WO2021253960A1 - 一种交叉多环网冗余网络拓扑结构的控制系统 - Google Patents

一种交叉多环网冗余网络拓扑结构的控制系统 Download PDF

Info

Publication number
WO2021253960A1
WO2021253960A1 PCT/CN2021/087865 CN2021087865W WO2021253960A1 WO 2021253960 A1 WO2021253960 A1 WO 2021253960A1 CN 2021087865 W CN2021087865 W CN 2021087865W WO 2021253960 A1 WO2021253960 A1 WO 2021253960A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled object
controlled
nodes
control system
connection nodes
Prior art date
Application number
PCT/CN2021/087865
Other languages
English (en)
French (fr)
Inventor
林青
文继锋
赵青春
胡绍谦
汤震宇
周强
刘明慧
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to EP21826716.9A priority Critical patent/EP4170979A4/en
Publication of WO2021253960A1 publication Critical patent/WO2021253960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • This application relates to the field of power system communication network topology control systems, and in particular to a control system with a cross-multi-ring network redundant network topology structure.
  • the communication network connection between the valve-based control device VBC of the DC converter station and the sub-module controller SMC is generally connected and communicated by a point-to-point direct connection.
  • the communication network topology is shown in Figure 1, where the valve-based control device VBC is the control Object, the sub-module controller SMC is the controlled object, and the connection node of the controlled object corresponds to the connection node of the controlled object one-to-one.
  • the number of control object connection nodes required is N groups, and the control object’s connection node
  • the number of connection nodes increases with the increase of the number of controlled objects, which leads to the disadvantages of the communication network topology in the prior art that there are many connection points of the controlled object and the power consumption of the controlled object is high.
  • this application provides a new control system with a redundant network topology of multiple ring networks.
  • the present application provides a control system for a redundant network topology structure of a cross-multi-ring network, which includes:
  • the control object which has multiple sets of first connection nodes
  • each controlled object has one or more sets of second connection nodes;
  • any one group of first connection nodes in the control object and the second connection nodes of at least two of the plurality of controlled objects are sequentially connected to form a ring network, corresponding to the multiple groups of the control object.
  • a connecting node forms multiple ring networks, and the multiple ring networks include the multiple controlled objects.
  • the connection node of the control object can be connected to multiple controlled objects to form a ring network, which can effectively reduce the number of connection nodes of the control object and reduce the function of the control object. Consumption.
  • the controlled object can be placed in multiple different ring networks, the controlled object and the controlled object in the control system are redundantly connected, and when the connection node or the network is abnormal, there is a backup redundant network that can be connected , Improve the reliability of the entire control system.
  • each group of connected nodes of the controlled object of the present invention has a bypass function, which realizes the direct connection of nodes when the controlled object fails or loses power, and does not affect the communication between the controlled object and other controlled objects.
  • Figure 1 is a schematic diagram of the existing communication network topology.
  • Fig. 2 is a schematic diagram of a control system of a redundant network topology of a cross-multi-ring network according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a control system of a redundant network topology of a cross-multi-ring network according to another embodiment of the present invention.
  • Figure 4 is a schematic diagram of a control system based on an N by N redundant network topology.
  • Figure 5 is a schematic diagram of a control system based on a 2 by 2 redundant network topology.
  • Figure 6 is a schematic diagram of a control system based on a 3 by 3 redundant network topology.
  • Figure 7 is a schematic diagram of a control system based on a 4 by 4 redundant network topology.
  • the number of required connected nodes of the controlled object can be greatly reduced, thereby reducing the power consumption of the controlled object. Since the controlled object can only be connected to multiple different ring networks, the controlled object and the controlled object in the control system are redundantly connected, and when the connection node or the network is abnormal, there is a backup redundant network that can be connected, which improves Improve the reliability of the entire control system.
  • Fig. 2 is a schematic diagram of a control system of a redundant network topology of a cross-multi-ring network according to an embodiment of the present invention.
  • the control system includes one control object and five controlled objects.
  • the control objects include DC converter station valve base control equipment, substation power plant remote control device, monitoring background, protection information sub-station, etc.
  • are controlled Objects include sub-module controllers, substation power plant protection devices, measurement and control devices, intelligent terminals, etc.
  • the controlled object has three sets of connection nodes (1-1, 1-2), (2-1, 2-2) and (3-1, 3-2), and the controlled object has two sets of connection nodes (1- 1, 1-2) and (2-1, 2-2), the "contact" in the drawings of this application means "connecting node”.
  • connection nodes of the controlled object and the controlled object are respectively referred to as the first connection node and the second connection node.
  • Each of a group of first connection nodes and a group of second connection nodes includes connected output connection nodes and input connection nodes, that is, one group of connection nodes serves as an output connection node, and the other serves as an input connection node.
  • the connection node (1-1, 1-2), 1-2 is the output connection node, and 1-1 is the input connection node.
  • the output of the controlled object is connected to node 1-2, 1-1 of the controlled object 1.1, 1-2 of the controlled object 1.1, 1-1 of the controlled object 1.2, and the controlled object 1.2 1-2, controlled object 2.1, 2-1, controlled object 2.1, 2-2, controlled object's input connection node 1-1 connected in turn to form a ring network, there are 3 controlled objects in the ring network .
  • the output of the controlled object is connected to node 2-2, 2-1 of the controlled object 1.2, 2-2 of the controlled object 2.1, 2-1 of the controlled object 1.3, and the controlled object
  • the 2-2 of 1.3, the 1-1 of the controlled object 2.2, the 1-2 of the controlled object 2.2, and the input connection node 2-1 of the controlled object are connected in turn to form a ring network.
  • the output of the controlled object is connected to node 3-2, 1-1 of the controlled object 1.3, 1-2 of the controlled object 1.3, 2-1 of the controlled object 2.2, and the controlled object 2-2 of 2.2, 2-1 of the controlled object 1.1, 2-2 of the controlled object 1.1, 2-2, the input connection node 3-1 of the controlled object are connected in turn to form a ring network, in which there are 3 controlled objects in total .
