WO2021254306A1 - 发动机起停机控制方法、装置、车载设备及存储介质 - Google Patents
发动机起停机控制方法、装置、车载设备及存储介质 Download PDFInfo
- Publication number
- WO2021254306A1 WO2021254306A1 PCT/CN2021/100000 CN2021100000W WO2021254306A1 WO 2021254306 A1 WO2021254306 A1 WO 2021254306A1 CN 2021100000 W CN2021100000 W CN 2021100000W WO 2021254306 A1 WO2021254306 A1 WO 2021254306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- drive mode
- torque
- control
- series
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the embodiments of the present application relate to the technical field of new energy vehicle control, for example, to an engine start-stop control method, device, on-board equipment, and storage medium.
- the three-clutch module of the common-end (Clutch, C0) motor included in the P2 configuration has a complex structure and requires relatively high clutch control.
- the dual-motor planetary gear power split configuration has not been promoted, and-the coordinated control of the three power sources of the dual-motor and the engine is more complicated.
- the fuel-saving effect of the dual-motor hybrid configuration is better than that of the P2 configuration.
- the control difficulty is lower than that of the power split configuration, and the application is relatively easy.
- due to the variable working conditions of the vehicle it involves frequent engine start and stop control. Shutdown control cannot achieve the desired control effect, nor can it achieve clear logic control.
- the embodiments of the present application provide an engine start-stop control method, device, on-board equipment, and storage medium, so as to ensure the continuity of engine start-stop control, and complete the control of engine start-stop in a timely and effective manner.
- An embodiment of the application provides an engine start-stop control method.
- the method includes: after receiving a series drive mode request, controlling the engine to enter the engine towing state; and adjusting the engine operating point based on the series target engine torque of the engine to control
- the whole vehicle is in the series drive mode; when the whole vehicle is in the series drive mode, upon receiving a pure electric drive mode request, the whole vehicle is controlled to switch to the pure electric drive mode.
- controlling the engine to enter the engine towing state includes: controlling the engine to enter the engine towing state; after controlling the engine to enter the engine towing state, controlling the generator to output a positive torque to reduce the engine speed After the engine controller feedbacks that the timing phase is in a synchronized state, the engine controller is controlled to execute the fuel injection enable command and the engine controller is controlled to control the engine output combustion torque. The torque is less than the series target engine torque.
- the method when controlling the engine to enter the engine towing state, the method further includes: in the case of receiving the pure electric drive mode request, controlling the engine to enter the engine stop state.
- adjusting the engine operating point based on the series target engine torque of the engine to control the entire vehicle to be in the series drive mode includes: controlling the current torque of the engine to increase to the series target based on the series target engine torque of the engine Engine torque, and controlling the current engine speed to increase to the series target engine speed, and the difference between the actual engine torque and the series target engine torque continues to be less than the preset torque threshold and the If the difference between the actual engine speed and the series target engine speed continues to be less than the preset speed threshold for the set period of time, it is determined that the entire vehicle is in the series drive model.
- controlling the whole vehicle to switch to the pure electric drive mode in the case of receiving the pure electric drive mode request includes: adjusting the engine when the pure electric drive mode request is received The working point is to control the whole vehicle to switch to a pure electric drive mode.
- the method further includes: in the process of adjusting the engine operating point based on the series target engine torque of the engine, receiving the pure electric drive mode request, and controlling the engine according to the pure electric drive mode request
- the current torque of is reduced to a preset torque, and the engine is controlled to enter the engine stop state.
- controlling the engine to enter the engine stop state includes: controlling the engine controller to execute a fuel cut command, and controlling the generator to output negative torque to reduce the engine speed until the engine stops; After the engine is stopped, the entire vehicle is controlled to be in the pure electric drive mode.
- the embodiment of the present application also provides an engine start-stop control device, which includes: an engine towing state control module, configured to control the engine to enter the engine towing state after receiving a serial drive mode request; engine operating point adjustment control The module is set to adjust the engine operating point based on the series target engine torque to control the entire vehicle to be in the series drive mode; the mode control module is set to adjust the engine operating point based on the series target engine torque to control the entire vehicle in the series drive mode; In the case of a drive mode request, control the entire vehicle to switch to a pure electric drive mode.
- the embodiment of the present application also provides a vehicle-mounted device, the vehicle-mounted device includes: one or more processors; a storage device configured to store one or more programs, when the one or more programs are When executed by two processors, the one or more processors implement the engine start-stop control method provided in the foregoing embodiment of the present application.
- the embodiment of the present application also provides a computer-readable storage medium, and the storage medium stores a computer program, and when the program is executed by a processor, the engine start-stop control method provided in the foregoing embodiment of the present application is implemented.
- Fig. 1 is a flowchart of an engine start-stop control method according to the first embodiment of the present application
- Fig. 3 is a structural diagram of an engine start-stop control device provided by the third embodiment of the present application.
- Fig. 4 is a schematic diagram of the hardware structure of a vehicle-mounted device according to the fourth embodiment of the present application.
- Fig. 1 is a flowchart of an engine start-stop control method provided by the first embodiment of the application. This embodiment can be applied to a case where the engine start-stop control is performed on a hybrid vehicle with a dual-motor hybrid configuration.
- the method can be controlled by
- the engine start and stop control device can be implemented in the form of software and/or hardware. The method includes the following steps.
- the serial drive mode request is used to request to switch the entire vehicle drive mode to the serial drive mode, and the serial drive mode request can be issued by the entire vehicle drive mode management module.
- the entire vehicle drive mode of the vehicle Before receiving the serial drive mode request, the entire vehicle drive mode of the vehicle may be a pure electric drive mode, or the engine of the vehicle may be in an engine shutdown state.
- the vehicle controller When the vehicle's vehicle drive mode management module issues a serial drive mode request, the vehicle controller receives the serial drive mode request, and the vehicle controller controls the engine to enter the engine towing state.
- Controlling the engine to enter the engine drag state includes: controlling the generator to output positive torque to drag the engine speed above the resonance speed; after the engine controller feedbacks that the timing phase is in a synchronized state, controlling the engine controller to execute injection
- the oil enable command and control the engine controller to control the engine output combustion torque, wherein the combustion torque is less than the series target engine torque.
- the generator When the engine is controlled to enter the engine drag state, the generator is controlled to output a positive torque, and the engine is dragged from a static state to a higher speed, in order to avoid the engine speed in the resonance speed zone (resonance speed More than 500 revolutions per minute (revolutions per minute, rpm)) produce vehicle noise, vibration and harshness (Noise, Vibration and Harshness, NVH) problems.
