WO2021253958A1 - 一种基于卫星导航的挖掘机智能化高精度定位方法 - Google Patents

一种基于卫星导航的挖掘机智能化高精度定位方法 Download PDF

Info

Publication number
WO2021253958A1
WO2021253958A1 PCT/CN2021/087639 CN2021087639W WO2021253958A1 WO 2021253958 A1 WO2021253958 A1 WO 2021253958A1 CN 2021087639 W CN2021087639 W CN 2021087639W WO 2021253958 A1 WO2021253958 A1 WO 2021253958A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
coordinate system
excavator
coordinates
precision
Prior art date
Application number
PCT/CN2021/087639
Other languages
English (en)
French (fr)
Inventor
杜素忠
张录彬
张宇鹏
周碧辉
魏志高
易国鹏
Original Assignee
万宝矿产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010561385.4A external-priority patent/CN111679306B/zh
Priority claimed from CN202021139665.8U external-priority patent/CN212781243U/zh
Application filed by 万宝矿产有限公司 filed Critical 万宝矿产有限公司
Priority to AU2021294070A priority Critical patent/AU2021294070B2/en
Publication of WO2021253958A1 publication Critical patent/WO2021253958A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Definitions

  • the invention belongs to the comprehensive application field of satellite technology, and specifically relates to an intelligent high-precision positioning method for an excavator based on satellite navigation.
  • GNSS Global Navigation Satellite System
  • the origin of the coordinates is at the center of the reference ellipsoid
  • the Z axis points to the north pole of the reference ellipsoid
  • the X axis points to the intersection of the starting meridian and the equator
  • the Y axis is located on the equator
  • the X axis is angled by the right hand at a 90 degree angle.
  • the coordinates of a certain point can be expressed by the projection of the point on each coordinate axis of the coordinate system.
  • Geodetic coordinate system Use the geodetic latitude, longitude and absolute elevation to describe the spatial location.
  • Latitude is the angle between a point in space and the normal line of the reference ellipsoid and the equatorial plane; longitude is the angle between a point in space and the rotation axis of the reference ellipsoid and the starting meridian of the reference ellipsoid; absolute elevation is a point in space The distance along the normal direction of the reference ellipsoid to the surface of the reference ellipsoid.
  • Gauss Plane Cartesian Coordinate System In order to facilitate work, it is necessary to project the survey area onto the plane to make the measurement calculation and drawing more convenient. When the survey area is large and the accuracy requirements are high, the plane coordinate system cannot ignore the influence of the earth's curvature. Converting a point on the earth to a plane is called a map projection.
  • the Gaussian projection is commonly used in my country, that is, the earth is divided into zones according to the meridian, which is called the projection zone; the projection starts from the first meridian, and is divided into 6° zone and 3° zone. A zone divided every 6° is called a 6° zone, and a zone divided every 3° is called a 3° zone.
  • Gaussian projection the projection of the central meridian is taken as the ordinate axis, expressed by x, the projection of the equator is taken as the abscissa axis, expressed by y, and the intersection of the two axes is taken as the origin of the coordinates.
  • the resulting rectangular coordinate system is called Gaussian Cartesian coordinate system.
  • Independent coordinate system According to local work needs and coordinate description, select the Cartesian coordinate system of origin and coordinate axis. Compared with the unified national coordinate system, it is a local plane or rectangular coordinate system independent of the national coordinate system. Generally speaking, the X-axis indicates north, and the Y-axis indicates east, and the elevation is described by selecting a local reference value. Independent coordinate system, Gaussian rectangular coordinate system and other coordinate systems can be transformed into each other.
  • the excavator consists of a power unit, a working device, a slewing mechanism, a control mechanism, a transmission mechanism, a walking mechanism and auxiliary facilities, among which: the walking mechanism includes a chassis (bottom plate) based on tires or crawlers, and the working device includes a boom and a small Arms, buckets, auxiliary devices, etc.
  • High-precision positioning of the excavator's walking mechanism and working devices can achieve high-precision guidance, command and monitoring, which can improve the operating efficiency of the excavator, optimize the operating effect, and reduce work loss. For example, damage to surrounding objects can be avoided during engineering construction, precise operations can be achieved in invisible areas such as underwater and caves, and losses and dilution can be reduced during mining, with considerable economic benefits.
  • the technical problem to be solved by the present invention is how to provide an intelligent high-precision positioning method for excavators based on satellite navigation, so as to overcome the problems that the prior art cannot realize automatic and intelligent high-precision positioning of excavators.
  • An intelligent high-precision positioning method for an excavator based on satellite navigation includes the following steps:
  • Step 1 Install high-precision GNSS receiver, GNSS receiving antenna, tilt sensor and on-board computer on the excavator;
  • Step 2 Calibrate each part of the excavator.
  • the GNSS receiving antenna A is point A
  • the GNSS receiving antenna B is point B.
  • the vector relationship between A and B can determine the direction of the working device of the excavator;
  • the connection point of the boom and the auxiliary platform Is point R which is a static point relative to A and B;
  • the connecting point between the big arm and the forearm is point C
  • the connecting point between the forearm and the bucket is point D
  • the bucket head is point E;
  • the rear contact point of the walking mechanism is Point F, which identifies the coordinate position of the chassis;
  • Step 3 When the excavator chassis is kept level, calibrate the static dimensions of each part of the excavator;
  • Step 4 When the excavator is working, read the real-time dynamic angle of the inclination sensor;
  • Step 5 Rely on the high-precision GNSS receiver to perform real-time differential data positioning solution, and obtain real-time positioning information of points A and B in the space rectangular coordinate system and the geodetic coordinate system;
  • Step 6 Using the coordinate origin of point A as O(0,0), the vertical direction as the X axis, and the forward direction of the working device of the excavator as the Y axis, establish the side view coordinate system S 1 of the excavator, and calculate R, C, The coordinates of D, E, F relative to point A and the absolute elevation of each point;
  • Step 7 Set the coordinate system S 2 of the top view of the excavator with the coordinate origin O(0,0) of point A, the forward direction of the working device as the X axis and the AB connection direction as the Y axis, and calculate the relative values of R, C, D, and E The coordinates of point A;
  • Step 8 A and B space rectangular coordinate system and geodetic coordinate system coordinates are converted to Gaussian plane coordinate system coordinates; after the conversion, the coordinates are identified as A(a Gx ,a Gy ,H a ), B(b Gx ,b Gy ,H b ), wherein, a Gx and b Gx to North coordinate, a Gy and b Gy easting coordinates, H a and H b is the absolute elevation;
  • Step 9 Calculate the conversion parameters from the coordinate system S 2 to the Gaussian plane coordinate system, and convert the R, C, D, and E coordinates in the coordinate system S 2 to the Gaussian plane coordinate system coordinates; refer to each of the H a and the reference coordinate system S 1 Point relative to the coordinates of A, calculate the absolute elevation of R, C, D, E, F;
  • Step 10 Convert from Gaussian plane coordinate system to other independent coordinate system
  • Step eleven complete the intelligent and high-precision positioning of the working state of the excavator.
  • the step one specifically includes: the high-precision GNSS receiver, the GNSS receiving antenna, the inclination sensor and the on-board computer are installed on the excavator; the on-board computer is installed on the excavator In the cab, it is connected to the inclination sensor and the high-precision GNSS receiver, and is equipped with a positioning calculation software module for working attitude analysis and coordinate conversion of the excavator; the GNSS receiving antenna is installed at the rear of the excavator and Connected to the high-precision GNSS receiver, the connection line between the GNSS receiving antennas is perpendicular to the direction of the excavator cab, and the high-precision GNSS receiver is used to combine real-time differential signals and satellite ephemeris data to obtain And analyze the high-precision positioning signal of the GNSS receiving antenna; the inclination sensor is installed in the working device of the excavator, namely the boom, the forearm, the bucket and the cab, and is used to analyze and
  • the inclination sensor is installed in the working device of the excavator, that is, the boom, the forearm, the bucket, and the cab. Specifically, the inclination sensor is installed in the pitch and roll direction of the excavator cab. , And on the big arm, forearm and bucket, along with the cab, big arm, forearm and bucket move together, used to determine the real-time working posture of the cab, forearm, forearm and bucket, the work
