WO2021253600A1 - 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法 - Google Patents
一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法 Download PDFInfo
- Publication number
- WO2021253600A1 WO2021253600A1 PCT/CN2020/109088 CN2020109088W WO2021253600A1 WO 2021253600 A1 WO2021253600 A1 WO 2021253600A1 CN 2020109088 W CN2020109088 W CN 2020109088W WO 2021253600 A1 WO2021253600 A1 WO 2021253600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bridge circuit
- axis
- magnetic
- full
- tmr
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 167
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 230000004907 flux Effects 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 230000005641 tunneling Effects 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 12
- 239000000696 magnetic material Substances 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 9
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 8
- 229910002515 CoAl Inorganic materials 0.000 claims description 7
- 239000003245 coal Substances 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
Definitions
- the invention relates to the technical field of design and preparation of magnetic electronic devices, in particular to the design and preparation technology of sensors in the field of magnetic electronics compatible with CMOS, and in particular to a monolithic integrated triaxial tunneling magnetoresistance magnetic sensor and a preparation method thereof.
- Magnetic sensors are widely used in modern industries and electronic products to measure physical parameters such as current, position, and direction by inducing magnetic field strength. It has a wide range of applications in many fields, such as electromechanical automatic control, biological detection and aerospace industry.
- Hall elements anisotropic magnetoresistance (AMR) elements or giant magnetoresistance (GMR) elements are used as sensitive elements.
- AMR anisotropic magnetoresistance
- GMR giant magnetoresistance
- Tunneling magnetoresistance (TMR, Tunnel Magnetoresistance, tunneling magnetoresistance) element is a new type of magnetoresistance effect sensor that has been industrially applied in recent years. It uses the tunnel magnetoresistance effect of magnetic multilayer film materials to sense the magnetic field.
- the previously discovered and practically applied AMR elements and GMR elements have a greater resistance change rate.
- the MR ratio of the AMR element and the GMR element are respectively about 3% and 12%, while the TMR element even reaches 400%.
- TMR is generated by a magnetic tunneling junction (MTJ, Magnetic tunneling junction) structure, which is generally a sandwich structure of ferromagnetic layer/non-magnetic insulating layer/ferromagnetic layer (FM/I/FM).
- MTJ Magnetic tunneling junction
- FM/I/FM ferromagnetic insulating layer/ferromagnetic layer
- the magnetization directions of the two ferromagnetic layers are parallel to each other, and usually the coercivity of the two ferromagnetic layers is different. Therefore, in reverse magnetization, the magnetization vector of the ferromagnetic layer with small coercivity is first reversed, making the two ferromagnetic layers The magnetization direction becomes anti-parallel.
- the tunneling probability of electrons from one magnetic layer to another magnetic layer is related to the magnetization directions of the two magnetic layers.
- the magnetic sensor In order to eliminate the influence of temperature, the magnetic sensor is generally made into a Wheatstone bridge structure with four bridge arms, and the changes of the two adjacent bridge arms with the external magnetic field are opposite.
- the prior art has the following disadvantages: First, the magnetoresistance of anisotropic sensors and giant magnetoresistive materials is lower than that of tunneling magnetoresistance TMR, so the accuracy is lower than that of TMR. Secondly, the anisotropic sensor and the giant magnetoresistance effect sensor are difficult to integrate with the third axis, and need to be spliced together to realize the three-axis sensing, and the preparation process is complicated. In addition, the current existing TMR sensors cannot integrate three-axis sensing on a single substrate, and the Wheatstone bridge design is also realized by splicing to achieve three-axis sensing.
- the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor and the preparation method thereof provided by the present invention integrate the three-axis of the magnetic sensor in a single substrate at one time, which reduces the process, reduces the cost, and greatly improves the device Accuracy.