- the engine speed is generally higher than the upper limit of the engine's resonance speed zone.
- the engine controller feedbacks that the timing phase is in a synchronized state, and the vehicle controller then sends the fuel injection enable command to the engine controller, and at the same time sends the combustion torque to the engine controller
- the request command causes the engine to ignite and combust and output combustion torque.
- the method further includes: if the pure electric drive mode request is received, controlling the engine to enter the engine stop state.
- the vehicle drive mode request When the vehicle drive mode request is converted from a pure electric drive mode request to a series drive mode request, before the vehicle has entered the series drive mode, if the vehicle drive mode request changes due to the change of the vehicle working condition It is a pure electric drive mode request, that is, when the engine is in the engine towing state, at this time, the engine has not fully ignited, and the engine torque is not large. Therefore, the engine can enter the engine stop state, that is, it can be directly given to the engine.
- the controller sends a fuel cut command, and then uses the generator to output a negative torque to reduce the engine speed to 0 speed, thereby controlling the engine to enter the engine stop state.
- S120 Adjust an engine operating point based on the series target engine torque of the engine to control the entire vehicle to be in a series drive mode.
- Adjusting the engine operating point based on the series target engine torque to control the entire vehicle in a series drive mode includes: controlling the current torque of the engine to increase to the series target engine torque based on the series target engine torque, and controlling the The current speed of the engine is increased to the series target engine speed, and when the actual torque and actual speed of the engine remain stable, it is determined that the whole vehicle is in the series drive mode.
- the generator When the vehicle controller judges that the engine is successfully ignited, the generator changes from outputting positive torque to drive the engine to outputting negative torque to absorb engine power.
- the generator adjusts the current speed of the engine based on the current speed of the engine and the current torque of the engine To the series target engine speed, while the generator outputs negative torque to adjust the engine speed, the vehicle controller will gradually increase the current engine torque to the series target engine torque.
- the actual engine speed and actual torque are respectively connected with the series target engine speed
- the deviation between the target engine torque and the series target engine torque is less than their respective thresholds, and after a period of time, it is considered that the whole vehicle has entered the series drive mode.
- controlling the vehicle to switch to the pure electric drive mode includes: When the entire vehicle is in the series drive mode, if the pure electric drive mode request is received, the engine operating point is adjusted, and the entire vehicle is controlled to switch to the pure electric drive mode.
- the method further includes: if the pure electric drive mode request is received when the engine operating point is adjusted based on the series target engine torque, controlling the torque of the engine from the series target engine according to the pure electric drive mode The torque is reduced to a preset torque, and the engine is controlled to enter the engine stop state.
- the vehicle controller receives the pure electric drive mode request issued by the vehicle drive mode control module, that is, the engine has been completely burned and a certain torque has been output at this time. Then the current target torque of the engine requested by the vehicle controller is gradually reduced from the series target engine torque to 0 torque. When the engine torque drops below the preset torque (for example, 10N), it is considered that the engine torque reduction is successful, and the engine enters all directions. State the engine shutdown state.
- the preset torque for example, 10N
- Controlling the engine to enter the engine shutdown state includes: controlling the engine controller to execute a fuel cut command, and controlling a generator to output negative torque to reduce the engine speed until the engine is stopped; after the engine is stopped , It is determined that the whole vehicle is in the pure electric drive mode.
- the generator When the vehicle is in series drive mode, when the vehicle drive mode management module sends out a pure electric drive mode request, the generator first maintains the engine speed at the current speed, and then gradually reduces the engine torque from the current torque to 0 torque. When the actual torque feedback from the engine is lower than a smaller threshold, the vehicle controller sends a fuel injection shutdown command to the engine controller. At this time, the engine uses the generator to output positive torque to maintain the current speed, and then the vehicle controller The generator outputs negative torque and quickly reduces the engine speed to 0 speed. When the engine speed is near 0 speed and continues for a period of time, the engine is considered to be stopped and the vehicle enters a pure electric drive mode.
- the vehicle drive mode request in the process of changing from the series drive mode request to the pure electric drive mode request, before the vehicle has entered the pure electric drive mode, if the vehicle operating condition changes, the vehicle drive mode The request is switched to the series drive mode request again, that is, when the series drive mode is converted to the pure electric drive mode, if the generator stabilizes the engine speed at the current speed through speed control, the engine torque is gradually reduced from the current torque to 0 Torque. At this time, if a series drive mode request is received, the engine torque will directly transition from the current torque to the series target engine torque.
- the technical solution of the embodiment of the present application controls the engine to enter the engine towing state after receiving the series drive mode request; controls the engine operating point to adjust based on the series target engine torque to control the entire vehicle to be in the series drive mode; if said After the entire vehicle is in the series drive mode and receives a pure electric drive mode request, the entire vehicle is controlled to switch to the pure electric drive mode. It solves the problem that the engine start and stop control cannot achieve the ideal control effect due to the frequent changes of the vehicle working conditions, and the clear logic control cannot be realized, so as to ensure the continuity of the engine start and stop control, and complete the engine start and stop control in a timely and effective manner. Start and stop control.
- Fig. 2 is a flowchart of an engine start-stop control method provided in the second embodiment of the application. This embodiment is described on the basis of the above-mentioned embodiment.
- the engine start-up is divided into two stages.
- the first stage of engine start-up engine tractor control.
- the vehicle controller uses the generator to output positive torque to drag the engine speed above the resonance speed (resonance speed is greater than 500rpm), after the engine completes timing phase synchronization , The vehicle controller sends a fuel injection enable command to the engine controller, and requests the engine torque to gradually increase from 0 to the series target engine torque. After the engine is ignited and combusted and outputs a certain torque, it is considered that the engine towing is successful. That is, if the engine is successfully combusted, the engine tractor control ends and enters the second stage of engine start-up.
- the second stage of engine start-up adjustment of engine operating point.
- the vehicle drive mode control module issues a series drive mode request
- the target torque of the engine requested by the vehicle controller is gradually increased from the current torque to the series target engine torque
- the generator performs speed control and controls the engine speed to the series target Engine speed, when the absolute value of the deviation between the actual engine speed and the series target engine speed is less than 50 rpm, and the absolute value of the deviation between the actual engine torque and the series target engine torque is less than 20 Newton ⁇ m (Nm), and the engine speed is equal to that of the engine
- the vehicle drive mode control module sends a pure electric drive mode request
- the vehicle controller requests the target torque of the engine In order to gradually reduce the current torque to 0 torque
- the generator performs speed control and controls the engine speed to be the current engine speed.