  • the attitude includes the pitch of the cab, the roll of the cab, the vertical height and horizontal length of the connection point between the boom and the excavator platform, the vertical height and horizontal length of the connection point between the boom and the forearm, and the connection point between the forearm and the bucket.
  • the static dimensions in the step 3 specifically include: the distance from A to R is L f , the vertical height from A to F is H f ; the length of the boom, that is, the distance from R to C is L c , and the length of the forearm is distance D to C is L d, i.e. the length of the bucket to the distance D to E, L e; R AB connecting point a and the intersection point of the perpendicular distance r 'Sy; a linear distance of points a and B l b , the vertical height difference from point A to point R is H r ; A and B are as high as possible, and the AB line is perpendicular to the direction of the excavator's working device.
  • the real-time dynamic angle includes the horizontal angle of the boom is ⁇ c , the horizontal angle of the forearm is ⁇ d , the horizontal angle of the bucket is ⁇ e , the pitch angle of the cab is ⁇ y and the roll angle of the cab is ⁇ x .
  • step S 1 is calculated in the coordinate system R, C, D, E, F with respect to point A and the coordinates of each point absolute elevation is as follows:
  • h' c L c ⁇ sin ⁇ c ⁇ cos ⁇ x
  • h' d h 'c + L d ⁇ sin ⁇ d ⁇ cos ⁇ x
  • H WR H a +H r ⁇ cos ⁇ y ⁇ cos ⁇ x +L f ⁇ sin ⁇ y ⁇ cos ⁇ x
  • the coordinate calculating step nine conversion parameter S 2 to the Gaussian plane coordinate system, converting the coordinate system R, C, D, E S 2 coordinate plane coordinate system to coordinates of a Gaussian process is as follows:
  • the real-time dynamic angle of the inclination sensor in the step 4 is no longer updated in real time, and the calculation of other points of the excavator is still carried out according to this method.
  • the present invention proposes an intelligent high-precision positioning method for excavators based on satellite navigation, which can realize rapid positioning, improve positioning accuracy, and meet actual work needs, and can provide high-precision guidance, command, monitoring, and humanization or unmanned operations for excavators.
  • the invention installs a receiver, a measuring antenna, a single-axis angle sensor, a two-axis angle sensor, a vehicle-mounted computer and other equipment on the excavator. Through the Beidou high-precision spatial information technology and analysis algorithm, the precise position of the excavator and its main components can be solved.
  • the invention constructs side-view and top-view two-dimensional coordinates, reasonably analyzes and solves the relative coordinates of each point under the operating posture of the excavator, and can complete precise positioning of each main component through coordinate transformation.
  • the invention can complete the automatic guidance and tracking of the excavator on the basis of accurate positioning, and meet the engineering application requirements of different industries.
  • the equipment composition is clear, the operation principle is clear, the realization effect is good, the system structure is stable, and it is suitable for different scenarios and different types of excavator operations.
  • the real-time positioning accuracy of the excavator's walking mechanism and working device can be controlled to the centimeter level.
  • the positioning accuracy calculation speed can be controlled to the millisecond level. If the communication network unit is configured, it can realize data sharing and utilization with other systems.
  • Intelligent high-precision positioning can simplify the pre-operation preparation and the guidance, command and monitoring process of the excavator, reduce the workload of setting out the baseline and piling in advance, and improve the operation level of the excavator.
  • Figure 1 is a schematic diagram of the connection relationship between the devices of the present invention.
  • Figure 2 is an overall flow chart of the implementation method of the present invention.
  • Figure 3 is an explanatory diagram of the calibration of various parameters of the present invention, in which (a) is a side view, (b) is a top view, and (c) is a front view;
  • Figure 4 is a side view coordinate diagram of the posture parameters of the present invention.
  • Figure 5 is a top view coordinate diagram of the posture parameters of the present invention.
  • the utility model proposes an intelligent high-precision positioning system for excavators based on satellite navigation, which includes (figure 1): 1-excavator, 2-high-precision GNSS receiver, 3-GNSS receiving antenna, 4-inclination sensor , 5- On-board computer.
  • the high-precision GNSS receiver, GNSS receiving antenna, inclination sensor, and on-board computer are all installed on the excavator; the on-board computer is installed in the excavator cab, connected with the inclination sensor and high-precision receiver, and equipped with a dedicated positioning calculation software module; GNSS
  • the receiving antenna is installed at the tail of the excavator and connected to the high-precision GNSS receiver.
  • the linear connection between the GNSS receiving antennas is basically perpendicular to the direction of the excavator cab; the inclination sensor is installed on the boom, forearm, bucket and driving of the excavator working device Indoor, used to analyze and judge the working posture of the excavator.
  • a device power supply unit which is used to supply power to a high-precision GNSS receiver, an inclination sensor, and a vehicle-mounted computer.
  • a high-precision GNSS reference station which is used to provide real-time differential data to a high-precision GNSS receiver.
  • High-precision GNSS reference stations can be self-built local reference stations, or public reference stations provided by non-profit organizations such as governments or telecom operators; the differential signals required by high-precision GNSS receivers can be from high-precision GNSS reference stations, It can also be obtained in other ways.
  • a communication network unit which sends the information received, processed and stored by the local onboard computer of the excavator to the remote hardware and (or) software system through a wired or wireless network.
  • the excavator is the main carrier of the system, and the walking mechanism can be crawlers, tires or other forms of chassis.
  • the working devices include the cab and auxiliary platform, the boom, the forearm, and the bucket, which can be front shovel or backhoe work.
  • the high-precision GNSS receiver and the receiving antenna are installed on the excavator and connected to each other.
  • the high-precision GNSS receiver combines real-time differential signals and satellite ephemeris data to achieve the acquisition and analysis of high-precision positioning signals of the GNSS receiving antenna; use 1 GNSS receiving antenna as a reference to locate the excavator; use 2 or more GNSS receiving antennas The vector relationship between the two to determine the direction of the excavator.
  • the differential signal required by the high-precision GNSS receiver can be from a high-precision GNSS reference station, or it can be obtained by other means, with the purpose of further improving the positioning accuracy of the GNSS receiving antenna.
  • the inclination sensor is installed in the pitch (front and rear) and roll (left and right) directions of the excavator cab, as well as the working device boom, forearm and bucket, along with the cab, boom, forearm and bucket.
  • Action used to determine the real-time working posture of the cab, boom, forearm, and bucket, including: cab pitch, cab roll, vertical height and horizontal length of the connection point between the boom and the excavator platform, and large The vertical height and horizontal length of the connecting point of the arm and the forearm, the vertical height and horizontal length of the connecting point of the forearm and the bucket, and the vertical height and horizontal length of the bucket head (tooth).
  • the horizontal inclination sensor of the boom, the forearm and the bucket is a single-axis inclination sensor, which is used to detect the raising or lowering angle of the boom, the forearm and the bucket;
  • the cab can use 2 single-axis inclination sensors, and
  • a dual-axis tilt sensor can be used to detect the pitch (front and rear) angle and roll (left and right) angle of the cab.
  • the on-board computer is installed inside the excavator's cab, and is connected with an inclination sensor and a high-precision GNSS receiver.
  • a positioning calculation software module is installed in the on-board computer, including the high-precision positioning calculation function of the excavator's working posture analysis and coordinate conversion.
  • the present invention also provides an intelligent high-precision positioning method for excavators based on satellite navigation, which includes the following steps (Figure 2):
  • Step 1 Complete the equipment installation according to Figure 1. Install high-precision GNSS receivers, GNSS receiving antennas, tilt sensors, on-board computers and other equipment on the excavator.
  • Step two calibrate the calculation part according to Figure 3.
  • the GNSS receiving antenna A is point A
  • the GNSS receiving antenna B is point B.
  • the vector relationship between A and B can determine the direction of the excavator's working device;
