WO2020015650A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020015650A1
WO2020015650A1 PCT/CN2019/096196 CN2019096196W WO2020015650A1 WO 2020015650 A1 WO2020015650 A1 WO 2020015650A1 CN 2019096196 W CN2019096196 W CN 2019096196W WO 2020015650 A1 WO2020015650 A1 WO 2020015650A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
site information
sta
site
fields
Prior art date
Application number
PCT/CN2019/096196
Other languages
English (en)
French (fr)
Inventor
淦明
贾嘉
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19837384.7A priority Critical patent/EP3817258B1/en
Priority to EP23168119.8A priority patent/EP4243309A3/en
Publication of WO2020015650A1 publication Critical patent/WO2020015650A1/zh
Priority to US17/150,869 priority patent/US11984972B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and device.
  • the 802.11ax protocol proposes a multi-user frame format, namely a high-efficiency multi-user physical layer protocol data unit (HEPDU).
  • the frame format includes a traditional preamble (L-preamble), a high-efficiency preamble (HE-preamble), and a physical layer convergence service protocol data. unit (PSDU), where the HE-preamble includes repeated traditional signaling (RL-SIG), high efficiency signaling A (HE-SIG-A), and high efficiency signaling B (high efficiency signal B, HE-SIG-B), high efficiency short training field (HE-STF), high efficiency long training field (HE-LTF), etc.
  • the PSDU includes a data field and a packet extension (PE) field.
  • PE packet extension
  • the RL-SIG and HE-SIG-A fields in the L-preamble and HE-preamble are copied and transmitted every 20 MHz
  • the HE-SIG B uses the "1212" transmission method, that HE-SIG B includes two HE-SIG B content channels, one content channel is transmitted at each odd 20 MHz in the transmission bandwidth, and contains resource allocation information for the multiple odd 20 MHz and site information transmitted at the multiple odd 20 MHz.
  • the other content channel is transmitted on each even 20MHz in the transmission bandwidth, and includes the resource allocation information of the multiple even 20MHz and the site information transmitted on the multiple even 20MHz.
  • the contents transmitted by the two HE-SIG B content channels may be different, they are required to have the same number of orthogonal frequency division multiplexing (OFDM) symbols. Therefore, additional operations are needed to balance parity
  • OFDM orthogonal frequency division multiplexing
  • the present application provides a communication method and device, which are used to solve the technical problem that in the prior art, when two content channels are used to transmit HE-SIG B, additional operations are required to balance the length of signaling information carried on the parity channel.
  • an embodiment of the present application provides a communication method.
  • the method includes:
  • the access point AP generates a first frame, where the first frame includes P site information fields, and each of the P site information fields corresponds to a resource unit RU allocated by the first site STA, where P is greater than A positive integer of 1, each of the site information fields further includes end indication information, where the end indication information is used to indicate whether the site information field is the last one of the P site information fields; the AP sends Sending, by the first STA, the first frame.
  • the AP may allocate P RUs to the first STA, and indicate the P RUs to the first STA through the P site information field in the first frame.
  • the resource allocation method of the AP may be more It is flexible and effectively improves the frequency selection gain of OFDMA system and increases the system capacity.
  • each site information field may further include End indication information, used to indicate whether the site information field is the last site information field in the P site information fields.
  • End indication information used to indicate whether the site information field is the last site information field in the P site information fields.
  • each site information field in the first frame may include end indication information, and the end indication information may have multiple possible implementation manners.
  • the site information field related to the first STA as an example, one possible implementation manner is that the end indication information is located in the first indication field in each site information field, and when the value of the first indication field is the first value, Indicates that the site information field is the last site information field in the P site information fields, and when the value of the first indication field is the second value, it indicates that the site information field is not the last site information field in the P site information fields.
  • the end indication information is the modulation and coding strategy MCS field in the station information field, and the same MCS is used when the RUs assigned to the same STA carry data information; the value of the MCS field is the RU bearer data
  • MCS modulation and coding strategy
  • the value of the MCS field is a specific MCS, it means that the site information field is not the last of the P site information fields.
  • the last site information field in the P site information fields related to the first STA can be effectively distinguished from other site information fields, thereby
  • the first STA reads a site information field
  • the value of the first indication field in the site information field is the first value
  • the first indication field in other site information fields before the site information field is
  • the value is the second value
  • the value of the MCS field in the site information field is the MCS used when the RU carries data
  • the value of the MCS field in other site information fields before the site information field is specific In MCS, it can be judged that the current site information field is the last site information field related to itself, and then the subsequent unrelated site information fields are no longer read to achieve the effect of reducing power consumption.
  • the first frame is a downlink physical layer protocol data unit PPDU
  • the downlink PPDU includes a second extremely high-throughput EHT signaling field
  • the second EHT signaling field includes a resource allocation indication Information and multiple site information fields including the P site information fields
  • the resource allocation indication information is used to indicate that the transmission bandwidth of the downlink PPDU is divided into multiple RUs
  • the P site information fields are in The positions in the multiple station information fields and the resource allocation indication information jointly determine the RU to which the first STA is allocated.
  • the P RUs allocated to the first STA are used to collectively carry the same data frame of the first STA, or respectively bear multiple data frames of the first STA.
  • multiple RUs allocated for the first STA have multiple possible implementations when carrying data information.
  • P RUs can be carried by coded bit distribution or data frame segmentation.
  • the same data frame of the first STA, or each RU may be used to carry a data frame of the first STA, thereby effectively improving the flexibility of data transmission.
  • an embodiment of the present application provides another communication method.
  • the method includes:
  • a first station STA receives a first frame sent by an access point AP, the first frame includes P station information fields, and each of the P station information fields corresponds to a resource allocated by the first station STA
  • the unit RU P is a positive integer greater than 1, and each site information field further includes end indication information, where the end indication information is used to indicate whether the site information field is the last site information in the P site information fields Field; the first STA receives or sends data information according to the allocated P RUs.
  • the AP may allocate P RUs to the first STA, and indicate the P RUs to the first STA through the P site information field in the first frame.
  • the resource allocation method of the AP may be more It is flexible and effectively improves the frequency selection gain of OFDMA system and increases the system capacity.
  • each site information field may further include End indication information, used to indicate whether the site information field is the last site information field in the P site information fields.
  • End indication information used to indicate whether the site information field is the last site information field in the P site information fields.
  • each site information field in the first frame may include end indication information, and the end indication information may have multiple possible implementation manners.
  • the site information field related to the first STA is an example, one possible implementation manner is that the end indication information is located in the first indication field in each site information field, and the first STA determines that the value of the first indication field is The first valued site information field is the last site information field of the P site information fields, and the first indication field has a second value.
  • the site information field is not the P site information fields.
  • the end indication information is the modulation and coding strategy MCS field in the station information field, and the same MCS is used when the RUs allocated to the same STA carry data information; the first STA determines that the MCS field The value of the MCS site information field used when the RU carries data is the last site information field of the P site information fields, and the value of the MCS field is not the P site information field of the specific MCS The last site information field in the site information field.
  • the last site information field in the P site information fields related to the first STA can be effectively distinguished from other site information fields, thereby
  • the first STA reads a site information field
  • the value of the first indication field in the site information field is the first value
  • the first indication field in other site information fields before the site information field is
  • the value is the second value
  • the value of the MCS field in the site information field is the MCS used when the RU carries data
  • the value of the MCS field in other site information fields before the site information field is specific In MCS, it can be judged that the current site information field is the last site information field related to itself, and then the subsequent unrelated site information fields are no longer read to achieve the effect of reducing power consumption.
  • the first frame is a downlink physical layer protocol data unit PPDU
  • the downlink PPDU includes a second extremely high-throughput EHT signaling field
  • the second EHT signaling field includes a resource allocation indication Information and multiple site information fields including the P site information fields
  • the resource allocation indication information is used to indicate that the transmission bandwidth of the downlink PPDU is divided into multiple RUs
  • the P site information fields are in The positions in the multiple station information fields and the resource allocation indication information jointly determine the RU to which the first STA is allocated.
  • the P RUs allocated to the first STA are used to collectively carry the same data frame of the first STA, or respectively bear multiple data frames of the first STA.
  • multiple RUs allocated for the first STA have multiple possible implementations when carrying data information.
  • P RUs can be carried by coded bit distribution or data frame segmentation.
  • the same data frame of the first STA, or each RU may be used to carry a data frame of the first STA, thereby effectively improving the flexibility of data transmission.
  • an embodiment of the present application provides a communication method.
  • the method includes:
  • the access point AP generates a trigger frame; the trigger frame includes P site information fields, each of the P site information fields corresponds to a resource unit RU allocated by the first site STA, and the P sites The station information fields are arranged continuously, and P is a positive integer greater than 1.
  • the AP sends the trigger frame to the first STA.
  • the AP may allocate P RUs to the first STA (P is a positive integer greater than or equal to 1), and indicate the P RUs to the first STA through the P site information field in the trigger frame. Because the P site information fields used to indicate the RU allocated to the first STA are continuously arranged, there is no need to set additional end instruction information in the site information field.
  • the first STA reads each site information field, it reads When you get a site information field and find that the site information field includes the identity of other STAs, you can determine that the RU assigned to the AP has completed the indication.
  • the previous site information field is the last site information field related to itself. This effectively reduces the power consumption of the STA.
  • the P RUs allocated to the first STA are used to collectively carry the same data frame of the first STA, or respectively bear multiple data frames of the first STA.
  • multiple RUs allocated for the first STA also have multiple possible implementations when carrying uplink data information.
  • P RUs can be distributed by encoding bits or data frame segmentation, etc.
  • the method carries the same data frame of the first STA, or each RU can be used to carry one data frame of the first STA, thereby effectively improving the flexibility of data transmission.
  • an embodiment of the present application provides another communication method, and the method includes:
  • the first site STA receives a trigger frame sent by the access point AP; the trigger frame includes P site information fields, and each of the P site information fields corresponds to a resource unit RU allocated by the first site STA And the P site information fields are continuously arranged, P is a positive integer greater than 1, and the first STA sends data information according to the allocated P RUs.
  • the AP may allocate P RUs to the first STA (P is a positive integer greater than or equal to 1), and indicate the P RUs to the first STA through the P site information field in the trigger frame. Because the P site information fields used to indicate the RU allocated to the first STA are continuously arranged, there is no need to set additional end instruction information in the site information field.
  • the first STA reads each site information field, it reads When you get a site information field and find that the site information field includes the identity of other STAs, you can determine that the RU assigned to the AP has completed the indication.
  • the previous site information field is the last site information field related to itself. This effectively reduces the power consumption of the STA.
  • the P RUs allocated to the first STA are used to jointly carry the same data frame sent by the first STA, or the P RUs are used to separately carry the first STA. Multiple data frames.
  • multiple RUs allocated for the first STA also have multiple possible implementations when carrying uplink data information.
  • P RUs can be distributed by encoding bits or data frame segmentation, etc.
  • the method carries the same data frame of the first STA, or each RU can be used to carry one data frame of the first STA, thereby effectively improving the flexibility of data transmission.
  • an embodiment of the present application provides a communication method.
  • the method includes:
  • the access point AP generates a downlink physical layer protocol data unit PPDU, where the downlink PPDU includes a second extremely high-throughput EHT signaling field; the AP sends the downlink PPDU to a first site STA; and the second EHT signaling
  • the field is duplicated and transmitted in a unit of a second bandwidth within the transmission bandwidth range of the downlink PPDU.
  • the second bandwidth is 2 N times the first bandwidth, and N is 0 or a positive integer.
  • the second EHT signaling field in the downlink PPDU may be transmitted using 2N times the first bandwidth or the first bandwidth as a unit.
  • 2N times the first bandwidth is used as a unit to transmit
  • the technical problem of using two content channels to transmit the second EHT signaling field to balance the signaling information length carried on the odd content channel and the even content channel can be effectively avoided.
  • the field carries more signaling information to better support OFDMA transmission in a large bandwidth.
  • the effect of transmitting the second EHT field by means of puncturing by the previous code can be achieved in a scenario where the transmission bandwidth of the downlink PPDU is a small bandwidth or a discontinuous bandwidth.
  • the downlink PPDU further includes a traditional preamble field, a binary phase shift keying BPSK symbol field, and a first EHT signaling field;
  • the first EHT signaling field includes M channel estimates Subcarrier, the M value is the channel estimate provided by the AP according to the number of subcarriers used in the second EHT signaling field, the traditional preamble, and the PBSK symbol field within the second bandwidth range The number of subcarriers is determined, and M is a positive integer.
  • the M channel estimated subcarriers in the first EHT signaling field can transmit the extra data in the second EHT signaling field when the second EHT field is transmitted in a unit of 2N times the large bandwidth of the first bandwidth.
  • the subcarrier performs channel estimation so that the first STA can decode correctly after receiving the downlink PPDU.
  • the downlink PPDU further includes first indication information, where the first indication information is used to indicate whether the N value is a positive integer.
  • the first STA can know the transmission mode of the second EHT signaling field in time.
  • the first indication information indicates that the N value is a positive integer, it indicates that the AP uses 2N times the first bandwidth.
  • the second EHT signaling field is transmitted as a unit.
  • the first indication information indicates that the N value is 0, it indicates that the AP transmits the second EHT signaling field in the first bandwidth unit (that is, by using a preamble puncturing method), so that The first STA can correctly decode the signaling information carried in the second EHT signaling field according to the transmission bandwidth of the second EHT signaling field.
  • the first indication information is located in one of the traditional preamble, the first EHT signaling field, and the BPSK symbol field.
  • an embodiment of the present application further provides another communication method, and the method includes:
  • the first station STA receives a downlink physical layer protocol data unit PPDU sent by the access point AP.
  • the downlink PPDU includes a second extremely high-throughput EHT signaling field, and the second EHT signaling field is transmitted in the downlink PPDU. Copy transmission within a bandwidth range using a second bandwidth unit, where the second bandwidth is 2 N times the first bandwidth, and N is 0 or a positive integer; the first STA decodes the second bandwidth according to the second bandwidth Signaling information in the EHT signaling field.
  • the second EHT signaling field in the downlink PPDU may be transmitted using 2N times the first bandwidth or the first bandwidth as a unit.
  • the technical problem of using the two content channels to transmit the second EHT signaling field to balance the signaling information length carried on the odd content channel and the even content channel can be effectively avoided.
  • the field carries more signaling information to better support OFDMA transmission in a large bandwidth.
  • the downlink PPDU further includes a traditional preamble field, a binary phase shift keying BPSK symbol field, and a first EHT signaling field;
  • the first EHT signaling field includes M channel estimates Subcarrier, the M value is the channel estimate provided by the AP according to the number of subcarriers used in the second EHT signaling field, the traditional preamble, and the PBSK symbol field within the second bandwidth range The number of subcarriers is determined, and M is a positive integer.
  • the first STA may estimate the subcarriers based on the M channels. Perform channel estimation on the extra data subcarriers in the second EHT signaling field, and then correctly decode the downlink PPDU.
  • the downlink PPDU further includes first indication information; the method further includes: the first STA determines the second value according to the N value indicated by the first indication information bandwidth.
  • the first STA can know the transmission mode of the second EHT signaling field in time.
  • the first indication information indicates that the N value is a positive integer, it indicates that the AP uses 2N times the first bandwidth.
  • the second EHT signaling field is transmitted as a unit.
  • the first indication information indicates that the N value is 0, it indicates that the AP transmits the second EHT signaling field in the first bandwidth unit (that is, by using a preamble puncturing method), so that The first STA can correctly decode the signaling information carried in the second EHT signaling field according to the transmission bandwidth of the second EHT signaling field.
  • the first indication information is located in one of the traditional preamble, the first EHT signaling field, and the BPSK symbol field.
  • an embodiment of the present application further provides a communication method, where the method includes:
  • An access point AP determines a transmission bandwidth; the transmission bandwidth is used to communicate with one or more stations STA, and the transmission bandwidth is 240 MHz or 320 MHz; the access point determines a resource unit RU division of the transmission bandwidth, and the The transmission bandwidth is divided into at least one resource unit RU, where each RU includes at least one subcarrier, the at least one subcarrier has a fixed position; the access point is divided according to the resource unit RU of the transmission bandwidth, and Said one or more STA communication.
  • the at least one resource unit RU includes any one or any of the following: 26 subcarrier RU, 52 subcarrier RU, 106 subcarrier RU, 242 subcarrier RU, 484 subcarrier RU, 996 subcarrier RU.
  • the first bandwidth is 240 MHz.
  • the first bandwidth includes, from low frequency to high frequency, 12 left-band subcarriers, 3 996 sub-carriers RU, and 11 right-band sub-carriers.
  • the center of the 996 subcarrier RU in the middle position also includes 51 DC subcarriers, and the center of each of the 996 subcarrier RUs in the first and last two 996 subcarrier RUs also includes 5 empty subcarriers.
  • the first bandwidth is 240 MHz.
  • the first bandwidth includes, from low frequency to high frequency, 12 left-band subcarriers, 3 996 sub-carriers RU, and 11 right-band sub-carriers.
  • the center of the 996 subcarrier RU in the middle position also includes 25 DC subcarriers, and one 26 subcarrier RU distributed on both sides of the 25 DC subcarriers.
  • the center of the 996 subcarrier RU includes 5 empty subcarriers.
  • the first bandwidth is 320 MHz.
  • the first bandwidth includes, from low frequency to high frequency, 12 left-band subcarriers, 4 996 subcarriers RU, and 11 right-band subcarriers.
  • the center of each of the 996 subcarrier RUs includes 5 empty subcarriers, and between the second 996 subcarrier RU and the third 996 subcarrier RU, 69 DC subcarriers are included.
  • the first bandwidth is 320 MHz.
  • the first bandwidth includes, from low frequency to high frequency, 12 left-band subcarriers, 4 996 subcarriers RU, and 11 right-band subcarriers.
  • the center of each 996 subcarrier RU among the 4 996 subcarrier RUs includes 5 empty subcarriers, and 17 DC subcarriers are included between the second 996 subcarrier RU and the third 996 subcarrier RU, and the distribution One 52 subcarrier RU on either side of the 17 DC subcarriers.
  • an embodiment of the present application provides a device applied to an access point.
  • the device may be an access point or a chip in the access point.
  • the device has any function related to an access point in any one of the first, third, fifth, and seventh aspects described above. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the access point when the device is an access point, the access point may include a processor and a transceiver, and the processor is configured to support the access point to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the access point and the station, and sends the information or instructions involved in the above method to the station.
  • the access point may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the access point.
  • the apparatus includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of various circuits
  • the baseband circuit is used to generate various types of signaling and messages, such as generating downlink PPDUs, which are processed by the RF circuit for analog conversion, filtering, amplification, and upconversion, and then sent by the antenna To the first STA.
  • the device may further include a memory, which stores program instructions and data necessary for the access point.
  • the chip when the device is a chip in an access point, the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor.
  • the processor is used to generate various types of Messages and signaling, and encode, modulate, and amplify various types of messages after being encapsulated in accordance with the protocol.
  • the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages;
  • the transceiver module For example, it can be an input / output interface, a pin, or a circuit on the chip.
  • the processing module can execute computer execution instructions stored in the storage unit to support the access point to perform corresponding functions in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the access point, such as a read-only memory (read- only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the device may include a processor and a modem.
  • the processor may be used to run instructions or an operating system to control the functions of the access point.
  • the modem may encapsulate, encode, and decode data according to a protocol. , Modulation, demodulation, equalization, etc. to generate a wireless frame to support the access point AP to perform the corresponding function in any one of the first, third, fifth, and seventh aspects described above.
  • the apparatus includes a processor, which is configured to be coupled to the memory, read the instructions in the memory, and execute the first aspect, the third aspect, the fifth aspect, and the first aspect according to the instructions.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more Integrated circuit for controlling program execution of the communication method of the above aspects.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • an embodiment of the present application provides a device applied to a site, and the device has any function that implements any one of the second, fourth, and sixth aspects related to the first station.
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the device may be a first station, where the first station includes a processor and a transceiver, and the processor is configured to support the first station STA to perform a corresponding function in the foregoing method.
  • the transceiver is configured to support communication between the first STA and the access point, and receive information or instructions involved in the foregoing method sent by the access point.
  • the first station STA may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the first station STA.
  • the device includes: a processor, a memory, a transceiver, an antenna, and an input-output device.
  • the processor is mainly used to control the entire device and execute computer program instructions to support the device to perform the actions described in any one of the method embodiments of the second aspect, the fourth aspect, and the sixth aspect.
  • the memory is mainly used to store and save the necessary program instructions and data of the first site.
  • the transceiver is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the device may be a chip in the first site, and the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor.
  • the processor is used to generate various types of messages. And signaling, and after the various messages are encapsulated according to the protocol, encoding, modulation, amplification, and other processing are performed, the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages; the transceiver module, such as It can be the input / output interface, pins or circuits on the chip.
  • the processing module may execute computer execution instructions stored in the storage unit to support the first station STA to perform corresponding functions in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the first site, such as a read-only Memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), and so on.
  • ROM read-only Memory
  • RAM random access memory
  • the device may include a processor and a modem.
  • the processor may be used to run instructions or an operating system to control the functions of the first site.
  • the modem may encapsulate, encode, and decode data according to a protocol. , Modulation, demodulation, equalization, etc. to generate a wireless frame to support the first site AP to perform the corresponding function in any one of the second, fourth, and sixth aspects described above.