- the engine torque drops below 10 Newtons (N)
- Engine shutdown is divided into two stages.
- the first stage of engine shutdown the adjustment of the engine operating point.
- the vehicle drive mode control module sends a request for the pure electric drive mode
- the engine torque is gradually reduced from the current torque to 0 torque.
- the generator stabilizes the engine speed at the current speed, that is, the engine is maintaining the speed Reduce the torque while not changing; when the actual torque of the engine is lower than a smaller threshold, the vehicle controller sends a fuel cut command to the engine controller.
- the engine controller feedbacks that the fuel is cut off, it enters The second stage of engine shutdown.
- the second stage of engine shutdown engine shutdown state.
- the vehicle controller continues to send a fuel cut command to the engine controller.
- the engine is already in a fuel cut state, and the generator outputs negative torque to quickly reduce the engine speed to make The engine speed quickly passes through the low-speed resonance zone.
- the generator outputs 0 torque.
- the engine speed stays near 0 speed for more than a period of time, the engine stops and the vehicle enters pure electric drive. model.
- the vehicle drive mode request is the series drive mode
- the engine tractor control is executed first, and after the engine is ignited and burned, it enters the adjustment of the engine operating point, and finally the engine speed is adjusted.
- the series target engine speed and series target engine torque corresponding to the operating point are respectively controlled with the torque of the engine, and the whole vehicle enters the series drive mode.
- the vehicle drive mode is the series drive mode
- the vehicle drive mode request is a pure electric drive drive mode request
- the adjustment of the engine operating point is performed first, and the generator controls the engine speed at the current speed through the speed control.
- the torque is gradually reduced to 0N.
- the engine torque is reduced to near 0 torque
- the engine is considered to be successfully reduced in torque and enters the engine shutdown control.
- the generator reduces the engine speed by outputting negative torque.
- the engine speed drops to near 0 , It is considered that the engine shutdown is complete and the vehicle enters a pure electric drive mode.
- the technical solution of the embodiment of the present application through the analysis of the engine start and stop process, divides the engine start process into two phases, and the shutdown process is also divided into two phases, which simplifies the software structure while achieving the control goal , Which is helpful to the understanding and application of the software model; at the same time, the engine start-stop process is streamlined, and the switching operation between the pure electric drive mode and the series drive mode during the start-stop process can also complete the logic jump better, which also proves The superiority of the software function module division.
- FIG. 3 is a structural diagram of an engine start-stop control device provided in the third embodiment of the application. This embodiment can be applied to the case of performing engine start-stop control on a hybrid vehicle with a dual-motor hybrid configuration.
- the device includes: an engine tractor state control module 310, an engine operating point adjustment control module 320, and a mode control module 330.
- the engine tractor state control module 310 is set to control the engine to enter the engine tractor state after receiving the serial drive mode request;
- the engine operating point adjustment control module 320 is set to adjust the engine operating point based on the series target engine torque to control the entire vehicle In the series drive mode;
- the mode control module 330 is configured to control the whole vehicle to switch to the pure electric drive mode when a request for the pure electric drive mode is received when the whole vehicle is in the series drive mode.
- the engine start-stop control device of this embodiment after receiving the series drive mode request, controls the engine to enter the engine towing state; adjusts the engine operating point based on the series target engine torque to control the entire vehicle to be in the series drive mode; When the entire vehicle is in the series drive mode, in the case of receiving a pure electric drive mode request, control the entire vehicle to switch to the pure electric drive mode. It solves the problem that the engine start and stop control cannot achieve the ideal control effect due to the frequent changes of the whole vehicle working conditions, and the clear logic control cannot be realized, so as to ensure the continuity of the engine start and stop control, and complete the control of the engine in a timely and effective manner. Start and stop control.
- the engine towing state control module 310 is configured to control the engine to enter the engine towing state by controlling the generator to output a positive torque so as to drag the engine speed above the resonance speed; in the engine control After the engine feedback timing phase is in a synchronized state, the engine controller is controlled to execute the fuel injection enable command and the engine controller is controlled to control the engine output combustion torque, where the combustion torque is less than the series target engine torque.
- the engine towing state control module 310 controls the engine to enter the engine towing state, it is further configured to control the engine to enter the engine when the request for the pure electric drive mode is received. Shutdown state.
- the engine operating point adjustment control module 320 is configured to adjust the engine operating point based on the series target engine torque to control the vehicle to be in series drive mode in the following manner: control based on the series target engine torque of the engine The current torque of the engine is increased to the series target engine torque, and the current speed of the engine is controlled to increase to the series target engine speed, and the difference between the actual engine torque and the series target engine torque continues to be set If the difference between the preset torque threshold value and the actual engine speed and the series target engine speed continues for the set period of time less than the preset torque threshold value for the set period of time, the adjustment is determined. The vehicle is in the series drive mode.
- the engine operating point adjustment control module 320 is configured to control the entire vehicle to switch to the pure electric drive mode upon receiving the pure electric drive mode request in the following manner: In the case of a pure electric drive mode request, the engine operating point is adjusted to control the entire vehicle to switch to the pure electric drive mode.
- the engine operating point adjustment control module 320 is further configured to: receive the pure electric drive mode request in the process of adjusting the engine operating point based on the series target engine torque; The pure electric drive mode requests to control the current torque of the engine to be reduced to a preset torque, and control the engine to enter the engine stop state.
- the engine operating point adjustment control module 320 is configured to control the engine to enter the engine stop state by controlling the engine controller to execute the fuel cut command, and controlling the generator to output negative torque The speed of the engine is reduced until the engine is stopped; after the engine is stopped, the whole vehicle is controlled to be in the pure electric drive mode.
- the engine start-stop control device provided by the above-mentioned embodiments can execute the engine start-stop control method provided by any embodiment of the present application, and has functional modules corresponding to the engine start-stop control method.
- Fig. 4 is a schematic structural diagram of a computer device provided in the fourth embodiment of the application.
- the computer device includes a processor 410, a memory 420, an input device 430, and an output device 440; The number can be one or more.
- one processor 410 is taken as an example; the processor 410, memory 420, input device 430, and output device 440 in the computer equipment can be connected by a bus or other means. Take bus connection as an example.
- the memory 420 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the engine start-stop control method in the embodiment of the present application (for example, engine start-stop control
- the processor 410 executes various functional applications and data processing of the computer equipment by running the software programs, instructions, and modules stored in the memory 420, that is, realizes the aforementioned engine start-stop control method.