  • the connection point between the boom and the auxiliary platform is point R, which is a stationary point relative to A and B ;
  • the connection point between the big arm and the forearm is point C
  • the connection point between the forearm and the bucket is point D
  • the bucket head is point E;
  • the rear contact point of the traveling mechanism is point F, marking the coordinate position of the chassis.
  • Step 3 When the excavator chassis remains level, calibrate the static dimensions according to Figure 3.
  • the distance from A to R is L f
  • the vertical height from A to F is H f
  • the boom length (the distance from R to C) is L c
  • the forearm length (the distance from C to D) is L d
  • the bucket length (The distance from D to E) is Le
  • the distance between the intersection of the perpendicular line from point R to AB and point A (the distance from point R to the line AB as a perpendicular, and the distance between the intersection point of the perpendicular line and the line AB and point A) Is r'Sy
  • the straight line distance between point A and point B is l b
  • the vertical height difference (RA) from point A to point R is H r
  • the height between A and B is as high as possible
  • the AB connection is as close as possible to the direction of the working device vertical.
  • Step 4 When the excavator is working, read the real-time dynamic angle of the inclination sensor according to Figure 3. Among them, the horizontal angle of the boom is ⁇ c , the horizontal angle of the forearm is ⁇ d , the horizontal angle of the bucket is ⁇ e , the pitch angle of the cab is ⁇ y , and the roll angle of the cab is ⁇ x .
  • Step 5 Rely on the high-precision GNSS receiver to perform high-precision positioning and calculation of real-time differential data, and obtain high-precision real-time positioning information of points A and B in the space rectangular coordinate system and the geodetic coordinate system.
  • differential positioning is required, that is: using a reference station with a known precise location in advance, through the reference station to measure information, reduce or eliminate ephemeris errors, satellite clocks The influence of the difference, the receiver clock difference, and the delay error to the process on the user receiver. Therefore, in the high-precision positioning of the excavator, it is necessary to have a high-precision reference station nearby to achieve precise positioning of A and B; the position of the reference station is calculated by the receiver after receiving the satellite ephemeris continuously for a long time, and can be passed if the accuracy requirements are not high. Obtained by traditional measurement.
  • Step 6 Using the coordinate origin of point A as O(0,0), the vertical direction as the X axis, and the forward direction of the working device as the Y axis, establish the side view coordinate system S 1 of the excavator in Figure 4, and calculate R, C, D, E , The coordinates of F relative to point A and the absolute elevation of each point. For other parts of the excavator, the relative position can also be calculated according to Figure 4.
  • Step 7 Take the coordinate origin O(0,0) of point A, the forward direction of the working device is the X axis, and the AB connection direction is the Y axis, establish the coordinate system S 2 of the top view of the excavator in Figure 5, and calculate R, C, D, The coordinates of E relative to point A.
  • the relative position can also be calculated according to Figure 5.
  • Step 8 The A, B space rectangular coordinate system and the geodetic coordinate system are converted to the Gaussian plane coordinate system. Convert the coordinates of the A, B space rectangular coordinate system and the geodetic coordinate system obtained by the high-precision GNSS receiver to the coordinates of the Gaussian plane coordinate system. After the conversion, the coordinates are identified as A(a Gx ,a Gy ,H a ), B(b Gx ,b Gy ,H b ). Which, a Gx and b Gx for the North to coordinate, a Gy and b Gy east to coordinate, H a and H b is the absolute elevation.
  • Step 9 Calculate the conversion parameters from the coordinate system S 2 to the Gaussian plane coordinate system, and convert the R, C, D, E coordinates in the coordinate system S 2 to the Gaussian plane coordinate system coordinates; refer to the points in the H a and the coordinate system S 1 Relative to the coordinates of A, calculate the absolute elevations of R, C, D, E, and F.
  • Step 10 Convert from Gaussian plane coordinate system to other independent coordinate system.
  • the coordinates of R, C, D, E in the Gaussian plane coordinate system can be converted to other coordinate systems; the absolute elevation of R, C, D, E, F can also be carried out Convert accordingly.
  • Step eleven complete the intelligent and high-precision positioning of the working status of the excavator.
  • the static state is a special working state.
  • the parameters in step 4 are no longer updated in real time; the calculation of other points of the excavator can be carried out according to this process.
  • the first key point of the present invention is to calculate the coordinates of R, C, D, E, and F in the coordinate system S1 relative to point A, and the absolute elevations of R, C, D, E, and F in step six:
  • h' c L c ⁇ sin ⁇ c ⁇ cos ⁇ x
  • h' d h 'c + L d ⁇ sin ⁇ d ⁇ cos ⁇ x
  • the second step is to solve the horizontal length of R, C, D, E with the origin of the coordinate of point A:
  • the third step is to solve the absolute elevation of each point C, D, E, and F with the reference point of point A:
  • H WR H a +H r ⁇ cos ⁇ y ⁇ cos ⁇ x +L f ⁇ sin ⁇ y ⁇ cos ⁇ x
  • the key point of the present invention is a two step seven S 2 calculated in the coordinate system R, C, D, E with respect to the coordinates of the point A:
  • the key point of the present invention is a three step eight, nine step S 2 is calculated coordinate conversion parameter to the Gaussian plane coordinate system, and R, C, D, E converted from the coordinate system S 2 to Gauss plane coordinates:
  • the first step is to calculate the coordinates of points A and B in the Gauss plane coordinate system from the coordinates of the A and B space rectangular coordinate systems and the geodetic coordinate system, which are respectively identified as A(a Gx ,a Gy ,H a ), B(b Gx , b Gy ,H b ). Which, a Gx and b Gx east to coordinate, a Gy and b Gy for the North to coordinate, H a and H b is the absolute elevation.
  • the second step is to calculate the angle ⁇ between the AB vector and the north X axis of the Gaussian plane coordinate system (also known as the north angle):
  • the third step is to calculate the conversion angle ⁇ from the coordinate system S 2 to the Gaussian plane coordinate system:
  • the fourth step is to calculate the amount of translation from the coordinate system S2 to the Gaussian plane coordinate system:
  • Step 5 Set the coordinates of a point in the S2 coordinate system as (x s2 , y s2 ), and the coordinates converted to the Gaussian plane as (x G , y G ), the relationship between the two is:
  • R, C, D, E and other points are converted from the coordinate system S 2 to the Gaussian plane coordinate system according to the above method, and the Gaussian plane coordinate system coordinates are obtained.
  • the fourth key point of the present invention is the conversion of the Gauss plane coordinate system of each point in the calculation step 10 to other independent coordinate systems:
  • the first step is to know the conversion parameters of the Gaussian plane coordinate system to an independent coordinate system plane: X-axis translation ⁇ x k , Y-axis translation ⁇ y k , coordinate conversion angle ⁇ , conversion parameter K;
  • the second step is to assume that the coordinates of a certain point in the independent coordinate system are (x k , y k ), and the coordinates on the Gaussian plane are (x G , y G ):
  • the third step the known absolute elevation to an independent coordinate system elevation conversion parameter is ⁇ h k , assuming that the absolute elevation of a certain point is h G , the elevation in the independent coordinate system is h k :
  • excavators are used for mining operations, with an annual mining weight of more than 100 million tons.
  • the height of the excavator floor (equivalent to the absolute elevation of point F)
  • it is possible to judge the "under-dig" situation in the mining process through the high-precision positioning of the bucket teeth, it can ensure the consistency of the mining operation plan and the actual performance, and reduce the loss and dilution of the mine ;
  • the guidance efficiency can be improved, the operation monitoring can be strengthened, and the invalid operation can be reduced.
  • the mine is a Komatsu PC2000 backhoe excavator, equipped with the following hardware equipment:
  • the average error of the relative static point R in the horizontal X direction is about 0.015 meters
  • the average error in the Y direction is about 0.069 meters
  • the average error of absolute elevation Z is about 0.154 meters
  • the average error in the horizontal direction is 0.071
  • the average error of the relative moving point E in the horizontal X direction is about 0.033 meters
  • the average error in the Y direction is about 0.071 meters
  • the average error of absolute elevation Z is about 0.189 meters
  • the average error in the horizontal direction is 0.078. It can be considered that the horizontal positioning accuracy of this method can be controlled within 0.1 meters, and the elevation positioning accuracy can be controlled within 0.2 meters.

