WO2021027441A1 - 一种多端口能量路由器及其控制系统和控制方法 - Google Patents

一种多端口能量路由器及其控制系统和控制方法 Download PDF

Info

Publication number
WO2021027441A1
WO2021027441A1 PCT/CN2020/100624 CN2020100624W WO2021027441A1 WO 2021027441 A1 WO2021027441 A1 WO 2021027441A1 CN 2020100624 W CN2020100624 W CN 2020100624W WO 2021027441 A1 WO2021027441 A1 WO 2021027441A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
module
energy router
ports
power module
Prior art date
Application number
PCT/CN2020/100624
Other languages
English (en)
French (fr)
Inventor
杨晨
张中锋
王宇
谢晔源
田杰
李海英
祁琦
葛健
曹冬明
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020217038825A priority Critical patent/KR102390283B1/ko
Priority to EP20851730.0A priority patent/EP3965245A4/en
Priority to JP2021570502A priority patent/JP7145346B2/ja
Publication of WO2021027441A1 publication Critical patent/WO2021027441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/225Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link

Definitions

  • the invention belongs to the field of power electronics applications, and relates to an AC/DC distribution network, a bidirectional converter and an energy router, in particular to an energy router containing multiple ports, and a control system and control method thereof.
  • the core of the energy router is a power electronic transformer, which is an intelligent device designed based on power electronic technology that can realize functions such as power flow distribution, voltage improvement, grid monitoring and fault isolation.
  • power electronic transformers are also divided into AC power electronic transformers and DC power electronic transformers.
  • DC power electronic transformers are also referred to as DC transformers.
  • power electronic transformers In the power system, in order to realize the conversion from medium/high voltage to low voltage, affected by the stress and cost of switch tube devices, power electronic transformers mostly adopt a structure in which multiple modules are input in series and output in parallel, that is, the ISOP structure is implemented.
  • the transformer is only a two-port converter, and the low-voltage side voltage only constitutes an electrical energy interface in the form of voltage, which is connected to the low-voltage DC bus.
  • the energy router In order to enable the energy router to output more voltage levels and forms of electrical energy, such as the commonly used three-phase 380V AC, 375V DC, 220V DC secondary power supply, 110V DC secondary power supply, etc., the energy router is equipped with an ISOP structure power electronics In addition to the transformer, additional DC/DC, DC/AC and other converter equipment must be installed on the low-voltage DC bus. These additional DC/DC or DC/AC devices generally contain their own starting circuit, isolation circuit breaker, Hall detection and other equipment. In order to reduce the complexity and cost of the system, generally only a limited number of DC/DC can be set And DC/AC equipment, the energy router has only limited output ports, and the power supply is more concentrated.
  • the external DC/DC or DC/AC equipment will still construct a DC or AC bus with the corresponding voltage level again.
  • the equipment generally will further increase the corresponding DC/DC or DC/AC equipment to access the system. This concept limits the application significance of the existing distributed power supply system and is not conducive to the access of energy storage and renewable energy equipment to the power distribution system.
  • Chinese patent CN201710544441 has proposed a chain-type multi-port grid-connected interface device, which can transform the medium/high voltage bus into multiple ports of different voltage levels and forms of electrical energy, but this solution has an inherent defect , That is, the problem of power balance between different ports cannot be solved.
  • the power supply of each port is uneven, the voltage of each module of the front-end link is unbalanced, and some modules may even lose power.
  • the purpose of the present invention is to provide a multi-port energy router and its control system and control method.
  • traditional energy routers with ISOP structure power electronic transformers as the core and some external DC/DC and DC/AC equipment , Leading to the problem that the power supply ports set in the energy router system built by it are relatively concentrated.
  • the present invention can provide a multi-port power supply solution with distributed characteristics to meet the application of various different voltage levels of electrical energy; on the other hand, for the existing The voltage balance problem existing in the patented technology can better solve this problem, making the implementation of the present invention more valuable.
  • the solution of the present invention is:
  • a multi-port energy router includes N multi-port modules, where N is an integer greater than or equal to 2;
  • Each multi-port module includes at least a first power module, a second power module, and an electrical isolation link.
  • the first power module includes at least two ports, one of which is an AC port;
  • the second power module includes at least one A DC port and an AC port, the DC port includes a DC positive pole and a DC negative pole, and the DC port serves as the first port of the multi-port module;
  • the electrical isolation link includes at least two ports, and the electrical isolation link All ports have electrical isolation function;
  • the AC port of the first power module is connected to the first port of the electrical isolation link, and the other port of the first power module is used as the second port of the multi-port module;
  • the second power module The AC port of is connected to the second port of the electrical isolation link;
  • the remaining ports of the first and second power modules are respectively used as the third port, the fourth port, ... of the multi-port module;
  • the positive poles of the first ports of all N multi-port modules are connected to the same point, and the negative poles are connected to another point. These two points constitute the first common port of the multi-port energy router; the second port of the N multi-port modules They are connected in series or in parallel to form the second common port of the multi-port energy router; the third port, the fourth port, ... of the N multi-port modules together form the remaining ports of the multi-port energy router.
  • Electrical isolation links are connected between the above-mentioned second port and all other ports of the multi-port module.
  • the first common port of the multi-port energy router is suspended or connected to an external DC bus, and the second common port is connected to an external DC bus; the remaining ports of the multi-port energy router are respectively connected to other types of equipment or suspended.
  • the second ports of the above N multi-port modules are divided into two groups, each group is connected in series or in parallel to form two chain links, and the two chain links are connected by true bipolar to form the second common port of the multi-port energy router ;
  • the first common port of the multi-port energy router is suspended or connected to an external DC bus, the second common port is connected to an external DC bus of true bipolar form, and the remaining ports are respectively connected to other types of equipment or suspended.
  • the second ports of the above-mentioned N multi-port modules are divided into three groups, and each group is connected in series or in parallel to form three chain links.
  • the three chain links are connected in a star shape to form the second common of the multi-port energy router based on the star connection.
  • Port; the first common port of the multi-port energy router is suspended or connected to an external DC bus, the second common port is connected to an external star-connected three-phase AC bus, and the remaining ports are respectively connected to other types of equipment or suspended.
  • the second ports of the above-mentioned N multi-port modules are divided into three groups, and each group is connected in series or in parallel to form three chain links.
  • the three chain links are connected in an angle shape to form the second common of the multi-port energy router based on the angle connection.
  • Port; the first common port of the multi-port energy router is suspended or connected to an external DC bus, the second common port is connected to a three-phase AC bus of an external angle connection, and the remaining ports are respectively connected to other types of equipment or suspended.
  • the above-mentioned first power module is realized by a full bridge circuit.
  • the above-mentioned first power module adopts a half-bridge circuit and a full-bridge circuit to be realized by cascading DC capacitors.
  • the above-mentioned first power module adopts two full bridge circuits to be realized by cascading DC capacitors.
  • the above-mentioned second power module includes at least a full bridge circuit and a DC/AC converter, wherein the midpoints of the two bridge arms of the full bridge circuit lead to the AC port of the second power module; the two ends of the bridge arms of the full bridge circuit constitute
  • the DC port of the second power module is the first port of the multi-port module; the DC port of the DC/AC converter is connected to the DC port of the full bridge circuit, and the AC port constitutes the third port of the second power module , Which is the third port of the multi-port module.
  • the above-mentioned second power module includes at least a full bridge circuit and a DC/DC converter, wherein the midpoints of the two bridge arms of the full bridge circuit lead to the AC port of the second power module; the two ends of the bridge arms of the full bridge circuit constitute
  • the DC port of the second power module is the first port of the multi-port module; one DC port of the DC/DC converter is connected to the DC port of the aforementioned full bridge circuit, and the other DC port constitutes the third port of the second power module.
  • One port is the third port of the multi-port module.
  • the above-mentioned second power module only includes one full bridge circuit, wherein the midpoints of the two bridge arms of the full bridge circuit lead to the AC port of the second power module; the two ends of the DC capacitor constitute the DC port of the second power module, that is, the multiple The first port of the port module; the midpoints of the two bridge arms are led out again to connect the smoothing reactors and then connected in parallel with either end of the bridge arms to form another DC port of the DC/DC converter.
  • the above-mentioned electrical isolation link uses an isolation transformer with at least two windings, defined as the first winding and the second winding..., that is, the first port of the isolation transformer is the first winding, and the second port is the second winding... .
  • the above-mentioned multi-port module further includes a bypass switch; the bypass switch is connected in parallel to the second ports of all the multi-port modules.
  • the above-mentioned multi-port module further includes a fuse, and the fuse is connected in series to the first ports of all the multi-port modules.
  • the control system of a multi-port energy router as described above includes a control device, and at least one controller and at least one communication interface corresponding to each multi-port module; the control device includes no less than the multi-port module The total number of communication interfaces is the communication interface; the controller of the multi-port module and the control device exchange data through the communication interfaces on both sides; the controller is used to collect the parameters of the corresponding multi-port module and send it to the control device, which is based on the controller The collected parameters generate control instructions and are sent to each controller.
  • the multi-port energy router controls the operation of the first public port and the second public port through the following steps:
  • Step a1 the controller detects the current and voltage of the first and second common ports of the multi-port energy router in real time
  • Step a2 the controller transmits the detection data to the control device through the communication interface
  • Step a3 the control device calculates the detection data, generates the control adjustment value of each multi-port module, and sends it to the controllers of all the multi-port modules through the communication interface;
  • Step a4 the controller of the multi-port module controls the voltage and current of the first port and the second port of the corresponding multi-port module according to the issued control adjustment amount.
  • the multi-port energy router controls the work of the remaining ports through the following steps:
  • step b1 the control device sets the rated voltage and current reference of all other ports of the multi-port energy router respectively, and makes the power of each port not exceed the rated power of the multi-port module where it is located;
  • Step b2 the control device issues the setting parameters to the controllers of all multi-port modules
  • Step b3 the controller of each multi-port module detects the current and voltage corresponding to the remaining ports of the multi-port module in real time;
  • Step b4 the controller of each multi-port module calculates the detected current and voltage data, and generates the corresponding control adjustment value according to the setting parameters issued by the control device;
  • Step b5 the multi-port module controls the voltage and current of the other ports through the generated adjustment control quantity
  • Step b6 the multi-port module uploads the voltage and current data of the remaining ports to the control device through the communication interface.
  • the multi-port energy router provided by the present invention is composed of no less than two multi-port modules.
  • the composed multi-port energy router contains two public ports, defined as the first public port and the second public port, and no less than one other port.
  • the multi-port energy router of the present invention according to the composition of the multi-port module, the first common port is a DC port connected to the DC bus, or can be suspended; the second common port is connected to an AC bus or a DC bus; all other ports can be used according to actual needs It can be customized to output various AC or DC voltages of different voltage levels to meet different actual needs.
  • the invention also relates to a set of control methods, which can perform necessary power and voltage adjustments on the port according to the customized port voltage and current requirements.
  • the energy router of the present invention can provide more flexible and diverse power supply in power supply form and voltage level Port makes the overall energy router system more concentrated;
  • the energy router of the present invention can reduce the DC or AC established in the latter stage of the traditional solution.
  • the grading number of busbars reduces the energy conversion links of connected equipment and improves the overall system operating efficiency.
  • the energy router proposed in the present invention can provide control independent conversion ports, and has obvious distributed power supply characteristics, that is, it can be used for photovoltaic, wind power, energy storage and other renewable energy equipment as well as electrical equipment based on switching power supplies. Provide a separate control plan.
  • the present invention does not have the problem of voltage balance in the application of the chain structure, so that it can be directly connected to the existing medium and high voltage AC and DC buses of several thousand volts or more.
  • Figure 1 is a schematic structural diagram of a multi-port energy router proposed by the present invention
  • FIG. 2 is a schematic diagram of the structure of a multi-port energy router with the second port of the multi-port module connected in series;
  • Figure 3 is a schematic diagram of the structure of a multi-port energy router connected to a true bipolar DC bus
  • Figure 4 is a schematic diagram of the structure of a multi-port energy router connected to a star-shaped three-phase AC bus;
  • Figure 5 is a schematic diagram of the structure of a multi-port energy router connected to an angular three-phase AC bus;
  • Figure 6 is a schematic diagram of the full-bridge circuit structure
  • Figure 7 is a schematic diagram of a half-bridge circuit cascaded full-bridge circuit structure
  • Figure 8 is a schematic diagram of the cascade structure of two full bridge circuits
  • FIG. 9 is a schematic diagram of the second power module structure of a full-bridge circuit cascaded AC/DC circuit
  • FIG. 11 is a schematic diagram of the second power module structure of the I-type full bridge circuit cascaded DC/DC circuit
  • Figure 12 is a schematic diagram of the second power module structure of a type II full-bridge circuit cascaded with multiple DC/DC circuits;
  • FIG. 10 is a schematic structural diagram of a second power module including only one full bridge circuit
  • Figure 13 is a schematic diagram of a multi-port module containing a bypass switch and a fuse
  • Figure 14 is a schematic diagram of a control strategy of a multi-port energy router with a control device
  • Figure 15 is an application example diagram of a multi-port energy router for medium and high voltage DC systems
  • Figure 16 is an application example diagram of a multi-port energy router for medium and high voltage AC systems
  • Fig. 17 is an application example diagram of a multi-port energy router including multi-port modules with different numbers of ports.
  • the present invention provides a multi-port energy router and its control system and control method.
  • the present invention will be described in detail below with reference to the accompanying drawings.
  • the multi-port energy router is composed of N multi-port modules, where N is an integer greater than or equal to 2; each multi-port module includes at least three ports, of which at least one port is a DC port, that is, the port includes one A DC positive pole and a DC negative pole define the DC port as the first port of the multi-port module; each multi-port module also includes at least one port with an electrical isolation link between the port and the first port, which is defined as The second port; the remaining ports of each multi-port module are defined in order as the third port, the fourth port...the M-th port; the positive pole of the first port of all N multi-port modules is connected at the same point, the negative pole Connected to another point, the two points constitute the first common port of the multi-port energy router; the remaining ports of all multi-port modules together constitute the remaining ports of the multi-port energy router;
  • FIG. 1 it is a schematic diagram of the structure of a multi-port energy router.
  • Components 100 ⁇ N00 are N multi-port modules
  • component 10 represents the electrical isolation link
  • components 103 and 104 are the positive and negative terminals of the DC port, namely Components 103 and 104 constitute the first port, and the first ports of all multi-port modules are connected in parallel, that is, components 103 and 104 also constitute the first common port of the multi-port energy router
  • components 101 and 102 are electrically isolated from the DC port
  • the second port is the second port
  • components 105 and 106...10(m+m-1) and 10(m+m) are the remaining ports, which are defined in order as the third port...the Mth port;
  • the multi-port module of the multi-port energy router there is an electrical isolation link between the second port and all other ports of the multi-port module; as shown in Figure 1, when the component 10 (m+2) to the component 10 When (m+m) does not exist, the ports formed by components 101 and 102 are electrically isolated from all other ports;
  • the second ports of the multi-port modules of the multi-port energy router are sequentially connected in series or in parallel to form the second common port of the multi-port energy router; the first common port of the multi-port energy router is suspended or connected to an external DC Bus, the second common port is connected to the external DC bus; the remaining ports are connected to other types of equipment such as photovoltaic, wind power, energy storage, switching power supply, etc. or suspended;
  • the second port and all ports are electrically isolated; the second ports of all multi-port modules are connected in series to form components 2a and 2b, It can form the second common port of the multi-port energy router; similarly, connecting the second ports of all multi-port modules in parallel can also form the second common port of the multi-port energy router; the second common port can be connected External single-phase AC bus or pseudo-bipolar DC bus; the first common port can be connected to an external DC bus or suspended for processing; the remaining ports can be connected to photovoltaic, wind power, energy storage, switching power supply and other types of equipment according to different application requirements .
  • the second port of the multi-port module of the multi-port energy router is divided into two groups, each group is connected in series or in parallel to form two chain links, and the two chain links are connected by true bipolar to form the multi-port energy
  • the second public port of the router the first public port of the multi-port energy router is suspended or connected to an external DC bus, and the second public port is connected to an external DC bus of true bipolar form; the remaining ports are connected to photovoltaic, wind power, and energy storage respectively , Switching power supply and other types of equipment or floating;
  • the second port and all ports are electrically isolated; the second ports of all multi-port modules are divided into two groups, each group in turn Connected in series to form components 3a, 3b and 3c, which can form the second common port of a multi-port energy router with true bipolar connection; in the same way, divide the second ports of all multi-port modules into two groups, and each group is connected in parallel It can also form the second common port of the multi-port energy router with true bipolar connection; the second common port is connected to an external DC bus with true bipolar connection; the first common port can be connected to an external DC bus, Or suspended processing; the remaining ports are connected to other types of equipment such as photovoltaic, wind power, energy storage, switching power supply, etc. according to different application requirements.
  • the second port of the multi-port module of the multi-port energy router is divided into three groups, and each group is connected in series or in parallel to form three chain links.
  • the three chain links are connected in a star shape to form the multi-port energy router based on the star.
  • the second common port of the multi-port energy router; the first common port of the multi-port energy router is suspended or connected to an external DC bus; the second common port is connected to an external star-shaped three-phase AC bus; the remaining ports are respectively connected to photovoltaic, wind power, and storage Energy, switching power supply and other types of equipment or floating;
  • the second port is electrically isolated from all ports; the second ports of all multi-port modules are divided into three groups, each group in turn Connected in series to form components 4a, 4b, 4c, 4d, 4e, and 4f.
  • Connecting components 4d, 4e, and 4f at one point can form the second common port of a multi-port energy router with star connection; similarly, connect all
  • the second port of the multi-port module is divided into three groups, and each group is connected in parallel to form the second common port of the multi-port energy router with star connection; the second common port is connected to the outside with star connection