- the memory 420 may mainly include a program storage area and a data storage area.
- the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
- the memory 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the memory 420 may include a memory remotely provided with respect to the processor 410, and these remote memories may be connected to a computer device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- the input device 430 may be configured to receive input digital or character information, and generate key signal input related to user settings and function control of the computer equipment.
- the output device 440 may include a display device such as a display screen.
- the fifth embodiment of the present application also provides a storage medium containing computer-executable instructions.
- the computer-executable instructions are set to execute an engine start-stop control method when the computer-executable instructions are executed by a computer processor.
- the method includes: After the drive mode request, control the engine to enter the engine towing state; adjust the engine operating point based on the series target engine torque of the engine to control the entire vehicle to be in the series drive mode; when the entire vehicle is in the series drive mode , In the case of receiving the pure electric drive mode request, control the whole vehicle to switch to the pure electric drive mode.
- An embodiment of the present application provides a storage medium containing computer-executable instructions.
- the computer-executable instructions are not limited to the method operations described above, and can also execute the engine start-stop control method provided in any embodiment of the present application. Related operations.
- this application can be implemented by software and necessary general-purpose hardware, or can be implemented by hardware.
- the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, a read-only memory (Read-Only Memory, ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to execute the implementation of this application The method described in the example.
- the multiple units and modules included are only divided according to the functional logic, but are not limited to the above-mentioned division, as long as the corresponding function can be realized;
- the names are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of this application.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
一种发动机起停机控制方法,包括:在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态(S110);基于串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式(S120);在整车处于串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制整车切换为纯电动驱动模式(S130)。还公开了一种发动机起停机控制装置、一种车载设备以及一种计算机可读存储介质。
Description
本申请要求在2020年06月15日提交中国专利局、申请号为202010544676.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请实施例涉及新能源整车控制技术领域,例如涉及一种发动机起停机控制方法、装置、车载设备及存储介质。
随着世界能源革命的到来,在石油资源日渐短缺的今天,面对日趋严格的油耗法规,纯内燃机驱动的车辆在降低油耗上的成本越来越高,难度越来越大,混合动力车辆由于有电动机的辅助,在降低油耗上有很大的潜力。
以欧洲厂家为代表的位置2(Position2,P2)构型,以丰田为代表的双电机行星齿轮功率分流构型等都已实现量产,并取得了不错的油耗表现,获得了消费者的青睐。但是,P2构型包含的公共端(Clutch,C0)电机的三离合器模块结构复杂,对离合器的控制要求较高。-同时,双电机行星齿轮功率分流构型未被推广,且-双电机及发动机的三动力源协调控制比较复杂。双电机混联构型节油效果优于P2构型,同时控制难度较功率分流构型低,应用相对容易,但是由于整车工况的多变,涉及到频繁的发动机起停机控制,发动机起停机控制无法达到理想的控制效果,也无法实现清晰的逻辑控制。
发明内容
本申请实施例提供一种发动机起停机控制方法、装置、车载设备及存储介质,以实现保证发动机起停机控制的连续性,及时有效的完成对发动机起停机的控制。
本申请实施例提供了一种发动机起停机控制方法,该方法包括:在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;基于所述发动机的串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式;在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
可选地,控制发动机进入发动机拖机状态,包括:控制发动机进入发动机拖机状态;在控制所述发动机进入所述发动机拖机状态后,控制所述发电机输 出正扭矩,以将发动机的转速拖高至共振转速以上;在发动机控制器反馈正时相位处于同步状态后,控制所述发动机控制器执行喷油使能指令并控制所述发动机控制器控制所述发动机输出燃烧扭矩,其中,燃烧扭矩小于所述串联目标发动机扭矩。
