記検査対象の各点に対する照射立体角を適切に調整して、

前記検査対象の各点に対する前記照射立体角の光軸を同一方向とし、
前記撮像装置の前記検査対象の各点に対する観察立体角の光軸と同軸として、

該観察立体角で捕捉される該検査対象の各点から返される物体光の明るさ変化が、前記検査対象の各点近傍の面の傾きに対して、どの方向に対してもその傾き度合いに対応するようにすることによって実現でき、

もうひとつは、
前記検査光の照射方向に対して前記検査対象に立てた法線に線対称な方向に前記撮像装置の観察立体角を設定し、前記検査対象の各点の反射光又は透過光の立体角と前記撮像装置の前記検査対象の各点に対する観察立体角の光軸を略一致させることで、同様に実現することができ、

更に、主に散乱光を観察する場合には、前記検査対象の各点に対する照射立体角の形状や大きさ、並びにその光軸の傾きをすべて同一として、該各点近傍の面の傾き方向や傾き度合いを、該各点から返される散乱光の明るさに反映させることで、同様に実現することができる。
 さらに、前記撮像装置で、
前記反射光又は前記透過光の立体角内に反映された、それぞれ異なる波長帯域や偏波面、若しくは光量をもつ前記立体角度領域の光、
若しくは、前記散乱光のそれぞれ異なる波長帯域や偏波面、若しくは光量に対する照度変化を、
選択的に撮像可能な第2のフィルター手段を備えることで、それぞれ異なる波長帯域や偏波面、若しくは光量に対する前記立体角度領域と前記観察立体角との包含関係によって発生する明暗変化、乃至は前記散乱光の明暗変化を同時に検知することができる。
 また、前記撮像装置、若しくは前記撮像装置で得られた画像情報に対し、
前記検査対象の各点から返される物体光の明るさに対して閾値を設定し、その閾値によって該検査対象の撮像領域を明部領域と暗部領域とに分け、例えば明部領域を明視野領域として、暗部を暗視野領域として、
明視野領域については、該各点の傾き角度によって変化する直接光の立体角と観察立体角との包含関係で発生する明るさの変化を用い、
暗視野領域については、該各点の傾き角度の余弦に比例した照度に対応する散乱光の明るさの変化を用いて、

それぞれの領域の三次元形状を、同時に検知することができる。
 また、前記撮像装置で取得する画像情報を、浮動小数点形式で得られるようにしておくと、
前記明部領域と前記暗部領域とに分け、それぞれの領域に適した算術演算を適用して、該領域における三次元形状を同定することが可能となる。
 このように本発明の検査測定用照明装置、及び検査測定システム、及び検査測定方式によれば、

検査対象の各点に照射される検査光の照射立体角及びその暗部領域、及びその照射立体角内に形成される異なる波長帯域や偏波面、若しくは光量をもつ立体角度領域の大きさや態様を自由に調整することができるので、

ひとつには、
前記検査対象の各点からの反射光又は透過光の立体角、及びその立体角内に反映された、それぞれ異なる波長帯域や偏波面、若しくは光量をもつ複数の立体角度領域と、
前記撮像装置で前記検査対象の各点に形成される観察立体角との包含関係を略均一に設定することができ、

もうひとつには、
前記検査対象の各点からの散乱光に対しては、該各点近傍の照度を、照射立体角、及び該照射立体角内に形成されるそれぞれ異なる波長帯域や偏波面、若しくは光量をもつ複数の立体角度領域と該各点近傍の面との相対関係によって、該各点近傍の面の傾き方向や傾き度合いに応じて変化させることができ、

従来検出の難しかった微小で複雑な立体構造を持つ欠陥等であって、
前記検査対象の各点から反射光又は透過光が、該各点に対する観察立体角では捕捉できない不連続領域ににおいても、

該不連続領域の三次元情報を、

該不連続領域において散乱光が返されておれば、該不連続領域の面の傾き情報が定量的に反映された、異なる波長帯域や偏波面、若しくは光量を持つ散乱光の明暗情報として取得できるほか、

