WO2021253848A1 - 电池保护电路、电池管理系统、电池装置及其控制方法 - Google Patents

电池保护电路、电池管理系统、电池装置及其控制方法 Download PDF

Info

Publication number
WO2021253848A1
WO2021253848A1 PCT/CN2021/076148 CN2021076148W WO2021253848A1 WO 2021253848 A1 WO2021253848 A1 WO 2021253848A1 CN 2021076148 W CN2021076148 W CN 2021076148W WO 2021253848 A1 WO2021253848 A1 WO 2021253848A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
battery
protection
switch
cell unit
Prior art date
Application number
PCT/CN2021/076148
Other languages
English (en)
French (fr)
Inventor
秦友强
焦磊明
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to KR1020217009583A priority Critical patent/KR102607999B1/ko
Priority to JP2021517772A priority patent/JP7377860B2/ja
Publication of WO2021253848A1 publication Critical patent/WO2021253848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery protection circuit and a battery management system with the battery protection circuit, a battery device and a control method thereof.
  • lithium-ion batteries have been widely used as an important energy source. Whether in the field of electronic communication or transportation, they have played an extremely important role and have a wide range of application prospects. The safety of lithium-ion batteries is also an issue that cannot be ignored.
  • Lithium-ion batteries are generally safe when used in accordance with specifications, but can become potentially dangerous in the event of internal or mechanical failure. For example, when the battery is under abusive conditions such as overcharge, squeeze, high temperature or short circuit. It may cause overheating, emission of smoke or even fire and explosion.
  • a lithium-ion battery protection chip can monitor the charging and discharging process, and intervene when the process may exceed the risk of the battery's safe working range. However, when the lithium-ion battery protection chip fails, the battery cannot be used for risk warning.
  • An embodiment of the present application provides a battery protection circuit that is electrically connected between a battery cell unit and an external port to form a power supply loop, and the battery protection circuit includes a first protection unit, a second protection unit, and The sensing switch unit; the first protection unit is electrically connected between the battery cell unit and the second protection unit; the sensing switch unit is arranged at a preset position of the battery cell unit, and the sensing switch unit Is electrically connected to the second protection unit; and when the sensing switch unit is triggered to conduct, and the first protection unit conducts the power supply circuit, control the second protection unit to protect the ⁇ Cell unit.
  • the second protection unit includes a fuse, a first resistor, and a first switch, the first end of the fuse is connected to the positive electrode of the cell unit, and the second end of the fuse passes The first resistor is connected to the second end of the first switch, and the third end of the fuse is connected to the positive pole of the external port; the first end of the first switch is electrically connected to the sensing switch unit , The second end of the first switch is grounded, and the third end of the first switch is electrically connected to the second end of the fuse.
  • the sensing switch unit is a temperature switch, and if the temperature switch detects that the temperature of the cell unit exceeds a preset temperature, the temperature switch is triggered to turn on, thereby triggering the first The switch is turned on to heat the first resistor, and the fuse is blown to protect the battery cell unit.
  • the sensing switch unit is a micro switch. If the cell unit is heated and expanded and squeezed, the micro switch is triggered to be turned on, thereby triggering the first switch to be turned on In order to heat the first resistor, the fuse is blown to protect the battery cell unit.
  • the battery protection circuit further includes a third protection unit, and the third protection unit is electrically connected between the battery cell unit and the second protection unit.
  • the first protection unit when the sensing switch unit is triggered to be turned on, the first protection unit conducts the power supply circuit, and the third protection unit does not trigger the second protection unit , Controlling the second protection unit to protect the battery cell unit.
  • An embodiment of the present application provides a battery management system including the battery protection circuit described above.
  • the battery management system controls the battery cell unit to discharge at a preset current
  • the sensing switch unit is turned on
  • the second protection unit is triggered to protect the battery Core unit.
  • the second protection unit includes a fuse, and a difference between a rated current of the fuse and the preset current is less than or equal to a current threshold.
  • An embodiment of the present application provides a battery device, the battery device includes a battery cell unit, and the battery device further includes the battery protection circuit as described above, and the battery protection circuit is used to protect the battery cell unit.
  • An embodiment of the present application provides a method for controlling a battery device.
  • the battery device includes a battery cell unit and a battery protection circuit electrically connected to the battery cell unit, and the battery protection circuit is electrically connected to the battery cell unit and an external port
  • a power supply circuit is formed between the battery protection circuit, the battery protection circuit includes a first protection unit, a second protection unit, and a sensing switch unit, and the method includes:
  • the second protection unit is controlled to protect the battery cell unit.
  • the battery protection circuit further includes a third protection unit electrically connected between the battery cell unit and the second protection unit, and the method further includes:
  • the sensing switch unit When the sensing switch unit is triggered to turn on, the first protection unit turns on the power supply circuit, and the third protection unit does not trigger the second protection unit, control the second protection The unit protects the battery cell unit.
  • the battery device includes a battery management system, and the method further includes:
  • the battery management system controls the battery cell unit to discharge at a preset current
  • the sensing switch unit is triggered to be turned on
  • the second protection unit is controlled to protect the battery cell unit.
  • the second protection unit includes a fuse, and a difference between a rated current of the fuse and the preset current is less than or equal to a current threshold.
  • a sensing switch unit is provided at a preset position of the battery cell unit, and the sensing switch unit is connected to the second The protection unit is electrically connected, and if the first protection unit does not trigger the second protection unit and the sensing switch unit is triggered to conduct, the second protection unit is controlled to protect the battery cell unit.
  • This application can effectively avoid the fire and explosion accident of the battery cell unit caused by overcharging, overdischarging, or discharging at a large current rate close to the rated current of the fuse in the case of a single point failure of the battery management system.
  • the battery protection circuit provided by the present application has the advantages of high safety, wide application range, and low cost.
  • Fig. 1 is a block diagram of a battery device according to a first preferred embodiment of the present application.
  • Fig. 2 is a block diagram of a battery device according to a second preferred embodiment of the present application.
  • Fig. 3 is a circuit diagram of a first embodiment of a battery protection circuit in the battery management system in Fig. 1.
  • FIG. 4 is a circuit diagram of a second embodiment of the battery protection circuit in the battery management system in FIG. 1.
  • Fig. 5 is a flowchart of a control method of a battery device according to the first preferred embodiment of the present application.
  • the first protection unit 30 The first protection unit 30
  • the second protection unit 31 The second protection unit 31
  • the third protection unit 33 is the third protection unit 33
  • the second switch Q2 The second switch Q2
  • the third switch Q3 is the third switch Q3
  • the second pin CV1, V1 The second pin CV1, V1
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection. ; It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through a centering component, it can be the internal communication between two components or the interaction relationship between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection. ; It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through a centering component, it can be the internal communication between two components or the interaction relationship between two components.
  • FIG. 1 is a block diagram of a preferred embodiment of the battery device according to the present application.
  • the battery device 100 includes a battery cell unit 200 and a battery protection circuit 300 electrically connected to the battery cell unit 200.
  • the battery protection circuit 300 is located in the battery management system 400 and is used to protect the battery cell unit 200 when the battery management system 400 controls the charging and discharging of the battery cell unit 200.
  • the battery protection circuit 300 is electrically connected between the battery cell unit 200 and the external port 500 to form a power supply loop.
  • the battery protection circuit 300 is used to control the power supply loop to turn on or off, so that the battery management
  • the system 400 protects the battery cell unit 200 when it controls the battery cell unit 200 to charge and discharge.
  • the battery protection circuit 300 includes a first protection unit 30, a second protection unit 31 and a sensing switch unit 32.
  • the first protection unit 30 is electrically connected between the battery cell unit 200 and the second protection unit 31.
  • the sensing switch unit 32 is arranged at a preset position of the cell unit 200, and the sensing switch unit 32 is electrically connected to the second protection unit 31. In the normal use state, the sensing switch unit 32 is in an off state. If the first protection unit 30 does not disconnect the power supply circuit and the sensing switch unit 32 is turned on, the second protection unit 31 can be triggered to protect the cell unit 200. It can be understood that the preset position can be set according to the difference of the sensing switch unit 32.
  • the sensing switch unit 32 when the sensing switch unit 32 is a temperature switch, the preset position is the position where the highest temperature point on the surface of the cell unit 200 is located. When the sensing switch unit 32 is a micro switch, the preset position is the most easily expanded position on the surface of the cell unit 200. It should be noted that the location of the highest temperature point or the easiest expansion point of the battery cell unit 200 has been determined when the battery cell unit 200 leaves the factory. For example, performing thermal simulation and testing according to the battery system, chemical composition, and structure of the battery cell unit 200 can obtain the location of the highest temperature point or the easiest expansion point of the battery cell unit 200 in the battery system. It is understandable that the locations of the highest surface temperature or the easiest swelling point of the cell unit 200 of different battery systems are not the same.
  • the first protection unit 30 includes a plurality of first protection chips for protecting each cell in the cell unit 200.
  • the second protection unit 31 includes a fuse 310, a first resistor R1, and a first switch Q1.