可选地,在控制发动机进入发动机拖机状态之时,所述方法还包括:在接收到所述纯电动驱动模式请求的情况下,控制所述发动机进入发动机停机状态。
可选地,基于所述发动机的串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式,包括:基于所述发动机的串联目标发动机扭矩控制所述发动机的当前扭矩增加至所述串联目标发动机扭矩,以及控制所述发动机的当前转速增加至串联目标发动机转速,且在发动机的实际扭矩与串联目标发动机扭矩之间的差值持续在设定时长内小于预设扭矩门限值和所述发动机的实际转速与所述串联目标发动机转速之间的差值持续在所述设定时长内小于预设转速门限值均持续设定时长的情况下,确定所述整车处于所述串联驱动模式。
可选地,所述在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式,包括:在接收到所述纯电动驱动模式请求的情况下,调整所述发动机工作点以控制所述整车切换为纯电动驱动模式。
可选地,所述方法还包括:在基于所述发动机的串联目标发动机扭矩调整发动机工作点的过程中,接收到所述纯电动驱动模式请求,根据所述纯电动驱动模式请求控制所述发动机的当前扭矩降低至预设扭矩,并控制所述发动机进入所述发动机停机状态。
可选地,控制所述发动机进入所述发动机停机状态,包括:控制所述发动机控制器执行断油指令,并控制发电机输出负扭矩以压低所述发动机的转速至所述发动机停机;在所述发动机停机后,控制所述整车处于所述纯电动驱动模式。
本申请实施例还提供了一种发动机起停机控制装置,该装置包括:发动机拖机状态控制模块,设置为在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;发动机工作点调整控制模块,设置为基于所述串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式;模式控制模块,设置为在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
本申请实施例还提供了一种车载设备,该车载设备包括:一个或多个处理器;存储装置,设置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,所述一个或多个处理器实现本申请上述实施例所提供 的发动机起停机控制方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,该程序被处理器执行时实现本申请上述实施例所提供的发动机起停机控制方法。
图1是本申请实施例一提供的一种发动机起停机控制方法的流程图;
图2是本申请实施例二提供的一种发动机起停机控制方法的流程图;
图3是本申请实施例三提供的一种发动机起停机控制装置的结构图;
图4是本申请实施例四提供的一种车载设备的硬件结构示意图。
下面结合附图对本申请实施例进行描述。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。
为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是所述多项操作中的许多操作可以被并行地、并发地或者同时实施,多项操作的顺序也可以被重新安排。当所述多项操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
实施例一
图1为本申请实施例一提供的一种发动机起停机控制方法的流程图,本实施例可适用于对双电机混联构型的混合动力车辆进行发动机起停机控制的情况,该方法可以由发动机起停机控制装置来执行,该装置可以通过软件和/或硬件的形式实现。该方法包括如下步骤。
S110、当接收到串联驱动模式请求后,控制发动机进入发动机拖机状态。
串联驱动模式请求用于请求将整车驱动模式切换为串联驱动模式,串联驱动模式请求可以由整车驱动模式管理模块发出。
在接收到串联驱动模式请求之前,车辆的整车驱动模式可以为纯电动驱动模式,或者车辆的发动机处于发动机停机状态。
当车辆的整车驱动模式管理模块发出串联驱动模式请求,整车控制器接收串联驱动模式请求,整车控制器控制发动机进入发动机拖机状态。
控制发动机进入发动机拖机状态,包括:控制发电机输出正扭矩,以将发动机的转速拖高至共振转速以上;在发动机控制器反馈正时相位处于同步状态后,控制所述发动机控制器执行喷油使能指令并控制所述发动机控制器控制发动机输出燃烧扭矩,其中,所述燃烧扭矩小于所述串联目标发动机扭矩。
在控制所述发动机进入所述发动机拖机状态的情况下,控制所述发电机输出正扭矩,将发动机由静止状态拖高至一个较高转速,为了避免发动机的转速在共振转速区(共振转速大于500转/每分钟(revolutions per minite,rpm))产生整车噪声、振动与声振粗糙度(Noise,Vibration and Harshness,NVH)问题,发动机的转速一般高于发动机的共振转速区的上限转速;之后,待发动机的正时相位同步完成后,由发动机控制器反馈正时相位处于同步状态,则整车控制器随后向发动机控制器发送喷油使能指令,同时给发动机控制器发送燃烧扭矩请求指令使得发动机点火燃烧并输出燃烧扭矩。
在控制发动机进入发动机拖机状态之时,所述方法还包括:若接收到所述纯电动驱动模式请求,则控制所述发动机进入所述发动机停机状态。
对于整车驱动模式请求由纯电动驱动模式请求转换为串联驱动模式请求的过程中,在整车还未进入到串联驱动模式前,如果由于整车工况的变化,整车驱动模式请求又切换为纯电动驱动模式请求,即在发动机处于发动机拖机状态的过程中,此时,发动机还未充分着火,发动机的扭矩还不大,因此,发动机可以进入到发动机停机状态,即可以直接给发动机控制器发送断油指令,然后通过发电机输出负扭矩来将发动机的转速压低至0转速,进而控制发动机进入所述发动机停机状态。
S120、基于所述发动机的串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式。
基于所述串联目标发动机扭矩调整发动机工作点,以控制整车处于串联驱动模式,包括:基于所述串联目标发动机扭矩控制所述发动机的当前扭矩增加至所述串联目标发动机扭矩,以及控制所述发动机的当前转速增加至串联目标发动机转速,且在发动机的实际扭矩和实际转速保持稳定的情况下,确定所述整车处于所述串联驱动模式。
当整车控制器判断发动机点火成功后,发电机由输出正扭矩来拖动发动机变为输出负扭矩来吸收发动机功率,发电机基于发动机的当前转速和发动机的当前扭矩,将发动机的当前转速调整至串联目标发动机转速,在发电机输出负扭矩调整发动机的转速的同时,整车控制器将发动机的当前扭矩逐步增加至串联目标发动机扭矩,当发动机的实际转速和实际扭矩分别与串联目标发动机转速和串联目标发动机扭矩的偏差均小于各自的门限值,并且持续一段时间后, 则认为整车已进入串联驱动模式。
S130、在所述整车处于所述串联驱动模式的情况下,若接收到纯电动驱动模式请求,控制所述整车切换为纯电动驱动模式。
在上述实施例的基础上,在控制所述整车处于所述串联驱动模式的情况下,若接收到纯电动驱动模式请求,则控制所述整车切换为纯电动驱动模式,包括:在控制所述整车处于所述串联驱动模式的情况下,若接收到所述纯电动驱动模式请求,则调整所述发动机工作点,控制所述整车切换为纯电动驱动模式。
所述方法还包括:若基于所述串联目标发动机扭矩调整发动机工作点时,接收到所述纯电动驱动模式请求,则根据所述纯电动驱动模式控制所述发动机的扭矩从所述串联目标发动机扭矩降低至预设扭矩,并控制所述发动机进入所述发动机停机状态。
若基于所述串联目标发动机扭矩调整发动机工作点时,整车控制器接收到整车驱动模式控制模块发出的所述纯电动驱动模式请求,即此时发动机已经完全燃烧并且已经输出一定的扭矩,则整车控制器请求的发动机的当前目标扭矩为从串联目标发动机扭矩逐步减少至0扭矩,当发动机的扭矩降低至预设扭矩(例如10N)以下时,则认为发动机降扭成功,发动机进入所述发动机停机状态。
控制所述发动机进入所述发动机停机状态,包括:控制所述发动机控制器执行断油指令,并控制发电机输出负扭矩以压低所述发动机的转速至所述发动机停机;在所述发动机停机后,确定所述整车处于所述纯电动驱动模式。
当整车处于串联驱动模式时,整车驱动模式管理模块发出纯电动驱动模式请求时,先通过发电机将发动机的转速维持在当前转速,然后将发动机的扭矩由当前扭矩逐步降低至0扭矩,当发动机反馈的实际扭矩低于一个较小的门限值后,整车控制器给发动机控制器发送喷油关闭指令,发动机此时由发电机输出正扭矩来维持当前转速,随后整车控制器通过发电机输出负扭矩,将发动机的转速快速压低至0转速,当发动机的转速处于0转速附近并且持续一段时间后,认为发动机停机完成,整车进入纯电动驱动模式。
