WO2021254152A1 - 一种资源指示方法及接入点和站点 - Google Patents

一种资源指示方法及接入点和站点 Download PDF

Info

Publication number
WO2021254152A1
WO2021254152A1 PCT/CN2021/097971 CN2021097971W WO2021254152A1 WO 2021254152 A1 WO2021254152 A1 WO 2021254152A1 CN 2021097971 W CN2021097971 W CN 2021097971W WO 2021254152 A1 WO2021254152 A1 WO 2021254152A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
preamble puncturing
field
frequency domain
bandwidth
Prior art date
Application number
PCT/CN2021/097971
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21825404.3A priority Critical patent/EP4161192B1/en
Priority to KR1020237001641A priority patent/KR20230024995A/ko
Priority to AU2021294097A priority patent/AU2021294097B2/en
Priority to CA3187604A priority patent/CA3187604A1/en
Priority to MX2022016569A priority patent/MX2022016569A/es
Priority to JP2022578649A priority patent/JP7525667B2/ja
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022025773A priority patent/BR112022025773A2/pt
Publication of WO2021254152A1 publication Critical patent/WO2021254152A1/zh
Priority to US17/985,355 priority patent/US11979342B2/en
Priority to AU2023274144A priority patent/AU2023274144A1/en
Priority to US18/423,260 priority patent/US20240243860A1/en
Priority to JP2024114734A priority patent/JP2024133290A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless fidelity technology, and in particular to a resource indication method, access point and station.
  • 802.11ax In order to support orthogonal frequency division multiple access (OFDMA) transmission, 802.11ax divides frequency band resources into several resource units, and only supports the allocation of one resource unit to one site or multiple users. However, in the future, it may support the allocation of multiple resource units to one site or multiple sites. If 802.11ax is used to indicate the allocated resources to the user through the resource unit subfield, the signaling overhead will become greater as the bandwidth increases.
  • OFDMA orthogonal frequency division multiple access
  • EHT PPDU extremely high throughput physical layer protocol data unit
  • This application provides a resource indication method, access point and station, which can be used to indicate that a scheduled STA in a certain frequency domain fragment is allocated full bandwidth through the EHT PPDU fragment structure, which can further reduce signaling overhead.
  • a resource indication method is provided.
  • the method can be executed by a first device.
  • the first device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is an access point.
  • the method includes:
  • the access point generates a physical layer protocol data unit PPDU, and sends the PPDU, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate Users scheduled in the first frequency domain fragment are allocated a first bandwidth, where the first bandwidth is a channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment.
  • the first bandwidth is the channel bandwidth for transmitting PPDUs, and it can also be considered as the full bandwidth.
  • the preamble puncturing indication information may be used to indicate that the scheduled STA in a certain frequency domain fragment is allocated full bandwidth, that is, full bandwidth (unpunctured) resources are allocated within.
  • the allocated resources can be determined through the preamble puncturing indication information, combined with the full bandwidth indicated by the bandwidth field, and there is no need to read the resource indications of all frequency domain fragments, which can save the power consumption of the station.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information can be reused to indicate the compressed mode. It should be understood that some fields in the PPDU in compressed mode are omitted or deleted, or the length of some fields is reduced, such as omitting or deleting the resource allocation sub Fields or user fields, etc.
  • the PPDU sent by the access point does not need to carry fewer resource allocation subfields, or even no resource allocation subfields, etc., so that signaling overhead can be further saved.
  • the station if the PPDU compression mode is determined according to the preamble puncturing indication information, the station does not need to continue to read the user field or the resource allocation subfield after the U-SIG field, which can save the power consumption of the station.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the station receives the PPDU from the access point.
  • the PPDU includes the preamble puncturing indication information transmitted in the first frequency domain fragment.
  • the preamble puncturing indication information is used to indicate that the users scheduled in the first frequency domain fragment are
  • the first bandwidth is allocated, so that the station determines the allocated resource according to the preamble puncturing indication information; wherein, the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain division. piece.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • a resource indication method is provided.
  • the method can be executed by a first device.
  • the first device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is an access point.
  • the method includes:
  • the access point generates a PPDU and sends the PPDU.
  • the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment.
  • the users within are not allocated resource units, wherein the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment.
  • the preamble puncturing indication information is used to indicate that the user in the first frequency domain fragment has not been allocated resource units.
  • the unallocated resource unit here refers to not only the resources in the first frequency domain fragment Units are not allocated to users in the first frequency domain fragment, and resource units for transmitting the entire channel bandwidth of the PPDU are also not allocated to users in the first frequency domain fragment. For the station, if the station in a certain frequency domain fragment is not allocated resources, then the station does not need to read the EHT-SIG field in the PPDU later, which can save energy consumption.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the station receives the PPDU from the access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the preamble puncturing indication information in the first frequency domain fragment.
  • the user is not allocated a resource unit, wherein the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment; after that, the station determines the allocated resource according to the preamble puncturing indication information.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the access point generates a PPDU and sends the PPDU.
  • the PPDU includes the preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is the OFMDA transmission mode, and the preamble puncturing indication information is used To indicate the punctured or unpunctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the 80MHz puncturing corresponding to the first frequency domain fragment condition.
  • the preamble puncturing information field that carries the preamble puncturing indication information can indicate all puncturing conditions supported by non-OFDMA transmission, and can also indicate every puncturing condition under OFDMA transmission.
  • the station can determine the allocated resources according to the preamble puncturing indication information in combination with the bandwidth field. For example, if the bandwidth field indicates that the PPDU belongs to a non-OFDMA transmission mode, the preamble puncturing indication information indicates the puncturing of the frequency domain fragments corresponding to 80 MHz in OFDMA transmission.
  • the preamble puncturing indication information indicates the full bandwidth configuration within 80 MHz of puncturing or non-puncturing in the case of OFDMA.
  • the site only needs to read the puncturing situation within the 80MHz, and does not need to read bandwidth information other than the 80MHz. Therefore, this solution is actually compatible with the puncturing situation of the 80MHz OFDMA transmission instruction based on the puncturing situation of the non-OFDMA transmission instruction.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the station receives the PPDU from the access point, the PPDU includes the preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is the OFMDA transmission mode, and the preamble puncturing indication information is used to indicate A punctured or non-punctured configuration of the first bandwidth with a bandwidth of 80 MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the 80 MHz puncturing situation corresponding to the first frequency domain fragment; After that, the station determines the allocated resources according to the preamble puncturing indication information and the bandwidth field.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the access point generates a PPDU, and sends the PPDU.
  • the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the preamble puncturing indication information is carried in the first preamble puncturing The information field and the second preamble puncturing information field, the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field is located in the EHT-SIG field; among them, the first preamble puncturing information field Used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured, the second preamble puncturing information field is used to indicate the remaining frequency domain fragments in the first bandwidth except the first frequency domain fragment In the case of puncturing, the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment.
  • two preamble puncturing information fields are used to indicate the bandwidth puncturing situation, for example, the first preamble puncturing The information field indicates the puncturing situation in the frequency domain fragment corresponding to 80 MHz, and the second preamble puncturing information field indicates the puncturing situation in the frequency bands other than the frequency domain fragment in the full bandwidth.
  • the allocated resources can be determined by the first preamble puncturing information field and the second preamble puncturing information field. It should be understood that since there can only be one puncturing in the full bandwidth, there will be multiple reserved states (or entries) in the second preamble puncturing information field, which can be used for other purposes and have more expandable indication content.
  • a resource indication method is provided.
  • the method can be executed by a second device.
  • the second device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a station.
  • the method includes:
  • the station receives the PPDU from the access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the station determines the allocated resource according to the preamble puncturing indication, where ,
  • the preamble puncturing indication information is carried in the first preamble puncturing information field and the second preamble puncturing information field, the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field Located in the EHT-SIG field; among them, the first preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured, and the second preamble puncturing information field is used to indicate the first bandwidth In the puncturing situation of the remaining frequency domain fragments except the first frequency domain fragment, the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment.
  • a communication device is provided.
  • the communication device is the aforementioned access point or a device installed in the access point.
  • the communication device may be used to execute the foregoing first aspect or any possible implementation method of the first aspect; or the communication device may be used to implement the foregoing third aspect or any of the third aspects.
  • the method in one possible implementation manner; or the communication device can be used to execute the method in the fifth aspect or any one of the possible implementation manners of the fifth aspect; or the communication device can be used to implement the seventh aspect or the fifth aspect described above.
  • the method in any possible implementation of the seven aspects.
  • the communication device may include a module for executing the method in the first aspect or any possible implementation of the first aspect, or include a module for executing the third aspect or any possible implementation of the third aspect
  • the module of the method in the manner or includes the module for executing the method in the fifth aspect or any possible implementation of the fifth aspect, or includes the module for executing the seventh aspect or any possible implementation of the seventh aspect
  • the modules of the method in the mode include, for example, a processing module and a transceiver module that are coupled to each other.
  • the communication device is the aforementioned access point. in,
  • the processing module is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain
  • the users scheduled in the fragments are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment; the transceiver module is configured to send the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the processing module is configured to generate a PPDU, which includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain.
  • the users in the domain fragments are not allocated resource units, wherein the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment; the transceiver module is used to send the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the processing module is configured to generate a PPDU, the PPDU including the preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the PPDU is the OFMDA transmission mode, and the preamble
  • the code puncturing indication information is used to indicate the punctured or non-punctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first frequency domain fragmentation The corresponding 80MHz punching situation;
  • the transceiver module is used to send the PPDU.
  • the processing module is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the preamble puncturing indication information is carried in The first preamble puncturing information field and the second preamble puncturing information field, the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field is located in the EHT-SIG field; among them, the first The preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured, and the second preamble puncturing information field is used to indicate the first bandwidth except the first frequency domain fragment For the puncturing situation of the remaining frequency domain fragments of, the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the transceiver module is used to send the PPDU.
  • a communication device is provided, for example, the communication device is the aforementioned site or a device installed in the site.
  • the communication device is used to execute the foregoing second aspect or the method in any possible implementation of the second aspect; or, the communication device is used to implement the foregoing fourth aspect or the method of the fourth aspect.
  • the method in any possible implementation manner; or, the communication device is used to execute the above-mentioned sixth aspect or the method in any possible implementation manner of the sixth aspect; or, the communication device is used to execute the above-mentioned eighth aspect Aspect or any possible implementation of the eighth aspect.
  • the communication device may include a module for executing the method in the second aspect or any possible implementation of the second aspect, or include a module for executing the fourth aspect or any possible implementation of the fourth aspect
  • the module of the method in the manner or includes the module for executing the method in the sixth aspect or any possible implementation of the sixth aspect, or includes the module for executing the eighth aspect or any possible implementation of the eighth aspect
  • the modules of the method in the mode include, for example, a processing module and a transceiver module that are coupled to each other.
  • the communication device is the aforementioned site. in,
  • the transceiver module is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used for Indicates that users scheduled in the first frequency domain fragment are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment; the processing module is configured to Determine the allocated resources according to the preamble puncturing instruction information.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the transceiver module is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used for the preamble puncturing indication information.
  • the processing module is configured to determine that the user is allocated according to the preamble puncturing indication information Resources.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the transceiver module is configured to receive a PPDU from an access point, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is In the OFMDA transmission mode, the preamble puncturing indication information is used to indicate the punctured or unpunctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first bandwidth.
  • the 80MHz puncturing situation corresponding to a frequency domain fragmentation;
  • the processing module is configured to determine the allocated resources according to the preamble puncturing indication information and the bandwidth field.
  • the transceiver module is configured to receive a PPDU from an access point, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the preamble puncturing
  • the hole indication information is carried in the first preamble puncturing information field and the second preamble puncturing information field.
  • the first preamble puncturing information field is located in the U-SIG field
  • the second preamble puncturing information field is located in the EHT-SIG field.
  • the first preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured
  • the second preamble puncturing information field is used to indicate that the first bandwidth is divided by the first frequency
  • the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment
  • the processing module is configured to determine the allocated resources according to the preamble puncturing instruction letter.
  • another communication device is provided.
  • the communication device is, for example, the aforementioned access point or is set at the access point.
  • the communication device is a chip set in an access point.
  • the communication device includes a processor and a transceiver, and is used to implement various possible implementations of the first aspect or the third aspect or the fifth or seventh aspect or the first aspect or various possible implementations of the third aspect.
  • the transceiver is realized by, for example, the antenna, feeder, and codec in the access point, or if the communication device is a chip set in the access point, the transceiver is, for example, a communication interface in the chip.
  • the communication interface is connected with the radio frequency transceiving component in the access point, so as to realize the sending and receiving of information through the radio frequency transceiving component.
  • the processor is configured to generate a PPDU that includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment
  • the scheduled users within are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment; the transceiver is used to transmit the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the processor is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment.
  • the users in the slice are not allocated resource units, where the channel bandwidth for transmitting the PPDU includes the first frequency domain slice; the transceiver is used to send the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the processor is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the PPDU is an OFMDA transmission mode, and the preamble
  • the code puncturing indication information is used to indicate the punctured or non-punctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first frequency domain fragmentation The corresponding 80MHz punching situation;
  • the transceiver is used to send the PPDU.
  • the processor is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the preamble puncturing indication information is carried in The first preamble puncturing information field and the second preamble puncturing information field, the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field is located in the EHT-SIG field; among them, the first The preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured, and the second preamble puncturing information field is used to indicate the first bandwidth except the first frequency domain fragment For the puncturing situation of the remaining frequency domain fragments of, the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the transceiver is used to send the PPDU.
  • the communication device is, for example, the aforementioned site or is set at the site.
  • the communication device is a chip set in an access point.
  • the communication device includes a processor and a transceiver, and is used to implement various possible implementations of the above-mentioned second or fourth or sixth or eighth or second aspects or various possible implementations of the fourth aspect. Or various possible implementation manners of the sixth aspect or various possible implementation manners of the eighth aspect.
  • the transceiver is realized by antennas, feeders, codecs, etc.
  • the transceiver is, for example, a communication interface in the chip, which communicates with the site.
  • the radio frequency transceiving component is connected to realize the sending and receiving of information through the radio frequency transceiving component.
  • the transceiver is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment.
  • Users scheduled in a frequency domain fragment are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the hole indication information determines the allocated resource.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the transceiver is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate The user in the first frequency domain fragment has no resource unit allocated, wherein the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment; the processor is configured to determine the unallocated resource according to the preamble puncturing indication information.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a universal field U-SIG field.
  • the transceiver is configured to receive a PPDU from an access point, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is In the OFMDA transmission mode, the preamble puncturing indication information is used to indicate the punctured or unpunctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first bandwidth.
  • the processor is configured to determine the allocated resource according to the preamble puncturing indication information and the bandwidth field.
  • the transceiver is configured to receive a PPDU from an access point, and the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, wherein the preamble puncturing The hole indication information is carried in the first preamble puncturing information field and the second preamble puncturing information field.
  • the first preamble puncturing information field is located in the U-SIG field
  • the second preamble puncturing information field is located in the EHT-SIG field.
  • the first preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured
  • the second preamble puncturing information field is used to indicate that the first bandwidth is divided by the first frequency The puncturing of the frequency domain fragments other than the domain fragments
  • the processor is configured to determine the allocated resources according to the preamble puncturing instruction letter.
  • the communication device may be an access point in the above method design.
  • the communication device is a chip set in an access point.
  • the communication device includes: a memory for storing computer executable program codes, and a processor coupled with the memory.
  • the program code stored in the memory includes instructions.
  • the processor executes the instructions, the communication device executes any one of the first aspect, the third aspect, the fifth aspect, the seventh aspect, or the first aspect.
  • the method in an embodiment or any possible implementation of the third aspect or any possible implementation of the fifth aspect or any possible implementation of the seventh aspect.
  • the communication device may further include a communication interface.
  • the communication interface may be a transceiver in an access point, for example, implemented by an antenna, a feeder, and a codec in the access point, or if the communication is
  • the device is a chip set in the access point, and the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication device may be a site in the design of the above method.
  • the communication device is a chip set in a site.
  • the communication device includes: a memory for storing computer executable program codes, and a processor coupled with the memory.
  • the program code stored in the memory includes instructions.
  • the processor executes the instructions, the communication device executes any one of the above-mentioned second aspect, fourth aspect, sixth aspect, eighth aspect, or second aspect.
  • the method in an embodiment or any possible implementation of the fourth aspect or any possible implementation of the sixth aspect or any possible implementation of the eighth aspect.
  • the communication device may further include a communication interface.
  • the communication interface may be a transceiver in the site, for example, implemented by antennas, feeders, and codecs in the site, or if the communication device is set in For the chip in the site, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a communication system may include the communication device described in the ninth aspect, the communication device described in the eleventh aspect, or the communication device described in the thirteenth aspect, and include the tenth aspect
  • the communication device, the communication device according to the twelfth aspect, or the communication device according to the fourteenth aspect may include more access points and/or stations.
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory, which is used to implement the access point in the first aspect or the station in the second aspect, or the third aspect
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the access point in the first aspect or the station in the second aspect, or the first aspect
  • the method performed by the access point in the third aspect or the station in the fourth aspect, or the access point in the fifth aspect or the station in the sixth aspect, or the access point in the seventh aspect or the station in the seventh aspect implements the first aspect
  • the access point in the second aspect or the station in the third aspect or the access point in the third aspect or the station in the fourth aspect or the access point in the fifth aspect or the station in the sixth aspect or the access point in the seventh aspect or the eighth aspect implements the first aspect
  • the access point in the second aspect or the station in the third aspect or the access point in the third aspect or the station in the fourth aspect or the access point in the fifth aspect or the station in the sixth aspect or the access point in the seventh aspect or the eighth aspect implements the first aspect
  • the embodiments of the present application also provide a computer program product.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the access point in the first aspect or the second aspect.
  • the method implemented by the station in the first aspect or the access point in the third aspect or the station in the fourth aspect or the access point in the fifth aspect or the station in the sixth aspect implements the access point in the first aspect or the station in the second aspect or the first aspect.
  • FIG. 1 is a network architecture of a wireless local area network to which an embodiment of the application is applicable;
  • FIG. 2 is an internal structure diagram of an access point and a station provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of a frame structure of HE-SIG-B according to an embodiment of this application;
  • FIG. 4 is a schematic diagram of a 40MHz HE-SIG-B frame structure provided by an embodiment of the application.
  • Figure 5 is a schematic diagram of the frame structure of the EHT PPDU provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the fragment structure of the EHT PPDU provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of 80 MHz punching provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a resource indication method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another structure of a communication device provided by an embodiment of the application.
  • the embodiments of this application may be applicable to wireless local area network (WLAN) scenarios, and may be applicable to IEEE 802.11 system standards, such as 802.11a/b/g standards, 802.11n standards, 802.11ac standards, 802.11ax standards, or Its next generation, such as the 802.11be standard or a next-generation standard.
  • the embodiments of this application may also be applied to wireless local area network systems such as Internet of Things (IoT) networks or Vehicle to X (V2X) networks.
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of this application can also be applied to other possible communication systems, for example, long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, and LTE time division duplex (time division) systems. duplex, TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, and future 5G communication systems.
  • LTE long term evolution
  • FDD frequency division duplex
  • FIG. 1 shows a network architecture diagram of a WLAN to which an embodiment of the present application is applicable.
  • the AP can schedule wireless resources for STA1 and STA2, and transmit data for STA1 and STA2 on the scheduled wireless resources, including uplink data information and/or downlink data information. It should be understood that the number of APs and STAs in FIG. 1 is only an example, and may be more or less.
  • the AP can communicate with STA1 or STA2, or the AP can communicate with STA1 and STA2.
  • the embodiments of this application are also applicable to communication between APs and APs.
  • APs can communicate with each other through a distributed system (DS).
  • DS distributed system
  • the AP can schedule wireless resources for the STAs associated with it, and/or unassociated STAs, and transmit data for the STA on the scheduled wireless resources.
  • the embodiments of the present application are also applicable to the communication between the STA and the STA.
  • the STAs involved in the embodiments of this application can be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment, or other names with wireless communication functions.
  • the user terminal can be Including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, as well as various forms of user equipment (UE), mobile station (mobile station, MS), terminal (terminal), terminal equipment (terminal equipment), portable communication device, handset, portable computing device, entertainment device, game device or system, global positioning system device or any device configured to communicate over a wireless medium Other suitable equipment, etc.
  • an STA may be a router, a switch, a bridge, etc.
  • the above-mentioned devices are collectively referred to as a station or an STA.
  • the access point AP involved in the embodiments of this application is a device deployed in a wireless communication network to provide wireless communication functions for its associated STAs.
  • the access point AP can be used as the hub of the communication system and can be a base station. , Routers, gateways, repeaters, communication servers, switches or bridges and other communication equipment, where the base stations may include various forms of macro base stations, micro base stations, relay stations, etc.
  • the devices mentioned above are collectively referred to as APs.
  • the APs and STAs involved in this application may be APs and STAs applicable to the 802.11 system standard.
  • FIG. 2 an internal structure diagram of AP and STA provided by the embodiments of this application.
  • the 802.11 system standard focuses on the 802.11 physical layer (PHY) and media access control (MAC) part. Therefore, the STA provided in the embodiment of the present application is usually a terminal product that supports MAC and PHY of the 802.11 system standard, such as a mobile phone, a notebook computer, and the like.
  • PHY physical layer
  • MAC media access control
  • AP and STA respectively include PHY baseband module, MAC layer module, logical link control (logical link control, LLC) layer module and radio frequency module (antenna) belonging to the bottom layer, and Internet protocol (IP) processing module belonging to the upper layer , Transmission control protocol (transmission control protocol, TCP)/user datagram protocol (user datagram protocol, UDP) processing module and application layer module.
  • IP Internet protocol
  • TCP transmission control protocol
  • UDP user datagram protocol
  • the AP communicates with the STA, the AP can allocate resources for the STA, and the STA performs data transmission on the allocated resources.
  • WiFi protocols prior to 802.11ax such as 802.11ac
  • require continuous bandwidth for transmission including four types of bandwidths of 20MHz, 40MHz, 80MHz, and 160MHz, of which 20MHz is recorded as the main 20MHz. If a certain 20MHz of the bandwidth is occupied by the transmission of other sites, the data bandwidth of the transmission needs to be reduced. For example, the first 20MHz in the continuous 80M bandwidth is the main 20MHz, but the second 20MHz channel is busy. According to the continuous bandwidth requirement, only the main 20MHz data can be transmitted at this time, which is a waste of an idle in the 80MHz bandwidth. 40MHz.
  • the 802.11ax protocol proposes a preamble puncturing transmission method that allows discontinuous channels to be aggregated together.
  • the AP is allowed to allocate 20MHz+40MHz bandwidth. , So as to make more effective use of idle channels.
  • the AP communicates with the STA, the AP can allocate resources for the STA, and the STA performs data transmission on the allocated resources.
  • OFDM orthogonal frequency division multiplexing
  • the entire bandwidth can be allocated to one or a group of STAs for single-user (single user, SU) transmission or multi-user multiple input multiple output (Downlink Multiple User Multiple Input Multiple Output, MU MIMO) transmission.