Abstract

一种基于卫星导航的挖掘机(1)智能化高精度定位方法,属于卫星技术综合应用领域。为了克服现有技术无法实现挖掘机(1)自动化、智能化高精度定位的问题,在挖掘机(1)上安装接收机(2)、测量型天线、单轴角度传感器、双轴角度传感器和车载计算机(5)等设备,通过北斗高精度空间信息技术和分析算法,可求解挖掘机(1)及其主要部件精确位置,通过构建侧视和俯视二维坐标,合理分析和求解挖掘机(1)运行姿态下各点相对坐标,经坐标系转化可完成各主要部件精确定位。在精确定位基础上,可实现快速定位、提高定位精度、完成挖掘机(1)自动引导和跟踪,满足不同行业工程应用要求。

Description

一种基于卫星导航的挖掘机智能化高精度定位方法 技术领域
本发明属于卫星技术综合应用领域,具体涉及一种基于卫星导航的挖掘机智能化高精度定位方法。
背景技术
基于全球导航卫星系统(GNSS)的高精度定位、导航和授时服务已广泛应用在农业、交通、能源、电力等国民经济各行业。其中,坐标系是定位描述的基础:
空间直角坐标系:坐标原点位于参考椭球中心,Z轴指向参考椭球北极,X轴指向起始子午面与赤道交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
大地坐标系:采用大地纬度、经度和绝对高程来描述空间位置。纬度是空间的点与参考椭球面法线与赤道面的夹角;经度是空间点与参考椭球的自转轴所在面与参考椭球的起始子午面的夹角;绝对高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
高斯平面直角坐标系:为了方便工作,需要把测区投影到平面上来,使测量计算和绘图更加方便。当测区范围较大、精度要求较高时,平面坐标系不能忽略地球曲率影响。把地球上的点位换算到平面,称为地图投影。我国通用为高斯投影,即将地球按经线划分为带,称为投影带;投影是从首子午线开始的,分6°带和3°两种。每隔6°划分一带的叫6°带,每隔3°划分一带的叫3°带。通过高斯投影,将中央子午线的投影作为纵坐标轴,用x表示,将赤道的投影作横坐标轴,用y表示,两轴的交点作为坐标原点,由此构成的平面直角坐标系称为高斯平面直角坐标系。
独立坐标系:根据本地工作需要和坐标描述,选定原点和坐标轴的直角坐标系。相对于统一的国家坐标系而言,是独立于国家坐标系外的局部平面或直角坐标系。通常使用来说,X轴指示北、Y轴指东,高程选定局部某一基准值进行描述。独立坐标系、高斯平面直角坐标系以及其他坐标系可以相互转化。
挖掘机作为一种机械设备,广泛应用于国民经济各领域。挖掘机由动力装 置,工作装置,回转机构,操纵机构,传动机构,行走机构和辅助设施等组成,其中:行走机构包括以轮胎或履带为基础的底盘(底板),工作装置包括大臂、小臂、铲斗、辅助装置等。对挖掘机行走机构和工作装置进行高精度定位,从而实现高精度引导、指挥和监控,能够提高挖掘机作业效率、优化作业效果、降低工作损耗。比如,工程施工中可避免对周围物体造成破坏,水下和山洞等不可见区域可实现精准操作,矿山采掘中能够降低损失和贫化,经济效益可观。
传统定位引导、指挥和监控主要依靠人工方式展开:引导时需要测量人员提前进行放样基准线和打桩;指挥和监控时,主要依靠现场指挥人员和挖掘机操作手经验和态度,精准度往往达不到要求。实现挖掘机自动化、智能化高精度定位,是挖掘机引导、监控和无人化操作的基础,对不同行业应用均具有重要意义。
针对挖掘机引导和监控中的高精度定位问题,近年来出现了部分基于GNSS定位的研究成果,比如:
1.王太海、陈建宏、金俊在《基于挖掘机GNSS精确定位的开采姿态监测系统》(黄金科学技术,2016,24(4):101-106)中,对GNSS接收机原理、三维坐标转换原理、挖掘机姿态等进行了初步分析,表明该系统具备高精度定位特定。但挖掘机工作状态分析大多基于高斯平面坐标系或某独立坐标系(如:矿山自有坐标系、工程自有坐标系等)展开,依靠三维坐标系转换难度较高,特别是特定角度时平面坐标上容易产生大误差,部分角度为0的假设难以满足高精度要求。另外,报道只重点介绍了系统效果,未涉及具体实现流程、方法、设备组成和安装等。
2.张峰在《基于挖掘机GNSS精确定位的开采姿态监测系统》(机械管理开发,2018(8):88-90)中,对开采姿态原理、GNSS定位原理、双天线姿态原理和视觉测量系统进行了结合,主要是结合开采姿态、GNSS定位和视觉测量技术,解决挖掘机定位问题,涉及到视频监控和智能分析。视觉测量和分析本身会产生误差,影响高精度定位直观性和准确度。报道也未涉及具体实现流程和方法。
因此,综合运行GNSS、高精度仪表和现代信息技术手段,发明一种对挖掘机行走机构和工作装置进行智能化高精度定位的方法,对挖掘机引导、指挥、监控、无人化或少人化操作等具有重要作用。现有各类装置、方法和研究成果, 无法满足使用要求。
发明内容
本发明要解决的技术问题是如何提供一种基于卫星导航的挖掘机智能化高精度定位方法,以克服现有技术无法实现挖掘机自动化、智能化高精度定位的问题。
本发明的技术方案:
一种基于卫星导航的挖掘机智能化高精度定位方法,一种基于卫星导航的挖掘机智能化高精度定位方法,所述方法包括如下步骤:
步骤一、在挖掘机上安装高精度GNSS接收机、GNSS接收天线、倾角传感器和车载计算机;
步骤二、标定挖掘机的各个部位,GNSS接收天线A为A点,GNSS接收天线B为B点,A与B间矢量关系可判断所述挖掘机的工作装置朝向;大臂与辅助平台连接点为R点,是一个相对A和B静止的点;大臂与小臂连接点为C点,小臂与铲斗连接点为D点,铲斗头部为E点;行走机构后触点为F点,标识底盘所在坐标位置;
步骤三、挖掘机底盘保持水平时,标定挖掘机各个部位的静态尺寸;
步骤四、挖掘机工作状态时,读取倾角传感器实时动态角度;
步骤五、依靠所述高精度GNSS接收机,进行实时差分数据定位解算,获取A、B点在空间直角坐标系和大地坐标系的实时定位信息;
步骤六、以A点位坐标原点O(0,0),垂直方向为X轴、所述挖掘机的工作装置前进方向为Y轴,建立挖掘机侧视图坐标系S 1,计算R、C、D、E、F相对于A点的坐标以及各点绝对高程;
步骤七、以A点位坐标原点O(0,0),工作装置前进方向为X轴、AB连线方向为Y轴,建立挖掘机俯视图坐标系S 2,计算R、C、D、E相对于A点的坐标;
步骤八、A、B空间直角坐标系和大地坐标系坐标转换到高斯平面坐标系坐标;转换后坐标标识为A(a Gx,a Gy,H a),B(b Gx,b Gy,H b),其中,a Gx和b Gx为北向坐标,a Gy和b Gy为东向坐标,H a和H b为绝对高程;
步骤九、计算坐标系S 2到高斯平面坐标系的转换参数,将坐标系S 2中R、C、 D、E坐标转换到高斯平面坐标系坐标;参照H a和参考坐标系S 1中各点相对A的坐标,计算R、C、D、E、F的绝对高程;
步骤十、从高斯平面坐标系转换到其他独立坐标系;
步骤十一、完成所述挖掘机工作状态的智能化高精度定位。
进一步地,所述步骤一具体包括:所述高精度GNSS接收机、所述GNSS接收天线、所述倾角传感器和所述车载计算机安装在所述挖掘机上;所述车载计算机安装在所述挖掘机驾驶室内,与所述倾角传感器和所述高精度GNSS接收机连接,并配备了定位计算软件模块,用于挖掘机工作姿态分析和坐标转换;所述GNSS接收天线安装在所述挖掘机尾部并与所述高精度GNSS接收机连接,所述GNSS接收天线间的连接直线与所述挖掘机驾驶室方向垂直,所述高精度GNSS接收机用于结合实时的差分信号和卫星星历数据,获取和分析所述GNSS接收天线的高精度定位信号;所述倾角传感器安装在所述挖掘机的工作装置,即大臂、小臂、铲斗和驾驶室内,用于分析判断挖掘机工作姿态。
进一步地,所述倾角传感器安装在所述挖掘机的工作装置,即大臂、小臂、铲斗和驾驶室内具体包括:所述倾角传感器安装在所述挖掘机驾驶室的俯仰和横滚方向,以及大臂、小臂和铲斗上,随着驾驶室、大臂、小臂和铲斗一起动作,用于判定驾驶室、大臂、小臂和铲斗的实时工作姿态,所述工作姿态包括驾驶室俯仰情况、驾驶室横滚情况、大臂与所述挖掘机平台连接点垂直高度和水平长度、大臂与小臂连接点的垂直高度和水平长度、小臂与铲斗连接点的垂直高度和水平长度、铲斗头部的垂直高度和水平长度。
进一步地,所述步骤三中的静态尺寸具体包括:A到R的距离为L f,A到F的垂直高度为H f;大臂长度即R到C的距离为L c,小臂长度即C到D的距离为L d,铲斗长度即D到E的距离为L e;R点到AB连线的垂线交点与A点距离为r’ Sy;A点与B点的直线距离为l b,A点到R点的垂直高差为H r;A与B尽可能等高,AB连线与挖掘机工作装置方向垂直。
进一步地,所述实时动态角度包括大臂水平夹角为δ c,小臂水平夹角为δ d,铲斗水平夹角为δ e,驾驶室俯仰角为δ y和驾驶室横滚角为δ x
进一步地,所述步骤六中计算坐标系S 1中R、C、D、E、F相对于A点的坐标以及各点绝对高程的过程如下:
S61、求解C、D、E相对于R点的水平长度和垂直高度,
R点到C点的水平长度l’ c:l' c=L c·cos δ c
