WO2021254394A1 - 一种地表综合物探的三维立体成像方法及系统 - Google Patents

一种地表综合物探的三维立体成像方法及系统 Download PDF

Info

Publication number
WO2021254394A1
WO2021254394A1 PCT/CN2021/100370 CN2021100370W WO2021254394A1 WO 2021254394 A1 WO2021254394 A1 WO 2021254394A1 CN 2021100370 W CN2021100370 W CN 2021100370W WO 2021254394 A1 WO2021254394 A1 WO 2021254394A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
survey line
data
plane
detection
Prior art date
Application number
PCT/CN2021/100370
Other languages
English (en)
French (fr)
Inventor
李术才
薛翊国
苏茂鑫
林春金
管理
邱道宏
李志强
刘轶民
王鹏
公惠民
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/779,816 priority Critical patent/US20230003917A1/en
Publication of WO2021254394A1 publication Critical patent/WO2021254394A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Definitions

  • the invention belongs to the technical field of geophysical prospecting, and specifically relates to a three-dimensional imaging method and system for comprehensive geophysical prospecting on the surface.
  • the purpose of the present invention is to provide a three-dimensional imaging method and system for comprehensive surface geophysical prospecting, which can convert the two-dimensional plane data acquired by field detection after the completion of field detection. Create a three-dimensional resistivity profile model in the three-dimensional space coordinate system to facilitate the establishment of the three-dimensional model during data analysis in the later stage.
  • an embodiment of the present invention provides a three-dimensional imaging method for comprehensive geophysical exploration of the surface, including the following steps:
  • Kriging interpolation is used to transform the resistivity data of the three-dimensional coordinate system into a three-dimensional model.
  • one of the cross-hole method, the well-ground method, the high-density electrical method, the transient electromagnetic method, and the surface comprehensive geophysical method is used for surface detection.
  • the three-dimensional coordinates of the two-dimensional profile resistivity data points are obtained through the three-dimensional coordinate conversion formula.
  • the X direction of the three-dimensional coordinate axis is the horizontal distance direction, and horizontal to the right is the positive direction;
  • the Y direction is the detection depth direction, and the detection direction parallel to the ground is the positive direction;
  • the Z direction is the vertical distance direction, Take the vertical ground downward as the positive direction.
  • the three-dimensional coordinate conversion formula is:
  • X, Y, Z are the final three-dimensional coordinates with O as the origin
  • X1 is the horizontal distance from the starting point of the survey line to the origin of the coordinates
  • Y1 is the longitudinal depth of the survey line starting point from the origin of the coordinates
  • Z1 is the distance between the survey line starting point and the origin of the coordinates Vertical height
  • X' is the horizontal length of the original data point
  • Y' is the detection depth of the original data point
  • the initial value of Z'is 1 is the position matrix
  • R2 is the data point matrix.
  • the R1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-a)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-
  • R2 is If the survey line plane is perpendicular to the XOY plane, and the included angle with the Y-axis positive direction of the YOZ plane is ⁇ , then R2 is If the survey line plane is perpendicular to the XOY plane, and the included angle between the negative direction of the Y-axis of the YOZ plane is ⁇ , then R2 is
  • an embodiment of the present invention also provides a three-dimensional imaging system for comprehensive geophysical exploration of the surface, including:
  • the acquisition module is used to collect the detection data of multiple two-dimensional profiles at the surface detection site;
  • the inversion module is used to form two-dimensional profile resistivity data through geophysical inversion of the detection data
  • the coordinate conversion module is used to convert the two-dimensional profile resistivity data into three-dimensional coordinates to obtain the resistivity data of the three-dimensional coordinate system;
  • the conversion module is used to convert the resistivity data of the three-dimensional coordinate system into a three-dimensional model by using the Kriging interpolation method.
  • the three-dimensional imaging method of the present invention has good compatibility. Whether it is a cross-hole method, a well-ground method, a high-density electrical method, a transient electromagnetic method, or a comprehensive geophysical method, the two-dimensional resistivity can be obtained by this method.
  • the profile data is converted into three-dimensional space rectangular coordinate system data, and then a three-dimensional model is formed.
  • the three-dimensional three-dimensional imaging method of the present invention has good visibility, and can gather the cross-sectional data of multiple two-dimensional planes formed by hundreds of disorderly survey lines on the construction site into a three-dimensional model, which can reflect very intuitively Detecting the true situation of anomalous objects in the area is also convenient for later interpretation, analysis and guidance.
  • the three-dimensional coordinate conversion method can convert the two-dimensional profile data obtained by surface detection into resistivity data in a three-dimensional coordinate system, which is convenient for later data analysis and three-dimensional modeling, and is for later modeling.
  • the analysis and interpretation work has provided great convenience.
  • FIG. 1 is a schematic flowchart of a three-dimensional imaging method for surface detection according to an embodiment of the present disclosure
  • Figure 2 (a) is a schematic diagram when the survey line plane is parallel to the XOZ plane in the three-dimensional coordinate transformation method of the embodiment of the present disclosure
  • Figure 2(b) is a schematic diagram when the survey line plane is parallel to the YOZ plane in the three-dimensional coordinate transformation method of the embodiment of the present disclosure
  • Fig. 2(c) is a schematic diagram when the survey line plane is inclined in the three-dimensional coordinate transformation method of the embodiment of the present disclosure.
  • the present invention proposes a three-dimensional imaging method and system for comprehensive geophysical exploration of the surface, which can be applied to karsts, boulders, pile foundations, and minerals. Waiting for survey work.
  • This method integrates the resistivity data of the redundant two-dimensional profile formed by multiple survey lines on site into a three-dimensional stereo imaging system through three-dimensional coordinate conversion and Kriging interpolation, which makes the exploration data intuitive and feasible. Visual.
  • a three-dimensional imaging method for comprehensive geophysical prospecting on the surface which includes the following steps:
  • the detection data of multiple two-dimensional sections of the detection site is obtained, and the data collected on the spot is used as the basis for forward modeling.