  • OFDMA orthogonal frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • the WLAN protocol divides the spectrum bandwidth into several resource units (RU).
  • the bandwidth configurations supported by the 802.11ax protocol include 20MHz, 40MHz, 80MHz, 160MHz, and 80+80MHz.
  • the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the two 80MHz of the latter can be separated, that is, the 160MHz composed of 80+80MHz is discontinuous.
  • the 802.11ax protocol stipulates that for 20MHz, 40MHz, 80MHz, and 160MHz, the spectrum bandwidth can be divided into multiple types of RUs, including 26 subcarrier RU, 52 subcarrier RU, 106 subcarrier RU, 242 subcarrier RU (the largest RU in 20MHz bandwidth) ), 484 subcarrier RU (maximum RU in 40MHz bandwidth), 996 subcarrier RU (maximum RU in 80MHz bandwidth), and 2*996 subcarrier RU (maximum RU in 160MHz bandwidth).
  • Each RU is composed of consecutive subcarriers, for example, a 26 subcarrier RU is composed of 26 consecutive subcarrier RUs.
  • the 26 sub-carrier RU is denoted as 26-tone RU
  • the 52 sub-carrier RU is denoted as 52-tone RU, and so on, and so on.
  • the AP allocates resources to the STA in units of RU, and can notify the STA of the resources allocated to it through a physical protocol data unit (PPDU).
  • PPDU physical protocol data unit
  • the AP may indicate the allocated RU to the STA by carrying the resource allocation information in a signaling field (signal field, SIG) included in the PPDU.
  • SIG signaling field
  • the signaling field can be a high efficient signal field B (HE-SIG-B), or it can be an extremely high throughput signal field (EHT-SIG). .
  • FIG. 3 shows the HE-SIG B field format proposed by the 802.11ax protocol.
  • HE-SIG-B is divided into two parts.
  • the first part is a common field, including 1 to N resource unit allocation subfields (RU Allocation subfield), and the middle 26-subcarrier (Center) when the bandwidth is greater than or equal to 80MHz.
  • RU Allocation subfield resource unit allocation subfield
  • Center middle 26-subcarrier
  • the resource unit indication field followed by the cyclic redundancy code (CRC) for verification and the Tail subfield for cyclic decoding; in addition, the user specific field (User Specific field)
  • the user specific field User Specific field
  • M user fields M user fields are usually two as a group, and every two user fields are followed by a CRC and Tail fields, but they should be excluded
  • the Tail field of the last group of user fields may be followed by a padding (Padding) field.
  • a resource unit allocation subfield is a resource unit allocation index
  • a resource unit allocation index indicates the size and location of one or more resource units included in 20 MHz.
  • the sequence of at least one site field corresponds to the allocation sequence of the resource sheet.
  • Each site field indicates the site information of the allocated STA within the RU included in the allocation of the resource unit.
  • the resource unit allocation index is indicated by one or more 8-bit sequences, where each 8-bit corresponds to a 20 MHz of the bandwidth spectrum.
  • an index table of a resource unit allocation subfield is shown in Table 1. Since the index table is used to indicate allocated resources, it can also be called a resource allocation information table.
  • the first column represents an 8-bit sequence
  • the middle columns #1 to #9 represent different resource units.
  • the numbers in the table represent the number of subcarriers contained in the resource unit. For example, the sequence "00111 y 2 y 1 y 0 "means that the entire 242-tone RU is divided into 4 RUs consisting of 52-tone RU, 52-tone RU, 26-tone RU, and 106-tone RU.
  • the number in the third column indicates the number of entries allocated for the same resource unit, that is, the number of different sequences corresponding to the same resource unit arrangement.
  • y 2 y 1 y 0 is also used to indicate the 106 -
  • the number of users for SU/MU-MIMO transmission included in the tone RU corresponds to 1 to 8 users. That is, a 3-bit y 2 y 1 y 0 is used to indicate 1 to 8 users supported in the 106-tone RU.
  • the 8 entries can be regarded as 8 independent rows in the table. These 8 rows correspond to the same resource unit allocation method, and each row corresponds to the number of users supported in a different 106-tone RU.
  • the resource unit allocation index is also used to indicate the support of resource units composed of greater than or equal to 106 subcarriers The number of MU MIMO users.
  • the entire bandwidth may be composed of an entire 242-tone RU, or may be composed of various combinations of 26-tone RU, 52-tone RU, and 106-tone RU. Similar to the 20MHz sub-carrier distribution, when the bandwidth is 40MHz, the entire bandwidth can consist of a whole 484-tone RU, or 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU. Various combinations. Similarly, when the bandwidth is 80MHz, the entire bandwidth can be composed of the entire 996-tone RU, or each of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, and 484-tone RU. Kind of combination composition.
  • the 80MHz bandwidth can be composed of 4 resource units with a unit of 242-tone RU.
  • the bandwidth is 160MHz or 80+80MHz
  • the entire bandwidth can be regarded as a copy of two 80Mhz sub-carrier distributions.
  • the entire bandwidth can consist of a whole 2*996-tone RU, or 26-tone RU, 52-tone Various combinations of RU, 106-tone RU, 242-tone RU, 484-tone RU, and 996-tone RU.
  • the 802.11ax standard also introduces the concept of Content Channel (CC).
  • CC Content Channel
  • HE-SIG-B only includes 1 CC
  • the CC includes 1 resource unit allocation subfield, which is used to indicate the allocated RU within 20MHz.
  • the resource unit allocation subfield occupies 8 bits, and all possible RU permutation and combination modes in the 20MHz bandwidth can be indicated by means of indexes.
  • 802.11ax protocol please refer to 802.11ax protocol.
  • PPDU includes the traditional preamble (legacy preamble, L-preamble), high efficiency preamble (high efficiency preamble, HE-preamble) in the repeated traditional signaling (repeated legacy signal, RL-SIG)
  • HE-SIG-A field will be copied and transmitted every 20MHz
  • HE-SIG B uses the "1212" transmission method, that is, HE-SIG B includes two CCs, one CC is transmitted on each odd 20 MHz of the transmission bandwidth, including The multiple odd-numbered 20MHz resource allocation information and the station information transmitted on the multiple odd-numbered 20MHz, another CC transmits on each even-numbered 20MHz of the transmission bandwidth, including the multiple even-numbered 20MHz resource allocation information and the multiple Station information transmitted on an even number of 20MHz.
  • the content of the resource unit allocation subfield will be displayed partly in each of the two CCs.
  • FIG. 4 shows the structure of HE-SIG-B at 40 MHz.
  • CC1 contains the resource unit allocation subfields in the range of odd-numbered 20MHz (that is, the first 20MHz) and the corresponding user-specific fields
  • CC2 contains resources in the range of even-numbered 20MHz (that is, the second 20MHz) Unit allocation sub-fields and corresponding user-specific fields.
  • CC1 contains odd-numbered 242 subcarrier RUs (that is, the first 20MHz and third 20MHz) resource unit allocation subfields and the corresponding user-specific fields;
  • CC2 contains even-numbered 242 subcarrier RUs ( That is, the resource unit allocation subfields within the range of the second 20MHz and the fourth 20MHz) and the corresponding user-specific fields.
  • only one RU is allocated to one user. It does not support the allocation of multiple RUs to a user, that is, it does not support the allocation of multiple continuous or discontinuous RUs to a certain user. For example, there are 3 RUs. These 3 RUs are RU1, RU2, and RU3. The channel conditions of RU1 and RU3 are better than those of RU2. Ideally, RU1 and RU3 can be allocated to the same user, but Currently, only RU1 or RU3 can be allocated to the same user, and RU1 and RU3 can not be allocated to the same user. It can be seen that the flexibility of RU allocation is low, and the spectrum utilization rate is also low.
  • next-generation 802.11ax protocols such as 802.11be, allow multiple continuous or discontinuous RUs to be allocated to one user or multiple users. That is, it supports SU transmission and MU-MIMO transmission on multiple discontinuous RUs.
  • SU transmission and MU-MIMO transmission are relative to OFDMA transmission. Therefore, in some embodiments, SU transmission and MU-MIMO transmission may be collectively referred to as non-OFDMA transmission.
  • non-ODFMA transmission if the resource allocation method corresponding to OFDMA transmission is used, as the bandwidth increases, more resource unit allocation subfields and more user-specific fields are required, and the signaling overhead is relatively large.
  • Each resource allocation subfield occupies at least 8 bits, which obviously has a large signaling overhead.
  • EHT PPDU is used to indicate the allocated resources for the user.
  • the EHT PPDU may include three parts: a traditional preamble (legacy preamble, L-preamble), a high efficiency preamble (HE-preamble), and a physical layer convergence protocol service data unit (PSDU) .
  • a traditional preamble legacy preamble, L-preamble
  • HE-preamble high efficiency preamble
  • PSDU physical layer convergence protocol service data unit
  • the L-preamble part includes the L-STF field, the L-LTF field, and the L-SIG field;
  • the HE-preamble part includes the RL-SIG field and the universal field (universal SIG, U-SIG) field, and extremely high throughput signaling (EHT-SIG) field, extremely high throughput short training field (EHT-STF) field, extremely high throughput long training field (EHT-LTF) field;
  • PSDU part includes Data (data) field and other fields, among them, the U-SIG field occupies 2 OFDM symbols, as shown in Fig. 5 U-SIG SYM1 and U-SIG SYM1.
  • the universal field (U-SIG) field may include a version independent info field, a version dependent info field, a CRC field, and a tail field.
  • the version independent info field may include a 3-bit WiFi version field, a 1-bit downlink/uplink field, a BSS color field of at least 6 bits, and a TxOP field of at least 7 bits. Further, the version independent info field may also include a bandwidth field.
  • the version dependent info field may include a PPDU format field, etc., and may also include one or more of a modulation and coding scheme field, a spatial stream field, and a coding field.
  • the CRC field occupies at least 4 bits
  • the tail field occupies at least 6 bits in the tail bit field.
  • the EHT-SIG field contains the EHT-SIG public field and the EHT-SIG user-specific field.
  • the EHT-SIG public field can be used to carry the resource allocation information allocated to the STA
  • the EHT-SIG user-specific field Can be used to carry user information.
  • the user In order to allocate 320MHz bandwidth, if the structure in 802.11ax is used, the user only needs to read the main 80MHz content in 320MHz before the EHT-SIG field and the field to know the allocated resources, that is, the allocated resources of all users The resource information is all carried on the main 80Mhz, and the overhead on the main 80MHz channel is very high.
  • the full bandwidth can be fragmented based on the EHT PPDU, or it can also be understood as a new PPDU structure.
  • FIG. 6, is an example of the new PPDU structure.
  • Figure 6 takes the channel bandwidth (which can be referred to as full bandwidth or full band in this article) for transmitting PPDUs as an example of 320MHz. It can be seen that Figure 6 divides 320MHz into 4 frequency domain segments, each of which is divided into frequency domains. The chip is 80MHz, of which the first 80MHz is the main 80MHz.
  • each frequency domain slice is 80 MHz, in some embodiments, the frequency domain slice may also be referred to as an 80 MHz slice.
  • the U-SIG field can only be repeated within each frequency domain slice (80 MHz), and different frequency domain slices can use different U-SIG and EHT-SIG.
  • the EHT-SIG in each frequency domain slice may have two or more content channels.
  • Each frequency domain slice can only contain its own 80MHz puncturing indication in the U-SIG part. Since this architecture is equivalent to dividing the overhead of the U-SIG and EHT-SIG fields on the original main 80MHz channel into 4 frequency domain fragments, it can save overhead.
  • a bandwidth of 320 MHz is allocated and the bandwidth of 320 MHz is allocated to 40 users as an example.
  • the PPDU structure shown in FIG. 6 is not adopted and the 802.11ax structure is used, then the PPDU requires at least 16 EHT-SIG fields, and the EHT-SIG field requires at least 40 user fields. In this way, by reading the content of the main 80MHz in 320MHz, you can know which 20MHz on 320MHz is punctured, and then you can know the allocated resources by reading the EHT-SIG field.
  • the PPDU structure shown in FIG. 6 since 320 MHz is frequency domain fragmented, each frequency domain fragment (80 MHz) has a main 20 MHz. There are also 40 users.
  • the U-SIG field can only be repeated within each frequency domain slice (80 MHz), and different frequency domain slices use different U-SIG and EHT-SIG. Since the overhead of the EHT-SIG on the original main 80MHz channel can be divided into 4 frequency domain slices, the user fields corresponding to 40 users can also be transmitted on the 4 frequency domain slices respectively. In this way, there are less than 40 user fields in the EHT-SIG field in each frequency domain slice, so overhead can be saved. Following the above example, if each frequency domain fragment is docked with 10 users, then the EHT-SIG field in each frequency domain fragment only needs about 10 user fields, which obviously reduces the overhead.
  • FIG. 6 only takes the same size of each frequency domain slice as an example.
  • the embodiment of the present application does not limit the size of each frequency domain fragment, and the bandwidth of each frequency domain fragment is variable.
  • 320 MHz can be divided into 3 frequency domain fragments, and the 3 frequency domain fragments are respectively 80 MHz. , 80MHz, 160MHz.
  • the U-SIG field may be used to indicate the bandwidth allocated to the STA, and the U-SIG and/or EHT-SIG field may be used to indicate the puncturing on the bandwidth. Since both the U-SIG and EHT-SIG fields can be used to indicate the puncturing situation, in order to facilitate the distinction, in the embodiment of this application, the field used to carry the puncturing situation in the U-SIG is called the preamble puncturing information field A, the field used to carry the puncturing situation in the EHT-SIG field is the preamble puncturing information field B.
  • preamble puncturing information field A or the preamble puncturing information field B can not only be used to indicate bandwidth puncturing. From another perspective, puncturing through bandwidth can also indicate resources allocated to users, so preamble puncturing information field A or preamble puncturing information field B can also be considered to indicate resource allocation. It should be noted that the embodiment of the present application does not limit the specific name of the field used to carry the puncturing situation, that is, the above-mentioned preamble puncturing information field A and/or preamble puncturing information field B are in some embodiments It can also be another name. In this article, the field used to carry the puncturing situation becomes the preamble puncturing information field.
  • the EHT PPDU may include a preamble puncturing information field A and a preamble puncturing information field B. That is, the preamble puncturing information field A and the preamble puncturing information field B indicate the puncturing information in the non-OFDMA transmission (may also be referred to as the puncturing indication mode 1 in the non-OFDMA transmission).
  • the preamble puncturing information field A can be used to carry the 80MHz puncturing information corresponding to each frequency domain fragment in Figure 6, and the user can know the frequency domain fragment he is in by reading the preamble puncturing information field A The corresponding 80MHz puncturing situation can be read on the preamble puncturing information field B in the EHT-SIG field.
  • the preamble puncturing information field B may include the puncturing situation of the full frequency band (for example, the puncturing situation of 320 MHz).
  • the preamble puncturing information field A may occupy 3 bits, and the puncturing situation in the 80 MHz bandwidth can be indicated by these 3 bits.
  • 80 MHz can be divided into four 20 MHz according to the granularity of 20 MHz.
  • the puncturing within the 80 MHz bandwidth refers to puncturing one or some 20 MHz within 80 MHz. Sort the 4 20MHz included in 80MHz according to frequency from low to high. If the four 20MHz within 80MHz are not punctured, it can be recorded as [1 1 1]. It should be understood that 1 means no puncturing, and PPDU information is transmitted on the corresponding channel.
  • the puncturing situation in the 80MHz bandwidth can be [1 1 1], [x 1 1], [1 x 1], [1 1 x 1], [1 1 1 x], [x x 1], [1 1 x x].
  • x means puncturing, and no PPDU information is transmitted on the corresponding channel.
  • the embodiment of the present application only uses “x” to indicate the punching. In some embodiments, the punching may also be indicated by other methods, for example, “0” may be used to indicate the punching.
  • the 80MHz bandwidth includes primary 20MHz (denoted as P20), secondary 20MHz (denoted as S20) and secondary 40MHz (denoted as S40), where S40 is further divided into S40 -L (20MHz on the left in S40) and S40-R (20MHz on the right in S40).
  • S40 is further divided into S40 -L (20MHz on the left in S40) and S40-R (20MHz on the right in S40).
  • S40-L 20MHz on the left in S40
  • S40-R 20MHz on the right in S40
  • 80MHz includes the first 20MHz, the second 20MHz, the third 20MHz, and the fourth 20MHz.
  • the corresponding puncturing conditions of the 80MHz include not being punctured or only A 20MHz is punctured, that is, the puncturing of 80MHz bandwidth can include [1 1 1 1], [x 1 1], [1 x 1], [1 1 x 1], [1 1 1 x].
  • the preamble puncturing information field A can be used to carry the 80 MHz puncturing information corresponding to each frequency domain fragment as shown in FIG. 6.
  • the 80 MHz bandwidth in this embodiment may be a frequency domain slice, not a full bandwidth 80 MHz.
  • the full bandwidth is 160 MHz, which can be divided into 2 frequency domain slices, and each frequency domain slice is 80 MHz.
  • the puncturing of the 160MHz bandwidth can include [x x 1 1 1], [1 1 x 1 1], [1 1 1 x 1] and [1 1 1 1 1 1 x x]. From this perspective, for 80MHz frequency domain slicing, the puncturing situation can also include [x 1 1], [1 1 x].
  • the EHT PPDU includes the preamble puncturing information field A, but does not include the preamble puncturing information field B. That is, the preamble puncturing information field A indicates the puncturing information in non-OFDMA transmission (also known as the puncturing indication method in non-OFDMA transmission). In this case, the preamble puncturing information field A can be used to indicate Possible puncturing situations for all bandwidths of 320MHz and below. Since the preamble puncturing information field A can already inform all supported puncturing conditions, there is no need to use the preamble puncturing information field B to indicate.
  • the puncturing of 80MHz bandwidth can include [1 1 1], [x 1 1], [1 x 1], [1 1 x 1], [1 1 1 x].
  • the puncturing of the 160MHz bandwidth can include [1 1 1 1 1 1 1].
  • the puncturing of the 160MHz bandwidth can include: [x 1 1 1 1 1], [1 x 1 1 1], [1 x 1 1], [1 1 x 1 1], [1 1 1 x 1], [1 1 1 1 x 1], [1 1 1 1 x 1], [1 1 1 1 x 1] and [1 1 1 1 1] 1 x].
  • the puncturing of the 160MHz bandwidth can include [x 1 1 1 1], [1 1 x 1 1], [1 1 1 1 x x 1] and [1 1 1 1 1 x].
  • the puncturing situation of 240MHz bandwidth can include [1 1 1 1 1 1 1 1 1].
  • the puncturing of 240MHz bandwidth can include: [x x 1 1 1 1 1], [1 x 1 1 1 1], [1 1 1] 1 x x 1 1 1], [1 1 1 1 1 x x 1 1], [1 1 1 1 1 1 x x 1 1] and [1 1 1 1 1 1] 1 1 x x].
  • the puncturing of 240MHz bandwidth can include: [1 1 1 x x x 1], [1 1 1 1 1 1 x x x].
  • the puncturing of 320MHz bandwidth can include [1 1 1 1 1 1 1 1 1 1 1].
  • the puncturing of 320MHz bandwidth can include: [x 1 1 1 1 1 1 1 1], [1 1 x 1 1 1 1 1 1 1 1], [1 1 x 1 1 1 1 1], [1 1 1 1 1 1 1], [1 1 1 1 1], [1 1 1 1 1] 1 x 1 1 1], [1 1 1 1 1 1 1], [1 1 1 1 1] 1 x 1 1 1], [1 1 1 1 1 1 1 1], [1 1 1 1 1 1 1] 1 x 1 1 1 1], [1 1 1 1 1 1 1 1 1 x x 1] and [ 1 1 1 1 1 1 1 1 1 1 1 x x].
  • the puncturing of the 360MHz bandwidth can include: [1 1 1 x x x 1 1 1 1], [1 1 1 1 1 1 1 x x x 1] 1 1] and [1 1 1 1 1 1 1 1 1 1 x x].
  • the preamble puncturing information field A occupies a minimum of 4 bits to indicate the resource units allocated by the STA in the non-OFDMA.
  • the overhead of signaling can be saved by dividing the overhead of the EHT-SIG field into multiple frequency domain fragments, but as shown in FIG. 6 There is no further solution for how the PPDU structure indicates the allocated resources to the user, that is, there is no corresponding design solution for the EHT-SIG field.
  • the embodiments of the present application provide a resource indication method.
  • the AP can reuse the fields in the U-SIG field and/or EHT-SIG field to indicate multiple consecutive assignments for users. Or discontinuous RU.
  • the embodiments of the present application provide a new design solution for the U-SIG field and the EHT-SIG field, which can further reduce the resources allocated to users through the resource allocation subfield in 802.11ax. Signaling overhead.
  • the execution body involved in the technical solution provided by the embodiments of the present application includes a sending device and a receiving device.
  • the sending device is also referred to as the sending end
  • the receiving device is also referred to as the receiving end. It is an AP
  • the receiving end is an STA as an example.
  • FIG. 8 is a schematic flowchart of a resource indication method provided by an embodiment of this application. The method includes the following steps:
  • the AP generates a PPDU.
  • the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate that users scheduled in the first frequency domain fragment are allocated. Is the first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the AP sends the PPDU, and the STA receives the PPDU;
  • the STA determines the allocated resources according to the preamble puncturing indication information.
  • the first bandwidth can be considered as the full bandwidth, that is, the bandwidth configuration supported by the system, such as 20MHz, 40MHz, 80MHz, 160MHz, 240MHz, 320MHz, and so on.
  • the embodiment of the present application may adopt the frequency domain fragmentation structure of the EHT PPDU as shown in FIG. 6 to notify the STA of the allocated resources. It should be understood that in the scenario of frequency domain fragmentation, the first bandwidth is greater than or equal to 80 MHz, and the first bandwidth may be divided into one or more frequency domain fragments.
  • the embodiment of the present application does not limit the number of frequency domain fragments, that is, the sizes of different frequency domain fragments may be the same or different. For example, for a 320MHz bandwidth, it can be divided into four 80MHz frequency domain slices, or it can be divided into two 80MHz frequency domain slices and one 160MHz frequency domain slice.
  • the preamble puncturing information field can be used to indicate the resource allocation in each frequency domain fragment. It should be understood that this resource allocation situation is for users parking in each frequency domain slice. In other words, the preamble puncturing information field can be used to indicate the resource allocation of users in each frequency domain slice. For example, STAs in a certain frequency domain slice may be allocated resource units, or may not be allocated resource units. If the STA in a certain frequency domain fragment is not allocated resources, the STA does not need to read the EHT-SIG field in the EHT PPDU, which can save energy. Therefore, in some embodiments, the preamble puncturing information field can be used to indicate that users in a certain frequency domain slice are not allocated any resource units.
  • the preamble puncturing information field may be carried in a field in the U-SIG field.
  • this field is referred to as the first field.
  • the first field can be a defined field in the U-SIG, or a newly added field in the U-SIG field. Since the embodiment of the present application can follow the frequency domain fragmentation structure of the EHT PPDU, the first field can be the preamble puncturing information field A as described above.
  • the preamble puncturing information field A may occupy multiple bits and may be used to indicate the resource allocation in a frequency domain slice. For example, taking 80MHz frequency domain fragmentation, the preamble puncturing information field A can occupy 3 bits. If it is greater than or equal to 160MHz frequency domain fragmentation, then the preamble puncturing information field A can occupy at least 3 bits. Bits. Refer to Table 2, which shows the content that can be indicated by the preamble puncturing information field A for 80 MHz frequency domain fragmentation.
  • a value of the 3-bit sequence carried in the preamble puncturing information field A in Table 2 represents a resource allocation situation. It should be noted that Table 2 only illustrates a correspondence between the value of the 3-bit sequence and the resource allocation situation, and the embodiment of the application does not limit the specific correspondence between the value of the 3-bit sequence and the resource allocation situation. .
  • Table 2 only illustrates a correspondence between the value of the 3-bit sequence and the resource allocation situation, and the embodiment of the application does not limit the specific correspondence between the value of the 3-bit sequence and the resource allocation situation.
  • the 3-bit sequence is "111" it may indicate that 80MHz is not punctured (that is, corresponding to [1 1 1]); when the 3-bit sequence is "110", it may indicate the first one in 80 MHz 20MHz is punched (that is, [x 1 1 1]), so I won't list them all here.
  • the following takes the correspondence shown in Table 2 as an example.
  • an entry of "unallocated resource unit” may be added to Table 2. That is, the "unallocated resource unit” is represented by the reserved entry in Table 2.
  • the information field A of the preamble puncturing can be used to carry "111".
  • the STA since it needs to read the main 20MHz of 80MHz, it will read the U-SIG field.
  • the STA determines that the resource unit has not been allocated through the preamble puncturing information field A, the STA does not need to continue to read the EHT-SIG and other fields after the U-SIG, which can save the energy consumption of the STA.
  • the STA Since the STA has not been allocated a resource unit, it naturally does not need to read the user field in the EHT-SIG in order to confirm which resources are allocated to it. Or it can be considered that in this case, the user field in the EHT-SIG is unnecessary, so the preamble puncturing information field A indicates that the user in the frequency domain fragment has not been allocated a resource unit, and the EHT-SIG field may not Include user fields to save signaling overhead as much as possible.
  • the current amble puncturing information field A indicates that there is puncturing. Since in the non-OFDMA transmission mode, there can only be one hole, that is, there can only be one hole. One channel is punched. If the punctured channel has been indicated in the preamble puncturing information field A, the STA in the frequency domain slice can learn the resource allocation of the non-OFDMA transmission mode through the indication of the bandwidth field in the U-SIG field. Since the remaining channels are not punctured, there is no need to indicate the preamble puncturing information field B to save the signaling overhead as much as possible.
  • the bandwidth indicated by the bandwidth field in the U-SIG field is less than or equal to 80 MHz, since the preamble puncturing information field A can indicate all puncturing conditions at 80 MHz, there is no need for additional instructions from the preamble puncturing information field B. , Which can save signaling overhead.
  • the STA can know through the preamble puncturing information field A
  • the 80MHz puncturing situation corresponding to the frequency domain slice where it is located can be read on the channel carrying the preamble puncturing information field B in the EHT-SIG field.
  • the preamble puncturing information field can be carried in the preamble puncturing information field A and the preamble puncturing information field B.
  • the preamble puncturing information field A can occupy multiple bits, and the preamble puncturing information field B also occupies multiple bits.
  • the current preamble puncturing information field A indicates that the puncturing situation in the frequency domain slice corresponding to 80 MHz is as shown in Table 2, and the content indicated by the preamble puncturing information field B can be as shown in Table 3.
  • Table 3 can be considered as a design of the preamble puncturing information field B, which is used for puncturing with a bandwidth greater than 80 MHz. It should be understood that puncturing situations with a bandwidth greater than 80 MHz, such as puncturing situations of 160 MHz, 240 MHz, and 320 MHz, are indicated by the preamble puncturing information field A and the preamble puncturing information field B. Among them, the preamble puncturing information field A indicates the puncturing situation in the frequency domain fragment corresponding to 80 MHz, and the preamble puncturing information field B indicates the puncturing situation in the frequency bands other than the frequency domain fragment in the full bandwidth.
  • the preamble puncturing information field A occupies 3 bits
  • the preamble puncturing information field B occupies 4 bits as an example.
  • the index of the preamble puncturing information field B can be considered as the value of the preamble puncturing information field B, and the value indicates the puncturing of the remaining frequency bands in the full bandwidth except for the frequency domain fragment.
  • Table 3 only illustrates a correspondence between the values of the preamble puncturing information field A and the preamble puncturing information field B and the puncturing situation.
  • the embodiment of the present application performs the preamble puncturing information field
  • the specific corresponding relationship between the value of A and the preamble puncturing information field B and the puncturing situation is not limited.
  • the current amble puncturing information field A carries "111", which can indicate that the first 80MHz within 160MHz is not punctured (that is, corresponding to [1 1 1]), and the current amble puncturing information field B carries "111" means that the second 80MHz within 160MHz is not punctured (that is, it corresponds to [1 1 1 1]), etc., I won't list them all here.
  • the full bandwidth is 160MHz, including two 80MHz
  • the preamble puncturing information field A indicates [1 1 1 1], that is, if the preamble is not punctured on 80 MHz, if the preamble
  • the value of the code puncturing information field B is 0, which indicates that the other 80MHz in 160MHz is not punctured; if the value of the preamble puncturing information field B is 5, it indicates that the first in the other 80MHz of 160MHz
  • the first and second 20 MHz are punctured.
  • the value of the preamble puncturing information field B is 7-15, which can be used as reserved bits for other purposes.
  • the preamble puncturing information field A indicates [x 1 1], [1 x 1], [1 1 x 1], [1 1 x], [x x 1], or [1 1 x x], which corresponds to the case of being punched at 80MHz. Since there can only be one hole in the full bandwidth, the other 80MHz in 160MHz can only be unpunctured, and the value of the preamble puncturing information field B is 0, which indicates that the other 80MHz in 160MHz has not been punctured.
  • the value of the preamble puncturing information field B is 1-15, which can be used as reserved bits for other purposes.
  • the preamble puncturing information field A indicates [1 1 1 1], that is, if the preamble puncturing information field B is not punctured on 80MHz, If the value is 0, it indicates that the other 160MHz in 240MHz is not punctured; if the value of the preamble puncturing information field B is 5, it indicates that the fifth and sixth 20MHz of the other 160MHz in 240MHz are Punching, it should be understood that the value of the preamble puncturing information field B is 7-15, which can be used as reserved bits for other purposes.
  • the preamble puncturing information field A indicates [x 1 1] or [1 1 x x], it corresponds to the case of being punctured on 80 MHz. Since the remaining 160 MHz in 240 MHz can only be unpunctured, the value of the preamble puncturing information field B is 0, which indicates that the remaining 160 MHz in 240 MHz is not punctured. The value of the preamble puncturing information field B is 1-15, which can be used as reserved bits for other purposes.
  • the preamble puncturing information field A indicates [1 1 1 1], that is, if the preamble puncturing information field B is not punctured on 80 MHz, If the value is 0, it indicates that the other 240MHz in 320MHz has not been punctured; if the value of the preamble puncturing information field B is 9, it indicates that the 11th and 12th 20MHz of the other 240MHz in 320MHz has been Punching, it should be understood that the value of the preamble puncturing information field B is 10-15, which can be used as reserved bits for other purposes.
  • the preamble puncturing information field A indicates [x 1 1] or [1 1 x x], it corresponds to the case of being punctured on 80 MHz. Since the remaining 240 MHz in 320 MHz can only be unpunctured, the value of the preamble puncturing information field B is 0, which indicates that the remaining 240 MHz in 320 MHz is not punctured. The value of the preamble puncturing information field B is 1-15, which can be used as reserved bits for other purposes.
  • one or more STAs may be allocated to the full bandwidth, or the full bandwidth may be allocated to one or more STAs. If full bandwidth is allocated to one or more STAs.