R点到D点的水平长度l’ d:l' d=l' c+L d·cos δ d
R点到E点的水平长度l’ e:l' e=l' d+L e·cos δ e
R点到C点的垂直高度h’ c:h' c=L c·sin δ c·cos δ x
R点到D点的垂直高度h’ d:h' d=h' c+L d·sin δ d·cos δ x
R点到E点的垂直高度h’ e:h' e=h' d+L e·sin δ e·cos δ x
S62、以A点位坐标原点,求解R、C、D、E的水平长度:
A点到R点的水平长度l f:l f=L f·cos δ y-H r·sin δ y
A点到C点的水平长度l c:l c=l f+l' c
A点到D点的水平长度l d:l d=l f+l' d
A点到E点的水平长度l e:l e=l f+l' e
S63、以A点位参照点,求解C、D、E、F各点绝对高程:
R点绝对高程:H WR=H a+H r·cosδ y·cosδ x+L f·sinδ y·cosδ x
C点绝对高程:H WC=H WR+h c'
D点绝对高程:H WD=H WR+h' d
E点绝对高程:H WE=H WR+h e'
F点绝对高程:H WF=H a+H f·cosδ y·cosδ x
进一步地,所述步骤七中计算坐标系S 2中R、C、D、E相对于A点的坐标的过程如下:
Figure PCTCN2021087639-appb-000001
Figure PCTCN2021087639-appb-000002
Figure PCTCN2021087639-appb-000003
Figure PCTCN2021087639-appb-000004
进一步地,所述步骤九中计算坐标系S 2到高斯平面坐标系的转换参数,将坐标系S 2中R、C、D、E坐标转换到高斯平面坐标系坐标的过程如下:
S91、计算AB向量与高斯平面坐标系北向X轴的夹角θ:
Figure PCTCN2021087639-appb-000005
如果x Gb>x Ga且y Gb>y Ga,θ>0
如果x Gb>x Ga且y Gb<y Ga,θ<0
如果x Gb<x Ga且y Gb>y Ga,θ>0
如果x Gb<x Ga且y Gb<y Ga,θ<0;
S92、计算坐标系S 2到高斯平面坐标系的转换角β:
如果x Gb>x Ga且y Gb>y Ga,β=θ-90°
如果x Gb>x Ga且y Gb<y Ga,β=θ-90°
如果x Gb<x Ga且y Gb>y Ga,β=θ+90°
如果x Gb<x Ga且y Gb<y Ga,β=θ+90°;
S93、计算坐标系S2到高斯平面坐标系的平移量:
Figure PCTCN2021087639-appb-000006
S94、设某点位在S2坐标系的坐标为(x s2,y s2),转换到高斯平面的坐标为(x G,y G),二者关系为:
Figure PCTCN2021087639-appb-000007
S95、R、C、D、E以及其他各点按照上述方法完成从坐标系S 2到高斯平面坐标系的转换,得到高斯平面坐标系坐标。
进一步地,所述步骤十中从高斯平面坐标系转换到其他独立坐标系的过程如下:
S101、已知高斯平面坐标系到某独立坐标系平面四转换参数:X轴平移量△x k,Y轴平移量△y k,坐标转换角γ,转换参数K;
S102、假设某一点在该独立坐标系的坐标为(x k,y k),在高斯平面的坐标为(x G,y G):
Figure PCTCN2021087639-appb-000008
S103、已知高斯平面坐标系的绝对高程到某独立坐标系高程转换参数为△h k,假设某一点的绝对高程为h G、在该独立坐标系的高程为h k
h k=h G+Δh k
进一步地,对于静止状态,所述步骤四中的倾角传感器实时动态角度不再实时更新,挖掘机其他点位的计算仍按此方法展开。
本发明的有益效果:
本发明提出一种基于卫星导航的挖掘机智能化高精度定位方法,可以实现快速定位、提高定位精度、满足实际工作需要,可为挖掘机高精度引导、指挥、监控、少人化或无人化操作提供基础技术支撑。本发明在挖掘机上安装接收机、测量型天线、单轴角度传感器、双轴角度传感器和车载计算机等设备,通过北斗高精度空间信息技术和分析算法,可求解挖掘机及其主要部件精确位置。本发明构建侧视和俯视二维坐标,合理分析和求解挖掘机运行姿态下各点相对坐标,经坐标转化可完成各主要部件精确定位。本发明在精确定位基础上,可完成挖掘机自动引导和跟踪,满足不同行业工程应用要求。
本发明还具有以下优点:
1.设备组成明确,运行原理清晰,实现效果良好,系统结构稳定,适合不同场景、不同类型挖掘机作业。
2.如果排除标定静态尺寸和设备安装偏差、设备自身误差等影响,挖掘机行走机构和工作装置实时定位精度可控制到厘米级。
3.定位精度解算速度可控制到毫秒级,如果配置通信网络单元,可与其他系统实现数据共享和利用。
4.智能化高精度定位能够简化挖掘机作业前准备和作业中引导、指挥和监控流程,减少提前进行放样基准线和打桩等操作工作量,提高挖掘机作业水平。
5.在不同应用场景下,可以提高挖掘机工作效率和效果,实现按照设计要求精准化快速施工作业,避免资源和能源浪费,减少对周围的破坏。
6.提高挖掘机实时高精度定位,能够辅助实现挖掘机智能引导、操作监控等功能,提高操作安全性,促进挖掘机操作无人化或少人化。
附图说明
图1为本发明设备连接关系示意图;
图2为本发明实现方法总体流程图;
图3为本发明各项参数标定说明图,其中(a)为侧视图,(b)为俯视图,(c)为正视图;
图4为本发明姿态参数侧视坐标图;
图5为本发明姿态参数俯视坐标图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本实用新型提出一种基于卫星导航的挖掘机智能化高精度定位系统,其中包括(附图1):1-挖掘机、2-高精度GNSS接收机、3-GNSS接收天线、4-倾角传感器、5-车载计算机。高精度GNSS接收机、GNSS接收天线、倾角传感器、车载计算机全部安装在挖掘机上;车载计算机安装在挖掘机驾驶室内,与倾角传感器和高精度接收机连接,并配备了专用定位计算软件模块;GNSS接收天线安装 在挖掘机尾部并与高精度GNSS接收机连接,GNSS接收天线间的直线连接与挖掘机驾驶室方向基本垂直;倾角传感器安装在挖掘机工作装置大臂、小臂、铲斗和驾驶室内,用于分析判断挖掘机工作姿态。
其中,还包括:设备供电单元,用于向高精度GNSS接收机、倾角传感器、车载计算机供电。
其中,还可以包括:高精度GNSS基准站,用于向高精度GNSS接收机提供实时差分数据。高精度GNSS基准站可以是自建的局部基准站,也可以是政府等非盈利组织或电信运营商提供的公共基准站;高精度GNSS接收机所需差分信号可以是来自高精度GNSS基准站,也可以通过其他方式获得。
其中,还可以包括:通信网络单元,通过有线或无线网络,将挖掘机本地车载计算机接收、处理和存储的信息发送到远端硬件和(或)软件系统中。
其中,挖掘机是系统的主要载体,行走机构可以是履带、轮胎或其他形式的底盘,工作装置包括驾驶室及辅助平台、大臂、小臂、铲斗,可以是正铲或反铲工作方式。
其中,高精度GNSS接收机和接收天线安装在挖掘机上并且相互连接。高精度GNSS接收机结合实时的差分信号和卫星星历数据,实现GNSS接收天线高精度定位信号的获取和分析;通过1根GNSS接收天线为基准,定位挖掘机;通过2根或以上GNSS接收天线间矢量关系,判定挖掘机朝向。高精度GNSS接收机所需差分信号可以是来自高精度GNSS基准站,也可以通过其他方式获得,目的是进一步提高GNSS接收天线的定位精度。
其中,倾角传感器安装在挖掘机驾驶室的俯仰(前后)和横滚(左右)方向,以及工作装置大臂、小臂和铲斗上,随着驾驶室、大臂、小臂和铲斗一起动作,用于判定驾驶室、大臂、小臂和铲斗的实时工作姿态,具体包括:驾驶室俯仰情况、驾驶室横滚情况、大臂与挖掘机平台连接点垂直高度和水平长度、大臂与小臂连接点的垂直高度和水平长度、小臂与铲斗连接点的垂直高度和水平长度、铲斗头部(斗齿)垂直高度和水平长度。
其中,大臂、小臂和铲斗的水平方向倾角传感器为单轴倾角传感器,用于检测大臂、小臂和铲斗的抬升或下降角度;驾驶室可以使用2台单轴倾角传感器,也可以使用1台双轴倾角传感器,用于检测驾驶室的俯仰(前后)角度和横 滚(左右)角度。
其中,车载计算机安装在挖掘机驾驶室内部,与倾角传感器、高精度GNSS接收机连接。同时,车载计算机中安装了定位计算软件模块,包含挖掘机工作姿态分析和坐标转换的高精度定位解算功能。
本发明还提供一种基于卫星导航的挖掘机智能化高精度定位方法,其包括以下步骤(图2):
步骤一、按照图1完成设备安装。在挖掘机上安装高精度GNSS接收机、GNSS接收天线、倾角传感器、车载计算机等设备。
步骤二、按照图3标定计算部位。GNSS接收天线A为A点,GNSS接收天线B为B点,A与B间矢量关系可判断挖掘机工作装置朝向;大臂与辅助平台连接点为R点,是一个相对A和B静止的点;大臂与小臂连接点为C点,小臂与铲斗连接点为D点,铲斗头部为E点;行走机构后触点为F点,标识底盘所在坐标位置。