  • the data through inversion to obtain multiple two-dimensional profile resistivity data is used as the basis for forward modeling.
  • a specific algorithm is used to convert the plane rectangular coordinates of the data points of the two-dimensional profile into three-dimensional rectangular coordinates in a specific three-dimensional rectangular coordinate system to obtain a three-dimensional space
  • the resistivity data of the data points in the rectangular coordinate system after obtaining the resistivity data in the three-dimensional coordinate system, the kriging interpolation method is used to convert the acquired resistivity data points into a three-dimensional model;
  • the abnormal area of the three-dimensional resistivity model can be explained to guide the on-site construction.
  • the process of the three-dimensional imaging method for surface detection in this embodiment includes the following steps:
  • the surface detection site select the detection plan and the survey line layout plan.
  • One of the cross-hole method, well-ground method, high-density electrical method, transient electromagnetic method, and surface comprehensive geophysical method can be used for surface detection.
  • the resistivity detection data of multiple two-dimensional sections of the surface detection site can be obtained .
  • the transmitting holes and receiving holes are distributed in parallel according to a certain cross-hole spacing, and the depth of the transmitting holes and receiving holes is greater than the depth of the detection target, a certain number of transmitting electrodes are arranged in the transmitting holes and arranged in the receiving holes A certain number of receiving electrodes can obtain detection data by energizing the transmitting electrode and receiving the receiving electrode;
  • the transmitting electrode is located in the transmitting hole and the receiving electrode is located on the surface.
  • the detection data is obtained by energizing the transmitting electrode and receiving by the receiving electrode;
  • the transient electromagnetic method it is necessary to use an ungrounded loop or a grounded electrode to send a pulsed primary electromagnetic field to the ground, and use a coil or grounded electrode to observe the spatial and temporal distribution of the secondary electromagnetic field generated by the underground eddy current induced by the pulsed electromagnetic field;
  • step 2 Perform geophysical inversion on the acquired detection data of the two-dimensional profile.
  • the model parameters are continuously adjusted to make the model respond to the observation data, that is, the data is interpreted through inversion to obtain the resistivity data of the two-dimensional profile of the detection plane.
  • the resistivity data points in the three-dimensional rectangular coordinate system under the multiple cross-sections are obtained through the Kriging interpolation method to form a model.
  • the interpolation method considers the variation distribution of the spatial attributes in the spatial position, determines the distance range that affects the value of a point to be interpolated, and then uses the sampling points in this range to estimate the attribute value of the point to be interpolated. According to the different sample space positions and the degree of correlation between the samples, different weights are assigned to each sample grade, and the moving weighted average is performed to estimate the average grade of the center block. Finally, all the data points in the three-dimensional coordinate system are collectively imaged into one Three-dimensional model.
  • This embodiment constructs three coordinate conversion modes under the conventional survey line mode.
  • the survey line is manually laid on the surface in a specific direction at the detection site.
  • the three possible laying directions of the manually laid survey line are divided into three survey line layout situations.
  • the position and inclination of the survey line plane in the three-dimensional coordinates are the surface survey The position and inclination of the line.
  • the survey line plane refers to the two-dimensional section directly below the surface survey line.
  • the electrical signals excited by the artificially laid surface survey line can obtain the resistivity data on the two-dimensional profile directly under the survey line.
  • the first type of survey line situation is the situation where the survey line plane is parallel to the XOZ plane, and the survey line situation (a) is divided into the survey line plane at the origin of the coordinate There are two types of nearby and the survey line plane far from the origin;
  • the second type of survey line situation is the situation where the survey line plane is parallel to the YOZ plane, and the survey line situation (b) is divided into the survey line plane at the origin of the coordinate There are two types of nearby and the survey line plane far from the origin;
  • the third type of survey line situation is that the survey line plane is inclined to the YOZ plane (perpendicular to the XOY plane), and the angle between the survey line and the YOZ plane is ⁇ , and the survey line Case (c) is divided into two cases: the angle between the survey line plane and the positive direction of the Y-axis is ⁇ and the angle between the survey line plane and the negative direction of the Y-axis is ⁇ .
  • This embodiment constructs three coordinate conversion methods under the conventional survey line mode. After obtaining the arranged survey line position coordinates and the position of the data point on the survey line plane, the mathematical formula can be used to obtain the measured area.
  • the three-dimensional coordinates of any point lay the method foundation for the later three-dimensional mapping, making the detection results of the actual project three-dimensional, and the interpretation is more convenient and feasible.
  • Three-dimensional coordinate conversion is performed by the following formula:
  • X, Y, Z are the final three-dimensional coordinates with O as the origin
  • X1 is the horizontal distance from the starting point of the survey line to the origin of the coordinates
  • Y1 is the longitudinal depth of the survey line starting point from the origin of the coordinates
  • Z1 is the distance between the survey line starting point and the origin of the coordinates Vertical height
  • X' is the horizontal length of the original data point
  • Y' is the detection depth of the original data point
  • the initial value of Z'is 1 is the position matrix
  • R2 is the data point matrix.
  • R1 is the position matrix
  • R2 is a matrix of data points
  • the value of R2 is different according to the situation of the survey line plane.
  • R2 is If the survey line plane is perpendicular to the XOY plane, the survey line plane is inclined to the right, and the angle between the negative direction of the Y-axis of the YOZ plane is ⁇ , then R2 is If the survey line plane is perpendicular to the XOY plane, the survey line plane is inclined to the left, and the angle between the positive direction of the Y-axis of the YOZ plane is ⁇ , then R2 is