  • the frequency domain fragment structure of the EHT PPDU shown in FIG. 6 is used to notify the STA of the allocated resources, and the allocated resources need to be indicated for each frequency domain fragment. That is, the preamble puncturing information field A in the U-SIG field corresponding to each frequency domain fragment needs to indicate [1 1 1], which is obviously expensive. To this end, in some embodiments, the preamble puncturing information field may be used to indicate that the scheduled STAs in a certain frequency domain slice are allocated full bandwidth (unpunctured) resources.
  • the STA can determine the allocated resources by combining the preamble puncturing information field and the full bandwidth indicated by the bandwidth field in the U-SIG field. Which STAs in a specific frequency domain fragment are allocated full bandwidth resources can be determined by reading the user field in the user specific field in the EHT-SIG field after the U-SIG field.
  • the scheduled STA here refers to the STA to which resources are allocated. For example, there are 10 STAs on a frequency domain slice, all 10 STAs will read the U-SIG field, but 8 of them are allocated resources, then these 8 STAs are scheduled STAs.
  • the preamble puncturing information field may be carried in the preamble puncturing information field A in the aforementioned U-SIG field.
  • the preamble puncturing information field A may occupy multiple bits and may be used to indicate the resource allocation in a frequency domain slice. For example, taking 80MHz frequency domain fragmentation, the preamble puncturing information field A can occupy 3 bits. If it is a frequency domain fragment greater than or equal to 160MHz, then the preamble puncturing information field A can occupy at least 4 bits. Bits. Refer to Table 4, which shows the content that can be indicated by the preamble puncturing information field A for 80 MHz frequency domain fragmentation.
  • a value of the 3-bit sequence carried in the preamble puncturing information field A in Table 4 represents a resource allocation situation. It should be noted that Table 4 only illustrates a correspondence between the value of the 3-bit sequence and the resource allocation situation, and the embodiment of the application does not limit the specific correspondence between the value of the 3-bit sequence and the resource allocation situation. . Exemplarily, when the 3-bit sequence is "111", it may indicate that 80MHz is not punctured (that is, corresponding to [1 1 1]); when the 3-bit sequence is "110", it may indicate the first one in 80 MHz 20MHz is punched (that is, [x 1 1 1]), so I won't list them all here.
  • an entry of "full bandwidth (unpunctured)" can be added to Table 3. That is, the reserved entry in Table 4 is used to characterize "the user in the frequency domain fragment is allocated full bandwidth (unpunctured) resources".
  • the full bandwidth resource of 320 MHz as an example, that is, the resource indicated by the bandwidth field in the U-SIG field is 320 MHz. If a STA within a certain 80MHz is allocated a full bandwidth (unpunctured) resource unit, then the preamble puncturing information field A can be used to carry "111".
  • the STA when the STA is allocated a full bandwidth resource through the preamble puncturing information field A, and then by reading the bandwidth field in the U-SIG field, it can be determined that the 320MHz unpunctured resource is allocated. Which STAs in a specific frequency domain fragment are allocated full bandwidth resources can be determined by reading the user field in the user specific field in the EHT-SIG field after the U-SIG field. In this solution, the full bandwidth (unpunctured) indication can be realized by indicating the preamble puncturing information field A of a frequency domain fragment, and the preamble corresponding to each frequency domain fragment divided by the full bandwidth is not required. Punching information field A is used to indicate, which can save overhead.
  • the compressed mode may be indicated in the U-SIG field or the EHT-SIG field.
  • the so-called compression mode is for the common field in the EHT-SIG field, that is, the length of the common field is reduced.
  • the resource allocation subfield (RU Allocation subfield) in the common field can be simplified, for example, the number of resource allocation subfields is reduced, or the resource allocation subfield in the common field is omitted or deleted. If the common field includes a simplified resource allocation subfield (RU Allocation subfield) or does not include a resource allocation subfield, then the corresponding EHT PPDU is the EHT PPDU in compressed mode. In other words, the so-called compressed mode means that the format of EHT PPDU is a simplified version.
  • the RU Allocation subfield in the public field is simplified, and the RU Allocation subfield can even be omitted or deleted; EHT PPDU in uncompressed mode
  • the format of is a non-simplified version.
  • the RU Allocation subfield in the public field is non-simplified.
  • the corresponding EHT PPDU is also the EHT PPDU in the compressed mode. It should be understood that since the format of the EHT PPDU in the compressed mode is more simplified, the overhead can be saved.
  • the RU Allocation subfield is simplified or even deleted, so it is necessary to use the preamble puncturing information field A and the aforementioned preamble puncturing information field B to indicate the resources allocated to the STA.
  • the RU Allocation subfield indicates the resource unit allocated to the STA; in non-OFDMA transmission, the preamble puncturing information field A and/or the preamble puncturing information field B can be used to indicate the allocation for the STA Resources.
  • non-OFDMA transmission it includes the allocation of non-OFDMA resource units with full bandwidth puncturing and the allocation of non-OFDMA resources without full bandwidth puncturing.
  • multiple compression modes can be defined, and the compression mode is indicated by carrying a compression indication field in the U-SIG or EHT-SIG.
  • OFDMA transmission mode that is, OFDMA transmission, including the resource indication of the unsimplified version of RU Allocation subfield
  • Non-OFDMA puncturing transmission mode that is, in non-OFDMA transmission, the allocated resource is a resource unit with full bandwidth puncturing;
  • Non-OFDMA unpunctured transmission mode that is, in non-OFDMA transmission, the allocated resources are full-bandwidth unpunctured resource units.
  • the first transmission mode is an uncompressed mode relative to the other three transmission modes.
  • the remaining three transmission modes are compressed relative to the first transmission mode.
  • the compression mode can be indicated by the U-SIG field, that is, the compression mode indication field is set in the U-SIG field.
  • the compression mode indication field can occupy multiple bits to indicate the compression mode (including uncompressed mode and uncompressed mode). Compressed mode).
  • the compression indication field may occupy 2 bits, and the content indicated by the compression indication field may be as shown in Table 5.
  • a value of the compression indication field in Table 5 corresponds to a compression mode, and which value corresponds to which compression mode is just an illustration in Table 5.
  • the embodiment of the present application does not limit the specific correspondence between the value of the compression indication field and the compression mode. Exemplarily, when the compression indication field carries "00", it can indicate that the compressed mode is non-OFDMA unpunctured transmission mode; when the compression indication field carries "11", it can indicate that the compression mode is OFDMA transmission mode, so I will not list them here. Up.
  • the 1-bit space-time block coding (STBC) field in HE-SIG-A in 11ax is only meaningful in non-MU-MIMO transmission, if there is a MU-MIMO transmission
  • the MIMO compression mode can reuse the STBC field.
  • the 1-bit STBC field can be further used to indicate two MU-MIMO compression modes, or to participate in indicating the number of MU-MIMO users.
  • the resource allocation subfield does not need to be used to indicate the resource allocation situation. Therefore, the common field in the EHT-SIG field can reduce the number of resource allocation subfields or delete the resource allocation subfield, so as to save signaling overhead as much as possible. It should be noted that the 4 modes shown in Table 5 are merely illustrative examples, and the embodiments of the present application do not limit the types of compression modes. The reserved entries in Table 4 may indicate other compression modes in other embodiments.
  • the added "unallocated resource unit" entry in Table 2 can also be considered as a transmission mode or a compression mode. That is to say, it can be defined that no resource unit is allocated to a user who is called in the frequency domain slice, which is a certain transmission mode or compression mode.
  • the reserved entry in Table 3 indicates this transmission mode or compression mode, the users served in the frequency domain slice can be sure that no resource unit is allocated. It should be understood that since the STA has not been allocated a resource unit, it naturally does not need to read the user field in the EHT-SIG. It can also be said that the user field in the EHT-SIG is unnecessary.
  • the EHT-SIG field may not include the user field, so as to save the signaling overhead as much as possible.
  • Table 5 the four modes shown in Table 5 are merely illustrative examples, and the embodiments of the present application do not limit the types of compression modes.
  • the reserved entries in Table 2 may indicate other compression modes in other embodiments.
  • the preamble puncturing information field A in the U-SIG field in the EHT PPDU can be used to indicate the resource allocation situation.
  • the preamble puncturing information field A can occupy 3 bits, and the indicated resource allocation includes: [1 1 1], [x 1 1], [1 x 1 1] , [1 1 x 1], [1 1 1 x], that is, 5 situations.
  • the preamble puncturing information field A can occupy 4 bits, and the indicated resource allocation includes: [1 1 1 1 1], [x 1 1 1 1 1], [1 x 1 1 1], [1 1 x 1 1], [1 1 x 1 1], [1 1 1 x 1], [1 1 1 1 x 1], [1 1 1 1 1 x 1], [1 1 1 1 1 x], [1 1 1 1 1 x], [1 1 1 1 1 1], [1 1 1 1 1 1], [1 1 1 1 1 1], [1 1 1 1 1 1], [1 1 1 1 1 1], [1 1 1 1 1 1], [1 1 1 1 x 1] and [1 1 1 1 1 x x], that is, 13 situations.
  • the preamble puncturing information field A combined with the bandwidth field in the U-SIG field, an indication of full-bandwidth puncturing or full-bandwidth non-puncturing under non-OFDMA transmission can be realized.
  • the preamble puncturing information field A can be used to indicate 7 resource allocation conditions, namely [1 1 1 1 ], [x 1 1], [1 x 1], [1 1 x 1], [1 1 x], [x x 1], [1 1 x].
  • the 80 MHz puncturing indication corresponding to each frequency domain slice under OFDMA transmission can be realized.
  • the multiplexed preamble puncturing information field A can be defined to indicate all puncturing conditions supported by non-OFDMA transmission, or to indicate the 80 MHz corresponding to each frequency domain slice under OFDMA transmission.
  • the punching situation In other words, the preamble puncturing information field A can indicate not only all puncturing conditions supported by non-OFDMA transmission, but also the 80 MHz puncturing situation corresponding to each frequency domain slice under OFDMA transmission.
  • a certain field in the U-SIG field can be defined to indicate that the EHT PPDU belongs to a non-OFDMA transmission mode.
  • the content indicated by the preamble puncturing information field A includes the aforementioned 5 situations, that is, 80MHz Configuration in the case of OFDMA means a punctured or non-punctured configuration within 80 MHz (that is, a full bandwidth configuration).
  • the content indicated by the preamble puncturing information field A includes the aforementioned 7 situations, that is, the 80MHz configuration indicates the 80MHz corresponding to the frequency domain fragment The punching situation.
  • the preamble puncturing information field A indicates that the configuration of 80MHz means 80MHz in the case of OFDMA Perforated or unperforated configuration inside. If the bandwidth field indicates that the bandwidth is 80MHz, a certain field in the U-SIG field indicates EHT PPDU belongs to OFDMA transmission mode, the preamble puncturing information field A indicates the 80MHz configuration indicates the 80MHz puncturing situation corresponding to the frequency domain fragment . Therefore, for 80MHz, the preamble puncturing information field A has the ability to indicate all the puncturing conditions supported in non-OFDMA transmission and the ability to indicate the puncturing conditions of the frequency domain fragment corresponding to 80MHz in OFDMA transmission.
  • This solution can also be understood as being compatible with the second method of puncturing indication in non-OFDMA transmission, and can indicate puncturing information in 80MHz OFDMA transmission.
  • Table 6 is used for schematic description below. Refer to Table 6, which shows the content indicated by the preamble puncturing information field A in the U-SIG, where the full bandwidth is 80 MHz and the preamble puncturing information field A occupies 3 bits as an example.
  • a value of the preamble puncturing information field A in Table 6 corresponds to a puncturing situation, and which value corresponds to which puncturing is just an indication in Table 6.
  • the embodiment of the present application does not limit the specific correspondence between the value of the preamble puncturing information field A and the puncturing situation.
  • the current amble puncturing information field A carries "111", which may indicate that it is not punctured within 80 MHz (that is, corresponding to [1 1 1]); the current amble puncturing information field A carries "110", which can be It means that the first 20MHz within 80MHz is punctured (that is, corresponding to [x 1 1 1]), so I won't list them all here.
  • the preamble puncturing information field A indicates the puncturing or non-puncturing within 80 MHz in the non-OFDMA case.
  • Full bandwidth configuration for punching In this case, for the station, if the full bandwidth is determined to be greater than or equal to 160MHz according to the bandwidth field, the STA only needs to read the puncture situation within the 80MHz, and does not need to read the information other than the 80MHz Bandwidth information.
  • the preamble puncturing information field A indicates the puncturing of the frequency domain fragment corresponding to 80 MHz in OFDMA transmission. It can be seen that, for a full bandwidth of 80 MHz, the preamble puncturing information field A has the ability to indicate all puncturing conditions supported in non-OFDMA transmission and to indicate the puncturing conditions of frequency domain fragments corresponding to 80 MHz in OFDMA transmission.
  • the preamble puncturing information field A indicates the puncturing situation in non-OFDMA transmission.
  • the preamble puncturing information field A occupies at least 4 bits.
  • the puncturing situation for 80 MHz frequency domain fragments indicates that there are at least 9 reserved situations.
  • the reusable preamble puncturing information field A indicates the compression mode, so there is no need to additionally set a compression indication field in the U-SIG field or the EHT-SIG field, so as to save the signaling overhead as much as possible.
  • Table 7 is used for schematic description below.
  • Table 7 shows the content indicated by the preamble puncturing information field A in U-SIG, where Figure 7 assumes that the full bandwidth is greater than or equal to 160MHz, the preamble puncturing information field A occupies 4 bits, and the compression mode is a certain A compression mode, such as compression mode one as an example.
  • the puncturing situation for 80 MHz frequency domain fragments indicates that there are 9 reservation situations, and Table 7 is also for the puncturing situation for 80 MHz frequency domain fragments.
  • the preamble puncturing information field A in Table 7 corresponds to a puncturing situation, and which value corresponds to which puncturing is just an indication in Table 7.
  • the embodiment of the present application does not limit the specific correspondence between the value of the preamble puncturing information field A and the puncturing situation.
  • the current amble puncturing information field A carries "1000", which may indicate that the first 20 MHz within 80 MHz is punctured (that is, corresponding to [x 1 1 1]); the current amble puncturing information field A carries " 0001" means compression mode 1, no puncturing in 80MHz (corresponding to [1 1 1]), so I won’t list them all here.
  • the preamble puncturing information field A has both the indication of all puncturing conditions supported in non-OFDMA transmission and the indication of frequency domain fragmentation in OFDMA transmission. Corresponding to the ability of 80MHz punching situation. At the same time, it is also equipped to indicate the compressed transmission mode in OFDMA transmission.
  • the preamble puncturing information field A has the ability to indicate all the puncturing conditions supported in non-OFDMA transmission, as well as the ability to indicate the 80MHz puncturing conditions corresponding to frequency domain fragments in OFDMA transmission. This is the case of 80MHz full bandwidth.
  • the preamble puncturing information field A can occupy at least 3 bits. If it is compatible with the puncturing indication in non-OFDMA transmission greater than or equal to 160 MHz, the preamble puncturing information field A can occupy at least 4 bits. Therefore, in some embodiments, the puncturing indication for OFDMA transmission may also be separated from the puncturing indication for non-OFDMA transmission.
  • the non-OFDMA transmission puncturing indication is used, and the preamble puncturing information field A is defined to occupy at least M bits, where M is greater than or equal to 4.
  • the puncturing indication for OFDMA transmission is indicated by 3 of the M bits.
  • the M-3 bits other than these 3 bits can be used to indicate the compressed mode or the non-compressed mode under OFDMA transmission.
  • a 1-bit indication information may be used to indicate whether the preamble puncturing information field A indicates OFDMA transmission or non-OFDMA transmission. It should be understood that the 1-bit indication information is carried in the PPDU.
  • the STA when receiving the PPDU from the AP, it can first determine whether the M-bit preamble puncturing information field A indicates OFDMA transmission or non-OFDMA transmission through 1-bit indication information. If the M-bit preamble puncturing information field A indicates non-OFDMA, the STA can determine the puncturing of the allocated bandwidth. If the M-bit preamble puncturing information field A indicates OFDMA transmission, the STA can determine the puncturing situation of the 80MHz corresponding frequency domain slice according to 3 bits of the M bits, and according to M-3 bits Determine whether the mode of OFDMA transmission is compressed or uncompressed.
  • new UIS field and EHT-SIG field are designed, and the fields in the U-SIG field and/or EHT-SIG field can be reused to indicate user allocation
  • Multiple continuous or discontinuous RUs can further reduce signaling overhead compared to the resources allocated to users through the resource allocation subfield in 802.11ax.
  • the resource indication methods in this article all use the EHT PPDU fragment structure to implement resource indication.
  • the resource indication method in this article is applicable to a scenario where the full bandwidth is divided into one or more frequency domain fragments.
  • the resource indication method can also be applied to unfragmented scenarios.
  • the channel bandwidth for transmitting PPDU is 320 MHz
  • the first 80 MHz (that is, the main 80 MHz) of the 320 MHz can be indicated first, and then the entire 320 MHz is indicated.
  • the main 80MHz indication can follow the resource indication method in this article, that is, the indication of 80MHz frequency domain slicing.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of AP, STA, and interaction between AP and STA.
  • the AP and STA may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the communication device 900 can correspondingly implement the functions or steps implemented by the sending end, such as an AP, or the receiving end, such as an STA, in the foregoing method embodiments.
  • the communication device may include a transceiver module 910 and a processing module 920.
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the transceiver module 910 and the processing module 920 may be coupled with the storage unit.
  • the processing module 920 may read instructions (code or programs) and/or data in the storage unit to implement corresponding methods.
  • Each of the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the transceiver module 910 may be integrated by the sending unit and the receiving unit.
  • the communication device 900 can correspondingly implement the behaviors and functions of the STA in the foregoing method embodiments.
  • the communication device 900 may be an STA, or a component (for example, a chip or a circuit) applied in the STA.
  • the transceiver module 910 may be used to perform all receiving or sending operations performed by the STA in the embodiment shown in FIG. 8, such as S802 in the embodiment shown in FIG. 8, and/or for supporting the technology described herein Other processes.
  • the processing module 920 is used to perform all operations performed by the STA in the embodiment shown in FIG. 8 except for the transceiving operation, such as S803 in the embodiment shown in FIG. 8, and/or used to support this text Other processes of the described technique.
  • the transceiver module 910 is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and preamble puncturing indication information Used to indicate that users scheduled in the first frequency domain fragment are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the processing module 920 is configured to determine the allocated resources according to the preamble puncturing instruction information.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a U-SIG field.
  • the transceiver module 910 is configured to receive a PPDU from an access point, the PPDU includes the preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used Indicating that users in the first frequency domain fragment are not allocated resource units, wherein the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment;
  • the processing module 920 is configured to determine the unallocated resources according to the preamble puncturing indication information.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a U-SIG field.
  • the transceiver module 910 is configured to receive a PPDU from an access point, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is In the OFMDA transmission mode, the preamble puncturing indication information is used to indicate the punctured or unpunctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first bandwidth.
  • the 80MHz puncturing situation corresponding to a frequency domain fragmentation;
  • the processing module 920 is configured to determine the allocated resources according to the preamble puncturing indication information and the bandwidth field.
  • the transceiver module 910 is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the preamble puncturing The indication information is carried in the first preamble puncturing information field and the second preamble puncturing information field, the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field is located in the EHT-SIG field; Among them, the first preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured, and the second preamble puncturing information field is used to indicate that the first frequency domain is divided by the first frequency domain.
  • the processing module 920 is configured to determine the allocated resources according to the preamble puncturing indication information and the bandwidth field.
  • the communication device 900 can correspondingly implement the behaviors and functions of the STA in the foregoing method embodiments.
  • the communication device 900 may be an AP, or a component (for example, a chip or a circuit) applied to the AP.
  • the transceiver module 910 may be used to perform all receiving or sending operations performed by the AP in the embodiment shown in FIG. 8, such as S802 in the embodiment shown in FIG. 8, and/or for supporting the technology described herein Other processes.
  • the processing module 920 is used to perform all operations except for the transceiving operation performed by the AP in the embodiment shown in FIG. 8, such as S801 in the embodiment shown in FIG. 8, and/or used to support this text Other processes of the described technique.
  • the processing module 920 is configured to generate a PPDU, the PPDU including preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment
  • the scheduled users within are allocated a first bandwidth, where the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the transceiver module 910 is used to send the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a U-SIG field.
  • the processing module 920 is configured to generate a PPDU, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, and the preamble puncturing indication information is used to indicate the first frequency domain fragment
  • the users within are not allocated resource units, where the channel bandwidth for transmitting the PPDU includes the first frequency domain fragment;
  • the transceiver module 910 is used to send the PPDU.
  • the preamble puncturing indication information is also used to indicate the compressed mode, where the length of the PPDU in the compressed mode is less than the length of the PPDU in the uncompressed mode, and the PPDU in the compressed mode is omitted.
  • the PPDU of the field or the resource allocation subfield, or the PPDU in the compressed mode is the PPDU of the simplified resource allocation subfield.
  • the preamble puncturing indication information is carried in a first preamble puncturing information field, and the first preamble puncturing information field is located in a U-SIG field.
  • the transceiver module 910 is configured to receive a PPDU from an access point, the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the PPDU is the OFMDA transmission mode, and the preamble
  • the code puncturing indication information is used to indicate the punctured or non-punctured configuration of the first bandwidth with a bandwidth of 80MHz; or, the PPDU is a non-OFDMA transmission mode, and the preamble puncturing indication information is used to indicate the first frequency domain fragmentation The corresponding 80MHz punching situation;
  • the processing module 920 is configured to determine the allocated resources according to the preamble puncturing indication information and the bandwidth field.
  • the transceiver module 910 is configured to receive a PPDU from an access point, where the PPDU includes preamble puncturing indication information transmitted in the first frequency domain fragment, where the preamble puncturing indication information carries
  • the first preamble puncturing information field is located in the U-SIG field, and the second preamble puncturing information field is located in the EHT-SIG field;
  • a preamble puncturing information field is used to indicate the puncturing of the first frequency domain fragment or the full bandwidth is not punctured
  • the second preamble puncturing information field is used to indicate the first frequency domain fragment within the first bandwidth except for the first frequency domain fragment.
  • the first bandwidth is the channel bandwidth for transmitting the PPDU, and the first bandwidth includes the first frequency domain fragment;
  • the processing module 920 is configured to determine the allocated resources according to the preamble puncturing instruction.
  • the communication device 1000 may be an STA, which can implement the function of the STA in the method provided in the embodiment of this application, or the communication device 1000 may be an AP, which can implement The function of the AP in the method provided in the embodiment of this application; the communication device 1000 may also be a device that can support the STA to implement the corresponding function in the method provided in the embodiment of this application, or can support the AP to implement the corresponding function in the method provided in the embodiment of this application The function of the device.
  • the communication device 1000 may be a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1000 may include a communication interface 1010 for communicating with other devices through a transmission medium, so that the device used in the communication device 1000 can communicate with other devices.
  • a communication interface 1010 for communicating with other devices through a transmission medium, so that the device used in the communication device 1000 can communicate with other devices.
  • the communication device is an STA
  • the other device is an AP
  • the other device is an STA.
  • the communication interface 1010 may specifically be a transceiver.
  • the aforementioned communication interface 1010 may be a transceiver, and the transceiver is integrated in the communication device 1000 to form the communication interface 1010.
  • the communication device 1000 further includes at least one processor 1020, and the processor 1020 can use the communication interface 1010 to send and receive data for implementing or supporting the communication device 1000 to implement the function of the STA or AP in the method provided in the embodiment of the present application.
  • the communication device 1000 can correspondingly implement the behaviors and functions of the STA in the foregoing method embodiments.
  • the communication interface 1010 may be used to perform all receiving or sending operations performed by the STA in the embodiment shown in FIG. 8, such as S802 in the embodiment shown in FIG. 8, and/or for supporting the technology described herein Other processes.
  • at least one processor 1020 is configured to perform all operations performed by the STA in the embodiment shown in FIG. 8 except for receiving and sending operations, such as S803 in the embodiment shown in FIG. 8, and/or for Other processes that support the technology described in this article.
  • the communication device 1000 can correspondingly implement the behaviors and functions of the AP in the foregoing method embodiments.
  • the communication interface 1010 may be used to perform all receiving or sending operations performed by the AP in the embodiment shown in FIG. 8, such as S802 in the embodiment shown in FIG. 8, and/or for supporting the technology described herein Other processes.
  • at least one processor 1020 is configured to perform all operations performed by the AP in the embodiment shown in FIG. 8 except for transmitting and receiving operations, such as S801 in the embodiment shown in FIG. 8, and/or for Other processes that support the technology described in this article.
  • the communication device 1000 may further include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in cooperation with the memory 1030.
  • the processor 1020 may execute program instructions and/or data stored in the memory 1030, so that the communication device 1000 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1010, the processor 1020, and the memory 1030.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1020 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1030 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory).
  • a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), etc.
  • a volatile memory volatile memory
  • RAM random-access memory
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be an STA or AP or a circuit, or may be a chip applied to the STA or AP, or other combined devices or components with the foregoing STA or AP functions.
  • the transceiver module 910 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module 910 may be a radio frequency unit, and the processing module may be a processor.
  • the transceiver module 910 may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the AP and STA described in the embodiments of this application can also be implemented using the following: one or more FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), controller , State machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • controller State machines
  • gate logic discrete hardware components
  • any other suitable circuits any combination of circuits capable of performing the various functions described throughout this application.
  • the APs in the above various product forms have any function of the AP in the above method embodiment, and will not be repeated here; the STAs in the above various product forms have any function of the STA in the above method embodiment. Repeat it again.
  • the embodiment of the present application also provides a communication system.
  • the communication system includes an STA and an AP, or may also include more APs and access network devices.
  • the communication system includes STAs and APs used to implement the above-mentioned related functions of FIG. 6 or FIG. 9.
  • the APs are respectively used to implement the functions of the relevant network part of FIG. 8 described above.
  • the STA is used to implement the functions of the above-mentioned related STA in FIG. 8.
  • the STA can execute S802 and S803 in the embodiment shown in FIG. 8, and the AP can execute S801 and S802 in the embodiment shown in FIG. 8.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the AP or STA in FIG. 8.
  • the embodiment of the present application also provides a computer program product, including computer program code, which when the computer program code runs on a computer, causes the computer to execute the method executed by the AP or STA in FIG. 8.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, which is used to implement the functions of the AP or STA in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • An embodiment of the present application also provides a communication device, including a processor and an interface; the processor is configured to execute the information processing method described in any of the foregoing method embodiments.
  • the aforementioned communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (DVD for short)), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线保真技术领域,尤其涉及一种资源指示方法及接入点和站点,该方法包括:接入点生成PPDU,并发送该PPDU,其中,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,该前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,第一带宽包括所述第一频域分片。由于前导码打孔指示信息可用于指示某个频域分片内被调度的STA被分配全带宽,因此不需要针对全带宽的各个频域分片分别指示,这样就可减少用于承载前导码打孔指示信息的字段的开销。而站点通过前导码打孔指示信息和带宽字段指示的全带宽大小可以确定被分配的资源,不需要读取全部频域分片的资源指示,可节约功耗。