該不連続領域における段差や高低情報を、その段差部の各点から返され、異なる波長帯域や偏波面、若しくは光量を持つ直接光の明暗変化として取得でき、

表面性状が著しく異なっていて、連続した面の傾き情報を、該領域から返される直接光、若しくは散乱光で連続して得ることのできない不連続領域に領域においても、三次元情報を得ることが可能となる。
本発明の一実施形態に係る検査測定用照明装置、及び検査測定システムの外観を示す模式的斜視図。 直接光と散乱光の輝度差 同実施形態における検査測定用照明装置、及び検査測定システムの照射立体角を形成する主要部分の内部構造、及び検査対象の各点における照射立体角を示す模式図。 同実施形態における検査測定用照明装置、及び検査対象を傾けて設置した検査システムの照射立体角を形成する主要部分の内部構造、及び検査対象の各点に形成される照射立体角を示す模式図。 第1遮光マスク及び第1フィルター手段、及び第3フィルター手段の一構成例。 本発明の一実施形態に係る照射立体角、及び該照射立体角内に形成される光属性の異なる複数の立体角領域と、該照射立体角、及び該複数の立体角領域が反映されて物体から返される直接光の立体角と、該直接光を観察する観察立体角との包含関係、及び該直接光が返される点の近傍の面が傾いた場合に該包含関係がどのように変化するかを示す模式図。 本発明の一実施形態に係る照射立体角、及び該照射立体角内に形成される光属性の異なる複数の立体角領域と、検査面の照度の関係を模式的に示した概略図。 照射立体角と観察立体角の光軸が同軸である場合の有効平面半角を持つ有効照射立体角を示した模式図 検査対象から直接光が観察されない不連続領域を含む近傍領域における直接光の観察輝度の変化を示す模式図 検査対象から直接光が観察されない不連続領域面の鉛直方向からの傾き角が、有効平面半角と等しい場合の近傍領域における直接光の観察輝度の変化を示す模式図 検査対象から直接光が観察されない不連続領域面の鉛直方向からの傾き角が、有効平面半角より小さい場合の近傍領域における直接光の観察輝度の変化を示す模式図 検査対象から直接光が観察されない不連続領域面の鉛直方向からの傾き角が、0度の場合の近傍領域における直接光の観察輝度の変化を示す模式図 検査対象から直接光が観察されない不連続領域面の鉛直方向からの傾き角が、マイナスの場合の近傍領域における直接光の観察輝度の変化を示す模式図 検査対象に球体が接地して存在している場合の、近傍領域の物体光の輝度変化と三次元形状との相関を示す模式図。 検査対象に球体が離れて存在している場合の、近傍領域の物体光の輝度変化と三次元形状との相関を示す模式図。 検査対象に球体の一部がその半径より大きい高さで接地している場合の、近傍領域の物体光の輝度変化と三次元形状との相関を示す模式図。 検査対象に球体の一部がその半径の高さで接地している場合の、近傍領域の物体光の輝度変化と三次元形状との相関を示す模式図。 検査対象に球体の一部がその半径よりごく小さい高さで接地している場合の、近傍領域の物体光の輝度変化と三次元形状との相関を示す模式図。 検査対象から返される物体光の直接光と散乱光の輝度差を説明する模式図。 直接光、若しくは散乱光のみによって連続的にその表面の三次元形状を検査測定できない不連続領域を持つ検査面に対して、同一の照射立体角を持つ光を照射することによって、その明るさ、若しくは偏光状態によって直接光を返す明視野領域と散乱光を返す暗視野領域とに区分して画像解析することにより、連続的な三次元形状の検査測定を可能にする検査測定方法を示す模式図。
 本発明の第1実施形態について説明する。
 第1実施形態の検査測定用照明装置100と、撮像装置C、及び撮像装置Cによって撮像された画像を解析する画像解析手段300により構成される検査測定システム200は、ハーフミラー4を用いて、検査対象Wを撮像する方向と、検査対象Wを照明する方向とが一致する、いわゆる同軸照明であり、検査対象Wの三次元形状や、欠陥などの特徴点が撮像装置Cにより撮像された画像中に明暗差として現れるようにして、その明暗差を解析することによって該検査対象Wの三次元形状や、欠陥などの特徴点を同定するために用いられるものである。
また、第1のフィルターF1は特定の属性をもつ光を選択的に透過させ、その属性をもつ光で構成される立体角領域を形成するための手段であり、光を遮蔽するか透過するかで照射立体角を形成する第1の遮光マスクM1と、立体角を形成するという作用では同じであり、両者の機能を統合して単一の部品とした第3のフィルター手段F3と共に、図1から図3では、第1の遮光マスクM1を代表として図示し、対応記号のみM1にF1,F3と並記した。
また、さらに、特定の属性をもつ光のみを透過する第4のフィルター手段F4は、図1において、第2の遮光マスクM2を代表として図示し、対応記号のみM2にF4と並記した。
ここで、検査対象Wの欠陥などの特徴点とは、例えば、表面の傷、凹み、歪み、外観の形状、穴の有無等多岐に亘る不具合やその他の特徴種を含むものである。
 前記検査用照明装置100は、図1の斜視図、及び図2の模式図に示すように、概略筒状の筐体を有するものであり、その内部と検査対象W、及び撮像装置Cに到る部分に、検査光を面光源1から検査対象Wに照射する照射光路L1と、検査対象Wからの反射光又は透過光が撮像装置Cに至るまでの反射・透過光路L2とが形成されており、ハーフミラー4が設置されている場合には、前記筐体の上面開口側に撮像装置Cが取り付けられ、前記筐体の下面開口側に検査対象Wが載置されるものである。
 なお、図1、及び図2に示すように、ハーフミラー4が設置されている場合には、照射光路L1は、面光源1からハーフミラー4に到る部分と、ハーフミラーによって部分的に反射されて検査対象に到る部分から構成され、ハーフミラー4が設置されていない場合には、照射光路L1によって直接検査対象に検査光が照射され、図2の場合、検査対象Wからの透過光が撮像装置Cに到るまでの光路がL2となる。ただし、図3に示すように、検査対象Wから返される物体光は反射光や散乱光であってもよく、その場合はその物体光を観察できる位置に撮像装置Cが設置されればよい。
 前記照射光路L1上には、検査光が進む順番に、
検査光を射出する面光源1と、
レンズ2の焦点位置を中心とする前後の位置に設けられた第1の遮光マスクM1と、第1のフィルター手段の少なくともいずれかひとつ、若しくはその代わりに両者の機能を兼ね備えた第3のフィルター手段F3と、
前記面光源1から射出された検査光から検査対象Wに対する照射立体角を形成するレンズ2とが配置され、
ハーフミラーが設置される場合には、さらに加えて、前記検査光を下方へと部分反射するように、前記反射・透過光路L2及び照射光路L1に対して傾けて設けられたハーフミラー4を配置し、
また、さらに、検査光の照射領域を形成する第2の遮光マスク及び第4のフィルター手段を設置する場合は、
前記面光源1と前記第1の遮光マスク及び前記第1のフィルター手段若しくは第3のフィルター手段との間であって、前記レンズ2によって前記検査対象Wに結像される位置近辺に第2の遮光マスクM2若しくは特定の光属性をもつ照射領域を形成する第4のフィルター手段の少なくともいずれかひとつが設置され、
前記検査光は、前記検査対象Wへと照射される。
 また、ハーフミラーが設置される場合には、
前記反射・透過光路L2上にハーフミラー4が設置され、このハーフミラー4によって部分透過された反射光が撮像装置Cによって観察され、
ハーフミラーが設置されない場合は、
図2において検査対象Wからの透過光が撮像装置Cに到るまでの光路がL2、
若しくは、
図3において検査対象Wからの反射光、若しくは散乱光が撮像装置Cに到るまでの光路がL2となり、
この光路L2上には図1~図3においてはハーフミラー4以外に存在するものはないが、場合によっては前記検査対象からの迷光をカットしたりする目的で、検査対象からの反射光又は透過光、若しくは散乱光を部分的に遮光するマスク若しくは絞り等を設置してもよい。
 以下では各部材の配置や構成、機能について詳述する。
 前記面光源1は、例えばチップ型LEDや拡散板等により略均等拡散面をもつ光射出面11が形成されたものであるが、前記検査対象Wに対する照射立体角が略均一になるようにその射出形態が制御されたものであってもい。
また、前記面光源1は、図1に示すように、筒状の筐体内を照射光軸方向に進退可能に取り付けられており、検査光の照射開始位置を調整できるようにしてある。
このようにすると、後述する第1の遮光マスクM1、及び第1のフィルター手段F1、若しくは両者の機能を兼ね備えた第3のフィルター手段F3による照射立体角、及びその照射立体角内の異なる光属性を持つ任意の立体角度領域の形状や光軸の制御や、第2の遮光マスクによる照射領域の形状や光軸の制御とは独立して、前記第1の遮光マスクM1、及び前記第1のフィルター手段F1、若しくは両者の機能を兼ね備えた前記第3のフィルター手段F3と、前記第2の遮光マスクM2及び前記レンズ2及び前記面光源1の位置関係で決まる検査光の照射範囲に対して、前記検査対象Wにおける検査光の均一度や輝度分布等を制御することができる。すなわち、照射領域によって照射光路が異なるので、例えば、前記面光源1に所定の輝度分布、若しくは発光波長分布、偏光特性分布等を備えておくと、照射領域によってその分布を変化させることもできるし、均一にすることもできる。
 前記第2の遮光マスクM2、及び前記第4のフィルター手段は、図1に示すように、筒状の筐体内を照射光軸方向に進退可能に取り付けられており、前記レンズ2と前記検査対象との距離によって、前記第2の遮光マスク自身が前記検査対象に対する結像位置近傍に調整できるようにしてある。このようにすることによって、図7に示すように、前記面光源1からの照射光を部分的に遮光、若しくは特定の属性をもつ光のみを遮光することができ、前記第2の遮光マスクの開口部、若しくは前記第4のフィルターの特定の属性をもつ光のみを透過する部分の形状が検査対象Wに略結像されることから、前記第2の遮光マスクM2の開口部の形状や大きさ、若しくは前記第4のフィルター手段のパターン形状を変えることにより、前記検査対象Wにおける検査光の照射範囲、若しくは特定の属性をもつ光を照射する照射領域を任意に設定することができる。また、この調整や設定は、後述する前記第1の遮光マスクM1、及び前記第1のフィルター手段F1、若しくは両者の機能を兼ね備えた前記第3のフィルター手段F3による照射立体角の制御とは独立して行うことができる。
 前記第1の遮光マスクM1、及び前記第1のフィルター手段F1、若しくは両者の機能を兼ね備えた前記第3のフィルター手段F3は、前記レンズ2と前記面光源との間であって、前記レンズ2の焦点位置を中心とする前後の位置に設けられ、図1に示すように、筒状の筐体内を照射光軸方向に進退可能に取り付けられている。ここで、前記第1の遮光マスクM1を前記第1のフィルター手段F1、及び両者の機能を兼ね備えた前記第3のフィルター手段F3の代表例として説明すると、例えば、前記第1の遮光マスクM1を前記レンズ2の焦点位置に設けた場合は、図2のように、前記検査対象Wの各点における照射立体角ISの大きさと形状と傾き角がすべて同じになり、このことは、図3に示したように、前記検査対象の各点と前記レンズ2との距離が異なる場合でも同様である。また、このことは、前記ハーフミラー4の有無に拘わらず、また前記検査対象Wと前記レンズ2との距離にも拘わらず、同様である。以上の前記第1の遮光マスクM1を代表例として説明したことは、前記第1のフィルター手段F1、及び両者の機能を兼ね備えた前記第3のフィルター手段F3によって形成される前記立体角領域についても同様である。
 前記第1の遮光マスクM1、及び前記第1のフィルター手段F1、及び前記第3のフィルター手段F3は、たとえば図4に示したように、ほぼ光を遮断する遮光部M1が任意の形状で開口部を形成しており、図4では周囲が遮光部で中心部か開口部として図示しているが、その開口部の一部が更に遮光部となっても構わない。また、遮光部が特定の属性をもつ光のみを遮光する部分であってもよく、さらに図4では、M1の開口部に前記第1のフィルター手段F1が設定されており、ここでは3種類の光属性の異なる立体角領域を形成するためのパターンF11、F12、F13が設定されている。ここでは光軸を中心として放射状のパターンとなっているが、これも前記検査対象の着目する特徴点によって任意のパターンに最適化してもよい。この前記第1の遮光マスクM1と前記第1のフィルター手段F1を統合したものが前記第3のフィルター手段F3に相当する。
 図4に示した、前記第1の遮光マスクM1、及び前記第1のフィルター手段F1、若しくは前記第3のフィルター手段F3を使用すると、例えば図5に示すように、前記検査対象Wの各点Pに対して照射立体角ISを形成することができる。この照射立体角はISは、前記第1の遮光マスクM1の中心部の開口部によってその一番外側の形状が決定され、さらにその照射立体角内に、前記第1のフィルター手段F1によって、それぞれ前記第1のフィルター手段F1のマスクパターンF11、F12、F13に対応して、それぞれ異なる光属性を持つ立体角領域IS1、IS2、IS3が形成される。
 以上で述べた、照射立体角が略均一に形成できる本発明の検査用照明に対して、従来の通常の光源面のみを用いる照明では、検査対象Wの各点に対する検査光の照射立体角ISは、各点によってその形状や大きさ、及び傾きが異なってしまう。これは、前記検査対象Wの各点に対する照射立体角ISが、その各点から照明を逆に見たときの面光源1の射影形状、及び大きさ、及び角度で一意に決まっているからである。
一方で、前記検査対象の各点における観察立体角OSは、前記撮像装置Cの瞳位置、及び瞳形状、及び瞳の大きさと前記検査対象の各点との相対関係で決まっている。
ここで、前記検査対象Wから返される物体光のうち主に散乱光以外の直接光を観察する場合、
撮像装置Cによる各点の明るさは、各点において照射立体角ISを直接反映する反射光の立体角RS若しくは透過光の立体角TSと前記観察立体角OSとの包含関係で決まっている。
 ここで、図5を用いて、前記検査対象Wから返される物体光のうち主に散乱光以外の直接光を観察する場合において、照射立体角と観察立体角との包含関係と前記撮像装置が得られる明暗情報について説明する。
 図5は、前記検査対象W上の点Pに着目して、前記点Pに照射立体角ISなる検査光を照射した場合を考え、前記検査対象の点Pを含む面が部分的にφだけ傾いたときに、点Pの明るさがどのように変化するかを、前記撮像装置Cが点Pに形成する観察立体角OSに対して、点Pからの反射光の立体角RSが、RS′のように変化したときの、各立体角領域と観察立体角OSとの包含関係がどのようになるかを示している。
 図5において、点Pからの前記反射光の立体角RS、及び立体角RS内の立体角領域RS1~3の形状と大きさは、点Pに対する検査光の照射立体角IS、及び照射立体角IS内の立体角領域IS1~3に等しく、これはRS′においても同様である。
また、前記反射光の立体角RS、及びRS′の傾きは、点Pに立てた検査面の法線に対して前記検査光の照射立体角ISの線対称となる方向に、前記検査光の照射立体角ISの傾きθと同じだけ傾いている。
したがって、点Pを含む検査面が平面で傾いていない図5の(a)では、前記撮像装置Cが点Pに対して形成する観察立体角OSが、前記反射光の立体角RSとその光軸が一致しており、前記撮像装置Cで捉えられる点Pの明るさは、その観察立体角OSと前記反射光の立体角RS、及び立体角RS内の立体角領域RS1~3との包含関係で、それぞれの異なる光属性ごとの明るさとして決まっている。
 次に、図5の(b)において、前記検査対象Wの点Pを含む面が部分的にφだけ傾いた場合を考えると、
点Pからの反射光の立体角RSは、図中点線で示したRS′のように2φだけ傾くことになる。

