WO2021254314A1 - 基本时间单元的处理方法、装置及电子设备 - Google Patents
基本时间单元的处理方法、装置及电子设备 Download PDFInfo
- Publication number
- WO2021254314A1 WO2021254314A1 PCT/CN2021/100053 CN2021100053W WO2021254314A1 WO 2021254314 A1 WO2021254314 A1 WO 2021254314A1 CN 2021100053 W CN2021100053 W CN 2021100053W WO 2021254314 A1 WO2021254314 A1 WO 2021254314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time unit
- basic time
- information
- frequency band
- value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000004891 communication Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 16
- 238000003672 processing method Methods 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 8
- 125000004122 cyclic group Chemical group 0.000 claims description 8
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 230000011664 signaling Effects 0.000 claims description 4
- 239000013256 coordination polymer Substances 0.000 claims 2
- 238000004590 computer program Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 101100335572 Escherichia coli (strain K12) ftsN gene Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 101150106977 msgA gene Proteins 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
Definitions
- This application relates to the field of communication technology, and in particular to a processing method, device and electronic equipment of a basic time unit.
- the New Radio operates in a high frequency band (for example, >52.6GHz)
- a high frequency band for example, >52.6GHz
- FFT size fast Fourier The transform length
- the embodiments of the present application provide a processing method, device, and electronic device for a basic time unit, which can enable the basic time unit to meet the requirements of different scenarios.
- an embodiment of the present application provides a method for processing a basic time unit, which is applied to a terminal, and the method includes:
- First information where the first information includes subcarrier spacing and/or operating frequency band;
- the system information or radio resource control RRC message sent by the network side device where the system information or RRC message indicates the value of the basic time unit.
- an embodiment of the present application provides a basic time unit processing device, which is applied to a terminal, and the device includes:
- the determining module is configured to determine a basic time unit and/or a reference constant according to at least one of the following information, where the reference constant is the ratio of the basic time unit to the preset time unit:
- First information where the first information includes subcarrier spacing and/or operating frequency band;
- the system information or radio resource control RRC message sent by the network side device where the system information or RRC message indicates the value of the basic time unit.
- an embodiment of the present application also provides an electronic device, including a processor, a memory, and a program or instruction stored on the memory and capable of running on the processor, and the program or instruction is The processor implements the steps of the method as described above when executed.
- an embodiment of the present application provides a readable storage medium, and the readable storage medium stores a program or instruction, and when the program or instruction is executed by a processor, the steps of the method described above are implemented.
- an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or an instruction to implement the chip as in the first aspect The method described.
- the value of the basic time unit can be determined according to the first information or the message sent by the network side device.
- the first information includes the subcarrier interval and the operating frequency band, so that the value of the basic time unit can be adjusted according to different scenarios.
- the basic time unit is made to meet the requirements of different scenarios, and the problem of insufficient sampling frequency due to increased sub-carrier spacing is solved.
- Figure 1 shows a schematic diagram of a wireless communication system
- FIG. 2 shows a schematic diagram of the uplink frame being earlier than the downlink frame when the UE performs uplink transmission
- FIG. 3 shows a schematic flowchart of a method for processing a basic time unit according to an embodiment of the present application
- FIG. 4 shows a schematic structural diagram of a processing device for a basic time unit in an embodiment of the present application
- Fig. 5 shows a block diagram of a terminal according to an embodiment of the present application.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
- the terms "system” and “network” are often used interchangeably.
- the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
- UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
- the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
- the OFDMA system can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc.
- UMB UltraMobile Broadband
- Evolved UTRA Evolved UTRA
- E-UTRA Evolution-UTRA
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX
- IEEE 802.20 Flash-OFDM
- Flash-OFDM Flash-OFDM
- UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
- LTE and more advanced LTE such as LTE-A
- UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP).
- CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
- 3GPP2 3rd Generation Partnership Project 2
- the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
- 3GPP2 3rd Generation Partnership Project 2
- NR terminology is used in most of the description below, although these techniques can also be applied to applications other than NR system applications.
- FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied.
- the wireless communication system includes a terminal 11 and a network side device 12.
- the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
- PDA mobile Internet device
- MID mobile Internet Device
- Wearable Device wearable device
- vehicle-mounted equipment it should be noted that the specific type of terminal 11 is not limited in the embodiment of this application .
- the network side device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point) , Or other access points, etc.), or a location server (for example: E-SMLC or LMF (Location Manager Function)), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (Base Transceiver Station, BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home B Node, home evolved Node B, WLAN access point, WiFi node, or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this The application embodiment only takes
- T c 1/( ⁇ f max ⁇ N f ), where ⁇ f max is 480KHz, and N f is the maximum fast Fourier transform ( The length (size) of Fast Fourier Transform (FFT) is 4096.
- T TA (N TA + N TA, offset ) T c .
- the timing advance (Timing Advanced, TA) is 0.
- N TA and offset are cell specific (cell specific) parameters, which are configured in System Information Block (SIB) 1 and can be configured from (0, 25600, 39936). At the same time, the same value applies to carriers configured with supplementary uplink (SUL). If it is not configured, perform according to Table 1:
- SIB System Information Block
- SUL supplementary uplink
- N TA For N TA , it is a UE-specific parameter, which can be obtained in the following two ways:
- N TA T A ⁇ 16 ⁇ 64/2 ⁇
- the subcarrier spacing is the SCS of the first uplink (uplink, UL) transmission (transmission) after the RAR response is received;
- N TA_new N TA_old + (T A -31) ⁇ 16 ⁇ 64/2 ⁇
- the TA command is the largest SCS relative to multiple active UL BWPs.
- N TA_new used on low SCS is approximated according to the TA accuracy requirements below.
- the accuracy requirements for TA adjustment are:
- OFDM Orthogonal Frequency Division Multiplexing
- the UE needs to be adjusted to ensure that it is within T e and meet the following rules:
- the maximum cumulative adjustment rate is to adjust T q every 200 ms.
- T p and T q are shown in Table 3:
- the embodiments of the present application provide a processing method, device, and electronic device for a basic time unit, which can enable the basic time unit to meet the requirements of different scenarios.
- the embodiment of the present application provides a processing method of basic time unit, which is applied to a terminal, as shown in Fig. 3, the method includes:
- Step 101 Determine a basic time unit and/or a reference constant according to at least one of the following information, where the reference constant is the ratio of the basic time unit to a preset time unit:
- First information where the first information includes subcarrier spacing and/or operating frequency band;
- the system information or radio resource control RRC message sent by the network side device where the system information or RRC message indicates the value of the basic time unit.