Description

一种资源指示方法及接入点和站点
相关申请的交叉引用
本申请要求在2020年06月19日提交中国专利局、申请号为202010569190.4、申请名称为“一种资源指示方法及接入点和站点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线保真技术领域,尤其涉及一种资源指示方法及接入点和站点。
背景技术
为了支持正交频分多址(orthogonal frequency division multiple access,OFDMA)传输,802.11ax将频带资源分为若干资源单元,只支持为一个站点或多个用户分配一个资源单元。但是未来可能支持为一个站点或多个站点分配多个资源单元。如果沿用802.11ax通过资源单元子字段的方式为用户指示被分配的资源,随着带宽的增加,信令开销会变得更大。
为了降低信令开销,提出可通过超高吞吐率物理层协议数据单元(Extremely High Throughput,physical protocol data unit,EHT PPDU)的分片结构为用户指示被分配的资源。然而通过EHT PPDU分片结构如何为用户指示分配的资源是亟需解决的问题。
发明内容
本申请提供一种资源指示方法及接入点和站点,可通过EHT PPDU分片结构可用于指示某个频域分片内被调度的STA被分配全带宽,能够进一步降低信令的开销。
第一方面,提供一种资源指示方法,该方法可由第一装置执行,第一装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为接入点。该方法包括:
接入点生成物理层协议数据单元PPDU,并发送该PPDU,其中,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输所述PPDU的信道带宽,第一带宽包括所述第一频域分片。在本申请实施例中,第一带宽为传输PPDU的信道带宽,也可以认为是全带宽。前导码打孔指示信息可用于指示某个频域分片内被调度的STA被分配全带宽,也就是内分配了全带宽(未打孔)资源。不需要针对全带宽划分的各个频域分片分别指示,这样就可减少用于承载前导码打孔指示信息的字段的开销。对于站点来说,通过前导码打孔指示信息,结合带宽字段指示的全带宽大小可以确定被分配的资源,不需要读取全部频域分片的资源指示,可节约站点的功耗。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。该方案中,前导码打孔指示信息可复用指示压缩模式,应理解,压缩模式下的PPDU中的 某些字段被省略或删除,或者某些字段的长度减少,例如省略或删除资源分配子字段或用户字段等。这样接入点发送的PPDU可不必携带较少的资源分配子字段,甚至不携带资源分配子字段等,所以可以进一步节约信令的开销。对于站点而言,如果根据前导码打孔指示信息确定该PPDU压缩模式,那么站点可不必继续读取U-SIG字段之后的例如用户字段或资源分配子字段等,可节约站点的功耗。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
第二方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
站点接收来自接入点的PPDU,PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,从而站点根据前导码打孔指示信息确定被分配的资源;其中,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
关于第二方面或第二方面的各种实现方式的有益技术效果可参考前述第一方面或第一方面的各种实现方式的有益技术效果,这里不再赘述。
第三方面,提供一种资源指示方法,该方法可由第一装置执行,第一装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为接入点。该方法包括:
接入点生成PPDU,并发送所述PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片。在本申请实施例中,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,这里的未分配资源单元,是指不仅第一频域分片中的资源单元未分配给该第一频域分片内的用户,传输PPDU的整个信道带宽的资源单元也未分配给该第一频域分片内的用户。对于站点而言,如果某个频域分片内的站点未被分配资源,那么该站点无需读取后面例如PPDU中EHT-SIG字段,可以节约能耗。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
关于第三方面的各个实现方式的技术效果可参考前述第一方面的各种实现方式的有益技术效果,这里不再赘述。
第四方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
站点接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片;之后,所述站点根据所述前导码打孔指示信息确定被分配的资源。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
关于第四方面或第四方面的各个实现方式的技术效果可参考前述第三方面或第三方面的各种实现方式的有益技术效果,这里不再赘述。
第五方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
接入点生成PPDU,以及发送所述PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况。在本申请实施例中,对于80MHz的全带宽来说,通过承载前导码打孔指示信息的前导码打孔信息字段既可指示非OFDMA传输支持的所有打孔情况,又可以指示OFDMA传输下每个频域分片对应的80MHz的打孔情况。这样站点可根据该前导码打孔指示信息,结合带宽字段确定被分配的资源。例如如果带宽字段指示PPDU属于非OFDMA传输模式时,前导码打孔指示信息指示在OFDMA传输中,80MHz对应的频域分片的打孔情况。如果带宽字段指示PPDU属于OFDMA传输模式时,那么前导码打孔指示信息指示在OFDMA情况下80MHz内的打孔或未打孔的全带宽配置。这种情况下,当全带宽大于或等于160MHz的情况下,站点只需要读取该80MHz内的打孔情况即可,不需要读取除该80MHz之外的带宽信息。所以该方案实际上在非OFDMA的传输指示的打孔情况的基础上,兼容80MHz的OFDMA传输指示的打孔情况。
第六方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
站点接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;之后,所述站点根据所述前导码打孔指示信息和带宽字段确定被分配的资源。
关于第六方面的技术效果可参考前述第五方面的有益技术效果,这里不再赘述。
第七方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
接入点生成PPDU,以及发送所述PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二 前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片。在本申请实施例中,在大于80MHz带宽的打孔情况,例如160MHz、240MHz和320MHz的打孔情况,通过两个前导码打孔信息字段指示带宽的打孔情况,例如第一前导码打孔信息字段指示80MHz对应频域分片内的打孔情况,第二前导码打孔信息字段指示全带宽中除该频域分片之外的其余频带的打孔情况。对于站点来说,通过第一前导码打孔信息字段和第二前导码打孔信息字段可确定被分配的资源。应理解,由于全带宽只能存在一个打孔,所以第二前导码打孔信息字段会存在多个预留状态(或者条目),用作它用,可扩展的指示内容更多。
第八方面,提供一种资源指示方法,该方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备为站点。该方法包括:
站点接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述站点根据所述前导码打孔指示信确定被分配的资源,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片。
关于第八方面的技术效果可参考前述第七方面的有益技术效果,这里不再赘述。
第九方面,提供一种通信装置,例如该通信装置为如前所述的接入点或设置在接入点内的装置。在一些实施例中,所述通信装置可用于执行上述第一方面或第一方面的任一可能的实现方式中的方法;或者所述通信装置可用于执行上述第三方面或第三方面的任一可能的实现方式中的方法;或者所述通信装置可用于执行上述第五方面或第五方面的任一可能的实现方式中的方法;或者所述通信装置可用于执行上述第七方面或第七方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,或者包括用于执行第三方面或第三方面的任一可能的实现方式中的方法的模块,或者包括用于执行第五方面或第五方面的任一可能的实现方式中的方法的模块,或者包括用于执行第七方面或第七方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的接入点。其中,
在一些实施例中,所述处理模块,用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;所述收发模块,用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述处理模块,用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输PPDU的信道带宽包括第一频域分片;所述收发模块,用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述处理模块,用于生成PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;
所述收发模块,用于发送所述PPDU。
在另一些实施例中,所述处理模块,用于生成PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
所述收发模块,用于发送所述PPDU。
第十方面,提供一种通信装置,例如该通信装置为如前所述的站点或设置在站点内的装置。在一些实施例中,所述通信装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法;或者,所述通信装置用于执行上述第四方面或第四方面的任一可能的实现方式中的方法;或者,所述通信装置用于执行上述第六方面或第六方面的任一可能的实现方式中的方法;或者,所述通信装置用于执行上述第八方面或第八方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,或者包括用于执行第四方面或第四方面的任一可能的实现方式中的方法的模块,或者包括用于执行第六方面或第六方面的任一可能的实现方式中的方法的模块,或者包括用于执行第八方面或第八方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为前述的站点。其中,
在一些实施例中,所述收发模块,用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;所述处理模块,用于根据前导码打孔指示信息确定被分配的资源。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩 模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述收发模块,用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输该PPDU的信道带宽包括第一频域分片;所述处理模块,用于根据前导码打孔指示信息确定被分配的资源。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述收发模块,用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;
所述处理模块,用于根据所述前导码打孔指示信息和带宽字段确定被分配的资源。
在另一些实施例中,所述收发模块,用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
所述处理模块,用于根据所述前导码打孔指示信确定被分配的资源。
第十一方面,提供再一种通信装置,该通信装置例如为如前所述的接入点或者设置在接入点。示例性地,所述通信装置为设置在接入点中的芯片。该通信装置包括处理器和收发器,用于实现上述第一方面或第三方面或第五方面或第七方面或第一方面各种可能的实现方式或第三方面的各种可能的实现方式所描述的方法或第五方面的各种可能的实现方式所描述的方法或第七方面的各种可能的实现方式所描述的方法。其中,收发器例如通过接入点中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在接入点中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与接入点中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
在一些实施例中,所述处理器用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;所述收发器用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩 模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述处理器用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输PPDU的信道带宽包括第一频域分片;所述收发器用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述处理器,用于生成PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;
所述收发器,用于发送所述PPDU。
在另一些实施例中,所述处理器,用于生成PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
所述收发器,用于发送所述PPDU。
第十二方面,提供再一种通信装置,该通信装置例如为如前所述的站点或者设置在站点。示例性地,所述通信装置为设置在接入点中的芯片。该通信装置包括处理器和收发器,用于实现上述第二方面或第四方面或第六方面或第八方面或第二方面的各种可能的实现方式或第四方面的各种可能的实现方式或第六方面的各种可能的实现方式或第八方面的各种可能的实现方式所描述的方法。其中,收发器例如通过站点中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在站点中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与站点中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
在一些实施例中,所述收发器用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;所述处理器用于根据前导码打孔指示信息确定被分配的资源。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述收发器用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输该PPDU的信道带宽包括第一频域分片;所述处理器用于根据前导码打孔指示信息确定未被分配的资源。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
在另一些实施例中,所述收发器,用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
所述处理器,用于根据所述前导码打孔指示信息和带宽字段确定被分配的资源。
在另一些实施例中,所述收发器,用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况;
所述处理器,用于根据所述前导码打孔指示信确定被分配的资源。
第十三方面,提供再一种通信装置。该通信装置可以为上述方法设计中的接入点。示例性地,所述通信装置为设置在接入点中的芯片。该通信装置包括:用于存储计算机可执行程序代码的存储器,以及与存储器耦合的处理器。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第一方面或第三方面或第五方面或第七方面或第一方面的任意一种可能的实施方式或第三方面的任意一种可能的实施方式或第五方面的任意一种可能的实施方式或第七方面的任意一种可能的实施方式中的方法。
在一些实施例中,该通信装置还可以包括通信接口,该通信接口可以是接入点中的收发器,例如通过接入点中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在接入点中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十四方面,提供再一种通信装置。该通信装置可以为上述方法设计中的站点。示例性地,所述通信装置为设置在站点中的芯片。该通信装置包括:用于存储计算机可执行程序代码的存储器,以及与存储器耦合的处理器。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第二方面或第四方面或第六方面或第八方面或第二方面的任意一种可能的实施方式或第四方面的任意一种可能的实施方式或第六方面的任意一种可能的实施方式或第八方面的任意一种可能的实施方式中的方法。
在一些实施例中,该通信装置还可以包括通信接口,该通信接口可以是站点中的收发 器,例如通过站点中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在站点中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十五方面,提供一种通信系统,该通信系统可以包括第九方面所述的通信装置、第十一方面所述的通信装置或第十三方面所述的通信装置,以及包括第十方面所述的通信装置、第十二方面所述的通信装置或第十四方面所述的通信装置。应理解,该通信系统可包括更多个接入点和/或站点。
第十六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面中接入点或者第二方面中站点,或者第三方面中接入点或者第四方面中站点,或者第五方面中接入点或者第六方面中站点,或者第七方面中接入点或者第八方面中站点执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面中接入点或者第二方面中站点,或者第三方面中接入点或者第四方面中站点,或者第五方面中接入点或者第六方面中站点,或者第七方面中接入点或者第七方面中站点执行的方法,实现第一方面中接入点或者第二方面中站点或者第三方面中接入点或者第四方面中站点或者第五方面中接入点或者第六方面中站点或者第七方面中接入点或者第八方面中站点实现的功能。
第十八方面,本申请实施例中还提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行第一方面中接入点或者第二方面中站点或者第三方面中接入点或者第四方面中站点或者第五方面中接入点或者第六方面中站点执行的方法,实现第一方面中接入点或者第二方面中站点或者第三方面中接入点或者第四方面中站点或者第五方面中接入点或者第六方面中站点或者第七方面中接入点或者第八方面中站点实现的功能。
上述第三方面至第十八方面及其实现方式的有益效果可以参考对第一方面至第八方面及其各种实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种无线局域网的网络架构;
图2为本申请实施例提供的一种接入点和站点的内部结构图;
图3为本申请实施例提供的一种HE-SIG-B的帧结构示意图;
图4为本申请实施例提供的40MHz的HE-SIG-B的帧结构示意图;
图5为本申请实施例提供的EHT PPDU的帧结构示意图;
图6为本申请实施例提供的EHT PPDU的分片结构示意图;
图7为本申请实施例提供的80MHz的打孔示意图;
图8为本申请实施例提供的资源指示方法的流程示意图;
图9为本申请实施例提供的通信装置的一种结构示意图;
图10为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于IEEE 802.11系统标准,例如802.11a/b/g标准、802.11n标准、802.11ac标准、802.11ax标准,或其下一代,例如802.11be标准或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
示例性的,请参见图1,示出了本申请实施例适用的一种WLAN的网络架构图,图1以该WLAN包括一个接入点(access point,AP),以及与该AP关联的两个站点(station,STA)为例,其中,这两个STA为STA1和STA2。该AP可为STA1和STA2调度无线资源,并在调度的无线资源上为STA1和STA2传输数据,包括上行数据信息和/或下行数据信息。应理解,图1中的AP和STA的数量仅是举例,还可以更多或者更少。AP可以与STA1或STA2进行通信,或者该AP可以与STA1和STA2进行通信。应理解,如果WLAN包括多个AP和多个STA,本申请实施例同样适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,任一AP均可为与其关联的STA,和/或未关联的STA调度无线资源,并在调度的无线资源上为该STA传输数据。本申请实施例也适用于STA与STA之间的通信。
本申请实施例涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。例如STA可以是路由器、交换机和网桥等,在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请实施例所涉及到的接入点AP是一种部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该接入点AP可用作该通信系统的中枢,可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为AP。
示例性的,本申请涉及的AP和STA可以为适用于802.11系统标准的AP和STA。如图2所示,为本申请实施例提供的AP和STA的一种内部结构图,802.11系统标准关注其中的802.11物理层(physical,PHY)和介质访问控制(media access control,MAC)部分。因此,本申请实施例提供的STA通常为支持802.11系统标准的MAC和PHY的终端产品,如手机、笔记本电脑等。需要指出的是,虽然仅在图2给出了多个天线的AP和单个天线的STA结构图,在实际场景中,AP和STA都可以是多天线的,并且可以是具有两个以上 天线的设备。AP和STA分别包括属于底层的PHY基带模块、MAC层模块和逻辑链路控制(logical link control,LLC)层模块以及射频模块(天线),以及属于上层的网际协议(internet protocol,IP)处理模块、传输控制协议(transmission control protocol,TCP)/用户数据报协议(user datagram protocol,UDP)处理模块和应用层模块。底层和上层通过上层接口进行信息传输。
AP与STA进行通信,AP可以为STA分配资源,STA在被分配的资源上进行数据传输。例如,802.11ax之前的WiFi协议,比如802.11ac,要求传输时需占用连续的带宽,包括20MHz,40MHz,80MHz以及160MHz共四种类型的带宽,其中一个20MHz被记为主20MHz。如果带宽内某个20MHz被其他站点的传输占用,则传输的数据带宽就需要减小。比如说连续的80M带宽中的第一个20MHz为主20MHz,但第二个20MHz信道忙,按照连续带宽的要求,此时只能传输主20MHz的数据,即浪费了80MHz带宽内得一个空闲的40MHz。