このときに、点Pからの反射光の立体角RS′が、前記撮像装置Cが点Pに対して形成する観察立体角OSとなんらの包含関係をもたなければ、前記撮像装置Cから見た点Pの明るさは0となるが、前記撮像装置Cが点Pに対して形成する前記観察立体角OSと部分的に包含関係があれば、両者が重なった立体角部分に含まれる光、すなわち、その観察立体角OSと前記反射光の立体角RS′、及び立体角RS′内の立体角領域RS1~3との包含関係が、点Pのそれぞれの異なる光属性ごとの明るさとして反映される。

すなわち、点Pからの反射光の立体角RS′の平面半角が、前記反射光の傾き角2φから前記観察立体角OSの平面半角を差し引いた角度より大きく、なおかつ前記反射光の傾き角2φに前記観察立体角OSの平面半角を加えた角度より小さい場合は、点Pの明るさが前記反射光の傾き角2φによって変化する。
しかし、もし前記照射立体角ISの平面半角が、前記検査対象Wの部分的な傾きによって生じる反射光の傾き角2φに前記観察立体角OSの平面半角を加えた角度より大きい場合は、点Pの明るさは変化しない。
また、観察立体角OSの平面半角が、前記反射光の傾き角2φと前記反射光の立体角RSの平面半角を加えたものより大きければ、やはり点Pの明るさは変化しない。