  • the first connection nodes of different groups of the same control object are located in different ring networks, for example, the connection nodes (1-1, 1-2) and (2-1, 2) of the control object -2) Located in different ring networks.
  • the second connection nodes of different groups of the same controlled object are located in different ring networks, for example, the connection nodes (1-1, 1-2) and (2- 1, 2-2) Located in different ring networks.
  • connection nodes of the controlled objects 1.1, 1.2, 1.3, and 2.2 are located in different ring networks, for example, the connection nodes (1-1, 1- 2) and (2-1, 2-2) are located in the solid and dotted ring networks respectively, that is, the controlled objects 1.1, 1.2, 1.3 and 2.2 exist in the two ring networks.
  • the connection node and the network are abnormal, there is also a backup redundant network that can be connected.
  • the controlled object 1.1 when the ring network shown by the solid line in Figure 2 is abnormal, it can be shown by the dotted line.
  • the ring network communicates with the control object, thereby improving the reliability of the entire control system.
  • Fig. 3 is a schematic diagram of a control system of a redundant network topology of a cross-multi-ring network according to another embodiment of the present invention. Compared with Figure 2, the difference lies in: in Figure 2, the output of the controlled object is connected to the node 3-2, the 1-1 of the controlled object 1.3, the 1-2 of the controlled object 1.3, and the 2 of the controlled object 2.2. -1, 2-2 of the controlled object 2.2, 2-1 of the controlled object 1.1, 2-2 of the controlled object 1.1, 2-2, the input connection node 3-1 of the controlled object are connected in turn to form a ring network, as shown in Figure 3 , The ring network also includes 1-1 of the controlled object 2.1 and 1-2 of the controlled object 2.1, a total of 4 controlled objects.
  • the controlled object 2.1 only exists in one ring network. When this ring network is abnormal, the controlled object 2.1 can be connected without a backup redundant network. In the embodiment shown in FIG. 3, the controlled object 2.1 exists in two ring networks. When an abnormality occurs in one ring network, the controlled object 2.1 has a backup redundant network that can be connected.
  • the controlled object when a controlled object fails or loses power, the controlled object sets each group of connection nodes to a conductive state. For example, when the controlled object 1.1 fails or loses power, the controlled object 1.1 puts its connection nodes (1-1, 1-2) and (2-1, 2-2) in a conductive state, which does not affect the ring network Communication between other controlled objects and controlled objects.
  • the controlled object has two groups of connection interfaces, but the connection interfaces of the controlled object can be any group, that is, one group or more than two groups.
  • the controlled object has multiple sets of connecting nodes, multiple ring networks connect one set of multiple sets of connecting nodes, or at least two sets of multiple sets of connecting nodes.
  • connection nodes of the controlled object can be any group
  • connection nodes of the control object can also be any group, and these all fall within the scope of this application.
  • FIG. 4, FIG. 5, FIG. 6 and FIG. 7 are only used to further illustrate the specific embodiments of the solution of the present application, and should not be understood as a limitation of the protection scope of the present application.
  • FIG 4 is a schematic diagram of a control system based on an N by N redundant network topology. As shown in Figure 4, a control system based on an N by N redundant network topology includes a controlled object and N by N controlled objects.
  • Each controlled object is provided with two sets of connection nodes.
  • Each group of connection nodes includes connected output connection nodes and input connection nodes.
  • the first group of input connection nodes is 1-1
  • the output connection node is 1-2
  • the second group of input connection nodes is 2-1
  • the output connection node is 2 -2.
  • the connection node is an Ethernet interface, serial port or other conversion interface.
  • the interface can be an optical port or an electrical port.
  • the connected node of the controlled object has bypass function. If the controlled object fails or loses power, it should be controlled The object sets each group of connected nodes to the on state, which does not affect the communication between the controlled object and other controlled objects.
  • Control object There are N groups of connected nodes.
  • a group of connection nodes of a control object and 2N groups of connection nodes of 2N controlled objects are connected in turn to form a ring network. There are no intersecting connection nodes between different ring networks. The two groups of connection nodes of the same control object are located in different ring networks.
  • N is an integer greater than 1, and the value of N can be 2, 3, 4,..., theoretically, it can reach infinity.
  • Figure 5 is a schematic diagram of a control system based on a 2 by 2 redundant network topology.
  • the two groups of connection nodes of the control object include input connection node 1-1, output connection node 1-2, input connection node 2-1, and output connection node 2-2; among them, input connection node 1-1 It is a group with the output connection node 1-2, and the input connection node 2-1 and the output connection node 2-2 are a group.
  • the controlled objects include 1.1, 1.2, 2.1, and 2.2.
  • Each controlled object has two groups of connection nodes.
  • the first group of input connection nodes is 1-1, the output connection node is 1-2, and the second group of input connection nodes is 2-1, the output connection node is 2-2.
  • the output of the controlled object is connected to node 1-2, 1-1 of the controlled object 1.1, 1-2 of the controlled object 1.1, 1-1 of the controlled object 1.2, 1-2 of the controlled object 1.2, and controlled object 2.2 1-1 of the controlled object 2.2 1-2, 1-1 of the controlled object 2.1, 1-2 of the controlled object 2.1, and the input connection node 1-1 of the controlled object are connected in turn to form a ring network, the ring network There are 4 controlled objects in total.
  • the output of the controlled object is connected to node 2-2, 2-1 of the controlled object 1.2, 2-2 of the controlled object 1.2, 2-1 of the controlled object 1.1, 2-2 of the controlled object 1.1, 2-2 of the controlled object 2.1 2-1, 2-2 of the controlled object 2.1, 2-1 of the controlled object 2.2, 2-2 of the controlled object 2.2, 2-2 of the controlled object 2.2, 2-2 of the controlled object 2.2, the input connection node 2-1 of the controlled object is connected in turn to form a ring network, the ring network There are 4 controlled objects in total.
  • Figure 6 is a schematic diagram of a control system based on a 3 by 3 redundant network topology.
  • the two sets of connection nodes of the control object include input connection node 1-1, output connection node 1-2, input connection node 2-1, output connection node 2-2, input connection node 3-1, output Connection node 3-2; among them, input connection node 1-1 and output connection node 1-2 are a group, input connection node 2-1 and output connection node 2-2 are a group, input connection node 3-1 and output The connection node 3-2 is a group.