  • the apparatus includes a processor, which is configured to be coupled to the memory, and read an instruction in the memory and execute any one of the second aspect, the fourth aspect, and the sixth aspect according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more Integrated circuit for controlling program execution of the communication method of the above aspects.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to execute the method in any one of the first aspect, the third aspect, the fifth aspect, the seventh aspect, or any possible implementation thereof.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to execute the method in any one of the second aspect, the fourth aspect, the sixth aspect, or any possible implementation thereof.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute any one of the first aspect, the third aspect, the fifth aspect, the seventh aspect, or any of its possible Method of implementation.
  • a computer program product containing instructions which, when run on a computer, causes the computer to execute any one of the second aspect, the fourth aspect, the sixth aspect, or any possible implementation thereof.
  • the present application provides a chip system including a processor, which is configured to support an access point to implement the functions involved in the first aspect, the third aspect, the fifth aspect, and the seventh aspect, for example, Generate or process the data and / or information involved in each of the above aspects.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system including a processor, configured to support a first STA to implement the functions involved in the second, fourth, and sixth aspects, such as generating or processing. Data and / or information involved in each of the above.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a wireless communication system, which includes at least one access point and at least one first station involved in the foregoing aspects.
  • FIG. 1 is a schematic diagram of a frame structure of an HE MU PPDU according to an embodiment of the present application
  • FIG. 2 is a network architecture diagram of a wireless local area network applicable to an embodiment of the present application
  • FIG. 3 is an internal structure diagram of an access point and a station according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource division when a spectrum bandwidth provided by an embodiment of the present application is 80 MHz;
  • FIG. 5 is a schematic flowchart of a communication method according to Embodiment 1 of the present application.
  • FIG. 6 is a schematic diagram of RU allocation according to an embodiment of the present application.
  • FIG. 7 is a frame structure of a downlink MU PPDU according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a frame of a second EHT signaling field in a downlink MU PPDU frame according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a frame structure of a trigger frame according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method provided in Embodiment 2 of the present application.
  • FIG. 11 is a schematic flowchart of a communication method provided in Embodiment 3 of the present application.
  • FIG. 12 is a schematic diagram of a downlink HE MU PPDU transmission structure provided in Embodiment 3 of the present application.
  • FIG. 13 is a schematic diagram of another downlink HE MU PPDU transmission structure provided in Embodiment 3 of the present application.
  • FIG. 14 is a schematic diagram of another downlink HE MU PPDU transmission structure provided in Embodiment 3 of the present application.
  • FIG. 16 and FIG. 17 are schematic diagrams of a spectrum division manner of a 240 MHz ultra-large bandwidth according to an embodiment of the present application
  • FIG. 18 and FIG. 19 are schematic diagrams of a spectrum division manner of a super large bandwidth of 320 MHz according to an embodiment of the present application.
  • Figure 20 shows the first 802.11ax 80M bandwidth multi-user punching mode
  • Figure 21 shows the second 802.11ax 80M bandwidth multi-user punching mode
  • Figure 22 is a multi-user punching mode of 802.11ax 160M bandwidth
  • Figure 23 shows the second 802.11ax 160M multi-user punching mode
  • FIG. 24 is a PPDU structure of 802.11ac
  • 25 is a schematic structural diagram of a device applied to an AP side according to an embodiment of the present application.
  • FIG. 26 is another schematic structural diagram of a device applied to an AP side according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a device applied to a first STA side according to an embodiment of the present application.
  • FIG. 28 is another schematic structural diagram of a device applied to a first STA side according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • the technical solutions of the embodiments of the present application may also be applicable to a wireless local area network (WLAN) scenario, and may be applicable to IEEE 802.11 system standards, such as the IEEE 802.11ax standard, or its next-generation or next-generation standard. And it can be applied to wireless local area network systems such as, but not limited to, Internet of Things (IoT) networks or Vehicle ToX (V2X) networks.
  • IEEE 802.11 system standards such as the IEEE 802.11ax standard, or its next-generation or next-generation standard.
  • wireless local area network systems such as, but not limited to, Internet of Things (IoT) networks or Vehicle ToX (V2X) networks.
  • IoT Internet of Things
  • V2X Vehicle ToX
  • FIG. 2 exemplarily illustrates a network architecture diagram of a WLAN applicable to the embodiment of the present application.
  • the WLAN includes an AP, and STA1 and STA2 associated with the AP.
  • the AP can schedule wireless resources for STA1 and STA2, and transmit data for the STA1 and STA2 on the scheduled wireless resources, including uplink data information and / or downlink data information.
  • the WLAN system may further include more APs, and each AP may communicate with each other through a distributed system (DS). All APs can schedule radio resources for the STAs associated with them and / or unassociated STAs, and transmit data for the STAs on the scheduled radio resources. Further, each STA in the WLAN system can also communicate with each other. This embodiment of the present application does not specifically limit this.
  • the station STA involved in this application may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment, or other names with wireless communication functions, where the user terminal may include Various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), mobile stations (MS ), Terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device, or any other device configured for network communication via wireless media Suitable equipment etc.
  • UE user equipment
  • MS mobile stations
  • Terminal terminal equipment
  • portable communication device handset
  • portable computing device entertainment device
  • gaming device or system global positioning system device
  • global positioning system device or any other device configured for network communication via wireless media Suitable equipment etc.
  • stations or STAs for convenience of description, the devices mentioned above are collectively referred to as stations or STAs.
  • the access point AP involved in this application is a device that is deployed in a wireless communication network to provide wireless communication functions for its associated STAs.
  • the access point AP can be used as the center of the communication system, and can be a base station or router. , Gateway, repeater, communication server, switch or bridge and other communication equipment, wherein the base station may include various forms of macro base stations, micro base stations, relay stations, etc.
  • the above-mentioned devices are collectively referred to as an access point AP.
  • the APs and STAs involved in this application may be APs and STAs applicable to the IEEE 802.11 system standard.
  • FIG. 3 this is an internal structure diagram of the AP and the STA provided in the embodiment of the present application.
  • the 802.11 system standard focuses on the 802.11 physical layer (PHY) and media access control (MAC) parts. Therefore, the STAs provided in the embodiments of the present application are generally terminal products that support the MAC and PHY standards of the 802.11 system, such as mobile phones and notebook computers.
  • PHY physical layer
  • MAC media access control
  • the AP divides the spectrum bandwidth into several resource units (RUs).
  • the IEEE802.11ax protocol provides that for 20MHz, 40MHz, 80MHz, and 160MHz, the spectrum bandwidth can be divided into multiple types of resource units, including 26 subcarrier resource units, 52 subcarrier resource units, 106 subcarrier resource units, and 242 subcarrier resource units.
  • Maximum Resource Unit in 20MHz Bandwidth 484 Subcarrier Resource Unit (Maximum Resource Unit in 40MHz Bandwidth), 996 Subcarrier Resource Unit (Maximum Resource Unit in 80MHz Bandwidth), and 996 * 2 Subcarrier Resource Unit (Maximum in 160MHz Bandwidth) Resource unit).
  • Each resource unit (ie, RU) is composed of consecutive subcarriers.
  • 26 subcarrier resource units are composed of 26 consecutive subcarrier resource units.
  • FIG. 4 exemplarily illustrates resource division with a spectrum bandwidth of 80 MHz bandwidth.
  • the current 802.11ax protocol stipulates that only one STA is allowed to occupy one of the RUs in the spectrum bandwidth, that is, the data information of one STA can only be transmitted on consecutive subcarriers. Therefore, in the prior art, when the AP performs multi-user transmission, it will allocate the best RU to the most suitable STA. After the AP allocates one RU to one STA, if the remaining RUs in the spectrum bandwidth are not suitable for other STAs, then due to the limitation that only one RU can be allocated to one STA, these RUs may be idle and will not be allocated again To the first STA, it caused a waste of wireless resources and affected the throughput of the entire system.
  • FIG. 5 exemplarily illustrates a communication method provided by an embodiment of the present application. The method may include the following steps:
  • Step S501 The access point AP generates a first frame, where the first frame includes P site information fields, and each of the P site information fields corresponds to a resource unit RU allocated by the first site STA, P is a positive integer greater than 1, and each site information field further includes end indication information, where the end indication information is used to indicate whether the site information field is the last site information field of the P site information fields;
  • Step S502 The AP sends the first frame to a first STA.
  • Step S503 The first STA receives the first frame and receives or sends data information according to the allocated P RUs.
  • the AP may generate a first frame, where the first frame includes P site information fields, and each site information field in the P site information fields is used to indicate that the first site STA is allocated One RU. Since P is a positive integer greater than or equal to 1, in this embodiment, the AP can allocate P RUs to the first STA, and indicate each RU through a site information field.
  • the P RUs allocated by the AP to the first STA may be continuous or discontinuous in the spectrum bandwidth, which is not specifically limited in the embodiment of the present application.
  • the types of the P RUs (or the sizes of the RUs) may be the same or different, and are not specifically limited in the embodiment of the present application. For example, if P is 2, the two RUs allocated to the first STA may both be 26 subcarrier RUs (that is, resource units containing 26 subcarriers), or one of them may be a 26 subcarrier RU and the other 52 subcarriers. Carrier RU (that is, a resource unit including 52 subcarriers).
  • the RU can be a resource unit specified by IEEE 802.11, including the type and the corresponding subcarrier location, such as the resource unit of 802.11ax, or a resource unit that may be divided by other wireless communication systems to support OFDMA transmission. .
  • the AP can perform resource allocation based on the ability of the first STA to support the number of resource units simultaneously transmitted, and the first STA.
  • Information such as the amount of traffic to be transmitted determines the number of RUs allocated to the first STA and the type of each RU.
  • the STA may carry information about the number of resource units that it can simultaneously support transmission in the association request frame, so that the AP can reasonably schedule wireless resources according to the capabilities of the STA.
  • the WLAN system can also pre-set the number of resource units that each STA can support for transmission at the same time.
  • the WLAN system can also limit the number of resource units that STAs can support for transmission at the same time. Allocating a resource unit to each STA according to its own resource conditions is not specifically limited in this embodiment of the present application.
  • the P RUs allocated to the first STA may be used to carry the same data frame of the first STA together, where different RUs are used to carry different parts of the same data frame, and the bits may be encoded by encoding Distribution or data frame segmentation.
  • the P RUs allocated to the first STA may be used to respectively bear multiple data frames of the first STA.
  • the data frame carried on the RU may be a downlink data frame, such as an aggregate MAC layer protocol data unit (A-MPDU), or a single MAC layer protocol data unit (MPDU) ), Or may be an uplink data frame, which is not specifically limited in this embodiment of the present application. It is worth noting that the data frames involved in this application include data frames, control frames, and management frames in IEEE802.11.
  • FIG. 6 exemplarily shows a schematic diagram of RU allocation in the embodiment of the present application.
  • 4 STAs perform data transmission simultaneously on the spectrum bandwidth.
  • the first STA is allocated to RU1, RU4, and RU9
  • the second STA is allocated to RU2 and RU3
  • the third STA is allocated to RU5, RU6, and RU7
  • STA4 is allocated to RU8.
  • RU1, RU4, and RU9 can be used to carry a downlink data frame sent by the AP to the first STA.
  • the AP can use the bit parser at the sending end to allocate the encoded data frame to the STA according to certain rules.
  • RU1, RU4, and RU9 are used to transmit different parts of the data frame.
  • each of RU1, RU4, and RU9 is used to separately transmit a downlink data frame sent by the AP to the first STA.
  • an RU allocated by the AP to the STA may be indicated by a station information field.
  • the first frame includes at least P site information fields for indicating the P RUs.
  • the AP may allocate RUs in the spectrum bandwidth to multiple STAs for multi-user OFDMA transmission, and may also allocate one or more RUs in the spectrum bandwidth to multiple STAs for MU-MIMO transmission at the same time. Therefore, the number of site information fields actually contained in the first frame will be greater than P, that is, the first frame also includes the site information fields of other STAs that are transmitting data simultaneously with the first STA, so that each STA participating in the transmission can know The resource unit to which it is allocated.
  • each site information field also includes the STA's identity, and multiple STAs participating in simultaneous transmission
  • each STA in the UE only needs to read the signaling information in the site information field that contains its own identity, so as to determine the RU allocated by the AP to itself through the site information field.
  • the Q site information fields may be arranged in the order of the position of the RU indicated in the spectrum bandwidth by the own or corresponding resource allocation indication field.
  • the Q site information fields may be arranged in the order of RU from low frequency to high frequency. Or, it can also be arranged in order from high frequency to low frequency, which is not specifically limited in the embodiment of the present application. Since the P RUs allocated to the first STA may be discontinuous in the spectrum bandwidth, the P site information fields used to indicate the P RUs may also be discontinuously arranged in the Q site information fields.
  • each site information field in the first frame may further include end indication information, which is used to describe the position of the last site information field among multiple site information fields related to the same STA. If you have read the last site information field related to yourself, it indicates that all the RUs allocated by the AP for the STA have been indicated, and the STA does not need to continue to read other site information fields that are not related to it, which can effectively reduce the STA. Power consumption.
  • the foregoing end indication information may have multiple possible implementation manners.
  • the end indication information may be located in a first indication field in each site information field.
  • the value of the first indication field is the first value, it indicates that the site information field is in the P site information fields.
  • the value of the first site information field and the value of the first indication field is the second value, it indicates that the site information field is not the last site information field of the P site information fields.
  • the value of the first indication field in the site information field is the first value
  • the last one is divided Site information fields other than the site information field.
  • the value of the first indication field in these site information fields may be a second value different from the first value, so that the last site information field in the P site information fields may be Effectively distinguish it from other site information fields.
  • the first STA when the first STA reads a site information field, if it is determined that the site information field includes its own identifier, and the value of the first indication field in the site information field is the first set value, then It is determined that the site information field is the last site information field among the P site information fields, and the first STA may no longer read the subsequent site information fields, but may enter a state of preparing to send or receive data.
  • the first indication field may be a field occupying 1 or more bits in the site information field, and the value of the field may be 0 or 1.
  • the first value can be set to 1 and the second value can be set to 0, so that the value of the first indication field can effectively distinguish the last site information field among the P site information fields.
  • multiple RUs allocated to the same STA may use the same modulation and coding strategy (MCS), or may use different MCS, which is not specifically limited in this embodiment of the present application.
  • MCS modulation and coding strategy
  • the end indication information may be the MCS field in each site information field.
  • the value of the MCS field is the MCS used when the RU carries data, it indicates that the site information field is in the P site information fields.
  • the value of the last site information field of the MCS field is a specific MCS, it indicates that the site information field is not the last site information field of the P site information fields.
  • the value of the MCS field in the site information field may be the MCS used when the RU allocated for the first STA carries data; and There are other site information fields except the last site information field in the P site information fields.
  • the value of the MCS field in these site information fields can be a specific MCS.
  • the specific MCS may be a special, unused, unclear or invalid MCS value.
  • the current MCS field is generally represented by 4 bits, but the used MCS values with clear meanings only include 0 to 11, and 12 to 15 have not been used. Therefore, a certain MCS value from 12 to 15 can be used as the specific MCS value to indicate that the site information field where the specific MCS value is located is not the last site information field related to the current STA. .
  • the first frame involved in the above step S501 may be a downlink multi-user physical layer protocol data unit (multiple physical protocol data unit, MU PPDU) or a trigger frame.
  • the application scenario and frame structure of the downlink MU PPDU and the trigger frame are different, but when the AP allocates P RUs to the first STA, both the downlink MU PPDU and the trigger frame have the above-mentioned P site information fields.
  • the downlink MU PPDU in the embodiment of the present application is specifically applied to a scenario of downlink multi-user data transmission.
  • a downlink MU PPDU can be generated, and the RU assigned to each STA is indicated in the downlink MU PPDU, and the downlink data information to be sent to each STA is directly carried in the downlink MU PPDU.
  • the data field is sent to each STA, and the downlink data information of each STA is transmitted only on the RU allocated to itself.
  • the downlink MU PPDU can also be a next-generation extremely high-throughput multi-user physical layer protocol data unit (EHT MU PPDU) that is obtained based on the current 802.11ax protocol evolution. This is not specifically limited.
  • EHT MU PPDU next-generation extremely high-throughput multi-user physical layer protocol data unit
  • FIG. 7 exemplarily shows a frame structure of the downlink MU PPDU.
  • the downlink MU PPDU may include an L-preamble field, a binary phase shift keying (BPSK) symbol field, a first Extremely High Throughput (EHT) signaling field, Second EHT Signaling field, Extremely High Throughput Short Training Field (EHT-STF), Extremely High Throughput Long Training Field (EHT-STF), Extremely high throughtput, long training (EHT-LTF), data fields and other fields.
  • the P site information fields used to indicate the RU allocated to the first STA may be located in the second EHT signaling field.
  • the downlink MU PPDU may include an L-preamble field and a first EHT signaling field of BPSK modulation (if the first EHT signaling field contains multiple OFDM symbols, only the first OFDM symbols are BPSK modulation), the second EHT signaling field, the EHT-STF field, the EHT-LTF field, the data field, and other fields.
  • the subcarrier spacing of the EHT-LTF field, the third EHT-SIG field, and the data field is smaller than the subcarrier spacing of the traditional preamble field.
  • the former subcarrier spacing is 78.125KHz and the latter subcarrier spacing is 312.5KHz.
  • the function of the first EHT signaling field is similar to the function of the HE-SIG-A field in the HE-preamble portion of the current HE MU PPDU.
  • the first EHT signaling field may also be referred to as the EHT-SIG 1 field or EHT.
  • EHT EHT-SIG 1 field
  • EHT EHT
  • -The SIG A field or may have another name, which is not specifically limited in this embodiment of the present application.
  • the function of the above-mentioned second EHT signaling field is similar to the function of the HE-SIG-B field in the HE-preamble part of the current HE MU PPDU.
  • This second EHT signaling field may be called an EHT-SIG 2 field.
  • EHT-SIG B field or may have other names, which are not specifically limited in this embodiment of the present application.
  • the second EHT signaling field may include resource allocation indication information and Q site information fields including the P site information fields, where Q is a positive integer greater than or equal to P.
  • the resource allocation instruction information is used to indicate that a transmission bandwidth of the downlink PPDU is divided into several RUs.
  • the positions of the P site information fields related to the first STA in the Q site information fields and the resource allocation indication information jointly determine the RU to which the first STA is allocated.
  • FIG. 8 exemplarily illustrates a frame structure of a second EHT signaling field in a downlink MU PPDU frame provided by an embodiment of the present application.
  • the second EHT signaling field may include a common information field (common field) and User-specific fields, which can also be referred to as site-specific fields.
  • the resource allocation instruction information is located in the common information field, and is used to indicate that the spectrum bandwidth is divided into several RUs according to a certain spectrum order, and each RU corresponds to a site information field in the site-specific field in turn.
  • the resource allocation instruction information may be represented by multiple strings of bit sequences arranged in sequence according to a set spectral order, where a string of bits is used to represent a result of spectrum division within a unit spectrum bandwidth.
  • the above-mentioned spectrum order may be an RU arrangement order from low frequency to high frequency, or may also be an arrangement order from high frequency to low frequency.
  • This embodiment of the present application does not specifically limit this, but as long as the RU indicated in the resource allocation instruction information The order is the same as that of the site information fields in the site-specific fields.
  • the common information field may also include an indication of whether to participate in MU-MIMO transmission. For example, by carrying information indicating the number of stations corresponding to each resource unit, if the number of stations corresponding to a resource unit is 1, Single-user transmission is performed on a resource unit. If the number of stations corresponding to the resource unit is multiple, MU-MIMO transmission is performed on the resource unit. This embodiment of the present application does not specifically limit this.
  • the Q site information fields may be located in a site-specific field.
  • the site-specific field includes several site block fields, a cyclic redundancy check (CRC) field, and a tail bit field.
  • CRC cyclic redundancy check
  • the last site block field in the site-specific field contains one or two site information fields, the CRC field, and the tail field. All other site block fields except the last site block field include the two site information fields and the CRC field. And tail fields.
  • each site information field that does not participate in MU-MIMO transmission may include an 11-bit site identification, a 3-bit stream number, a 1-bit transmit beamforming, a 4-bit MCS, and a 1-bit Dual Carrier Modulation (DCM).
  • DCM Dual Carrier Modulation
  • a 1-bit coded indication a total of 21 bits; or, based on this, 1-bit end indication information is further included;
  • Each site information field participating in MU-MIMO transmission includes an 11-bit site identification, a 4-bit spatial stream configuration table, a 4-bit MCS, a 1-bit encoding indication, and a 1-bit reservation, a total of 21 bits; or, on this basis It also contains 1-bit end instruction information.
  • the trigger frame in the embodiment of the present application may be applied in a scenario of uplink multi-user data transmission.
  • the AP first sends a trigger frame to each STA participating in multi-user data transmission, and the trigger frame indicates the RU allocated to each STA. Subsequently, after receiving the trigger frame, each STA will simultaneously respond to an uplink OFDMA frame or MU-MIMO frame, or a mixed frame of OFDMA and MU-MIMO.
  • the AP may send an acknowledgement frame according to the received uplink ODFMA frame or MU-MIMO frame or a hybrid frame of OFDMA and MU-MIMO, and then trigger each STA to transmit uplink data information on the RU allocated by the AP.
  • FIG. 9 exemplarily illustrates a frame structure of a trigger frame provided in an embodiment of the present application.
  • the trigger frame may include a frame control field (frame control), a duration field (duration), and a receiver address (receiver address, RA). ), A transmission address (transmitter address, TA), a common information field (common info), Q station information fields (per STA info), a bit stuffing field, and a frame check sequence field (FCS).