对于整车驱动模式请求,在由串联驱动模式请求转为纯电动驱动模式请求的过程中,在整车还未进入到纯电动驱动模式前,如果由于整车工况的变化,整车驱动模式请求又切换为串联驱动模式请求,即在串联驱动模式转为纯电动驱动模式的过程中,如果发电机通过转速控制将发动机的转速稳定在当前转速下,发动机的扭矩由当前扭矩逐步降低至0扭矩,此时如果接收到串联驱动模式请求,则发动机的扭矩直接从当前扭矩再逐步过渡至串联目标发动机扭矩, 待发动机的扭矩爬升至串联目标发动机扭矩附近后,再次重新回到串联驱动模式;如果发动机已经断油,并且发电机已经将发动机的转速拉低,此时如果要再次起动发动机,则必须先通过发电机来将发动机的转速重新拖高至一定值,因此需要先进入发动机拖机状态,然后再进入对发动机工作点进行调整的过程,从而再次进入到串联驱动模式。
本申请实施例的技术方案,当接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;基于所述串联目标发动机扭矩控制发动机工作点进行调整以控制整车处于串联驱动模式;若所述整车处于所述串联驱动模式后接收到纯电动驱动模式请求,则控制所述整车切换为纯电动驱动模式。解决了由于整车工况的多变频繁导致发动机起停机控制无法达到理想的控制效果,也无法实现清晰的逻辑控制的问题,以实现保证发动机起停机控制的连续性,及时有效的完成对发动机起停机的控制。
实施例二
图2为本申请实施例二提供的一种发动机起停机控制方法的流程图。本实施例以上述实施例为基础进行说明。
本实施例的方法包括:
发动机起机分为两个阶段。
发动机起机的第一阶段:发动机拖机控制。当整车驱动模式控制模块发出串联驱动模式请求时,整车控制器通过发电机输出正扭矩来将发动机的转速拖高至共振转速以上(共振转速大于500rpm),在发动机完成正时相位同步后,整车控制器给发动机控制器发送喷油使能指令,并且请求将发动机的扭矩从0开始逐步增加至串联目标发动机扭矩,待发动机点火燃烧并输出一定的扭矩后,认为发动机拖机成功,即发动机燃烧成功,则发动机拖机控制结束,进入到发动机起机的第二阶段。
发动机起机的第二阶段:发动机工作点的调整。当整车驱动模式控制模块发出串联驱动模式请求时,整车控制器请求的发动机的目标扭矩为从当前扭矩逐步增加至串联目标发动机扭矩,发电机进行转速控制并且将发动机的转速控制至串联目标发动机转速,当发动机的实际转速和串联目标发动机转速的偏差绝对值小于50rpm,且发动机的实际扭矩与串联目标发动机扭矩的偏差的绝对值小于20牛·米(Nm),且发动机的转速与发动机的扭矩稳定于上述状态超过0.2秒,则认为发动机工作点调整成功,整车进入串联驱动模式;当整车驱动模式控制模块发出纯电动驱动模式请求时,整车控制器请求的发动机的目标扭矩 为从当前扭矩逐步减少至0扭矩,发电机进行转速控制并且控制发动机的转速为发动机的当前转速,当发动机的扭矩降低至10牛(N)以下时,认为发动机的负荷降低成功,进入到发动机停机的第二阶段。
发动机停机分为两个阶段。
发动机停机的第一个阶段:发动机工作点的调整。在整车驱动模式控制模块发出纯电动驱动模式请求后,发动机的扭矩从当前扭矩逐步降低至0扭矩,在发动机降低扭矩的同时,发电机将发动机的转速稳定在当前转速,即发动机在保持转速不变的同时降低扭矩;当发动机的实际扭矩低于一个较小的门限值时,整车控制器向发动机控制器发出断油指令,当发动机控制器反馈已经处于断油状态后,进入到发动机停机的第二阶段。
发动机停机的第二阶段:发动机停机状态。当进入到发动机停机的第二阶段时,整车控制器继续向发动机控制器发送断油命令,此时,发动机已经处于断油状态,发电机输出负扭矩,来快速降低发动机的转速,以使得发动机的转速快速经过低速共振区,当发动机的转速降低至0转速附近时,发电机输出0扭矩,当发动机的转速在0转速附近持续超过一段时间后,发动机停机完成,整车进入纯电动驱动模式。
在整车驱动模式为纯电动驱动模式时,当整车驱动模式请求为串联驱动模式时,先执行发动机拖机控制,待发动机点火燃烧后,进入到发动机工作点的调整,最终将发动机的转速和发动机的扭矩分别控制在工作点对应的串联目标发动机转速和串联目标发动机扭矩,整车进入到串联驱动模式。
在整车驱动模式为串联驱动模式时,当整车驱动模式请求为纯电动驱动驱动模式请求时,先执行发动机工作点的调整,发电机通过转速控制将发动机的转速控制在当前转速,发动机的扭矩逐步降低至0N,待发动机的扭矩降低至0扭矩附近时,认为发动机降扭成功,进入到发动机停机控制,发电机通过输出负扭矩来压低发动机的转速,当发动机的转速降至0附近时,认为发动机停机完成,整车进入纯电动驱动模式。
在整车驱动模式处于从纯电动驱动模式到串联驱动模式切换过程中,当在执行发动机拖机控制时,如果整车驱动模式请求又变为纯电动驱动模式请求,则执行发动机停机控制;当在执行发动机工作点的调整时,如果整车驱动模式请求又变为纯电动驱动模式请求,则依然先执行发动机工作点的调整,先降低发动机负荷,随后进入到发动机停机控制。
在整车驱动模式处于从串联驱动模式到纯电动驱动模式切换过程中时,当在执行发动机工作点的调整时,如果整车驱动模式请求又变为串联驱动模式请 求,则继续执行发动机工作点的调整,只需将发动机的目标转速和目标扭矩分别调整至串联目标发动机转速和串联目标发动机扭矩即可;在执行发动机停机控制时,如果整车驱动模式请求又变为串联驱动模式请求,则先执行发动机拖机控制,待发动机点火燃烧后,进入到发动机工作点调整控制。
本申请实施例的技术方案,通过对发动机的起停机过程的分析,将发动机的起机过程分为两个阶段,停机过程也分为两个阶段,在实现控制目标的同时,简化了软件结构,有助于软件模型的理解和应用;同时,将发动机的起停机过程精简,对于起停机过程中的纯电动驱动模式与串联驱动模式的切换操作也能较好的完成逻辑跳转,也印证了软件功能模块划分的优越性。
实施例三
图3为本申请实施例三提供的一种发动机起停机控制装置的结构图,本实施例可适用于对双电机混联构型的混合动力车辆进行发动机起停机控制的情况。
如图3所示,所述装置包括:发动机拖机状态控制模块310、发动机工作点调整控制模块320和模式控制模块330。发动机拖机状态控制模块310设置为在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;发动机工作点调整控制模块320设置为基于所述串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式;模式控制模块330设置为在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
本实施例的发动机起停机控制装置,在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;基于所述串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式;在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。解决了由于整车工况的多变频繁导致发动机起停机控制无法达到理想的控制效果,并无法实现清晰的逻辑控制的问题,以实现保证发动机起停机控制的连续性,及时有效的完成对发动机起停机的控制。
在上述实施例的基础上,发动机拖机状态控制模块310设置为通过以下方式控制发动机进入发动机拖机状态:控制发电机输出正扭矩,以将发动机的转速拖高至共振转速以上;在发动机控制器反馈正时相位处于同步状态后,控制所述发动机控制器执行喷油使能指令并控制发动机控制器控制所述发动机输出燃烧扭矩,其中,燃烧扭矩小于所述串联目标发动机扭矩。
在上述实施例的基础上,发动机拖机状态控制模块310在控制发动机进入发动机拖机状态之时,还设置为:在接收到所述纯电动驱动模式请求的情况下,控制所述发动机进入发动机停机状态。
在上述实施例的基础上,发动机工作点调整控制模块320设置为通过以下方式基于所述串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式:基于所述发动机的串联目标发动机扭矩控制所述发动机的当前扭矩增加至所述串联目标发动机扭矩,以及控制所述发动机的当前转速增加至串联目标发动机转速,且在发动机的实际扭矩与串联目标发动机扭矩之间的差值持续在设定时长内小于预设扭矩门限值和发动机的实际转速与串联目标发动机转速之间的差值持续在设定时长内小于预设转速门限值均持续设定时长的情况下,确定所述整车处于所述串联驱动模式。