- the value of the basic time unit can be determined according to the first information or the message sent by the network side device.
- the first information includes the subcarrier interval and/or the operating frequency band, so that the basic time unit can be adjusted according to different scenarios. This value enables the basic time unit to meet the needs of different scenarios, and solves the problem of insufficient sampling frequency due to increased sub-carrier spacing.
- the time base unit to determine the value of T c by the first information may be the network side device through an explicit indication message T c of the elementary time unit, the predetermined value may also be-defined basic time unit of T c.
- the method further includes:
- T TA (N TA +N TA,offset )*T c , where T c is the basic time unit;
- T TA N TA,offset *T c +N TA *T′ c
- T c is the basic time unit corresponding to N TA,offset
- T′ c is the basic time unit corresponding to N TA
- N TA is dedicated to the terminal Parameters, N TA, offset are cell-specific parameters.
- obtaining the first information includes any one of the following:
- the subcarrier interval is the subcarrier interval of the first uplink transmission of the received RAR
- the operating frequency band is the operating frequency band of the first uplink transmission of the received RAR; that is, when the UE receives
- the sub-carrier interval is the sub-carrier interval of the first UL transmission that receives the RAR response
- the operating frequency band is the operating frequency band of the first UL transmission that receives the RAR response;
- the subcarrier interval may also be a subcarrier interval configured by the system information or a subcarrier interval of the system information, and the operating frequency band may also be a frequency band for receiving the system information;
- the sub-carrier interval may also be the sub-carrier interval for activating the UL BWP of the uplink bandwidth part, and the operating frequency band may also be the operating frequency of the UL BWP for activating the uplink bandwidth part;
- the sub-carrier interval is the maximum or minimum sub-carrier interval in the UL BWP or the carrier in the multiple activation or configuration uplink bandwidth part contained in the timing advance group TAG ID indicated by the MAC CE SCS
- the operating frequency band is the frequency band where the maximum or minimum frequency band or the maximum SCS contained in the multiple activation or configuration UL BWP or carrier contained in the TAG ID indicated by the MAC CE, that is, when the UE receives the MAC CE to calculate the T TA value
- the sub-carrier interval is the maximum or minimum SCS of the multiple activated UL BWPs or carriers contained in the TAG ID indicated by the MAC CE
- the operating frequency band is the maximum or minimum of the multiple activated UL BWPs or carriers contained in the TAG ID indicated by the MAC CE. Or the smallest frequency band, or the frequency band where the largest SCS is located;
- the network-side device configuration may be that the network-side device explicitly indicates the sub-carrier spacing and/or operating frequency band.
- the method further includes determining the value of N TA,offset according to the first information and/or the basic time unit, including any one of the following:
- the value set of N TA,offset is determined according to the first information and/or the basic time unit , and the N TA,offset configuration indication information of the network side device is obtained from the Determine the value of N TA and offset in the value set;
- the value of N TA, offset is determined from a predefined table according to the first information and/or the basic time unit.
- the method further includes determining the value of N TA according to the first information and/or the basic time unit, including:
- N TA The value of N TA is determined according to the calculation formula and the value of the received TA command.
- the maximum or minimum SCS in the multiple activated UL BWP or the carrier needs to be adjusted according to the TA accuracy requirements.
- the Tc used by TA accuracy refers to the SCS of the UL BWP or the above (maximum or minimum) SCS.
- the subcarrier spacing and/or operating frequency band are the subcarrier spacing and/or operating frequency band of the first UL transmission that received the RAR response.
- the sub-carrier interval is the multiple activated UL BWP or the largest SCS in the carrier contained in the TAG ID indicated by the MAC CE
- the operating frequency band is the multiple contained in the TAG ID indicated by the MAC CE The frequency band where the maximum SCS of the UL BWP or carrier is activated.
- the sub-carrier interval is 960KHz
- T′ c 1/( ⁇ f max ⁇ N f )
- ⁇ f max is 960KHz
- subcarrier spacing is 120KHz
- T 'c 1 / ( ⁇ f max ⁇ N f)
- ⁇ f max is 480KHz
- the subcarrier interval in the first information is the subcarrier interval for generating the orthogonal frequency division multiplexing OFDM baseband signal
- the operating frequency band in the first information is the frequency band for transmitting the OFDM baseband signal
- the Methods also include:
- the OFDM baseband signal is generated according to the calculation formula and the value of the basic time unit.
- ⁇ is the constant (for example, 64) of the first basic time unit of NR relative to the LTE basic time unit
- ⁇ ′ is the constant (for example, 128) of the second basic time unit of NR relative to the LTE basic time unit, for, Is the start time of the l-th symbol when SCS is ⁇ , Is the complex value sent on the resource unit (k,l) on the antenna port p when the SCS is ⁇ , and k is the subcarrier number, Is the PRB number of the carrier whose SCS is ⁇ , Is the number of subcarriers for each PRB, Is the number of PRBs of the carrier whose SCS is ⁇ 0 , ⁇ 0 is the maximum value of the SCS indication of all configured carriers, and ⁇ is the SCS indication value of the configured carriers.
- T c 1/( ⁇ f max ⁇ N f ), where ⁇ f max is 480KHz, N f is the maximum FFT size 4096, and the OFDM signal generation formula is
- the extended cyclic prefix is an extended cyclic prefix
- the normal cyclic prefix is a normal cyclic prefix
- the subcarrier interval in the first information is the subcarrier interval for generating the synchronization signal block SSB
- the operating frequency band in the first information is the frequency band for transmitting the SSB
- the method further includes:
- Timing adjustment rate parameter Tp, Tp is the minimum cumulative adjustment rate.
- the method further includes:
- the basic time unit configuration information indicates the applicable frequency band and/or applicable SCS of the basic time unit, so that the terminal can determine to use in different scenarios
- the corresponding basic time unit enables the basic time unit to meet the needs of different scenarios.
- the execution subject of the basic time unit processing method provided in the embodiment of the present application may be the processing device of the basic time unit, or the processing device used to execute the processing method of loading the basic time unit in the processing device of the basic time unit. Module.
- the processing method of loading the basic time unit executed by the processing device of the basic time unit is taken as an example to illustrate the processing method of the basic time unit provided in the embodiment of the present application.