  • frame control frame control
  • duration field duration field
  • RA receiver address
  • FCS frame check sequence field
  • the P site information fields used to indicate the RU allocated to the first STA are located in the Q site information fields, where Q is a positive integer greater than or equal to P.
  • Each site information field may be arranged in the order of the position of the RU in the spectrum bandwidth indicated by the RU.
  • the spectrum order may be the order of the RU from low frequency to high frequency, or the order of RU from high frequency to low frequency. Embodiments of the present application This is not specifically limited.
  • the functions of the common information field and site information field of the trigger frame are similar to the public information field and site information field of the second EHT signaling field in the downlink MU PPDU, but the difference is that the common information field in the trigger frame no longer carries the joint
  • the resource unit indicates information, but separate resource allocation information is placed in each site information field.
  • each site information field in the trigger frame contains a 1-bit association identifier, 8-bit resource unit indication information, 1-bit uplink error correction coding, 4-bit MCS, 1-bit uplink DCM, and 6-bit space.
  • Stream allocation 7-bit received signal strength indicator (RSSI), and several other special signaling indicator bits related to the trigger frame type.
  • RSSI received signal strength indicator
  • the embodiment of the present application is described by using any STA (ie, the first STA) associated with the AP as an example, and the same applies to other STAs.
  • the AP may also allocate P RUs to the same site set containing multiple sites at the same time, for example, to the first STA and the second STA, so that these STAs can be allocated to the P RUs.
  • Application of multi-user MU-MIMO transmission It can also be understood that the first site mentioned in the embodiment of the present application may be replaced with a first site set including multiple sites, that is, multiple sites in the first site set are used as MUs on corresponding P resource units. -MIMO transmission.
  • FIG. 10 exemplarily illustrates another communication method provided by an embodiment of the present application.
  • the method may include the following steps:
  • Step S1001 the access point AP generates a trigger frame; the trigger frame includes P site information fields, each of the P site information fields corresponds to a resource unit RU allocated by the first site STA, and The P site information fields are arranged consecutively, where P is a positive integer greater than 1.
  • Step S1002 The AP sends the trigger frame to the first STA.
  • Step S1003 The first STA receives the trigger frame, and sends uplink data information according to the allocated P RUs.
  • the application scenario and frame structure of the trigger frame involved in the embodiments of the present application, and other content except the end indication information in each site information field may be the same as those described in the first embodiment, and are not repeated here.
  • steps S1002 and S1003 that the AP sends a trigger frame to the first STA and the first STA receives the trigger frame, it should be understood that in the scenario of multi-user data transmission, the trigger frame here is sent to the participating multi-user A trigger frame for multiple STAs during data transmission.
  • the trigger frame may include Q station information fields for indicating the resources allocated to each STA, where Q is a positive integer equal to or greater than P.
  • each site information field in the trigger frame already includes independent resource unit indication information
  • multiple site information fields related to the same site may be consecutively arranged.
  • the end instruction information is set.
  • P site information fields including the identifier of the first STA may be continuously arranged. The same is true of other STAs participating in multi-user data transmission.
  • the station information field may include resource unit indication information of multiple resource units to which the related STA is allocated.
  • the information of the P RUs allocated to the first STA may be indicated in the same site information field.
  • the site identifiers included in the Q site information fields will be different from each other.
  • An embodiment of the present application provides a communication method for transmitting a second EHT signaling field in an EHT / MU PPDU using a large bandwidth.
  • FIG. 11 exemplarily shows a communication method provided by an embodiment of the present application, and the method may include the following steps:
  • Step S1101 the access point AP generates a downlink physical layer protocol data unit PPDU, where the downlink PPDU includes a second extremely high-throughput EHT signaling field;
  • Step S1102 the AP sends the downlink PPDU to the first STA;
  • the second EHT signaling field duplicates transmission in units of a second bandwidth within the transmission bandwidth range of the downlink PPDU, and the second bandwidth is the first 2 N times the bandwidth, where N is 0 or a positive integer;
  • Step S1103 The first STA receives a downlink PPDU sent by the AP, and decodes the signaling information in the second EHT signaling field according to the second bandwidth.
  • the downlink PPDU involved in step S1101 may be a next-generation ultra-high-throughput multi-user physical layer protocol data unit (extremely high throughtput multiple physical user protocol data unit, EHTMU) based on the current 802.11ax protocol evolution. PPDU).
  • EHTMU extreme high throughtput multiple physical user protocol data unit
  • FIG. 12 exemplarily shows the transmission structure of the EHT MU PPDU.
  • the EHT MU PPDU may include an L-preamble field, a binary phase shift keying (BPSK) symbol field, a first EHT signaling field, second EHT signaling field, extremely high throughput short training field (extremely high throughtput short training field, EHT-STF), extremely high throughput long training field (extremely high throughthroughput long training field, EHT-LTF ), Data fields, and other fields.
  • BPSK binary phase shift keying
  • the BPSK symbol field may not exist, but the first OFDM symbol of the first EHT signaling field is required to use the BPSK symbol.
  • the EHT MU PPDU may include an L-preamble field, and a first EHT signaling field for BPSK modulation (if the first EHT signaling field includes multiple OFDM symbols, it is only necessary to ensure that the first OFDM symbol is BPSK modulation),
  • the second EHT signaling field, EHT-STF field, EHT-LTF field, data field and other fields may be used.
  • the subcarrier spacing of the EHT-LTF field, the third EHT-SIG field, and the data field is smaller than the subcarrier spacing of the traditional preamble field.
  • the former subcarrier spacing is 78.125KHz and the latter subcarrier spacing is 312.5KHz.
  • the receiving end of 802.11n Since the receiving end of 802.11n performs automatic detection by judging the constellation point mapping method of the first OFDM field after L-SIG, when the first field of the new physical layer preamble uses the constellation point mapping method QBPSK, there will be The following problem:
  • the receiving end of 802.11n uses rotation binary phase shift keying (QBPSK) according to the constellation point mapping method of the first OFDM field after L-SIG, and determines that the PPDU is high throughput (high throughput) HT PPDU. If the PPDU is not an HT PPDU, it may cause the 802.11n receiver to decode the first field of the new preamble incorrectly. For example, if the cyclic redundancy check cannot be passed, the 802.11n receiver will not follow The length field of the L-SIG is silent for a period of time, and this behavior may interfere with the PPDU being transmitted.
  • QBPSK rotation binary phase shift keying
  • the first field of the preamble of the new physical layer adopts an unrotated constellation point mapping method other than QBPSK, which can prevent the receiving end of the 802.11n from erroneously judging that the next-generation PPDU is an HT PPDU, which may Dangerous behavior following the length field in L-SIG.
  • next-generation PPDUs are misidentified as 802.11a PPDUs, 802.11ac VHT PPDUs, or 802.11ax HE PPDU, the above-mentioned dangerous behavior that the receiving end of the 802.11n does not follow the length field in the L-SIG does not occur.
  • the function of the first EHT signaling field is similar to the function of the HE-SIG-A field in the HE-preamble portion of the current HE MU PPDU.
  • the first EHT signaling field may also be referred to as the EHT-SIG 1 field or EHT.
  • EHT EHT-SIG 1 field
  • EHT EHT
  • -The SIG A field or may have another name, which is not specifically limited in this embodiment of the present application.
  • the function of the above-mentioned second EHT signaling field is similar to the function of the HE-SIG-B field in the HE-preamble part of the current HE MU PPDU.
  • This second EHT signaling field may be called an EHT-SIG 2 field.
  • EHT-SIG B field or may have other names, which are not specifically limited in this embodiment of the present application.
  • the AP may send the downlink PPDU to the first STA.
  • the second EHT signaling field in the downlink PPDU can be copied and transmitted in units of a second bandwidth within the transmission bandwidth range of the downlink PPDU.
  • the second bandwidth is 2 N times the first bandwidth, and N is 0 or positive. Integer.
  • the L-preamble field, the BPSK symbol field, and the first EHT signaling field in the downlink PPDU can be copied and transmitted in units of the first bandwidth within the transmission bandwidth range of the downlink PPDU.
  • the first bandwidth can also be called Basic bandwidth. Generally, the first bandwidth may be 20 MHz.
  • the EHT-STF field, EHT-LTF, and data fields in the downlink PPDU may be transmitted on each resource unit RU that the AP divides the transmission bandwidth of the downlink PPDU, and each RU may be an RU of the same size or type (for example, (All may be 26 RUs or 52 RUs), or may be RUs of different sizes or types, which are not specifically limited in the embodiments of the present application. It is worth noting that this RU can be a resource unit specified by the IEEE 802.11 standard, including the type and the location of the corresponding subcarrier, such as the resource unit of 802.11ax, or it can be a resource that may be divided by other wireless communication systems to support OFDMA transmission. Unit, this embodiment of the present application does not specifically limit this.
  • the N value is a positive integer.
  • the second bandwidth can be 40 MHz.
  • the AP sends the downlink PPDU, the L-preamble field, the BPSK symbol field, and the first EHT signaling field can be copied and transmitted in units of 20 MHz, and the second EHT signaling field can be copied and transmitted in units of 40 MHz.
  • the second bandwidth may be 80 MHz.
  • the L-preamble field, the BPSK symbol field, and the first EHT signaling field may be copied and transmitted in units of 20 MHz
  • the second EHT signaling field may be copied and transmitted in units of 80 MHz.
  • each OFDM symbol of the second EHT signaling field uses a subcarrier spacing of 312.5 KHz. Therefore, within a transmission bandwidth of 20 MHz, the second EHT signaling field may include 64 subcarriers, including 52 Data subcarrier and 4 pilot subcarriers; within a 40MHz transmission bandwidth, the second EHT signaling field may include 128 subcarriers, including 108 data subcarriers and 6 pilot subcarriers; at a transmission bandwidth of 80MHz The second EHT signaling field may include 256 subcarriers, including 234 data subcarriers and 8 pilot subcarriers.
  • the downlink PPDU transmission structure can also be applied to multi-user data transmission in a scenario with a large spectrum bandwidth.
  • the second EHT signaling field transmitted using 40 MHz replication may carry more 4-bit signaling information than the second EHT signaling field transmitted using 20 MHz replication.
  • the second bandwidth (here, the second bandwidth when N is a positive integer) is used as a unit to copy and transmit.
  • An EHT signaling field may further include M channel estimation subcarriers, which are used to perform channel estimation on the extra data subcarriers when the second EHT signaling field is transmitted in the second bandwidth, so that the receiving end can decode correctly.
  • the M channel estimation subcarriers carry a setting value or a setting bit sequence known by the first STA.
  • the setting value may be 1 or -1.
  • the M is a positive integer
  • the value of the M is a value that the AP can provide according to the number of subcarriers used in the second EHT signaling field and the L-preamble field and the BPSK symbol field within the range of the second bandwidth.
  • the number of channel estimation subcarriers is determined.
  • the M value is equal to the number of subcarriers used in the second EHT signaling field minus the number of channel estimation subcarriers that can be provided by the L-preamble field and the BPSK symbol field.
  • the first bandwidth is 20MHz and the second bandwidth is 40MHz
  • two L-LTFs in the L-preamble field transmitted in the first 20MHz and the second 20MHz can provide 104 channel estimation subcarriers
  • the two L-SIG and BPSK symbol fields of the -preamble field can provide 8 channel estimation subcarriers
  • the 40MHz second EHT signaling field contains a total of 114 used subcarriers.
  • inserting two channel estimation subcarriers specifically means inserting two channel estimation subcarriers in a first EHT signaling field transmitted in two 20MHz corresponding to each 40MHz of the transmission bandwidth. Considering that the inserted subcarrier sequence number will change with the PPDU bandwidth, the embodiment of this application does not specifically describe the inserted channel estimation subcarrier sequence number.
  • the first bandwidth is 20 MHz and the second bandwidth is 80 MHz
  • four L-LTFs in the L-preamble field transmitted in the first 20 MHz to the fourth 20 MHz can provide 208 channel estimation subcarriers
  • the four L-SIG and BPSK symbol fields of the -preamble field can provide 16 channel estimation subcarriers
  • the 80MHz second EHT signaling field contains a total of 242 used subcarriers.
  • inserting 18 channel estimation subcarriers specifically means inserting 18 channel estimation subcarriers in the first EHT signaling field transmitted in four 20MHz corresponding to each 80MHz of the transmission bandwidth. Considering that the inserted subcarrier sequence number will change with the PPDU bandwidth, the embodiment of this application does not specifically describe the inserted channel estimation subcarrier sequence number.
  • an additional channel estimation subcarrier may not be inserted in the first EHT signaling field, but a known signal may be carried on a subcarrier corresponding to the second EHT signaling field that requires additional channel estimation.
  • the known signals carried by the additional data subcarriers can be used to help channel estimation in subsequent fields.
  • the second EHT signaling field in the downlink PPDU may be copied and transmitted in a unit of a second bandwidth larger than the first bandwidth within the transmission bandwidth range of the downlink PPDU in the manner described above, or In another feasible implementation manner, the second EHT signaling field may also be extended to be transmitted within a full bandwidth range of a downlink PPDU. For example, if the transmission bandwidth of the downlink PPDU is 320 MHz, the transmission bandwidth of the second EHT signaling in the downlink PPDU (that is, the second bandwidth) may also be 320 MHz. Correspondingly, a corresponding number of channel estimation subcarriers need to be inserted into the first EHT signaling in the full bandwidth range for channel estimation.
  • the second bandwidth should be less than or equal to the transmission bandwidth of the downlink PPDU.
  • the transmission bandwidth of the downlink PPDU may be the available 20MHz, 40MHz, 80MHz, 160MHz and other spectrum bandwidths currently specified in the 802.11 protocol, or an ultra-large bandwidth to be introduced in the next-generation IEEE 802.11 protocol.
  • the bandwidth, such as 240 MHz, 320 MHz, or the transmission bandwidth of the downlink PPDU may also be a larger spectrum bandwidth introduced in the future, which is not specifically limited in this embodiment of the present application.
  • the value of the N value may also be 0, that is, although the second EHT signaling field is transmitted using a second bandwidth greater than the basic bandwidth (that is, the N value is a positive integer). It can carry more signaling information, but in some specific scenarios, the AP can also transmit in the range of the transmission bandwidth of the downlink PPDU in units of the first bandwidth, and the odd-numbered first bandwidth and even-numbered first bandwidth The contents of the two RHT signaling fields may be different, as shown in FIG. 14.
  • the downlink PPDU may further include first indication information to indicate whether the value of N is a positive integer.
  • the value of N is a positive integer, it means that the AP transmits the second EHT signaling field in units of a second bandwidth that is larger than the first bandwidth.
  • the value of N is 0, it means that the AP uses the first bandwidth. (That is, the second bandwidth at this time is the same as the first bandwidth).
  • the second EHT signaling field is transmitted in units.
  • the first indication information may be located in one of the L-preamble field, the first EHT signaling field, and the BPSK symbol field in the downlink PPDU.
  • the specific scenario may be that the transmission bandwidth of the downlink PPDU is a discontinuous bandwidth, or the transmission bandwidth of the downlink PPDU is less than the second bandwidth (the second bandwidth refers to the second bandwidth when the value of N is a positive integer) ) Scene.
  • the second bandwidth refers to the second bandwidth when the value of N is a positive integer
  • the specific scenario may be that the transmission bandwidth of the downlink PPDU is a discontinuous bandwidth, or the transmission bandwidth of the downlink PPDU is less than the second bandwidth (the second bandwidth refers to the second bandwidth when the value of N is a positive integer) ) Scene.
  • the AP still uses the second bandwidth larger than the first bandwidth to transmit the second EHT signaling field, then in some first bandwidths within the second bandwidth range, Cannot transmit any signaling information, but can only transmit signaling information in part of the first bandwidth within the second bandwidth range, which is essentially the same as transmitting the second EHT signaling field in the first bandwidth unit, so it can also It is called "preamble puncturing transmission method
  • the first indication information may be the bandwidth indication information in the first EHT signaling field.
  • the bandwidth indication information indicates that the transmission bandwidth of the downlink PPDU is a continuous bandwidth, and the transmission bandwidth is greater than or equal to the second
  • N is a positive integer.
  • the bandwidth indication information indicates that the transmission bandwidth of the downlink PPDU is a discontinuous bandwidth or the transmission bandwidth is less than the second bandwidth, the value of N is 0.
  • the first bandwidth is 20MHz
  • N is a positive integer
  • the second bandwidth will be 40MHz.
  • the N value will be A positive integer of 2 will cause the AP to actually transmit the second EHT signaling field in units of 40MHz.
  • the value of N is set to 0 to indicate that the preamble code
  • the second EHT signaling field is transmitted in a hole manner.
  • the embodiment of the present application also provides another communication method. As shown in FIG. 15, the method specifically includes the following steps:
  • Step S1501 The access point AP determines a transmission bandwidth; the transmission bandwidth is used to communicate with one or more stations STA, and the transmission bandwidth is 240 MHz or 320 MHz;
  • Step S1502 The access point determines a resource unit RU division of the transmission bandwidth, and the transmission bandwidth is divided into at least one resource unit RU, where each RU includes at least one subcarrier, and the at least one subcarrier has Fixed position;
  • Step S1503 The access point communicates with the one or more STAs according to the resource unit RU division of the transmission bandwidth.
  • the at least one resource unit RU includes any one or any of the following: 26 subcarrier RU, 52 subcarrier RU, 106 subcarrier RU, 242 subcarrier RU, 484 subcarrier RU, 996 subcarrier RU.
  • the embodiments of the present application provide a corresponding spectrum division method for an ultra-large bandwidth such as 240 MHz or 320 MHz.
  • the following specifically describes the spectrum division methods with a spectrum bandwidth of 240 MHz and 320 MHz, respectively. It is worth noting that the larger bandwidth introduced by the 802.11 system standard in the future can also be applied to the same or similar spectrum division method as the embodiment of the present application, and this embodiment of the present application does not specifically limit this.
  • 240MHz includes a total of 3072 subcarriers with a subcarrier spacing of 78.125KHz.
  • FIG. 16 and FIG. 17 exemplarily show two types of spectrum division of 240MHz provided by the embodiment of the present application. As shown in FIG. Each independent 80MHz spectrum is divided into 26RU, 52RU, 106RU, 242RU, 484RU and other smaller resource units. Each 80MHz spectrum division may be similar to the 80MHz spectrum division shown in FIG. 8.
  • one possible spectrum division method is that the entire spectrum bandwidth includes 12 left band subcarriers (guard) and 11 right band subcarriers between the left and right band subcarriers, there are 3 996RUs, the center of the front and back two 996RUs includes 5 null subcarriers, and the middle of the spectrum bandwidth includes 51 DC subcarriers.
  • the serial numbers of the 12 subcarriers on the left are [-1536: -1525]
  • the serial numbers of the 11 subcarriers on the right are [1525: 1535]
  • the RUs of 3 996 subcarriers are located in [-1524: -1027-1021].
  • the empty subcarriers between the two 996RUs before and after are located in [-1026: -1020] and [1022: 1026], 51
  • the serial numbers of the DC subcarriers are specifically [-25: 25].
  • the number of DC subcarriers can be less than 51, such as 5 [-2: 2] or 7 [-3: 3], The remaining can be empty subcarriers.
  • another possible spectrum division method is to divide 26 subcarriers out of the 51 DC subcarriers in the previous spectrum division method to exist as a 26 subcarrier RU.
  • the 26 subcarrier RU is specifically located at [-25: -13: 13: 25], the remaining subcarriers or some subcarriers of the remaining subcarriers are still located at the center of the spectrum bandwidth as DC subcarriers.
  • the second EHT signaling of the downlink MU PPDU can also carry second indication information to indicate whether the specific 26 subcarrier RU located in the middle of the spectrum is used.
  • the second indication information may be located in a common information field in the second EHT signaling.
  • the second indication information may be represented by 1 bit. When the second indication information is 1, it indicates the specific information. Of the 26 subcarriers RU are used, otherwise it means not used.
  • the second indication information may be a special site information field in the second EHT signaling field, and the special site information field uses a special site identifier indication (no site identifier is assigned) .
  • 320MHz contains a total of 4096 subcarriers.
  • Figures 18 and 19 exemplarily show two types of spectrum division at 320MHz provided by the embodiment of the present application.
  • 320MHz can be regarded as consisting of 4 independent 80MHz.
  • each 80MHz spectrum division can be as shown in FIG. 8
  • the 80MHz spectrum division is similar.
  • one possible spectrum division method is that the entire spectrum bandwidth includes 12 left-side sub-carriers (guard) and 11
  • the right subband includes four 996 subcarrier RUs between the left subcarrier and the right subcarrier.
  • the center of each 996 subcarrier RU includes 5 null subcarriers, and the middle of the spectrum bandwidth includes 69 DC subcarriers. .
  • the serial numbers of the 12 left subcarriers are specifically [-2048: -2037]
  • the serial numbers of the 11 right subcarriers are specifically [2037: 2047]
  • 4 996RUs are specifically located at [-2036: -1539-1533: -1036 ], [-1035: -538-532: -35], [35: 532, 538: 1035], [1036: 1533, 1539: 2036]
  • the empty subcarriers between each 996 subcarrier RU are specifically located at [-1538: -1534], [-537: -533], [533: 537], and [1034: 1538]
  • the serial numbers of the 69 DC subcarriers are specifically located at [-34: 34].
  • the The number can be less than 69, such as 5 [-2: 2] or 7 [-3: 3], and the rest can be empty subcarriers.