  • the controlled objects include 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2 and 3.3.
  • Each controlled object has two sets of connection nodes.
  • the first group of input connection nodes is 1-1, and the output connection node is 1.
  • the input connection node of the second group is 2-1, and the output connection node is 2-2.
  • the output of the controlled object is connected to node 1-2, 1-1 of the controlled object 1.1, 1-2 of the controlled object 1.1, 1-1 of the controlled object 1.2, 1-2 of the controlled object 1.2, and controlled object 2.2 1-1, 1-2 of the controlled object 2.2, 1-1 of the controlled object 2.3, 1-2 of the controlled object 2.3, 1-1 of the controlled object 3.3, 1-2 of the controlled object 3.3,
  • the 1-1 of the controlled object 3.1, the 1-2 of the controlled object 3.1, and the input connection node 1-1 of the controlled object are connected in turn to form a ring network. There are 6 controlled objects in the ring network.
  • the output of the controlled object is connected to node 2-2, 2-1 of the controlled object 1.2, 2-2 of the controlled object 1.2, 2-1 of the controlled object 1.3, 2-2 of the controlled object 1.3, 2-2 of the controlled object 2.3 2-1, 2-2 of the controlled object 2.3, 2-1 of the controlled object 2.1, 2-2 of the controlled object 2.1, 2-1 of the controlled object 3.1, 2-2 of the controlled object 3.1
  • the 2-1 of the controlled object 3.2, the 2-2 of the controlled object 3.2, and the input connection node 2-1 of the controlled object are connected in turn to form a ring network. There are 6 controlled objects in the ring network.
  • the output of the controlled object is connected to node 3-2, 1-1 of the controlled object 1.3, 1-2 of the controlled object 1.3, 2-1 of the controlled object 1.1, 2-2 of the controlled object 1.1, 2-2 of the controlled object 2.1 1-1, 1-2 of the controlled object 2.1, 2-1 of the controlled object 2.2, 2-2 of the controlled object 2.2, 1-1 of the controlled object 3.2, 1-2 of the controlled object 3.2,
  • the 2-1 of the controlled object 3.3, the 2-2 of the controlled object 3.3, and the input connection node 3-1 of the controlled object are connected in turn to form a ring network. There are 6 controlled objects in the ring network.
  • Figure 7 is a schematic diagram of a control system based on a 4 by 4 redundant network topology.
  • the two sets of connection nodes of the control object include input connection node 1-1, output connection node 1-2, input connection node 2-1, output connection node 2-2, input connection node 3-1, output Connection node 3-2, input connection node 4-1, output connection node 4-2; among them, input connection node 1-1 and output connection node 1-2 are a group, input connection node 2-1 and output connection node 2 -2 is a group, the input connection node 3-1 and the output connection node 3-2 are a group, and the input connection node 4-1 and the output connection node 4-2 are a group.
  • the controlled objects include 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3, 4.4.
  • Each controlled object has two sets of connection nodes.
  • the input connection node of the group is 1-1
  • the output connection node is 1-2
  • the input connection node of the second group is 2-1
  • the output connection node is 2-2.
  • the output of the controlled object is connected to node 1-2, 1-1 of the controlled object 1.1, 1-2 of the controlled object 1.1, 1-1 of the controlled object 1.2, 1-2 of the controlled object 1.2, and controlled object 2.2 1-1, 1-2 of the controlled object 2.2, 1-1 of the controlled object 2.3, 1-2 of the controlled object 2.3, 1-1 of the controlled object 3.3, 1-2 of the controlled object 3.3, 1-1 of controlled object 3.4, 1-2 of controlled object 3.4, 1-1 of controlled object 4.4, 1-2 of controlled object 4.4, 1-1 of controlled object 4.1, controlled object 4.1 1-2.
  • the input connection node 1-1 of the controlled object is connected in turn to form a ring network. There are 8 controlled objects in the ring network.
  • the output of the controlled object is connected to node 2-2, 2-1 of the controlled object 1.2, 2-2 of the controlled object 1.2, 2-1 of the controlled object 1.3, 2-2 of the controlled object 1.3, 2-2 of the controlled object 2.3 2-1, 2-2 of the controlled object 2.3, 2-1 of the controlled object 2.4, 2-2 of the controlled object 2.4, 2-1 of the controlled object 3.4, 2-2 of the controlled object 3.4 2-1 of the controlled object 3.1, 2-2 of the controlled object 3.1, 2-1 of the controlled object 4.1, 2-2 of the controlled object 4.1, 2-1 of the controlled object 4.2, and 4.2 of the controlled object 2-2.
  • the input connection node 2-1 of the controlled object is connected in turn to form a ring network, and there are 8 controlled objects in the ring network.
  • the output of the controlled object is connected to node 3-2, 1-1 of the controlled object 1.3, 1-2 of the controlled object 1.3, 1-1 of the controlled object 1.4, 1-2 of the controlled object 1.4, and controlled object 2.4 1-1, 1-2 of the controlled object 2.4, 1-1 of the controlled object 2.1, 1-2 of the controlled object 2.1, 1-1 of the controlled object 3.1, 1-2 of the controlled object 3.1, 1-1 of controlled object 3.2, 1-2 of controlled object 3.2, 1-1 of controlled object 4.2, 1-2 of controlled object 4.2, 1-1 of controlled object 4.3, controlled object 4.3 1-2.
  • the input connection node 3-1 of the controlled object is connected in turn to form a ring network. There are 8 controlled objects in the ring network.
  • the output of the controlled object is connected to node 4-2, 2-1 of the controlled object 1.4, 2-2 of the controlled object 1.4, 2-1 of the controlled object 1.1, 2-2 of the controlled object 1.1, 2-2 of the controlled object 2.1 2-1 of the controlled object 2.1, 2-2 of the controlled object 2.2, 2-2 of the controlled object 2.2, 2-1 of the controlled object 3.2, 2-2 of the controlled object 3.2 2-1 of the controlled object 3.3, 2-2 of the controlled object 3.3, 2-1 of the controlled object 4.3, 2-2 of the controlled object 4.3, 2-1 of the controlled object 4.4, controlled object 4.4, controlled object 4.4,
  • the input connection node 4-1 of the control object is connected in turn to form a ring network, and there are 8 controlled objects in the ring network.
  • connection node of the control object can be connected to multiple controlled objects to form a ring network, which can effectively reduce the number of connection nodes of the control object and reduce the function of the control object. Consumption.
  • the controlled object can be placed in multiple different ring networks, there is a redundant connection between the controlled object and the controlled object in the control system, and a backup redundant network can be connected when the connection node or the network is abnormal. , Improve the reliability of the entire control system.
  • each group of connected nodes of the controlled object of the present invention has a bypass function, which realizes the direct connection of nodes when the controlled object fails or loses power, and does not affect the communication between the controlled object and other controlled objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提供一种交叉多环网冗余网络拓扑结构的控制系统,其包括:控制对象,其具有多组第一连接节点;多个被控制对象,每个被控制对象具有一组或多组第二连接节点;其中,所述控制对象中任一组第一连接节点与所述多个被控制对象中的至少两个被控制对象的第二连接节点依次连接形成环网,对应所述控制对象的多组第一连接节点形成多个环网,所述多个环网中包含所述多个被控制对象。根据本申请的控制系,控制对象的连接节点可以连接多个被控制对象构成环网,能够有效减少控制对象的连接节点的数量,降低了控制对象功耗。而且,由于控制系统中控制对象与被控制对象存在冗余连接,提高了整个控制系统的可靠性。