- the processing device of the basic time unit in the embodiment of the present application is applied to the terminal 200. As shown in FIG. 4, the device includes:
- the determining module 210 is configured to determine a basic time unit and/or a reference constant according to at least one of the following information, where the reference constant is a ratio of the basic time unit to a preset time unit:
- First information where the first information includes subcarrier spacing and/or operating frequency band;
- the system information or radio resource control RRC message sent by the network side device where the system information or RRC message indicates the value of the basic time unit.
- the device further includes:
- the first calculation module is used to calculate the time advance T TA using any of the following formulas:
- T TA (N TA +N TA,offset )*T c , where T c is the basic time unit;
- T TA N TA,offset *T c +N TA *T′ c
- T c is the basic time unit corresponding to N TA,offset
- T′ c is the basic time unit corresponding to N TA
- N TA is dedicated to the terminal Parameters
- N TA and offset are cell-specific parameters.
- the device further includes:
- the first acquiring module is configured to acquire the first information, and the acquiring module is specifically configured to perform any one of the following:
- the sub-carrier interval is the sub-carrier interval of the first uplink transmission of the received RAR
- the operating frequency band is the operating frequency of the first uplink transmission of the received RAR
- the subcarrier interval is a subcarrier interval configured by the system information or a subcarrier interval of the system information
- the operating frequency band is a frequency band for receiving the system information
- the subcarrier interval is the subcarrier interval for activating the UL BWP of the uplink bandwidth part
- the operating frequency band is the operating frequency band for activating the UL BWP of the uplink bandwidth part
- the sub-carrier interval is the maximum or minimum sub-carrier interval in the multiple activation or configuration uplink bandwidth part UL BWP or carrier contained in the timing advance group TAG ID indicated by the MAC CE SCS
- the operating frequency band is the maximum or minimum frequency band of multiple activated or configured UL BWP or carrier, or the frequency band where the maximum SCS is contained in the TAG ID indicated by the MAC CE;
- the device further includes:
- the first processing module is configured to determine the value of N TA, offset according to the first information and/or the basic time unit, and the first processing module is specifically configured to perform any one of the following:
- N TA,offset is determined from a predefined table according to the first information and/or the basic time unit.
- the device further includes:
- the second processing module configured to determine the value of N TA according to the first information and/or the basic time unit, includes:
- N TA The value of N TA is determined according to the calculation formula and the value of the received TA command.
- the subcarrier interval in the first information is the subcarrier interval for generating the orthogonal frequency division multiplexing OFDM baseband signal
- the operating frequency band in the first information is the frequency band for transmitting the OFDM baseband signal
- the The device also includes:
- the generation module is configured to determine the value of the basic time unit according to the first information; determine the calculation formula for generating the OFDM baseband signal or the value of the relative constant in the calculation formula according to the first information, and the calculation formula is used for calculation The number of samples of the useful signal and the cyclic prefix CP signal in one symbol; the OFDM baseband signal is generated according to the calculation formula and the value of the basic time unit.
- the subcarrier interval in the first information is the subcarrier interval for generating the synchronization signal block SSB
- the operating frequency band in the first information is the frequency band for transmitting the SSB
- the apparatus further includes:
- the second calculation module is configured to determine the value of the basic time unit according to the first information; and calculate at least one of the following according to the first information and the value of the basic time unit:
- Timing adjustment rate parameter T p , T p is the minimum cumulative adjustment rate.
- the device further includes:
- the second acquiring module is configured to acquire basic time unit configuration information configured or pre-configured or defined by the network side device, where the basic time unit configuration information indicates the applicable frequency band and/or applicable SCS of the basic time unit.
- the processing device of the basic time unit in the embodiment of the present application may be a device, or a component, an integrated circuit, or a chip in a terminal.
- the device can be a mobile electronic device or a non-mobile electronic device.
- the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
- UMPC ultra-mobile personal computer
- netbook or a personal digital assistant (personal digital assistant).
- assistant, PDA personal digital assistant
- non-mobile electronic devices can be network attached storage (Network Attached Storage, NAS), personal computer (PC), television (television, TV), teller machine, or self-service machine, etc., this embodiment of the application There is no specific limitation.
- the processing device of the basic time unit in the embodiment of the present application may be a device with an operating system.
- the operating system may be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiment of the present application.
- the processing device for the basic time unit provided in the embodiment of the present application can implement each process realized by the processing method for the basic time unit in the method embodiment of FIG.
- an embodiment of the present application further provides an electronic device, including a processor, a memory, and a program or instruction that is stored in the memory and can run on the processor.
- an electronic device including a processor, a memory, and a program or instruction that is stored in the memory and can run on the processor.
- the program or instruction is executed by the processor, the foregoing
- Each process of the embodiment of the basic time unit processing method can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
- the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
- the electronic device in this embodiment may be a terminal.
- FIG. 5 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present application.
- the terminal 30 includes but is not limited to: a radio frequency unit 31, a network module 32, an audio output unit 33, an input unit 34, a sensor 35, a display unit 36, User input unit 37, interface unit 38, memory 39, processor 310, power supply 311 and other components.
- the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or less components than those shown in the figure, or combine certain components, or arrange different components.
- terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
- the radio frequency unit 31 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 310; in addition, Uplink data is sent to the base station.
- the radio frequency unit 31 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
- the radio frequency unit 31 can also communicate with the network and other devices through a wireless communication system.
- the memory 39 can be used to store software programs and various data.
- the memory 39 may mainly include a storage program area and a storage data area.
- the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
- the memory 39 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
- the processor 310 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
- the processor 310 may include one or more processing units; preferably, the processor 310 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem
- the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 310.
- the terminal 30 may also include a power source 311 (such as a battery) for supplying power to various components.
- a power source 311 such as a battery
- the power source 311 may be logically connected to the processor 310 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
- the terminal 30 includes some functional modules not shown, which will not be repeated here.
- the embodiment of the present application further provides a readable storage medium, the readable storage medium stores a program or instruction, and when the program or instruction is executed by a processor, each process of the embodiment of the processing method of the basic time unit is realized, And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
- the processor is the processor in the electronic device described in the foregoing embodiment.
- the readable storage medium includes a computer readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks, or optical disks.