このことは、結局、点Pの明るさは、点Pからの反射光の立体角RSと点Pに対する観察立体角OSの包含関係で決まっており、点Pに照射される検査光の照射立体角ISと点Pに対する観察立体角OSとの、形状、及び大きさ、及び傾きに関する相対関係を設定することで、点Pの明るさの変化を制御できる、ということを示している。
 さらに、図5を用いて、検査対象に照射される照射立体角内に異なる光属性を持った立体角領域が
照射光の光軸に対して放射状に存在する場合に、前記検査対象上の点Pの明るさが、前記点Pより反射される反射光の立体角と撮像装置Cが前記点Pに対して形成する観察立体角との包含関係によってどのように変化するかを詳述する。
 図5に示した照射立体角ISは、その内部が異なる光属性を持った立体角領域IS1、IS2、IS3で形成されている。このとき、検査対象W上の点Pから反射される反射光の立体角RSは、前記照射立体角ISと同じで、その光軸は前記検査対象W上の点Pに立てた法線に対して、前記照射立体角ISと線対称の方向であり、前記反射光の立体角RSの内部にも、前記照射立体角内に形成されていた異なる光属性を持った立体角領域IS1、IS2、IS3に対応して、そのそれぞれと同じ光属性を持つ立体角領域RS1、RS2、RS3が形成される。
 図5では、簡単のため、撮像装置Cによって前記検査対象W上の点Pに形成される観察立体角OSが、前記反射光の立体角RS、及び前記反射光の立体角RSないに形成されている異なる光属性を持つ立体角領域RS1、RS2、RS3に対して
その変化を捕捉するために十分な大きさを持つ場合を考えており、図11の(a)では、前記観察立体角OSが前記立体角領域RS1に完全に包含されている場合を示している。このときに、前記撮像装置Cにおいて、前記異なる光物性の光をそれぞれ選択的に検出できる第2のフィルター手段を備えておれば、前記検査対象上の点Pの明るさは、前記立体角領域RS1のもつ光属性の光と、前記立体角領域RS2のもつ光属性の光と、前記立体角領域RS3のもつ光属性の光の、ある割合で表される明るさになる。
 次に、図5の(b)に示すように、前記検察対象Wの面がφだけ傾いた場合を考えると、前記反射光の立体角RSの光軸は2φだけ方向き、前記観察立体角OSは、前記異なる光物性を持つ立体角領域のRS1とRS2、及びRS3に、或る割合で包含されており、その割合は、前記反射光の立体角RSの光軸がどの方向に傾いても、異なる割合となる。このとき、前記検査対象上の点Pの明るさが、前記立体角領域RS1とRS2、及びRS3のもつ光属性の光の或る割合で、それぞれがある明るさに補足されるので、その割合の変化によって、前記反射光の立体角RSの光軸がどの方向に傾いても、その方向と傾き度合いの双方を識別することが可能となる。
 今、分かりやすくするために、図5に示す、それぞれ異なる光物性を持つ前記立体角領域RS1、RS2、RS3が、たとえばそれぞれ赤色光、緑色光、青色光であるとして、前記撮像装置Cがカラーカメラだとすると、図5の(a)の場合は、前記検査対象W上の点Pは、赤と緑と青色の光が面積比ではほぼ等分の比率で捕捉されるので、その強度が同じであれば、白色で或る明るさに見え、図5の(b)の場合は、赤みが濃い白色で、ある明るさに見えることになる。また、前記検査対象Wの傾き角φが徐々に大きくなる場合を考えると、前記検査対象W上の点Pはその傾き角が大きくなるに従って、白色から徐々に赤色を帯びてきて連続的に変化することになるが、内部に異なる光属性を持つ立体角領域がない照射立体角だと、その照射立体角と観察立体角との包含関係で決まる明暗情報のみとなるが、本発明によると前記検査対象Wの傾き角φをより広い範囲で連続的に捕捉することが可能となるばかりでなく、その傾きの方向性も識別することが可能となる。
 次に、図6を用いて、前記検査対象Wから返される物体光のうち、主に散乱光を観察する場合において、照射立体角と観察立体角との包含関係と前記撮像装置が得られる明暗情報について説明する。
 図6に示した照射立体角ISは、その内部が異なる光属性を持った立体角領域IS1、IS2、IS3で形成されている。
このとき、検査対象W上の点Pから返される散乱光は、
それぞれ異なる光属性ごとに、立体角領域IS1、IS2、IS3が点P近傍の面の法線となす相対角度によって決まる照度によって、その明るさが決まり、前記点P近傍の面がΦだけ傾くと、該立体角領域IS1、IS2、IS3が点P近傍の面の法線となす相対角度がそれぞれ変化し、それに従ってその明るさが変化する。
このときに、該立体角領域IS1、IS2、IS3が前記照射立体角ISの光軸に対して放射状に配置されていると、前記点P近傍の面がΦだけ傾くときの傾き方向によって、該立体角領域IS1、IS2、IS3が点P近傍の面の法線となす相対角度がそれぞれ変化することによって、前記点P近傍の面の傾き方向と傾き角の双方が一意に同定することができる。
 図6に示した照射立体角ISに関し、
図6の(a)は、異なる光属性を持った立体角領域IS1、IS2、IS3が、該照射立体角ISの光軸から連続的かつ放射状に配置されているが、
図6の(b)では、異なる光属性を持った立体角領域IS1、IS2、IS3が、該照射立体角ISの光軸から離れた該照射立体角周辺部のみに放射状に配置されており、
更に、図6の(c)では、異なる光属性を持った立体角領域IS1、IS2、IS3が、該照射立体角ISの光軸に対して離散的かつ放射状に配置されているが、
該立体角領域IS1、IS2、IS3の立体角が小さければ小さいほど、前記検査対象の点P近傍の面が傾く方向、及び傾き角に対するそれぞれの照度の変化が大きくなり、該傾き方向、及び傾き角の変化に対する点Pの明るさの変化量を大きくすることができ、逆にそれぞれ異なる光属性を持った立体角領域IS1、IS2、IS3の配置を最適化することにより、前記検査対象の点P近傍の面が傾く方向、及び傾き角に対する点Pの明るさの変化を制御することが可能となす。すなわち、任意の方向に対する任意の傾き角に対する点Pの明るさの変化量を制御することが可能となる。
 次に、本発明における前記ハーフミラー4は、概略正方形状の枠体により支持された円形状のごく薄いものであるが、該ハーフミラーの形状は円形状でなくともよく、支持する枠体の形状も正方形上でなくてもよく、このようなハーフミラー4を用いることで、ハーフミラー4の反射又は透過が起こる表面と裏面の乖離部分をごく薄く形成することができ、前記検査対象Wからの反射光がハーフミラー4を透過する際に、生じる微小な屈折や内面反射等によるゴーストを最小限にすることができる。
 前記第1の遮光マスク、及び前記第2の遮光マスクは、一般的な光学材料である複数枚の羽根を使用した絞りであってもよく、または任意の開口部をもつごく薄い遮光板と絞りを組み合わせてもよく、さらには第1のフィルター手段や第3のフィルター手段を含めて、電子的にその開口部や遮光部、並びに透過する光の属性を設定可能な液晶等の部材を用いても良い。
 また、前記第1の遮光マスクの開口部の別な実施形態として、例えば、その開口部が円状ではなく、楕円、若しくは細長いスリット状にすることで、前記検査対象の特徴点を検出するに当たり、その検出感度に異方性をもたせることができる。すなわち、このとき、前記検査対象の各点に対する照射立体角は前記第1の遮光マスクのスリットと同じ長手方向に広がり、短手方向にはごく薄い照射立体角となり、この場合は長手方向の前記検察対象の傾きの検知感度は低く、短手方向の検知感度のみが高く設定できる。ただし、この場合は前記撮像装置が前記検査対象の各点に形成する観察立体角の形状や大きさ及び傾きを、照射立体角の短手方向に合わせて、相対的にほぼ同等になるように設定する必要がある。若しくは、前記撮像装置が前記検査対象の各点に形成する観察立体角の大きさを十分小さく設定すると、照射立体角の広がっている分、検出する傾きにしきい値を設定することが可能となる。このことは、該照射立体角内に形成される異なる光属性を持つ立体角領域に対しても同様に作用する
 また、前記第1の遮光マスク、及び前記第3のフィルター手段の別な実施形態として、例えば、その開口部が同心円状の遮光部と開口部とを備えることによって、その幅を適当にとれば、前記検査対象の部分的な傾きに対して、或る一定の傾き角度範囲だけを検出することもできるし、必要な方向にその幅を必要なだけ設定すると、その検出角度に異方性をもたせることもでき、さらに異なる光属性を持つ複数の領域を放射状に設定して、その領域の形状を変化させれば、検査面の異なる傾き方向の異なる傾き角を抽出可能となる。若しくは、このような検査用照明を多段に設ければ、表面の傾き度合いに応じて、これを分類検出することができ、さらに加えて、前記第1の遮光マスク、及び前記第3のフィルター手段を電子的に設定が可能な前記液晶等の部材とすれば、この開口パターンを動的に切り替えることによって、複数種類の明暗情報が得られ、さらに詳細な分類検出を行うことができる。
 さらにまた、前記第1のフィルター手段F1においては、その異なる光属性として、波長帯域や偏光状態、輝度等が考えられ、たとえば前記光源1を白色光を発する光源として、前記第1のフィルター手段F1で、それを異なる波長帯域の光で構成される任意の立体角領域を形成することができ、同時に異なるパターンで異なる波長帯域の光を任意の方向から任意の形状で、しかも前記検査対象Wの視野範囲のすべての点において同一条件で照射することが可能となる。さらに加えて、前記第1のフィルター手段F1を電子的にそのパターンや透過率等の設定が可能なカラー液晶等の部材とすれば、このフィルターパターンを動的に切り替えることによって、複数種類の明暗情報が得られ、さらに詳細な分類検出を行うことができる。
 また、前記第1のフィルター、若しくは前記第3のフィルターの構成例として、
異なる光属性を持つ立体角領域を、放射状に明確に区分しても良いし、徐々に異なる光属性を持つようにグラデーションをもたせることもできる。
このようにすると、たとえば、前記検査対象からの反射光、若しくは透過光が、照射角度、または観察角度によって輝度の異なる場合、これを均一な輝度にすることも逆に輝度の変化を付けることもできるようになり、さらに散乱光の輝度に反映される照度に関してもその変化を同様に制御することが可能となる。
たとえば前記検査対象Wの表面から直接反射される光と、キズなどの散乱光を発する部分との輝度差を適正に調整することが可能となる。これは、正反射光として前記検査対象Wの表面から直接反射される光の角度範囲に対応する照射立体角領域の光量を少なくし、徐々にそれ以外の立体角領域の光量を大きくすることにより、実現することができ、さらにどんな方向へのどんな傾き角に対しても、それを観察立体角との包含関係において連続的に変化させることができる。
 次に、図7~図12を用いて、前記検査対象から返される物体光のうち、主に正反射光である直接光を観察する場合において、物体面の三次元形状の変化が大きく、物体面の各点近傍の微小面積の傾きが、各点から返される物体光の明暗情報として連続的に取得できない不連続領域で、物体面の各点に対する照射光の照射立体角が、その点から返される直接光の立体角に反映されない特定の領域があることに着目し、該照射立体角に対する該直接光の立体角の変化、及び該不連続領域におけるその他の物体光の変化を利用して、該不連続領域の三次元形状を得る方法について説明する。
 図7に、照射立体角ISと観察立体角OSの光軸が同軸である場合に、
照射立体角ISの平面半角θiと観察立体角OSの平面半角θoの大小によって、
前記検査対象から該照射立体角ISの形状を反映して返される直接光が、該検査対象の面の傾きを反映してその光軸が変化した場合に、該観察立体角OSによって該光軸変化が明暗変化として捕捉できる角度範囲を簡単に求めるために、
該照射立体角ISの平面半角θiと該観察立体角OSの平面半角θoの小さい方を有効平面半角θとする。
なお、該照射立体角ISは、その内部が前記異なる光属性を持った複数の立体角領域で該照射立体角の光軸に対して放射状に配置されているものであってもよく、以下で説明する図8から図19においても同様である。