  • the first public port can be connected to an external DC bus or suspended for processing; the remaining ports can be connected to photovoltaic, wind power, energy storage, switching power supply and other types of equipment according to different application requirements.
  • the second port of the multi-port module of the multi-port energy router is divided into three groups, and each group is connected in series or in parallel to form three chain links.
  • the three chain links are connected in an angle shape to form the multi-port energy router based on angle
  • the second common port of the multi-port energy router; the first common port of the multi-port energy router is suspended or connected to an external DC bus; the second common port is connected to the three-phase AC bus of the external angular connection; the remaining ports are respectively connected to photovoltaic, wind power, and storage Energy, switching power supply and other types of equipment or floating;
  • all multi-port modules have only three ports as an example.
  • the second port and all ports are electrically isolated; the second ports of all multi-port modules are divided into three groups, each in turn Connected in series to form components 5a, 5b, 5c, 5d, 5e, and 5f. Connecting components 5a to 5f end to end in turn can form the second common port of a multi-port energy router with a corner connection; similarly, all multi-port
  • the second port of the module is divided into three groups, and each group is connected in parallel, which can also constitute the second common port of the multi-port energy router with angular connection; the second common port is connected to the external three with angular connection.
  • Phase AC bus; the first public port can be connected to an external DC bus or suspended for processing; the remaining ports can be connected to photovoltaic, wind power, energy storage, switching power supply and other types of equipment according to different application requirements.
  • the multi-port module of the multi-port energy router includes at least a first power module, a second power module, and an isolation transformer; wherein, the first power module includes at least one AC port, and the second power module includes at least One DC port and one AC port, and the DC port is the first port of the multi-port module.
  • the isolation transformer includes at least two windings; the AC port of the first power module is connected to one winding of the isolation transformer, and the other The port is the second port of the multi-port module; the AC port of the second power module is connected to a winding of the isolation transformer, which is not the same winding as the winding connected to the first power module;
  • component 1a1 is an isolation transformer, that is, an internal component of component 10 in Figure 1, component 1a2 is a first power module, and component 1a3 is a second power module;
  • the first power module of the multi-port module is implemented by a full bridge circuit; as shown in FIG. 6, it is a schematic diagram of a full bridge circuit, in which component 6a is a full bridge circuit;
  • the first power module of the multi-port module is realized by cascading a half-bridge circuit and a full-bridge circuit through DC capacitors;
  • Fig. 7 is a schematic diagram of a half-bridge cascaded full-bridge circuit, where component 7a is a half-bridge circuit, Component 7b full bridge circuit;
  • the first power module of the multi-port module is realized by cascading two full-bridge circuits through DC capacitors; as shown in Figure 8, it is a schematic diagram of the cascading of two full-bridge circuits, in which components 8a and 8b are both full-bridge Circuit
  • the second power module of the multi-port module includes at least one full-bridge circuit and one DC/AC converter; wherein the midpoints of the two bridge arms of the full-bridge circuit lead to the AC port constituting the second power module; Both ends of the bridge arm of the circuit constitute the DC port of the second power module, that is, the first port of the multi-port module; the DC port of the DC/AC converter is connected to the DC port of the aforementioned full bridge circuit, and the AC port constitutes the second power
  • the third port of the module that is, the third port of the multi-port module;
  • Figure 9 shows a schematic diagram of the full-bridge circuit cascaded DC/AC circuit structure, where component 9a is a full-bridge circuit, and component 9b is a DC/AC circuit constructed by a multi-arm bridge circuit; according to the number of connected bridge arms , Can be connected to single-phase, three-phase three-wire or three-phase four-wire AC system;
  • the second power module of the multi-port module includes at least one full-bridge circuit and one DC/DC converter; wherein the midpoints of two bridge arms of the full-bridge circuit lead to the AC ports of the second power module; Both ends of the bridge arm of the circuit constitute the DC port of the second power module, that is, the first port of the multi-port module; one DC port of the DC/DC converter is connected to the DC port of the aforementioned full bridge circuit, and the other DC port constitutes The third port of the second power module, that is, the third port of the multi-port module;
  • the circuit shown in Figure 10 is defined as the second power module of the I-type full-bridge circuit cascaded DC/DC circuit.
  • the circuit shown in 11 is the second power module of a type II full-bridge circuit cascaded DC/DC circuit.
  • the component 10a is a full bridge circuit
  • the component 10b is a DC/DC circuit constructed by multiple bridge arm bridge circuits; depending on the grounding point, the component 10c and the component 10d, as well as the component 10e and the component 10d can be Form a DC/DC port;
  • the component 11a is a full bridge circuit
  • the component 11b is a DC/DC circuit constructed by multiple bridge-arm bridge circuits, in which components 11c and 11d form a DC/DC port;
  • the second power module of the multi-port module includes only one full bridge circuit; wherein the midpoints of the two bridge arms of the full bridge circuit lead to the AC port of the second power module; the two ends of the DC capacitor constitute the second power module
  • the DC port is the first port of the multi-port module; the midpoints of the two bridge arms are led out again to connect the smoothing reactors in parallel, and either end of the bridge arms is connected to form the DC/DC converter Another DC port;
  • Figure 12 shows the second power module constructed by a full-bridge circuit, where component 12a is a full-bridge circuit, and components 12b and 12c constitute an AC port.
  • components 12d and 12e are either One of the components 12f and 12e can be selected to form a DC/DC port, and the components 12g and 12h form a DC port, which is the first port of the multi-port module;
  • the multi-port module of the multi-port energy router further includes a bypass switch; the bypass switch connects the second ports of all the multi-port modules in parallel;
  • the multi-port module of the multi-port energy router further includes a fuse; the fuse is connected in series to the first ports of all the multi-port modules;
  • FIG. 13 it is a schematic diagram of the structure of a multi-port module, in which component 1a6 is a bypass switch, and component 1a7 is a fuse;
  • the multi-port energy router also includes a set of control devices, and each multi-port module includes at least one controller and at least one communication interface; the control device includes no less than the total number of multi-port module communication interfaces; The controller and the control device of the multi-port module exchange data through the communication interfaces on both sides;
  • the present invention provides a method for controlling a multi-port energy router.
  • the multi-port energy router controls the operation of the first public port and the second public port through the following steps:
  • Step 1 The controller of the multi-port module detects the current and voltage of the second common port of the multi-port energy router in real time;
  • Step 2 The controller of the multi-port module detects the current and voltage of the first common port of the multi-port energy router in real time;
  • Step 3 The controller of the multi-port module will detect the data and transfer the value to the control device through the communication interface;
  • Step 4 The control device calculates the data, generates the control adjustment value of each multi-port module, and sends it to the controllers of all multi-port modules through the communication interface;
  • Step 5 The controller of the multi-port module controls the voltage and current of the first port and the second port of the module according to the issued adjustment value, that is, controls the operation of the first common port and the second common port of the multi-port energy router;
  • the multi-port energy router controls the work of the remaining ports through the following steps:
  • Step 1 The control device makes reference to the rated voltage and current of the remaining ports of all multi-port energy routers, and sets them separately, and the power of each port does not exceed the rated power of the multi-port module where it is located;
  • Step 2 The control device sends the setting parameters to the controllers of all multi-port modules
  • Step 3 The controller of each multi-port module detects the current and voltage corresponding to the remaining ports of the multi-port module in real time;
  • Step 4 The controller of each multi-port module calculates the detected current and voltage data, and generates the corresponding control adjustment value according to the setting parameters issued by the control device;
  • Step 5 The multi-port module controls the voltage and current of the other ports through the generated adjustment control quantity
  • Step 6 The multi-port module uploads the voltage and current data of the remaining ports to the control device through the communication interface;
  • component 14t represents the control device
  • component 14t1 to component 14tk represent the communication interface of the control device
  • component 1a6 represents the communication interface of the multi-port module 100
  • component 1a7 represents the controller of the multi-port module 100
  • component 14tc1 Represents the communication path between the control device and the multi-port module 100
  • components 14t2 to 14tk have communication paths with all multi-port modules
  • the component 1a7 controller obtains the voltage and current information of the remaining ports and uploads them to Control device
  • control device real-time detection, voltage and current information of the first public port and second public port of the multi-port energy router, to control and adjust the overall multi-port energy router;
  • FIGS. 15 to 17 show schematic diagrams of the structure of a hybrid multi-port energy router constructed according to the present invention.
  • the second common port of the multi-port energy router shown in Figure 15 is a medium and high voltage DC bus
  • the second common port of the multi-port energy router shown in Figure 16 is a medium and high voltage AC bus
  • each multi-port module is configured differently , Can output DC, single-phase AC and three-phase AC power at different locations
  • the multi-port energy router shown in Figure 17 uses multi-port modules with different numbers of ports.
  • components 100 to x00 are three-port modules.
  • (x+1) 00 to component N00 are multi-port modules;
  • a multi-port energy router contains N multi-port modules. Assuming that the rated power of the multi-port energy router is P, the second common port voltage is U 2 , and the first common port voltage is U 1 . It is not difficult to obtain that the rated power of each multi-port module is P/N, the first port voltage is U 1 , and the second port voltage is U 2 /N; assuming that the third port voltage of each multi-port module is U 3 , the voltage of U 3 can be adjusted by adjusting the duty cycle of the full control device of the half-bridge circuit or the full-bridge circuit where the third port is located.