  • another possible spectrum division method is to divide the 52 subcarriers out of the 69 DC subcarriers in the previous spectrum division method to exist as an independent 52 subcarrier RU, which is specifically located at [ -34: -9: 9: 34], the remaining subcarriers or some subcarriers of the remaining subcarriers are still located at the center of the spectrum bandwidth as DC subcarriers.
  • the third EHT signaling of the downlink MU PPDU can also carry third indication information to indicate whether the specific 52 subcarrier RU located in the middle of the spectrum is used.
  • the third indication information may be located in a common information field in the second EHT signaling.
  • the third indication information may be represented by 1 bit. When the second indication information is 1, it indicates the specific information. Of the 52 subcarriers RU are used, otherwise it means not used.
  • the third indication information may be a special site information field in the second EHT signaling field, and the special site information field uses a special site identifier indication (no site identifier is assigned) .
  • wireless fidelity (wifi) protocols such as 802.11ac
  • 802.11ac wireless fidelity
  • 802.11ac wireless fidelity
  • 20MHz, 40MHz, 80MHz, and 160MHz four types of bandwidths could be used: 20MHz, 40MHz, 80MHz, and 160MHz.
  • one 20MHz of bandwidth is recorded as the main 20MHz. If a certain 20MHz in the bandwidth is occupied by other stations, the PPDU bandwidth to be transmitted needs to be reduced. The reduced bandwidth needs to include the main 20MHz, and the other 20MHz continuous with the main 20MHz are idle and available.
  • the first 20MHz of the continuous 80M bandwidth is mainly 20MHz, but the second 20MHz channel is busy. According to the requirements of continuous bandwidth, at this time, only the main 20MHz PPDU can be transmitted, that is, a free one is wasted in the 80MHz bandwidth. 40MHz.
  • the 802.11ax protocol proposes a preamble puncturing transmission method that allows discontinuous channels to be aggregated together, which is allowed in the above example.
  • the access point sends 20MHz + 40MHz PPDUs to make more efficient use of the idle channel.
  • the 80 MHz and 160 MHz bandwidths may have a preamble puncturing transmission method.
  • the following describes the four preamble puncturing transmission methods proposed by 802.11ax.
  • the 80MHz bandwidth includes the main 20MHz P20, the second 20MHz S20, and the second 40MHz S40.
  • the S40 is divided into S40-L (the left 20MHz in the S40) and S40-R (the right 20MHz in the S40).
  • the corresponding preamble puncturing transmission mode at 80 MHz is shown in Figs. 20 and 21. In Fig. 20, only S20 is punctured in the 80 MHz bandwidth, and in Fig. 21, only one 20 MHz in S40 is punctured.
  • the 160M bandwidth includes the main 20MHz P20, the second 20MHz S20, the second 40MHz S40, and the second 80MHz S80, of which S40 is divided into S40-L and S40-R.
  • the corresponding preamble puncturing method at 160MHz is shown in Figures 22 and 23. In Figure 22, only S20 is punctured in the main 80MHz (consisting of P20, S20, and S40) within the 160MHz bandwidth, and some 20MHz may be sub-80MHz. Punching is indicated by the 802.11ax HE-SIG-B field.
  • the main 80MHz (consisting of P20, S20, and S40) within the 160MHz bandwidth is not punctured, and some 20MHz in sub-40Mhz and sub-80MHz may be punctured by 802.11. ax HE-SIG-B field indication.
  • the aforementioned two preamble puncturing transmission modes of the 80MHz bandwidth of the 802.11ax and the two preamble puncturing transmission modes of the 160MHz bandwidth can be indicated by an instruction message.
  • This instruction information is located in the 802.11ax PPDU preamble HE-SIG-A field. It is worth noting that neither the second preamble puncturing mode in the 80MHz bandwidth nor the two preamble puncturing modes in the 160MHz bandwidth can be specified. Which 20MHz is punched.
  • the receiving end needs to further analyze the resource allocation indication information in the common information part field of the next field HE-SIG-B field in the 802.11ax HE HE PPDU preamble, and HE-SIG-B is mainly used for multi-site multi-site User transmission, including OFDMA, MU-MIMO, provides resource unit allocation information and site transmission parameters.
  • the preamble puncturing transmission method of 802.11ax is only suitable for multi-user transmission.
  • Embodiment 5 of the present application provides a preamble puncturing transmission method, which can be applied to single-user transmission and multi-user transmission of the next-generation EHT protocol of 802.11ax.
  • the multi-user puncturing transmission mode of 802.11ax that is, the SIG 1 and SIG 2 fields are jointly used to indicate which 20 MHz bandwidths in the bandwidth are punctured.
  • This method requires an additional SIG2 field and at least one OFDM symbol. If the OFDM symbol uses BPSK and BCC coding with a code rate of 0.5, the overhead of one OFDM is 26 bits.
  • the first EHT signaling field is used to directly indicate which channels are punctured. It is assumed here that the maximum bandwidth supported by EHT is 320M.
  • Embodiment 1 Since the main 20MHz cannot be punctured, a total of 15 bit bitmaps are required to indicate which channels from low frequency to high frequency (or from high frequency to low frequency) are punctured. For example, setting 1 indicates that the corresponding channel can be used. If it is set to 0, it means that the corresponding channel is unavailable and is punctured. This method is simple, but requires 15 bits of overhead.
  • Embodiment 2 In order to simplify the design of the physical layer, limiting continuous bandwidth allows at most one puncturing, so the specific preamble puncturing mode signaling indication is a 3-bit bandwidth indication (including 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz, possibly It also contains 240MHz, etc.), 4 bits indicate the starting position of the first punctured 20MHz (the position from low to high frequency or from high frequency to low frequency) and the width of 2 bits (including 20MHz, 40MHz, 80MHz and 160MHz), a total of 9 bits are required, or all the punching situations are listed in a table format, and an 8-bit table is required. There may be further restrictions on the width of the punching. For example, if it can only be 20MHz, only 7 bits are required, or all the punching situations are listed in a table format, which requires a 6-bit table.
  • the specific preamble puncturing mode signaling indication is a 3-bit bandwidth indication (including 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz, possibly It also contains
  • the frame structure of the PPDU (which can be recorded as a very high throughput (VHT) PPDU or 802.11ac PPDU) defined in the current 802.11ac standard includes: Data Data, traditional physical layer preamble, and new physical layer preamble, such as This is shown in Figure 24.
  • the traditional physical layer preamble includes a traditional short-training sequence field (L-STF), a traditional long-training sequence field (L-LTF), and a legacy-signal field.
  • VHT-SIG very high-throughput signaling field A
  • VHT-STF very high-throughput short training field
  • VHT-LTF very high-throughput long training field
  • VHT-SIG B very high throughput throughput signaling field A
  • VHT- SIG-A also referred to as VHTSIGA
  • VHT-LTF is used to help the receiving end estimate the channel correctly, so that the station can decode the received data information in a positive solution.
  • 802.11ac supports a maximum of 8 simultaneous streaming data transmissions, including single-user MIMO and multi-user MIMO.
  • the number of streams is n
  • the number of OFDM symbols of the VHT-LTF included in FIG. 24 is n, that is, n VHT-LTF fields.
  • the n VHT-LTF fields are used to help the site estimate the n spatial streams at the same time. channel.
  • 802.11ac proposes to use the P matrix to multiply the VHT-LTF.
  • the P matrix is:
  • the P matrix is:
  • the specific use method is to take the flow as 2 as an example.
  • the value points of the subcarrier k in the frequency domain multiplied by P matrix elements are: 2 where k is the data subcarrier used in the frequency domain of the VHT-LTF OFDM symbol.
  • Serial number, excluding pilot subcarriers the horizontal axis is the time domain (that is, the VHT-LTF field sent by each antenna in time, and the dimension is the number of VHT-LTD fields), and the vertical axis is the spatial domain (that is, multiple The VHT-LTF field sent by the antenna in space, the dimension is the number of spatial streams).
  • each antenna sends an even number of n + 1 VHT-LTF fields in time, and multiple antennas send an odd number of n streams in space, using the first n rows and the first n of the P matrix.
  • the +1 column is multiplied with the VHT-LTF field.
  • the maximum number of streams supported by 802.11ax is still 8.
  • the P matrix of 802.11ac is used. When multiple streams are sent, the P matrix points are used to multiply the channel estimation sequence in 802.11ax.
  • the single-user transmission of the 802.11ax next-generation EHT protocol will have more streams, up to 16 streams.
  • the present invention proposes a new P-matrix design suitable for more than 8 streams.
  • the general principle of the P matrix is:
  • the value of the pilot subcarrier of the channel estimation LTF field should not be multiplied by the P matrix.
  • phase tracking can still be performed through pilot subcarriers.
  • Each stream (spatial dimension) is transmitted in time by the value of the pilot subcarrier of the LTF field multiplied by the first of the P matrix.
  • One row that is, the value points on the pilot subcarriers of the n LTF fields times the n elements of the first row of the P matrix.
  • the elements of the first row of the P matrix cannot all be 1.
  • the designed P matrix is as follows:
  • the column multiplied by -1 can be any number of the first column, and the elements of the first row of the P matrix cannot be all 1.
  • the P matrix is:
  • the column multiplied by -1 may be any number of the first column, and the elements of the first row of the P matrix cannot be all 1.
  • the column multiplied by -1 can be any number of the first column, and the elements of the first row of the P matrix cannot be all 1.
  • the P matrix is:
  • T is the transpose of the matrix.
  • the embodiment of the present application further provides a device 2500 applied to the first access point side, which is used to implement the function performed by the first access point AP in the foregoing method embodiment.
  • the device 2500 may include a processing module 2501 and a transceiver module 2502.
  • the processing module 2501 is configured to generate a downlink physical layer protocol data unit PPDU, where the downlink PPDU includes a second extremely high-throughput EHT signaling field;
  • the transceiver module 2502 is configured to send the downlink PPDU to the first station STA; the second EHT signaling field duplicates the transmission in the unit of the second bandwidth within the transmission bandwidth range of the downlink PPDU, and the second The bandwidth is 2 N times the base bandwidth, where N is 0 or a positive integer.
  • processing module 2501 and the transceiver module 2502 For specific processing procedures of the processing module 2501 and the transceiver module 2502, refer to the description of the method embodiments shown in FIG. 5, FIG. 10, FIG. 11, and FIG. 15 described above, and details are not described herein again.
  • the device may be a first access point.
  • the device 2600 may include a processor 2601, a memory 2602, a baseband circuit 2603, a radio frequency circuit 2604, and an antenna 2605.
  • the processor 2601 is used to control the functions of various circuit parts to support the first access point AP to perform the corresponding functions in the above method;
  • the memory 2602 is used to store the necessary program instructions and data of the first access point;
  • baseband The circuit 2603 is used to generate various types of signaling and messages, for example, to generate downlink PPDUs, and perform analog conversion, filtering, amplification, and up-conversion through a radio frequency circuit, and then send them to the first STA through the antenna 2605.
  • the device 2600 may also have other implementations.
  • the device when the device may be a chip in a first access point, the chip includes a processing module and a transceiver module, and the processing module may be, for example, a processor.
  • this processor is used to generate various types of messages and signaling, and after the various types of messages are encapsulated according to the protocol, coding, modulation, and amplification are performed.
  • the processor can also be used for demodulation, decoding, and decapsulation.
  • the transceiver module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module may execute computer execution instructions stored in the storage unit to support the first access point AP to perform corresponding functions in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the first access point, such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), and so on.
  • ROM Read-only memory
  • RAM random access memory
  • the device may include a processor and a modem.
  • the processor may be used to run instructions or an operating system to control the function of the first access point.
  • the modem may encapsulate data according to a protocol, Codec, modulation, demodulation, equalization, etc. to generate a wireless frame to support the first access point AP to perform the corresponding function in any one of the first to fourth aspects.