その内部が異なる光属性を持った立体角領域IS1、IS2、IS3で形成されている。このとき、検査対象W上の点Pから反射される反射光の立体角RSは、前記照射立体角ISと同じで、その光軸は前記検査対象W上の点Pに立てた法線に対して、前記照射立体角ISと線対称の方向であり、
 図8は、前記検査対象の各点から返される物体光が直接光であって、
該検査対象の各点に対して照射されている平面半角θiの照射立体角と、該検査対象の各点に対する平面半角θoの観察立体角において、該照射立体角と該観察立体角との光軸が同軸、若しくは正反射方向となるように設定されているとき、該検査対象の各点から返される直接光が該観察立体角によって観察できる該各点近傍の限界傾き角度Φeは、該検査対象の各点に照射されている照射立体角の平面半角θiと該検査対象の各点に対する観察立体角の平面半角θoの和の1/2なので、
該検査対象の不連続領域の傾き面が、平面部の法線に対してなす傾き角θsが、平面時の90°に対して変化した差分角度が、該平面半角θiと該平面半角θoの和の1/2より大きい場合、すなわち、90°から限界傾き角度Φeを差し引いた角度より小さい場合は、
その不連続領域においては、該観察立体角によって、該直接光を捕捉することができなくなり、その結果観察立体角で捕捉できる直接光の明るさは0となって、そのままでは、該観察立体角の明るさの変化量だけでは、該不連続領域における該検査対象の三次元形状を識別することができなくなることを示している。
 次に図9は、前記検査対象の不連続領域で着目する面の傾き角θsが有効照射立体角θと等しい場合、
図10は、不連続領域面の傾き角θsが有効照射立体角θより小さいが0より大きい場合、
図11は、不連続領域面の傾き角θsが0の場合、
図12は、不連続領域面の傾き角θsが負の場合をそれぞれ示しているが、
いずれの場合も、不連続領域において捕捉される直接光の明暗変化によって特定される該不連続領域の幅を該有効平面半角θの正接で除した値が、その不連続領域を挟む連続領域間の高低差Dとなることを示している。
 次に、図13~図18を用いて、前記不連続領域の一例として、未知の半径Rの球体、若しくは該球体の一部に対して、平面半角θiの照射立体角である照射光が照射され、該球体が平面半角θoの観察立体角である観察光学系で観察され、なおかつ該照射立体角と該観察立体角の光軸が同軸方向である場合において、その三次元形状の重要な要素である該球体の頂点部の高さを同定する方法を説明する。
 まず、図13~図18において、半径Rの球体が、前記検査面の略平面部に存在しているが、この時に、照射立体角と観察立体角の光軸が同軸であって、観察範囲において、該照射立体角と該観察立体角が、前記検査面の異なる高さの各点において均一に設定されておれば、
該球体の半径Rは、