步骤三、挖掘机底盘保持水平时,按照图3标定静态尺寸。A到R的距离为L f,A到F的垂直高度为H f;大臂长度(R到C的距离)为L c,小臂长度(C到D的距离)为L d,铲斗长度(D到E的距离)为L e;R点到AB连线的垂线交点与A点距离(R点向AB连线做垂线,垂线与AB连线的交点与A点的距离)为r’ Sy;A点与B点的直线距离为l b,A点到R点的垂直高差(R-A)为H r;A与B尽可能等高,AB连线尽可能与工作装置方向垂直。
步骤四、挖掘机工作状态时,按照图3读取倾角传感器实时动态角度。其中,大臂水平夹角为δ c,小臂水平夹角为δ d,铲斗水平夹角为δ e,驾驶室俯仰角为δ y,驾驶室横滚角为δ x
步骤五、依靠高精度GNSS接收机,进行实时差分数据高精度定位解算,获 取A、B点在空间直角坐标系和大地坐标系的高精度实时定位信息。
获悉天线A和B精确位置是挖掘机各点高精度定位基础,需要用到差分定位,即:借助事先已知精确位置的基准站,通过基准站测量信息,减弱或消除星历误差、卫星钟差、接收机钟差、对流程延时误差等对用户接收机的影响。因此,挖掘机高精度定位中,需在附近有高精度基准站,实现A和B精确定位;基准站位置由接收机长时间连续接收获取卫星星历后计算获得,精度要求不高时可通过传统测量获得。
步骤六、以A点位坐标原点O(0,0),垂直方向为X轴、工作装置前进方向为Y轴,建立图4挖掘机侧视图坐标系S 1,计算R、C、D、E、F相对于A点的坐标以及各点绝对高程。挖掘机其他部位,也可按照图4计算相对位置。
步骤七、以A点位坐标原点O(0,0),工作装置前进方向为X轴、AB连线方向为Y轴,建立图5挖掘机俯视图坐标系S 2,计算R、C、D、E相对于A点的坐标。挖掘机其他部位,也可按照图5计算相对位置。
步骤八、A、B空间直角坐标系和大地坐标系转换到高斯平面坐标系。将高精度GNSS接收机获取的A、B空间直角坐标系和大地坐标系坐标,转换到高斯平面坐标系坐标,转换后坐标标识为A(a Gx,a Gy,H a),B(b Gx,b Gy,H b)。其中,a Gx和b Gx为北向坐标,a Gy和b Gy为东向坐标,H a和H b为绝对高程。
步骤九、计算坐标系S 2到高斯平面坐标系的转换参数,将坐标系S 2中R、C、D、E坐标转换到高斯平面坐标系坐标;参照H a和坐标系S 1中各点相对A的坐标,计算R、C、D、E、F的绝对高程。
步骤十、从高斯平面坐标系转换到其他独立坐标系。根据高斯平面坐标系到其他独立坐标系的转换参数,将R、C、D、E在高斯平面坐标系的坐标,转换到其他坐标系;R、C、D、E、F绝对高程也可进行相应转换。
步骤十一、完成挖掘机工作状态的智能化高精度定位。
另外,静止状态是一种特殊的工作状态,区别仅在于步骤四中的参数不再实时更新;挖掘机其他点位计算均可按此流程展开。
本发明关键点一是步骤六计算坐标系S1中R、C、D、E、F相对于A点的坐标,以及R、C、D、E、F的绝对高程:
第一步、图4中,求解C、D、E相对于R点的水平长度和垂直高度。其中,当挖掘机基本为水平作业,或者水平方向角度不大时,δ x、δ y可以近似为0,但定位精度会有小幅变化:
R点到C点的水平长度l’ c:l' c=L c·cos δ c
R点到D点的水平长度l’ d:l' d=l' c+L d·cos δ d
R点到E点的水平长度l’ e:l' e=l' d+L e·cos δ e
R点到C点的垂直高度h’ c:h' c=L c·sin δ c·cos δ x
R点到D点的垂直高度h’ d:h' d=h' c+L d·sin δ d·cos δ x
R点到E点的垂直高度h’ e:h' e=h' d+L e·sin δ e·cos δ x
第二步、以A点位坐标原点,求解R、C、D、E的水平长度:
A点到R点的水平长度l f:l f=L f·cos δ y-H r·sin δ y
A点到C点的水平长度l c:l c=l f+l' c
A点到D点的水平长度l d:l d=l f+l' d
A点到E点的水平长度l e:l e=l f+l' e
第三步、以A点位参照点,求解C、D、E、F各点绝对高程:
R点绝对高程:H WR=H a+H r·cosδ y·cosδ x+L f·sinδ y·cosδ x
C点绝对高程:H WC=H WR+h c'
D点绝对高程:H WD=H WR+h' d
E点绝对高程:H WE=H WR+h e'
F点绝对高程:H WF=H a+H f·cosδ y·cosδ x
本发明关键点二是步骤七计算坐标系S 2中R、C、D、E相对于A点的坐标:
Figure PCTCN2021087639-appb-000009
Figure PCTCN2021087639-appb-000010
Figure PCTCN2021087639-appb-000011
Figure PCTCN2021087639-appb-000012
本发明关键点三是步骤八、步骤九计算坐标系S 2到高斯平面坐标系的转换参数,并将R、C、D、E从坐标系S 2到高斯平面坐标系的转换:
第一步、从A、B空间直角坐标系和大地坐标系坐标,计算出A、B点高斯平面坐标系坐标,分别标识为A(a Gx,a Gy,H a),B(b Gx,b Gy,H b)。其中,a Gx和b Gx为东向坐标,a Gy和b Gy为北向坐标,H a和H b为绝对高程。
第二步、计算AB向量与高斯平面坐标系北向X轴的夹角θ(又称为北向角):
Figure PCTCN2021087639-appb-000013
如果x Gb>x Ga且y Gb>y Ga,θ>0
如果x Gb>x Ga且y Gb<y Ga,θ<0
如果x Gb<x Ga且y Gb>y Ga,θ>0
如果x Gb<x Ga且y Gb<y Ga,θ<0
第三步、计算坐标系S 2到高斯平面坐标系的转换角β:
如果x Gb>x Ga且y Gb>y Ga,β=θ-90°
如果x Gb>x Ga且y Gb<y Ga,β=θ-90°
如果x Gb<x Ga且y Gb>y Ga,β=θ+90°
如果x Gb<x Ga且y Gb<y Ga,β=θ+90°
第四步、计算坐标系S2到高斯平面坐标系的平移量:
Figure PCTCN2021087639-appb-000014
第五步、设某点位在S2坐标系的坐标为(x s2,y s2),转换到高斯平面的坐标为(x G,y G),二者关系为:
Figure PCTCN2021087639-appb-000015
第六步、R、C、D、E以及其他各点按照上述方法完成从坐标系S 2到高斯平面坐标系的转换,得到高斯平面坐标系坐标。
本发明关键点四是计算步骤十中各点高斯平面坐标系到其他独立坐标系的转换:
第一步、已知高斯平面坐标系到某独立坐标系平面四转换参数:X轴平移量△x k,Y轴平移量△y k,坐标转换角γ,转换参数K;
第二步、假设某一点在该独立坐标系的坐标为(x k,y k),在高斯平面的坐标为(x G,y G):
Figure PCTCN2021087639-appb-000016
第三步、已知绝对高程到某独立坐标系高程转换参数为△h k,假设某一点的绝对高程为h G、在该独立坐标系的高程为h k
h k=h G+Δh k
某海外露天金属矿山中,采用挖掘机进行采掘作业,年采掘重量超过1亿吨。通过定位挖掘机底板高度(相当于F点绝对高程),能够判断采掘过程中的“欠挖”情况;通过斗齿高精度定位,可保证采掘作业计划和作业实绩相符程度,降低矿山损失贫化;通过挖掘机各点高精度定位,可提高引导效率、加强作业监控、减少无效操作。
该矿山为某挖掘机为小松PC2000反铲挖掘机,配置了如下硬件设备:
设备名称 数量 安装位置
高精度GNSS接收机 1台 驾驶室内
GNSS接收天线 2套 挖掘机尾部
单轴倾角传感器 3套 大臂、小臂和铲斗
双轴倾角传感器 1套 驾驶室内
车载计算机 1套 驾驶室内
CPE网络通信单元 1套 驾驶室内
供电单元 1套 驾驶室内
改挖掘机静态参数标定情况如下所示(单位:米):
参数名称 参数值
A到R的距离L f 5.920785
A到F的垂直高度H f -5.38
大臂长度L c 8.7
小臂长度L d 3.9
铲斗长度L e 3.1
R与AB连线的水平方向垂直距离r’ Sy 1.604383
A点与B点的直线距离l b 3.363938
A点到R点的垂直高差H r -2.288
在该挖掘机实际作业过程中,记录并对比了本发明高精度定位解算结果和传统测量仪器定位结果,如下所示(单位;米,数据四舍五入截取到小数点后四位)。其中,Z表示绝对高程。分析可以看出,高斯平面坐标系中,相对静止点R在水平X方向平均误差约为0.015米,Y方向平均误差约为0.069米,绝对高程Z平均误差约为0.154米,水平方向平均误差为0.071;相对运动点末端E在水平X方向平均误差约为0.033米,Y方向平均误差约为0.071米,绝对高程Z平均误差约为0.189米,水平方向平均误差为0.078。可以认为,该方法水平方向定位精度可控制在0.1米以内、高程定位精度可控制在0.2米内。