  • the apparatus includes a processor, which is configured to be coupled to the memory, read the instructions in the memory, and execute any one of the first to fourth aspects according to the instructions. method.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more Integrated circuit for program execution controlling the joint transmission method of the above-mentioned aspects.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the embodiment of the present application further provides a device 2100 applied to the first station side, which is used to implement the function performed by the first station STA in the foregoing method embodiment.
  • the device 2700 may include a transceiver module 2701 and a processing module 2702.
  • the transceiver module 2701 is configured to receive a downlink physical layer protocol data unit PPDU sent by the first access point AP; the downlink PPDU includes a second extremely high-throughput EHT signaling field, and the second EHT signaling field is in Within the transmission bandwidth range of the downlink PPDU, duplicate transmission is performed in units of a second bandwidth, where the second bandwidth is 2 N times the base bandwidth, and N is 0 or a positive integer;
  • the processing module 2702 is configured to decode signaling information in the second EHT signaling field according to the second bandwidth.
  • the device 2800 may include a processor 2801, a memory 2802, a transceiver 2803, an antenna 2804, and an input-output device 2805.
  • the processor 2801 is mainly used to control the entire device and execute computer program instructions to support the device to perform the actions described in any one of the method embodiments of the fourth aspect to the seventh aspect.
  • the memory 2802 is mainly used to store and save program instructions and data necessary for the first site.
  • the transceiver 2803 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna 2804 is mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the input / output device 2805 such as a touch screen, a display screen, and a keyboard, is mainly used to receive data input by the user and output data to the user.
  • the first site also has other possible implementations.
  • the device may be a chip in the first site.
  • the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor. After generating various types of messages and signaling, and encapsulating the various types of messages according to the protocol, encoding, modulation, and amplification are performed, the processor can also be used for demodulation, decoding, and decapsulation to obtain signaling and messages.
  • the transceiver module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module may execute computer execution instructions stored in the storage unit to support the first station STA to perform corresponding functions in the foregoing method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the first site, such as a read-only Memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), and so on.
  • ROM read-only Memory
  • RAM random access memory
  • the device may include a processor and a modem.
  • the processor may be used to run instructions or an operating system to control the functions of the first site.
  • the modem may encapsulate, encode, and decode data according to a protocol. , Modulation, demodulation, equalization, etc. to generate a wireless frame to support the first site AP to perform the corresponding function in any one of the fourth to seventh aspects.
  • the apparatus includes a processor, which is configured to be coupled to the memory, and read an instruction in the memory and execute any one of the fourth to seventh aspects according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more Integrated circuit for controlling program execution of the communication method of the above aspects.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the instructions are run on a computer, the computer is caused to execute the method embodiments described above. Communication method on the first access point side.
  • An embodiment of the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute any one of the foregoing first to fourth aspects or the method described in any possible implementation manner thereof. example.
  • An embodiment of the present application further provides a chip system including a processor, which is configured to support a first access point AP to implement the foregoing communication method, for example, to generate or process data and / or information involved in the foregoing aspects.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the instructions are run on a computer, the computer is caused to execute the method on the first site side in the foregoing method embodiment. Communication method.
  • An embodiment of the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute any one of the foregoing fifth to seventh aspects or the method described in any possible implementation manner thereof. example.
  • An embodiment of the present application further provides a chip system.
  • the chip system includes a processor, configured to support a first STA to implement the functions involved in the fifth to seventh aspects, for example, to generate or process the involved in the foregoing aspects. Data and / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application further provides a wireless communication system, which includes at least one first access point and at least one first STA involved in the foregoing aspects.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) containing computer-usable program code.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,包括:接入点AP生成第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;所述AP向所述第一STA发送所述第一帧。由于AP可为第一STA分配P个RU,并通过第一帧中的P个站点信息字段向第一STA指示,如此,可使AP的资源分配方式更加灵活,并有效提高OFDMA的系统频选增益,增加系统容量。

Description

一种通信方法及装置
本申请要求在2018年7月17日提交中国专利局、申请号为201810786769.9、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
为了支持下行多用户传输,802.11ax协议提出一种多用户帧格式,即高效多用户物理层协议数据单元(high efficient multiple user physical protocol data unit,HE MU PPDU)。如图1所示,该帧格式中包括传统前导码(legacy preamble,L-preamble)、高效率前导码(high efficiency preamble,HE-preamble)和物理层聚合服务数据单元(physical layer convergence protocol service data unit,PSDU)三部分,其中HE-preamble又包括重复的传统信令(repeated legacy signal,RL-SIG)、高效率信令A(high efficient signal A,HE-SIG-A)、高效率信令B(high efficiency signal B,HE-SIG-B)、高效率短训练字段(high efficiency short training field,HE-STF)、高效率长训练字段(high efficiency long training field,HE-LTF)等字段,PSDU包括数据(data)字段和包延长(packet extention,PE)字段。
现有技术中,如果传输带宽大于20MHz,L-preamble和HE-preamble中的RL-SIG、HE-SIG-A字段会每20MHz复制传输,而HE-SIG B则采用“1212”传输方法,即HE-SIG B包括两个HE-SIG B内容信道,一个内容信道在传输带宽上的各个奇数20MHz上传输,包含该多个奇数20MHz的资源分配信息以及在这多个奇数20MHz上传输的站点信息,另一个内容信道在传输带宽上的各个偶数20MHz上传输,包含该多个偶数20MHz的资源分配信息以及在这多个偶数20MHz上传输的站点信息。虽然两个HE-SIG B内容信道传输的内容可以不相同,但要求它们包含的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数一致,如此,便需要额外的操作来平衡奇偶信道上承载的信令信息的长度,使两个内容信道包含的比特数相等,且保证浪费的比特数最少,如果一个内容信道包含的比特数比另一个长,短的内容信道就要填充比特对齐。
发明内容
本申请提供了一种通信方法及装置,用以解决现有技术中采用两个内容信道传输HE-SIG B时,需要额外操作平衡奇偶信道上承载的信令信息长度的技术问题。
第一方面,本申请实施例提供一种通信方法,该方法包括:
接入点AP生成第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;所述AP向所述第一STA发送所述第一帧。
本申请实施例中,AP可为第一STA分配P个RU,并通过第一帧中的P个站点信息字段向第一STA指示出这P个RU,如此,可使AP的资源分配方式更加灵活,并有效提高OFDMA的系统频选增益,增加系统容量。
进一步地,由于P为大于1的正整数,为使第一STA在多用户OFDMA传输等场景下能够有效识别第一帧中与自己相关的站点信息字段,每个站点信息字段中还可进一步包括结束指示信息,用于指示站点信息字段是否是P个站点信息字段中的最后一个站点信息字段。如此,第一STA在逐个读取站点信息字段时,若读取到与自己相关的最后一个站点信息字段后,可获知AP为自己分配的所有RU已经指示完毕,第一STA无需再继续读取后面与其无关的其他站点信息字段,从而可有效减小STA的功耗。
本申请实施例中,第一帧中的每个站点信息字段均可包括结束指示信息,该结束指示信息可具有多种可能的实现方式。以第一STA相关的站点信息字段为例,一种可能的实现方式为,结束指示信息位于每个站点信息字段中的第一指示字段,第一指示字段的取值为第一取值时,表示站点信息字段是P个站点信息字段中的最后一个站点信息字段,第一指示字段的取值为第二取值时,表示站点信息字段不是P个站点信息字段中的最后一个站点信息字段。
另一种可能的实现方式为,结束指示信息为站点信息字段中的调制与编码策略MCS字段,且分配给同一STA的RU承载数据信息时使用的MCS相同;MCS字段的取值为RU承载数据时使用的MCS时,表示站点信息字段是P个站点信息字段中的最后一个站点信息字段,MCS字段的取值为特定的MCS时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
如此可知,通过站点信息字段中第一指示字段或MCS字段的不同取值,可将与第一STA相关的P个站点信息字段中的最后一个站点信息字段与其他站点信息字段做有效区分,从而可使第一STA在读取某一站点信息字段时,若该站点信息字段中第一指示字段的取值为第一取值,而该站点信息字段之前其他站点信息字段中第一指示字段的取值均为第二取值时,或者该站点信息字段中MCS字段的取值为RU承载数据时使用的MCS,而该站点信息字段之前其他站点信息字段中MCS字段的取值均为特定的MCS时,可判断当前的站点信息字段为与自己相关的最后一个站点信息字段,进而不再读取后续无关的站点信息字段,达到降低功耗的效果。
在一种可能的设计中,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
在一种可能的设计中,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
由此可知,本申请实施例中,为第一STA分配的多个RU在承载数据信息时具有多种可能的实现方式,例如,P个RU可以通过编码比特分发或者数据帧分段等方式承载第一STA的同一数据帧,或者也可以每个RU分别用于承载第一STA的一个数据帧,从而有效提高数据传输的灵活性。
第二方面,本申请实施例提供另一种通信方法,该方法包括:
第一站点STA接收接入点AP发送的第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;所述第一STA根据被分配的P个RU,接收或发送数据信息。
本申请实施例中,AP可为第一STA分配P个RU,并通过第一帧中的P个站点信息字段向第一STA指示出这P个RU,如此,可使AP的资源分配方式更加灵活,并有效提高OFDMA的系统频选增益,增加系统容量。
进一步地,由于P为大于1的正整数,为使第一STA在多用户OFDMA传输等场景下能够有效识别第一帧中与自己相关的站点信息字段,每个站点信息字段中还可进一步包括结束指示信息,用于指示站点信息字段是否是P个站点信息字段中的最后一个站点信息字段。如此,第一STA在逐个读取站点信息字段时,若读取到与自己相关的最后一个站点信息字段后,可获知AP为自己分配的所有RU已经指示完毕,第一STA无需再继续读取后面与其无关的其他站点信息字段,从而可有效减小STA的功耗。
本申请实施例中,第一帧中的每个站点信息字段均可包括结束指示信息,该结束指示信息可具有多种可能的实现方式。以第一STA相关的站点信息字段为例,一种可能的实现方式为,结束指示信息位于每个站点信息字段中的第一指示字段,第一STA确定所述第一指示字段的取值为第一取值的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述第一指示字段的取值为第二取值的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
另一种可能的实现方式为,结束指示信息为站点信息字段中的调制与编码策略MCS字段,且分配给同一STA的RU承载数据信息时使用的MCS相同;第一STA确定所述MCS字段的取值为RU承载数据时使用的MCS的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述MCS字段的取值为特定的MCS的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
如此可知,通过站点信息字段中第一指示字段或MCS字段的不同取值,可将与第一STA相关的P个站点信息字段中的最后一个站点信息字段与其他站点信息字段做有效区分,从而可使第一STA在读取某一站点信息字段时,若该站点信息字段中第一指示字段的取值为第一取值,而该站点信息字段之前其他站点信息字段中第一指示字段的取值均为第二取值时,或者该站点信息字段中MCS字段的取值为RU承载数据时使用的MCS,而该站点信息字段之前其他站点信息字段中MCS字段的取值均为特定的MCS时,可判断当前的站点信息字段为与自己相关的最后一个站点信息字段,进而不再读取后续无关的站点信息字段,达到降低功耗的效果。
在一种可能的设计中,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
在一种可能的设计中,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
由此可知,本申请实施例中,为第一STA分配的多个RU在承载数据信息时具有多种可能的实现方式,例如,P个RU可以通过编码比特分发或者数据帧分段等方式承载第一STA的同一数据帧,或者也可以每个RU分别用于承载第一STA的一个数据帧,从而有效提高数据传输的灵活性。
第三方面,本申请实施例提供一种通信方法,该方法包括:
接入点AP生成触发帧;所述触发帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,且所述P个站点信息字段连续排列,P为大于1的正整数;所述AP向所述第一STA发送所述触发帧。
在上行数据传输的场景下,AP可为第一STA分配P个RU(P为大于等于1的正整数),并通过触发帧中的P个站点信息字段向第一STA指示该P个RU。由于用于指示分配给第一STA的RU的P个站点信息字段是连续排列的,因此,无需在站点信息字段中另外设置结束指示信息,第一STA在读取各站点信息字段时,若读取到某一站点信息字段时发现该站点信息字段中包括其他STA的标识,则可确定AP分配给自己的RU已指示完毕,前一站点信息字段即为与自己相关的最后一个站点信息字段,从而有效减小STA的功耗。
在一种可能的设计中,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
由此可知,本申请实施例中,为第一STA分配的多个RU在承载上行数据信息时同样具有多种可能的实现方式,例如,P个RU可以通过编码比特分发或者数据帧分段等方式承载第一STA的同一数据帧,或者也可以每个RU分别用于承载第一STA的一个数据帧,从而有效提高数据传输的灵活性。
第四方面,本申请实施例提供另一种通信方法,该方法包括:
第一站点STA接收接入点AP发送的触发帧;所述触发帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,且所述P个站点信息字段连续排列,P为大于1的正整数;所述第一STA根据被分配的P个RU,发送数据信息。
在上行数据传输的场景下,AP可为第一STA分配P个RU(P为大于等于1的正整数),并通过触发帧中的P个站点信息字段向第一STA指示该P个RU。由于用于指示分配给第一STA的RU的P个站点信息字段是连续排列的,因此,无需在站点信息字段中另外设置结束指示信息,第一STA在读取各站点信息字段时,若读取到某一站点信息字段时发现该站点信息字段中包括其他STA的标识,则可确定AP分配给自己的RU已指示完毕,前一站点信息字段即为与自己相关的最后一个站点信息字段,从而有效减小STA的功耗。
在一种可能的设计中,分配给所述第一STA的P个RU用于共同承载所述第一STA发送的同一数据帧,或者所述P个RU用于分别承载所述第一STA发送的多个数据帧。
由此可知,本申请实施例中,为第一STA分配的多个RU在承载上行数据信息时同样具有多种可能的实现方式,例如,P个RU可以通过编码比特分发或者数据帧分段等方式承载第一STA的同一数据帧,或者也可以每个RU分别用于承载第一STA的一个数据帧,从而有效提高数据传输的灵活性。
第五方面,本申请实施例提供一种通信方法,该方法包括:
接入点AP生成下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段;所述AP向第一站点STA发送所述下行PPDU;所述第二EHT信令字 段在所述下行PPDU的传输带宽范围内以第二带宽为单位复制传输,所述第二带宽为第一带宽的2 N倍,N为0或正整数。
由此可见,本申请实施例可采用第一带宽的2N倍或第一带宽为单位传输下行PPDU中的第二EHT信令字段,如此,当采用第一带宽的2N倍的大带宽为单位传输第二EHT字段时,可有效避免使用两个内容信道传输第二EHT信令字段需平衡奇数内容信道和偶数内容信道上承载的信令信息长度的技术问题,同时还可以在第二EHT信令字段中携带更多的信令信息,更好地支持超大带宽下的OFDMA的传输。当采用基础带宽为单位传输第二EHT字段时,又可实现在下行PPDU的传输带宽为小带宽或非连续带宽等场景下,以前导码打孔的方式传输第二EHT字段的效果。
在一种可能的设计中,所述下行PPDU中还包括传统前导码字段、二进制相移键控BPSK符号字段和第一EHT信令字段;所述第一EHT信令字段中包括M个信道估计子载波,所述M值是所述AP根据所述第二带宽范围内,所述第二EHT信令字段中使用的子载波数量、所述传统前导码和所述PBSK符号字段提供的信道估计子载波的数量确定的,M为正整数。
如此,第一EHT信令字段中的M个信道估计子载波,可在以第一带宽的2N倍的大带宽为单位传输第二EHT字段时,对第二EHT信令字段中多出的数据子载波进行信道估计,以便第一STA接收到该下行PPDU后可以正确译码。
在一种可能的设计中,所述下行PPDU中还包括第一指示信息,所述第一指示信息用于指示所述N值是否为正整数。
如此,通过下行PPDU中的第一指示信息,第一STA可以及时获知第二EHT信令字段的传输方式,当第一指示信息指示N值为正整数时,表示AP以第一带宽的2N倍为单位传输第二EHT信令字段,当第一指示信息指示N值为0时,表示AP以第一带宽为单位(即采用前导码打孔的方式)传输第二EHT信令字段,从而使得第一STA可根据第二EHT信令字段的传输带宽,正确解码第二EHT信令字段中承载的信令信息。
在一种可能的设计中,所述第一指示信息位于所述传统前导码、所述第一EHT信令字段、BPSK符号字段中的一个字段中。
第六方面,本申请实施例还提供另一种通信方法,该方法包括:
第一站点STA接收接入点AP发送的下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段在所述下行PPDU的传输带宽范围内以第二带宽为单位复制传输,所述第二带宽为第一带宽的2 N倍,N为0或正整数;所述第一STA根据所述第二带宽,解码所述第二EHT信令字段中的信令信息。
由此可见,本申请实施例可采用第一带宽的2N倍或第一带宽为单位传输下行PPDU中的第二EHT信令字段,如此,当采用第一带宽的2N倍的大带宽为单位传输第二EHT字段时,可有效避免使用2个内容信道传输第二EHT信令字段需平衡奇数内容信道和偶数内容信道上承载的信令信息长度的技术问题,同时还可以在第二EHT信令字段中携带更多的信令信息,更好地支持超大带宽下的OFDMA的传输。当采用第一带宽为单位传输第二EHT字段时,又可实现在下行PPDU的传输带宽为小带宽或非连续带宽等场景下,以前导码打孔的方式传输第二EHT字段的效果。
在一种可能的设计中,所述下行PPDU中还包括传统前导码字段、二进制相移键控BPSK符号字段和第一EHT信令字段;所述第一EHT信令字段中包括M个信道估计子载 波,所述M值是所述AP根据所述第二带宽范围内,所述第二EHT信令字段中使用的子载波数量、所述传统前导码和所述PBSK符号字段提供的信道估计子载波的数量确定的,M为正整数。
如此,第一EHT信令字段中的M个信道估计子载波,当以第一带宽的2N倍的大带宽为单位传输第二EHT字段时,第一STA可根据该M个信道估计子载波,对第二EHT信令字段中多出的数据子载波进行信道估计,进而可对该下行PPDU后进行正确译码。
在一种可能的设计中,所述下行PPDU中还包括第一指示信息;所述方法还包括:所述第一STA根据所述第一指示信息指示的所述N值,确定所述第二带宽。
如此,通过下行PPDU中的第一指示信息,第一STA可以及时获知第二EHT信令字段的传输方式,当第一指示信息指示N值为正整数时,表示AP以第一带宽的2N倍为单位传输第二EHT信令字段,当第一指示信息指示N值为0时,表示AP以第一带宽为单位(即采用前导码打孔的方式)传输第二EHT信令字段,从而使得第一STA可根据第二EHT信令字段的传输带宽,正确解码第二EHT信令字段中承载的信令信息。
在一种可能的设计中,所述第一指示信息位于所述传统前导码、所述第一EHT信令字段、BPSK符号字段中的一个字段中。
第七方面,本申请实施例还提供一种通信方法,该方法包括:
接入点AP确定传输带宽;所述传输带宽用于与一个或多个站点STA通信,所述传输带宽为240MHz或320MHz;所述接入点确定所述传输带宽的资源单元RU划分,所述传输带宽被划分为至少一个资源单元RU,其中,每个RU包括至少一个子载波,所述至少一个子载波具有固定位置;所述接入点根据所述传输带宽的资源单元RU划分,与所述一个或多个STA通信。
在一种可能的设计中,所述至少一个资源单元RU,包括以下任意一种或任意组合:26子载波RU、52子载波RU、106子载波RU、242子载波RU、484子载波RU、996子载波RU。
在一种可能的设计中,所述第一带宽为240MHz;所述第一带宽从低频到高频依次包括:12个左边带子载波、3个996子载波RU、11个右边带子载波;其中,处于中间位置的996子载波RU的中心还包括51个直流子载波,前、后两个996子载波RU中的每个996子载波RU的中心还包括5个空子载波。