为了聚合更多的信道形成更大可用带宽,802.11ax协议提出了一种前导码打孔的传输方式,允许将非连续的信道聚合在一起,在上述例子中即允许AP分配20MHz+40MHz的带宽,从而更加有效地利用空闲信道。具体的,在802.11ax标准中规定的4种传输带宽,这4种传输带宽分别为20MHz、40MHz、80MHz、160MHz,只有其中的80MHz和160MHz带宽存在前导码打孔传输方式的可能。例如160MHz可以上的某个20MHz被打孔,形成140MHz。
AP与STA进行通信,AP可以为STA分配资源,STA在被分配的资源上进行数据传输。例如在802.11ax标准之前,AP和STA之间可以采用正交频分复用(orthogonal frequency division multiple,OFDM)技术进行通信。整个带宽可分配给一个或一组STA进行单用户(single user,SU)传输或者多用户多输入多输出(Downlink Multiple User Multiple Input Multiple Output,MU MIMO)传输。在802.11ax标准中,引入了正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,也就是AP和STA之间可以采用OFDMA技术进行通信。
在OFDMA及MU-MIMO技术中,WLAN协议会将频谱带宽划分为若干个资源单元(resource unit,RU)。例如802.11ax协议支持的带宽配置包括20MHz、40MHz、80MHz、160MHz及80+80MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz间可以分离,即80+80MHz组成的160MHz是不连续的。802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz,可将频谱带宽划分成多类RU,其中包括26子载波RU、52子载波RU、106子载波RU、242子载波RU(20MHz带宽内最大RU),484子载波RU(40MHz带宽内最大RU),996子载波RU(80MHz带宽内最大RU),和2*996子载波RU(160MHz带宽内最大RU)。每个RU由连续的子载波组成,比如26子载波RU由26个连续的子载波RU组成。在下文中,26子载波RU记为26-tone RU,52子载波RU记为52-tone RU,等等,以此类推。
AP以RU为单位为STA分配资源,可通过物理层协议数据单元(physical protocol data unit,PPDU)告知STA为其分配的资源。具体的,AP可通过将资源分配信息承载在PPDU包括的信令字段(signal field,SIG),向STA指示被分配的RU。例如,该信令字段可以是高效信令字段B(high efficient signal field-B,HE-SIG-B),或者也可以为超高吞吐率信令字段(extremely high throughput signal field,EHT-SIG)。
图3示出了802.11ax协议提出的HE-SIG B字段格式。HE-SIG-B分为两部分,其中第一部分是公共字段,包含1~N个资源单元分配子字段(RU Allocation subfield),以及当带宽大于或等于80MHz时存在的中间26-子载波(Center 26-Tone)资源单元指示字段,然后是用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段;另外,在用户特定字段(User Specific field),按照资源单元分配的顺序,存在着1~M个用户字段(user field),M个用户字段通常是两个为一组,每两个用户字段后跟着一个CRC和Tail字段,但应排除最后一组,在最后一组中,可能会存在1个或者2个用户字段,所以最后一组中的一个用户字段用虚线进行示意。最后一组用户字段的Tail字段之后可以是填充(Padding)字段。
其中,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引指示了20MHz内包括的一个或者多个资源单元的大小和位置。至少一个站点字段的顺序和资源单的分配顺序是对应的。每一个站点字段指示在资源单元的分配中包括的RU内被分配的STA的站点信息。
资源单元分配索引是通过一个或多个8比特的序列指示的,其中每8比特对应带宽频谱的一个20MHz。例如在802.11ax标准中,一个资源单元分配子字段的索引表如表1,由于该索引表用于指示分配的资源,所以也可以称为资源分配信息表。
表1资源分配信息表
Figure PCTCN2021097971-appb-000001
Figure PCTCN2021097971-appb-000002
表1中,第一列代表8比特序列,中间列#1~#9代表着不同资源单元。表格的数字代表该资源单元所包含的子载波数目。例如,序列“00111 y 2y 1y 0”表示整个242-tone RU被分成了52-tone RU、52-tone RU、26-tone RU、106-tone RU这4个RU组成。第三列的数目指示相同资源单元分配的条目个数,即相同资源单元排列方式对应的不同的序列个数。对于序列“00111 y 2y 1y 0”而言,之所以会存在8个条目,是因为在指示242-tone RU资源单元分配方式的同时,y 2y 1y 0还用于指示在该106-tone RU内所包含的SU/MU-MIMO传输的用户数,对应1~8个用户。即利用3比特的y 2y 1y 0指示该106-tone RU内支持的1至8个用户。8个条目可以看成表格中独立的8行,这8行对应相同的资源单元分配方式,每一行对应不同的106-tone RU内支持的用户数。当一个资源单元分配子字段指示的资源单元的排列组合中包括由大于或者等于106个子载波组成的资源单元时,该资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
应理解,当带宽为20MHz时,整个带宽可以由一整个242-tone RU组成,也可以由26-tone RU、52-tone RU,以及106-tone RU的各种组合组成。与20MHz的子载波分布类似,当带宽为40MHz时,整个带宽可以由一整个484-tone RU组成,也可以由26-tone RU、52-tone RU、106-tone RU,以及242-tone RU的各种组合组成。同理,当带宽为80MHz时,整个带宽可以由整个996-tone RU组成,也可以由26-tone RU、52-tone RU、106-tone RU、242-tone RU,以及484-tone RU的各种组合组成。例如80MHz带宽可由4个242-tone RU为单位的资源单元组成。当带宽为160MHz或者80+80MHz时,整个带宽可以看成两个 80Mhz的子载波分布的复制,整个带宽可以由一整个2*996-tone RU组成,也可以由26-tone RU、52-tone RU、106-tone RU、242-tone RU、484-tone RU,以及996-tone RU的各种组合组成。
802.11ax标准还引入了内容信道(Content Channel,CC)的概念。当带宽只有20MHz时,HE-SIG-B只包含1个CC,该CC中包含1个资源单元分配子字段,用于指示20MHz内的分配的RU。其中资源单元分配子字段占用8个比特,可以通过索引的方式指示出20MHz带宽内所有可能的RU排列组合方式。对于尺寸大于等于106-tone的RU来说,同时还需要指示该RU中进行SU/MU-MIMO传输的用户数,或者用户信息字段个数,如表1中的字母x或y,具体请参考802.11ax协议。
如果传输带宽大于20MHz,PPDU包括的传统前导码(legacy preamble,L-preamble)、高效率前导码(high efficiency preamble,HE-preamble)中的重复的传统信令(repeated legacy signal,RL-SIG)、HE-SIG-A字段会每20MHz复制传输,而HE-SIG B则采用“1212”传输方法,即HE-SIG B包括两个CC,一个CC在传输带宽上的各个奇数20MHz上传输,包含该多个奇数20MHz的资源分配信息以及在这多个奇数20MHz上传输的站点信息,另一个CC在传输带宽上的各个偶数20MHz上传输,包含该多个偶数20MHz的资源分配信息以及在这多个偶数20MHz上传输的站点信息。应理解,也就是资源单元分配子字段的内容将分别在两个CC中各显示一部分。STA通过对这两个CC的读取,可以获知带宽频谱资源被分划分成的RU。
例如,请参见图4,示出了40MHz时HE-SIG-B的结构。当带宽为40MHz时,存在两个CC,这两个CC分别为CC1和CC2。CC1中包含奇数序号的20MHz(也就是第一个20MHz)范围内的资源单元分配子字段以及所对应的用户特定字段;CC2中包含偶数序号的20MHz(也就是第二个20MHz)范围内的资源单元分配子字段以及所对应的用户特定字段。
再例如,当带宽为80MHz时,仍然存在两个CC,这两个CC分别为CC1和CC2。CC1中包含奇数序号的242子载波RU(也就是第一个20MHz和第三个20MHz)范围内的资源单元分配子字段以及所对应的用户特定字段;CC2中包含偶数序号的242子载波RU(也就是第二个20MHz和第四个20MHz)范围内的资源单元分配子字段以及所对应的用户特定字段。
尽管如表1所示的资源单元分配子字段设置了多种RU分配模式,但是在OFDMA传输中,为了降低发送和接收的复杂度,在一些实施例中,仅支持为一个用户分配一个RU,并不支持为一个用户分配多个RU,也就是不支持将多个连续或者不连续的RU分配给某一个用户。举例来说,存在3个RU,这3个RU分别为RU1、RU2和RU3,RU1和RU3的信道条件优于RU2的信道条件,理想情况下,可以将RU1和RU3分配给同一个用户,但是目前只支持将RU1或RU3分配给同一个用户,不支持RU1和RU3分配给同一个用户。可见RU分配的灵活性较低,同时频谱利用率也较低。
为了提高频谱利用率,在802.11ax的下一代协议,例如802.11be中,允许将多个连续或者不连续的RU分配给一个用户或多个用户。也就是,支持在不连续的多个RU上进行SU传输、MU-MIMO传输。其中,SU传输和MU-MIMO传输是相对于OFDMA传输而言的,所以在一些实施例中,可以将SU传输和MU-MIMO传输统称为非OFDMA传输。对于非ODFMA传输而言,如果沿用前述OFDMA传输对应的资源分配方式,随着带宽的增 大,需要更多个资源单元分配子字段以及更多个用户特定字段,信令开销较大。例如,存在320MHz,这320MHz被分配给40个用户,那么至少需要16个资源分配子字段,以及该16个资源分配子字段分别对应的用户字段。每个资源分配子字段至少占用8bit,显然信令开销较大。
为了降低信令开销,在一些实施例中,通过EHT PPDU为用户指示分配的资源。请参见图5,示出了EHT PPDU的一种结构。该EHT PPDU可包括传统前导码(legacy preamble,L-preamble)、高效率前导码(high efficiency preamble,HE-preamble)和物理层聚合服务数据单元(physical layer convergence protocol service data unit,PSDU)三部分。其中,L-preamble部分包括L-STF字段、L-LTF字段、L-SIG字段;HE-preamble部分包括RL-SIG字段和通用字段(universal SIG,U-SIG)字段、极高吞吐量信令(EHT-SIG)字段、极高吞吐量短训练(extremely high throughtput short training field,EHT-STF)字段、极高吞吐量长训练(extremely high throughtput long training field,EHT-LTF)字段;PSDU部分包括数据(data)字段等字段,其中,U-SIG字段占据2个OFDM符号,如图5中所示的U-SIG SYM1和U-SIG SYM1。其中通用字段(U-SIG)字段可包括版本非相关信息(version independent info)字段和版本相关信息(version dependent info)字段、CRC字段以及尾部字段。该version independent info字段可包含3比特的WiFi版本字段,1比特下行/上行字段,至少6比特的BSS color字段,至少7比特的TxOP字段。进一步地,该version independent info字段还可以包括带宽字段。version dependent info字段可包括PPDU格式字段等,还可以包括调制编码方案字段,空间流字段,编码字段等字段中的一个或多个。CRC字段至少占用4比特,尾部字段至少占用6比特尾比特字段。
一种可能的实现方式中,EHT-SIG字段包含EHT-SIG公共字段与EHT-SIG用户特定字段,其中,EHT-SIG公共字段可用于承载分配给STA的资源分配信息,EHT-SIG用户特定字段可用于承载用户信息。以分配320MHz带宽为了,如果沿用802.11ax中的结构,用户在EHT-SIG字段及该字段之前只需要读取320MHz中的主80MHz的内容即可知道被分配的资源,即所有用户的被分配的资源信息都在主80Mhz上承载,主80MHz信道上的开销很大。
但为了进一步减少开销(例如减少EHT-SIG的长度),802.11be标准讨论过程中提出可基于EHT PPDU对全带宽进行分片,或者也可以理解为提出了一种新的PPDU的结构。示例性的,请参见图6,为该新的PPDU结构的一种示例。图6以传输PPDU的信道带宽(在本文中可称为全带宽或全频带)是320MHz为例,可以看到图6将320MHz划分为4个频域分片(segement),每个频域分片为80MHz,其中,第一个80MHz为主80MHz。由于每个频域分片是80MHz,所以在一些实施例中,频域分片也可以称为80MHz分片。采用如图6所示的结构,U-SIG字段可以仅在每个频域分片(80MHz)之内重复,不同的频域分片可使用不同的U-SIG和EHT-SIG。应理解,对于大于或等于40MHz的频域分片来说,每个频域分片中的EHT-SIG可以有两个或多个内容信道。每个频域分片在U-SIG部分可以仅包含自身80MHz的打孔指示。由于这种架构相当于把原来的主80MHz信道上的U-SIG和EHT-SIG字段的开销分到了4个频域分片上,因此可以节省开销。
举例来说,以分配320MHz带宽,且该320MHz带宽分配给40个用户为例。如果不采用如图6所示的PPDU结构,沿用802.11ax的结构,那么PPDU需要至少16个EHT-SIG字段,且EHT-SIG字段需要至少40个用户字段。这样通过读取320MHz中的主80MHz 的内容,就可以知道320MHz上的哪些20MHz被打孔了,再通过读取EHT-SIG字段就可以知道被分配的资源。但是,如果采用如图6所示的PPDU结构,由于将320MHz进行了频域分片,那么每个频域分片(80MHz)中都有一个主20MHz。同样是40个用户,有的用户停靠(park)在这4个频域分片上中的第1个频域分片,有的用户停靠在这4个频域分片中的第2个频域分片上,有的用户停靠在这4个频域分片中的第3个频域分片上,有的用户停靠在这4个频域分片中的第4个频域分片上;相应的,U-SIG字段可以仅在每个频域分片(80MHz)之内重复,不同的频域分片使用不同的U-SIG和EHT-SIG。由于可将原来的主80MHz信道上的EHT-SIG的开销分到了4个频域分片上,所以与40个用户相应的用户字段也可以在4个频域分片上分别传输。这样每个频域分片中的EHT-SIG字段中低于40个用户字段,因此可以节省开销。沿用上述的例子,如果每个频域分片停靠10个用户,那么每个频域分片中的EHT-SIG字段只需要10个左右用户字段即可,显然可降低开销。
需要说明的是,图6仅以每个频域分片的大小相同为例。但是本申请实施例不限制每个频域分片的大小,每个频域分片的带宽可变,例如320MHz可被划分为3个频域分片,这3个频域分片分别为80MHz、80MHz、160MHz。
应理解,不连续的多个RU可以看作是全带宽进行前导码打孔之后形成的。所以对于非OFDMA传输而言,为用户指示分配的资源属于全带宽中的部分资源等效于为用户指示非OFDMA传输支持的前导码打孔组合情况。
所以在另一些实施例中,针对非OFDMA传输中的STA,可通过U-SIG字段指示为STA分配的带宽,并通过U-SIG和/或EHT-SIG字段指示该带宽上的打孔情况。由于U-SIG和EHT-SIG字段都可以用于指示打孔情况,为了便于区分,在本申请实施例中,将U-SIG中用于承载打孔情况的字段称为前导码打孔信息字段A,将EHT-SIG字段中用于承载打孔情况的字段为前导码打孔信息字段B。应理解,前导码打孔信息字段A或前导码打孔信息字段B不仅可以用于指示带宽的打孔情况。从另一个角度来讲,通过带宽的打孔情况也可指示为用户分配的资源,所以前导码打孔信息字段A或前导码打孔信息字段B也可认为用于指示资源分配情况。需要说明的是,本申请实施例对用于承载打孔情况的字段的具体名称不作限制,也就是上述的前导码打孔信息字段A和/或前导码打孔信息字段B在一些实施例中也可以是别的名称。在本文中,以用于承载打孔情况的字段成为前导码打孔信息字段。
在一种可能的实现方式中,EHT PPDU可包括前导码打孔信息字段A和前导码打孔信息字段B。即通过前导码打孔信息字段A和前导码打孔信息字段B指示非OFDMA传输中的打孔信息(也可称为非OFDMA传输中的打孔指示方式一)。其中,前导码打孔信息字段A可用于承载如图6中每个频域分片对应的80MHz的打孔信息,用户通过读取前导码打孔信息字段A可以知晓自身所处频域分片对应的80MHz的打孔情况,从而可以在EHT-SIG字段中的前导码打孔信息字段B上完成读取。其中,前导码打孔信息字段B可以包含全频带的打孔情况(例如320MHz的打孔情况)。
示例性的,前导码打孔信息字段A可以占用3比特,通过这3比特可指示80MHz带宽内的打孔情况。举例来说,可将80MHz按照20MHz的粒度划分为4个20MHz,应理解,80MHz带宽内的打孔指的是在80MHz内对某个或某些20MHz进行打孔。按照频率从低到高对80MHz包括的4个20MHz进行排序。如果80MHz内的4个20MHz都不打孔,可记 为[1 1 1 1],应理解,1表示未打孔,对应信道上传输有PPDU信息。如果80MHz内的第1个20MHz被打孔,可记为[x 1 1 1],如果80MHz内的第2个20MHz被打孔,可记为[1 x 1 1]。以此类推,80MHz带宽内的打孔情况可为[1 1 1 1],[x 1 1 1],[1 x 1 1],[1 1 x 1],[1 1 1 x],[x x 1 1],[1 1 x x]。应理解,“x”表示打孔,对应信道上不传输PPDU信息。当然,本申请实施例只是以“x”示意打孔,在一些实施例中,也可以通过其他方式示意打孔,例如可通过“0”来示意打孔。例如,对于[1 0 1 1]而言,表示80MHz内的第2个20MHz被打孔。需要说明的是,本申请实施例对打孔的示意方式不作限制,可以通过“x”或者“0”来示意打孔,也可以通过其他可能的符号示意打孔,只要能够打孔和未打孔的示意能够区别开即可。在本文中,以通过“x”示意打孔为例。
需要说明的是,对于全带宽为80MHz,如图7所示,80MHz带宽包含主20MHz(记为P20),次20MHz(记为S20)以及次40MHz(记为S40),其中S40又分为S40-L(S40中左20MHz)和S40-R(S40中右20MHz)。该80MHz下对应的打孔情况可如图7所示。在图7的(a)中,该80MHz带宽内只有S20被打孔,在图7的(b)和(c)中,该80MHz带宽内只有S40里的一个20MHz被打孔。换句话说,按照频率从低到高的顺序,80MHz依次包括第一个20MHz、第二个20MHz、第三个20MHz和第四个20MHz,该80MHz对应的打孔情况包括不被打孔或者只有一个20MHz被打孔,即80MHz带宽的打孔情况可包括[1 1 1 1],[x 1 1 1],[1 x 1 1],[1 1 x 1],[1 1 1 x]。
但是该实施例中,前导码打孔信息字段A可用于承载如图6中每个频域分片对应的80MHz的打孔信息。也就是说,本实施例中的80MHz带宽可能是一个频域分片,并非是全带宽80MHz。例如全带宽是160MHz,可分为2个频域分片,每个频域分片为80MHz。由于该160MHz内可以被打掉40MHz。所以160MHz带宽的打孔情况可包括[x x 1 1 1 1 1 1],[1 1 x x 1 1 1 1],[1 1 1 1 x x 1 1]和[1 1 1 1 1 1 x x]。从这个角度而言,对于80MHz的频域分片来说,打孔情况还可包括[x x 1 1],[1 1 x x]。
在另一种可能的实现方式中,EHT PPDU包括前导码打孔信息字段A,不包括前导码打孔信息字段B。即通过前导码打孔信息字段A指示非OFDMA传输中的打孔信息(也可称为非OFDMA传输中的打孔指示方式二)这种情况下,前导码打孔信息字段A可用于指示在320MHz及以下全部带宽可能的打孔情况。由于前导码打孔信息字段A已经可以告知所有支持的打孔情况,因此不需要借助前导码打孔信息字段B来指示。
沿用上述的例子,应理解,对于80MHz带宽而言,可以不被打孔,也可以被打掉20MHz。80MHz带宽的打孔情况可包括[1 1 1 1],[x 1 1 1],[1 x 1 1],[1 1 x 1],[1 1 1 x]。
同理,对于160MHz带宽而言,可以不被打孔,也可以被打掉20MHz或者40MHz。如果不被打孔,那么160MHz带宽的打孔情况可包括[1 1 1 1 1 1 1 1]。如果被打掉20MHz,那么160MHz带宽的打孔情况可包括:[x 1 1 1 1 1 1 1],[1 x 1 1 1 1 1 1],[1 1 x 1 1 1 1 1],[1 1 1 x 1 1 1 1],[1 1 1 1 x 1 1 1],[1 1 1 1 1 x 1 1],[1 1 1 1 1 1 x 1]和[1 1 1 1 1 1 1 x]。如果被打掉40MHz,那么160MHz带宽的打孔情况可包括[x x 1 1 1 1 1 1],[1 1 x x 1 1 1 1],[1 1 1 1 x x 1 1]和[1 1 1 1 1 1 x x]。
同理,对于240MHz而言,可以不被打孔,也可以被打掉40MHz或者80MHz。如果不被打孔,那么240MHz带宽的打孔情况可包括[1 1 1 1 1 1 1 1 1 1 1 1]。如果被打掉40MHz,那么240MHz带宽的打孔情况可包括:[x x 1 1 1 1 1 1 1 1 1 1],[1 1 x x 1 1 1 1 1 1 1 1],[1 1 1 1 x x 1 1 1 1 1 1],[1 1 1 1 1 1 x x 1 1 1 1],[1 1 1 1 1 1 1 1 x x 1 1]和[1 1 1 1 1 1 1 1 1 1 x x]。 如果被打掉80MHz,那么240MHz带宽的打孔情况可包括:[1 1 1 1 x x x x 1 1 1 1],[1 1 1 1 1 1 1 1 x x x x]。
同理,对于320MHz而言,可以不被打孔,也可以被打掉80MHz或者120MHz。如果不被打孔,那么320MHz带宽的打孔情况可包括[1 1 1 1 1 1 1 1 1 1 1 1]。如果被打掉80MHz,那么320MHz带宽的打孔情况可包括:[x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1],[1 1 x x 1 1 1 1 1 1 1 1 1 1 1 1],[1 1 1 1 x x 1 1 1 1 1 1 1 1 1 1],[1 1 1 1 1 1 x x 1 1 1 1 1 1 1 1],[1 1 1 1 1 1 1 1 x x 1 1 1 1 1 1],[1 1 1 1 1 1 1 1 1 1 x x 1 1 1 1],[1 1 1 1 1 1 1 1 1 1 1 1 x x 1 1]和[1 1 1 1 1 1 1 1 1 1 1 1 1 1 x x]。如果被打掉120MHz,那么360MHz带宽的打孔情况可包括:[1 1 1 1 x x x x 1 1 1 1 1 1 1 1],[1 1 1 1 1 1 1 1 x x x x 1 1 1 1]和[1 1 1 1 1 1 1 1 1 1 1 1 x x x x]。
从上述可知,在每种带宽下,由于最多存在不超过16种打孔情况,所以前导码打孔信息字段A最少占用4比特就可实现对非OFDMA中的STA分配的资源单元的指示。
尽管通过图6所示的PPDU结构可对全带宽进行频域分片,通过将EHT-SIG字段的开销分到多个频域分片可以节省信令的开销,但是采用如图6所示的PPDU结构如何为用户指示分配的资源没有进一步的方案,即还没有相应的EHT-SIG字段的设计方案。
为了解决上述的技术问题,本申请实施例提供了一种资源指示方法,该方法中,AP可复用U-SIG字段和/或EHT-SIG字段中的字段来指示为用户分配的多个连续或不连续的RU。也可以认为,本申请实施例提供了一种新的U-SIG字段和EHT-SIG字段的设计方案,相比沿用802.11ax中通过资源分配子字段为用户指示分配的资源来说,可进一步降低信令的开销。