Claims (10)

  1. 一种基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述方法包括如下步骤:
    步骤一、在挖掘机上安装高精度GNSS接收机、GNSS接收天线、倾角传感器和车载计算机;
    步骤二、标定挖掘机的各个部位,GNSS接收天线A为A点,GNSS接收天线B为B点,A与B间矢量关系可判断所述挖掘机的工作装置朝向;大臂与辅助平台连接点为R点,是一个相对A和B静止的点;大臂与小臂连接点为C点,小臂与铲斗连接点为D点,铲斗头部为E点;行走机构后触点为F点,标识底盘所在坐标位置;
    步骤三、挖掘机底盘保持水平时,标定挖掘机各个部位的静态尺寸;
    步骤四、挖掘机工作状态时,读取倾角传感器实时动态角度;
    步骤五、依靠所述高精度GNSS接收机,进行实时差分数据定位解算,获取A、B点在空间直角坐标系和大地坐标系的实时定位信息;
    步骤六、以A点位坐标原点O(0,0),与水平面垂直方向为X轴、所述挖掘机的工作装置水平前进方向为Y轴,建立挖掘机侧视图坐标系S 1,计算R、C、D、E、F相对于A点的坐标以及各点绝对高程;
    步骤七、以A点位坐标原点O(0,0),工作装置前进方向为X轴、AB连线方向为Y轴,建立挖掘机俯视图坐标系S 2,计算R、C、D、E相对于A点的坐标;
    步骤八、A、B空间直角坐标系和大地坐标系坐标转换到高斯平面坐标系坐标;转换后坐标标识为A(a Gx,a Gy,H a),B(b Gx,b Gy,H b),其中,a Gx和b Gx为北向坐标,a Gy和b Gy为东向坐标,H a和H b为绝对高程;
    步骤九、计算坐标系S 2到高斯平面坐标系的转换参数,将坐标系S 2中R、C、D、E坐标转换到高斯平面坐标系坐标;参照H a和参考坐标系S 1中各点相对A的坐标,计算R、C、D、E、F的绝对高程;
    步骤十、从高斯平面坐标系转换到其他独立坐标系;
    步骤十一、完成所述挖掘机工作状态的智能化高精度定位。
  2. 如权利要求1所述的基于卫星导航的挖掘机智能化高精度定位方法, 其特征在于,所述步骤一具体包括:所述高精度GNSS接收机、所述GNSS接收天线、所述倾角传感器和所述车载计算机安装在所述挖掘机上;所述车载计算机安装在所述挖掘机驾驶室内,与所述倾角传感器和所述高精度GNSS接收机连接,并配备了定位计算软件模块,用于挖掘机工作姿态分析和坐标转换;所述GNSS接收天线安装在所述挖掘机尾部并与所述高精度GNSS接收机连接,所述GNSS接收天线间的连接直线与所述挖掘机驾驶室方向垂直,所述高精度GNSS接收机用于结合实时的差分信号和卫星星历数据,获取和分析所述GNSS接收天线的高精度定位信号;所述倾角传感器安装在所述挖掘机的工作装置,即大臂、小臂、铲斗和驾驶室内,用于分析判断挖掘机工作姿态。
  3. 如权利要求2所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述倾角传感器安装在所述挖掘机的工作装置,即大臂、小臂、铲斗和驾驶室内具体包括:所述倾角传感器安装在所述挖掘机驾驶室的俯仰和横滚方向,以及大臂、小臂和铲斗上,随着驾驶室、大臂、小臂和铲斗一起动作,用于判定驾驶室、大臂、小臂和铲斗的实时工作姿态,所述工作姿态包括驾驶室俯仰情况、驾驶室横滚情况、大臂与所述挖掘机平台连接点垂直高度和水平长度、大臂与小臂连接点的垂直高度和水平长度、小臂与铲斗连接点的垂直高度和水平长度、铲斗头部的垂直高度和水平长度。
  4. 如权利要求2或3所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述步骤三中的静态尺寸具体包括:A到R的距离为L f,A到F的垂直高度为H f;大臂长度即R到C的距离为L c,小臂长度即C到D的距离为L d,铲斗长度即D到E的距离为L e;R点到AB连线的垂线交点与A点的水平距离为r’ Sy;A点与B点的直线距离为l b,A点到R点的垂直高差为H r;A与B等高,AB连线与挖掘机工作装置方向垂直。
  5. 如权利要求4所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述实时动态角度包括大臂水平夹角为δ c,小臂水平夹角为δ d,铲斗水平夹角为δ e,驾驶室俯仰角为δ y和驾驶室横滚角为δ x
  6. 如权利要求5所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述步骤六中计算坐标系S 1中R、C、D、E、F相对于A点的坐标以及各点绝对高程的过程如下:
    S61、求解C、D、E相对于R点的水平长度和垂直高度,
    R点到C点的水平长度l’ c:l′ c=L c·cosδ c
    R点到D点的水平长度l’ d:l′ d=l′ c+L d·cosδ d
    R点到E点的水平长度l’ e:l′ e=l′ d+L e·cosδ e
    R点到C点的垂直高度h’ c:h′ c=L c·sinδ c·cosδ x
    R点到D点的垂直高度h’ d:h′ d=h′ c+L d·sinδ d·cosδ x
    R点到E点的垂直高度h’ e:h′ e=h′ d+L e·sinδ e·cosδ x
    S62、以A点位坐标原点,求解R、C、D、E的水平长度:
    A点到R点的水平长度l f:l f=L f·cosδ y-H r·sinδ y
    A点到C点的水平长度l c:l c=l f+l′ c
    A点到D点的水平长度l d:l d=l f+l′ d
    A点到E点的水平长度l e:l e=l f+l′ e
    S63、以A点位参照点,求解C、D、E、F各点绝对高程:
    R点绝对高程:H WR=H a+H r·cosδ y·cosδ x+L f·sinδ y·cosδ x
    C点绝对高程:H WC=H WR+h′ c
    D点绝对高程:H WD=H WR+h′ d
    E点绝对高程:H WE=H WR+h′ e
    F点绝对高程:H WF=H a+H f·cosδ y·cosδ x
  7. 如权利要求6所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述步骤七中计算坐标系S 2中R、C、D、E相对于A点的坐标的过程如下:
    Figure PCTCN2021087639-appb-100001
    Figure PCTCN2021087639-appb-100002
    Figure PCTCN2021087639-appb-100003
    Figure PCTCN2021087639-appb-100004
  8. 如权利要求7所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述步骤九中计算坐标系S 2到高斯平面坐标系的转换参数,将坐标系S 2中R、C、D、E坐标转换到高斯平面坐标系坐标的过程如下:
    S91、计算AB向量与高斯平面坐标系北向X轴的夹角θ:
    Figure PCTCN2021087639-appb-100005
    如果x Gb>x Ga且y Gb>y Ga,θ>0
    如果x Gb>x Ga且y Gb<y Ga,θ<0
    如果x Gb<x Ga且y Gb>y Ga,θ>0
    如果x Gb<x Ga且y Gb<y Ga,θ<0;
    S92、计算坐标系S 2到高斯平面坐标系的转换角β:
    如果x Gb>x Ga且y Gb>y Ga,β=θ-90°
    如果x Gb>x Ga且y Gb<y Ga,β=θ-90°
    如果x Gb<x Ga且y Gb>y Ga,β=θ+90°
    如果x Gb<x Ga且y Gb<y Ga,β=θ+90°;
    S93、计算坐标系S2到高斯平面坐标系的平移量:
    Figure PCTCN2021087639-appb-100006
    S94、设某点位在S2坐标系的坐标为(x s2,y s2),转换到高斯平面的坐标为 (x G,y G),二者关系为:
    Figure PCTCN2021087639-appb-100007
    S95、R、C、D、E以及其他各点按照上述方法完成从坐标系S 2到高斯平面坐标系的转换,得到高斯平面坐标系坐标。
  9. 如权利要求8所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,所述步骤十中从高斯平面坐标系转换到其他独立坐标系的过程如下:
    S101、已知高斯平面坐标系到某独立坐标系平面四转换参数:X轴平移量△x k,Y轴平移量△y k,坐标转换角γ,转换参数K;
    S102、假设某一点在该独立坐标系的坐标为(x k,y k),在高斯平面的坐标为(x G,y G):
    Figure PCTCN2021087639-appb-100008
    S103、已知高斯平面坐标系的绝对高程到某独立坐标系高程转换参数为△h k,假设某一点的绝对高程为h G、在该独立坐标系的高程为h k
    h k=h G+Δh k
  10. 如权利要求5-9任一项所述的基于卫星导航的挖掘机智能化高精度定位方法,其特征在于,对于静止状态,所述步骤四中的倾角传感器实时动态角度不再实时更新,挖掘机其他点位的计算仍按此方法展开。
PCT/CN2021/087639 2020-06-18 2021-04-16 一种基于卫星导航的挖掘机智能化高精度定位方法 WO2021253958A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021294070A AU2021294070B2 (en) 2020-06-18 2021-04-16 Method for smart high-precision positioning of excavator based on satellite navigation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021139665.8 2020-06-18
CN202010561385.4 2020-06-18
CN202010561385.4A CN111679306B (zh) 2020-06-18 2020-06-18 一种基于卫星导航的挖掘机智能化高精度定位方法
CN202021139665.8U CN212781243U (zh) 2020-06-18 2020-06-18 一种基于卫星导航的挖掘机智能化高精度定位系统