- the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or an instruction to implement the processing method of the above-mentioned basic time unit
- the chip includes a processor and a communication interface
- the communication interface is coupled with the processor
- the processor is used to run a program or an instruction to implement the processing method of the above-mentioned basic time unit
- chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
- the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
- the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种基本时间单元的处理方法、装置及电子设备,属于通信技术领域。基本时间单元的处理方法,应用于终端,所述方法包括:根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:第一信息,所述第一信息包括子载波间隔和/或运行频段;网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
Description
相关申请的交叉引用
本申请主张在2020年6月16日在中国提交的中国专利申请No.202010550082.2的优先权,其全部内容通过引用包含于此。
本申请涉及通信技术领域,尤其涉及一种基本时间单元的处理方法、装置及电子设备。
新空口(New Radio,NR)在高频段(例如>52.6GHz)运行时,由于可使用频率带宽大以及与其他技术共存的要求,至少需要支持最大2GHz的带宽,因此抽样频率和快速傅里叶变换长度(FFT size)都会相应增大,但目前的基本时间单元不能满足要求。
发明内容
本申请实施例提供了一种基本时间单元的处理方法、装置及电子设备,能够使得基本时间单元满足不同场景的需求。
第一方面,本申请实施例提供了一种基本时间单元的处理方法,应用于终端,所述方法包括:
根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:
第一信息,所述第一信息包括子载波间隔和/或运行频段;
网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
第二方面,本申请实施例提供了一种基本时间单元的处理装置,应用于 终端,所述装置包括:
确定模块,用于根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:
第一信息,所述第一信息包括子载波间隔和/或运行频段;
网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
第三方面,本申请实施例还提供了一种电子设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如上所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,根据第一信息或网络侧设备发送的消息可以确定基本时间单元的值,第一信息包括子载波间隔以及运行频段,这样可以根据不同的场景调整基本时间单元的值,使得基本时间单元满足不同场景的需求,解决了由于子载波间隔增大导致采样频率不够的问题。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示无线通信系统的示意图;
图2表示UE进行上行传输时的上行帧比下行帧提前的示意图;
图3表示本申请实施例基本时间单元的处理方法的流程示意图;
图4表示本申请实施例基本时间单元的处理装置的结构示意图;
图5表示本申请实施例的终端框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本申请实施例中并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),或者为位置服务器(例如:E-SMLC或LMF(Location Manager Function)),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基 本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是本申请实施例并不限定基站的具体类型和具体通信系统。
在新空口(New Radio,NR)的相关协议中,定义最小的基本时间单元为T
c=1/(Δf
max·N
f),其中Δf
max为480KHz,N
f为最大快速傅里叶变换(Fast Fourier Transform,FFT)的长度(size)4096。同时,为了更好的反映与长期演进(Long Term Evolution,LTE)帧结构的关系,定义了相对LTE时间基本单元的常数κ=T
s/T
c=64,其中T
s=1/(Δf
ref·N
f,ref)为LTE的时间基本单元长度,并且Δf
ref=15·10
3Hz和N
f,ref=2048。
如图2所示,终端(User Equipment,UE)进行上行传输时的上行帧比下行帧提前T
TA=(N
TA+N
TA,offset)T
c。对于msgA传输,时间提前量(Timing Advanced,TA)为0。
其中,N
TA,offset是小区专用(cell specific)参数,在系统消息块(System Information Block,SIB)1中配置,可从(0,25600,39936)中进行配置。同时,对于配置有补充的上行链路(supplementary uplink,SUL)的载波(carrier),应用同样的数值。如果未配置,则按照表1执行:
表1
对于N
TA,是一个UE专用(specific)的参数,可以通过以下两种方式获得:
1、随机接入响应(Random Access Response,RAR)中的TA命令(command),共12位,可配置为TA=0,1,2,...,3846,对应的,
N
TA=T
A·16·64/2
μ
其中子载波间隔(subcarrier spacing,SCS)取接收到RAR response后的第一个上行链路(uplink,UL)传输(transmission)的SCS;
2、媒体介入控制(Media Access Control,MAC)控制单元(Control element,CE)中的TA command,共6位,可配置为TA=0,1,2,...,63,对于目前的N
TA进行调整,即
N
TA_new=N
TA_old+(T
A-31)·16·64/2
μ
如果UE在同一个TAG中有多个激活(active)UL带宽部分(Bandwidth part,BWP),则TA command是相对于多个active UL BWP最大的SCS。在低SCS上使用的N
TA_new根据下面的TA精度要求进行近似。
TA调整的精度要求为:
对于NR中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号生成,NR以基本时间单元进行OFDM信号生成,例如
where t=0 at the start of the subframe,
NR中,同步信号块(Synchronization Signal block,SSB)的timing error requirement如表2所示:
表2
当UE对于SSB的timing difference超过T
e时,UE需要通过调整保证在T
e以内,并且符合以下规则:
(1)每次调整不超过T
q;
(2)最小的累积调整速率为每秒T
p;
(3)最大的累积调整速率为每200ms调整T
q。
其中T
p和T
q的值如表3所示:
表3
本申请实施例提供了一种基本时间单元的处理方法、装置及电子设备,能够使得基本时间单元满足不同场景的需求。
本申请实施例提供一种基本时间单元的处理方法,应用于终端,如图3所 示,所述方法包括:
步骤101:根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:
第一信息,所述第一信息包括子载波间隔和/或运行频段;
网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
在本申请实施例中,根据第一信息或网络侧设备发送的消息可以确定基本时间单元的值,第一信息包括子载波间隔和/或运行频段,这样可以根据不同的场景调整基本时间单元的值,使得基本时间单元满足不同场景的需求,解决了由于子载波间隔增大导致采样频率不够的问题。
本实施例中,可以通过第一信息确定基本时间单元T
c的值,也可以由网络侧设备通过消息显式指示基本时间单元T
c的值,还可以预定义基本时间单元T
c的值。
一些实施例中,所述方法还包括:
利用以下任一公式计算时间提前量T
TA:
T
TA=(N
TA+N
TA,offset)*T
c,其中,T
c为基本时间单元;
T
TA=N
TA,offset*T
c+N
TA*T′
c,其中,T
c为N
TA,offset对应的基本时间单元,T′
c为N
TA对应的基本时间单元,N
TA为终端专用参数,N
TA,offset为小区专用参数。
在计算时间提前量T
TA之前,还需要获取所述第一信息,获取所述第一信息包括以下任一项:
接收随机接入响应RAR,所述子载波间隔为接收到RAR的第一个上行传输的子载波间隔,所述运行频段为接收到RAR的第一个上行传输的运行频段;即当UE接收到RAR计算T
TA值时,子载波间隔为接收到RAR response的第一个UL transmission的子载波间隔,运行频段为接收到RAR response的第一个UL transmission的运行频段;
接收系统信息,所述子载波间隔还可以为所述系统信息配置的子载波间隔或所述系统信息的子载波间隔,所述运行频段还可以为接收所述系统信息 的频段;
所述子载波间隔还可以为激活上行带宽部分UL BWP的子载波间隔,所述运行频段还可以为激活上行带宽部分UL BWP的运行频段;
接收媒体介入控制控制单元MAC CE,所述子载波间隔为所述MAC CE指示的时间提前量组TAG标识ID包含的多个激活或配置上行带宽部分UL BWP或载波中的最大或最小子载波间隔SCS,所述运行频段为所述MAC CE指示的TAG ID包含的多个激活或配置UL BWP或载波的最大或最小频段或最大SCS所在的频段,即当UE接收到MAC CE计算T
TA值时,子载波间隔为为该MAC CE指示的TAG ID包含的多个激活UL BWP或carrier中的最大或最小SCS,运行频段为该MAC CE指示的TAG ID包含的多个激活UL BWP或carrier的最大或最小频段,或最大SCS所在的频段;
获取网络侧设备配置或预配置或协议定义的子载波间隔和/或运行频段,其中,网络侧设备配置可以是网络侧设备显式指示子载波间隔和/或运行频段。
在确定基本时间单元和/或第一信息后,所述方法还包括根据所述第一信息和/或所述基本时间单元确定N
TA,offset的值,包括以下任一项:
如果配置N
TA,offset的指示信息,根据所述第一信息和/或所述基本时间单元确定N
TA,offset的取值集合,根据网络侧设备的N
TA,offset的配置指示信息从所述取值集合中确定N
TA,offset的值;
如果未配置N
TA,offset的指示信息,根据所述第一信息和/或所述基本时间单元从预定义的表格中确定N
TA,offset的值。
在确定基本时间单元和/或第一信息后,所述方法还包括根据所述第一信息和/或所述基本时间单元确定N
TA的值,包括:
根据所述第一信息和/或所述基本时间单元以及接收到的TA命令的信令类型确定N
TA的计算公式;
根据所述计算公式和接收到的TA命令的值确定N
TA的值。
对于MAC CE收到TA command时,对于UL BWP上不是该MAC CE指示的TAG ID包含的多个激活UL BWP或carrier中的最大或最小SCS时,需 要根据TA精确度(accuracy)要求进行调整,TA accuracy使用的Tc参考该UL BWP的SCS或者上述(最大或最小)SCS。
一具体实施方式中,N
TA,offset的取值集合为(0,25600,39936),参考基本时间单元为T
c=1/(Δf
max·N
f),其中Δf
max为480KHz,N
f为最大FFT size 4096。
当UE在RAR收到TA command时,子载波间隔和/或运行频段为接收到RAR response的第一个UL transmission的子载波间隔和/或运行频段。根据子载波间隔和/或运行频段确定基本时间单元的值,例如子载波间隔为960KHz,确定其基本时间单元的值为T′
c=1/(Δf
max·N
f),其中Δf
max为960KHz,N
f为最大FFT size 4096,N
TA的计算公式为N
TA=T
TA*16*128/2
μ;例如子载波间隔为120KHz,确定其基本时间单元的值为T
c=1/(Δf
max·N
f),其中Δf
max为480KHz,N
f为最大FFT size 4096,N
TA的计算公式为N
TA=T
TA*16*64/2
μ。
当UE在MAC CE收到TA command时,子载波间隔为该MAC CE指示的TAG ID包含的多个激活UL BWP或carrier中的最大SCS,运行频段为该MAC CE指示的TAG ID包含的多个激活UL BWP或carrier的最大SCS所在的频段。根据子载波间隔和/或运行频段确定基本时间单元的值,例如子载波间隔为960KHz,确定其基本时间单元的值为T′
c=1/(Δf
max·N
f),其中Δf
max为960KHz,N
f为最大FFT size 4096,N
TA的计算公式为N
TA,new=N
TA,old*(T
TA-31)*16*128/2
μ;子载波间隔为120KHz,确定其基本时间单元的值为T′
c=1/(Δf
max·N
f),其中Δf
max为480KHz,Nf为最大FFT size 4096,N
TA的计算公式为N
TA,new=N
TA,old*(T
TA-31)*16*64/2
μ。
一些实施例中,所述第一信息中的子载波间隔为产生正交频分复用OFDM基带信号的子载波间隔,所述第一信息中的运行频段为发送OFDM基带信号的频段,所述方法还包括:
根据所述第一信息确定基本时间单元的值;
根据所述第一信息确定产生OFDM基带信号的计算公式或所述计算公式中相对常数的值,所述计算公式用于计算一个符号中有用信号和循环前缀CP 信号的样本数;
根据所述计算公式和所述基本时间单元的值产生OFDM基带信号。
一具体实施方式中,当发送信号的SCS为960KHz时,确定其基本时间单元的值为T′
c=1/(Δf
max·N
f),其中Δf
max为960KHz,N
f为最大FFT size 4096,其OFDM信号产生公式为
上述公式中,κ为NR第一基本时间单元相对于LTE基本时间单元的常数(例如64),κ′为NR第二基本时间单元相对于LTE基本时间单元的常数(例如128),
为,
为SCS为μ时第l个符号的开始时刻,
为SCS为μ时天线端口p上在资源单元(k,l)发送的复值,k为子载波编号,
为SCS为μ的载波的PRB数,
为每个PRB的子载波数,
为SCS为μ
0的载波的PRB数,μ
0为所有配置载波的SCS指示最大值,μ为配置载波的SCS指示值。
当发送信号的SCS为120KHz时,确定其基本时间单元的值为T
c=1/(Δf
max·N
f),其中Δf
max为480KHz,N
f为最大FFT size 4096,其OFDM信号生成公式为
在子帧的开始,t=0,
其中,extended cyclic prefix(CP)为扩展循环前缀,normal cyclic prefix为普通循环前缀。
一些实施例中,所述第一信息中的子载波间隔为产生同步信号块SSB的子载波间隔,所述第一信息中的运行频段为发送所述SSB的频段,所述方法还包括:
根据所述第一信息确定基本时间单元的值;
根据所述第一信息和所述基本时间单元的值计算以下至少一项:
定时误差Te;
定时调整速率参数Tq,每次调整不超过Tq;
定时调整速率参数Tp,Tp为最小的累积调整速率。
一些实施例中,所述方法还包括:
获取网络侧设备配置或预配置或协议定义的基本时间单元配置信息,所述基本时间单元配置信息指示所述基本时间单元的适用频段和/或适用SCS,这样终端可以确定在不同的场景下使用对应的基本时间单元,使得基本时间单元满足不同场景的需求。