在一种可能的设计中,所述第一带宽为240MHz;所述第一带宽从低频到高频依次包括:12个左边带子载波、3个996子载波RU、11个右边带子载波;其中,处于中间位置的996子载波RU的中心还包括25个直流子载波,以及分布在所述25个直流子载波两侧的一个26子载波RU,前、后两个996自在波RU中的每个996子载波RU的中心包括5个空子载波。
在一种可能的设计中,所述第一带宽为320MHz;所述第一带宽从低频到高频依次包括:12个左边带子载波、4个996子载波RU、11个右边带子载波;其中,所述4个996子载波RU中的每个996子载波RU的中心包括5个空子载波,第2个996子载波RU与第3个996子载波RU之间还包括69个直流子载波。
在一种可能的设计中,所述第一带宽为320MHz;所述第一带宽从低频到高频依次包括:12个左边带子载波、4个996子载波RU、11个右边带子载波;其中,所述4个996子载波RU中的每个996子载波RU的中心包括5个空子载波,第2个996子载波RU与 第3个996子载波RU之间包括17个直流子载波,以及分布在所述17个直流子载波两侧的一个52子载波RU。
第八方面,本申请实施例提供一种应用于接入点侧的装置,该装置可以是接入点,也可以是接入点内的芯片。该装置具有实现上述第一方面、第三方面、第五方面、第七方面中任一方面涉及接入点的任意功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为接入点时,接入点可包括:处理器和收发器,所述处理器被配置为支持接入点执行上述方法中相应的功能。收发器用于支持接入点和站点之间的通信,向站点发送上述方法中所涉及的信息或指令。可选的,接入点还可以包括存储器,所述存储器用于与处理器耦合,其保存接入点必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路用于生成各类信令和消息,例如生成下行PPDU,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,由天线发送给第一STA。可选的,该装置还可包括存储器,其保存接入点必要的程序指令和数据。
在一种可能的实现方式中,当该装置为接入点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息;所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持接入点执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是接入点内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于运行指令或操作系统,以实现对接入点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成无线帧,以支持接入点AP执行上述第一方面、第三方面、第五方面、第七方面中任一方面中相应的功能。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面、第三方面、第五方面、第七方面中任一方面所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面的通信方法的程序执行的集成电路。
第九方面,本申请实施例提供一种应用于站点侧的装置,该装置具有实现上述第二方面、第四方面、第六方面中任一方面涉及第一站点的任意功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,该装置可为第一站点,该第一站点包括:处理器和收发器,所述处理器被配置为支持第一站点STA执行上述方法中相应的功能。收发器用于支持第一STA与接入点之间的通信,接收接入点发送的上述方法中所涉及的信息或指令。可选的, 第一站点STA还可以包括存储器,所述存储器用于与处理器耦合,其保存第一站点STA必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器、存储器、收发机、天线以及输入输出装置。其中,处理器主要用于对整个装置进行控制,执行计算机程序指令,以支持装置执行上述第二方面、第四方面、第六方面中任一方法实施例中所描述的动作等。存储器主要用于存储保存第一站点必要的程序指令和数据。收发机主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
在一种可能的实现方式中,该装置可以为第一站点内的芯片,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息;所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持第一站点STA执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述第一站点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于运行指令或操作系统,以实现对第一站点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成无线帧,以支持第一站点AP执行上述第二方面、第四方面、第六方面中任一方面中相应的功能。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第二方面、第四方面、第六方面中任一方面所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面的通信方法的程序执行的集成电路。
第十方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面、第三方面、第五方面、第七方面中任一方面或其任意可能的实现方式中的方法。
第十一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第二方面、第四方面、第六方面中任一方面或其任意可能的实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面、第三方面、第五方面、第七方面中任一方面或其任意可能的实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面、第四方面、第六方面中任一方面或其任意可能的实现方式中的方 法。
第十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持接入点实现上述第一方面、第三方面、第五方面、第七方面所涉及的功能,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持第一STA实现上述第二方面、第四方面、第六方面中所涉及的功能,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十六方面,本申请实施例提供一种无线通信系统,该系统包括上述方面涉及的至少一个接入点,以及至少一个第一站点。
附图说明
图1为本申请实施例提供的一种HE MU PPDU的帧结构示意图;
图2为本申请实施例适用的一种无线局域网的网络架构图;
图3为本申请实施例提供的一种接入点和站点的内部结构图;
图4为本申请实施例提供的频谱带宽为80MHz时的资源划分示意图;
图5为本申请实施例一提供的一种通信方法的流程示意图;
图6为本申请实施例提供的一种RU分配示意图;
图7为本申请实施例提供的一种下行MU PPDU的帧结构;
图8为本申请实施例提供的下行MU PPDU帧中第二EHT信令字段的帧结构示意图;
图9为本申请实施例提供的触发帧的帧结构示意图;
图10为本申请实施例二中提供的一种通信方法的流程示意图;
图11为本申请实施例三提供的一种通信方法的流程示意图;
图12为本申请实施例三提供的一种下行HE MU PPDU的传输结构示意图;
图13为本申请实施例三提供的另一种下行HE MU PPDU的传输结构示意图;
图14为本申请实施例三提供的另一种下行HE MU PPDU的传输结构示意图;
图15为本申请实施例四中提供的一种通信方法的流程示意图;
图16和图17为本申请实施例提供的240MHz的超大带宽的频谱划分方式示意图;
图18和图19为本申请实施例提供的320MHz的超大带宽的频谱划分方式示意图;
图20为802.11ax 80M带宽多用户打孔模式一;
图21为802.11ax 80M带宽多用户打孔模式二;
图22为802.11ax 160M带宽多用户打孔模式一;
图23为802.11ax 160M带宽多用户打孔模式二;
图24为802.11ac的PPDU结构;
图25为本申请实施例提供的应用于AP侧的装置的结构示意图;
图26为本申请实施例提供的应用于AP侧的装置的另一结构示意图;
图27为本申请实施例提供的应用于第一STA侧的装置的结构示意图;
图28为本申请实施例提供的应用于第一STA侧的装置的另一结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面结合说明书附图对本申请实施例进行具体描述。需要说明的是,本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
需要理解的是,在下文的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
本申请实施例的技术方案还可以适用于无线局域网(wireless local area network,WLAN)场景下,可以适用于IEEE 802.11系统标准,例如IEEE802.11ax标准,或其下一代或更下一代的标准中,且可适用于包括但不限于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。
为方便描述,本申请实施例以图2示出的一种示例性的应用场景为例进行说明。图2示例性示出了本申请实施例适用的一种WLAN的网络架构图,该WLAN包括一个AP,以及与该AP关联的STA1和STA2。该AP可为STA1和STA2调度无线资源,并在调度的无线资源上为STA1和STA2传输数据,包括上行数据信息和/或下行数据信息。
为了描述简便,仅在图2中示出了一个AP,但应理解,该WLAN系统中还可以包含更多AP,各个AP之间可通过分布式系统(distributed system,DS)相互通信,任一AP均可为与其关联的STA,和/或未关联的STA调度无线资源,并在调度的无线资源上为该STA传输数据,进一步地,WLAN系统中的各STA之间也可以进行相互通信,本申请实施例对此不做具体限定。
本申请涉及到的站点STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请所涉及到的接入点AP是一种部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该接入点AP可用作该通信系统的中枢,可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏 基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为接入点AP。
具体的,本申请涉及的AP和STA可以为适用于IEEE 802.11系统标准的AP和STA。如图3所示,为本申请实施例提供的AP和STA的内部结构图,802.11系统标准关注其中的802.11物理层(physical,PHY)和介质访问控制(media access control,MAC)部分。因此,本申请实施例提供的STA通常为支持802.11系统标准的MAC和PHY的终端产品,如手机、笔记本电脑等。需要指出的是,虽然仅在图3给出了多个天线的AP和单个天线的STA结构图,在实际场景中,AP和STA都可以是多天线的,并且可以是具有两个以上天线的设备。
下面结合具体实施例对本申请提供的通信方法进行介绍。
实施例一
在应用OFDMA及多用户多入多出(multiple user multiple input multiple output,MU-MIMO)技术时,AP会将频谱带宽划分为若干个资源单元(resource unit,RU)。IEEE802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz,可将频谱带宽划分成多类资源单元,其中包括26子载波资源单元、52子载波资源单元、106子载波资源单元、242子载波资源单元(20MHz带宽内最大资源单元),484子载波资源单元(40MHz带宽内最大资源单元),996子载波资源单元(80MHz带宽内最大资源单元),和996*2子载波资源单元(160MHz带宽内最大资源单元)。每个资源单元(即RU)由连续的子载波组成,比如26子载波资源单元由26个连续的子载波资源单元组成。需要说明的是,不同的频谱带宽所能支持的RU的种类和数量不相同,但是在同一带宽下,可以支持混合类型的资源单元。图4示例性示出了频谱带宽为80MHz带宽的资源划分。
为了简化发送和接收的复杂度,目前的802.11ax协议规定只允许一个STA占据频谱带宽中的其中一个RU,也就是说一个STA的数据信息只能在连续的子载波上进行传输。因而,现有技术中AP在进行多用户传输时,会将最好的RU分配给最适合的STA。当AP将一个RU分配给一个STA后,若频谱带宽中剩下的RU不适合其他STA,那么由于存在只能给一个STA分配一个RU的限制,这些RU可能就空闲着,并不会再分配给第一个STA,从而造成了无线资源的浪费,影响了整个系统的吞吐量。
由此,本申请实施例还提供一种通信方法,用以提高OFDMA的系统频选增益,增加系统吞吐量。图5示例性示出了本申请实施例提供的一种通信方法,该方法可包括如下步骤:
步骤S501:接入点AP生成第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;
步骤S502:所述AP向第一STA发送所述第一帧。
步骤S503:所述第一STA接收所述第一帧,根据被分配的P个RU,接收或发送数据信息。
在步骤S501的具体实施中,AP可生成第一帧,该第一帧中包括P个站点信息字段,该P个站点信息字段中的每个站点信息字段用来指示,为第一站点STA分配的一个RU。由于P为大于等于1的正整数,如此,本申请实施例中AP便可为第一STA分配P个RU, 并将每个RU通过一个站点信息字段指示出来。
需要说明的是,本申请实施例中,AP分配给第一STA的P个RU在频谱带宽中可以是连续的,也可以是不连续的,本申请实施例对此不做具体限定。而且,P个RU的类型(或者也可以称之为RU的大小)可以相同,也可以不同,本申请实施例同样不做具体限定。例如,若P为2,那么分配给第一STA的两个RU可以均为26子载波RU(即包含26个子载波的资源单元),也可以其中一个为26子载波RU,另一个为52子载波RU(即包含52个子载波的资源单元)。值得注意的,该RU可以是IEEE 802.11规定的资源单元,包括类型以及对应的所在的子载波位置,比如802.11ax的资源单元,也可以是其他无线通信系统为支撑OFDMA传输可能被划分的资源单元。
由于每次进行数据传输时,AP都会将频谱带宽划分为若干个RU,因此,AP在进行资源分配时,可以根据第一STA本身所能够同时支持传输的资源单元数目的能力,以及第一STA所需传输的业务量等信息,来决定为第一STA分配多少个RU,以及每个RU的类型是什么。在一种可能的设计中,STA可在与AP进行关联的过程中,在关联请求帧中携带自身能够同时支持传输的资源单元数目的信息,从而使AP可根据STA的能力合理调度无线资源。或者在另一种可能的设计中,WLAN系统也可以预先设定各STA同时支持传输的资源单元数目,再或者,WLAN系统也可以对STA同时支持传输的资源单元数目不做限制,而由AP根据自身的资源情况为各STA分配资源单元,本申请实施例对此不做具体限定。
在一种可能的实现方式中,分配给第一STA的P个RU可以用于共同承载第一STA的同一数据帧,其中,不同的RU用于承载同一数据帧的不同部分,可以通过编码比特分发或者数据帧分段等方式实现。在另一种可能的实现方式中,分配给第一STA的P个RU可以用于分别承载第一STA的多个数据帧。在此,RU上承载的数据帧可以是下行的数据帧,例如聚合MAC层协议数据单元(aggregate MAC protocol data unit,A-MPDU),或单MAC层协议数据单元(medium MAC protocol data unit,MPDU),或者也可以是上行的数据帧,本申请实施例对此不作具体限定。值得注意的是,本申请所涉及到的数据帧包含IEEE802.11中的数据帧,控制帧以及管理帧等。
图6示例性示出了本申请实施例中的RU分配示意图,如图6所示,若频谱带宽被划分为9个RU,有4个STA在这个频谱带宽上同时进行数据传输。其中,第一STA被分配到了RU1、RU4和RU9上,第二STA被分配到了RU2和RU3上,第三STA被分配到了RU5、RU6和RU7上,STA4被分配到了RU8上。针对第一STA来说,RU1、RU4、RU9可用于承载AP发送给第一STA的一个下行数据帧,AP在发送时可以通过发送端的比特解析器将编码后的数据帧按照一定的规则分配到RU1、RU4和RU9上,且RU1、RU4和RU9分别用来传输该数据帧的不同部分。或者,RU1、RU4、RU9中的每个RU都用于单独传输AP发送给第一STA的一个下行数据帧。
如前所述,AP分配给STA的一个RU可通过一个站点信息字段进行指示。若AP为第一STA分配了P个RU,那么第一帧中至少包括用于指示该P个RU的P个站点信息字段。然而,在一般情况下,AP可能将频谱带宽中的RU分配给多个STA进行多用户OFDMA传输,也可能将频谱带宽中的一个或多个RU同时分配给多个STA进行MU-MIMO传输,因此第一帧中实际包含的站点信息字段的数量会大于P个,即第一帧中还包括与第一STA同时进行数据传输的其他STA的站点信息字段,以便参与传输的各STA均能获知自身被 分配的资源单元。
假设第一帧中共包括Q个站点信息字段,Q为大于等于P的正整数,为了有效区分为不同STA分配的RU,每个站点信息字段中还包括STA的标识,参与同时传输的多个STA中的每个STA在接收到第一帧后,只需读取包含自身标识的那个站点信息字段中的信令信息,从而确定AP通过该站点信息字段为自己分配的RU。
在一种可能的设计中,这Q个站点信息字段可按照自己或对应的资源分配指示字段所指示的RU在频谱带宽中的位置顺序排列,例如,可以按照RU从低频到高频的顺序排列,或者也可以按照从高频到低频的顺序排列,本申请实施例对此不做具体限定。由于分配给第一STA的P个RU在频谱带宽中可能是不连续的,因此,用于指示这P个RU的P个站点信息字段在Q个站点信息字段中也可能是不连续排列的。
由此,本申请实施例中,第一帧中的每个站点信息字段还可包括结束指示信息,用于说明与同一STA相关的多个站点信息字段中最后一个站点信息字段的位置,若STA已读取到与自己相关的最后一个站点信息字段,则说明AP为该STA分配的所有RU已经全部指示完毕,STA无需再继续读取后面与其无关的其他站点信息字段,从而可有效减小STA的功耗。
具体的,上述结束指示信息可具有多种可能的实现方式。在一种可能的设计中,结束指示信息可位于每个站点信息字段中的第一指示字段,第一指示字段的取值为第一取值时,表示站点信息字段是P个站点信息字段中的最后一个站点信息字段,第一指示字段的取值为第二取值时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
以第一STA为例,对于P个站点信息字段中的最后一个站点信息字段,该站点信息字段中第一指示字段的取值为第一取值,而对于P个站点信息字段中除最后一个站点信息字段以外的其他站点信息字段,这些站点信息字段中第一指示字段的取值可以为区别与第一取值的第二取值,从而使得P个站点信息字段中最后一个站点信息字段可与其他的站点信息字段作有效区分。如此,当第一STA读取某一站点信息字段时,若确定该站点信息字段中包括自身的标识,且该站点信息字段中的第一指示字段的取值为第一设定值,则可确定该站点信息字段为P个站点信息字段中的最后一个站点信息字段,第一STA可不再读取后面的站点信息字段,而是可进入准备发送或接收数据的状态中。
举例来说,第一指示字段可以为站点信息字段中一个占据1或更多比特的字段,该字段的取值可以为0或1。如此,可将第一取值设定为1,将第二取值设定为0,从而通过第一指示字段的取值有效区分P个站点信息字段中的最后一个站点信息字段。
需要说明的是,当结束指示信息采用该实现方式时,如图6所示,分配给同一STA的多个RU可以采用相同的调制与编码策略(modulation and coding scheme,MCS),也可以采用不同的MCS,本申请实施例对此不做具体限定。
在另一种可能的设计中,结束指示信息可以为每个站点信息字段中的MCS字段,MCS字段的取值为RU承载数据时使用的MCS时,表示站点信息字段是P个站点信息字段中的最后一个站点信息字段,MCS字段的取值为特定的MCS时,表示站点信息字段不是P个站点信息字段中的最后一个站点信息字段。
以第一STA为例,对于P个站点信息字段中的最后一个站点信息字段,该站点信息字段中的MCS字段的取值可以是为第一STA分配的RU承载数据时使用的MCS;而对于P个站点信息字段中除最后一个站点信息字段以外的其他站点信息字段,这些站点信息字段 中的MCS字段的取值可以为特定的MCS。
可以看出,在与第一STA相关的P个站点信息字段中,由于前P-1个站点信息字段中MCS字段的取值都为特定的MCS取值,并未说明此P-1个站点信息字段所指示的RU在承载数据信息时所使用的MCS,只有最后一个站点信息字段的MCS字段才说明了为第一STA分配的RU在承载数据信息时所使用的MCS,因此,当第一STA读取某一站点信息字段时,若确定该站点信息字段中包括自身的标识,且该站点信息字段中的第一指示字段的取值为特定的MCS,则可确定该站点信息字段不是最后一个站点信息字段,第一STA需要读取后面的站点信息字段直至与自己相关的最后一个站点信息字段。由于AP仅通过最后一个站点信息字段指示MCS,这便要求分配给第一STA的P个RU在承载数据信息时使用相同的MCS。
本申请实施例中,所述特定的MCS可以为特殊的、未使用的、未具有明确含义或无效的MCS取值。例如,目前的MCS字段一般用4比特来表示,但已使用的、具有明确含义的MCS取值仅包括0至11,而12至15还未被使用。因此,可将取值在12至15中的某一MCS取值作为该特定的MCS取值使用,以表示该特定的MCS取值所在的站点信息字段不是与当前STA相关的最后一个站点信息字段。
需要说明的是,上述步骤S501中所涉及到的第一帧可以为,下行多用户物理层协议数据单元(multiple user physical protocol data unit,MU PPDU)或触发帧。其中,该下行MU PPDU与触发帧的应用场景和帧结构并不相同,但当AP为第一STA分配了P个RU时,下行MU PPDU与触发帧均具有上述P个站点信息字段。
具体的,本申请实施例中的下行MU PPDU具体应用在下行多用户数据传输的场景下。当AP需要进行下行的多用户数据传输时,可生成下行MU PPDU,在该下行MU PPDU中指示出分配给各个STA的RU,并直接将待发送给各STA的下行数据信息承载在下行MU PPDU的data字段中发送给各STA,每个STA的下行数据信息仅在分配给自己的RU上传输。
该下行MU PPDU还可以为基于目前的802.11ax协议演进得到的下一代极高吞吐量多用户物理层协议数据单元(extremely high throughtput multiple user physical protocol data unit,EHT MU PPDU),本申请实施例对此不做具体限定。
图7示例性示出了该下行MU PPDU的帧结构,如图7所示,该下行MU PPDU可包括L-preamble字段、二进制相移键控(binary phase shift keying,BPSK)符号字段、第一极高吞吐量(extremely high throughtput,EHT)信令字段、第二EHT信令字段、极高吞吐量短训练字段(extremely high throughtput short training field,EHT-STF)、极高吞吐量长训练字段(extremely high throughtput long training field,EHT-LTF)、数据(data)字段等字段。本申请实施例中,用于指示分配给第一STA的RU的P个站点信息字段可位于第二EHT信令字段中。
在另一种可能的实现方式中,该下行MU PPDU可包括L-preamble字段、BPSK调制的第一EHT信令字段(如果第一EHT信令字段包含多个OFDM符号,只需保证第一个OFDM符号为BPSK调制)、第二EHT信令字段、EHT-STF字段、EHT-LTF字段、data字段等字段。在EHT-LTF字段后可能存在第三EHT-SIG字段,其中HT-STF字段、EHT-LTF字段、第三EHT-SIG字段、data字段的子载波间距与传统前导码字段的子载波间距不同,比如EHT-LTF字段、第三EHT-SIG字段、data字段的子载波间距小于传统前导码字段的 子载波间距,前者子载波间距为78.125KHz,后者子载波间距为312.5KHz。
上述第一EHT信令字段的功能与目前HE MU PPDU的HE-preamble部分中的HE-SIG-A字段的功能类似,该第一EHT信令字段还可以被称为EHT-SIG 1字段或EHT-SIG A字段,或者还可以具有其他名称,本申请实施例对此不作具体限定。同理,上述第二EHT信令字段的功能与目前HE MU PPDU的HE-preamble部分中的HE-SIG-B字段的功能类似,该第二EHT信令字段可以被称为EHT-SIG 2字段或EHT-SIG B字段,或者还可以具有其他名称,本申请实施例对此同样不作具体限定。
具体的,上述第二EHT信令字段可包括资源分配指示信息和包括上述P个站点信息字段在内的Q个站点信息字段,Q为大于等于P的正整数。所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成若干个RU。与第一STA相关的P个站点信息字段在Q个站点信息字段中的位置和资源分配指示信息,共同决定了第一STA被分配的RU。
图8示例性示出了本申请实施例提供的下行MU PPDU帧中第二EHT信令字段的帧结构,如图8所示,第二EHT信令字段可包括共有信息字段(common field)和用户特定字段(user specific),该用户特定字段也可被称为站点专有字段。其中,资源分配指示信息位于共有信息字段中,用于指示频谱带宽按照一定的频谱顺序被划分成的若干个RU,每个RU依次与站点专有字段中的一个站点信息字段对应。
在一种可能的设计中,资源分配指示信息可以由按照设定的频谱顺序,依次排列的多串比特序列表示,其中一串比特序列用来表示一个单位频谱带宽内的频谱划分结果。例如,单位频谱带宽可以为20MHz,每个单位频谱带宽内的频谱划分结果使用一串8比特的序列表示,那么若整体的频谱带宽为160MHz,资源分配指示信息共需8*8=64比特表示。如果第二EHT信令字段采用“前导码打孔”的方式传输(这部分内容将在实施例三中详细描述),那么在第二EHT信令字段包括的两个内容信道中,每个内容信道需包含64/2=32比特的资源分配指示信息。
上述频谱顺序可以为RU从低频到高频的排列顺序,或者也可以为从高频到低频的排列顺序,本申请实施例对此不做具体限定,但只要资源分配指示信息中指示的RU的顺序与站点专有字段中各个站点信息字段的排列顺序一致即可。
此外,共有信息字段中还可包括是否参与MU-MIMO传输的指示,比如通过携带每个资源单元上对应的站点个数信息指示,如果某个资源单元对应的站点个数为1,则在该资源单元上进行单用户传输,如果该资源单元对应的站点个数为多个,则在该资源单元上进行MU-MIMO传输,本申请实施例对此不做具体限定。
Q个站点信息字段可位于站点专有字段中,具体来说,站点专有字段包括若干个站点块字段、循环冗余校验码(cyclic redundancy check,CRC)字段和尾部比特(tail)字段,其中,站点专有字段中的最后一个站点块字段包含一个或两个站点信息字段、CRC字段和tail字段,除最后一个站点块字段以外的其它站点块字段均包含两个站点信息字段、CRC字段和tail字段。
本申请实施例中,依据是否参与MU-MIMO传输,各个站点信息字段的内容可以存在略微差别。例如,不参与MU-MIMO传输的每个站点信息字段中可包含11比特站点标识,3比特流数,1比特发送端波束成型,4比特MCS,1比特双载波调制(Dual Carrier Modulation,DCM),以及1比特编码指示,共21比特;或者,在此基础上再包含1比特的结束指示信息;
而参与MU-MIMO传输的每个站点信息字段中包含11比特站点标识,4比特空间流配置表格,4比特MCS,1比特编码指示以及1比特位保留,共21比特;或者,在此基础上再包含1比特的结束指示信息。
本申请实施例中的触发帧可应用在上行多用户数据传输的场景下。当多个STA需要同时发送上行数据信息时,AP会首先向参与多用户数据传输的各STA发送触发帧,在该触发帧中指示出为各STA分配的RU。随后,各STA接收到触发帧后,会同时响应一个上行的OFDMA帧或MU-MIMO帧,或者OFDMA与MU-MIMO的混合帧。之后,AP可根据接收到的上行ODFMA帧或MU-MIMO帧或者OFDMA与MU-MIMO的混合帧,发送确认帧,进而触发各STA在AP为其分配的RU上传输上行数据信息。
图9示例性示出了本申请实施例提供的触发帧的帧结构,如图9所示,触发帧可包括帧控制字段(frame control),时长字段(duration),接收地址(receiver address,RA),发送地址(transmitter address,TA),共有信息字段(common info),Q个站点信息字段(per STA info),比特填充字段和帧校验序列字段(frame check sequence,FCS)。
本申请实施例中,用于指示分配给第一STA的RU的P个站点信息字段位于Q个站点信息字段中,此处Q为大于等于P的正整数。各个站点信息字段可按照各自所指示的RU在频谱带宽中的位置顺序排列,该频谱顺序可以为RU从低频到高频的顺序,或者也可以为从高频到低频的顺序,本申请实施例对此不做具体限定。
触发帧的共有信息字段和站点信息字段的功能与下行MU PPDU中的第二EHT信令字段中的公有信息字段以及站点信息字段类似,但区别在于,触发帧中共有信息字段不再携带联合的资源单元指示信息,而是把独立的资源分配信息放在每个站点信息字段中。
具体的,触发帧中的每个站点信息字段包含1比特的关联标识,8比特的资源单元指示信息,1比特的上行纠错编码,4比特的MCS,1比特的上行DCM,6比特的空间流分配,7比特的上行接收信号能量指示(received signal strength indicator,RSSI),以及其它若干与触发帧类型相关的特有信令指示比特等。
需要说明的是,本申请实施例是以AP关联的任一STA(即第一STA)为例进行描述的,对于其他的STA也同样适用本申请实施例所提出的分配多个RU,并指示最后一个站点信息字段的资源分配方式。在一种可能的实现方式中,AP也可以将P个RU同时分配给包含多个站点的同一站点集合,比如分配给第一STA和第二STA,从而使得这些STA可在分配的P个RU上应用多用户MU-MIMO传输。也可以理解为,可以将本申请实施例提到的第一站点可以替换成包括多个站点的第一站点集合,即第一站点集合内的多个站点在对应的P个资源单元上做MU-MIMO传输。
实施例二
图10示例性示出了本申请实施例提供的另一种通信方法,该方法可包括如下步骤:
步骤S1001:接入点AP生成触发帧;所述触发帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,且所述P个站点信息字段连续排列,P为大于1的正整数;