  • the fuse 310 is a three-terminal fuse. The first end of the fuse 310 is connected to the positive electrode of the cell unit 200, the second end of the fuse 310 is connected to the second end of the first switch Q1 through the first resistor R1, and the fuse
  • the third terminal of 310 is connected to the positive terminal of the external port 500; the first terminal of the first switch Q1 is electrically connected to the sensing switch unit 32, and the third terminal of the first switch Q1 is connected to the fuse 310
  • the second end of the first switch Q1 is electrically connected, and the second end of the first switch Q1 is grounded.
  • the first switch Q1 may be an N-type field effect transistor.
  • the first terminal, the second terminal, and the third terminal of the first switch Q1 correspond to the gate, source, and drain of the N-type field effect transistor, respectively.
  • the sensing switch unit 32 is used to sense the temperature or expansion amplitude of the battery cell unit 200 or the pressure when being squeezed.
  • the sensor switch unit 32 is a temperature switch, which can detect the temperature of the preset position of the battery cell unit 200 and compare the detected temperature with the preset temperature. When the detected temperature is greater than the preset temperature, the temperature switch is triggered to turn on, thereby triggering the first switch Q1 to turn on to heat the first resistor R1, and blow the fuse 310 to protect the Mentioned battery cell unit 200.
  • the sensing switch unit 32 is a micro switch.
  • the micro switch When the cell unit 200 is heated, it will expand.
  • the micro switch When the cell unit 200 expands and is squeezed (for example, when the cell unit 200 is squeezed by the casing), the micro switch is triggered to be turned on.
  • the first switch Q1 is triggered to be turned on to heat the first resistor R1, and the fuse 310 is blown to protect the cell unit 200.
  • the sensing switch unit 32 can also be replaced with other components with similar temperature switch characteristics or mechanical components.
  • the sensing switch unit 32 may also be a displacement sensing switch for detecting the extent of thermal expansion of the cell unit 200. When the detected amplitude exceeds the preset amplitude, the displacement sensing switch is triggered to turn on, thereby triggering the first switch Q1 to turn on to heat the first resistor R1, and blow the fuse 310 to protect the electrical Core unit 200.
  • the positive electrode of the external port 500 can be electrically connected to the positive electrode of a charger (not shown in the figure), and the negative electrode of the external port 500 can be electrically connected to the negative electrode of the charger.
  • the battery protection circuit 300 further includes a third protection unit 33, as shown in FIG. 2.
  • the third protection unit 33 is electrically connected between the battery cell unit 200 and the second protection unit 31. If the first protection unit 30 does not disconnect the power supply circuit, and the third protection unit 33 does not trigger the second protection unit 31, and the sensing switch unit 32 is turned on, the The second protection unit 31 protects the battery cell unit 200.
  • the third protection unit 33 includes a plurality of second protection chips for dual protection of each cell in the cell unit 200 in combination with the first protection unit 30.
  • a driving signal may be output to the second protection unit 31 to trigger the second protection unit 31
  • the battery cell unit 200 is protected. If the first protection unit 30 fails and the third protection unit 33 also fails, the second protection unit 31 can be triggered by the sensing switch unit 32 to protect the cell unit 200.
  • the failure of the first protection unit 30 describes that when the parameter of the battery cell unit 200 is greater than or equal to the first preset parameter, the first protection unit 30 does not cut off the power supply circuit (for example, cut off The second switch Q2 or the third switch Q3).
  • the parameter of the cell unit 200 may be current, voltage or temperature. It is understandable that when the parameter is temperature, the preset temperature corresponding to the first protection unit 30 will be lower than the temperature when the sensing switch unit 32 is triggered. For example, the first preset temperature corresponding to the first protection unit 30 is 50 degrees Celsius, and the temperature when the sensing switch unit 32 is triggered is the highest temperature that the battery cell unit 200 can withstand (for example, 70 degrees Celsius) .
  • the failure of the third protection unit 33 describes that when the parameter of the battery cell unit 200 is greater than or equal to the second preset parameter, the first protection unit 30 does not trigger the second protection unit 31 .
  • the second preset parameter is greater than the first preset parameter and less than the threshold when the sensing switch unit 32 is triggered.
  • the first protection unit 30 may be triggered to protect the cell unit 200.
  • the third protection unit 33 may be triggered to output a driving signal to the first
  • the second protection unit 31 controls the second protection unit 31 to protect the battery cell unit 200.
  • the sensing switch unit After 32 is triggered to be turned on, a driving signal is output to the second protection unit 31 to control the second protection unit 31 to protect the battery cell unit 200.
  • FIG. 3 is a circuit diagram of the first embodiment of the battery protection circuit 300 according to the present application.
  • the first protection unit 30 includes three first protection chips, and each first protection chip is connected to four batteries.
  • the first protection unit 30 includes a first protection chip IC1, a first protection chip IC2, a first protection chip IC3, a second resistor R2, a third resistor R3...seventh resistor R7.
  • the cell unit 200 includes a first cell B1, a second cell B2... a twelfth cell B12.
  • the primary protection chip IC1 is connected to the first cell B1 to the fourth cell B4 to protect the first cell B1 to the fourth cell B4.
  • one end of the second resistor R2 is connected to the anode of the first cell B1, and the other end of the second resistor R2 is connected to the cathode of the first cell B1.
  • One end of the second resistor R2 is also connected to the first pin CV0 of the first protection chip IC1, and the other end of the second resistor R2 is also connected to the second pin CV1 of the first protection chip IC1 .
  • One end of the fifth resistor R5 is connected to the positive electrode of the fourth cell B4, and the other end of the fifth resistor R5 is connected to the negative electrode of the fourth cell B4.
  • One end of the fifth resistor R5 is also connected to the third pin CV3 of the first protection chip IC1, and the other end of the fifth resistor R5 is also connected to the fourth pin CV4 of the first protection chip IC1.
  • the first protection chip IC2 is connected to the fifth cell B5 to the eighth cell B8 to protect the fifth cell B5 to the eighth cell B8.
  • the first protection chip IC3 is connected to the ninth cell B9 to the twelfth cell B12 to protect the ninth cell B9 to the twelfth cell B12.
  • the specific connection mode is similar to the connection mode in which the first protection chip IC1 is connected to the first cell B1 to the fourth cell B4, and will not be described in detail here.
  • the first protection unit 30 may include N first protection chips, and the number of first protection chips is not limited in this application.
  • the first protection unit 30 further includes a second switch Q2, a third switch Q3 and a resistor R0.
  • the resistor R0 is used to collect the current of the power supply loop, that is, the current flowing through the cell unit 200.
  • one end of the resistor R0 is connected to the negative electrode of the first cell B1, and the other end of the resistor R0 is connected to the second switch Q2.
  • One end of the resistor R0 is also connected to the SRP pin of the first protection chip IC1, and the other end of the resistor R0 is also connected to the SRN pin of the first protection chip IC1.
  • the first protection chip IC1 can detect the voltage of the resistor R0, and calculate the current flowing through the cell unit 200 according to the voltage and the resistance value of the resistor R0.
  • the first end of the second switch Q2 is connected to the discharge pin DSG of the first protection chip IC1, the second end of the second switch Q2 is connected to the resistor R0, and the second end of the second switch Q2 is connected to the resistor R0.
  • the three ends are connected to the second end of the third switch Q3; the first end of the third switch Q3 is connected to the charging pin CHG of the first protection chip IC1, and the third end of the third switch Q3 It is connected to the third terminal of the second switch Q2, and the second terminal of the third switch Q3 is connected to the negative electrode of the external port 500.
  • the second switch Q2 and the third switch Q3 may be N-type field effect transistors.
  • the first end, the second end, and the third end of the second switch Q2 and the third switch Q3 correspond to the gate, source, and drain of the N-type field effect transistor, respectively.
  • the first protection chip IC1, the first protection chip IC2, and the first protection chip IC3 are cascaded, so that the conduction and conduction of the power supply circuit can be controlled by controlling the second switch Q2 and the third switch Q3. Deadline.
  • the charging pin CHG of the first protection chip IC3 is connected to the charging enable pin CTRC of the first protection chip IC2, and the discharge pin DSG of the first protection chip IC3 is connected to the discharge pin of the first protection chip IC2.
  • Can pin CTRD is connected; the charging pin CHG of the first protection chip IC2 is connected to the charging enable pin CTRC of the first protection chip IC1, and the discharge pin DSG of the first protection chip IC2 is connected to the first protection chip IC1
  • the discharge enable pin CTRD is connected; the charging pin CHG of the first protection chip IC1 is connected to the third switch Q3, and the discharge pin DSG of the first protection chip IC1 is connected to the second switch Q2.
  • any one of the first protection chip IC1 to the first protection chip IC3 detects that the battery cell 200 is overcharged or overdischarged, it can be enabled through the charge enable pin CTRC or the discharge enable pin CTRD
  • the charging pin CHG or the discharging pin DSG can output a driving signal to control the second switch Q2 or the third switch Q3 to turn off, so as to achieve the purpose of protecting the cell unit 200.
  • the sensing switch unit 32 In the normal use state, the sensing switch unit 32 is in an off state, the second end of the fuse 310 in the second protection unit 31 is connected to the second end of the first switch Q1, and the power supply loop works normally. If the first protection unit 30 in the power supply loop fails, the first protection unit 30 does not control the second switch Q2 or the third switch Q3 to turn off to disconnect the power supply loop.
  • the sensing switch unit 32 When the cell unit 200 is abnormal due to overvoltage or undervoltage (for example, the temperature of the cell rises to a threshold value or the cell is thermally expanded or the cell is squeezed by heat), the sensing switch unit 32 is triggered to be turned on. As a result, the first switch Q1 is triggered to turn on to heat the first resistor, blow the fuse, and disconnect the power supply circuit to avoid continuing charging or discharging, and preventing the battery cell 200 from catching fire or exploding.
  • the fuse 310 cannot be blown. That is, the battery management system 400 controls the battery cell unit 200 to perform continuous discharge at a rated current close to the fuse 310.
  • a preset current for example, 3C-6C current is continuously discharged