Description

一种交叉多环网冗余网络拓扑结构的控制系统 技术领域
本申请涉及电力系统通信网络拓扑控制系统领域,尤其涉及一种交叉多环网冗余网络拓扑结构的控制系统。
背景技术
目前,直流换流站阀基控制设备VBC和子模块控制器SMC的通信网络连接,一般采用点对点直接连接方式进行连接并通信,通信网络拓扑结构如图1所示,其中阀基控制设备VBC为控制对象,子模块控制器SMC为被控制对象,控制对象的连接节点与被控制对象的连接节点一一对应,对于N个被控制对象,需要的控制对象连接节点的数量为N组,控制对象的连接节点的数目随着被控制对象的数量增加而增加,从而导致现有技术中,存在通信网络拓扑结构存在控制对象连接接点多,控制对象功耗大的缺点。
发明内容
为了解决现有技术中的缺点,合理减少控制对象连接节点的数量,从而降低控制对象的功耗,本申请提供一种新的具有多环网冗余网络拓扑结构的控制系统。
根据一个方面,本申请提供了一种交叉多环网冗余网络拓扑结构的控制系统,其包括:
控制对象,其具有多组第一连接节点;
多个被控制对象,每个被控制对象具有一组或多组第二连接节点;
其中,所述控制对象中任一组第一连接节点与所述多个被控制对象中的至少两个被控制对象的第二连接节点依次连接形成环网,对应所述控制对象的多组第一连接节点形成多个环网,所述多个环网中包含所述多个被控制对象。
根据本申请提供的交叉多环网冗余网络拓扑结构的控制系统,控制 对象的连接节点可以连接多个被控制对象构成环网,能够有效减少控制对象的连接节点的数量,降低了控制对象功耗。而且,由于可以将被控制对象置于多个不同的环网中,所述控制系统中控制对象与被控制对象存在冗余连接,在连接节点、网络出现异常时还有备用冗余网络可以连通,提高了整个控制系统的可靠性。此外,本发明的被控制对象的各组连接节点具备旁路功能,被控制对象故障或者失电时实现节点直通,不影响控制对象和其它被控制对象的通信。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图,而并不超出本申请要求保护的范围。
图1为现有通信网络拓扑结构示意图。
图2为根据本发明一个实施例的交叉多环网冗余网络拓扑结构的控制系统的示意图。
图3为根据本发明另一个实施例的交叉多环网冗余网络拓扑结构的控制系统的示意图。
图4为基于N乘N冗余网络拓扑结构的控制系统示意图。
图5为基于2乘2冗余网络拓扑结构的控制系统示意图。
图6为基于3乘3冗余网络拓扑结构的控制系统示意图。
图7为基于4乘4冗余网络拓扑结构的控制系统示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,通过将多个被控制对象与控制对象的一组连接节点相 连构成环网,能够大大减少所需的控制对象的连接节点的数量,从而减少控制对象的功耗。由于可以将被控制对象只与多个不同的环网中,所述控制系统中控制对象与被控制对象存在冗余连接,在连接节点、网络出现异常时还有备用冗余网络可以连通,提高了整个控制系统的可靠性。
图2为根据本发明一个实施例的交叉多环网冗余网络拓扑结构的控制系统的示意图。如图2所示,控制系统包括一个控制对象和五个被控制对象,其中,控制对象包括直流换流站阀基控制设备、变电站电厂远动装置、监控后台、保护信息子站等,被控制对象包括子模块控制器、变电站电厂保护装置、测控装置、智能终端等。控制对象具有三组连接节点(1-1,1-2)、(2-1,2-2)和(3-1,3-2),而被控制对象分别具有两组连接节点(1-1,1-2)和(2-1,2-2),在本申请的附图中的“接点”表示“连接节点”的意思。
为了方便描述,将控制对象和被控制对象的连接节点分别成为第一连接节点和第二连接节点。一组第一连接节点和一组第二连接节点均包括连通的输出连接节点和输入连接节点,即一组连接节点一个作为输出连接节点,另一个就作为输入连接节点。例如,连接节点(1-1,1-2),1-2作为输出连接节点,1-1就作为输入连接节点。
在图2所示的实施例中,控制对象的输出连接节点1-2、被控制对象1.1的1-1、被控制对象1.1的1-2、被控制对象1.2的1-1、被控制对象1.2的1-2、被控制对象2.1的2-1、被控制对象2.1的2-2、控制对象的输入连接节点1-1依次连接组成一个环网,该环网中共有3个被控制对象。
在图2所示的实施例中,控制对象的输出连接节点2-2、被控制对象1.2的2-1、被控制对象2.1的2-2、被控制对象1.3的2-1、被控制对象1.3的2-2、被控制对象2.2的1-1、被控制对象2.2的1-2、控制对象的输入连接节点2-1依次连接组成一个环网,该环网中共有3个被控制对象。
在图2所示的实施例中,控制对象的输出连接节点3-2、被控制对象1.3的1-1、被控制对象1.3的1-2、被控制对象2.2的2-1、被控制对 象2.2的2-2、被控制对象1.1的2-1、被控制对象1.1的2-2、控制对象的输入连接节点3-1依次连接组成一个环网,该环网中共有3个被控制对象。