Abstract

本发明公开一种多端口能量路由器,包括不少于2个多端口模组;每个多端口模组包含有第一、第二公共端口,以及不少一个其余端口,第一公共端口为直流端口,连接直流母线或悬空;第二公共端口连接交流母线或直流母线,所有其余端口可以根据实际使用需求进行定制。此种结构可提供具有分布式特性的多端口供电方案,满足各种不同电压等级电能形式的应用,并能较好地解决现有技术中存在的电压均衡问题。本发明还公开一种多端口能量路由器的控制系统及控制方法。

Description

一种多端口能量路由器及其控制系统和控制方法 技术领域
本发明属于电力电子应用领域,涉及交直流配网、双向变换器和能量路由器,特别涉及一种含有多个端口的能量路由器及其控制系统和控制方法。
背景技术
能量路由器作为未来交直流配电网一种用于实现电力系统电能交换的设备,对实现不同电能形式配电系统的优化运行,具有重要的作用和意义。能量路由器的核心是电力电子变压器,它是一种基于电力电子技术设计的,可以实现潮流分配、电压改善、电网监控和故障隔离等功能的智能设备。根据中/高压电能形式,电力电子变压器还分为交流电力电子变压器和直流电力电子变压器,其中,直流电力电子变压器也简称直流变压器。
在电力系统中,为实现中/高压至低压的变换,受开关管器件应力和成本的影响,电力电子变压器多采用多个模组输入串联输出并联的结构,即ISOP结构实现,此时电力电子变压器仅为两端口变换器,低压侧电压仅构成一种电压形式的电能接口,连接低压直流母线。
为使能量路由器输出获得更多电压等级和形式的电能,如常用的三相380V交流电、375V直流电、220V直流二次电源、110V直流二次电源等,能量路由器除配备一台ISOP结构的电力电子变压器外,还需要再在低压直流母线上设置额外的DC/DC、DC/AC等变换器设备。这些额外设置的DC/DC或DC/AC设备,一般都含有自己的启动电路、隔离断路器、霍尔检测等设备,为降低系统复杂性和成本,一般也只能设置有限数目的DC/DC和DC/AC设备,导致能量路由器仅有有限的输出端口,供电形式较集中。
同时,外置DC/DC或DC/AC设备,仍然会再次构建一条相应电压等级的直流或交流母线,当系统中有光伏、风电、储能和其他一些基于开关电源的低压电器设备时,这些设备一般还会进一步增加相应的DC/DC或DC/AC设备才能接入 系统。这一概念限制了现有分布式供电系统的应用意义,不利于储能和可再生能源等设备对配电系统的接入。
另一方面,已有中国专利CN201710544441提出一种链式多端口并网接口装置,该装置可以将中/高压母线变换为多个不同电压等级和电能形式的端口,但该方案存在一个固有的缺陷,即无法解决不同端口之间功率的均衡问题,导致当各个端口存在供电功率不均情况时,前端链接的各个模块电压存在不均衡现象,甚至会使部分模组掉电等问题。
发明内容
本发明的目的,在于提供一种多端口能量路由器及其控制系统和控制方法,一方面,针对传统能量路由器以ISOP结构的电力电子变压器为核心并外置部分DC/DC和DC/AC设备时,导致其所构建的能量路由器系统设置的供电端口较集中的问题,本发明可以提供具有分布式特性的多端口供电方案,满足各种不同电压等级电能形式的应用;另一方面,针对现有专利技术中存在的电压均衡问题,能够较好地解决该问题,使本发明的实施方案更加有应用价值。
为了达成上述目的,本发明的解决方案是:
一种多端口能量路由器,包括N个多端口模组,N为大于等于2的整数;
每个多端口模组至少包含一个第一功率模块、一个第二功率模块和一个电气隔离环节,其中,第一功率模块至少包含两个端口,其中一个是交流端口;第二功率模块至少包含一个直流端口和一个交流端口,所述直流端口包含一个直流正极和一个直流负极,且该直流端口作为所述多端口模组的第一端口;电气隔离环节至少包含两个端口,且电气隔离环节的所有端口之间具备电气隔离功能;;第一功率模块的交流端口连接电气隔离环节的第一端口,第一功率模块的另一个端口作为所述多端口模组的第二端口;第二功率模块的交流端口连接电气隔离环节的第二端口;第一、第二功率模块的其余端口分别作为多端口模组的第三端口、第四端口、……;
所有N个多端口模组的第一端口的正极连接在同一点,负极连接在另一点,该两点构成多端口能量路由器的第一公共端口;所述N个多端口模组的第二端 口依次串联或并联连接,构成多端口能量路由器的第二公共端口;所述N个多端口模组的第三端口、第四端口、……共同构成多端口能量路由器的其余端口。
上述第二端口与所在多端口模组的其余所有端口之间均连接电气隔离环节。
上述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部直流母线;所述多端口能量路由器的其余端口分别连接其他类型设备或悬空。
上述N个多端口模组的第二端口分为两组,每组依次串联或并联连接,形成两条链节,两条链节采用真双极连接,构成多端口能量路由器的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部为真双极形式的直流母线,其余端口分别连接其他类型设备或悬空。
上述N个多端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用星型连接,构成多端口能量路由器基于星型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部星型连接的三相交流母线,其余端口分别连接其他类型设备或悬空。
上述N个多端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用角型连接,构成多端口能量路由器基于角型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部角型连接的三相交流母线,其余端口分别连接其他类型设备或悬空。
上述第一功率模块采用一个全桥电路实现。
上述第一功率模块采用半桥电路和全桥电路通过直流电容级联实现。
上述第一功率模块采用两个全桥电路通过直流电容级联实现。
上述第二功率模块至少包含一个全桥电路和一个DC/AC变换器,其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/AC变换器的DC端口连接所述全桥电路的直流端口,AC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口。
上述第二功率模块至少包含一个全桥电路和一个DC/DC变换器,其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/DC变换器的一个DC端口连接前述全桥电路的直流端口,另一个DC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口。
上述第二功率模块仅包含一个全桥电路,其中,全桥电路两个桥臂中点引出构成第二功率模块的交流端口;直流电容两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;将两个桥臂中点再次引出分别连接平波电抗器后并联,与桥臂两端中的任意一端,构成DC/DC变换器的另一个DC端口。
上述电气隔离环节采用至少含有两个绕组的隔离变压器,定义为第一绕组和第二绕组……,即该隔离变压器的第一端口即为第一绕组,第二端口即为第二绕组……。
上述多端口模组还包含一个旁路开关;旁路开关并联连接所有多端口模组的第二端口。
上述多端口模组还包含一个熔断器,熔断器串联连接所有多端口模组的第一端口。
如前所述的一种多端口能量路由器的控制系统,包含控制装置,以及与每个多端口模组所对应的至少一个控制器和至少一个通信接口;控制装置包含不少于多端口模组通信接口总数目的通信接口;多端口模组的控制器与控制装置通过两侧的通信接口交互数据;控制器用于采集所对应多端口模组的参数,并送入控制装置,控制装置根据控制器采集的参数产生控制指令下发至各控制器。
基于如前所述的一种多端口能量路由器的控制系统的控制方法,多端口能量路由器通过如下步骤控制第一公共端口和第二公共端口工作:
步骤a1,控制器实时检测多端口能量路由器的第一、第二公共端口的电流和电压;
步骤a2,控制器将检测数据通过通信接口传递至控制装置;