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种地表综合物探的三维立体成像方法及系统,方法包括以下步骤:采集地表探测现场的多个二维剖面的探测数据(1);对探测数据通过地球物理反演形成二维剖面电阻率数据(2);将二维剖面电阻率数据进行三维坐标转换,获取三维坐标系的电阻率数据(3);利用克里金插值法将三维坐标系的电阻率数据转化成三维立体模型(4)。

Description

一种地表综合物探的三维立体成像方法及系统 技术领域
本发明属于物探技术领域,具体涉及一种地表综合物探的三维立体成像方法及系统。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
在当今的物探领域,在进行地表探测时,诸如跨孔法、井地法、高密度电法或者是综合物探方法等,都是在工程现场较为常见的探测手段。发明人发现,上述物探方法的探测成果多为二维剖面,现场布置的测线数量众多,形成的二维剖面十分冗杂,得到的单个二维剖面电阻率数据仅仅只能反映一个地质剖面的信息,难以反映地下复杂结构体的实际情况,也同样难以建立能直观展示成果的模型,可视性较差,而在进行实际问题分析解释时往往需要运用到三维模型的建立。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种地表综合物探的三维立体成像方法及系统,该方法能够在完成现场检测之后将现场探测获取到的二维平面的数据经过处理后转换到三维空间坐标系中建立三维电阻率剖面模型,方便后期进行数据分析时三维模型的建立。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种地表综合物探的三维立体成像方法, 包括以下步骤:
采集地表探测现场的多个二维剖面的探测数据;
对探测数据通过地球物理反演形成二维剖面电阻率数据;
将二维剖面电阻率数据进行三维坐标转换,获取三维坐标系的电阻率数据;
利用克里金插值法将三维坐标系的电阻率数据转化成三维立体模型。
作为进一步的技术方案,采集二维剖面的探测数据时,采用跨孔法、井地法、高密度电法、瞬变电磁法、地表综合物探方法中的一种进行地表探测。
作为进一步的技术方案,三维坐标转换的过程为:
确定原点,建立三维坐标轴;
获取测线位置坐标及二维剖面电阻率数据点在测线平面的位置;
通过三维坐标转换公式获得二维剖面电阻率数据点的三维坐标。
作为进一步的技术方案,所述三维坐标轴X方向为水平距离方向,以水平向右为正方向;Y方向为探测深度方向,以平行地面朝探测方向为正方向;Z方向为垂直距离方向,以垂直地面往下为正方向。
作为进一步的技术方案,所述三维坐标转换公式为:
Figure PCTCN2021100370-appb-000001
其中X、Y、Z为以O为原点的最终三维坐标,X1为测线起点距离坐标原点的水平距离,Y1为测线起点距离坐标原点的纵向埋深,Z1为测线起点距离坐标原点的垂直高度,X'为原始数据点的水平长度,Y'为原始数据点的探测深度,Z'初值为0,R1为位置矩阵,R2为数据点矩阵。
作为进一步的技术方案,所述R1为
Figure PCTCN2021100370-appb-000002
作为进一步的技术方案,若测线平面平行于三维坐标系XOZ平面,则R2为
Figure PCTCN2021100370-appb-000003
作为进一步的技术方案,若测线平面平行于三维坐标系YOZ平面,则R2为
Figure PCTCN2021100370-appb-000004
作为进一步的技术方案,若测线平面垂直于XOY平面,且与YOZ平面Y轴正方向夹角夹角为α,则R2为
Figure PCTCN2021100370-appb-000005
若测线平面垂直于XOY平面,且与YOZ平面Y轴负方向夹角夹角为α,则R2为
Figure PCTCN2021100370-appb-000006
第二方面,本发明实施例还提供了一种地表综合物探的三维立体成像系统,包括:
采集模块,用于采集地表探测现场的多个二维剖面的探测数据;
反演模块,用于对探测数据通过地球物理反演形成二维剖面电阻率数据;
坐标转换模块,用于将二维剖面电阻率数据进行三维坐标转换,获取三维坐标系的电阻率数据;
转化模块,用于利用克里金插值法将三维坐标系的电阻率数据转化成三维立体模型。
上述本发明的实施例的有益效果如下:
本发明的三维立体成像方法具有良好的兼容性,无论是跨孔法、井地法、高密度电法、瞬变电磁法或者是综合物探方法,都可以通过该方法将获取的二维电阻率剖面数据转化为三维空间直角坐标系数据,再形成三维立体模型。
本发明的三维立体成像方法具有良好的可视性,可以将施工现场数百条杂乱无序的测线形成的多个二维平面的剖面数据集合成一个三维立体模型,能够非常直观的反映出探测区域异常体的真实情况,也便于后期的解释、分析与指导。
本发明的三维立体成像方法中,三维坐标转换方法,能将地表探测获取到的二维剖面数据转化为三维坐标系下的电阻率数据,方便后期进行数据分析以及三维建模,为后期建模分析解释工作的开展提供了极大的便利。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本公开实施例的地表探测三维成像方法流程示意图;
图2(a)是本公开实施例的三维坐标转化方法中测线平面平行XOZ平面时的原理图;
图2(b)是本公开实施例的三维坐标转化方法中测线平面平行YOZ平面时的原理图;
图2(c)是本公开实施例的三维坐标转化方法中测线平面倾斜时的原理图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域 的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非本发明另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本发明中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语解释部分:本发明中如出现术语“安装”、“相连”、“连接”、“固定”等,应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或为一体;可以是机械连接,也可以是电连接,可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部连接,或者两个元件的相互作用关系,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的具体含义。
正如背景技术所介绍的,现有技术中存在不足,为了解决如上的技术问题,本发明提出了一种地表综合物探的三维立体成像方法及系统,可以应用于岩溶、孤石、桩基、矿产等勘查工作中。该方法将现场多条测线形成的冗杂的二维剖面的电阻率数据通过三维坐标转换以及克里金插值法整合成像到了一个三维的立体成像系统中,使勘探数据具有良好的直观性与可视性。
本发明的一种典型的实施方式中,如图1所示,提供一种地表综合物探的三 维立体成像方法,其包括以下步骤:
先通过跨孔法、井地法、高密度电法、瞬变电磁法或者地表综合物探方法,获取得到探测现场的多个二维剖面的探测数据,通过现场采集到的数据作为正演基础,通过反演对数据进行解释,得到多个二维剖面电阻率数据;
通过探测以及反演获得了多个二维剖面电阻率数据之后,再通过特定的算法,将二维剖面的数据点的平面直角坐标转换为特定三维直角坐标系下的三维直角坐标,获取三维空间直角坐标系下的数据点的电阻率数据;在获得三维坐标系下的电阻率数据之后通过克里金插值法,将获取的多个电阻率数据点转化为一个三维立体模型;
在获取三维立体电阻率模型之后,可以对三维立体电阻率模型的异常区进行解释,从而指导现场施工。
具体的,如图1所示,本实施例的地表探测三维成像方法流程,包括以下步骤:
1:根据地表探测现场具体的施工情况,选择探测方案以及测线布设方案。可以采用跨孔法、井地法、高密度电法、瞬变电磁法、地表综合物探方法中的一种进行地表探测,探测后可得到地表探测现场的多个二维剖面的电阻率探测数据。
如果采用跨孔法,则发射孔和接收孔按一定跨孔间距平行分布,且发射孔和接收孔的深度均大于探测目标深度,在发射孔中布置一定数量的发射电极,在接收孔中布置一定数量的接收电极,通过给发射电极通电,接收电极接收来获取探测数据;
如果采用井地法,则发射电极位于发射孔中,接收电极位于地表,通过给 发射电极通电,接收电极接收来获取探测数据;
如果采用高密度电法,则需要将全部电极置于观测剖面的各测点上,然后利用程控电极转化装置和微机工程电测仪便可实现数据的快速采集和自动采集;
如果采用瞬变电磁法,则需要利用不接地回线或接地电极向地下发送脉冲式一次电磁场,用线圈或接地电极观测该脉冲电磁场感应的地下涡流产生的二次电磁场的空间和时间分布;