在图2所示的实施例中,同一控制对象的不同组的第一连接节点位于不同的环网,例如,控制对象的连接节点(1-1,1-2)和(2-1,2-2)位于不同的环网。在图2所示的实施例中,同一被控制对象的不同组的第二连接节点位于不同的环网,例如,被控制对象1.1的连接节点(1-1,1-2)和(2-1,2-2)位于不同的环网。
在图2所示的实施例中,共有五个被控制对象,控制对象与被控制对象的连接节点的环网覆盖这五个被控制对象,且控制对象的连接节点的数量只需三组,可见能够减少控制对象的连接节点的数量。图2中只有五个被控制对象,这只是为了便于说明本发明的方案而给出的一个简单的实施例,现实应用中,随着被控制对象数量的增加,控制对象连接节点的数量相对于现有技术的方案,减少的更加可观。
另外,在图2中存在三个环网,被控制对象1.1、1.2、1.3和2.2的两组连接节点位于不同的环网中,例如,被控制对象1.1的连接节点(1-1,1-2)和(2-1,2-2)分别位于实线和虚线环网中,即被控制对象1.1、1.2、1.3和2.2存在于两个环网中。这样,当连接节点、网络出现异常时还有备用冗余网络可以连通,例如,对于被控制对象1.1来说,当图2中实线所示的环网出现异常时,可以通过虚线所示的环网与控制对象进行通信,从而提高了整个控制系统的可靠性。
图3为根据本发明另一个实施例的交叉多环网冗余网络拓扑结构的控制系统的示意图。与图2相比,不同之处在于:对于图2中,控制对象的输出连接节点3-2、被控制对象1.3的1-1、被控制对象1.3的1-2、被控制对象2.2的2-1、被控制对象2.2的2-2、被控制对象1.1的2-1、被控制对象1.1的2-2、控制对象的输入连接节点3-1依次连接组成一个环网,在图3中,该环网还包括被控制对象2.1的1-1和被控制对象2.1的1-2,共有4个被控制对象。
这样,在图2所示的实施例中,被控制对象2.1只存在于一个环网中,当这个环网出现异常时,被控制对象2.1没有备用冗余网络可以连 通。而在图3所示的实施例中,被控制对象2.1存在于两个环网中,当一个环网出现异常时,被控制对象2.1还有备用冗余网络可以连通。
在图2和图3所示的实施例中,当一个被控制对象故障或者失电时,该被控制对象将各组连接节点设置为导通状态。例如,当被控制对象1.1故障或者失电时,被控制对象1.1将自己的连接节点(1-1,1-2)和(2-1,2-2)处于导通状态,不影响环网中其他被控制对象与控制对象的通信。
在图2和图3所示的实施例中,被控制对象有两组连接接口,然而被控制对象的连接接口可以为任意组,即可以为一组,也可以多于两组。当被控制对象具有多组连接节点的情况下,多个环网连接多组连接节点中的一组,也可连接多组连接节点中的至少两组。
需要注意的是,图2和图3只是为了便于说明本申请方式的两个具体实现方式,本领域技术人员在此启发下可以获得各种不同实现方式,例如,被控制对象的数量可以是任意多个,被控制对象的连接节点可以是任意组,控制对象的连接节点也可以是任意组,这些都属于本申请覆盖的范围。
根据本申请的上述技术原理,下面结合图4、图5、图6和图7给出一些优选实现方式。需要注意的是,图4、图5、图6和图7的实施例只是为了进一步阐述本申请方案的具体实施例,并不能理解为对本申请保护范围的限制。
图4为基于N乘N冗余网络拓扑结构的控制系统示意图。如图4所示,一种基于N乘N冗余网络拓扑结构的控制系统,包括控制对象和N乘N个被控制对象。
其中,
N乘N个被控制对象:每个控制对象上设置有两组连接节点。
每组连接节点包括连通的输出连接节点和输入连接节点,第一组输入连接节点为1-1,输出连接节点为1-2,第二组输入连接节点为2-1,输出连接节点为2-2,连接节点为以太网接口、串口或者是其它转换接口,接口可以是光口或者电口,被控制对象的连接节点具备旁路功能,若被控制对象故障或者失电,则该被控制对象将各组连接节点设置为导 通状态,不影响控制对象和其它被控制对象的通信。
控制对象:设置有N组连接节点。
控制对象的一组连接节点与2N个被控制对象的2N组连接节点依次连接组成环网,不同环网之间不存在相交的连接节点,同一控制对象的两组连接节点位于不同的环网。
N为大于1的整数,N的取值可以是2、3、4、……、理论上可以到无穷大,下面对N等于2、3和4的控制系统进行说明,具体如下:
图5为基于2乘2冗余网络拓扑结构的控制系统示意图。如图5所示,控制对象的两组连接节点包括输入连接节点1-1、输出连接节点1-2、输入连接节点2-1、输出连接节点2-2;其中,输入连接节点1-1和输出连接节点1-2为一组,输入连接节点2-1和输出连接节点2-2为一组。
被控制对象包括1.1、1.2、2.1和2.2,每个被控制对象都有两组连接节点,第一组输入连接节点为1-1,输出连接节点为1-2,第二组输入连接节点为2-1,输出连接节点为2-2。