步骤S1002:所述AP向所述第一STA发送所述触发帧。
步骤S1003:所述第一STA接收所述触发帧,根据被分配的P个RU发送上行数据信息。
本申请实施例中所涉及的触发帧的应用场景、帧结构,以及每个站点信息字段中除结束指示信息以外的其他内容均可与实施例一中的描述相同,此处不再赘述。尽管在步骤S1002和步骤S1003中描述了AP向第一STA发送触发帧,第一STA接收触发帧,但应当理解,在多用户数据传输的场景下,此处的触发帧为发送给参与多用户数据传输的多个STA的触发帧,触发帧中可包括Q个站点信息字段,用来为各STA指示分配的资源,其中Q大于等于P的正整数。
考虑到触发帧中的每个站点信息字段均已包括独立的资源单元指示信息,本申请实施例中,可将与同一站点相关的多个站点信息字段连续排列,如此,则无需在站点信息字段中另外设置结束指示信息,当参与多用户数据传输的任一STA在读取站点信息字段时,若读取到下一站点信息字段时发现该在下一站点信息字段中包括其他STA的标识,则可确定AP分配给自己的RU均已指示完毕,前一站点信息字段即为与自己相关的最后一个站点信息字段。
以第一STA为例,由于分配给第一STA的每个RU都通过一个站点信息字段指示出,因此,本申请实施例可将包含第一STA的标识的P个站点信息字段连续排列,对于参与多用户数据传输的其他STA也是如此。
在另一种可能的实现方式中,站点信息字段可包括相关STA被分配的多个资源单元的资源单元指示信息。例如,可将分配给第一STA的P个RU的信息均在同一站点信息字段中指示,如此,在这一场景中,Q个站点信息字段所包含的站点标识将互不相同。
实施例三
为了解决在应用正交频分多址(orthogonal frequency division multiple access,OFDMA)技术进行多用户数据通信时,HE MU PPDU的传输需平衡奇偶HE SIG B信道上承载的信令信息长度的技术问题,本申请实施例提供一种通信方法,使用大带宽传输EHT MU PPDU中的第二EHT信令字段。
图11示例性示出了本申请实施例提供的一种通信方法,该方法可包括如下步骤:
步骤S1101、接入点AP生成下行物理层协议数据单元PPDU,该下行PPDU包括第二极高吞吐量EHT信令字段;
步骤S1102、所述AP向第一STA发送所述下行PPDU;所述第二EHT信令字段在所述下行PPDU的传输带宽范围内以第二带宽为单位复制传输,所述第二带宽为第一带宽的2 N倍,N为0或正整数;
步骤S1103:所述第一STA接收所述AP发送的下行PPDU,根据所述第二带宽解码所述第二EHT信令字段中的信令信息。
具体的,在步骤S1101中所涉及到的下行PPDU可以为基于目前的802.11ax协议演进得到的下一代极高吞吐量多用户物理层协议数据单元(extremely high throughtput multiple user physical protocol data unit,EHT MU PPDU)。
图12示例性示出了该EHT MU PPDU的传输结构,如图12所示,该EHT MU PPDU可包括L-preamble字段、二进制相移键控(binary phase shift keying,BPSK)符号字段、第一EHT信令字段、第二EHT信令字段、极高吞吐量短训练字段(extremely high throughtput short training field,EHT-STF)、极高吞吐量长训练字段(extremely high throughtput long training field,EHT-LTF)、数据(data)字段等字段。
在另一种可能的实现方式中,BPSK符号字段也可能不存在,但要求第一EHT信令字段的第一个OFDM符号需要采用BPSK符号。具体的,该EHT MU PPDU可包括L-preamble字段、BPSK调制的第一EHT信令字段(如果第一EHT信令字段包含多个OFDM符号,只需保证第一个OFDM符号为BPSK调制)、第二EHT信令字段、EHT-STF字段、EHT-LTF字段、data字段等字段。在EHT-LTF字段后可能存在第三EHT-SIG字段,其中HT-STF字段、EHT-LTF字段、第三EHT-SIG字段、data字段的子载波间距与传统前导码字段的子载波间距不同,比如EHT-LTF字段、第三EHT-SIG字段、data字段的子载波间距小于传统前导码字段的子载波间距,前者子载波间距为78.125KHz,后者子载波间距为312.5KHz。
由于802.11n的接收端通过判断L-SIG后的第一个OFDM字段的星座点映射方式来进行自动检测,当该新物理层前导码的第一个字段采用星座点映射方式QBPSK,则会存在如下问题:802.11n的接收端根据L-SIG后的第一个OFDM字段的星座点映射方式为旋转二进制相移键控(rotation binary phase shift keying,QBPSK),确定该PPDU为高吞吐量(high throughput)HT PPDU,如果该PPDU并不是HT PPDU,可能会导致802.11n的接收端对新前导码第一个字段译码错误,比如不能过循环冗余检验,则802.11n的接收端不会遵循L-SIG的长度字段静默一段时间,该行为可能干扰正在传输的PPDU。
本申请实施例中,该新物理层前导码的第一个字段采用除QBPSK之外的未旋转的星座点映射方式,可以避免802.11n的接收端误判断下一代PPDU为HT PPDU,从而导致不遵循L-SIG中的长度字段的危险行为。需要说明的是,对于其他接收端,比如802.11a、802.11ac或者802.11ax的接收端,即使通过自动检测,将下一代PPDU分别误判为802.11a的PPDU,802.11ac的VHT PPDU或者802.11ax的HE PPDU,也不会发生上述802.11n的接收端不遵循L-SIG中长度字段的危险行为。
上述第一EHT信令字段的功能与目前HE MU PPDU的HE-preamble部分中的HE-SIG-A字段的功能类似,该第一EHT信令字段还可以被称为EHT-SIG 1字段或EHT-SIG A字段,或者还可以具有其他名称,本申请实施例对此不作具体限定。同理,上述第二EHT信令字段的功能与目前HE MU PPDU的HE-preamble部分中的HE-SIG-B字段的功能类似,该第二EHT信令字段可以被称为EHT-SIG 2字段或EHT-SIG B字段,或者还可以具有其他名称,本申请实施例对此同样不作具体限定。
在步骤S1102的具体实施中,AP可向第一STA发送该下行PPDU。其中,该下行PPDU中的第二EHT信令字段可在该下行PPDU的传输带宽范围内以第二带宽为单位复制传输,该第二带宽为第一带宽的2 N倍,N为0或正整数。而该下行PPDU中的L-preamble字段、BPSK符号字段和第一EHT信令字段则可在该下行PPDU的传输带宽范围内以第一带宽为单位复制传输,该第一带宽也可以被称为基础带宽。一般来说,该第一带宽可以为20MHz。
该下行PPDU中的EHT-STF字段、EHT-LTF、data字段可在AP对该下行PPDU的传输带宽进行划分的各个资源单元RU上进行传输,各个RU可以为相同大小或类型的RU(例如,可均为26RU或均为52RU),或者也可以为不同大小或类型的RU,本申请实施例对此不作具体限定。值得注意的,该RU可以是IEEE 802.11标准规定的资源单元,包括类型以及对应的子载波所在的位置,比如802.11ax的资源单元,也可以是其他无线通信系统为支撑OFDMA传输可能被划分的资源单元,本申请实施例对此不做具体限定。
图12和图13示例性示出了N值为正整数的情形。如图12所示,N取值为1时,若第一带宽为20MHz,则第二带宽可以为40MHz。如此,AP在发送该下行PPDU时,可以 20MHz为单位复制传输L-preamble字段、BPSK符号字段,以及第一EHT信令字段,而以40MHz为单位复制传输第二EHT信令字段。
如图13所示,N取值为2时,若第一带宽为20MHz,则第二带宽可以为80MHz。如此,AP在发送该下行PPDU时,可以20MHz为单位复制传输L-preamble字段、BPSK符号字段,以及第一EHT信令字段,而以80MHz为单位复制传输第二EHT信令字段。
本申请实施例中,第二EHT信令字段的每个OFDM符号采用312.5KHz的子载波间距,因此,在20MHz的传输带宽内,第二EHT信令字段可包括64个子载波,其中包括52个数据子载波和4个导频子载波;在40MHz的传输带宽内,第二EHT信令字段可包括128个子载波,其中包括108个数据子载波和6个导频子载波;在80MHz的传输带宽内,第二EHT信令字段可包括256个子载波,其中包括234个数据子载波和8个导频子载波。
如此可见,采用比第一带宽更大的第二带宽(即N为正整数)来复制传输第二EHT信令字段,不仅可以避免在两个内容信道上传输第二EHT信令字段(与目前802.11ax中HE-SIGB的传输方式类似),需平衡奇数内容信道和偶数内容信道上承载的信令信息的长度的技术问题,还可以在第二EHT信令字段中传输更多的信令信息,从而可使得该下行PPDU的传输结构在超大频谱带宽的场景下进行多用户数据传输也可适用。例如,采用40MHz复制传输的第二EHT信令字段就可以比采用20MHz复制传输的第二EHT信令字段多携带4比特的信令信息。
为了支持第二EHT信令字段在下行PPDU的传输带宽范围内以第二带宽(此处指N为正整数时的第二带宽)为单位复制传输,本申请实施例提供的下行PPDU中的第一EHT信令字段还可包括M个信道估计子载波,用以对以第二带宽传输第二EHT信令字段时多出的数据子载波进行信道估计,以便接收端可以正确译码。该M个信道估计子载波上承载有第一STA已知的设定值或设定比特序列,例如,该设定值可以为1或-1。
具体的,所述M为正整数,该M的取值是AP根据第二带宽的范围内,第二EHT信令字段中使用的子载波数量,以及L-preamble字段和BPSK符号字段能够提供的信道估计子载波的数量确定的。本申请实施例中,所述M值等于第二EHT信令字段中使用的子载波数量减去L-preamble字段和BPSK符号字段能够提供的信道估计子载波的数量。
举例来说,若第一带宽为20MHz,第二带宽为40MHz,那么在第一个20MHz和第二个20MHz传输的L-preamble字段的两个L-LTF可提供104个信道估计子载波,L-preamble字段的两个L-SIG和BPSK符号字段可提供8个信道估计子载波,而40MHz的第二EHT信令字段共含有114个已使用的子载波,如此,第一EHT信令字段中需插入2个信道估计子载波用于信道估计,即114-104-8=2。此处,插入2个信道估计子载波具体是指在传输带宽的每40MHz对应的两个20MHz中传输的第一EHT信令字段中插入2个信道估计子载波。考虑到插入的子载波序号会随着PPDU带宽变换,本申请实施例对插入的信道估计子载波的序号不再具体说明。
再例如,若第一带宽为20MHz,第二带宽为80MHz,那么在第一个20MHz至第四个20MHz中传输的L-preamble字段的四个L-LTF可提供208个信道估计子载波,L-preamble字段的四个L-SIG和BPSK符号字段可提供16个信道估计子载波,而80MHz的第二EHT信令字段共含有242个已使用的子载波,如此,第一EHT信令字段中需插入18个信道估计子载波用于信道估计,即242-208-16=18。此处,插入18个信道估计子载波具体是指在传输带宽的每80MHz对应的四个20MHz中传输的第一EHT信令字段中插入18个信道估 计子载波。考虑到插入的子载波序号会随着PPDU带宽变换,本申请实施例对插入的信道估计子载波的序号不再具体说明。
在另外一种可能的实现方式中,也可以不在第一EHT信令字段插入额外的信道估计子载波,而是在对应第二EHT信令字段需要额外信道估计的子载波上承载已知的信号,如此,该额外的数据子载波承载的已知信号可以用来帮助后续字段做信道估计。
本申请实施例中,该下行PPDU中的第二EHT信令字段可以采用上文所描述的方式在下行PPDU的传输带宽范围内,以大于第一带宽的第二带宽为单位进行复制传输,或者在另一种可行的实现方式中,所述第二EHT信令字段也可以扩展到在下行PPDU的全带宽范围内传输。例如,若下行PPDU的传输带宽为320MHz,此时下行PPDU中的第二EHT信令的传输带宽(即第二带宽)也可以为320MHz。相应地,也需在全带宽范围内的第一EHT信令中插入相应个数的信道估计子载波,用于信道估计。
应理解,在使用第二带宽为单位复制传输第二EHT信令字段时,所述第二带宽应小于等于所述下行PPDU的传输带宽。本申请实施例中,所述下行PPDU的传输带宽可以为目前在802.11协议中已规定的可使用的20MHz、40MHz、80MHz、160MHz等频谱带宽,或是在下一代IEEE 802.11协议中将引进的超大带宽,如240MHz、320MHz等,或者该下行PPDU的传输带宽还可以是未来引进的更大频谱带宽,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中,N值的取值也可以为0,也就是说,尽管使用大于基础带宽的第二带宽(即N值取正整数)来传输第二EHT信令字段可以携带更多信令信息,但是在某些特定的场景下,AP也可以第一带宽为单位在下行PPDU的传输带宽范围内进行传输,且奇数第一带宽与偶数第一带宽中传输的第二RHT信令字段的内容可以不同,如图14所示。
由此,该下行PPDU中还可以包括第一指示信息,用以指示所述N的取值是否为正整数。当N取值为正整数时,则意味着AP采用比第一带宽更大的第二带宽为单位传输第二EHT信令字段,当N取值为0时,则意味着AP采用第一带宽(即此时的第二带宽与第一带宽相同)为单位传输第二EHT信令字段。该第一指示信息可以位于下行PPDU中的L-preamble字段、第一EHT信令字段、BPSK符号字段中的某一字段中。
本申请实施例中,所述特定的场景可以为下行PPDU的传输带宽为非连续带宽,或者下行PPDU的传输带宽小于第二带宽(该第二带宽指N取值为正整数时的第二带宽)的场景。在这一场景下,由于传输带宽本身的条件限制,AP若仍采用比第一带宽大的第二带宽传输第二EHT信令字段,那么在第二带宽范围内的某些第一带宽中则无法传输任何信令信息,而只能在第二带宽范围内的部分第一带宽中传输信令信息,这实质上与以第一带宽为单位传输第二EHT信令字段相同,因此,也可以被称为“前导码打孔的传输方式”。
在一种可能的设计中,所述第一指示信息可以为第一EHT信令字段中的带宽指示信息,当带宽指示信息指示下行PPDU的传输带宽为连续带宽,且该传输带宽大于等于第二带宽时,N取值为正整数,当带宽指示信息指示下行PPDU的传输带宽为非连续带宽,或传输带宽小于第二带宽时,N取值为0。
例如,第一带宽为20MHz,假设N值为正整数时,N会取为2,第二带宽会是40MHz,那么当下行PPDU的传输带宽为连续带宽,且大于等于40MHz时,N值才会为正整数2,AP才会真正以40MHz为单位传输第二EHT信令字段,当下行PPDU的传输带宽为非连续带宽,或者传输带宽小于40MHz时,N值取0,以表示采用前导码打孔的方式传输第二 EHT信令字段。
实施例四
本申请实施例还提供另一种通信方法,如图15所示,该方法具体包括如下步骤:
步骤S1501:接入点AP确定传输带宽;所述传输带宽用于与一个或多个站点STA通信,所述传输带宽为240MHz或320MHz;
步骤S1502:所述接入点确定所述传输带宽的资源单元RU划分,所述传输带宽被划分为至少一个资源单元RU,其中,每个RU包括至少一个子载波,所述至少一个子载波具有固定位置;
步骤S1503:所述接入点根据所述传输带宽的资源单元RU划分,与所述一个或多个STA通信。
在一种可能的设计中,所述至少一个资源单元RU,包括以下任意一种或任意组合:26子载波RU、52子载波RU、106子载波RU、242子载波RU、484子载波RU、996子载波RU。
由上述内容可知,本申请实施例针对如240MHz或320MHz的超大带宽,提供了相应的频谱划分方式。下面分别针对频谱带宽为240MHz和320MHz的频谱划分方式进行具体说明。值得注意的是,802.11系统标准未来引进的更大带宽也可同样适用与本申请实施例相同或类似的频谱划分方式,本申请实施例对此不做具体限制。
1、240MHz
240MHz共包括3072个子载波,子载波间距为78.125KHz,图16和图17示例性示出了本申请实施例提供的240MHz的两种频谱划分方式,如图16所示,240MHz可看作由3个独立的80MHz组成,在将频谱划分为26RU、52RU、106RU、242RU、484RU等较小资源单元的情形下,每个80MHz的频谱划分可与图8中所示出的80MHz的频谱划分类似。
针对于划分为996RU(80MHz下的最大资源单元)的情形下,如图16所示,一种可能的频谱划分方式为,整个频谱带宽包括12个左边带子载波(guard)、11个右边带子载波,左边带子载波和右边带子载波之间包括3个996RU,前后两个996RU的中心包括5个空子载波(null subcarriers),频谱带宽的中间包括51个直流子载波。其中,12个左边带子载波的序号具体为[-1536:-1525],11个右边带子载波的序号具体为[1525:1535],3个996子载波RU具体位于[-1524:-1027-1021:-524]、[524:1021 1027:1524]、[-523:-26 26:523],前后两个996RU中间的空子载波具体位于[-1026:-1020]和[1022:1026],51个直流子载波的序号具体为[-25:25].另一种实施方式,直流子载波的个数可以小于51,比如5个[-2:2]或7个[-3:3],剩余的可以为空子载波。
如图17所示,另一种可能的频谱划分方式为,将上一个频谱划分方式中51个直流子载波中的26个子载波划分出来作为一个26子载波RU存在,该26子载波RU具体位于[-25:-13 13:25],其余的子载波或者其余子载波的部分子载波仍作为直流子载波位于频谱带宽的中心。
由于存在一个额外的26子载波RU,因此,相应地,在下行MU PPDU的第二EHT信令中还可携带第二指示信息,用以指示该位于频谱中间的特定的26子载波RU是否使用。在一种实现方式中,该第二指示信息可以位于第二EHT信令中的共有信息字段,例如,该第二指示信息可以用1比特表示,当该第二指示信息1时,表示这个特定的26子载波RU 被使用,否则表示未使用。在另一种实现方式中,该第二指示信息可以为第二EHT信令字段中的一个特殊的站点信息字段,该特殊的站点信息字段使用特殊的站点标识指示(没有分配任何站点的标识)。
2、320MHz
320MHz共包含4096个子载波,图18和图19示例性示出了本申请实施例提供的320MHz的两种频谱划分方式,如图18所示,320MHz可看作由4个独立的80MHz组成,在将频谱划分为26子载波RU、52子载波RU、106子载波RU、242子载波RU、484子载波RU等较小资源单元的情形下,每个80MHz的频谱划分可与图8中所示出的80MHz的频谱划分类似。
针对于划分为996子载波RU(80MHz下的最大资源单元)的情形下,如图18所示,一种可能的频谱划分方式为,整个频谱带宽包括12个左边带子载波(guard)、11个右边带子载波,左边带子载波和右边带子载波之间包括4个996子载波RU,每个996子载波RU的中心包括5个空子载波(null subcarriers),频谱带宽的中间还包括69个直流子载波。其中,12个左边带子载波的序号具体为[-2048:-2037],11个右边带子载波的序号具体为[2037:2047],4个996RU具体位于[-2036:-1539-1533:-1036]、[-1035:-538-532:-35]、[35:532 538:1035]、[1036:1533 1539:2036],每个996子载波RU之间的空子载波具体位于[-1538:-1534]、[-537:-533]、[533:537]和[1034:1538],69个直流子载波的序号具体位于[-34:34],另一种实施方式,直流子载波的个数可以小于69,比如5个[-2:2]或7个[-3:3],剩余的可以为空子载波。
如图19所示,另一种可能的频谱划分方式为,将上一个频谱划分方式中69个直流子载波中的52个子载波划分出来作为一个独立的52子载波RU存在,该RU具体位于[-34:-9 9:34],其余的子载波或者其余的子载波的部分子载波仍作为直流子载波位于频谱带宽的中心。
由于存在一个额外的52子载波RU,因此,相应地,在下行MU PPDU的第二EHT信令中还可携带第三指示信息,用以指示该位于频谱中间的特定的52子载波RU是否使用。在一种实现方式中,该第三指示信息可以位于第二EHT信令中的共有信息字段,例如,该第三指示信息可以用1比特表示,当该第二指示信息1时,表示这个特定的52子载波RU被使用,否则表示未使用。在另一种实现方式中,该第三指示信息可以为第二EHT信令字段中的一个特殊的站点信息字段,该特殊的站点信息字段使用特殊的站点标识指示(没有分配任何站点的标识)。
需要说明的是,上述频谱划分方式仅是以将频谱带宽划分为单一类型的RU的情形为例进行说明的,应当理解,在本申请实施例提供的某一超大带宽中仍旧可以支持混合类型的RU,只需按照图16至图19中所示出的频谱划分方式,将不同类型的RU进行相互组合即可。
实施例五
802.11ax之前的无线保真(wireless fidelity,wifi)协议,比如802.11ac,要求数据传输时需占用连续的带宽,并规定可使用20MHz,40MHz,80MHz以及160MHz共四种类型的带宽。在具体应用时,带宽中的一个20MHz被记为主20MHz。如果带宽内某个20MHz被其他站点占用,则传输的PPDU带宽就需要减小,缩小后的带宽需包含主20MHz,与主 20MHz连续的其他的20MHz都是空闲可用的。比如说连续的80M带宽中的第一个20MHz为主20MHz,但第二个20MHz信道忙,按照连续带宽的要求,此时只能传输主20MHz的PPDU,即浪费了80MHz带宽内得一个空闲的40MHz。
802.11ax协议为了聚合更多的信道形成更大可用带宽(最大带宽可达160MHz),提出了一种前导码打孔的传输方式,允许将非连续的信道聚合在一起,在上述例子中即允许接入点发送20MHz+40MHz的PPDU,从而更加有效地利用空闲信道。具体的,在802.11ax标准中规定的4种传输带宽中,只有其中的80MHz和160MHz带宽存在前导码打孔传输方式的可能。下面分别介绍802.11ax提出的4种前导码打孔传输方式。
80MHz带宽包含主20MHz P20,次20MHz S20以及次40MHz S40,其中S40又分为S40-L(S40中左20MHz)和S40-R(S40中右20MHz)。80MHz下对应的前导码打孔传输方式如图20和21所示,在图20中该80MHz带宽内只有S20被打孔,在图21中80MHz带宽内只有S40里的一个20MHz被打孔。
160M带宽包含主20MHz P20,次20MHz S20,次40MHz S40以及次80MHz S80,其中S40又分为S40-L和S40-R。160MHz下对应的前导码打孔方式如图22和23所示,在图22中,160MHz带宽内主80MHz(由P20,S20和S40组成)内只有S20被打孔,次80MHz某些20MHz可能被打孔,由802.11ax HE-SIG-B字段指示。在图23中,160MHz带宽内主80MHz(由P20,S20和S40组成)内主40MHz(由P20和S20组成)没被打孔,次40Mhz和次80MHz中某些20MHz可能被打孔,由802.11ax HE-SIG-B字段指示。
上述提到的802.11ax的80MHz带宽的2种前导码打孔传输方式以及160MHz带宽的2种前导码打孔传输方式可通过一个指示信息来指示。该指示信息位于802.11ax PPDU前导码HE-SIG-A字段中,值得注意的是,80MHz带宽内第二种前导码打孔模式,以及160MHz带宽内的两种前导码打孔模式都不能具体指示哪个20MHz被打孔。接收端需要通过进一步解析802.11ax HE PPDU前导码中下一个字段HE-SIG-B字段的共有信息部分字段中的资源分配指示信息,而HE-SIG-B是主要是用来给多站点进行多用户传输,包括OFDMA,MU-MIMO,提供资源单元分配信息以及站点传输参数。也就是说,802.11ax的前导码打孔传输方式只适用于多用户传输。
由此,本申请实施例五提供一种前导码打孔传输方式,可应用于802.11ax下一代EHT协议的单用户传输和多用户传输中。具体的,一种方式,即采用802.11ax的多用户打孔传输模式,即多通过SIG 1和SIG 2字段联合指示带宽内哪些20MHz带宽被打孔。该方式需要额外的SIG 2字段,至少需一个OFDM符号,如果该OFDM符号采用BPSK,码率为0.5的BCC编码,则一个OFDM的开销为26比特。
另外一种方式,不采用额外一个字段,直接通过第一EHT信令字段直接指示哪些信道被打孔。这里假设EHT支持的最大带宽如果是320M。
实施方式1:由于主20MHz不能打孔,则共需要15比特位图指示从低频到高频(或从高频到低频)的哪些信道被打孔,比如置1,则表示对应的信道可以使用,置0,则表示对应的信道不可以使用,被打孔。该方式简单,但需要15比特的开销。
实施方式2:为了简化物理层的设计,限制连续的带宽最多允许一个打孔,因此具体的前导码打孔模式信令指示为3比特带宽指示(含20MHz,40MHz,80MHz,160MHz和320MHz,可能还含有240MHz等),4比特指示第一个被打孔的20MHz的起始位置(从低频到高频或从高频到低频的位置)和2比特被打孔的宽度(含20MHz,40MHz,80MHz 以及160MHz),共需要9比特,或者直接把所有打孔的情况通过表格形式列出来,需要8比特表格。可能还有进一步限制打孔的宽度,比如只能为20MHz,则只需7比特,或者直接把所有打孔的情况通过表格形式列出来,需要6比特表格。
实施例六
目前802.11ac标准中定义的PPDU(可以记为非常高吞吐量(very high throughput,VHT)PPDU或802.11ac PPDU)的帧结构包括:数据Data、传统物理层前导码以及新物理层前导码,如图24所示。其中,传统物理层前导码包括传统短训练序列字段(legacy-short training field,L-STF)、传统长训练序列字段(legacy-long training field,L-LTF)和传统信令字段(egacy-signal field,L-SIG);新物理层前导码包括:非常高吞吐量信令字段A(VHT-SIG A,very high throughput signaling field A),非常高吞吐量短训练字段(VHT-STF,very high throughput short training field),非常高吞吐量长训练字段(VHT-LTF,very high throughput long training field),非常高吞吐量字段B(VHT-SIG B,very high throughput signaling field A),其中,VHT-SIG-A(也可以记为VHTSIGA)包含2个OFDM符号,每个符号时长为4μs。另外,VHT-LTF是用来帮助接收端正确估计信道,从而帮助站点能正解的译码接收到的数据信息。
802.11ac最大支持8个流数据同时传输,包括单用户MIMO和多用户MIMO。当流数为n时,则图24包括的VHT-LTF的OFDM符号个数有n个,即n个VHT-LTF字段,该n个VHT-LTF字段用来帮助站点同时估计n个空间流的信道。为了准确估计空间流信道,保持各流的VHT-LTF正交,802.11ac提出使用P矩阵乘以VHT-LTF。
当流数为2时,P矩阵为:
Figure PCTCN2019096196-appb-000001
当流数为3或4时,P矩阵为:
Figure PCTCN2019096196-appb-000002
当流数为5或6时,P矩阵为:
Figure PCTCN2019096196-appb-000003
其中,
Figure PCTCN2019096196-appb-000004
当流数为7或8是,P矩阵为:
Figure PCTCN2019096196-appb-000005
具体使用方法,以流是为2为例,2个VHT-LTF在频域上子载波k的值点乘P矩阵元素为,其中k为VHT-LTF OFDM符号频域上被使用的数据子载波序号,不包括导频子载波,横轴为时间域(即每个天线在时间上发送的VHT-LTF字段,维度为VHT-LTD字段个数),竖轴为空间域(即对用多个天线在空间上发送的VHT-LTF字段,维度为空间流数)。
Figure PCTCN2019096196-appb-000006
另外,当流数为奇数n时,则每根天线在时间上发送偶数n+1个VHT-LTF字段,多个天线在空间上发送奇数n个流,采用P矩阵的前n行和前n+1列与VHT-LTF字段点乘。
802.11ax最大支持的流数仍为8,沿用802.11ac的P矩阵,当发送多个流数,使用P矩阵点乘802.11ax中的信道估计序列高效长训练序列字段(high efficient long training field,HE-LTF)的数据子载波,不包括导频子载波。而802.11ax下一代EHT协议的单用户传输将更多的流数,多达16流,本发明提出新一种适用于大于8流的P矩阵设计。P矩阵的总体原则为:
1.P矩阵为酉矩阵,即P -1=P T,其中(-1)为矩阵求逆,T为矩阵的转置。
2.P矩阵的元素的值为1或-1,或者P m,n=exp(-j2π(m-1)(n-1)/s),其中为m为行列号,n为列序号,s为对于的流数目。
另外,信道估计LTF字段的导频子载波的值不要点乘P矩阵。为了实现在不做MIMO信道估计,仍能通过导频子载波做相位跟踪Phase tracking,每个流(空间维度)在时间上发送的LTF字段的导频子载波上的值点乘P矩阵的第一行,即n个LTF字段的导频子载波上的值点乘P矩阵的第一行的n个元素。为了避免光谱线spectral line问题,P矩阵的第一行的元素不能全为1。
设计的P矩阵具体如下:
当流数等于9或10时,P矩阵为:
Figure PCTCN2019096196-appb-000007
其中
Figure PCTCN2019096196-appb-000008
乘以-1的列数为第2,6,10列。另外一种实施的方式,乘以-1的列可以为出第一列的任意若干列,保证P矩阵的第一行的元素不能全为1。
当流数等于11或12时,P矩阵为:
Figure PCTCN2019096196-appb-000009
其中,
Figure PCTCN2019096196-appb-000010
乘以-1的列数为第2,6,10列。另外一种实施方式,乘以-1的列可以为出第一列的任意若干列,保证P矩阵的第一行的元素不能全为1。
当流数等于13或14时,P矩阵为:
Figure PCTCN2019096196-appb-000011
其中
Figure PCTCN2019096196-appb-000012
乘以-1的列数为第2,6,10,14列。另外一种实施的方式,乘以-1的列可以为出第一列的任意若干列,保证P矩阵的第一行的元素不能全为1。
当流数等于15或16时,P矩阵为:
Figure PCTCN2019096196-appb-000013
或者,
Figure PCTCN2019096196-appb-000014
其中T为矩阵的转置。
基于相同的技术构思,本申请实施例还提供了一种应用于第一接入点侧的装置2500,用于实现上述方法实施例中第一接入点AP所执行的功能。
一种实现方式中,如图25所示,装置2500可以包括处理模块2501和收发模块2502。
所述处理模块2501用于,生成下行物理层协议数据单元PPDU;所述下行PPDU包括第二极高吞吐量EHT信令字段;
所述收发模块2502用于,向第一站点STA发送所述下行PPDU;所述第二EHT信令字段在所述下行PPDU的传输带宽范围内以第二带宽为单位复制传输,所述第二带宽为基础带宽的2 N倍,N为0或正整数。
关于上述处理模块2501和收发模块2502的具体处理过程,可参见上述图5、图10、图11、图15所示的方法实施例中的介绍,在此不再赘述。