如果采用地表综合物探方法,则需要结合上述多种测线布置方案以及探测方式。
2:对采集到的二维剖面的探测数据进行地球物理反演。通过步骤1中现场采集到的数据作为正演基础,不断调整模型参数,使其模型响应向观测数据响应,即通过反演对数据进行解释,从而得到探测平面的二维剖面的电阻率数据。
3:将获取的二维剖面的电阻率数据点坐标通过特定的公式进行三维坐标转化,获得空间三维直角坐标系下每个数据点的三维直角坐标,即得到三维坐标系下的电阻率数据。
4:将获取的多个剖面下的三维直角坐标系下的电阻率数据点通过克里金插值法形成模型。该插值法考虑的是空间属性在空间位置上的变异分布,确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。根据样品空间位置不同、样品间相关程度的不同,对每个样品品位赋予不同的权,进行滑动加权平均,以估计中心块段平均品位,最后将所有三维坐标系下的数据点集合成像成为一个三维立体模型。
5:通过对建立的三维模型进行分析,对异常区域进行解释,从而指导工程 的进行。
对于上述步骤中的三维坐标转化的过程,如图2(a)-图2(c)所示,包括以下步骤:
本实施例构建了三种常规测线方式下的坐标转换方式。首先进行三维坐标轴的建立,根据施工现场具体情况选择原点后,X方向为水平距离方向,以水平向右为正方向;Y方向为探测深度方向,以平行地面朝探测方向为正方向;Z方向为垂直距离方向,以垂直地面往下为正方向。
测线是在探测现场人工按照特定方向在地表铺设的,将人工铺设测线的三种可能的铺设方向分为三种测线布置情况,测线平面在三维坐标中的位置与倾角就是地表测线的位置与倾角。
测线平面即指地表测线正下方的二维剖面,通过人工铺设的地表测线激发出的电信号可以获取位于测线正下方的二位剖面上的电阻率数据。
第一种测线情况,即测线情况(a),如图2(a)所示,为测线平面平行于XOZ平面的情况,测线情况(a)又分为测线平面在坐标原点附近以及测线平面在原点远处两种类型;
第二种测线情况,即测线情况(b),如图2(b)所示,为测线平面平行于YOZ平面的情况,测线情况(b)又分为测线平面在坐标原点附近以及测线平面在原点远处两种类型;
第三种测线情况,即测线情况(c),如图2(c)所示,为测线平面倾斜于YOZ平面(垂直于XOY平面),且与YOZ平面夹角为α,测线情况(c)又分为测线平面与Y轴正方向夹角为α以及测线平面与Y轴负方向夹角为α两种情况。
本实施例构建了三种常规测线方式下的坐标转换方式,在获得所布置的测 线位置坐标以及数据点在测线平面上的位置之后,通过数学公式运算,即可获得所测区域内任意点的三维坐标,为后期三维成图奠定了方法基础,使得实际工程的探测成果三维立体化,解译更加便捷可行。
三维坐标转换通过以下公式进行转换:
Figure PCTCN2021100370-appb-000007
其中X、Y、Z为以O为原点的最终三维坐标,X1为测线起点距离坐标原点的水平距离,Y1为测线起点距离坐标原点的纵向埋深,Z1为测线起点距离坐标原点的垂直高度,X'为原始数据点的水平长度,Y'为原始数据点的探测深度,Z'初值为0,R1为位置矩阵,R2为数据点矩阵。
R1为位置矩阵,
Figure PCTCN2021100370-appb-000008
R2为数据点矩阵,根据测线平面情况的不同,R2取值不同。
针对前述三种不同测线情况下的R1、R2按下表选取:
若测线平面平行于三维坐标系XOZ平面,则R2为
Figure PCTCN2021100370-appb-000009
若测线平面平行于三维坐标系YOZ平面,则R2为
Figure PCTCN2021100370-appb-000010
若测线平面垂直于XOY平面,测线平面向右倾斜,且与YOZ平面Y轴负方向夹角夹角为α,则R2为
Figure PCTCN2021100370-appb-000011
若测线平面垂直于XOY平面,测线平 面向左倾斜,且与YOZ平面Y轴正方向夹角夹角为α,则R2为
Figure PCTCN2021100370-appb-000012
Figure PCTCN2021100370-appb-000013
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种地表综合物探的三维立体成像方法,其特征是,包括以下步骤:
    采集地表探测现场的多个二维剖面的探测数据;
    对探测数据通过地球物理反演形成二维剖面电阻率数据;
    将二维剖面电阻率数据进行三维坐标转换,获取三维坐标系的电阻率数据;
    利用克里金插值法将三维坐标系的电阻率数据转化成三维立体模型。
  2. 如权利要求1所述的地表综合物探的三维立体成像方法,其特征是,采集二维剖面的探测数据时,采用跨孔法、井地法、高密度电法、瞬变电磁法、地表综合物探方法中的一种进行地表探测。
  3. 如权利要求1所述的地表综合物探的三维立体成像方法,其特征是,三维坐标转换的过程为:
    确定原点,建立三维坐标轴;
    获取测线位置坐标及二维剖面电阻率数据点在测线平面的位置;
    通过三维坐标转换公式获得二维剖面电阻率数据点的三维坐标。
  4. 如权利要求3所述的地表综合物探的三维立体成像方法,其特征是,所述三维坐标轴X方向为水平距离方向,以水平向右为正方向;Y方向为探测深度方向,以平行地面朝探测方向为正方向;Z方向为垂直距离方向,以垂直地面往下为正方向。
  5. 如权利要求3所述的地表综合物探的三维立体成像方法,其特征是,所述三维坐标转换公式为:
    Figure PCTCN2021100370-appb-100001
    其中X、Y、Z为以O为原点的最终三维坐标,X1为测线起点距离坐标原点 的水平距离,Y1为测线起点距离坐标原点的纵向埋深,Z1为测线起点距离坐标原点的垂直高度,X'为原始数据点的水平长度,Y'为原始数据点的探测深度,Z'初值为0,R1为位置矩阵,R2为数据点矩阵。
  6. 如权利要求5所述的地表综合物探的三维立体成像方法,其特征是,所述R1为
    Figure PCTCN2021100370-appb-100002
  7. 如权利要求5所述的地表综合物探的三维立体成像方法,其特征是,若测线平面平行于三维坐标系XOZ平面,则R2为
    Figure PCTCN2021100370-appb-100003
  8. 如权利要求5所述的地表综合物探的三维立体成像方法,其特征是,若测线平面平行于三维坐标系YOZ平面,则R2为
    Figure PCTCN2021100370-appb-100004
  9. 如权利要求5所述的地表综合物探的三维立体成像方法,其特征是,若测线平面垂直于XOY平面,且与YOZ平面Y轴正方向夹角夹角为α,则R2为
    Figure PCTCN2021100370-appb-100005
    若测线平面垂直于XOY平面,且与YOZ平面Y轴负方向夹角夹角为α,则R2为
    Figure PCTCN2021100370-appb-100006
  10. 一种地表综合物探的三维立体成像系统,其特征是,包括:
    采集模块,用于采集地表探测现场的多个二维剖面的探测数据;
    反演模块,用于对探测数据通过地球物理反演形成二维剖面电阻率数据;
    坐标转换模块,用于将二维剖面电阻率数据进行三维坐标转换,获取三维 坐标系的电阻率数据;
    转化模块,用于利用克里金插值法将三维坐标系的电阻率数据转化成三维立体模型。
PCT/CN2021/100370 2020-06-18 2021-06-16 一种地表综合物探的三维立体成像方法及系统 WO2021254394A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,816 US20230003917A1 (en) 2020-06-18 2021-06-16 Three-dimensional imaging method and system for surface comprehensive geophysical prospecting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010557781.XA CN111856589B (zh) 2020-06-18 2020-06-18 一种地表综合物探的三维立体成像方法及系统
CN202010557781.X 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021254394A1 true WO2021254394A1 (zh) 2021-12-23