  • the battery management system 400 controls the battery cell unit 200 to perform continuous discharge at a rated current close to the fuse 310.
  • causes continuous high-rate discharge to cause abnormalities in the cell unit 200 for example, the temperature of the cell rises to the temperature threshold that the sensing switch unit can withstand, or the extent of the thermal expansion of the cell exceeds the threshold, or the pressure of the cell being heated and squeezed is greater than Pressure threshold
  • triggering the sensing switch unit 32 to be turned on.
  • the first switch Q1 is triggered to be turned on to heat the first resistor R1, and the fuse 310 is blown, so as to avoid dangerous accidents such as fire and explosion caused by the continuous discharge of the battery cell unit 200.
  • the difference between the rated current of the fuse 310 and the preset current is less than or equal to the current threshold.
  • FIG. 4 is a circuit diagram of the second embodiment of the battery protection circuit 300 of this application.
  • the difference between the battery protection circuit 300 of this embodiment and the battery protection circuit 300 of the first embodiment is:
  • the battery protection circuit 300 further includes a third protection unit 33.
  • the third protection unit 33 is electrically connected between the battery cell unit 200 and the second protection unit 31.
  • the third protection unit 33 includes a plurality of second protection chips for dual protection of each cell in the cell unit 200 in combination with the first protection unit 30.
  • the third protection unit 33 includes three second protection chips, and each second protection chip is connected to four batteries.
  • the third protection unit 33 includes a second protection cell IC1', a second protection cell IC2', a second protection cell IC3', and resistors R1', resistors R2'...resistors R7'.
  • the second protection chip IC1' is connected to the first to fourth battery cells B1 to B4, so as to perform secondary protection on the first to fourth battery cells B1 to B4.
  • the first pin VSS of the second protection chip IC1' is connected to the negative electrode of the first cell B1, and the second pin V1 of the second protection chip IC1' is connected to the first pin V1 through a resistor R1'.
  • the anode of a battery cell B1 is connected; the third pin V4 and the fourth pin V5 of the second protection chip IC1' are connected and then connected to the anode of the fourth battery cell B4 through a resistor R2'.
  • the second protection chip IC2' is connected to the fifth cell B5 to the eighth cell B8 to protect the fifth cell B5 to the eighth cell B8.
  • the second protection chip IC3' is connected to the ninth cell B9 to the twelfth cell B12 to protect the ninth cell B9 to the twelfth cell B12.
  • the specific connection mode is similar to the connection mode in which the second protection chip IC1' is connected to the first cell B1 to the fourth cell B4, and will not be described in detail here.
  • the third protection unit 33 may include N second protection chips, and the number of second protection chips is not limited in this application.
  • the output pin OUT of the second protection chip IC1', the output pin OUT of the second protection chip IC2', and the output pin OUT of the second protection chip IC3' are connected to the first The first terminal (such as F1-C) of the switch Q1 is connected.
  • the first protection unit 30 that is, the first protection chips IC1 to IC3
  • the battery cell unit 200 may be overcharged or overdischarged, and the third protection unit 33 may output a driving signal to all the cells.
  • the first switch Q1 drives the first switch Q1 to be turned on, thereby heating the first resistor R1 to blow the fuse 310, and prevent the battery cell unit 200 from continuing to charge or discharge to cause fire and explosion accidents .
  • the sensing switch unit 32 In the normal use state, the sensing switch unit 32 is in an off state, and the power supply loop works normally.
  • both the first protection unit 30 and the third protection unit 33 fail. That is, the first protection unit 30 does not control the second switch Q2 or the third switch Q3 to turn off to disconnect the power supply circuit, and the third protection unit 33 does not trigger the second protection unit 31.
  • the cell unit 200 is abnormal due to overvoltage or undervoltage (for example, the temperature of the cell rises to a temperature threshold that the sensing switch unit can withstand, or the extent of thermal expansion of the cell exceeds the amplitude threshold or the The pressure of the core being heated and squeezed is greater than the pressure threshold), the sensing switch unit 32 is triggered to turn on, thereby triggering the first switch Q1 to turn on to heat the first resistor R1, and the fuse 310 is blown to protect the
  • the battery cell unit 200 avoids accidents such as fire and explosion.
  • the battery management system 400 controls the battery cell unit 200 to discharge at a preset current, for example, 3C-6C current continues to discharge, the fuse cannot be blown. That is, the battery management system 400 performs continuous discharge at a current close to the rated current of the fuse 310, and the difference between the rated current of the fuse 310 and the preset current is less than or equal to the current threshold.
  • a preset current for example, 3C-6C current
  • the battery management system 400 performs continuous discharge at a current close to the rated current of the fuse 310, and the difference between the rated current of the fuse 310 and the preset current is less than or equal to the current threshold.
  • causes continuous high-rate discharge to cause abnormalities in the cell unit 200 for example, the temperature of the cell rises to the temperature threshold that the sensing switch unit can withstand, or the extent of the thermal expansion of the cell exceeds the threshold, or the pressure of the cell being heated and squeezed is greater than Pressure threshold
  • triggering the sensing switch unit 32 to be turned on.
  • FIG. 5 is a flowchart of a control method of a battery device according to an embodiment of the present application.
  • the control method of the battery device may include the following steps:
  • Step S1 In a situation where the sensing switch unit is triggered to be turned on, and the first protection unit conducts the power supply circuit, the second protection unit is controlled to protect the battery cell unit.
  • the battery device 100 includes a battery cell unit 200 and a battery protection circuit 300 electrically connected to the battery cell unit 200, and the battery protection circuit 300 is electrically connected to the battery cell unit 200 and an external port 500
  • the battery protection circuit 300 includes a first protection unit 30, a second protection unit 31 and a sensing switch unit 32.
  • the sensing switch unit 32 In the normal use state, the sensing switch unit 32 is in an off state, the second end of the fuse 310 in the second protection unit 31 is connected to the second end of the first switch Q1, and the power supply loop works normally. If the first protection unit 30 in the power supply loop fails, the first protection unit 30 does not control the second switch Q2 or the third switch Q3 to turn off to turn off the power supply loop.
  • the cell unit 200 is abnormal due to overvoltage or undervoltage (for example, the temperature of the cell rises to a threshold or the cell is thermally expanded or the cell is squeezed by heat), which triggers the sensing switch unit 32 to be turned on to Controlling the second protection unit to protect the battery cell unit. That is, the first switch Q1 in the second protection unit is triggered to turn on to heat the first resistor, blow the fuse, disconnect the power supply circuit, avoid continuing charging or discharging, and prevent the battery cell unit 200 from catching fire Or explode.
  • Step S2 When the sensing switch unit 32 is triggered to be turned on, the first protection unit 30 does not cut off the power supply circuit, and the third protection unit 33 does not trigger the second protection unit 31 , Controlling the second protection unit 31 to protect the battery cell unit.
  • the sensing switch unit 32 In the normal use state, the sensing switch unit 32 is in an off state, and the power supply loop works normally.
  • both the first protection unit 30 and the third protection unit 33 fail. That is, the first protection unit 30 does not control the second switch Q2 or the third switch Q3 to turn off to disconnect the power supply circuit, and the third protection unit 33 does not trigger the second protection unit 31.
  • the cell unit 200 is abnormal due to overvoltage or undervoltage (for example, the temperature of the cell rises to a temperature threshold that the sensing switch unit can withstand, or the extent of thermal expansion of the cell exceeds the amplitude threshold or the The pressure of the core being heated and squeezed is greater than the pressure threshold), the sensing switch unit 32 is triggered to turn on, thereby triggering the first switch Q1 to turn on to heat the first resistor R1, and the fuse 310 is blown to protect the
  • the battery cell unit 200 avoids accidents such as fire and explosion.
  • the method further includes: when the battery management system 400 controls the battery cell unit 200 to discharge at a preset current, if the sensing switch unit 32 is turned on, triggering the first The second protection unit 31 protects the battery cell unit.
  • the fuse 310 cannot be blown. That is, the battery management system 400 controls the battery cell unit 200 to perform continuous discharge at a rated current close to the fuse 310.
  • a preset current for example, 3C-6C current is continuously discharged
  • the battery management system 400 controls the battery cell unit 200 to perform continuous discharge at a rated current close to the fuse 310.
  • causes continuous high-rate discharge to cause abnormality of the cell unit 200 for example, the temperature of the cell rises to the temperature threshold that the sensing switch unit can withstand, or the extent of the thermal expansion of the cell exceeds the threshold, or the pressure of the cell being heated and squeezed is greater than Pressure threshold
  • triggering the sensing switch unit 32 to be turned on.
  • the first switch Q1 is triggered to be turned on to heat the first resistor R1, and the fuse 310 is blown, so as to avoid dangerous accidents such as fire and explosion caused by the continuous discharge of the battery cell unit 200.
  • the difference between the rated current of the fuse 310 and the preset current is less than or equal to the current threshold.
  • the battery protection circuit 300 and the battery management system 400 provided with the battery protection circuit 300 provided in the above-mentioned embodiments are provided with a sensing switch unit 32 at a preset position of the battery cell unit 200, and the sensing switch unit 32 It is electrically connected to the second protection unit 31, and if the first protection unit 30 does not trigger the second protection unit 31 and the sensing switch unit 32 is triggered to conduct, the second protection unit is controlled
  • the unit 31 protects the battery cell unit 200.
  • the present application can effectively avoid fire and explosion accidents of the battery cell unit 200 caused by overcharging, overdischarging, or discharging at a large current rate close to the rated current of the fuse 310 in the case of a single point failure of the battery management system 400.
  • the battery protection circuit 300 provided in the present application has the advantages of high safety, wide application range, and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种电池保护电路,所述电池保护电路电连接于电芯单元及外接端口之间以形成供电回路,所述电池保护电路包括第一保护单元、第二保护单元以及感测开关单元;所述第一保护单元电连接于电芯单元与第二保护单元之间;所述感测开关单元设置于所述电芯单元的预设位置,且所述感测开关单元与所述第二保护单元电性连接;在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。本申请还提供一种电池管理系统、电池装置及其控制方法。本申请提供的所述电池保护电路具有安全性高、应用范围广、成本较低等优点。