在上述实施例的基础上,发动机工作点调整控制模块320是设置为通过以下方式在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式:在接收到所述纯电动驱动模式请求的情况下,调整所述发动机工作点以控制所述整车切换为纯电动驱动模式。
在上述实施例的基础上,发动机工作点调整控制模块320还设置为:在基于所述串联目标发动机扭矩调整发动机工作点进行调整的过程中,接收到所述纯电动驱动模式请求;根据所述纯电动驱动模式请求控制所述发动机的当前扭矩降低至预设扭矩,并控制所述发动机进入所述发动机停机状态。
在上述实施例的基础上,发动机工作点调整控制模块320是设置为通过以下方式控制所述发动机进入所述发动机停机状态:控制所述发动机控制器执行断油指令,并控制发电机输出负扭矩以压低所述发动机的转速至所述发动机停机;在所述发动机停机后,控制所述整车处于所述纯电动驱动模式。
上述实施例所提供的发动机起停机控制装置可执行本申请任意实施例所提供的发动机起停机控制方法,具备执行发动机起停机控制方法相应的功能模块。
实施例四
图4为本申请实施例四提供的一种计算机设备的结构示意图,如图4所示,该计算机设备包括处理器410、存储器420、输入装置430和输出装置440;计算机设备中处理器410的数量可以是一个或多个,图4中以一个处理器410为例;计算机设备中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或其他方式连接,图4中以通过总线连接为例。
存储器420作为一种计算机可读存储介质,可设置为存储软件程序、计算 机可执行程序以及模块,如本申请实施例中的发动机起停机控制方法对应的程序指令/模块(例如,发动机起停机控制装置中的发动机拖机状态控制模块310、发动机工作点调整控制模块320和模式控制模块330)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行计算机设备的多种功能应用以及数据处理,即实现上述的发动机起停机控制方法。
存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至计算机设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可设置为接收输入的数字或字符信息,以及产生与计算机设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
实施例五
本申请实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时设置为执行一种发动机起停机控制方法,该方法包括:在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;基于所述发动机的串联目标发动机扭矩调整发动机工作点,以控制整车处于串联驱动模式;在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,所述计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的发动机起停机控制方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述的方法。
上述发动机起停机控制装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;每个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
Claims (10)
- 一种发动机起停机控制方法,包括:在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;基于所述发动机的串联目标发动机扭矩调整发动机工作点,以控制整车处于串联驱动模式;在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
- 根据权利要求1所述的方法,其中,所述控制发动机进入发动机拖机状态,包括:控制发电机输出正扭矩,以将所述发动机的转速拖高至共振转速以上;在发动机控制器反馈正时相位处于同步状态后,控制所述发动机控制器执行喷油使能指令并控制所述发动机控制器控制所述发动机输出燃烧扭矩,其中,所述燃烧扭矩小于所述串联目标发动机扭矩。
- 根据权利要求1所述的方法,在控制发动机进入发动机拖机状态之时,还包括:在接收到所述纯电动驱动模式请求的情况下,控制所述发动机进入发动机停机状态。
- 根据权利要求1所述的方法,其中,所述基于所述发动机的串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式,包括:基于所述发动机的串联目标发动机扭矩控制所述发动机的当前扭矩增加至所述串联目标发动机扭矩,以及控制所述发动机的当前转速增加至串联目标发动机转速,且在所述发动机的实际扭矩与所述串联目标发动机扭矩之间的差值持续在设定时长内小于预设扭矩门限值和所述发动机的实际转速与所述串联目标发动机转速之间的差值持续在所述设定时长内小于预设转速门限值均持续设定时长的情况下,确定所述整车处于所述串联驱动模式。
- 根据权利要求4所述的方法,所述在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式,包括:在接收到所述纯电动驱动模式请求的情况下,调整所述发动机工作点以控制所述整车切换为所述纯电动驱动模式。
- 根据权利要求1所述的方法,还包括:在基于所述发动机的串联目标发动机扭矩调整所述发动机工作点的过程中,接收到所述纯电动驱动模式请求;根据所述纯电动驱动模式请求控制所述发动机的当前扭矩降低至预设扭矩,并控制所述发动机进入所述发动机停机状态。
- 根据权利要求6所述的方法,其中,所述控制所述发动机进入所述发动机停机状态,包括:控制所述发动机控制器执行断油指令,并控制发电机输出负扭矩以压低所述发动机的转速至所述发动机停机;在所述发动机停机后,控制所述整车处于所述纯电动驱动模式。
- 一种发动机起停机控制装置,包括:发动机拖机状态控制模块,设置为在接收到串联驱动模式请求后,控制发动机进入发动机拖机状态;发动机工作点调整控制模块,设置为基于所述串联目标发动机扭矩调整发动机工作点以控制整车处于串联驱动模式;模式控制模块,设置为在所述整车处于所述串联驱动模式的情况下,在接收到纯电动驱动模式请求的情况下,控制所述整车切换为纯电动驱动模式。
- 一种车载设备,包括:至少一个处理器;存储装置,设置为存储至少一个程序;当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-7中任一项所述的发动机起停机控制方法。
- 一种计算机可读存储介质,存储有计算机程序,所述程序被处理器执行时实现如权利要求1-7中任一项所述的发动机起停机控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010544676.2A CN111661031B (zh) | 2020-06-15 | 2020-06-15 | 一种发动机起停机控制方法、装置、车载设备及存储介质 |
CN202010544676.2 | 2020-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021254306A1 true WO2021254306A1 (zh) | 2021-12-23 |
Family
ID=72388210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100000 WO2021254306A1 (zh) | 2020-06-15 | 2021-06-15 | 发动机起停机控制方法、装置、车载设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111661031B (zh) |
WO (1) | WO2021254306A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7306317B2 (ja) * | 2020-04-30 | 2023-07-11 | トヨタ自動車株式会社 | 四輪駆動車両 |
CN111661031B (zh) * | 2020-06-15 | 2021-10-15 | 中国第一汽车股份有限公司 | 一种发动机起停机控制方法、装置、车载设备及存储介质 |