另一种实现方式中,装置可以为第一接入点,如图26所示,装置2600可以包括处理器2601、存储器2602、基带电路2603、射频电路2604和天线2605。其中,处理器2601用于实现对各个电路部分功能的控制,以支持第一接入点AP执行上述方法中相应的功能;存储器2602用于保存第一接入点必要的程序指令和数据;基带电路2603用于生成各类信令和消息,例如生成下行PPDU,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,由天线2605发送给第一STA。
装置2600还可以具有其他实现方式,例如,在一种实现方式中,装置可以为第一接入点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持第一接入点AP执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述第一接入点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在另一种可能的实现方式中,装置可以包括处理器和调制解调器,处理器可以用于运行指令或操作系统,以实现对第一接入点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成无线帧,以支持第一接入点AP执行上述第一方面至第四方面中任一方面中相应的功能。
又一种可能的实现方式中,装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面至第四方面中任一方面所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面的联合传输方法的程序执行的集成电路。
基于相同的技术构思,本申请实施例还提供了一种应用于第一站点侧的装置2100,用于实现上述方法实施例中第一站点STA所执行的功能。
一种实现方式中,如图27所示,装置2700可以包括收发模块2701和处理模块2702。
所述收发模块2701用于,接收第一接入点AP发送的下行物理层协议数据单元PPDU;所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段在所述下行PPDU的传输带宽范围内以第二带宽为单位复制传输,所述第二带宽为基础带宽的2 N倍,N为0或正整数;
所述处理模块2702用于,根据所述第二带宽解码所述第二EHT信令字段中的信令信息。
关于上述收发模块2701和处理模块2702的具体处理过程,可参见上述图5、图10、图11、图15所示的方法实施例中的介绍,在此不再赘述。
另一种实现方式中,如图28所示,装置2800可以包括为处理器2801、存储器2802、收发机2803、天线2804以及输入输出装置2805。其中,处理器2801主要用于对整个装置进行控制,执行计算机程序指令,以支持装置执行上述第四方面至第七方面中任一方法实施例中所描述的动作等。存储器2802主要用于存储保存第一站点必要的程序指令和数据。收发机2803主要用于基带信号与射频信号的转换以及对射频信号的处理。天线2804主要用于收发电磁波形式的射频信号。输入输出装置2805,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
该第一站点还具有其他可能的实现方式,例如,该装置可为第一站点内的芯片,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持第一站点STA执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述第一站点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于运行指令或操作系统,以实现对第一站点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成无线帧,以支持第一站点AP执行上述第四方面至第七方面中任一方面中相应的功能。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第四方面至第七方面中任一方面所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面的通信方法的程序执行的集成电路。
基于相同的技术构思,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行上述方法实施例中第一接入点一侧的通信方法。
本申请实施例提供一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其任意可能的实现方式中所述的方法实施例。
本申请实施例还提供一种芯片系统,该芯片系统包括处理器,用于支持第一接入点AP实现上述通信方法,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行上述方法实施例中第一站点一侧的通信方法。
本申请实施例提供一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第五方面至第七方面中的任一方面或其任意可能的实现方式中所述的方法实施例。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第一STA实现上述第五方面至第七方面中所涉及的功能,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种无线通信系统,该系统包括上述方面涉及的至少一个第一接入点以及至少一个第一STA。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种通信方法,其特征在于,所述方法包括:
    接入点AP生成第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;
    所述AP向所述第一STA发送所述第一帧。
  2. 根据权利要求1所述的方法,其特征在于,所述结束指示信息为站点信息字段中的第一指示字段;
    所述第一指示字段的取值为第一取值时,表示站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述第一指示字段的取值为第二取值时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  3. 根据权利要求1所述的方法,其特征在于,所述结束指示信息为站点信息字段中的调制与编码策略MCS字段,分配给同一STA的RU承载数据信息时使用的MCS相同;
    所述MCS字段的取值为RU承载数据时使用的MCS时,表示站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述MCS字段的取值为特定的MCS时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;
    所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
  5. 根据权利要求4所述的方法,其特征在于,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
  6. 一种通信方法,其特征在于,所述方法包括:
    第一站点STA接收接入点AP发送的第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;
    所述第一STA根据被分配的P个RU,接收或发送数据信息。
  7. 根据权利要求6所述的方法,其特征在于,所述结束指示信息为站点信息字段中的第一指示字段;
    所述方法还包括:
    所述第一STA确定所述第一指示字段的取值为第一取值的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述第一指示字段的取值为第二取值的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  8. 根据权利要求6所述的方法,其特征在于,所述结束指示信息为站点信息字段中的调制与编码策略MCS字段,分配给同一STA的RU承载数据信息时使用的MCS相同;
    所述方法还包括:
    所述第一STA确定所述MCS字段的取值为RU承载数据时使用的MCS的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述MCS字段的取值为特定的MCS的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;
    所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
  10. 根据权利要求9所述的方法,其特征在于,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
  11. 一种应用于接入点侧的装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述处理模块用于,生成第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;
    所述收发模块用于,向所述第一STA发送所述第一帧。
  12. 根据权利要求11所述的装置,其特征在于,所述结束指示信息为站点信息字段中的第一指示字段;
    所述第一指示字段的取值为第一取值时,表示站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述第一指示字段的取值为第二取值时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  13. 根据权利要求11所述的装置,其特征在于,所述结束指示信息为所述第一站点信息字段中的调制与编码策略MCS字段,分配给同一STA的RU承载数据信息时使用的MCS相同;
    所述MCS字段的取值为RU承载数据时使用的MCS时,表示站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述MCS字段的取值为特定的MCS时,表示站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;
    所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
  15. 根据权利要求14所述的装置,其特征在于,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
  16. 一种应用于站点侧的装置,其特征在于,所述装置包括:收发模块和处理模块;
    所述收发模块用于,接收接入点AP发送的第一帧,所述第一帧包括P个站点信息字段,所述P个站点信息字段中的每个站点信息字段对应第一站点STA分配的一个资源单元 RU,P为大于1的正整数,所述每个站点信息字段还包括结束指示信息,所述结束指示信息用于指示站点信息字段是否为所述P个站点信息字段中的最后一个站点信息字段;
    所述处理模块用于,根据被分配的P个RU,接收或发送数据信息。
  17. 根据权利要求16所述的装置,其特征在于,所述结束指示信息为站点信息字段中的第一指示字段;
    所述处理模块还用于:
    确定所述第一指示字段的取值为第一取值的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述第一指示字段的取值为第二取值的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  18. 根据权利要求16所述的装置,其特征在于,所述结束指示信息为站点信息字段中的调制与编码策略MCS字段;
    所述处理模块还用于:
    确定所述MCS字段的取值为RU承载数据时使用的MCS的站点信息字段是所述P个站点信息字段中的最后一个站点信息字段,所述MCS字段的取值为特定的MCS的站点信息字段不是所述P个站点信息字段中的最后一个站点信息字段。
  19. 根据权利要求16至18中任一项所述的装置,其特征在于,所述第一帧为下行物理层协议数据单元PPDU,所述下行PPDU包括第二极高吞吐量EHT信令字段,所述第二EHT信令字段包括资源分配指示信息和包括所述P个站点信息字段在内的多个站点信息字段,所述资源分配指示信息用于指示所述下行PPDU的传输带宽被划分成多个RU;
    所述P个站点信息字段在所述多个站点信息字段中的位置和所述资源分配指示信息,共同决定所述第一STA被分配的RU。
  20. 根据权利要求19所述的装置,其特征在于,分配给所述第一STA的P个RU用于共同承载所述第一STA的同一数据帧,或者分别承载所述第一STA的多个数据帧。
  21. 一种应用于接入点侧的装置,其特征在于,所述装置包括:
    存储器,用于存储软件程序;
    处理器,用于读取所述存储器中的软件程序并执行权利要求1至权利要求5中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1至权利要求5中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机可读指令,当计算机读取并执行所述计算机可读指令,使得计算机执行如权利要求1至权利要求5中任一项所述的方法。
  24. 一种应用于站点侧的装置,其特征在于,所述装置包括:
    存储器,用于存储软件程序;
    处理器,用于读取所述存储器中的软件程序并执行权利要求6至权利要求10中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求6至权利要求10中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,包括计算机可读指令,当计算机读取并执行 所述计算机可读指令,使得计算机执行如权利要求6至权利要求10中任一项所述的方法。
PCT/CN2019/096196 2018-07-17 2019-07-16 一种通信方法及装置 WO2020015650A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19837384.7A EP3817258B1 (en) 2018-07-17 2019-07-16 Communication method and device
EP23168119.8A EP4243309A3 (en) 2018-07-17 2019-07-16 Communication method and apparatus
US17/150,869 US11984972B2 (en) 2018-07-17 2021-01-15 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810786769.9A CN110730050A (zh) 2018-07-17 2018-07-17 一种通信方法及装置
CN201810786769.9 2018-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/150,869 Continuation US11984972B2 (en) 2018-07-17 2021-01-15 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020015650A1 true WO2020015650A1 (zh) 2020-01-23

Family

ID=69164279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096196 WO2020015650A1 (zh) 2018-07-17 2019-07-16 一种通信方法及装置

Country Status (4)

Country Link
US (1) US11984972B2 (zh)
EP (2) EP4243309A3 (zh)
CN (3) CN116405161B (zh)
WO (1) WO2020015650A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141327A (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置、情報処理装置、制御方法、およびプログラム
US20230006786A1 (en) * 2019-11-29 2023-01-05 Lg Electronics Inc. Method and device for receiving ppdu through multiple rus in wireless lan system
US11831423B2 (en) * 2020-01-06 2023-11-28 Nxp Usa, Inc. Method and apparatus for communications with channel puncturing
WO2021182915A1 (ko) * 2020-03-12 2021-09-16 엘지전자 주식회사 무선 통신 시스템에서 프리앰블을 구성하기 위한 기법
US11653343B2 (en) * 2020-03-13 2023-05-16 Huawei Technologies Co., Ltd. Spectrum allocation for multiple resource units in a wireless network
EP4118785A1 (en) * 2020-03-13 2023-01-18 Interdigital Patent Holdings, Inc. Methods, architectures, apparatuses and systems directed to physical layer signaling in a wireless local area network ("wlan") system
CN113517974B (zh) * 2020-04-10 2023-03-28 华为技术有限公司 一种多资源单元对应的调制方式的指示方法及相关设备
CN113543227A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 信道带宽配置方法及设备
CN113541859B (zh) * 2020-04-17 2024-05-17 华为技术有限公司 一种信道打孔模式指示方法及相关装置
US11825493B2 (en) 2020-04-17 2023-11-21 Mediatek Singapore Pte. Ltd. Resource unit allocation subfield designs for trigger-based and self-contained signaling in extreme high-throughput systems
CN116347616A (zh) * 2020-04-22 2023-06-27 华为技术有限公司 数据传输方法及相关装置
US11582007B2 (en) * 2020-05-06 2023-02-14 Mediatek Inc. Apparatuses and methods for resource unit (RU) allocation signaling to support trigger-based physical layer protocol data unit (TB PPDU) with multi-RU
CN116963190A (zh) * 2020-05-22 2023-10-27 华为技术有限公司 空数据分组声明帧的传输方法及相关装置
US11616547B2 (en) * 2020-05-26 2023-03-28 Mediatek Singapore Pte. Ltd. Spatial configuration subfield designs of user field for MU-MIMO allocation in extreme-high-throughput systems
CN116017729B (zh) * 2020-05-28 2024-06-11 华为技术有限公司 通信方法及装置
CN116418457B (zh) * 2020-06-05 2024-02-13 华为技术有限公司 Ppdu的传输方法及相关装置
JP2023529329A (ja) * 2020-06-15 2023-07-10 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ マルチユーザ多入力多出力伝送のための通信装置および通信方法
US11696270B2 (en) * 2020-06-16 2023-07-04 Mediatek Singapore Pte. Ltd. Efficient resource unit allocation signaling in extreme-high-throughput wireless communications
CN113825230A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 一种资源指示方法及接入点和站点
CN113873645A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 一种多资源单元传输的指示方法及相关设备
CN116347566B (zh) 2020-08-21 2024-03-01 华为技术有限公司 Ppdu的上行参数指示方法及相关装置
CN118317360A (zh) * 2020-08-27 2024-07-09 华为技术有限公司 数据分片解析方法及相关装置
CN114125854A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 通信方法及装置
CN116234029B (zh) 2020-09-04 2024-03-01 华为技术有限公司 资源单元指示方法、接入点及站点
CN115606101B (zh) * 2020-10-28 2023-11-07 北京小米移动软件有限公司 通信方法和通信设备
JP2023546511A (ja) * 2020-10-28 2023-11-02 北京小米移動軟件有限公司 通信方法及び通信装置
CN116567822A (zh) 2020-10-28 2023-08-08 华为技术有限公司 Ppdu的上行带宽指示方法及相关装置
CN114760019A (zh) * 2021-01-11 2022-07-15 华为技术有限公司 一种名义包填充值的指示方法、确定方法及通信装置
CN116865908B (zh) * 2021-03-03 2024-06-14 华为技术有限公司 极高吞吐率链路自适应控制信息的传输方法及相关装置
CN115515228A (zh) * 2021-06-07 2022-12-23 华为技术有限公司 Ppdu传输方法及相关装置
CN116707591A (zh) * 2022-02-24 2023-09-05 华为技术有限公司 一种天线模式切换方法及相关装置
CN118057894A (zh) * 2022-11-18 2024-05-21 华为技术有限公司 通信方法、装置、系统及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155406A (zh) * 2006-09-29 2008-04-02 华为技术有限公司 一种资源分配的指示方法及装置
CN107079458A (zh) * 2015-08-10 2017-08-18 Lg电子株式会社 用于在无线lan系统中形成包括控制字段的控制信号的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015304131B2 (en) * 2014-08-21 2018-08-02 Lg Electronics Inc. Method for uplink transmission in wireless communication system and apparatus therefor
CN107431676B (zh) * 2014-08-26 2021-02-19 英特尔Ip公司 用于发送高效无线局域网信号字段的装置、方法和介质
ES2783548T3 (es) * 2014-12-02 2020-09-17 Lg Electronics Inc Método para la asignación de recursos de trama de banda ancha en un sistema inalámbrico y aparato para el mismo
WO2016140533A1 (ko) * 2015-03-04 2016-09-09 엘지전자 주식회사 무선랜 시스템에서 제어 정보를 포함하는 무선 프레임 전송 방법 및 이를 위한 장치
US10111270B2 (en) * 2015-05-26 2018-10-23 Lg Electronics Inc. Method and apparatus for receiving signal by using resource units in a wireless local area system
US10135957B2 (en) * 2015-06-15 2018-11-20 Qualcomm Incorporated Methods and apparatus for communicating high efficiency control information
EP3332490A4 (en) * 2015-08-07 2019-03-27 Newracom, Inc. TAX INFORMATION FOR MULTI-USER TRANSMISSIONS IN WLAN SYSTEMS
US11251901B2 (en) * 2016-11-18 2022-02-15 Intel Corporation Feedback parameters required by link adaptation
US11539482B2 (en) * 2018-05-04 2022-12-27 Intel Corporation Enhanced resource allocation for wireless communications
JP7175998B2 (ja) * 2018-06-13 2022-11-21 インテル コーポレイション 既存のシステムにより部分的に占有される無線周波数チャネルの利用向上

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155406A (zh) * 2006-09-29 2008-04-02 华为技术有限公司 一种资源分配的指示方法及装置
CN107079458A (zh) * 2015-08-10 2017-08-18 Lg电子株式会社 用于在无线lan系统中形成包括控制字段的控制信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, D. J. ET AL.: "IEEE 802.11ax: Highly Efficient WLANs for Intelligent Information Infrastructure", IEEE COMMUNICATIONS MAGAZINE, vol. 55, no. 12, 13 December 2017 (2017-12-13), XP011674426, DOI: 20190909171824A *

Also Published As

Publication number Publication date
EP3817258A1 (en) 2021-05-05
US20210135779A1 (en) 2021-05-06
EP4243309A2 (en) 2023-09-13
EP3817258B1 (en) 2023-06-14
EP4243309A3 (en) 2024-03-20
CN116405161A (zh) 2023-07-07
US11984972B2 (en) 2024-05-14
CN116405161B (zh) 2024-01-16
CN116405159A (zh) 2023-07-07
EP3817258A4 (en) 2021-08-18
CN110730050A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2020015650A1 (zh) 一种通信方法及装置
US11949471B2 (en) Communication of high efficiency (HE) long training fields (LTFs) in a wireless local area network (WLAN)
US10177888B2 (en) Wireless apparatus for high-efficiency (HE) communication with additional subcarriers
CN106105055B (zh) 用于在无线lan中发送帧的方法和装置
US9510346B2 (en) Master station and method for high-efficiency wi-fi (hew) communication using traveling pilots
US10027512B2 (en) Method and apparatus for sounding in wireless communication system
KR101685073B1 (ko) 매우 높은 스루풋 wlan 확인 응답 프레임들을 전송하기 위한 방법 및 장치
US11463903B2 (en) Resource request for uplink transmission
JP2021185717A (ja) 無線局、通信方法および集積回路
JP2016535953A (ja) 無線lanにおけるマルチユーザアップリンク受信方法及び装置
CN112655181A (zh) 在包括具有相互不同的最大可传输rf带宽的无线装置的wlan环境中应用优化的相位旋转的方法和装置
CN106464354A (zh) 用于发送帧的方法和设备
US10425513B2 (en) Method and device for indicating transmission frame structure, and system
CN107872838B (zh) 中继指示方法及接入点ap
AU2021206097B2 (en) Information indication method and communications apparatus
KR20210150540A (ko) 다수의 주파수 세그먼트에서의 동시 전송
KR20150111270A (ko) 무선랜에서 데이터 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837384

Country of ref document: EP

Effective date: 20210127