Description

电池保护电路、电池管理系统、电池装置及其控制方法
相关申请的交叉引用
本申请要求于2020年06月17日提交,申请号为202010555943.6,发明名称为“电池保护电路、电池管理系统、电池装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池保护电路及具有所述电池保护电路的电池管理系统、电池装置及其控制方法。
背景技术
目前锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论在电子通讯领域,还是交通运输领域等,都担当了极为重要的角色,有着广泛的应用前景。锂离子电池的安全性也是不可忽视的问题。
锂离子电池在按照规范使用时通常是安全的,但在内部或机械故障的情况下可能成为潜在的危险。例如,当电池在滥用条件下,如过充、挤压、高温或短路时。可能导致过热,散发烟雾甚至起火爆炸。现有技术中,锂离子电池保护芯片可以监控充电和放电过程,并在过程有可能超出电池安全工作范围的风险时进行干预。然而,当锂离子电池保护芯片失效时,则无法对电池进行风险预警。
发明内容
鉴于上述内容,有必要提供一种电池保护电路及具有所述电池保护电路的电池管理系统、电池装置及其控制方法,可以保护电芯单元。
本申请的一实施方式提供一种电池保护电路,所述电池保护电路电连接于电芯单元及外接端口之间以形成供电回路,所述电池保护电路包括第一保护单元、第二保护单元以及感测开关单元;所述第一保护单元电连接于电芯单元与第二保护单元之间;所述感测开关单元设置于所述电芯单元的预设位置,且所述感测开关单元与所述第二保护单元电性连接;及在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。
根据本申请的一些实施方式,所述第二保护单元包括保险丝、第一电阻和第一开关,所述保险丝的第一端与所述电芯单元的正极连接,所述保险丝的第二端通过所述第一电阻与所述第一开关的第二端连接,所述保险丝的第三端与外接端口的正极连接;所述第一开关的第一端与所述感测开关单元电性连接,所述第一开关的第二端接地,所述第一开关的第三端与所述保险丝的第二端电性连接。
根据本申请的一些实施方式,所述感测开关单元为温度开关,若所述温度开关侦测到电芯单元的温度超过预设温度,触发所述温度开关导通,从而触发所述第一开关导通以加热所述第一电阻,熔断所述保险丝以保护所述电芯单元。
根据本申请的一些实施方式,所述感测开关单元为微动开关,若所述电芯单元受热膨胀被挤压时,触发所述微动开关导通,从而触发所述第一开关导通以加热所述第一电阻,熔断所述保险丝以保护所述电芯单元。
根据本申请的一些实施方式,所述电池保护电路还包括第三保护单元,所述第三保护单元电连接于所述电芯单元和所述第二保护单元之间。
根据本申请的一些实施方式,在所述感测开关单元被触发导通,所述第一保护单元导通所述供电回路且所述第三保护单元没有触发所述第二保护单元的情形下,控制所述第二保护单元保护所述电芯单元。
本申请的一实施方式提供一种电池管理系统,所述电池管理系统 包括如上所述的电池保护电路。
根据本申请的一些实施方式,在所述电池管理系统控制所述电芯单元以预设电流放电时,若所述感测开关单元被导通,则触发所述第二保护单元保护所述电芯单元。
根据本申请的一些实施方式,所述第二保护单元包括保险丝,所述保险丝的额定电流与所述预设电流的差值小于或等于电流阈值。
本申请的一实施方式提供一种电池装置,所述电池装置包括电芯单元,所述电池装置还包括如上所述的电池保护电路,所述电池保护电路用于保护所述电芯单元。
本申请的一实施方式提供电池装置的控制方法,所述电池装置包括电芯单元和与所述电芯单元电性连接的电池保护电路,所述电池保护电路电连接于电芯单元及外接端口之间以形成供电回路,所述电池保护电路包括第一保护单元、第二保护单元以及感测开关单元,所述方法包括:
在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。
根据本申请的一些实施方式,所述电池保护电路还包括第三保护单元,所述第三保护单元电连接于所述电芯单元和所述第二保护单元之间,所述方法还包括:
在所述感测开关单元被触发导通,所述第一保护单元导通所述供电回路,且所述第三保护单元没有触发所述第二保护单元的情形下,控制所述第二保护单元保护所述电芯单元。
根据本申请的一些实施方式,所述电池装置包括电池管理系统,所述方法还包括:
在所述电池管理系统控制所述电芯单元以预设电流放电时,若所述感测开关单元被触发导通,则控制所述第二保护单元保护所述电芯单元。
根据本申请的一些实施方式,所述第二保护单元包括保险丝,所述保险丝的额定电流与所述预设电流的差值小于或等于电流阈值。
本申请实施方式提供的电池保护电路及具有所述电池保护电路的电池管理系统,通过在所述电芯单元的预设位置设置感测开关单元,且所述感测开关单元与所述第二保护单元电性连接,若所述第一保护单元没有触发所述第二保护单元,而所述感测开关单元被触发导通时,控制所述第二保护单元保护所述电芯单元。本申请可以有效的避免出现电池管理系统在单点失效情况下由于过充、过放或者以接近保险丝额定电流的电流大倍率放电,导致的电芯单元起火爆炸事故。本申请提供的电池保护电路具有安全性高、应用范围广、成本较低等优点。
附图说明
图1为根据本申请第一较佳实施方式的电池装置的方框图。
图2为根据本申请第二较佳实施方式的电池装置的方框图。
图3为图1中电池管理系统中的电池保护电路的第一实施方式的电路图。
图4为图1中电池管理系统中的电池保护电路的第二实施方式的电路图。
图5为根据本申请第一较佳实施方式的电池装置的控制方法的流程图。
主要元件符号说明
电池装置                         100
电芯单元                         200
电池保护电路                     300
电池管理系统                     400
外接端口                         500
第一保护单元                     30
第二保护单元                     31
感测开关单元                      32
第三保护单元                      33
第一电阻                          R1
电阻                              R0、R1'~R7'
保险丝                            310
第一开关                          Q1
第二开关                          Q2
第三开关                          Q3
第一保护芯片                      IC1、IC2、IC3
第二保护芯片                      IC1'、IC2'、IC3'
第二电阻至第七电阻                R2~R7
第一电芯至第十二电芯              B1~B12
第一引脚                          CV0、VSS
第二引脚                          CV1、V1
第三引脚                          CV2、V4
第四引脚                          CV3、V5
充电引脚                          CHG
放电引脚                          DSG
充电使能引脚                      CTRC
放电使能引脚                      CTRD
输出引脚                          OUT
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本 申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
在本申请的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是拆卸连接,或一体的连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接连接,也可以通过居中组件间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况立即上述术语在本申请中的具体含义。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。
请参阅图1,图1为根据本申请电池装置一较佳实施方式的方框图。所述电池装置100包括电芯单元200和与所述电芯单元200电性连接的电池保护电路300。所述电池保护电路300位于电池管理系统400中,用于在所述电池管理系统400控制电芯单元200充放电时,保护所述电芯单元200。所述电池保护电路300电连接于所述电芯单元200及外接端口500之间以形成供电回路,所述电池保护电路300用于控制所述供电回路导通或截止,从而在所述电池管理系统400控制电芯单元200充放电时,保护所述电芯单元200。
所述电池保护电路300包括第一保护单元30、第二保护单元31以及感测开关单元32。