步骤a3,控制装置对检测数据进行计算,产生各个多端口模组的控制调节量,并通过通信接口下发至所有多端口模组的控制器;
步骤a4,多端口模组的控制器根据下发的控制调节量,控制所对应多端口模组第一端口和第二端口的电压和电流。
基于如前所述的一种多端口能量路由器的控制系统的控制方法,多端口能量路由器通过如下步骤控制其余端口的工作:
步骤b1,控制装置对多端口能量路由器的所有其余端口额定电压和电流参考,分别进行定值整定,并且使各个端口的功率不超过所在多端口模组的额定功率;
步骤b2,控制装置将整定参数下发至所有多端口模组的控制器;
步骤b3,各个多端口模组的控制器实时检测对应多端口模组其余端口的电流和电压;
步骤b4,各个多端口模组的控制器对检测的电流和电压数据进行计算,并根据控制装置下发的整定参数,产生相应控制调节量;
步骤b5,多端口模组通过生成的调节控制量,控制其余端口电压和电流;
步骤b6,多端口模组将其余端口电压和电流数据,通过通信接口上传至控制装置。
采用上述方案后,本发明提供的多端口能量路由器,由不少于2个多端口模组组成。组成后的多端口能量路由器,包含两个公共端口,定义为第一公共端口和第二公共端口,以及不少于一个的其他端口。本发明的多端口能量路由器,根据多端口模组组成方式,第一公共端口为直流端口连接直流母线,也可以悬空;第二公共端口连接交流母线或直流母线;其余所有端口可以根据实际使用需求进行定制,输出各种不同电压等级的交流或直流电压,满足不同实际使用需求。本发明还涉及一套控制方法,可以根据所定制的端口电压电流需求,对该端口进行必要的功率和电压调节。
本发明的有益效果是:
(1)相比现有传统以ISOP结构的电力电子变压器为核心并外置部分DC/DC和DC/AC设备的能量路由器,本发明的能量路由器能够提供供电形式和电压等级更加灵活多样的供电端口,使的能量路由器整体系统更加集中;
(2)相比现有传统以ISOP结构的电力电子变压器为核心并外置部分DC/DC 和DC/AC设备的能量路由器,本发明的能量路由器可以减少传统方案后级所建立的直流或交流母线分级数目,减少所连接设备的能量变换环节,提升整体系统运行效率。
(3)本发明提出的能量路由器,能够提供控制相互独立的变换端口,具有明显的分布式供电特征,即能够为光伏、风电和储能等可再生能源设备以及基于开关电源类的用电设备提供单独的控制方案。
(4)相比现有专利技术方案,本发明不存在链式结构应用中的电压均衡问题,从而可以较好地直接连接现有的如数千伏以上中高压交直流母线。
附图说明
图1是本发明提出的一种多端口能量路由器的结构示意图;
图2是多端口模组第二端口串联连接的多端口能量路由器结构示意图;
图3是连接真双极直流母线的多端口能量路由器结构示意图;
图4是连接星型三相交流母线的多端口能量路由器结构示意图;
图5是连接角型三相交流母线的多端口能量路由器结构示意图;
图6是全桥电路结构示意图;
图7是半桥电路级联全桥电路结构示意图;
图8是两个全桥电路级联结构示意图;
图9是全桥电路级联AC/DC电路的第二功率模块结构示意图;
图11是I型全桥电路级联DC/DC电路的第二功率模块结构示意图;
图12是Ⅱ型全桥电路级联多DC/DC电路的第二功率模块结构示意图;
图10是仅含一个全桥电路的第二功率模块结构示意图;
图13是含有旁路开关和熔断器的多端口模组示意图;
图14是多端口能量路由器含控制装置的控制策略示意图;
图15是用于中高压直流系统的多端口能量路由器应用实例图;
图16是用于中高压交流系统的多端口能量路由器应用实例图;
图17是多端口能量路由器包含端口数目不同的多端口模组一种应用实例图。
具体实施方式
本发明提供一种多端口能量路由器及其控制系统和控制方法,为使本发明的目的、技术方案及效果更加清楚、明确,下面结合附图对本发明进行详细说明。
应当理解,此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。
所述多端口能量路由器,由N个多端口模组组成,N为大于等于2的整数;每个多端口模组至少包含三个端口,其中,至少一个端口为直流端口,即该端口包含一个直流正极和一个直流负极,定义该直流端口为该多端口模组的第一端口;每个多端口模组还至少包含一个端口与第一端口之间具有电气隔离环节的端口,定义该端口为第二端口;每个多端口模组的其余端口,按顺序依次定义为第三端口、第四端口……第M端口;所有N个多端口模组第一端口的正极连接在同一点,负极连接在另一点,该两点构成所述多端口能量路由器的第一公共端口;所有多端口模组的其余端口共同构成所述多端口能量路由器的其余端口;
如图1所示,为一种多端口能量路由器的结构示意图,组件100~N00是N个多端口模组,组件10表示电气隔离环节,组件103和104分别为直流端口的正极和负极,即组件103和104构成第一端口,所有多端口模组的第一端口并联,即组件103和104也构成了多端口能量路由器的第一公共端口;组件101和102是与直流端口具备电气隔离环节的端口,即第二端口;组件105和106……10(m+m-1)和10(m+m),是其余端口,按顺序定义为第三端口……第M端口;
所述多端口能量路由器的多端口模组中,第二端口与该多端口模组的其余所有端口之间具有电气隔离环节;如图1所示,当组件10(m+2)至组件10(m+m)不存在时,则由组件101和102构成端口与其余所有端口均具有电气隔离环节;
所述多端口能量路由器的多端口模组的第二端口依次串联或并联连接,构成所述多端口能量路由器的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部直流母线;其余端口分别连接光伏、风电、储能、开关电源等其他类型设备或悬空;
如图2所示,以所有多端口模组仅有三个端口为例,其第二端口与所有端口均具备电气隔离功能;将所有多端口模组的第二端口串联,形成组件2a和2b,可以构成所述多端口能量路由器的第二公共端口;同理,将所有多端口模组的第 二端口并联,亦可构成所述多端口能量路由器的第二公共端口;第二公共端口可连接外部单相交流母线或伪双极形式的直流母线;第一公共端口可以连接外部直流母线,或悬空处理;其余端口根据不同应用需求,分别连接光伏、风电、储能、开关电源等其他类型设备。
所述多端口能量路由器的多端口模组的第二端口分为两组,每组依次串联或并联连接,形成两条链节,两条链节采用真双极连接,构成所述多端口能量路由器的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部为真双极形式的直流母线;其余端口分别连接光伏、风电、储能、开关电源等其他类型设备或悬空;
如图3所示,以所有多端口模组仅有三个端口为例,其第二端口与所有端口均具备电气隔离功能;将所有多端口模组的第二端口分为两组,每组依次串联,形成组件3a、3b和3c,可以构成具有真双极连接方式的多端口能量路由器的第二公共端口;同理,将所有多端口模组的第二端口分为两组,每组并联连接,亦可构成具有真双极连接方式的所述多端口能量路由器的第二公共端口;第二公共端口连接外部具有真双极连接方式的直流母线;第一公共端口可以连接外部直流母线,或悬空处理;其余端口根据不同应用需求,分别连接光伏、风电、储能、开关电源等其他类型设备。
所述多端口能量路由器的多端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用星型连接,构成所述多端口能量路由器基于星型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部星型连接的三相交流母线;其余端口分别连接光伏、风电、储能、开关电源等其他类型设备或悬空;
如图4所示,以所有多端口模组仅有三个端口为例,其第二端口与所有端口均具备电气隔离功能;将所有多端口模组的第二端口分为三组,每组依次串联,形成组件4a、4b、4c、4d、4e和4f,将组件4d、4e和4f连接在一点,可以构成具有星型连接方式的多端口能量路由器的第二公共端口;同理,将所有多端口模组的第二端口分为三组,每组并联连接,亦可构成具有星型连接方式的所述多端口能量路由器的第二公共端口;第二公共端口连接外部具有星型连接方式的三 相交流母线;第一公共端口可以连接外部直流母线,或悬空处理;其余端口根据不同应用需求,分别连接光伏、风电、储能、开关电源等其他类型设备。