控制对象的输出连接节点1-2、被控制对象1.1的1-1、被控制对象1.1的1-2、被控制对象1.2的1-1、被控制对象1.2的1-2、被控制对象2.2的1-1、被控制对象2.2的1-2、被控制对象2.1的1-1、被控制对象2.1的1-2、控制对象的输入连接节点1-1依次连接组成环网,该环网中共有4个被控制对象。
控制对象的输出连接节点2-2、被控制对象1.2的2-1、被控制对象1.2的2-2、被控制对象1.1的2-1、被控制对象1.1的2-2、被控制对象2.1的2-1、被控制对象2.1的2-2、被控制对象2.2的2-1、被控制对象2.2的2-2、控制对象的输入连接节点2-1依次连接组成环网,该环网中共有4个被控制对象。
图6为基于3乘3冗余网络拓扑结构的控制系统示意图。如图6所示,控制对象的两组连接节点包括输入连接节点1-1、输出连接节点1-2、输入连接节点2-1、输出连接节点2-2、输入连接节点3-1、输出连接节点3-2;其中,输入连接节点1-1和输出连接节点1-2为一组,输入连接节点2-1和输出连接节点2-2为一组,输入连接节点3-1和输出连接节点3-2为一组。
被控制对象包括1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2和3.3,每个被控制对象都有两组连接节点,第一组输入连接节点为1-1,输出连接节点为1-2,第二组输入连接节点为2-1,输出连接节点为2-2。
控制对象的输出连接节点1-2、被控制对象1.1的1-1、被控制对象1.1的1-2、被控制对象1.2的1-1、被控制对象1.2的1-2、被控制对象2.2的1-1、被控制对象2.2的1-2、被控制对象2.3的1-1、被控制对象2.3的1-2、被控制对象3.3的1-1、被控制对象3.3的1-2、被控制对象3.1的1-1、被控制对象3.1的1-2、控制对象的输入连接节点1-1依次连接组成环网,该环网中共有6个被控制对象。
控制对象的输出连接节点2-2、被控制对象1.2的2-1、被控制对象1.2的2-2、被控制对象1.3的2-1、被控制对象1.3的2-2、被控制对象2.3的2-1、被控制对象2.3的2-2、被控制对象2.1的2-1、被控制对象2.1的2-2、被控制对象3.1的2-1、被控制对象3.1的2-2、被控制对象3.2的2-1、被控制对象3.2的2-2、控制对象的输入连接节点2-1依次连接组成环网,该环网中共有6个被控制对象。
控制对象的输出连接节点3-2、被控制对象1.3的1-1、被控制对象1.3的1-2、被控制对象1.1的2-1、被控制对象1.1的2-2、被控制对象2.1的1-1、被控制对象2.1的1-2、被控制对象2.2的2-1、被控制对象2.2的2-2、被控制对象3.2的1-1、被控制对象3.2的1-2、被控制对象3.3的2-1、被控制对象3.3的2-2、控制对象的输入连接节点3-1依次连接组成环网,该环网中共有6个被控制对象。
图7为基于4乘4冗余网络拓扑结构的控制系统示意图。如图7所示,控制对象的两组连接节点包括输入连接节点1-1、输出连接节点1-2、输入连接节点2-1、输出连接节点2-2、输入连接节点3-1、输出连接节点3-2、输入连接节点4-1、输出连接节点4-2;其中,输入连接节点1-1和输出连接节点1-2为一组,输入连接节点2-1和输出连接节点2-2为一组,输入连接节点3-1和输出连接节点3-2为一组,输入连接节点4-1和输出连接节点4-2为一组。
被控制对象包括1.1、1.2、1.3、1.4、2.1、2.2、2.3、2.4、3.1、3.2、3.3、3.4、4.1、4.2、4.3、4.4,每个被控制对象都有两组连接节点,第 一组输入连接节点为1-1,输出连接节点为1-2,第二组输入连接节点为2-1,输出连接节点为2-2。
控制对象的输出连接节点1-2、被控制对象1.1的1-1、被控制对象1.1的1-2、被控制对象1.2的1-1、被控制对象1.2的1-2、被控制对象2.2的1-1、被控制对象2.2的1-2、被控制对象2.3的1-1、被控制对象2.3的1-2、被控制对象3.3的1-1、被控制对象3.3的1-2、被控制对象3.4的1-1、被控制对象3.4的1-2、被控制对象4.4的1-1、被控制对象4.4的1-2、被控制对象4.1的1-1、被控制对象4.1的1-2、控制对象的输入连接节点1-1依次连接组成一个环网,该环网中共有8个被控制对象。
控制对象的输出连接节点2-2、被控制对象1.2的2-1、被控制对象1.2的2-2、被控制对象1.3的2-1、被控制对象1.3的2-2、被控制对象2.3的2-1、被控制对象2.3的2-2、被控制对象2.4的2-1、被控制对象2.4的2-2、被控制对象3.4的2-1、被控制对象3.4的2-2、被控制对象3.1的2-1、被控制对象3.1的2-2、被控制对象4.1的2-1、被控制对象4.1的2-2、被控制对象4.2的2-1、被控制对象4.2的2-2、控制对象的输入连接节点2-1依次连接组成一个环网,该环网中共有8个被控制对象。