該球体の頂上部から返される直接光が観察される円状の範囲の半径r1を、前記限界傾き角度Φeの正弦で除することによって得た値R1として求めることができるほか、

該球体の頂点部の高さが、該球体の半径より等しいか大きい場合は、
直接光が観察される該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の半径r2の値をR2としても求めることができるとともに、
前記検査面の略平面部から該球体の中心までの距離は、直接光が観察される該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅r3に前記有効平面半角θの余弦を乗じたものに対して、前記有効平面半角θの正弦から前記有効平面半角θの余弦を差し引いて1を加えたもので除した値R3として求めることができる。
 図13では、、照射立体角と観察立体角の光軸が同軸であって、未知の半径Rの球体が、前記検査対象の略平面部に接地して存在しているが、
この場合の該球体の頂上部の該略平面部に対する高さDは、
該球体の頂上部から返される直接光が観察される円状の範囲の半径r1から求めた前記R1、
若しくは、
該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の半径である前記R2、
若しくは、
該球体の頂上部の円状の範囲の外側に形成される直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅r3から求めた前記R3の、いずれかの値の2倍の値として求めることができる。
このとき、前記R1、R2、R3の値はすべて同じ値となるが、もし、この3つの値のすべてが同じでない場合は、前記球体が完全な球体でないことを示しており、おおむね、該R1の値は該球体の中心から上部の高さに対応し、該R2の値は該球体の中心から水平方向の半径に対応し、該R3の値は該球体の中心から接地面までの高さに対応していることから、該3つの値より、該球体の前記検査対象の略平面部に対する相対位置、及びその概略形状を得ることが可能となる。
図14は、照射立体角と観察立体角の光軸が同軸であって、前記検査対象の略平面部に、未知の半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rの2倍より大きい値で存在している場合を示しており、
この場合は、前記R1と前記R2の値は等しいが、前記R3の値が、前記R1、及び前記R2の値より大きく観察され、
その高さDは、
該球体の半径Rと前記有効平面半角θの余弦の逆数、及び1から該有効平面半角θの余弦を差し引いた値を乗じた値を補正項ΔLとして、
前記R1の値、若しくは前記R2の値に対して、前記r3の値から該補正項ΔLを差し引いた値をさらに前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 図15、及び図16は、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rの2倍より小さく、かつ該球体の半径Rに等しいかまたは大きい値で存在している場合を示しており、
この場合は、前記R1と前記R2の値は等しく、前記R3の値は、前記R1、及び前記R2の値より小さく観察され、
その高さDは、前記R1の値、若しくは前記R2の値に対して、前記r3の値から前記補正項ΔLを差し引いた値をさらに前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 図17は、照射立体角と観察立体角の光軸が同軸であって、
前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rより小さい値で存在しており、前記R1の値が、前記R2の値より大きく、前記R3の値が0でない値で観察される場合を示しており、
この場合、該球体の頂上部の高さDは、前記R1の値に対して、前記補正項ΔLを前記有効平面半角θの正接で除した値を加えた値として求めることができる。
 最後に、図18は、照射立体角と観察立体角の光軸が同軸であって、前記検査対象の略平面部に、半径Rの球体が、該球体の頂上部の該略平面部に対する高さDが、該球体の半径Rより小さい値で存在しており、前記R1の値が、前記R2の値より大きく、前記R3の値がほぼ0で観察される場合を示しており、
この場合、lその高さDは、前記R1の値に対して、前記R1の値の二乗から前記r2の値の二乗を差し引いた値の平方根を差し引いた値として求めることができる。
 次に、前記不連続領域が、物体光として直接光を返さず、主に散乱光を返す場合、若しくは、直接光を返してはいるが、その直接光が前記観察立体角によって捕捉できない範囲方向に返されている場合においては、観察範囲に照射されている照射光が、同一の立体角ωiの照射立体角を持った照射光であれば、
物体光が直接光の場合の点Pの明るさは、反射率を1とすると、直接光の立体角RSと観察立体角OSとの包含関係で決まり、その最大明るさは照射立体角ωiと観察立体角ωoの小さい方の有効平面半角θを持つ有効照射立体角EISで決まるが、散乱光の場合は、照射立体角ωiで点Pに照射された光が、立体角2πの散乱光に変換され、これが観察立体角ωoで捕捉されるので、図19に示したように、観察立体角で捕捉される散乱光の最大明るさと直接光の最大明るさの比率は、照射立体角ωiと観察立体角ωoのどちらか大きい方を2πで除した値対1となる。
 より具体的には、観察範囲に照射されている照射光が、同一の立体角ωiの照射立体角を持った照射光であって、観察立体角がωoとすると、通常の光学要件を勘案すると両者の立体角の平面半角は大きくても10°程度であり、小さければ1°以下となるが、その時に観察される散乱光の最大明るさは、直接光の最大明るさの0.015倍から0.00015倍となる。この時に、直接光の明るさのダイナミックレンジ、すなわち最大明るさと最低明るさの範囲と、散乱光の明るさのダイナミックレンジを、両者が重ならない範囲で設定することが可能となり、たとえば前記撮像装置で画像の明るさを浮動小数点方式で保持しているものであれば、その両者のレンジ内で適切な演算により、前記検査対象の直接光が観察される明視野領域と散乱光が観察される暗視野領域とに分けて、それぞれの領域で適切な演算処理を行うことによって三次元形状を計算し、それをつなぎあわせることで、該不連続領域を可能な限り少なくして、前記検査対象の表面の三次元形状を検査測定することが可能となる。
 図20に示すように、検査面Wの観察領域の各点に、異なる光属性の立体角領域IS1、IS2、IS3を放射状に配置した同一の照射立体角ISを持つ光を照射し、直接光を返す明視野領域BFと散乱光を返す暗視野領域DFを、その輝度値にしきい値を設けるか、若しくは返される物体光の偏光状態によって区分し、それぞれの領域における各点の異なる光属性ごとの明るさの変化から三次元形状を検査測定すれば、直接光だけ、若しくは散乱光だけを観察してその三次元形状を連続的に検査測定できない検査面に対して、連続的な三次元形状の検査測定を行うことが可能となる。※検査面Wの観察領域の各点に、異なる光属性の立体角領域IS1、IS2、IS3を放射状に配置した同一の照射立体角ISを持つ光を照射し、直接光を返す明視野領域BFと散乱光を返す暗視野領域DFを、その輝度値にしきい値を設けるか、若しくは返される物体光の偏光状態によって区分し、それぞれの領域における各点の異なる光属性ごとの明るさの変化から三次元形状を検査測定すれば、直接光だけ、若しくは散乱光だけを観察してその三次元形状を連続的に検査測定できない検査面に対して、連続的な三次元形状の検査測定を行うことが可能となる。
 なんとなれば、同一の照射立体角を持つ照射光に対して、検査面から返される物体光について、それが正反射光や正透過光のような直接光と、それ以外の散乱光とでは、その明るさに大きな差があり、観察される輝度値を一定の閾値、若しくは明暗の変化の度合いによって閾値を設定し、なおかつその閾値を前後する領域においては、その領域の大きさによってどちらの領域に属するかを判定することによって、直接光を返す領域と散乱光を返す領域を分けることができるからであり、

また、直接光を返す領域と散乱光を返す領域を分ける別の方法として、
直接光はその照射光の偏光状態を保存、若しくはその偏光状態を反映するが、散乱光はその発生メカニズムにより、たとえ照射光が偏光であっても非偏光となるので、例えば第4のフィルター等を用いて、照射光を偏光としておくと、観察光学系、若しくは撮像装置において、物体光の明るさにかかわらず、直接光と散乱光に分けて観察することが可能となり、

若しくは、パラレル二コルを使用して、直接光と散乱光のダイナミックレンジの明るさの差を大きくすることによって、両者の区分を安定にすることが可能であり、

また両者の輝度値の変化を安定に解析するには、

露光時間、若しくはゲイン等の撮像条件を変えて複数枚の画像を撮像し、明るさが飽和してその変化が検知できない領域と、暗すぎてその変化が検知できない部分とを識別した上で、両者を補完してその変化を安定に解析することが可能であり、