一具体实施方式中,对于1)960KHz的SCS,或2)52.6GHz以上频段,或3)52.6GHz以上频段和960KHz的SCS,使用最小的基本时间单元为T′
c=1/(Δf
max·N
f),其中Δf
max为1920KHz,N
f为最大FFT size 4096;其他情况下使用最小的基本时间单元为T
c=1/(Δf
max·N
f),其中Δf
max为480KHz,N
f为最大FFT size 4096。
需要说明的是,本申请实施例提供的基本时间单元的处理方法,执行主体可以为基本时间单元的处理装置,或者该基本时间单元的处理装置中的用于执行加载基本时间单元的处理方法的模块。本申请实施例中以基本时间单元的处理装置执行加载基本时间单元的处理方法为例,说明本申请实施例提供的基本时间单元的处理方法。
本申请实施例的基本时间单元的处理装置,应用于终端200,如图4所示,所述装置包括:
确定模块210,用于根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:
第一信息,所述第一信息包括子载波间隔和/或运行频段;
网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
一些实施例中,所述装置还包括:
第一计算模块,用于利用以下任一公式计算时间提前量T
TA:
T
TA=(N
TA+N
TA,offset)*T
c,其中,T
c为基本时间单元;
T
TA=N
TA,offset*T
c+N
TA*T′
c,其中,T
c为N
TA,offset对应的基本时间单元,T′
c为N
TA对应的基本时间单元,N
TA为终端专用参数,N
TA,offset为小区专用参数。
一些实施例中,所述装置还包括:
第一获取模块,用于获取所述第一信息,所述获取模块具体用于执行以下任一项:
接收随机接入响应RAR,所述子载波间隔为接收到RAR的第一个上行传输的子载波间隔,所述运行频段为接收到RAR的第一个上行传输的运行频段;
接收系统信息,所述子载波间隔为所述系统信息配置的子载波间隔或所述系统信息的子载波间隔,所述运行频段为接收所述系统信息的频段;
所述子载波间隔为激活上行带宽部分UL BWP的子载波间隔,所述运行频段为激活上行带宽部分UL BWP的运行频段;
接收媒体介入控制控制单元MAC CE,所述子载波间隔为所述MAC CE指示的时间提前量组TAG标识ID包含的多个激活或配置上行带宽部分UL BWP或载波中的最大或最小子载波间隔SCS,所述运行频段为所述MAC CE指示的TAG ID包含的多个激活或配置UL BWP或载波的最大或最小频段或最大SCS所在的频段;
获取网络侧设备配置或预配置或协议定义的子载波间隔和/或运行频段。
一些实施例中,所述装置还包括:
第一处理模块,用于根据所述第一信息和/或所述基本时间单元确定N
TA,offset的值,所述第一处理模块具体用于执行以下任一项:
根据所述第一信息和/或所述基本时间单元确定N
TA,offset的取值集合,根据网络侧设备的N
TA,offset的配置指示信息从所述取值集合中确定N
TA,offset的值;
根据所述第一信息和/或所述基本时间单元从预定义的表格中确定N
TA,offset的值。
一些实施例中,所述装置还包括:
第二处理模块,用于根据所述第一信息和/或所述基本时间单元确定N
TA的值,包括:
根据所述第一信息和/或所述基本时间单元以及接收到的TA命令的信令类型确定N
TA的计算公式;
根据所述计算公式和接收到的TA命令的值确定N
TA的值。
一些实施例中,所述第一信息中的子载波间隔为产生正交频分复用OFDM基带信号的子载波间隔,所述第一信息中的运行频段为发送OFDM基带信号的频段,所述装置还包括:
产生模块,用于根据所述第一信息确定基本时间单元的值;根据所述第一信息确定产生OFDM基带信号的计算公式或所述计算公式中相对常数的值,所述计算公式用于计算一个符号中有用信号和循环前缀CP信号的样本数;根据所述计算公式和所述基本时间单元的值产生OFDM基带信号。
一些实施例中,所述第一信息中的子载波间隔为产生同步信号块SSB的子载波间隔,所述第一信息中的运行频段为发送所述SSB的频段,所述装置还包括:
第二计算模块,用于根据所述第一信息确定基本时间单元的值;根据所述第一信息和所述基本时间单元的值计算以下至少一项:
定时误差T
e;
定时调整速率参数T
q,每次调整不超过T
q;
定时调整速率参数T
p,T
p为最小的累积调整速率。
一些实施例中,所述装置还包括:
第二获取模块,用于获取网络侧设备配置或预配置或协议定义的基本时间单元配置信息,所述基本时间单元配置信息指示所述基本时间单元的适用频段和/或适用SCS。
本申请实施例中的基本时间单元的处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的基本时间单元的处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的基本时间单元的处理装置能够实现图3的方法实施例中基本时间单元的处理方法实现的各个过程,为避免重复,这里不再赘述。
可选的,本申请实施例还提供一种电子设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述基本时间单元的处理方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
本实施例的电子设备可以为终端。图5为实现本申请各个实施例的一种终端的硬件结构示意图,该终端30包括但不限于:射频单元31、网络模块32、音频输出单元33、输入单元34、传感器35、显示单元36、用户输入单元37、接口单元38、存储器39、处理器310、以及电源311等部件。本领域 技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
应理解的是,本申请实施例中,射频单元31可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器310处理;另外,将上行的数据发送给基站。通常,射频单元31包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元31还可以通过无线通信系统与网络和其他设备通信。
存储器39可用于存储软件程序以及各种数据。存储器39可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器39可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器39内的软件程序和/或模块,以及调用存储在存储器39内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器310可包括一个或多个处理单元;优选的,处理器310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器310中。
终端30还可以包括给各个部件供电的电源311(比如电池),优选的,电源311可以通过电源管理系统与处理器310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程 序或指令,该程序或指令被处理器执行时实现上述基本时间单元的处理方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述基本时间单元的处理方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
本申请的说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一。例如,“A和/或B”,表示“单独A,单独B,以及A和B都存在”三种情况,“A和B中的至少一个”也表示“单独A,单独B,以及A和B都存在”三种情况。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (21)
- 一种基本时间单元的处理方法,应用于终端,其中,所述方法包括:根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:第一信息,所述第一信息包括子载波间隔和/或运行频段;网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