具体到本申请实施方式中,所述第一保护单元30电连接于电芯单元200与第二保护单元31之间。所述感测开关单元32设置于所述电 芯单元200的预设位置,且所述感测开关单元32与所述第二保护单元31电性连接。在正常使用状态下,所述感测开关单元32处于断开状态。若所述第一保护单元30没有断开所述供电回路,而所述感测开关单元32被导通时,可以触发所述第二保护单元31保护所述电芯单元200。可以理解的是,所述预设位置可以根据所述感测开关单元32的不同来设置。例如,当所述感测开关单元32为温度开关时,所述预设位置为电芯单元200表面的温度最高点所在位置。当所述感测开关单元32为微动开关时,所述预设位置为电芯单元200表面的最容易膨胀的位置。需要说明的是,所述电芯单元200的温度最高点或最容易膨胀点所在的位置在所述电芯单元200出厂时已经确定。例如,根据所述电芯单元200的电池体系、化学成分以及结构进行热仿真和测试,可以得到该电池体系下电芯单元200的温度最高点或最容易膨胀点所在位置。可以理解的是,不同电池体系的电芯单元200表面温度最高点或最容易膨胀点所在位置并不相同。在一实施方式中,所述第一保护单元30包括多个第一保护芯片,用于保护电芯单元200中的每个电芯。
在一实施方式中,参阅图3所示,所述第二保护单元31包括保险丝310、第一电阻R1和第一开关Q1。所述保险丝310为三端保险丝。所述保险丝310的第一端与所述电芯单元200的正极连接,所述保险丝310的第二端通过所述第一电阻R1与所述第一开关Q1的第二端连接,所述保险丝310的第三端与外接端口500的正极连接;所述第一开关Q1的第一端与所述感测开关单元32电性连接,所述第一开关Q1的第三端与所述保险丝310的第二端电性连接,所述第一开关Q1的第二端接地。所述第一开关Q1可以是N型场效应管。所述第一开关Q1的第一端、第二端以及第三端分别对应所述N型场效应管的栅 极、源极以及漏极。
在一实施方式中,所述感测开关单元32用于感测所述电芯单元200的温度或膨胀幅度或受挤压时的压力。例如,所述感测开关单元32为温度开关,可以侦测所述电芯单元200的预设位置的温度,并且比较侦测的温度与预设温度。当所述侦测的温度大于所述预设温度时,触发所述温度开关导通,从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310以保护所述电芯单元200。
在另一实施方式中,所述感测开关单元32为微动开关。当所述电芯单元200受热时会发生膨胀,当所述电芯单元200膨胀后受到挤压(如外壳对所述电芯单元200的挤压)时,触发所述微动开关导通,从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310以保护所述电芯单元200。
需要说明的是,所述感测开关单元32还可以替换为其他与温度开关特性相似的元器件或者机械方式的元器件。例如,所述感测开关单元32还可以是位移感测开关,用于侦测电芯单元200受热膨胀的幅度。当侦测的幅度超过预设幅度时,触发所述位移感测开关导通,从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310以保护所述电芯单元200。
在一实施方式中,所述外接端口500的正极可以与一充电器(图中未示出)的正极电连接,所述外接端口500的负极可以与所述充电器的负极电连接。
在一实施方式中,所述电池保护电路300还包括第三保护单元33,如图2所示。所述第三保护单元33电连接于所述电芯单元200和所述第二保护单元31之间。若所述第一保护单元30没有断开所述供电回路,且所述第三保护单元33没有触发所述第二保护单元31,而所述 感测开关单元32被导通时,触发所述第二保护单元31保护所述电芯单元200。所述第三保护单元33包括多个第二保护芯片,用于与所述第一保护单元30组合双重保护电芯单元200中的每个电芯。
在一实施方式中,若所述第一保护单元30失效,且所述第三保护单元33被触发时,可以输出驱动信号至所述第二保护单元31,以触发所述第二保护单元31保护所述电芯单元200。若所述第一保护单元30失效,且所述第三保护单元33也失效时,可以通过所述感测开关单元32触发所述第二保护单元31保护所述电芯单元200。
需要说明的是,所述第一保护单元30失效描述的是所述电芯单元200的参数大于或等于第一预设参数时,所述第一保护单元30没有截止所述供电回路(如截止第二开关Q2或第三开关Q3)。所述电芯单元200的参数可以是电流、电压或温度。可以理解的是,当所述参数是温度时,所述第一保护单元30对应的预设温度会小于所述感测开关单元32触发时的温度。例如,所述第一保护单元30对应的第一预设温度为50摄氏度,而所述感测开关单元32触发时的温度为所述电芯单元200所能承受的最高温度(如70摄氏度)。
可以理解的是,所述第三保护单元33失效描述的是所述电芯单元200的参数大于或等于第二预设参数时,所述第一保护单元30没有触发所述第二保护单元31。所述第二预设参数大于所述第一预设参数,且小于所述感测开关单元32触发时的阈值。
例如,当所述电芯单元200的电压超过预设电压且达到触发所述第一保护单元30的电压阈值时,可以触发所述第一保护单元30保护所述电芯单元200。
若所述电芯单元200的电压超过预设电压且达到触发所述第一保护单元30的电压阈值,但所述第一保护单元30失效时;确认所述电 芯单元200的电压是否达到触发所述第三保护单元33的电压阈值,若所述电芯单元200的电压达到触发所述第三保护单元33的电压阈值时,可以触发所述第三保护单元33输出驱动信号至所述第二保护单元31,以控制所述第二保护单元31保护所述电芯单元200。
若所述电芯单元200的电压超过预设电压且达到触发所述第一保护单元30的电压阈值,但所述第一保护单元30失效时;确认所述电芯单元200的电压是否达到触发所述第三保护单元33的电压阈值,若所述电芯单元200的电压达到触发所述第三保护单元33的电压阈值,但所述第三保护单元33失效时,所述感测开关单元32被触发导通后,输出驱动信号至所述第二保护单元31,以控制所述第二保护单元31保护所述电芯单元200。
请参阅图3,图3为根据本申请电池保护电路300的第一实施方式的电路图。
在本实施方式中,以所述第一保护单元30包括三个第一保护芯片来进行说明,每一个第一保护芯片连接四个电芯。例如,所述第一保护单元30包括第一保护芯片IC1、第一保护芯片IC2和第一保护芯片IC3和第二电阻R2、第三电阻R3…第七电阻R7。所述电芯单元200包括第一电芯B1、第二电芯B2…第十二电芯B12。在一实施方式中,所述一次保护芯片IC1连接所述第一电芯B1至第四电芯B4,以保护所述第一电芯B1至第四电芯B4。例如,所述第二电阻R2的一端与所述第一电芯B1的正极连接,所述第二电阻R2的另一端与所述第一电芯B1的负极连接。所述第二电阻R2的一端还与所述第一保护芯片IC1的第一引脚CV0连接,所述第二电阻R2的另一端还与所述第一保护芯片IC1的第二引脚CV1连接。第五电阻R5的一端与所述第四电芯B4的正极连接,所述第五电阻R5的另一端与所述第四电芯B4 的负极连接。所述第五电阻R5的一端还与第一保护芯片IC1的第三引脚CV3连接,所述第五电阻R5的另一端还与所述第一保护芯片IC1的第四引脚CV4连接。
需要说明的是,依此类推,所述第一保护芯片IC2连接所述第五电芯B5至第八电芯B8,以保护所述第五电芯B5至第八电芯B8。所述第一保护芯片IC3连接所述第九电芯B9至第十二电芯B12,以保护所述第九电芯B9至第十二电芯B12。具体连接方式与所述第一保护芯片IC1连接所述第一电芯B1至第四电芯B4的连接方式类似,在此不再详述。需要说明的是,所述第一保护单元30可以包括N个第一保护芯片,本申请对第一保护芯片的数量不做限制。
所述第一保护单元30还包括第二开关Q2、第三开关Q3和电阻R0。所述电阻R0用于采集供电回路的电流,即流经所述电芯单元200的电流。在本实施方式中,所述电阻R0的一端连接所述第一电芯B1的负极,所述电阻R0的另一端连接所述第二开关Q2。所述电阻R0的一端还连接所述第一保护芯片IC1的SRP引脚,所述电阻R0的另一端还连接所述第一保护芯片IC1的SRN引脚。所述第一保护芯片IC1可以侦测所述电阻R0的电压,从而根据所述电压和电阻R0的阻值计算得到流经所述电芯单元200的电流。
所述第二开关Q2的第一端与所述第一保护芯片IC1的放电引脚DSG连接,所述第二开关Q2的第二端与所述电阻R0连接,所述第二开关Q2的第三端与所述第三开关Q3的第二端连接;所述第三开关Q3的第一端与所述第一保护芯片IC1的充电引脚CHG连接,所述第三开关Q3的第三端与所述第二开关Q2的第三端连接,所述第三开关Q3的第二端与所述外接端口500的负极连接。
所述第二开关Q2及所述第三开关Q3可以为N型场效应管。所 述第二开关Q2及所述第三开关Q3的第一端、第二端以及第三端分别对应所述N型场效应管的栅极、源极以及漏极。
在本实施方式中,所述第一保护芯片IC1、第一保护芯片IC2和第一保护芯片IC3之间级联,从而可以通过控制第二开关Q2和第三开关Q3控制供电回路的导通和截止。具体地,所述第一保护芯片IC3的充电引脚CHG与第一保护芯片IC2充电使能引脚CTRC连接,所述第一保护芯片IC3的放电引脚DSG与第一保护芯片IC2的放电使能引脚CTRD连接;所述第一保护芯片IC2的充电引脚CHG与第一保护芯片IC1充电使能引脚CTRC连接,所述第一保护芯片IC2的放电引脚DSG与第一保护芯片IC1放电使能引脚CTRD连接;所述第一保护芯片IC1的充电引脚CHG与所述第三开关Q3连接,所述第一保护芯片IC1的放电引脚DSG与所述第二开关Q2连接。当第一保护芯片IC1至第一保护芯片IC3中的任意一个侦测到电芯单元200出现过充电或过放电情况时,可以通过所述充电使能引脚CTRC或放电使能引脚CTRD使能所述充电引脚CHG或放电引脚DSG输出驱动信号,以控制所述第二开关Q2或第三开关Q3截止,实现保护电芯单元200的目的。