更に別の方法として、前記撮像装置においてその画像の輝度値が浮動小数点で保持されておれば、それぞれの領域での安定な三次元解析が可能となるからである。
 また、前記第2の遮光マスクは、前記検査対象に結像されることから、前記遮光マスクの開口部に、特定の属性を持つ光のみを透過する第4のフィルター手段を設けることにより、前記検査光の照射範囲ごとにその光属性を設定することが可能となる。このとき、光を照射しない範囲を設定する必要がなければ、前記第4のフィルター手段のみによって、透過する特定の光属性ごとにその照射範囲を設定してもよい。
 さらに、前記第1や第2の遮光マスクに、また前記第1や第3のフィルターに、電子的にその開口部の設定が可能な前記液晶等の部材とすれば、この開口パターンや、透過する光属性等を動的に切り替えることによって前記検査光の照射領域を変更し、前記検査対象に異なる照射領域必要とするものがあっても、それぞれの領域に合わせて検査光を照射し、複数種類の明暗情報を得ることができる。
 さらに、また、前記面光源を、その照射面の発光波長分布や輝度分布、偏光状態分布を動的に変更できるカラー液晶等と白色光源を組み合わせて構成することにより、さらに様々な種類の検査対象に対応することが可能になる。
 その他、本発明の趣旨に反しない限りにおいて様々な変形や実施形態の組み合わせを行っても構わない。たとえば、検査対象の各点から返される物体光の立体角に対して十分小さな観察立体角を用い、照射立体角の全領域を、この観察立体角の大きさ相応に小さな領域に区分して、その必要な部分の光物性を異なるものとすることで、検査対象の傾き面の内、ある特定の傾き方向のある特定の傾き度合いの領域だけを捕捉するようにすることなどである。
 以上の記述で使用した、輝度、照度、明るさ等の文言は、一般には人間の視覚で感じる光の尺度である測光量であるが、適宜、物理量として、若しくは用いるカメラの感度特性に合わせたセンサー測光量の意味に使用しているので、ここに注記する。
100  :検査測定用照明装置
200  :検査測定システム
300  :画像解析手段
1    :面光源
11   :光射出面
2    :レンズ
4    :ハーフミラー
C    :撮像装置
LP1  :照射光路
LP2  :反射・透過光路
M1   :第1遮光マスク(及びその遮光部)
M2   :第2遮光マスク
F1   :第1フィルター手段
F3   :第3フィルター手段
F4   :第4フィルター手段
F11  :第1フィルター手段の或る光属性1を持つ光を透過する部分
F12  :第1フィルター手段の或る光属性2を持つ光を透過する部分
F13  :第1フィルター手段の或る光属性3を持つ光を透過する部分
W    :検査対象
P    :検査対象W上の或る点
IS   :照射立体角
IS1  :照射立体角内の異なる光属性を持つ立体角領域1
IS2  :照射立体角内の異なる光属性を持つ立体角領域2
IS3  :照射立体角内の異なる光属性を持つ立体角領域3
EIS  :有効平面半角を持つ有効照射立体角
OS   :観察立体角
RS   :反射光の立体角
RS1  :反射光の立体角内の異なる光属性を持つ立体角領域1
RS2  :反射光の立体角内の異なる光属性を持つ立体角領域2
RS3  :反射光の立体角内の異なる光属性を持つ立体角領域3
Φ    :検査面の傾き角
Φe   :直接光が観察できる検査面の限界傾き角
θo   :観察立体角の平面半角
θi   :照射立体角の平面半角
ωo   :観察立体角の立体角
ωi   :照射立体角の立体角
θ    :照射立体角、及び観察立体角の有効平面半角
θs   :検査面の鉛直方向からの傾き角
D    :高さの異なる検査面の基準面からの高さ
ΔD1  :球体底部と検査基準面との距離
ΔD2  :検査基準面から球体中心までの距離
ΔD3  :検査基準面から球体中心までの距離
L1~4 :検査面の不連続領域における水平方向の位置
B    :半径Rの球体
R    :球体Bの半径
S    :水平方向からΦeなる傾きを持つ球体Bの接線
LT   :球体部の頂点位置
LB   :検査面の基準平面部の位置
L    :検査面の不連続領域において、有効照射立体角が部分的に欠ける水平方向の距離
r1   :球体部の頂上部から返される直接光が観察される円状の範囲の半径
r2   :球体部から直接光が観察されない範囲の半径
r3   :球体部から直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅
R1   :球体部の頂上部から返される直接光が観察される円状の範囲の半径から求めら、該球体の中心から上部の高さに対応する値
R2   :球体部から直接光が観察されない範囲の半径から求められ、該球体の中心から水平方向の半径に対応する値
R3   :球体部から直接光が観察されない範囲の周囲に形成される直接光の明暗変化が存在する幅から求められ、該球体の中心から接地面までの高さに対応する値
BF   :直接光を返す明視野領域
DF   :散乱光を返す暗視野領域

Claims (8)

  1. 検査対象に検査光を照射する検査測定用照明装置であって、前記検査対象の各点に照射される検査光の照射立体角を、異なる光属性を持つ複数の立体角領域が光軸を中心として放射状に配置されるように設定でき、該照射立体角の形状、及び光軸の傾きを、前記検査対象の各点に対して、該検査測定用照明装置から該検査対象の各点までの距離に依らず、同時に略均一とすることができる検査測定用照明装置と、

    前記検査対象の各点において反射又は透過する物体光を撮像する撮像装置であって、前記物体光の異なる光属性を選択的に撮像可能な撮像装置とを備え、

    前記検査対象の各点において、
    前記物体光の正反射光、又は正透過光の立体角の変化を、
    撮像装置によって形成される前記検査対象の各点に対する観察立体角によって、
    前記物体光の正反射光、又は正透過光の立体角と前記観察立体角との包含関係において、
    前記検査光の前記複数の立体角領域に起因する複数の光属性を持つ前記物体光の第1の変化として検知可能であり、

    前記物体光の正反射光や正透過光が検知されない領域においては、該領域の範囲形状、及びその近傍における前記物体光の正反射光や正透過光の立体角の変化を前記物体光の第2の変化として検知可能であり、

    前記物体光の散乱光に対しては、前記検査光の前記複数の立体角領域に起因する複数の光属性ごとの明るさの変化を前記物体光の第3の変化として検知可能であり、

    前記物体光の第1の変化、及び第2の変化、及び第3の変化の、少なくともいずれか1つの変化を用いて、

    その複数の光属性ごとの前記物体光の変化量によって、前記検査対象の各点における複数方向の傾きに対して、その傾きの方向、若しくはその傾きの角度、若しくはその両方を特定し、

    前記検査対象の各点における複数方向の傾きに対して傾きの方向と、その傾きの角度が連続的に同定できない領域においては、該領域に隣接する領域間の、少なくともその高低差を特定することによって、

    前記検査対象の表面の三次元性状を特定することが可能なことを特徴とする検査測定システム。
  2. 前記検査対象の各点における前記観察立体角が、前記照射立体角より小さく設定され、前記照射立体角内に形成される異なる光属性を持つ複数の立体角領域を、それぞれの光属性において連続して滑らかに変化させたことを特徴とする請求項1に記載の検査測定システム。
  3. 検査対象に検査光を照射する検査測定用照明装置であって、
    前記検査対象の各点に照射される検査光の照射立体角の形状、及び光軸の傾きを、前記検査対象の各点に対して、該検査測定用照明装置から該検査対象の各点までの距離に依らず、同時に略均一とすることができる検査測定用照明装置と、

    前記検査対象の各点において反射又は透過する物体光を撮像する撮像装置とを備え、

    前記検査対象の各点において、前記物体光の正反射光又は正透過光の立体角の変化を、
    撮像装置によって形成される前記検査対象の各点に対する観察立体角にによって、前記物体光の正反射光又は正透過光の立体角と前記観察立体角との包含関係において、前記物体光の第1の変化として検知可能であり、

    前記物体光の正反射光又は正透過光が検知されない領域においては、該領域の範囲形状、及びその近傍における前記物体光の正反射光や正透過光の立体角の変化を前記物体光の第2の変化として検知可能であり、

    前記物体光の散乱光に対しては、その明るさの変化を前記物体光の第3の変化として検知可能であり、

    前記物体光の第1の変化、及び第2の変化、及び第3の変化の、少なくともいずれか1つの変化を用いて、

    前記物体光の変化様態によって、前記検査対象の各点における傾きの角度を同定し、

    前記検査対象の各点における傾きの角度が連続的に同定できない領域においては、該領域に隣接する領域間の、少なくともその高低差を同定することによって、

    前記検査対象の表面の三次元性状を同定することが可能なことを特徴とする検査測定システム。
  4.  検査対象に検査光を照射する検査測定用照明装置において、
    前記検査対象の各点に照射される検査光を偏光とすることができ、

    前記検査対象の各点において反射又は透過する物体光を撮像する撮像装置において、
    前記物体光の偏光状態によって、前記物体光の変化を選択的に撮像可能である撮像装置を備え、