所述多端口能量路由器的多端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用角型连接,构成所述多端口能量路由器基于角型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部角型连接的三相交流母线;其余端口分别连接光伏、风电、储能、开关电源等其他类型设备或悬空;
如图5所示,以所有多端口模组仅有三个端口为例,其第二端口与所有端口均具备电气隔离功能;将所有多端口模组的第二端口分为三组,每组依次串联,形成组件5a、5b、5c、5d、5e和5f,将组件5a至5f依次首尾相连,可以构成具有角型连接方式的多端口能量路由器的第二公共端口;同理,将所有多端口模组的第二端口分为三组,每组并联连接,亦可构成具有角型连接方式的所述多端口能量路由器的第二公共端口;第二公共端口连接外部具有角型连接方式的三相交流母线;第一公共端口可以连接外部直流母线,或悬空处理;其余端口根据不同应用需求,分别连接光伏、风电、储能、开关电源等其他类型设备。
所述多端口能量路由器的多端口模组,至少包含一个第一功率模块、一个第二功率模块和一个隔离变压器;其中,第一个功率模块至少包含一个交流端口,而第二功率模块至少包含一个直流端口和一个交流端口,且该直流端口即为所述多端口模组的第一端口,隔离变压器至少包含两个绕组;第一个功率模块的交流端口连接隔离变压器的一个绕组,另一个端口即为所述多端口模组的第二端口;第二功率模块的交流端口连接隔离变压器的一个绕组,与前述第一功率模块所连接绕组非同一个绕组;
如图2所示,组件1a1为隔离变压器即图1中的组件10内部组成部件,组件1a2为第一功率模块,组件1a3为第二功率模块;
所述多端口模组的第一功率模块,采用一个全桥电路实现;如图6所示,为全桥电路示意图,其中组件6a为全桥电路;
所述多端口模组的第一功率模块,采用半桥电路和全桥电路通过直流电容级联实现;如图7所示为半桥级联全桥电路示意图,其中组件7a为半桥电路,组 件7b全桥电路;
所述多端口模组的第一功率模块,采用两个全桥电路通过直流电容级联实现;如图8所示,为两个全桥电路级联示意图,其中组件8a和8b均为全桥电路;
所述多端口模组的第二功率模块,至少包含一个全桥电路和一个DC/AC变换器;其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/AC变换器的DC端口连接前述全桥电路的直流端口,AC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口;
如图9所示为全桥电路级联DC/AC电路结构示意图,其中组件9a为全桥电路,组件9b为多桥臂桥式电路构建的DC/AC电路;根据所连接桥臂数目的不同,可以连接单相、三相三线或三相四线制的交流系统;
所述多端口模组的第二功率模块,至少包含一个全桥电路和一个DC/DC变换器;其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/DC变换器的一个DC端口连接前述全桥电路的直流端口,另一个DC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口;
如图10和图11所示,为两种全桥电路级联DC/DC电路结构示意图,定义图10所示电路为I型全桥电路级联DC/DC电路的第二功率模块,定义图11所示电路为Ⅱ型全桥电路级联DC/DC电路的第二功率模块。
图10中,组件10a是全桥电路,组件10b为多个桥臂桥式电路构建的DC/DC电路;根据接地点的不同,图中组件10c和组件10d,以及组件10e和组件10d均可构成一个DC/DC端口;
图11中,组件11a是全桥电路,组件11b为多个桥臂桥式电路构建的DC/DC电路,其中组件11c和11d,构成一个DC/DC端口;
所述多端口模组的第二功率模块,仅包含一个全桥电路;其中,全桥电路两个桥臂中点引出构成第二功率模块的交流端口;直流电容两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;将两个桥臂中点再次引出分别连接平波电抗器后并联,与桥臂两端中的任意一端,构成DC/DC变换器的另一个DC 端口;如图12所示为通过一个全桥电路构建的第二功率模块,其中组件12a为全桥电路,组件12b和12c构成交流端口,根据接地点的不同,组件12d和12e或组件12f和12e可选取其一构成一个DC/DC端口,组件12g和12h构成直流端口,即所在多端口模组的第一端口;
所述多端口能量路由器的多端口模组,还包含一个旁路开关;旁路开关并联连接所有多端口模组的第二端口;
所述多端口能量路由器的多端口模组,还包含一个熔断器;熔断器串联连接所有多端口模组的第一端口;
如图13所示,为一个多端口模组结构示意图,其中,组件1a6为旁路开关,组件1a7为熔断器;
所述多端口能量路由器还包含一套控制装置,同时每个多端口模组的均包含至少一个控制器和至少一个通信接口;控制装置包含不少于多端口模组通信接口总数目的通信接口;多端口模组的控制器与控制装置通过两侧的通信接口交互数据;
本发明提供的一种多端口能量路由器的控制方法,多端口能量路由器通过如下步骤控制第一公共端口和第二公共端口工作:
步骤1:由多端口模组的控制器,实时检测多端口能量路由器的第二公共端口的电流和电压;
步骤2:由多端口模组的控制器,实时检测多端口能量路由器的第一公共端口的电流和电压;
步骤3:多端口模组的控制器将检测数据,通过通信接口传递值控制装置;
步骤4:控制装置对数据进行计算,产生各个多端口模组的控制调节量,并通过通信接口下发至所有多端口模组的控制器;
步骤5:多端口模组的控制器根据下发的调节量,控制模组第一端口和第二端口的电压和电流,即控制多端口能量路由器的第一公共端口和第二公共端口运行;
多端口能量路由器通过如下步骤控制其余端口的工作:
步骤1:由控制装置对所有多端口能量路由器的其余端口额定电压和电流参 考,分别进行定值整定,并且各个端口的功率,不超过所在多端口模组的额定功率;
步骤2:控制装置将整定参数下发至所有多端口模组的控制器;
步骤3:由各个多端口模组的控制器,实时检测对应多端口模组其余端口的电流和电压;
步骤4:由各个多端口模组的控制器,对检测的电流和电压数据进行计算,并根据控制装置下发的整定参数,产生相应控制调节量;
步骤5:多端口模组通过生成的调节控制量,控制其余端口电压和电流;
步骤6;多端口模组将其余端口电压和电流数据,通过通信接口上传至控制装置;
如图14所示,组件14t表示控制装置,组件14t1~组件14tk表示控制装置的通信接口,组件1a6表示多端口模组100的通信接口,组件1a7表示多端口模组100的控制器,组件14tc1表示控制装置与多端口模组100的通信路径;同理,组件14t2~组件14tk与所有多端口模组均有通信路径;组件1a7控制器获其余端口的电压、电流信息,通过通信端口上传至控制装置;控制装置,实时检测,多端口能量路由器的第一公共端口和第二公共端口的电压、电流信息,对整体多端口能量路由器进行控制和调节;
为说明具体本发明的应用情况,根据上述介绍,图15~图17展示了按照本发明构建的一种混合多端口能量路由器结构示意图。其中,图15所示多端口能量路由器的第二公共端口为中高压直流母线;图16所示多端口能量路由器的第二公共端口为中高压交流母线;每个多端口模组经过不同的配置,可以输出共地点不同的直流电、单相交流电和三相交流电;图17所示多端口能量路由器采用了端口数量不同的多端口模组,图中,组件100至x00是三端口模组,组件(x+1)00至组件N00是多端口模组;
下面以图2所示电路为例,定量介绍该电路的组成原理。
如图2所示,一个多端口能量路由器,包含N个多端口模组。假设多端口能量路由器的额定功率为P,第二公共端口电压为U 2,第一公共端口电压为U 1。则不难得到,每个多端口模组的额定功率为P/N,第一端口电压为U 1,第二端口 电压为U 2/N;假设每个多端口模组的第三端口电压为U 3,则通过调节第三端口所在半桥电路或全桥电路的全控器件工作占空比即可调节U 3电压。
同理可以对其他类型的第三端口进行设计。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (18)