下面结合附图对本申请实施例提供的技术方案进行介绍。本申请实施例提供的技术方案可适用于图1所示的场景,当然也可以应用在其他可能通信场景或者通信系统中,本申请实施例在此不作限制。应理解,本申请实施例提供的技术方案涉及的执行主体包括发送设备和接收设备,在本文的介绍中,发送设备也称为发送端,接收设备也称为接收端,在下文中,以发送端是AP,接收端是STA为例。
请参见图8,为本申请实施例提供的资源指示方法的示意性流程图,该方法包括如下步骤:
S801、AP生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,该前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输所述PPDU的信道带宽,第一带宽包括第一频域分片;
S802、AP发送该PPDU,STA接收该PPDU;
S803、STA根据前导码打孔指示信息确定被分配的资源。
应理解,AP在通知每个STA发送数据时,需要告知每个STA,AP为每个STA分配的RU。在本申请实施例中,第一带宽可以认为是全带宽,也就是系统支持的带宽配置,例如为20MHz、40MHz、80MHz、160MHz、240MHz以及320MHz等。为了节省信令开销,本申请实施例可采用如图6所示的EHT PPDU的频域分片结构通知STA被分配的资源。应理解,在频域分片的场景中,第一带宽大于或等于80MHz,第一带宽可被划分为一个或多个频域分片。本申请实施例不限制频域分片的数量,也就是不同的频域分片的大小可以相同,也可以不相同。举例来说,对于320MHz带宽来说,可为划分为4个80MHz的频域分片,也可以被划分为2个80MHz的频域分片和1个160MHz的频域分片。
前导码打孔信息字段可用于指示每个频域分片内的资源分配情况。应理解,该资源分 配情况针对的是停靠(parking)在每个频域分片内的用户而言的。换句话说,前导码打孔信息字段可用于指示每个频域分片内用户的资源分配情况。例如某个频域分片内的STA可能被分配了资源单元,也可能未被分配资源单元。如果某个频域分片内的STA未被分配资源,那么该STA无需读取EHT PPDU中的EHT-SIG字段,可以节约能耗。所以,在一些实施例中,前导码打孔信息字段可用于指示某个频域分片内的用户未被分配任何资源单元。
在可能的实施方式中,前导码打孔信息字段可以承载在U-SIG字段中的一个字段。为了便于描述,在本申请实施例中,将该字段称为第一字段。第一字段可以是U-SIG中已定义的字段,也可以是U-SIG字段中新增加的一个字段。由于本申请实施例可沿用EHT PPDU的频域分片结构,所以第一字段可以是如前述的前导码打孔信息字段A。
应理解,前导码打孔信息字段A可占用多个比特,可用于指示一个频域分片内的资源分配情况。举例来说,以80MHz的频域分片来说,前导码打孔信息字段A可占用3比特,如果是大于或等于160MHz的频域分片,那么前导码打孔信息字段A可最少占用3比特。请参见表2,示出了80MHz的频域分片,前导码打孔信息字段A可指示的内容。
表2 U-SIG中的前导码打孔信息字段A含义
状态 内容(资源分配情况)
000(0) [1 1 1 1](80MHz内未被打孔)
001(1) [x 1 1 1](80MHz内的第一个20MHz被打孔)
010(2) [1 x 1 1](80MHz内的第二个20MHz被打孔)
011(3) [1 1 x 1](80MHz内的第三个20MHz被打孔)
100(4) [1 1 1 x](80MHz内的第四个20MHz被打孔)
101(5) [x x 1 1](80MHz内的第一个和第二个20MHz被打孔)
110(6) [1 1 x x](80MHz内的第三个和第四个20MHz被打孔)
111(7) 预留(Reserved)
应理解,表2中前导码打孔信息字段A承载的3比特序列的一种取值表征一种资源分配情况。需要说明的是,表2仅是示意了该3比特序列的取值与资源分配情况的一种对应关系,本申请实施例对该3比特序列的取值与资源分配情况的具体对应关系不作限制。示例性的,当该3比特序列为“111”,可表示80MHz未被打孔(即对应[1 1 1 1]);当该3比特序列为“110”,可表示80MHz内的第一个20MHz被打孔(即对应[x 1 1 1]),这里就不一一列举了。下面以表2示意的对应关系为例,在本申请实施例中,可在表2中增加“未分配资源单元”的条目。即通过表2中的预留条目表征“未分配资源单元”。如果某个80MHz内的STA未被分配资源单元,那么可通过前导码打孔信息字段A承载“111”。对于STA而言,由于要读取80MHz的主20MHz,所以会读取U-SIG字段。当STA通过前导码打孔信息字段A确定未被分配资源单元,那么该STA不需要继续读取U-SIG之后的EHT-SIG等字段,可节约STA的能耗。既然STA未被分配资源单元,那么自然也不需要为了确认哪些资源是分配给自己的,而去读取EHT-SIG中的用户字段。或者也可认为,这种情况下,EHT-SIG中的用户字段是不必要的,所以通过前导码打孔信息字段A指示频域分片内的用户未被分配资源单元,EHT-SIG字段可不包括用户字段,以尽量节约信令的开销。
应理解,当U-SIG字段中的带宽字段指示带宽为80MHz带宽,当前导码打孔信息字段A指示存在打孔情况,由于在非OFDMA传输模式下,只能存在一个孔,即只能有一个信道被打孔。如果被打孔的信道在前导码打孔信息字段A已经被指示了,频域分片内的 STA通过U-SIG字段中带宽字段的指示,可以获知非OFDMA传输模式的资源分配。而由于其余信道未被打孔,所以不需要前导码打孔信息字段B另外指示,以尽量节约信令的开销。
当然,如果U-SIG字段中的带宽字段指示的带宽小于或等于80MHz,由于前导码打孔信息字段A可以指示80MHz的所有打孔情况,所以也不需要前导码打孔信息字段B的另外指示,可以节约信令的开销。
如果U-SIG字段中的带宽字段指示带宽大于80MHz带宽,如果前导码打孔信息字段A内只包括每个80MHz频域分片对应的打孔情况,STA可以通过前导码打孔信息字段A知晓自身所处频域分片对应的80MHz的打孔情况,从而可在EHT-SIG字段中携带有前导码打孔信息字段B的信道上完成读取。这种情况下,前导码打孔信息字段可承载于前导码打孔信息字段A和前导码打孔信息字段B。前导码打孔信息字段A可占用多个比特,前导码打孔信息字段B也占用多个比特。当前导码打孔信息字段A指示对应80MHz的频域分片内的打孔情况如前述表2的情况下,前导码打孔信息字段B指示的内容可如表3所示。
表3 EHT-SIG字段中前导码打孔信息字段B的含义
Figure PCTCN2021097971-appb-000003
Figure PCTCN2021097971-appb-000004
表3可以认为是前导码打孔信息字段B的一种设计,用于大于80MHz带宽的打孔情况。应理解在大于80MHz带宽的打孔情况,例如160MHz、240MHz和320MHz的打孔情况,通过前导码打孔信息字段A和前导码打孔信息字段B指示。其中,前导码打孔信息字段A指示80MHz对应频域分片内的打孔情况,前导码打孔信息字段B指示全带宽中除该频域分片之外的其余频带的打孔情况。
示例性的,表3中,以前导码打孔信息字段A占用3比特,前导码打孔信息字段B占用4比特为例。前导码打孔信息字段B的索引可以认为是前导码打孔信息字段B的取值,通过该取值示意全带宽中除该频域分片之外的其余频带的打孔情况。需要说明的是,表3仅是示意了前导码打孔信息字段A以及前导码打孔信息字段B的取值与打孔情况的一种对应关系,本申请实施例对前导码打孔信息字段A以及前导码打孔信息字段B的取值与打孔情况的具体对应关系不作限制。示例性的,当前导码打孔信息字段A承载“111”,可表示160MHz内的第一个80MHz未被打孔(即对应[1 1 1 1]),当前导码打孔信息字段B承载“111”,可表示160MHz内的第二个80MHz未被打孔(即对应[1 1 1 1]),等等,这里就不一一列举了。
以表3示意的对应关系为例,例如全带宽是160MHz,包括2个80MHz,前导码打孔信息字段A指示[1 1 1 1],即对应80MHz上未被打孔的情况下,如果前导码打孔信息字段B的取值为0,那么指示160MHz中另一个80MHz也未被打孔;如果前导码打孔信息字段B的取值为5,那么指示160MHz中另一个80MHz中的第一个和第二个20MHz被打孔,应理解,前导码打孔信息字段B的取值为7-15,可作为预留比特,用作它用。
应理解,如果前导码打孔信息字段A指示[x 1 1 1]、[1 x 1 1]、[1 1 x 1]、[1 1 1 x]、[x x 1 1]或[1 1 x x],即对应80MHz上被打孔的情况下。由于全带宽只能存在一个孔,所以160MHz中另一个80MHz只能未打孔,前导码打孔信息字段B的取值为0,那么指示160MHz中另一个80MHz未被打孔。前导码打孔信息字段B的取值为1-15,可作为预留比特,用作它用。
同理,如果全带宽是240MHz,包括3个80MHz,前导码打孔信息字段A指示[1 1 1 1],即对应80MHz上未被打孔的情况下,如果前导码打孔信息字段B的取值为0,那么指示 240MHz中另外的160MHz也未被打孔;如果前导码打孔信息字段B的取值为5,那么指示240MHz中另外的160MHz中的第五个和第六个20MHz被打孔,应理解,前导码打孔信息字段B的取值为7-15,可作为预留比特,用作它用。
应理解,如果前导码打孔信息字段A指示[x x 1 1]或[1 1 x x],即对应80MHz上被打孔的情况下。由于240MHz中其余的160MHz只能未打孔,所以前导码打孔信息字段B的取值为0,那么指示240MHz中其余的160MHz未被打孔。前导码打孔信息字段B的取值为1-15,可作为预留比特,用作它用。
同理,如果全带宽是320MHz,包括4个80MHz,前导码打孔信息字段A指示[1 1 1 1],即对应80MHz上未被打孔的情况下,如果前导码打孔信息字段B的取值为0,那么指示320MHz中另外的240MHz也未被打孔;如果前导码打孔信息字段B的取值为9,那么指示320MHz中另外的240MHz中的第11个和第12个20MHz被打孔,应理解,前导码打孔信息字段B的取值为10-15,可作为预留比特,用作它用。
应理解,如果前导码打孔信息字段A指示[x x 1 1]或[1 1 x x],即对应80MHz上被打孔的情况下。由于320MHz中其余的240MHz只能未打孔,所以前导码打孔信息字段B的取值为0,那么指示320MHz中其余的240MHz未被打孔。前导码打孔信息字段B的取值为1-15,可作为预留比特,用作它用。
应理解,一个或多个STA可被分配到全带宽,或者该全带宽被分配给一个或多个STA。如果全带宽被分配给一个或多个STA。沿用前述图6所示的EHT PPDU的频域分片结构通知STA被分配的资源,针对每个频域分片都需要指示被分配的资源。即每个频域分片对应的U-SIG字段中的前导码打孔信息字段A均需指示[1 1 1 1],显然开销较大。为此,在一些实施例中,前导码打孔信息字段可用于指示某个频域分片内被调度的STA被分配全带宽(未打孔)资源。这样STA通过前导码打孔信息字段,结合U-SIG字段内的带宽字段指示的全带宽大小可以确定被分配的资源。具体频域分片内的哪些STA被分配全带宽资源,可以通过读取U-SIG字段之后的EHT-SIG字段中的用户特定字段中的用户字段确定。需要说明的是,这里被调度的STA指的是被分配了资源的STA。例如一个频域分片上存在10个STA,10个STA都会读取U-SIG字段,但是其中的8个STA被分配资源,那么这8个STA就是被调度的STA。
在可能的实施方式中,前导码打孔信息字段可以承载在如前述的U-SIG字段中的前导码打孔信息字段A。应理解,前导码打孔信息字段A可占用多个比特,可用于指示一个频域分片内的资源分配情况。举例来说,以80MHz的频域分片来说,前导码打孔信息字段A可占用3比特,如果是大于或等于160MHz的频域分片,那么前导码打孔信息字段A可最少占用4比特。请参见表4,示出了80MHz的频域分片,前导码打孔信息字段A可指示的内容。
表4U-SIG中的前导码打孔信息字段A含义
状态 内容(资源分配情况)
000(0) [1 1 1 1](80MHz内未被打孔)
001(1) [x 1 1 1](80MHz内的第一个20MHz被打孔)
010(2) [1 x 1 1](80MHz内的第二个20MHz被打孔)
011(3) [1 1 x 1](80MHz内的第三个20MHz被打孔)
100(4) [1 1 1 x](80MHz内的第四个20MHz被打孔)
101(5) [x x 1 1](80MHz内的第一个和第二个20MHz被打孔)
110(6) [1 1 x x](80MHz内的第三个和第四个20MHz被打孔)
111(7) 预留(Reserved)
应理解,表4中前导码打孔信息字段A承载的3比特序列的一种取值表征一种资源分配情况。需要说明的是,表4仅是示意了该3比特序列的取值与资源分配情况的一种对应关系,本申请实施例对该3比特序列的取值与资源分配情况的具体对应关系不作限制。示例性的,当该3比特序列为“111”,可表示80MHz未被打孔(即对应[1 1 1 1]);当该3比特序列为“110”,可表示80MHz内的第一个20MHz被打孔(即对应[x 1 1 1]),这里就不一一列举了。
以表4示意的对应关系为例,在本申请实施例中,可在表3中增加“全带宽(未打孔)”的条目。即通过表4中的预留条目表征“频域分片内用户被分配全带宽(未打孔)资源”。以全带宽资源为320MHz为例,即U-SIG字段中的带宽字段指示的资源为320MHz。如果某个80MHz内的STA被分配全带宽(未打孔)资源单元,那么可通过前导码打孔信息字段A承载“111”。对于STA而言,当STA通过前导码打孔信息字段A被分配了全带宽资源,再通过读取U-SIG字段中的带宽字段,可确定被分配了320MHz未打孔的资源。具体频域分片内的哪些STA被分配全带宽资源,可以通过读取U-SIG字段之后的EHT-SIG字段中的用户特定字段中的用户字段确定。该方案中,通过对一个频域分片的前导码打孔信息字段A的指示就可以实现全带宽(未打孔)的指示,不需要通过全带宽划分的各个频域分片对应的前导码打孔信息字段A来指示,可以节约开销。
为了进一步节约信令开销,在一些实施例中,可在U-SIG字段或EHT-SIG字段中指示压缩模式。所谓的压缩模式是针对EHT-SIG字段中的公共字段而言的,也就是该公共字段的长度减少。
例如简化该公共字段中的某些字段,即减少该某些字段占用的长度,或者删除该公共字段中的某些字段。示例性的,可简化该公共字段中的资源分配子字段(RU Allocation subfield),例如减少资源分配子字段的个数,或者省略或删除该公共字段中的资源分配子字段等。如果该公共字段包括简化的资源分配子字段(RU Allocation subfield)或者不包括资源分配子字段,那么相应的EHT PPDU就是压缩模式下的EHT PPDU。换句话说,所谓的压缩模式指的是EHT PPDU的格式是简化版本的格式,例如公共字段中的RU Allocation subfield是简化了的,甚至可省略或删除RU Allocation subfield;非压缩模式下的EHT PPDU的格式是非简化版本的格式,例如公共字段中的RU Allocation subfield是非简化的。又例如删除该公共字段中的部分或全部用户字段,那么相应的EHT PPDU也是压缩模式下的EHT PPDU。应理解,由于压缩模式下的EHT PPDU的格式更为简化,所以可节约开销。
由于压缩模式下,例如RU Allocation subfield被简化,甚至被删除,所以需要借助前导码打孔信息字段A和前述的前导码打孔信息字段B来指示为STA分配的资源。应理解,在OFDMA传输中,通过RU Allocation subfield指示为STA分配的资源单元;在非OFDMA传输中,可通过前导码打孔信息字段A和/或前导码打孔信息字段B来指示为STA分配的资源。而且在非OFDMA传输中,包括全带宽打孔的非OFDMA资源单元的分配,以及全带宽未打孔的非OFDMA资源的分配。为了区分上述几种传输模式资源的分配,在本申请实施例中,可定义多种压缩模式,并通过在U-SIG或EHT-SIG中携带压缩指示字段来指示压缩模式。
示例性的,本申请实施例可定义如下几种模式:
1.OFDMA传输模式,也就是OFDMA传输中,包括未简化版本的RU Allocation subfield的资源指示;
2.简化版本的OFDMA传输模式,也就是OFDMA传输中,包括简化版本的RU Allocation subfield的资源指示;
3.非OFDMA打孔传输模式,也就是非OFDMA传输中,被分配的资源是全带宽打孔的资源单元;
4.非OFDMA未打孔传输模式,也就是非OFDMA传输中,被分配的资源是全带宽未打孔的资源单元。
应理解,第1种传输模式相对于其余3种传输模式来说是非压缩模式,换句话说,其余3种传输模式相对于第1种传输模式来说是压缩模式。在一些实施例中,可通过U-SIG字段指示压缩模式,即在U-SIG字段中设置压缩模式指示字段,该压缩模式指示字段可占用多个比特,来指示压缩模式(包括非压缩模式和压缩模式)。例如该压缩指示字段可占用2比特,那么该压缩指示字段指示的内容可如表5所示。
表5 U-SIG中的压缩指示字段含义
状态 内容(压缩模式)
00(0) OFDMA传输模式
01(1) 非OFDMA打孔传输模式
10(2) 简化版本的OFDMA传输模式
11(3) 非OFDMA未打孔传输模式
应理解,表5中压缩指示字段的一种取值对应一种压缩模式,究竟何种取值对应何种压缩模式,在表5只是一种示意。本申请实施例对压缩指示字段的取值与压缩模式的具体对应关系不作限制。示例性的,当压缩指示字段承载“00”,可表示压缩模式为非OFDMA未打孔传输模式;当压缩指示字段承载“11”,可表示压缩模式为OFDMA传输模式,这里就不一一列举了。需要说明的是,由于11ax中的HE-SIG-A中的1比特的空时块编码(Space-time block coding,STBC)字段只在非MU-MIMO传输时有意义,因此如果存在涉及MU-MIMO的压缩模式,可重用STBC字段。例如可进一步通过该1比特的STBC字段指示两种MU-MIMO压缩模式,或用来参与指示MU-MIMO用户数目等。
应理解,如前述表4中增加“全带宽(未打孔)”的条目。这种情况下,如果STA从压缩指示字段中确定压缩模式为非OFDMA未打孔传输模式,那么STA可不需要继续读取前导码打孔信息字段A,可节约能耗。表4中的预留条目表征“频域分片内用户被分配全带宽(未打孔)资源”,也可以认为是非OFDMA未打孔传输模式(一种压缩模式),所以表4中的预留条目也可以用于指示非OFDMA未打孔传输模式或者一种压缩模式。应理解,这种压缩模式下,不需要通过资源分配子字段来指示资源分配情况。所以EHT-SIG字段中的公共字段可以减少资源分配子字段的个数或者删除资源分配子字段,以尽量节约信令的开销。需要说明的是,表5示意的4种模式仅是示意举例,本申请实施例对压缩模式的种类的不作限制。如表4中的预留条目在另一些实施例中可能指示的是其他压缩模式。
同理,表2中增加的“未分配资源单元”的条目(即复用预留条目),也可以认为是一种传输模式或一种压缩模式。即可定义未给频域分片内被调用的用户分配任何资源单元,为某种传输模式或者压缩模式。当表3中的预留条目如果指示该种传输模或压缩模式,频 域分片内被服务的用户可确定未被分配任何资源单元。应理解,既然STA未被分配资源单元,那么自然也不需要读取EHT-SIG中的用户字段,也可以说,EHT-SIG中的用户字段是不必要的。所以这种压缩模式下,EHT-SIG字段可不包括用户字段,以尽量节约信令的开销。需要说明的是,表5示意的4种模式仅是示意举例,本申请实施例对压缩模式的种类的不作限制。如表2中的预留条目在另一些实施例中可能指示的是其他压缩模式。
如前所述,针对非OFDMA传输来说,在一些实施例中,可通过EHT PPDU中的U-SIG字段中的前导码打孔信息字段A来指示资源分配情况。示例性的,对于80MHz带宽而言,前导码打孔信息字段A可占用3比特,所指示的资源分配情况包括:[1 1 1 1],[x 1 1 1],[1 x 1 1],[1 1 x 1],[1 1 1 x],即5种情况。对于160MHz带宽而言,前导码打孔信息字段A可占用4比特,所指示的资源分配情况包括:[1 1 1 1 1 1 1 1],[x 1 1 1 1 1 1 1],[1 x 1 1 1 1 1 1],[1 1 x 1 1 1 1 1],[1 1 1 x 1 1 1 1],[1 1 1 1 x 1 1 1],[1 1 1 1 1 x 1 1],[1 1 1 1 1 1 x 1],[1 1 1 1 1 1 1 x],[x x 1 1 1 1 1 1],[1 1 x x 1 1 1 1],[1 1 1 1 x x 1 1]和[1 1 1 1 1 1 x x],即13种情况。这种情况下,通过前导码打孔信息字段A,结合U-SIG字段中的带宽字段可实现非OFDMA传输下全带宽打孔或者全带宽未打孔的指示。
应理解,如果沿用如图6所示的EHT PPDU频域分片结构,对于80MHz频域分片来说,可通过前导码打孔信息字段A指示7种资源分配情况,即[1 1 1 1],[x 1 1 1],[1 x 1 1],[1 1 x 1],[1 1 1 x],[x x 1 1],[1 1 x x]。这种情况下,通过前导码打孔信息字段A,结合U-SIG字段中的带宽字段可实现OFDMA传输下每个频域分片对应的80MHz的打孔指示。
为了尽量节省信令开销,在本申请实施例中,可定义复用前导码打孔信息字段A指示非OFDMA传输支持的所有打孔情况,或者指示OFDMA传输下每个频域分片对应的80MHz的打孔情况。换句话说,前导码打孔信息字段A既可指示非OFDMA传输支持的所有打孔情况,又可以指示OFDMA传输下每个频域分片对应的80MHz的打孔情况。
在一种可能的实现方式中,可定义U-SIG字段中的某个字段指示EHT PPDU属于非OFDMA传输模式时,前导码打孔信息字段A指示的内容包括前述的5种情况,即80MHz的配置在OFDMA情况下表示80MHz内的打孔或未打孔的配置(即全带宽配置)。可定义U-SIG字段中的某个字段指示EHT PPDU属于OFDMA传输模式时,前导码打孔信息字段A指示的内容包括前述的7种情况,即80MHz的配置表示该频域分片对应的80MHz的打孔情况。换句话说,如果带宽字段指示带宽是80MHz,当U-SIG字段中的某个字段指示EHT PPDU属于非OFDMA传输模式时,那么前导码打孔信息字段A指示80MHz的配置在OFDMA情况下表示80MHz内的打孔或未打孔的配置。如果带宽字段指示带宽是80MHz,U-SIG字段中的某个字段指示EHT PPDU属于OFDMA传输模式时,前导码打孔信息字段A指示80MHz的配置表示该频域分片对应的80MHz的打孔情况。所以针对80MHz来说,前导码打孔信息字段A同时具备指示非OFDMA传输中支持的所有打孔情况,以及指示OFDMA传输中频域分片对应80MHz的打孔情况的能力。
该方案也可以理解为,兼容前述非OFDMA传输中的打孔指示方式二,能够指示80MHz的OFDMA传输中的打孔信息。为了便于理解,下面以表6示意说明。请参见表6,示出了U-SIG中的前导码打孔信息字段A指示的内容,其中图6以全带宽为80MHz,前导码打孔信息字段A占用3比特为例。
表6U-SIG中的前导码打孔信息字段A含义
状态 内容(资源分配情况)
000(0) [1 1 1 1](80MHz内未被打孔)
001(1) [x 1 1 1](80MHz内的第一个20MHz被打孔)
010(2) [1 x 1 1](80MHz内的第二个20MHz被打孔)
011(3) [1 1 x 1](80MHz内的第三个20MHz被打孔)
100(4) [1 1 1 x](80MHz内的第四个20MHz被打孔)
101(5) [x x 1 1](80MHz内的第一个和第二个20MHz被打孔)
110(6) [1 1 x x](80MHz内的第三个和第四个20MHz被打孔)
111(7) 预留(Reserved)
应理解,表6中前导码打孔信息字段A一种取值对应一种打孔情况,究竟何种取值对应何种打孔,在表6只是一种示意。本申请实施例对前导码打孔信息字段A的取值与打孔情况的具体对应关系不作限制。示例性的,当前导码打孔信息字段A承载“111”,可表示80MHz内未被打孔(即对应[1 1 1 1]);当前导码打孔信息字段A承载“110”,可表示80MHz内的第一个20MHz被打孔(即对应[x 1 1 1]),这里就不一一列举了。
应理解,以表6为例,如果U-SIG字段中的某个字段指示EHT PPDU属于非OFDMA传输模式时,那么前导码打孔信息字段A指示在非OFDMA情况下80MHz内的打孔或未打孔的全带宽配置。这种情况下,对于站点来说,如果根据带宽字段确定全带宽大于或等于160MHz的情况下,STA只需要读取该80MHz内的打孔情况即可,不需要读取除该80MHz之外的带宽信息。如果U-SIG字段中的某个字段指示EHT PPDU属于OFDMA传输模式时,前导码打孔信息字段A指示在OFDMA传输中,80MHz对应的频域分片的打孔情况。可见,80MHz的全带宽来说,前导码打孔信息字段A同时具备指示非OFDMA传输中支持的所有打孔情况,以及指示OFDMA传输中频域分片对应80MHz的打孔情况的能力。