CN113665560B (zh) * | 2021-08-31 | 2024-07-26 | 中国第一汽车股份有限公司 | 一种双电机混合动力低功率起机控制方法、装置及车辆 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002689A2 (en) * | 1998-11-18 | 2000-05-24 | Fuji Jukogyo Kabushiki Kaisha | A control device and a control method for a hybrid vehicle |
US20070135976A1 (en) * | 2005-12-14 | 2007-06-14 | Hyundai Motor Company | Method for determining optimal drive point in series and parallel type hybrid car |
CN104859635A (zh) * | 2015-05-15 | 2015-08-26 | 北汽福田汽车股份有限公司 | 混合动力车辆的发动机控制方法、系统及混合动力车辆 |
CN105730447A (zh) * | 2014-12-10 | 2016-07-06 | 北汽福田汽车股份有限公司 | 一种混合动力车整车模式切换控制方法及系统 |
CN109094552A (zh) * | 2018-07-25 | 2018-12-28 | 重庆长安汽车股份有限公司 | 一种发动机的停机控制方法、系统及混合动力汽车 |
CN111661031A (zh) * | 2020-06-15 | 2020-09-15 | 中国第一汽车股份有限公司 | 一种发动机起停机控制方法、装置、车载设备及存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104442798B (zh) * | 2013-09-12 | 2017-07-11 | 上海汽车集团股份有限公司 | 混合动力汽车在串联工作模式下的串联发电控制方法 |
CN105235679B (zh) * | 2014-05-29 | 2017-12-19 | 上海汽车集团股份有限公司 | 汽车发动机的停机控制方法与装置 |
CN109910867B (zh) * | 2019-03-18 | 2020-11-27 | 湖南大学 | 一种混联式混合动力车辆的发动机工作点优化方法 |
CN110341685B (zh) * | 2019-07-08 | 2021-06-15 | 高晓杰 | 双电机增程驱动混合动力车发动机启停控制方法及系统 |
-
2020
- 2020-06-15 CN CN202010544676.2A patent/CN111661031B/zh active Active
-
2021
- 2021-06-15 WO PCT/CN2021/100000 patent/WO2021254306A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002689A2 (en) * | 1998-11-18 | 2000-05-24 | Fuji Jukogyo Kabushiki Kaisha | A control device and a control method for a hybrid vehicle |
US20070135976A1 (en) * | 2005-12-14 | 2007-06-14 | Hyundai Motor Company | Method for determining optimal drive point in series and parallel type hybrid car |
CN105730447A (zh) * | 2014-12-10 | 2016-07-06 | 北汽福田汽车股份有限公司 | 一种混合动力车整车模式切换控制方法及系统 |
CN104859635A (zh) * | 2015-05-15 | 2015-08-26 | 北汽福田汽车股份有限公司 | 混合动力车辆的发动机控制方法、系统及混合动力车辆 |
CN109094552A (zh) * | 2018-07-25 | 2018-12-28 | 重庆长安汽车股份有限公司 | 一种发动机的停机控制方法、系统及混合动力汽车 |
CN111661031A (zh) * | 2020-06-15 | 2020-09-15 | 中国第一汽车股份有限公司 | 一种发动机起停机控制方法、装置、车载设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111661031B (zh) | 2021-10-15 |
CN111661031A (zh) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021254306A1 (zh) | 发动机起停机控制方法、装置、车载设备及存储介质 | |
CN109094552B (zh) | 一种发动机的停机控制方法、系统及混合动力汽车 | |
CN108556836B (zh) | 功率分流混合动力汽车制动器辅助起动发动机的控制方法 | |
JP4519085B2 (ja) | 内燃機関の制御装置 | |
US8795131B2 (en) | Method and apparatus for reducing torque during a transmission upshift for a hybrid vehicle | |
JP6394654B2 (ja) | 車両 | |
WO2014115285A1 (ja) | ハイブリッド車両の制御装置 | |
CN111824110B (zh) | 一种发动机停机控制方法、装置、设备及存储介质 | |
CN104554240A (zh) | 一种气电混联式混合动力系统串联转并联控制方法 | |
JP6380448B2 (ja) | ハイブリッド車両 | |
WO2022147870A1 (zh) | 双电机混合动力系统中发动机的启动方法和装置及车辆 | |
CN104176049A (zh) | Isg型混联式混合动力汽车的起动控制方法及系统 | |
JPWO2013186924A1 (ja) | ハイブリッド車両用駆動装置 | |
CN110341683B (zh) | 混合动力车辆的模式切换扭矩协调控制方法及系统 | |
CN108162954B (zh) | 混合动力汽车起动方法、气体发动机起动方法及动力系统 | |
US10746255B2 (en) | Systems and methods for reducing noise, vibration, and/or harshness during engine shutdown and restart | |
CN113335262A (zh) | 混合动力汽车驱动模式切换的控制方法、车辆及存储介质 | |
KR20190003049A (ko) | 하이브리드 자동차 및 그를 위한 변속 제어 방법 | |
US9726137B2 (en) | Starting control device for internal combustion engines and starting control method | |
CN113602254B (zh) | 发动机启动与变速器换挡协调控制方法、装置及混合动力汽车 | |
KR20210134154A (ko) | 하이브리드 차량의 엔진 및 변속기 제어 방법 | |
CN105235679A (zh) | 汽车发动机的停机控制方法与装置 | |
JP5263080B2 (ja) | 車両駆動制御装置 | |
CN108501934A (zh) | 一种新能源汽车动力系统的控制方法 | |
WO2023227097A1 (zh) | 一种发动机启动控制方法、装置、混动车辆和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21826385 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21826385 Country of ref document: EP Kind code of ref document: A1 |