  1. 一种多端口能量路由器,其特征在于:包括N个多端口模组,N为大于等于2的整数;
    每个多端口模组至少包含一个第一功率模块、一个第二功率模块和一个电气隔离环节,其中,第一功率模块至少包含两个端口,其中一个是交流端口;第二功率模块至少包含一个直流端口和一个交流端口,所述直流端口包含一个直流正极和一个直流负极,且该直流端口作为所述多端口模组的第一端口;电气隔离环节至少包含两个端口,且电气隔离环节的所有端口之间具备电气隔离功能;第一功率模块的交流端口连接电气隔离环节的第一端口,第一功率模块的另一个端口作为所述多端口模组的第二端口;第二功率模块的交流端口连接电气隔离环节的第二端口;第一、第二功率模块的其余端口分别作为多端口模组的第三端口、第四端口、……;
    所有N个多端口模组的第一端口的正极连接在同一点,负极连接在另一点,该两点构成多端口能量路由器的第一公共端口;所述N个多端口模组的第二端口依次串联或并联连接,构成多端口能量路由器的第二公共端口;所述N个多端口模组的第三端口、第四端口、……共同构成多端口能量路由器的其余端口。
  2. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第二端口与所在多端口模组的其余所有端口之间均连接电气隔离环节。
  3. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部直流母线;所述多端口能量路由器的其余端口分别连接其他类型设备或悬空。
  4. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述N个多端口模组的第二端口分为两组,每组依次串联或并联连接,形成两条链节,两条链节采用真双极连接,构成多端口能量路由器的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部为真双极形式的直流母线,其余端口分别连接其他类型设备或悬空。
  5. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述N个多 端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用星型连接,构成多端口能量路由器基于星型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部星型连接的三相交流母线,其余端口分别连接其他类型设备或悬空。
  6. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述N个多端口模组的第二端口分为三组,每组依次串联或并联连接,形成三条链节,三条链节采用角型连接,构成多端口能量路由器基于角型连接的第二公共端口;所述多端口能量路由器的第一公共端口悬空或连接外部直流母线,第二公共端口连接外部角型连接的三相交流母线,其余端口分别连接其他类型设备或悬空。
  7. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第一功率模块采用一个全桥电路实现。
  8. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第一功率模块采用半桥电路和全桥电路通过直流电容级联实现。
  9. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第一功率模块采用两个全桥电路通过直流电容级联实现。
  10. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第二功率模块至少包含一个全桥电路和一个DC/AC变换器,其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/AC变换器的DC端口连接所述全桥电路的直流端口,AC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口。
  11. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第二功率模块至少包含一个全桥电路和一个DC/DC变换器,其中,全桥电路两个桥臂中点引出构成该第二功率模块的交流端口;全桥电路的桥臂两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;DC/DC变换器的一个DC端口连接前述全桥电路的直流端口,另一个DC端口构成第二功率模块的第三个端口,即所述多端口模组的第三端口。
  12. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述第二功 率模块仅包含一个全桥电路,其中,全桥电路两个桥臂中点引出构成第二功率模块的交流端口;直流电容两端构成第二功率模块的直流端口,即所述多端口模组的第一端口;将两个桥臂中点再次引出分别连接平波电抗器后并联,与桥臂两端中的任意一端,构成DC/DC变换器的另一个DC端口。
  13. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述电气隔离环节采用至少含有两个绕组的隔离变压器,第q个绕组即为该隔离变压器的第q端口,q=1,2,…,Q,Q为绕组的个数。
  14. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述多端口模组还包含一个旁路开关;旁路开关并联连接所有多端口模组的第二端口。
  15. 如权利要求1所述的一种多端口能量路由器,其特征在于:所述多端口模组还包含一个熔断器,熔断器串联连接所有多端口模组的第一端口。
  16. 如权利要求1所述的一种多端口能量路由器的控制系统,其特征在于:包含控制装置,以及与每个多端口模组所对应的至少一个控制器和至少一个通信接口;控制装置包含不少于多端口模组通信接口总数目的通信接口;多端口模组的控制器与控制装置通过两侧的通信接口交互数据;控制器用于采集所对应多端口模组的参数,并送入控制装置,控制装置根据控制器采集的参数产生控制指令下发至各控制器。
  17. 基于如权利要求16所述的一种多端口能量路由器的控制系统的控制方法,其特征在于:多端口能量路由器通过如下步骤控制第一公共端口和第二公共端口工作:
    步骤a1,控制器实时检测多端口能量路由器的第一、第二公共端口的电流和电压;
    步骤a2,控制器将检测数据通过通信接口传递至控制装置;
    步骤a3,控制装置对检测数据进行计算,产生各个多端口模组的控制调节量,并通过通信接口下发至所有多端口模组的控制器;
    步骤a4,多端口模组的控制器根据下发的控制调节量,控制所对应多端口模组第一端口和第二端口的电压和电流。
  18. 基于如权利要求16所述的一种多端口能量路由器的控制系统的控制方 法,其特征在于:多端口能量路由器通过如下步骤控制其余端口的工作:
    步骤b1,控制装置对多端口能量路由器的所有其余端口额定电压和电流参考,分别进行定值整定,并且使各个端口的功率不超过所在多端口模组的额定功率;
    步骤b2,控制装置将整定参数下发至所有多端口模组的控制器;
    步骤b3,各个多端口模组的控制器实时检测对应多端口模组其余端口的电流和电压;
    步骤b4,各个多端口模组的控制器对检测的电流和电压数据进行计算,并根据控制装置下发的整定参数,产生相应控制调节量;
    步骤b5,多端口模组通过生成的调节控制量,控制其余端口电压和电流;
    步骤b6,多端口模组将其余端口电压和电流数据,通过通信接口上传至控制装置。
PCT/CN2020/100624 2019-08-14 2020-07-07 一种多端口能量路由器及其控制系统和控制方法 WO2021027441A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217038825A KR102390283B1 (ko) 2019-08-14 2020-07-07 멀티포트 에너지 라우터 및 그 제어 시스템과 제어방법
EP20851730.0A EP3965245A4 (en) 2019-08-14 2020-07-07 MULTIPORT POWER OUTER AND CONTROL SYSTEM AND CONTROL METHOD THEREOF
JP2021570502A JP7145346B2 (ja) 2019-08-14 2020-07-07 マルチポートエネルギールータ及びその制御システム並びに制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748368.9 2019-08-14
CN201910748368.9A CN112398308B (zh) 2019-08-14 2019-08-14 一种多端口能量路由器及其控制系统和控制方法