- 根据权利要求1所述的基本时间单元的处理方法,还包括:利用以下任一公式计算时间提前量T TA:T TA=(N TA+N TA,offset)*T c,其中,T c为基本时间单元;T TA=N TA,offset*T c+N TA*T′ c,其中,T c为N TA,offset对应的基本时间单元,T′ c为N TA对应的基本时间单元,N TA为终端专用参数,N TA,offset为小区专用参数。
- 根据权利要求2所述的基本时间单元的处理方法,其中,所述方法还包括获取所述第一信息的步骤,获取所述第一信息包括以下任一项:接收随机接入响应RAR,所述子载波间隔为接收到RAR的第一个上行传输的子载波间隔,所述运行频段为接收到RAR的第一个上行传输的运行频段;接收系统信息,所述子载波间隔为所述系统信息配置的子载波间隔或所述系统信息的子载波间隔,所述运行频段为接收所述系统信息的频段;所述子载波间隔为激活上行带宽部分UL BWP的子载波间隔,所述运行频段为激活上行带宽部分UL BWP的运行频段;接收媒体介入控制控制单元MAC CE,所述子载波间隔为所述MAC CE指示的时间提前量组TAG标识ID包含的多个激活或配置上行带宽部分UL BWP或载波中的最大或最小子载波间隔SCS,所述运行频段为所述MAC CE指示的TAG ID包含的多个激活或配置UL BWP或载波的最大或最小频段或最大SCS所在的频段;获取网络侧设备配置或预配置或协议定义的子载波间隔和/或运行频段。
- 根据权利要求2所述的基本时间单元的处理方法,其中,所述方法还包括根据所述第一信息和/或所述基本时间单元确定N TA,offset的值,包括以下任一项:根据所述第一信息和/或所述基本时间单元确定N TA,offset的取值集合,根据网络侧设备的N TA,offset的配置指示信息从所述取值集合中确定N TA,offset的值;根据所述第一信息和/或所述基本时间单元从预定义的表格中确定N TA,offset的值。
- 根据权利要求2所述的基本时间单元的处理方法,其中,所述方法还包括根据所述第一信息和/或所述基本时间单元确定N TA的值,包括:根据所述第一信息和/或所述基本时间单元以及接收到的TA命令的信令类型确定N TA的计算公式;根据所述计算公式和接收到的TA命令的值确定N TA的值。
- 根据权利要求1所述的基本时间单元的处理方法,其中,所述第一信息中的子载波间隔为产生正交频分复用OFDM基带信号的子载波间隔,所述第一信息中的运行频段为发送OFDM基带信号的频段,所述方法还包括:根据所述第一信息确定基本时间单元的值;根据所述第一信息确定产生OFDM基带信号的计算公式或所述计算公式中相对常数的值,所述计算公式用于计算一个符号中有用信号和循环前缀CP信号的样本数;根据所述计算公式和所述基本时间单元的值产生OFDM基带信号。
- 根据权利要求1所述的基本时间单元的处理方法,其中,所述第一信息中的子载波间隔为产生同步信号块SSB的子载波间隔,所述第一信息中的运行频段为发送所述SSB的频段,所述方法还包括:根据所述第一信息确定基本时间单元的值;根据所述第一信息和所述基本时间单元的值计算以下至少一项:定时误差T e;定时调整速率参数T q,每次调整不超过T q;定时调整速率参数T p,T p为最小的累积调整速率。
- 根据权利要求1所述的基本时间单元的处理方法,其中,还包括:获取网络侧设备配置或预配置或协议定义的基本时间单元配置信息,所述基本时间单元配置信息指示所述基本时间单元的适用频段和/或适用SCS。
- 一种基本时间单元的处理装置,应用于终端,其中,所述装置包括:确定模块,用于根据以下至少一项信息确定基本时间单元和/或参考常数,所述参考常数为基本时间单元与预设时间单元的比值:第一信息,所述第一信息包括子载波间隔和/或运行频段;网络侧设备发送的系统信息或无线资源控制RRC消息,所述系统信息或RRC消息指示基本时间单元的值。
- 根据权利要求9所述的基本时间单元的处理装置,还包括:第一计算模块,用于利用以下任一公式计算时间提前量T TA:T TA=(N TA+N TA,offset)*T c,其中,T c为基本时间单元;T TA=N TA,offset*T c+N TA*T′ c,其中,T c为N TA,offset对应的基本时间单元,T′ c为N TA对应的基本时间单元,N TA为终端专用参数,N TA,offset为小区专用参数。
- 根据权利要求10所述的基本时间单元的处理装置,还包括:第一获取模块,用于获取所述第一信息,所述获取模块具体用于执行以下任一项:接收随机接入响应RAR,所述子载波间隔为接收到RAR的第一个上行传输的子载波间隔,所述运行频段为接收到RAR的第一个上行传输的运行频段;接收系统信息,所述子载波间隔为所述系统信息配置的子载波间隔或所述系统信息的子载波间隔,所述运行频段为接收所述系统信息的频段;所述子载波间隔为激活上行带宽部分UL BWP的子载波间隔,所述运行频段为激活上行带宽部分UL BWP的运行频段;接收媒体介入控制控制单元MAC CE,所述子载波间隔为所述MAC CE 指示的时间提前量组TAG标识ID包含的多个激活或配置上行带宽部分UL BWP或载波中的最大或最小子载波间隔SCS,所述运行频段为所述MAC CE指示的TAG ID包含的多个激活或配置UL BWP或载波的最大或最小频段或最大SCS所在的频段;获取网络侧设备配置或预配置或协议定义的子载波间隔和/或运行频段。
- 根据权利要求10所述的基本时间单元的处理装置,还包括:第一处理模块,用于根据所述第一信息和/或所述基本时间单元确定N TA,offset的值,所述第一处理模块具体用于执行以下任一项:根据所述第一信息和/或所述基本时间单元确定N TA,offset的取值集合,根据网络侧设备的N TA,offset的配置指示信息从所述取值集合中确定N TA,offset的值;根据所述第一信息和/或所述基本时间单元从预定义的表格中确定N TA,offset的值。
- 根据权利要求10所述的基本时间单元的处理装置,还包括:第二处理模块,用于根据所述第一信息和/或所述基本时间单元确定N TA的值,包括:根据所述第一信息和/或所述基本时间单元以及接收到的TA命令的信令类型确定N TA的计算公式;根据所述计算公式和接收到的TA命令的值确定N TA的值。
- 根据权利要求9所述的基本时间单元的处理装置,其中,所述第一信息中的子载波间隔为产生正交频分复用OFDM基带信号的子载波间隔,所述第一信息中的运行频段为发送OFDM基带信号的频段,所述装置还包括:产生模块,用于根据所述第一信息确定基本时间单元的值;根据所述第一信息确定产生OFDM基带信号的计算公式或所述计算公式中相对常数的值,所述计算公式用于计算一个符号中有用信号和循环前缀CP信号的样本数;根据所述计算公式和所述基本时间单元的值产生OFDM基带信号。
- 根据权利要求9所述的基本时间单元的处理装置,其中,所述第一信息中的子载波间隔为产生同步信号块SSB的子载波间隔,所述第一信息中 的运行频段为发送所述SSB的频段,所述装置还包括:第二计算模块,用于根据所述第一信息确定基本时间单元的值;根据所述第一信息和所述基本时间单元的值计算以下至少一项:定时误差T e;定时调整速率参数T q,每次调整不超过T q;定时调整速率参数T p,T p为最小的累积调整速率。
- 根据权利要求9所述的基本时间单元的处理装置,其中,所述装置还包括:第二获取模块,用于获取网络侧设备配置或预配置或协议定义的基本时间单元配置信息,所述基本时间单元配置信息指示所述基本时间单元的适用频段和/或适用SCS。
- 一种电子设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-8中任一项所述的方法的步骤。
- 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-8中任一项所述的方法的步骤。
- 一种芯片,包括:处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-8中任一项所述的方法的步骤。
- 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-8中任一项所述的方法的步骤。
- 一种电子设备,其中,所述基本时间单元的处理装置被配置为执行如权利要求1-8中任一项所述的方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010550082.2A CN113811001B (zh) | 2020-06-16 | 2020-06-16 | 基本时间单元的处理方法、装置及电子设备 |