在正常使用状态下,所述感测开关单元32处于断开状态,第二保护单元31中的保险丝310的第二端连接所述第一开关Q1的第二端,供电回路正常工作。若所述供电回路中的第一保护单元30失效时,所述第一保护单元30没有控制所述第二开关Q2或第三开关Q3截止,以断开所述供电回路。所述电芯单元200由于过压或者欠压导致出现异常(例如,电芯温度升高至阈值或者电芯受热膨胀或者电芯受热挤压),触发所述感测开关单元32导通。从而触发所述第一开关Q1导通以加热所述第一电阻,熔断所述保险丝,断开所述供电回路,避免 继续充电或者放电,防止电芯单元200起火或者爆炸。
在一实施方式中,当电池管理系统400控制所述电芯单元200以预设电流放电时(例如3C-6C电流持续放电),保险丝310无法熔断。即电池管理系统400控制所述电芯单元200以接近所述保险丝310的额定电流进行持续放电。导致持续大倍率放电引起电芯单元200出现异常(例如,电芯温度升高至感测开关单元所能承受的温度阈值或者电芯受热膨胀的幅度超过幅度阈值或者电芯受热挤压的压力大于压力阈值),触发所述感测开关单元32导通。从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310,避免电芯单元200继续放电造成起火、爆炸等危险事故。在一实施方式中,所述保险丝310的额定电流与所述预设电流的差值小于或等于电流阈值。
请参阅图4,图4为本申请电池保护电路300的第二实施方式的电路图。
本实施方式的电池保护电路300与第一实施方式的电池保护电路300的区别在于:
在一实施方式中,所述电池保护电路300还包括第三保护单元33。所述第三保护单元33电连接于所述电芯单元200和所述第二保护单元31之间。所述第三保护单元33包括多个第二保护芯片,用于与所述第一保护单元30组合双重保护电芯单元200中的每个电芯。
例如,以所述第三保护单元33包括三个第二保护芯片来进行说明,每一个第二保护芯片连接四个电芯。所述第三保护单元33包括第二保护电芯IC1'、第二保护电芯IC2'和第二保护电芯IC3'和电阻R1'、电阻R2'…电阻R7'。在一实施方式中,所述第二保护芯片IC1'连接所述第一电芯B1至第四电芯B4,以对所述第一电芯B1至第四电芯B4进行二次保护。例如,所述第二保护芯片IC1'的第一引脚VSS与所述 第一电芯B1的负极连接,所述第二保护芯片IC1'的第二引脚V1通过电阻R1'与所述第一电芯B1的正极连接;所述第二保护芯片IC1'的第三引脚V4和第四引脚V5连接后通过电阻R2'与所述第四电芯B4的正极连接。
需要说明的是,依此类推,所述第二保护芯片IC2'连接所述第五电芯B5至第八电芯B8,以保护所述第五电芯B5至第八电芯B8。所述第二保护芯片IC3'连接所述第九电芯B9至第十二电芯B12,以保护所述第九电芯B9至第十二电芯B12。具体连接方式与所述第二保护芯片IC1'连接所述第一电芯B1至第四电芯B4的连接方式类似,在此不再详述。需要说明的是,所述第三保护单元33可以包括N个第二保护芯片,本申请对第二保护芯片的数量不做限制。
在本实施方式中,所述第二保护芯片IC1'的输出引脚OUT、第二保护芯片IC2'的输出引脚OUT和第二保护芯片IC3'的输出引脚OUT连接后与所述第一开关Q1的第一端(如F1-C)连接。在所述第一保护单元30(即第一保护芯片IC1至IC3)失效时,所述电芯单元200会出现过充电或者过放电情况,可以通过所述第三保护单元33输出驱动信号至所述第一开关Q1,以驱动所述第一开关Q1导通,从而加热所述第一电阻R1,以熔断所述保险丝310,防止所述电芯单元200继续充电或者放电而引发起火爆炸等事故。
在正常使用状态下,所述感测开关单元32处于断开状态,供电回路正常工作。而当第一保护单元30和第三保护单元33均失效的情况下。即所述第一保护单元30没有控制所述第二开关Q2或第三开关Q3截止,以断开所述供电回路,且所述第三保护单元33没有触发所述第二保护单元31时。所述电芯单元200由于过压或者欠压导致电芯单元200出现异常(例如,电芯温度升高至感测开关单元所能承受的 温度阈值或者电芯受热膨胀的幅度超过幅度阈值或者电芯受热挤压的压力大于压力阈值),触发所述感测开关单元32导通,从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310以保护所述电芯单元200,避免引起起火、爆炸等事故。
同样地,当电池管理系统400控制所述电芯单元200以预设电流放电时,例如3C-6C电流持续放电,保险丝无法熔断。即电池管理系统400以接近所述保险丝310的额定电流的电流进行持续放电,所述保险丝310的额定电流与所述预设电流的差值小于或等于电流阈值。导致持续大倍率放电引起电芯单元200出现异常(例如,电芯温度升高至感测开关单元所能承受的温度阈值或者电芯受热膨胀的幅度超过幅度阈值或者电芯受热挤压的压力大于压力阈值),触发所述感测开关单元32导通。从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310,避免电芯单元200继续放电造成起火、爆炸等危险事故。
如图5所示,图5为根据本申请一实施方式的电池装置的控制方法的流程图。所述电池装置的控制方法可以包括以下步骤:
步骤S1:在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。
在本实施方式中,所述电池装置100包括电芯单元200和与所述电芯单元200电性连接的电池保护电路300,所述电池保护电路300电连接于电芯单元200及外接端口500之间以形成供电回路,所述电池保护电路300包括第一保护单元30、第二保护单元31以及感测开关单元32。
在正常使用状态下,所述感测开关单元32处于断开状态,第二保 护单元31中的保险丝310的第二端连接所述第一开关Q1的第二端,供电回路正常工作。若所述供电回路中的第一保护单元30失效时,所述第一保护单元30没有控制所述第二开关Q2或第三开关Q3截止,以截止所述供电回路。所述电芯单元200由于过压或者欠压导致出现异常(例如,电芯温度升高至阈值或者电芯受热膨胀或者电芯受热挤压),触发所述感测开关单元32导通,以控制所述第二保护单元保护所述电芯单元。即触发所述第二保护单元中的所述第一开关Q1导通以加热所述第一电阻,熔断所述保险丝,断开所述供电回路,避免继续充电或者放电,防止电芯单元200起火或者爆炸。
步骤S2:在所述感测开关单元32被触发导通,所述第一保护单元30未截止所述供电回路,且所述第三保护单元33没有触发所述第二保护单元31的情形下,控制所述第二保护单元31保护所述电芯单元。
在正常使用状态下,所述感测开关单元32处于断开状态,供电回路正常工作。而当第一保护单元30和第三保护单元33均失效的情况下。即所述第一保护单元30没有控制所述第二开关Q2或第三开关Q3截止,以断开所述供电回路,且所述第三保护单元33没有触发所述第二保护单元31时。所述电芯单元200由于过压或者欠压导致电芯单元200出现异常(例如,电芯温度升高至感测开关单元所能承受的温度阈值或者电芯受热膨胀的幅度超过幅度阈值或者电芯受热挤压的压力大于压力阈值),触发所述感测开关单元32导通,从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310以保护所述电芯单元200,避免引起起火、爆炸等事故。
在一实施方式中,所述方法还包括:在所述电池管理系统400控制所述电芯单元200以预设电流放电时,若所述感测开关单元32被导 通,则触发所述第二保护单元31保护所述电芯单元。
在一实施方式中,当电池管理系统400控制所述电芯单元200以预设电流放电时(例如3C-6C电流持续放电),保险丝310无法熔断。即电池管理系统400控制所述电芯单元200以接近所述保险丝310的额定电流进行持续放电。导致持续大倍率放电引起电芯单元200出现异常(例如,电芯温度升高至感测开关单元所能承受的温度阈值或者电芯受热膨胀的幅度超过幅度阈值或者电芯受热挤压的压力大于压力阈值),触发所述感测开关单元32导通。从而触发所述第一开关Q1导通以加热所述第一电阻R1,熔断所述保险丝310,避免电芯单元200继续放电造成起火、爆炸等危险事故。在一实施方式中,所述保险丝310的额定电流与所述预设电流的差值小于或等于电流阈值。
上述实施方式提供的电池保护电路300及具有所述电池保护电路300的电池管理系统400,通过在所述电芯单元200的预设位置设置感测开关单元32,且所述感测开关单元32与所述第二保护单元31电性连接,若所述第一保护单元30没有触发所述第二保护单元31,而所述感测开关单元32被触发导通时,控制所述第二保护单元31保护所述电芯单元200。本申请可以有效的避免出现电池管理系统400在单点失效情况下由于过充、过放或者以接近保险丝310额定电流的电流大倍率放电,导致的电芯单元200起火爆炸事故。本申请提供的电池保护电路300具有安全性高、应用范围广、成本较低等优点。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (14)