Publications (1)

Publication Number Publication Date
WO2021027441A1 true WO2021027441A1 (zh) 2021-02-18

Family

ID=74570483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100624 WO2021027441A1 (zh) 2019-08-14 2020-07-07 一种多端口能量路由器及其控制系统和控制方法

Country Status (5)

Country Link
EP (1) EP3965245A4 (zh)
JP (1) JP7145346B2 (zh)
KR (1) KR102390283B1 (zh)
CN (1) CN112398308B (zh)
WO (1) WO2021027441A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193776A (zh) * 2021-05-31 2021-07-30 上海交通大学 基于同步握手协议的mmc结构及控制方法
CN113300355A (zh) * 2021-04-30 2021-08-24 国网江苏省电力有限公司经济技术研究院 一种基于负荷感知的多端口能量路由器能量自平衡控制方法
CN113904377A (zh) * 2021-09-16 2022-01-07 国网浙江省电力有限公司湖州供电公司 一种多功能多端口模块化能量路由器装置
CN113991673A (zh) * 2021-11-02 2022-01-28 国网山东省电力公司电力科学研究院 一种多端口共高频电能路由器控制方法和系统
CN114825414A (zh) * 2022-04-14 2022-07-29 国网湖北省电力有限公司电力科学研究院 一种能量路由器的高压直流故障穿越控制方法及系统
CN115037120A (zh) * 2022-06-09 2022-09-09 合肥工业大学 基于模块化多端口变换器的两级式能源路由器系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595397B (zh) * 2021-07-02 2022-10-28 南京南瑞继保电气有限公司 一种具有高频均压汇集母线的多端口能量路由器
CN114123338B (zh) * 2021-12-01 2023-08-08 山东大学 立方体能量路由器及其控制方法
CN114583670B (zh) * 2022-01-29 2023-09-26 中国长江三峡集团有限公司 一种星型联结转移支路的多端口直流断路器及使用方法
CN116667360B (zh) * 2023-07-31 2024-03-26 南方电网数字电网研究院有限公司 一种配用电弹性电能路由系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131686A1 (en) * 2014-11-10 2016-05-12 Duke Energy Corporation Apparatuses including utility meter, power electronics, and communications circuitry, and related methods of operation
CN106058844A (zh) * 2016-08-01 2016-10-26 西北工业大学 一种用于直流微网的多端口能量路由器
CN106374451A (zh) * 2016-11-18 2017-02-01 合肥工业大学 基于多端口变换器的直流住宅用能量路由器及其控制方法
CN107017638A (zh) * 2017-05-23 2017-08-04 杭州电子科技大学 一种适用于配电网的多端口多母线电能路由器拓扑结构

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840008521A (ko) * 1983-04-20 1984-12-15 문재경 변압기를 사용한 기기의 절단 온/오프(on/off) 스위치
US5982645A (en) * 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
EP2460264B1 (en) * 2009-07-31 2015-05-20 ALSTOM Technology Ltd Configurable hybrid converter circuit
US20130343089A1 (en) * 2012-06-25 2013-12-26 General Electric Company Scalable-voltage current-link power electronic system for multi-phase ac or dc loads
CN103280989B (zh) * 2013-05-15 2017-02-08 南京南瑞继保电气有限公司 一种换流器及其控制方法
CN103956911A (zh) * 2014-05-05 2014-07-30 国家电网公司 一种模块化h桥级联型多电平互平衡电力电子变压器
CN203827197U (zh) * 2014-05-05 2014-09-10 国家电网公司 一种模块化h桥级联型多电平互平衡电力电子变压器
JP2016127645A (ja) * 2014-12-26 2016-07-11 サンケン電気株式会社 多出力スイッチング電源装置
JP6289394B2 (ja) * 2015-01-26 2018-03-07 三菱電機株式会社 電力変換装置および電力変換システム
DE112015006368T5 (de) * 2015-03-23 2017-12-07 Mitsubishi Electric Corporation Bidirektionale kontaktlose energieversorgungseinrichtung und bidirektionales kontaktloses energieversorgungssystem
EP3269033B1 (de) * 2015-04-21 2021-02-24 Siemens Energy Global GmbH & Co. KG Elektrische anordnung mit teilmodulen
CN104836424A (zh) * 2015-05-18 2015-08-12 国家电网公司 具有级联模块电压自动平衡电路的能量路由器
JP6575289B2 (ja) * 2015-10-15 2019-09-18 富士電機株式会社 電力変換装置
JP6272438B1 (ja) * 2016-10-27 2018-01-31 三菱電機株式会社 電力変換装置
CN108258676A (zh) * 2016-12-29 2018-07-06 中国电力科学研究院 基于直流多端口电能交换器的全可控灵活配电系统及方法
CN107070287A (zh) * 2017-06-06 2017-08-18 清华大学 电能路由器和电能路由器子模块
CN108306517B (zh) * 2018-01-16 2020-05-05 东南大学 两级式多端口电力电子变压器的拓扑结构及其控制方法
CN108767843B (zh) * 2018-07-02 2020-02-21 上海大周能源技术有限公司 多端口能量路由器
CN109361214B (zh) * 2018-11-23 2021-04-20 华中科技大学 一种具备交直流故障穿越的主动型电能路由器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131686A1 (en) * 2014-11-10 2016-05-12 Duke Energy Corporation Apparatuses including utility meter, power electronics, and communications circuitry, and related methods of operation
CN106058844A (zh) * 2016-08-01 2016-10-26 西北工业大学 一种用于直流微网的多端口能量路由器
CN106374451A (zh) * 2016-11-18 2017-02-01 合肥工业大学 基于多端口变换器的直流住宅用能量路由器及其控制方法
CN107017638A (zh) * 2017-05-23 2017-08-04 杭州电子科技大学 一种适用于配电网的多端口多母线电能路由器拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965245A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300355A (zh) * 2021-04-30 2021-08-24 国网江苏省电力有限公司经济技术研究院 一种基于负荷感知的多端口能量路由器能量自平衡控制方法
CN113300355B (zh) * 2021-04-30 2022-07-19 国网江苏省电力有限公司经济技术研究院 一种基于负荷感知的多端口能量路由器能量自平衡控制方法
CN113193776A (zh) * 2021-05-31 2021-07-30 上海交通大学 基于同步握手协议的mmc结构及控制方法
CN113904377A (zh) * 2021-09-16 2022-01-07 国网浙江省电力有限公司湖州供电公司 一种多功能多端口模块化能量路由器装置
CN113991673A (zh) * 2021-11-02 2022-01-28 国网山东省电力公司电力科学研究院 一种多端口共高频电能路由器控制方法和系统
CN113991673B (zh) * 2021-11-02 2023-09-08 国网山东省电力公司电力科学研究院 一种多端口共高频电能路由器控制方法和系统
CN114825414A (zh) * 2022-04-14 2022-07-29 国网湖北省电力有限公司电力科学研究院 一种能量路由器的高压直流故障穿越控制方法及系统
CN114825414B (zh) * 2022-04-14 2023-12-19 国网湖北省电力有限公司电力科学研究院 一种能量路由器的高压直流故障穿越控制方法及系统
CN115037120A (zh) * 2022-06-09 2022-09-09 合肥工业大学 基于模块化多端口变换器的两级式能源路由器系统及方法

Also Published As

Publication number Publication date
KR102390283B1 (ko) 2022-04-25
KR20210148413A (ko) 2021-12-07
CN112398308A (zh) 2021-02-23
EP3965245A1 (en) 2022-03-09
EP3965245A4 (en) 2022-08-24
JP7145346B2 (ja) 2022-09-30
JP2022526462A (ja) 2022-05-24
CN112398308B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2021027441A1 (zh) 一种多端口能量路由器及其控制系统和控制方法
JP6951542B2 (ja) チェーンマルチポートグリッド接続インターフェース装置及び制御方法
CN104702114B (zh) 一种开关电容接入的高频链双向直流变压器及其控制方法
JP2017189115A (ja) 電力変換装置
WO2010116806A1 (ja) 電力変換装置
CN104218805B (zh) 一种单双极性转换直流变换器
CN110247421B (zh) 一种模块化双有源桥变流器系统及电气量均衡控制方法
CN107786099A (zh) 一种多分段高可靠直流变压器系统及其控制方法
CN107039980A (zh) 一种高压直流潮流控制器
CN109980948A (zh) 一种三相间耦合五端口电力电子变压器
CN102904420A (zh) 多端口变流器
CN108306324B (zh) 模块化集中式储能系统
CN113098276B (zh) 一种光伏直流不闭锁故障穿越控制方法及变压器拓扑结构
CN106849732A (zh) 一种无桥臂电抗器的模块化多电平换流器
CN113595397B (zh) 一种具有高频均压汇集母线的多端口能量路由器
CN111786579A (zh) 具有公共高压直流母线的级联多电平整流器及控制策略
CN115632562A (zh) 基于mmc子模块桥臂复用的固态变压器拓扑及调制方法
CN107786085B (zh) 一种直流-直流变换系统及其控制方法
EP4170887A1 (en) Power supply system
CN207475411U (zh) 一种多分段高可靠直流变压器系统
CN208369224U (zh) 一种中压双向直流输电系统
CN108365606B (zh) 一种电力电子变压器的拓扑结构
CN112332683A (zh) 一种基于方波变换器的电力电子变压器
CN112467777A (zh) 一种利用模块化组合式直流变压器控制不对称直流电流的方法
CN212850304U (zh) 具有公共高压直流母线的级联多电平整流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570502

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217038825

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020851730

Country of ref document: EP

Effective date: 20211201

NENP Non-entry into the national phase

Ref country code: DE