    前記検査対象の各点から返される前記物体光が、正反射光又は正透過光であるか、若しくは散乱光であるかを区別し、

    前記検査対象の各点において、前記物体光の第1の変化と、第2の変化、及び、第3の変化のうち、どの変化を用いて、前記検査対象の表面の三次元性状を特定するかが設定可能なことを特徴とする、請求項1から請求項3の何れかに記載の検査測定システム。
  5.  前記検査対象の各点において反射又は透過する物体光を撮像する撮像装置において、
    前記物体光の明るさを、浮動小数点形式の輝度値として記録撮像可能である撮像装置を備え、

    前記検査対象の各点から返される前記物体光が、正反射光又は正透過光であるか、若しくは散乱光であるかを、その明るさの帯域で区分される一定以上の大きさの領域として判別し、

    前記検査対象の各点において、前記物体光の第1の変化と、第2の変化、及び、第3の変化のうち、どの変化を用いて、前記検査対象の表面の三次元性状を特定するかが設定可能なことを特徴とする、請求項1から請求項3の何れかに記載の検査測定システム。
  6.  前記検査対象の各点において反射、又は透過する物体光を撮像する撮像装置において、
    前記物体光の内、正反射光又は正透過光の所望の明るさが、撮像可能な最大明るさを超えない範囲の撮像条件を適用して第1の撮像画像を撮像し、
    前記物体光の内、散乱光の所望の明るさが、撮像可能な最低明るさ以上となる範囲の撮像条件を適用して第2の撮像画像を撮像し、
    前記検査対象の各点から返される前記物体光が、正反射光又は正透過光であるか、若しくは、散乱光であるかを、その明るさの帯域で区分される一定以上の大きさの領域として判別し、
    前記検査対象の各点において、前記物体光の第1の変化と、第2の変化、及び、第3の変化のうち、どの変化を用いて、前記検査対象の表面の三次元性状を特定するかが設定可能なことを特徴とする、請求項1から請求項3の何れかに記載の検査測定システム。
  7. 前記検査測定用照明装置において、前記検査光の照射方向を変え、なおかつ前記検査対象からの光を透過して前記撮像装置で撮像できるようにするためのハーフミラーを備え、前記検査光の前記検査対象の各点に対する照射立体角と前記撮像装置の前記検査対象の各点に対する観察立体角の光軸を略一致させたことを特徴とする請求項1から請求項6の何れかに記載の検査測定システム。
  8.  請求項1から請求の7の何れかに記載の検査システムにおいて、前記物体光の明るさ、又は前記物体光の立体角の形状や傾き、又は前記物体光の明るさと前記物体光の立体角の形状や傾きの変化をもって、前記検査対象の三次元形状を同定する検査測定方式。
PCT/JP2020/023440 2020-06-14 2020-06-15 検査測定用照明装置及び検査測定システム及び検査測定方式 WO2021255793A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20939470.9A EP4166933A4 (en) 2020-06-14 2020-06-15 LIGHTING DEVICE FOR INSPECTION AND MEASURING, INSPECTION AND MEASURING SYSTEM AND INSPECTION AND MEASURING METHOD
KR1020217040248A KR102361860B1 (ko) 2020-06-14 2020-06-15 검사 측정용 조명 장치 및 검사 측정 시스템 및 검사 측정 방식
US17/618,216 US11630070B2 (en) 2020-06-14 2020-06-15 Inspection and measurement system, and inspection and measurement method
CN202080045025.7A CN114144661B (zh) 2020-06-14 2020-06-15 检查测定用照明装置、检查测定系统以及检查测定方法
IL299032A IL299032B2 (en) 2020-06-14 2022-12-12 A lighting device for testing and measuring, a system for testing and measuring, and a method for testing and measuring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102749 2020-06-14
JP2020102749A JP6799272B1 (ja) 2020-06-14 2020-06-14 検査測定システム及び検査測定方法

Publications (1)

Publication Number Publication Date
WO2021255793A1 true WO2021255793A1 (ja) 2021-12-23

Family

ID=73740889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023440 WO2021255793A1 (ja) 2020-06-14 2020-06-15 検査測定用照明装置及び検査測定システム及び検査測定方式

Country Status (2)

Country Link
JP (1) JP6799272B1 (ja)
WO (1) WO2021255793A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014273A1 (ja) * 2022-07-13 2024-01-18 パナソニックIpマネジメント株式会社 検査システム及びこれを用いた物品の表面の傾斜角補正方法
WO2024084782A1 (ja) * 2022-10-17 2024-04-25 浜松ホトニクス株式会社 画像取得装置、検査装置、及び画像取得方法
WO2024116674A1 (ja) * 2022-11-29 2024-06-06 パナソニックIpマネジメント株式会社 検査システム
JP7296085B1 (ja) * 2023-04-02 2023-06-22 マシンビジョンライティング株式会社 撮像レンズ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151821B2 (ja) 1981-08-10 1989-11-06 Goo Kagaku Kogyo Kk
JPH0666528A (ja) * 1991-08-01 1994-03-08 Hitachi Denshi Ltd 外観検査方法及び装置
JP2002257523A (ja) * 2001-03-05 2002-09-11 Yuzo Mori 超精密形状測定方法及びその装置
US20040184653A1 (en) * 2003-03-20 2004-09-23 Baer Richard L. Optical inspection system, illumination apparatus and method for use in imaging specular objects based on illumination gradients
JP5866586B1 (ja) 2015-09-22 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
JP5866573B1 (ja) 2015-03-23 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
CN108662993A (zh) * 2018-04-13 2018-10-16 黄智强 一种基于光学散射原理的表面粗糙度检测系统
JP2019100930A (ja) * 2017-12-05 2019-06-24 マシンビジョンライティング株式会社 検査システム及び検査方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151821B2 (ja) 1981-08-10 1989-11-06 Goo Kagaku Kogyo Kk
JPH0666528A (ja) * 1991-08-01 1994-03-08 Hitachi Denshi Ltd 外観検査方法及び装置
JP2002257523A (ja) * 2001-03-05 2002-09-11 Yuzo Mori 超精密形状測定方法及びその装置
US20040184653A1 (en) * 2003-03-20 2004-09-23 Baer Richard L. Optical inspection system, illumination apparatus and method for use in imaging specular objects based on illumination gradients
JP5866573B1 (ja) 2015-03-23 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
JP5866586B1 (ja) 2015-09-22 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
JP2019100930A (ja) * 2017-12-05 2019-06-24 マシンビジョンライティング株式会社 検査システム及び検査方法
CN108662993A (zh) * 2018-04-13 2018-10-16 黄智强 一种基于光学散射原理的表面粗糙度检测系统

Also Published As

Publication number Publication date
JP2021196256A (ja) 2021-12-27
JP6799272B1 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5866586B1 (ja) 検査用照明装置及び検査システム
JP6451821B1 (ja) 検査システム及び検査方法
WO2021255793A1 (ja) 検査測定用照明装置及び検査測定システム及び検査測定方式
JP5866573B1 (ja) 検査用照明装置及び検査システム
JP2010112786A (ja) 照明装置及びそれを有する外観検査装置
KR102361860B1 (ko) 검사 측정용 조명 장치 및 검사 측정 시스템 및 검사 측정 방식
EP4148414A1 (en) Optical inspection method, optical inspection program, processing device, and optical inspection apparatus
JP7458617B1 (ja) 検査用照明装置及び照明光学系及び検査システム
US20230324309A1 (en) Optical inspection apparatus, processing device, optical inspection method, and non-transitory storage medium storing optical inspection program
JP2023139658A (ja) 光学検査方法、光学検査プログラム、処理装置、及び、光学検査装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217040248

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020939470

Country of ref document: EP

Effective date: 20230116