  1. 一种电池保护电路,其特征在于,所述电池保护电路电连接于电芯单元及外接端口之间以形成供电回路,所述电池保护电路包括第一保护单元、第二保护单元以及感测开关单元;
    所述第一保护单元电连接于所述电芯单元与所述第二保护单元之间;
    所述感测开关单元设置于所述电芯单元的预设位置,且所述感测开关单元与所述第二保护单元电性连接;及
    在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。
  2. 如权利要求1所述的电池保护电路,其特征在于,所述第二保护单元包括保险丝、第一电阻和第一开关,所述保险丝的第一端用于与所述电芯单元的正极电性连接,所述保险丝的第二端通过所述第一电阻与所述第一开关的第二端电性连接,所述保险丝的第三端与所述外接端口的正极电性连接;所述第一开关的第一端与所述感测开关单元电性连接,所述第一开关的第二端接地,所述第一开关的第三端与所述保险丝的第二端电性连接。
  3. 如权利要求2所述的电池保护电路,其特征在于,所述感测开关单元为温度开关,若所述温度开关侦测到所述电芯单元的温度超过预设温度,触发所述温度开关导通,从而触发所述第一开关导通以加热所述第一电阻,熔断所述保险丝以保护所述电芯单元。
  4. 如权利要求2所述的电池保护电路,其特征在于,所述感测开关单元为微动开关,若所述电芯单元受热膨胀被挤压时,触发所述微 动开关导通,从而触发所述第一开关导通以加热所述第一电阻,熔断所述保险丝以保护所述电芯单元。
  5. 如权利要求1所述的电池保护电路,其特征在于,所述电池保护电路还包括第三保护单元,所述第三保护单元电连接于所述电芯单元和所述第二保护单元之间。
  6. 如权利要求5所述的电池保护电路,其特征在于,在所述感测开关单元被触发导通,所述第一保护单元导通所述供电回路且所述第三保护单元没有触发所述第二保护单元的情形下,控制所述第二保护单元保护所述电芯单元。
  7. 一种电池管理系统,其特征在于,所述电池管理系统包括如权利要求1至6任一项所述的电池保护电路。
  8. 如权利要求7所述的电池管理系统,其特征在于,在所述电池管理系统控制所述电芯单元以预设电流放电时,若所述感测开关单元被导通,则触发所述第二保护单元保护所述电芯单元。
  9. 如权利要求8所述的电池管理系统,其特征在于,所述第二保护单元包括保险丝,所述保险丝的额定电流与所述预设电流的差值小于或等于电流阈值。
  10. 一种电池装置,所述电池装置包括电芯单元,其特征在于,所述电池装置还包括如权利要求1至6任一项所述的电池保护电路,所述电池保护电路用于保护所述电芯单元。
  11. 一种电池装置的控制方法,所述电池装置包括电芯单元和与所述电芯单元电性连接的电池保护电路,其特征在于,所述电池保护电路电连接于所述电芯单元及外接端口之间以形成供电回路,所述电池保护电路包括第一保护单元、第二保护单元以及感测开关单元,所 述方法包括:
    在所述感测开关单元被触发导通,且所述第一保护单元导通所述供电回路的情形下,控制所述第二保护单元保护所述电芯单元。
  12. 如权利要求11所述的电池装置的控制方法,其特征在于,所述电池保护电路还包括第三保护单元,所述第三保护单元电连接于所述电芯单元和所述第二保护单元之间,所述方法还包括:
    在所述感测开关单元被触发导通,所述第一保护单元导通所述供电回路,且所述第三保护单元没有触发所述第二保护单元的情形下,控制所述第二保护单元保护所述电芯单元。
  13. 如权利要求11所述的电池装置的控制方法,所述电池装置包括电池管理系统,其特征在于,所述方法还包括:
    在所述电池管理系统控制所述电芯单元以预设电流放电时,若所述感测开关单元被触发导通,则控制所述第二保护单元保护所述电芯单元。
  14. 如权利要求13所述的电池装置的控制方法,其特征在于,所述第二保护单元包括保险丝,所述保险丝的额定电流与所述预设电流的差值小于或等于电流阈值。
PCT/CN2021/076148 2020-06-17 2021-02-09 电池保护电路、电池管理系统、电池装置及其控制方法 WO2021253848A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217009583A KR102607999B1 (ko) 2020-06-17 2021-02-09 배터리 보호 회로, 배터리 관리 시스템, 배터리 장치 및 그 제어 방법
JP2021517772A JP7377860B2 (ja) 2020-06-17 2021-02-09 電池保護回路、電池管理システム、電池装置及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010555943.6 2020-06-17
CN202010555943.6A CN111668901B (zh) 2020-06-17 2020-06-17 电池保护电路、电池管理系统、电池装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2021253848A1 true WO2021253848A1 (zh) 2021-12-23