控制对象的输出连接节点3-2、被控制对象1.3的1-1、被控制对象1.3的1-2、被控制对象1.4的1-1、被控制对象1.4的1-2、被控制对象2.4的1-1、被控制对象2.4的1-2、被控制对象2.1的1-1、被控制对象2.1的1-2、被控制对象3.1的1-1、被控制对象3.1的1-2、被控制对象3.2的1-1、被控制对象3.2的1-2、被控制对象4.2的1-1、被控制对象4.2的1-2、被控制对象4.3的1-1、被控制对象4.3的1-2、控制对象的输入连接节点3-1依次连接组成一个环网,该环网中共有8个被控制对象。
控制对象的输出连接节点4-2、被控制对象1.4的2-1、被控制对象1.4的2-2、被控制对象1.1的2-1、被控制对象1.1的2-2、被控制对象2.1的2-1、被控制对象2.1的2-2、被控制对象2.2的2-1、被控制对象2.2的2-2、被控制对象3.2的2-1、被控制对象3.2的2-2、被控制对象 3.3的2-1、被控制对象3.3的2-2、被控制对象4.3的2-1、被控制对象4.3的2-2、被控制对象4.4的2-1、被控制对象4.4、控制对象的输入连接节点4-1依次连接组成一个环网,该环网中共有8个被控制对象。
根据本申请提供的交叉多环网冗余网络拓扑结构的控制系统,控制对象的连接节点可以连接多个被控制对象构成环网,能够有效减少控制对象的连接节点的数量,降低了控制对象功耗。而且,由于可以将被控制对象置于多个不同的环网中,所述控制系统中控制对象与被控制对象存在冗余连接,在连接节点、网络出现异常时还有备用冗余网络可以连通,提高了整个控制系统的可靠性。此外,本发明的被控制对象的各组连接节点具备旁路功能,被控制对象故障或者失电时实现节点直通,不影响控制对象和其它被控制对象的通信。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本申请的方法及其核心思想。同时,本领域技术人员依据本申请的思想,基于本申请的具体实施方式及应用范围上做出的改变或变形之处,都属于本申请保护的范围。综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种交叉多环网冗余网络拓扑结构的控制系统,其包括:
    控制对象,其具有多组第一连接节点;
    多个被控制对象,每个被控制对象具有一组或多组第二连接节点;
    其中,所述控制对象中任一组第一连接节点与所述多个被控制对象中的至少两个被控制对象的第二连接节点依次连接形成环网,对应所述控制对象的多组第一连接节点形成多个环网,所述多个环网中包含所述多个被控制对象。
  2. 如权利要求1所述的控制系统,其中,在所述被控制对象具有多组第二连接节点的情况下,所述多个环网连接所述多组第二连接节点中的至少两组第二连接节点。
  3. 如权利要求1或2所述的控制系统,其中,同一控制对象的多组第一连接节点位于不同的环网。
  4. 如权利要求1或2所述的控制系统,其中,同一被控制对象的多组第二连接节点位于不同的环网。
  5. 如权利要求1或2所述的控制系统,其中,所述被控制对象的数量为N乘N个,N为大于1的整数,所述控制对象具有N组第一连接节点,所述控制对象的任一组第一连接节点与2N个被控制对象各自的第二连接节点依次连接组成环网。
  6. 根据权利要求1或2所述的控制系统,其中,在被控制对象故障或者失电的情况下,所述被控制对象将各组第二连接节点设置为导通状态。
  7. 如权利要求1或2所述的控制系统,其中,一组第一连接节点和一组第二连接节点均包括连通的输出连接节点和输入连接节点。
  8. 如权利要求1或2所述的控制系统,其中,所述第一连接节点和所述第二连接节点包括以太网接口或串口。
  9. 如权利要求1或2所述的控制系统,其中,所述控制对象包括直流换流站阀基控制设备、变电站电厂远动装置、监控后台、保护信息子站。
  10. 如权利要求1或2所述的控制系统,其中,所述被控制对象包括子模块控制器、变电站电厂保护装置、测控装置、智能终端。
PCT/CN2021/087865 2020-06-17 2021-04-16 一种交叉多环网冗余网络拓扑结构的控制系统 WO2021253960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21826716.9A EP4170979A4 (en) 2020-06-17 2021-04-16 CONTROL SYSTEM WITH A REDUNDANT NETWORK TOPOLOGY STRUCTURE WITH CROSSED MULTI-RING NETWORKS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010552968.0 2020-06-17
CN202010552968.0A CN113810258B (zh) 2020-06-17 2020-06-17 一种基于n乘n冗余网络拓扑结构的控制系统