应理解,该方案兼容前述非OFDMA传输中的打孔指示方式二,那么对于大于或等于160MHz而言,前导码打孔信息字段A指示的是非OFDMA传输中的打孔情况。这种情况下,应理解,前导码打孔信息字段A至少占用4比特。而前导码打孔信息字段A至少占用4比特时,对于80MHz频域分片的打孔情况指示存在至少9种预留情况。这种情况下,可复用前导码打孔信息字段A指示压缩模式,这样就无需另外在U-SIG字段或EHT-SIG字段中设置压缩指示字段,以尽量节约信令的开销。
为了便于理解,下面以表7示意说明。请参见表7,示出了U-SIG中的前导码打孔信息字段A指示的内容,其中图7以全带宽大于或等于160MHz,前导码打孔信息字段A占用4比特,压缩模式为某种压缩模式,例如压缩模式一为例。应理解,对于80MHz频域分片的打孔情况指示存在9种预留情况,表7也是针对80MHz频域分片的打孔情况。
表7U-SIG中的前导码打孔信息字段A含义
状态 内容(资源分配情况)
0000(0) [1 1 1 1](80MHz内未被打孔)
0001(1) [x 1 1 1](80MHz内的第一个20MHz被打孔)
0010(2) [1 x 1 1](80MHz内的第二个20MHz被打孔)
0011(3) [1 1 x 1](80MHz内的第三个20MHz被打孔)
0100(4) [1 1 1 x](80MHz内的第四个20MHz被打孔)
0101(5) [x x 1 1](80MHz内的第一个和第二个20MHz被打孔)
0110(6) [1 1 x x](80MHz内的第三个和第四个20MHz被打孔)
0111(7) 预留(Reserved)
1000(8) [1 1 1 1](压缩模式一,80MHz内未被打孔)
1001(9) [x 1 1 1](压缩模式一,80MHz内的第一个20MHz被打孔)
1010(10) [1 x 1 1](压缩模式一,80MHz内的第二个20MHz被打孔)
1011(11) [1 1 x 1](压缩模式一,80MHz内的第三个20MHz被打孔)
1100(12) [1 1 1 x](压缩模式一,80MHz内的第四个20MHz被打孔)
1101(13) [x x 1 1](压缩模式一,80MHz内的第一和第二个20MHz被打孔)
1110(14) [1 1 x x](压缩模式一,80MHz内的第三和第四个20MHz被打孔)
1111(15) 预留(Reserved)
应理解,表7中前导码打孔信息字段A一种取值对应一种打孔情况,究竟何种取值对应何种打孔,在表7只是一种示意。本申请实施例对前导码打孔信息字段A的取值与打孔情况的具体对应关系不作限制。示例性的,当前导码打孔信息字段A承载“1000”,可表示80MHz内的第一个20MHz被打孔(即对应[x 1 1 1]);当前导码打孔信息字段A承载“0001”,可表示压缩模式一,80MHz内未被打孔(即对应[1 1 1 1]),这里就不一一列举了。
以表7为例,从表7中可以看出,在本申请实施例中,前导码打孔信息字段A同时具备指示非OFDMA传输中支持的所有打孔情况,以及指示OFDMA传输中频域分片对应80MHz的打孔情况的能力。同时,还具备指示OFDMA传输中压缩传输模式。
从表6和表7中可以看出,前导码打孔信息字段A同时具备指示非OFDMA传输中支持的所有打孔情况,以及指示OFDMA传输中频域分片对应80MHz的打孔情况的能力,针对的是80MHz全带宽的情况。这种情况下,前导码打孔信息字段A可占用至少3个比特。而如果兼容大于或等于160MHz的非OFDMA传输中的打孔指示,前导码打孔信息字段A可占用至少4个比特。所以在一些实施例中,也可以将OFDMA传输的打孔指示从与非OFDMA传输的打孔指示中独立出来。换句话说,沿用非OFDMA传输的打孔指示,定义前导码打孔信息字段A占用至少M个比特,其中,M大于或等于4。对于OFDMA传输的打孔指示,通过这M个比特中的3个比特来指示。这M个比特中除这3个比特之外的M-3个比特可用于指示OFDMA传输下的压缩模式或非压缩模式。
应理解,这种情况下,需要区分前导码打孔信息字段A指示的是OFDMA传输,还是非OFDMA传输。在本申请实施例,可另外通过1比特的指示信息指示前导码打孔信息字段A指示的是OFDMA传输,还是非OFDMA传输。应理解,该1比特的指示信息承载于PPDU。
对于STA而言,当接收到来自AP的PPDU,首先通过1比特指示信息可确定M个比特的前导码打孔信息字段A指示的是OFDMA传输,还是非OFDMA传输。如果M个比特的前导码打孔信息字段A指示的是非OFDMA,STA可确定被分配的带宽的打孔情况。如果这M个比特的前导码打孔信息字段A指示的是OFDMA传输,STA可根据这M个比特中的3个比特确定80MHz对应频域分片的打孔情况,并根据M-3个比特确定OFDMA传输下的模式是压缩模式还是非压缩模式。
本申请实施例提供了的资源指示方法,该方法中,设计了新的UIS字段和EHT-SIG字段,可复用U-SIG字段和/或EHT-SIG字段中的字段来指示为用户分配的多个连续或不连续的RU,相比沿用802.11ax中通过资源分配子字段为用户指示分配的资源来说,可进一步降低信令的开销。
需要说明的是,本文中的资源指示方法均以应用EHT PPDU分片结构来实现资源的指示。换句话说,本文中的资源指示方法适用于全带宽划分为一个或多个频域分片的场景中。应理解,该资源指示方法也可以适用于未分片的场景中.例如传输PPDU的信道带宽为320MHz,可以先指示这320MHz中的第一个80MHz(也就是主80MHz),再指示整个320MHz。但是该主80MHz的指示可沿用本文中的资源指示方法,即80MHz频域分片的指示。
上述本申请提供的实施例中,分别从AP、STA、以及AP和STA之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,AP、STA可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图9示出了一种通信装置900的结构示意图。该通信装置900可以对应实现上述各个方法实施例中由发送端例如AP或接收端例如STA实现的功能或者步骤。该通信装置可以包括收发模块910和处理模块920。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。收发模块910和处理模块920可以与该存储单元耦合,例如,处理模块920可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成,例如收发模块910可由发送单元和接收单元集成。
在一些可能的实施方式中,通信装置900能够对应实现上述方法实施例中STA的行为和功能。例如通信装置900可以为STA,也可以为应用于STA中的部件(例如芯片或者电路)。收发模块910可以用于执行图8所示的实施例中由STA所执行的全部接收或发送操作,例如图8所示的实施例中的S802,和/或用于支持本文所描述的技术的其它过程。其中,处理模块920用于执行如图8所示的实施例中由STA所执行的除了收发操作之外的全部操作,例如图8所示的实施例中的S803,和/或用于支持本文所描述的技术的其它过程。
在一种可能的实现方式中,收发模块910,用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;
处理模块920,用于根据前导码打孔指示信息确定被分配的资源。
作为一种可选的实现方式,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
作为一种可选的实现方式,该述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于U-SIG字段。
在一种可能的实现方式中,收发模块910用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输该PPDU的信道带宽包括第一频域分片;
处理模块920用于根据前导码打孔指示信息确定未被分配的资源。
作为一种可选的实现方式,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
作为一种可选的实现方式,该述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于U-SIG字段。
在一种可能的实现方式中,收发模块910用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;
处理模块920用于根据所述前导码打孔指示信息以及带宽字段确定被分配的资源。
在一种可能的实现方式中,收发模块910用于接收来自接入点的PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况;
处理模块920用于根据所述前导码打孔指示信息以及带宽字段确定被分配的资源。
在一些可能的实施方式中,通信装置900能够对应实现上述方法实施例中STA的行为和功能。例如通信装置900可以为AP,也可以为应用于AP中的部件(例如芯片或者电路)。收发模块910可以用于执行图8所示的实施例中由AP所执行的全部接收或发送操作,例如图8所示的实施例中的S802,和/或用于支持本文所描述的技术的其它过程。其中,处理模块920用于执行如图8所示的实施例中由AP所执行的除了收发操作之外的全部操作,例如图8所示的实施例中的S801,和/或用于支持本文所描述的技术的其它过程。
一示例性的,处理模块920,用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,第一带宽为传输该PPDU的信道带宽,第一带宽包括第一频域分片;
收发模块910,用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中该述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于U-SIG字段。
又一示例性的,处理模块920用于生成PPDU,该PPDU包括在第一频域分片内中传输的前导码打孔指示信息,前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输PPDU的信道带宽包括第一频域分片;
收发模块910用于发送该PPDU。
在一种可能的实现方式中,该前导码打孔指示信息还用于指示压缩模式,其中,压缩模式下的PPDU的长度小于非压缩模式下的PPDU的长度,压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,压缩模式下的PPDU为简化资源分配子字段的PPDU。
在一种可能的实现方式中该述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于U-SIG字段。
示例性的,收发模块910用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,所述PPDU为OFMDA传输模式,前导码打孔指示信息用于指示带宽为80MHz的第一带宽的打孔或未打孔配置;或者,所述PPDU为非OFDMA传输模式,前导码打孔指示信息用于指示第一频域分片对应的80MHz的打孔情况;
处理模块920用于根据所述前导码打孔指示信息和带宽字段确定被分配的资源。
示例性的,收发模块910,用于接收来自接入点的PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,其中,该前导码打孔指示信息承载于第一前导码打孔信息字段和第二前导码打孔信息字段,第一前导码打孔信息字段位于U-SIG字段,第二前导码打孔信息字段位于EHT-SIG字段;其中,第一前导码打孔信息字段用于指示第一频域分片的打孔情况或全带宽未打孔,第二前导码打孔信息字段用于指示第一带宽内除第一频域分片之外的其余频域分片的打孔情况,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
处理模块920,用于根据所述前导码打孔指示信确定被分配的资源。
如图10所示为本申请实施例提供的通信装置1000,其中,通信装置1000可以是STA,能够实现本申请实施例提供的方法中STA的功能,或者,通信装置1000可以是AP,能够实现本申请实施例提供的方法中AP的功能;通信装置1000也可以是能够支持STA实现本申请实施例提供的方法中对应的功能的装置,或者能够支持AP实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一些实施例中,通信装置1000可包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于通信装置1000中的装置可以和其它设备进行通信。示例性地,当该通信装置为STA时,该其它设备为AP;或者,当该通信装置为AP时,该其它设备为STA。通信接口1010具体可以是收发器。在硬件实现上,上述通信接口1010可以为收发器,收发器集成在通信装置1000中构成通信接口1010。
通信装置1000还包括至少一个处理器1020,处理器1020可以利用通信接口1010收发数据,用于实现或用于支持通信装置1000实现本申请实施例提供的方法中STA或AP的功能。例如通信装置1000能够对应实现上述方法实施例中STA的行为和功能。
通信接口1010可以用于执行图8所示的实施例中由STA所执行的全部接收或发送操作,例如图8所示的实施例中的S802,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1020用于执行如图8所示的实施例中由STA所执行的除了收发操作 之外的全部操作,例如图8所示的实施例中的S803,和/或用于支持本文所描述的技术的其它过程。
例如通信装置1000能够对应实现上述方法实施例中AP的行为和功能。通信接口1010可以用于执行图8所示的实施例中由AP所执行的全部接收或发送操作,例如图8所示的实施例中的S802,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器1020用于执行如图8所示的实施例中由AP所执行的除了收发操作之外的全部操作,例如图8所示的实施例中的S801,和/或用于支持本文所描述的技术的其它过程。
在另一些实施例中,通信装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令和/或数据,以使得通信装置1000实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1020可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1030可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是STA或AP也可以是电路,也可以是应用于STA或AP中的芯片或者其他具有上述STA或AP功能的组合器件、部件等。当通信装置是STA或AP时收发模块910可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述STA或AP功能的部件时,收发模块910可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发模块910可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
作为一种可能的产品形态,本申请实施例所述的AP和STA,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
应理解,上述各种产品形态的AP,具有上述方法实施例中AP的任意功能,此处不再赘述;上述各种产品形态的STA,具有上述方法实施例中STA的任意功能,此处不再赘述。
本申请实施例还提供一种通信系统,具体的,通信系统包括STA和AP,或者还可以包括更多个AP和接入网设备。示例性的,该通信系统包括用于实现上述图6或图9的相关功能的STA和AP。
所述AP分别用于实现上述图8相关网络部分的功能。所述STA用于实现上述图8相关STA的功能。例如STA可执行例如图8所示的实施例中的S802和S803,AP可执行图8所示的实施例中的S801和S802。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图8中AP或STA执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图8中AP或STA执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中AP或STA的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的信息处理方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种资源指示方法,其特征在于,包括:
    接入点生成物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
    所述接入点发送所述PPDU。
  2. 如权利要求1所述的方法,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  3. 如权利要求1或2所述的方法,其特征在于,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
  4. 一种资源指示方法,其特征在于,包括:
    站点接收来自接入点的物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
    所述站点根据所述前导码打孔指示信息确定被分配的资源。
  5. 如权利要求4所述的方法,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  6. 如权利要求4或5所述的方法,其特征在于,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
  7. 一种资源指示方法,其特征在于,包括:
    接入点生成物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片;
    所述接入点发送所述PPDU。
  8. 如权利要求7所述的方法,其特征在于,该前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  9. 一种资源指示方法,其特征在于,包括:
    站点接收来自接入点的生成物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片;
    所述站点根据所述前导码打孔指示信息确定未被分配的资源。
  10. 如权利要求9所述的方法,其特征在于,该前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  11. 一种接入点,其特征在于,所述接入点包括通信装置,所述通信装置包括:
    处理器,用于生成物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括至少所述第一频域分片;
    收发器,用于发送所述PPDU。
  12. 如权利要求11所述的接入点,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  13. 如权利要求11或12所述的接入点,其特征在于,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
  14. 一种站点,其特征在于,所述站点包括通信装置,所述通信装置包括:
    收发器,用于接收来自接入点的物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内被调度的用户被分配了第一带宽,其中,所述第一带宽为传输所述PPDU的信道带宽,所述第一带宽包括所述第一频域分片;
    处理器,用于根据所述前导码打孔指示信息确定被分配的资源。
  15. 如权利要求14所述的站点,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  16. 如权利要求14或15所述的站点,其特征在于,所述前导码打孔指示信息承载于第一前导码打孔信息字段,所述第一前导码打孔信息字段位于通用字段U-SIG字段。
  17. 一种接入点,其特征在于,所述接入点包括通信装置,所述通信装置包括:
    处理器,用于生成物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片;
    收发器,用于发送所述PPDU。
  18. 如权利要求17所述的站点,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  19. 一种站点,其特征在于,所述站点包括通信装置,所述通信装置包括:
    收发器,用于接收来自接入点的物理层协议数据单元PPDU,所述PPDU包括在第一频域分片内中传输的前导码打孔指示信息,所述前导码打孔指示信息用于指示第一频域分片内的用户未被分配资源单元,其中,传输所述PPDU的信道带宽包括所述第一频域分片;
    处理器,用于根据所述前导码打孔指示信息确定未被分配的资源。
  20. 如权利要求19所述的站点,其特征在于,所述前导码打孔指示信息还用于指示压缩模式,所述压缩模式下的PPDU为省略用户字段或资源分配子字段的PPDU,或者,所述压缩模式下的PPDU为简化资源分配子字段的PPDU。
  21. 一种芯片,其特征在于,所述芯片包括至少一个处理器和接口,所述处理器用于读取并执行存储器中存储的指令,当所述指令被运行时,使得所述芯片执行如权利要求1-3 或4-6或7-8或9-10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1-3或4-6或7-8或9-10任一项所述的方法。
PCT/CN2021/097971 2020-06-19 2021-06-02 一种资源指示方法及接入点和站点 WO2021254152A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020237001641A KR20230024995A (ko) 2020-06-19 2021-06-02 자원 지시 방법, 액세스 포인트 및 스테이션
AU2021294097A AU2021294097B2 (en) 2020-06-19 2021-06-02 Resource indication method, access point, and station
CA3187604A CA3187604A1 (en) 2020-06-19 2021-06-02 Resource indication method, access point, and station
MX2022016569A MX2022016569A (es) 2020-06-19 2021-06-02 Método, punto de acceso y estación de indicación de recursos.
JP2022578649A JP7525667B2 (ja) 2020-06-19 2021-06-02 リソースインジケーション方法、アクセスポイント、及びステーション
EP21825404.3A EP4161192B1 (en) 2020-06-19 2021-06-02 Resource indication method, access point and station
BR112022025773A BR112022025773A2 (pt) 2020-06-19 2021-06-02 Método de indicação de recurso, ponto de acesso, e estação
US17/985,355 US11979342B2 (en) 2020-06-19 2022-11-11 Resource indication method, access point, and station
AU2023274144A AU2023274144A1 (en) 2020-06-19 2023-11-29 Resource indication method, access point, and station
US18/423,260 US20240243860A1 (en) 2020-06-19 2024-01-25 Resource indication method, access point, and station
JP2024114734A JP2024133290A (ja) 2020-06-19 2024-07-18 リソースインジケーション方法、アクセスポイント、及びステーション