Family

ID=72388606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076148 WO2021253848A1 (zh) 2020-06-17 2021-02-09 电池保护电路、电池管理系统、电池装置及其控制方法

Country Status (2)

Country Link
CN (1) CN111668901B (zh)
WO (1) WO2021253848A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668901B (zh) * 2020-06-17 2023-04-18 东莞新能安科技有限公司 电池保护电路、电池管理系统、电池装置及其控制方法
CN113949126A (zh) * 2021-10-14 2022-01-18 东莞新能安科技有限公司 充电保护电路、电池管理系统、电池组及电路控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263391A1 (en) * 2014-03-13 2015-09-17 Samsung Sdi Co., Ltd. Battery pack
CN206099317U (zh) * 2016-08-30 2017-04-12 深圳市金立通信设备有限公司 一种电池保护电路与终端
CN111668901A (zh) * 2020-06-17 2020-09-15 东莞新能安科技有限公司 电池保护电路、电池管理系统、电池装置及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE452450T1 (de) * 2006-07-24 2010-01-15 Research In Motion Ltd Batterielade- und -entladesteuerschaltung mit übertemperaturschutz
CN103259253B (zh) * 2013-05-11 2015-12-02 无锡中星微电子有限公司 级联的电池保护电路及系统
CN106486976A (zh) * 2016-11-23 2017-03-08 宇龙计算机通信科技(深圳)有限公司 电池保护装置及电池保护方法
CN111106654A (zh) * 2020-01-11 2020-05-05 东莞新能德科技有限公司 电池保护电路及电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263391A1 (en) * 2014-03-13 2015-09-17 Samsung Sdi Co., Ltd. Battery pack
CN206099317U (zh) * 2016-08-30 2017-04-12 深圳市金立通信设备有限公司 一种电池保护电路与终端
CN111668901A (zh) * 2020-06-17 2020-09-15 东莞新能安科技有限公司 电池保护电路、电池管理系统、电池装置及其控制方法

Also Published As

Publication number Publication date
CN111668901A (zh) 2020-09-15
CN111668901B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
JP5209122B2 (ja) センス抵抗の破壊を感知してバッテリーパックを保護する装置及び方法
WO2020220882A1 (zh) 热失控检测电路及方法
US5703463A (en) Methods and apparatus for protecting battery cells from overcharge
US6531846B1 (en) Final discharge of a cell activated by a circuit that senses when a charging fault has occurred
KR100751844B1 (ko) 배터리 동작 장치를 위한 장치 보호를 제공하는 방법 및 장치
US7667435B2 (en) Secondary battery protection circuit with over voltage transient protection
JP6615457B2 (ja) 恒久的な無効化を伴う2次電池の保護
US6268713B1 (en) Method for Li-Ion safety switch fault detection in smart batteries
WO2021253848A1 (zh) 电池保护电路、电池管理系统、电池装置及其控制方法
KR20050061524A (ko) 보호 회로가 부착된 2차 전지
KR20060028174A (ko) 발열시 알람이 작동하는 배터리 팩
JP5219463B2 (ja) パック電池
KR20090022293A (ko) 배터리 팩의 보호회로 및 이를 구비한 배터리 팩
JP2003142162A (ja) 電池パック
CN100595968C (zh) 锂电池组
KR20180058056A (ko) 배터리 팩 보호 장치
KR102607999B1 (ko) 배터리 보호 회로, 배터리 관리 시스템, 배터리 장치 및 그 제어 방법
KR100739463B1 (ko) 온도 보호기능을 구비한 배터리 보호회로
US20050237028A1 (en) Secondary battery protection circuit with over voltage transient protection
KR20150026370A (ko) 배터리 과충전 방지 장치
KR100614392B1 (ko) 배터리팩
KR100898285B1 (ko) 휴대 전자기기용 배터리 팩
CN218102610U (zh) 一种防爆智能便携设备用单节锂电池保护电路
CN219498947U (zh) 电池组温度保护电路、供电装置及机器人
KR100824371B1 (ko) 배터리팩의 휴즈 오동작 방지회로

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217009583

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824916

Country of ref document: EP

Kind code of ref document: A1