Publications (1)

Publication Number Publication Date
WO2021253958A1 true WO2021253958A1 (zh) 2021-12-23

Family

ID=79268406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087639 WO2021253958A1 (zh) 2020-06-18 2021-04-16 一种基于卫星导航的挖掘机智能化高精度定位方法

Country Status (2)

Country Link
AU (1) AU2021294070B2 (zh)
WO (1) WO2021253958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545453A (zh) * 2022-01-24 2022-05-27 中国电建集团昆明勘测设计研究院有限公司 一种多用途的空间定位信息精度对比分析设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168009A1 (en) * 2012-12-17 2014-06-19 Trimble Navigation Ltd. Multi-IMU INS for vehicle control
CN107905275A (zh) * 2017-11-15 2018-04-13 山东天星北斗信息科技有限公司 一种挖掘机数字化辅助施工系统及其辅助施工方法
CN108549771A (zh) * 2018-04-13 2018-09-18 山东天星北斗信息科技有限公司 一种挖掘机辅助施工系统及方法
CN109444936A (zh) * 2018-10-18 2019-03-08 南京天辰礼达电子科技有限公司 一种利用gnss和倾角传感器确定斗尖坐标的方法
CN109669203A (zh) * 2019-01-22 2019-04-23 深圳市北斗云信息技术有限公司 一种gnss三维姿态定位打桩导航辅助系统和方法
CN111679306A (zh) * 2020-06-18 2020-09-18 万宝矿产有限公司 一种基于卫星导航的挖掘机智能化高精度定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168009A1 (en) * 2012-12-17 2014-06-19 Trimble Navigation Ltd. Multi-IMU INS for vehicle control
CN107905275A (zh) * 2017-11-15 2018-04-13 山东天星北斗信息科技有限公司 一种挖掘机数字化辅助施工系统及其辅助施工方法
CN108549771A (zh) * 2018-04-13 2018-09-18 山东天星北斗信息科技有限公司 一种挖掘机辅助施工系统及方法
CN109444936A (zh) * 2018-10-18 2019-03-08 南京天辰礼达电子科技有限公司 一种利用gnss和倾角传感器确定斗尖坐标的方法
CN109669203A (zh) * 2019-01-22 2019-04-23 深圳市北斗云信息技术有限公司 一种gnss三维姿态定位打桩导航辅助系统和方法
CN111679306A (zh) * 2020-06-18 2020-09-18 万宝矿产有限公司 一种基于卫星导航的挖掘机智能化高精度定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545453A (zh) * 2022-01-24 2022-05-27 中国电建集团昆明勘测设计研究院有限公司 一种多用途的空间定位信息精度对比分析设备及方法
CN114545453B (zh) * 2022-01-24 2024-05-07 中国电建集团昆明勘测设计研究院有限公司 一种多用途的空间定位信息精度对比分析设备及方法

Also Published As

Publication number Publication date
AU2021294070B2 (en) 2023-01-05
AU2021294070A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
CN111679306B (zh) 一种基于卫星导航的挖掘机智能化高精度定位方法
CN109614743B (zh) 挖掘机及其铲斗定位方法、电子设备、存储介质
CN107315345B (zh) 基于双天线gnss和预瞄追踪模型的农机自动导航控制方法
CN107905275A (zh) 一种挖掘机数字化辅助施工系统及其辅助施工方法
CN108316363B (zh) 基坑水平位移自动监测系统及方法
CN201031704Y (zh) 隧道无线激光放样装置
CN103852059B (zh) 反铲挖掘机的铲斗定位装置及方法
CN102518160B (zh) 一种基于gps和激光技术的高程控制系统的高程控制方法
CN111190204B (zh) 基于北斗双天线和激光测距仪的实时定位装置及定位方法
CN107576939A (zh) 一种基于虚拟测距信标的单信标测距定位方法
CN103697885A (zh) 自动补偿磁偏角的远程定位方法
WO2021253958A1 (zh) 一种基于卫星导航的挖掘机智能化高精度定位方法
WO2020151215A1 (zh) 一种潮间带水下地形测绘方法
CN201974529U (zh) 主动式动态定位仪
CN112269202A (zh) 一种运动载体辅助的空间基准传递系统及方法
CN116164735A (zh) 一种沉管管节水中三维姿态测量系统及其方法
CN111121748A (zh) 基于挖掘机械土石方开挖作业的施工测量系统及方法
CN111060941A (zh) 一种在遮挡环境下的高精度定位方法及其装置
CN109669203A (zh) 一种gnss三维姿态定位打桩导航辅助系统和方法
CN105571593B (zh) 一种基于mls的地理位置信息获取方法
Rizos Surveying
CN108594281A (zh) 基于载波相位差分技术的挖掘设备水平定姿定位辅助方法
CN211121250U (zh) 挖掘机械土石方作业测量数据采集装置
CN212781243U (zh) 一种基于卫星导航的挖掘机智能化高精度定位系统
CN112462322A (zh) 一种水下蛙人定位方法及定位系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021294070

Country of ref document: AU

Date of ref document: 20210416

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21827059

Country of ref document: EP

Kind code of ref document: A1