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010569190.4A CN113825230A (zh) 2020-06-19 2020-06-19 一种资源指示方法及接入点和站点
CN202010569190.4 2020-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/985,355 Continuation US11979342B2 (en) 2020-06-19 2022-11-11 Resource indication method, access point, and station

Publications (1)

Publication Number Publication Date
WO2021254152A1 true WO2021254152A1 (zh) 2021-12-23

Family

ID=78924759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097971 WO2021254152A1 (zh) 2020-06-19 2021-06-02 一种资源指示方法及接入点和站点

Country Status (10)

Country Link
US (2) US11979342B2 (zh)
EP (1) EP4161192B1 (zh)
JP (2) JP7525667B2 (zh)
KR (1) KR20230024995A (zh)
CN (3) CN116193601B (zh)
AU (2) AU2021294097B2 (zh)
BR (1) BR112022025773A2 (zh)
CA (1) CA3187604A1 (zh)
MX (1) MX2022016569A (zh)
WO (1) WO2021254152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024160274A1 (en) * 2023-02-02 2024-08-08 Mediatek Inc. Method for announcing puncturing pattern to access point and associated wireless communication device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220045788A1 (en) * 2020-08-07 2022-02-10 Mediatek Singapore Pte. Ltd. Signaling Of Punctured Sub-Channels In Wireless Communications
WO2023168709A1 (en) * 2022-03-11 2023-09-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access point, station, and wireless communication method
WO2024020973A1 (zh) * 2022-07-28 2024-02-01 Oppo广东移动通信有限公司 通信方法和站点
CN117729506A (zh) * 2022-09-09 2024-03-19 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108135032A (zh) * 2014-11-13 2018-06-08 英特尔Ip公司 用于信道资源分配的信令的方法及高效Wi-Fi站和接入点
US20190141570A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Techniques for preamble puncturing

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693532B2 (en) * 2014-09-03 2020-06-23 Newracom, Inc. Operation method of station in wireless local area network
CN112073168A (zh) 2016-02-06 2020-12-11 华为技术有限公司 一种无线局域网中信道指示的方法和装置
US10728861B2 (en) * 2017-10-11 2020-07-28 Qualcomm Incorporated Spectral mask and flatness for wireless local area networks
US11159207B2 (en) 2018-01-10 2021-10-26 Mediatek Singapore Pte. Ltd. Null data packet sounding for preamble puncture techniques
US10880066B2 (en) * 2018-01-30 2020-12-29 Qualcomm Incorporated Multiplexing clients in wireless local area network transmissions
US11044056B2 (en) * 2018-02-01 2021-06-22 Mediatek Singapore Pte. Ltd. Enhanced resource unit allocation schemes for OFDMA transmission in WLAN
US20190288895A1 (en) 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
CN116405159A (zh) * 2018-07-17 2023-07-07 华为技术有限公司 一种通信方法及装置
WO2020040622A1 (ko) 2018-08-24 2020-02-27 엘지전자 주식회사 무선랜 시스템에서 프리앰블 펑처링이 수행된 광대역에서 ppdu를 전송하는 방법 및 장치
US11245501B2 (en) * 2018-09-04 2022-02-08 Qualcomm Incorporated Multi-access point scheduling in wireless local area networks
US11128505B2 (en) 2019-02-06 2021-09-21 Intel Corporation And Intel Ip Corporation Channel width, spatial streams, and short packet signaling
US11546938B2 (en) * 2019-08-09 2023-01-03 Qualcomm Incorporated Physical layer preamble and signaling for wireless communication
US20210212035A1 (en) * 2019-12-05 2021-07-08 Wilus Institute Of Standards And Technology Inc. Signalling method through resource allocation in wireless communication system and wireless communication terminal
CN118199801A (zh) 2020-01-10 2024-06-14 Lg 电子株式会社 无线lan系统中接收ppdu的方法和装置
WO2021162318A1 (ko) * 2020-02-11 2021-08-19 엘지전자 주식회사 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
US11671943B2 (en) * 2020-04-06 2023-06-06 Lg Electronics Inc. Techniques for allocating a resource unit in wireless local area network system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108135032A (zh) * 2014-11-13 2018-06-08 英特尔Ip公司 用于信道资源分配的信令的方法及高效Wi-Fi站和接入点
US20190141570A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Techniques for preamble puncturing
CN111295858A (zh) * 2017-11-06 2020-06-16 高通股份有限公司 用于前置码穿孔的技术

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Inband leakage and blocking of wideband operation in NR-U", 3GPP DRAFT; R1-1812674, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051554632 *
See also references of EP4161192A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024160274A1 (en) * 2023-02-02 2024-08-08 Mediatek Inc. Method for announcing puncturing pattern to access point and associated wireless communication device

Also Published As

Publication number Publication date
AU2021294097A1 (en) 2023-02-02
JP2024133290A (ja) 2024-10-01
JP7525667B2 (ja) 2024-07-30
AU2021294097B2 (en) 2023-08-31
CN115715019A (zh) 2023-02-24
CA3187604A1 (en) 2021-12-23
JP2023530024A (ja) 2023-07-12
US20240243860A1 (en) 2024-07-18
EP4161192A1 (en) 2023-04-05
CN116193601A (zh) 2023-05-30
BR112022025773A2 (pt) 2023-01-10
MX2022016569A (es) 2023-04-14
AU2023274144A1 (en) 2023-12-21
EP4161192B1 (en) 2024-10-30
KR20230024995A (ko) 2023-02-21
CN113825230A (zh) 2021-12-21
US20230085448A1 (en) 2023-03-16
CN116193601B (zh) 2023-08-22
EP4161192A4 (en) 2023-11-01
US11979342B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2021254152A1 (zh) 一种资源指示方法及接入点和站点
WO2020019928A1 (zh) 资源单元指示方法、装置及存储介质
WO2020015650A1 (zh) 一种通信方法及装置
WO2020233214A1 (zh) 资源分配的指示方法及装置
WO2021043111A1 (zh) 数据传输方法及装置
US20220345276A1 (en) Resource allocation signalng in a wireless local area network preamble
WO2021139808A1 (zh) 一种信息指示方法及通信装置
WO2021180203A1 (zh) 数据传输方法及设备、芯片系统、计算机可读存储介质
KR20210150540A (ko) 다수의 주파수 세그먼트에서의 동시 전송
WO2021180231A1 (zh) 一种资源单元合并指示方法及通信装置
RU2803914C1 (ru) Способ обозначения ресурсов, точка доступа и станция
WO2024222642A1 (zh) 一种信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578649

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3187604

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021294097

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025773

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022025773

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221216

ENP Entry into the national phase

Ref document number: 20237001641

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202337003042

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021825404

Country of ref document: EP

Effective date: 20221229

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021294097

Country of ref document: AU

Date of ref document: 20210602

Kind code of ref document: A