Family

ID=72986241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100370 WO2021254394A1 (zh) 2020-06-18 2021-06-16 一种地表综合物探的三维立体成像方法及系统

Country Status (3)

Country Link
US (1) US20230003917A1 (zh)
CN (1) CN111856589B (zh)
WO (1) WO2021254394A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509822A (zh) * 2022-01-20 2022-05-17 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法
CN115840874A (zh) * 2023-02-21 2023-03-24 中海石油(中国)有限公司北京研究中心 源控前积倾角确定方法、装置、计算机存储介质及设备
CN117192628A (zh) * 2023-11-03 2023-12-08 北京科技大学 深部破碎含水地层分布识别方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856589B (zh) * 2020-06-18 2021-07-06 山东大学 一种地表综合物探的三维立体成像方法及系统
CN112799139A (zh) * 2020-12-29 2021-05-14 河北煤炭科学研究院有限公司 一种赋水异常区域三维探测方法及装置
CN113359197B (zh) * 2021-06-03 2024-01-23 河北省地震局 一种适于浅层高精度的曲地表叠加成像方法
CN113552635B (zh) * 2021-06-25 2023-03-03 山东大学 固源瞬变电磁数据融合隧道三维超前预报方法及系统
CN115420778B (zh) * 2022-09-02 2023-11-03 北京建工环境修复股份有限公司 一种浅层土壤污染快速调查定位方法及系统
CN116128850B (zh) * 2023-02-18 2023-11-21 西安正实智能科技有限公司 一种射孔测量的方法、装置、设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728667A (zh) * 2012-10-11 2014-04-16 中国石油化工股份有限公司 一种视三维高密度电法的浅表层地质结构建模方法
US20160124108A1 (en) * 2014-10-30 2016-05-05 Schlumberger Technology Corporation Inversion Technique For Fracture Characterization In Highly Inclined Wells Using Multiaxial Induction Measurements
CN106646624A (zh) * 2016-12-25 2017-05-10 中南大学 非对称电法测深方法
CN107305600A (zh) * 2016-04-21 2017-10-31 新疆维吾尔自治区煤炭科学研究所 最小二乘法电阻率三维近似反演技术
CN111856589A (zh) * 2020-06-18 2020-10-30 山东大学 一种地表综合物探的三维立体成像方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571592B2 (en) * 2015-08-31 2020-02-25 Pgs Geophysical As Direct resistivity determination
CN107544095B (zh) * 2017-07-28 2019-03-08 河南工程学院 一种地面三维激光点云与探地雷达图像融合的方法
CN110333543B (zh) * 2019-07-03 2020-07-31 山东大学 基于反射系数分析的低阻体解释及成像方法与系统
CN110530343B (zh) * 2019-09-02 2022-04-05 上海泉勋科技有限公司 实测实量系统、方法、装置及存储介质
CN110988999A (zh) * 2019-12-02 2020-04-10 山东大学 基于跨孔电阻率法ct反演成像分析桩基的探测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728667A (zh) * 2012-10-11 2014-04-16 中国石油化工股份有限公司 一种视三维高密度电法的浅表层地质结构建模方法
US20160124108A1 (en) * 2014-10-30 2016-05-05 Schlumberger Technology Corporation Inversion Technique For Fracture Characterization In Highly Inclined Wells Using Multiaxial Induction Measurements
CN107305600A (zh) * 2016-04-21 2017-10-31 新疆维吾尔自治区煤炭科学研究所 最小二乘法电阻率三维近似反演技术
CN106646624A (zh) * 2016-12-25 2017-05-10 中南大学 非对称电法测深方法
CN111856589A (zh) * 2020-06-18 2020-10-30 山东大学 一种地表综合物探的三维立体成像方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG FAN-SONG, ZHANG GANG;CHEN MENG-JUN;LI HUAI-LIANG: "3-D Inversion of High Density Resistivity Method Based on 2-D High-Density Electrical Prospecting Data and its Engineering Application", GEOPHYSICAL AND GEOCHEMICAL EXPLORATION, vol. 3, no. 43, 6 June 2019 (2019-06-06), pages 672 - 678, XP055882662, ISSN: 1000-8918, DOI: 10.11720/wtyht.2019.1247 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509822A (zh) * 2022-01-20 2022-05-17 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法
CN114509822B (zh) * 2022-01-20 2023-04-07 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法
CN115840874A (zh) * 2023-02-21 2023-03-24 中海石油(中国)有限公司北京研究中心 源控前积倾角确定方法、装置、计算机存储介质及设备
CN117192628A (zh) * 2023-11-03 2023-12-08 北京科技大学 深部破碎含水地层分布识别方法
CN117192628B (zh) * 2023-11-03 2024-01-26 北京科技大学 深部破碎含水地层分布识别方法