CN202010550082.2 | 2020-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021254314A1 true WO2021254314A1 (zh) | 2021-12-23 |
Family
ID=78892584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100053 WO2021254314A1 (zh) | 2020-06-16 | 2021-06-15 | 基本时间单元的处理方法、装置及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113811001B (zh) |
WO (1) | WO2021254314A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110169165A (zh) * | 2016-11-02 | 2019-08-23 | 株式会社Ntt都科摩 | 用户终端和无线通信方法 |
US20200059337A1 (en) * | 2016-11-02 | 2020-02-20 | Sharp Kabushiki Kaisha | Base station apparatus, terminal apparatus, and communication method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765881B (zh) * | 2016-03-30 | 2022-06-01 | 美商Idac控股公司 | 無線傳輸/接收單元(wtru)及其執行方法 |
WO2018085725A1 (en) * | 2016-11-04 | 2018-05-11 | Intel IP Corporation | Discontinuous paging reception |
WO2019098768A1 (ko) * | 2017-11-17 | 2019-05-23 | 엘지전자 주식회사 | 하향링크 채널을 송수신하는 방법 및 이를 위한 장치 |
CN109802792B (zh) * | 2017-11-17 | 2021-09-21 | 华为技术有限公司 | 接收参考信号的方法和发送参考信号的方法 |
CN118764971A (zh) * | 2018-01-12 | 2024-10-11 | 创新技术实验室株式会社 | 在无线通信系统中执行随机接入的装置和方法 |
US10959268B2 (en) * | 2018-02-16 | 2021-03-23 | Qualcomm Incorporated | Random access timeline and timing adjustment techniques |
CN110831226B (zh) * | 2018-08-08 | 2023-11-21 | 夏普株式会社 | 由用户设备执行的方法以及用户设备 |
-
2020
- 2020-06-16 CN CN202010550082.2A patent/CN113811001B/zh active Active
-
2021
- 2021-06-15 WO PCT/CN2021/100053 patent/WO2021254314A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110169165A (zh) * | 2016-11-02 | 2019-08-23 | 株式会社Ntt都科摩 | 用户终端和无线通信方法 |
US20200059337A1 (en) * | 2016-11-02 | 2020-02-20 | Sharp Kabushiki Kaisha | Base station apparatus, terminal apparatus, and communication method |
Non-Patent Citations (1)
Title |
---|
HUAWEI; HISILICON: "Overview of frame structure for NR", 3GPP DRAFT; R1-166102, vol. RAN WG1, 12 August 2016 (2016-08-12), Gothenburg, Sweden, pages 1 - 8, XP051142115 * |
Also Published As
Publication number | Publication date |
---|---|
CN113811001B (zh) | 2024-10-01 |
CN113811001A (zh) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11026195B2 (en) | Communication method and device | |
CN105993185B (zh) | 用于邻域网络检测的方法和装置 | |
KR102212799B1 (ko) | 제어 정보 검출 방법, 제어 정보 전송 방법 및 장치 | |
US11483045B2 (en) | Method and device of transmitting and receiving reference signal | |
US20200344659A1 (en) | Carrier switching method, terminal and base station | |
WO2020173415A1 (zh) | 通信方法、终端设备和网络设备 | |
WO2018202012A1 (zh) | 确定时隙格式的方法、终端设备和网络设备 | |
WO2018090259A1 (zh) | 上行信号的传输方法和装置 | |
WO2022007931A1 (zh) | 定位测量方法、装置及通信设备 | |
TW201824888A (zh) | 用於配置通訊參數的方法和設備 | |
WO2019052494A1 (zh) | 传输方法和传输装置 | |
WO2022121826A1 (zh) | Ro的时域资源配置方法、装置及电子设备 | |
US20230319897A1 (en) | Ro time-domain resource configuration method and apparatus and electronic device | |
CN114390662A (zh) | Tsn参考时间的时延补偿方法、装置及设备 | |
US20130107802A1 (en) | Downlink time difference determination in frame asynchronous systems | |
EP4277392A1 (en) | Direct-current position processing method and related device | |
WO2022068793A1 (zh) | 中继通信信息配置方法、装置及电子设备 | |
WO2022183455A1 (zh) | 一种随机接入资源确定方法、电子设备及存储介质 | |
WO2021042912A1 (zh) | 上行传输的方法和终端 | |
WO2019028801A1 (zh) | 一种信号发送、接收方法及装置 | |
WO2021254314A1 (zh) | 基本时间单元的处理方法、装置及电子设备 | |
WO2019192456A1 (zh) | 配置信息指示方法及通信装置 | |
EP3512284B1 (en) | Method for determining time at which rrc signaling takes effect and terminal, | |
WO2022127679A1 (zh) | 信息传输方法、装置、终端及网络侧设备 | |
WO2022268116A1 (zh) | 定位方法、装置及相关设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21825571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21825571 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21825571 Country of ref document: EP Kind code of ref document: A1 |