Publications (1)

Publication Number Publication Date
WO2021253960A1 true WO2021253960A1 (zh) 2021-12-23

Family

ID=78892606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087865 WO2021253960A1 (zh) 2020-06-17 2021-04-16 一种交叉多环网冗余网络拓扑结构的控制系统

Country Status (3)

Country Link
EP (1) EP4170979A4 (zh)
CN (1) CN113810258B (zh)
WO (1) WO2021253960A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262643A1 (en) * 2008-04-16 2009-10-22 Hangzhou H3C Technologies Co., Ltd. Method for implementing intersecting ring network with arbitrary topology, node and intersecting ring network
CN105262063A (zh) * 2015-10-27 2016-01-20 国网智能电网研究院 一种高压直流断路器中igbt阀保护系统和方法
CN205178856U (zh) * 2015-12-10 2016-04-20 国家电网公司 基于smc-vbc-vm的igbt换流阀阀控系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046621B2 (en) * 2002-07-10 2006-05-16 I/O Controls Corporation Redundant multi-fiber optical ring network
WO2005027427A1 (ja) * 2003-09-10 2005-03-24 Fujitsu Limited ノード冗長方法、インタフェースカード、インタフェースデバイス、ノード装置およびパケットリングネットワークシステム
CN102082695B (zh) * 2011-03-07 2013-01-02 中控科技集团有限公司 热备冗余网络系统及其冗余实现方法
CN104125009B (zh) * 2014-07-24 2017-01-11 华中科技大学 一种水下遥控通信网络
CN105897539A (zh) * 2016-03-24 2016-08-24 武汉征原电气有限公司 一种带迂回路径冗余的mvb环形网
CN106992931B (zh) * 2017-04-18 2022-02-08 深圳市立全鼎盛科技有限公司 基于双归环的交换机冗余备份方法和双归环系统
CN109361587B (zh) * 2018-11-19 2020-12-04 广东电网有限责任公司 基于hsr环网和prp冗余网络的智能站站控层组网系统与方法
CN109286552A (zh) * 2018-12-03 2019-01-29 中电智能科技有限公司 双网络冗余链路系统及通信节点

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262643A1 (en) * 2008-04-16 2009-10-22 Hangzhou H3C Technologies Co., Ltd. Method for implementing intersecting ring network with arbitrary topology, node and intersecting ring network
CN105262063A (zh) * 2015-10-27 2016-01-20 国网智能电网研究院 一种高压直流断路器中igbt阀保护系统和方法
CN205178856U (zh) * 2015-12-10 2016-04-20 国家电网公司 基于smc-vbc-vm的igbt换流阀阀控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170979A4 *

Also Published As

Publication number Publication date
CN113810258B (zh) 2022-05-17
EP4170979A1 (en) 2023-04-26
EP4170979A4 (en) 2024-06-12
CN113810258A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021027441A1 (zh) 一种多端口能量路由器及其控制系统和控制方法
KR20190020053A (ko) 재구성 가능 mmc 서브모듈 유닛 및 그 제어 유닛
CN206433003U (zh) 以太网链路切换装置
CN104980015A (zh) 输入串联输出并联的dc/dc变换器的电流差控制方法
CN105204482B (zh) 适用于模块化多电平换流器控制系统的级联型通信架构
CN111416357A (zh) 接入分布式电源的柔性多状态开关的功率潮流控制方法
WO2021253960A1 (zh) 一种交叉多环网冗余网络拓扑结构的控制系统
CN105978375A (zh) 适用于远距离大容量架空线输电的交叉型子模块及其mmc控制方法
CN110492516A (zh) 一种特高压多端柔性直流输电换流站系统及其控制方法
US11586573B2 (en) Distributed input/output (IO) control and interlock ring architecture
CN210839526U (zh) 开关量信号处理电路和设备
CN204517854U (zh) 一种基于Modbus协议的现场总线节点电路
CN207504890U (zh) 总线系统
CN112187396B (zh) 一种适用于柔性直流换流阀的通信系统及方法
CN218850425U (zh) 一种环网通讯的多级电池管理系统
CN108365606B (zh) 一种电力电子变压器的拓扑结构
CN218569841U (zh) 一种多模块冗余电池储能变流装置
CN108667271A (zh) 一种全隔离型多端口换流器
CN213637080U (zh) 一种用于控制网冗余网络与以太网架构稳定供电的装置
CN219627741U (zh) 一种网络手拉手技术的电路系统及电子设备
CN215580379U (zh) 一种低压故障自愈装置
TWI789989B (zh) 具有電源適配器的電源配置系統及電源輸出模組
CN104953856B (zh) 一种子模块拓扑
CN110557296B (zh) 双单元服务器冗余网络系统
CN115473310A (zh) 一种环网通讯的多级电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826716

Country of ref document: EP

Effective date: 20230117