Also Published As

Publication number Publication date
CN111856589A (zh) 2020-10-30
CN111856589B (zh) 2021-07-06
US20230003917A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021254394A1 (zh) 一种地表综合物探的三维立体成像方法及系统
WO2021243967A1 (zh) 一种三维电阻率层析成像方法及系统
US10955578B2 (en) Device and method for ground source transient electromagnetic near-field detection and related device
CN102508303B (zh) 地下工程聚焦层析激发极化超前探测方法
US20230273336A1 (en) Data acquisition method of three-dimensional high-density resistivity based on arbitrary electrode distribution
CN110196452A (zh) 超常大埋深地下管道探测装置
CN104330832A (zh) 一种瞬变电磁快速三维人机交互反演方法
CN107829453A (zh) 一种垂直铺塑防渗帷幕渗漏检测的方法及装置
CN107191181B (zh) 一种基于电磁散射的井周界面探测方法
CN107861159A (zh) 双电偶源地‑井瞬变电磁探测方法
WO2022193403A1 (zh) 一种多线源地井瞬变电磁探测方法和装置
CN103454680A (zh) Walk-away VSP观测系统垂向覆盖次数的计算方法
CN106226360A (zh) 快速测试心墙坝表层裂缝空间特征的装置及其使用方法
CN102183794A (zh) 一种井中三分量磁测系统
CN110531406B (zh) 一种地下隐伏病害精准探查方法及装置
CN108873073B (zh) 一种基于网络并行电法的三维跨孔电阻率层析成像方法
CN107941194A (zh) 一种获取和计算工程岩体代表性rqd值的方法
CN110989001A (zh) 一种运用hdd技术的桩基三维钻孔ct探测方法
CN110673216A (zh) 一种单孔电阻率探测溶洞方法
Ba et al. Development status of digital detection technology for unfavorable geological structures in deep tunnels
CN110471122A (zh) 一种基于高密度电法温纳装置的三维电阻率测深应用方法
CN104820247B (zh) 矿井分布式三维电法仪及其观测方法
CN205134393U (zh) 用于检测地下连续墙渗漏的钻孔布置结构
CN112255274A (zh) 一种古城墙隐伏缺陷的无损检测方法
CN110927632A (zh) 一种频率域水平x方向磁场分量观测及资料处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826885

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21826885

Country of ref document: EP

Kind code of ref document: A1