- one aspect of the present invention discloses a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor, including:
- a plurality of the first TMR magnetoresistive units are located on the four bridge arms of the first full bridge circuit;
- a plurality of the second TMR magnetoresistive units are located on a pair of opposite bridge arms of the half-bridge circuit, and a plurality of the fixed resistors are located on another pair of opposite bridge arms of the half-bridge circuit;
- a plurality of the third TMR magnetoresistive units are located on the four bridge arms of the second full bridge circuit, and one of the magnetic flux permeators is located on two adjacent bridge arms of the second full bridge circuit , The other said flux permeator is located on the other two bridge arms of the second full bridge circuit;
- the first full bridge circuit, the second full bridge circuit, and the half bridge circuit are all located on the substrate.
- the first full bridge circuit is located on the X axis or the Y axis of the magnetic sensor, the half bridge circuit is located on the X axis or the Y axis of the magnetic sensor, and the first full bridge circuit is connected to the X axis or the Y axis of the magnetic sensor.
- the half-bridge circuits are not located on the same axis;
- the second full bridge circuit is located on the Z axis of the magnetic sensor.
- the material of the fixed resistor includes one or more of Ta, Pt, Gr, and Al.
- the material of the magnetic flux guide includes one or more of NiFe soft magnetic, NiFeCr soft magnetic, and CoAl-based soft magnetic.
- the materials of the respective interconnections and wires of the first full bridge circuit, the second full bridge circuit, and the half bridge circuit include one or more of Ta, Cr, Al, Au, and Ti.
- the magnetoresistive film stack of the TMR magnetoresistive unit includes an antiferromagnetic layer, an artificial antiferromagnetic layer, a spacer layer, and a ferromagnetic free layer;
- the shape of the TMR magnetoresistive unit is an ellipse, and the aspect ratio of the ellipse is in the range of 3-10.
- the invention also discloses a preparation method of the above-mentioned monolithic integrated triaxial tunneling magnetoresistance magnetic sensor, and the method includes:
- the X-axis, Y-axis and Z-axis of the magnetic sensor are arranged on a single substrate.
- the angle of the magnetic pinning layer ranges from 0 to 90 degrees.
- the preparation method of the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor further includes: growing a soft magnetic material with a predetermined thickness on the outer surface of the flux permeator, and the soft magnetic material includes NiFe soft magnetic and NiFeCr soft magnetic material.
- the soft magnetic material includes NiFe soft magnetic and NiFeCr soft magnetic material.
- the predetermined thickness is 0.8 ⁇ m to 1.2 ⁇ m.
- the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor includes: a substrate, a first TMR magnetoresistance unit, a second TMR magnetoresistance unit, a third TMR magnetoresistance unit, a fixed resistor, and a magnetic flux
- the magnetic conductor, the first full bridge circuit, the second full bridge circuit and the half bridge circuit wherein: a plurality of first TMR magnetoresistive units are located on the four bridge arms of the first full bridge circuit; a plurality of second TMR magnetoresistive units Located on a pair of opposite bridge arms of the half bridge circuit, multiple fixed resistors are located on the other pair of opposite bridge arms of the half bridge circuit; multiple third TMR magnetoresistive units are located on the four bridge arms of the second full bridge circuit And one magnetic flux permeator is located on the two adjacent bridge arms of the second full bridge circuit, and the other magnetic flux permeator is located on the other two bridge arms of the second full bridge circuit; the first full bridge circuit, Both the second full bridge
- the embodiment of the present invention also provides a method for manufacturing a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor, which specifically includes: using a magnetron sputtering apparatus to grow a magnetoresistive film of a TMR magnetoresistive unit; and positively along the X axis Apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit; then, apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit in the reverse direction of the X axis, and
- the X-axis, Y-axis and Z-axis of the magnetic sensor are arranged on a single substrate.
- the invention monolithically integrates the three-axis TMR sensor and integrates the three-axis at a time, which reduces the process, reduces the cost, and greatly improves the accuracy of the device.
- FIG. 1 shows a schematic diagram of a Wheatstone full bridge structure of a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor in an embodiment of the present invention
- FIG. 2 shows a schematic diagram of a Wheatstone half-bridge structure of a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor in an embodiment of the present invention
- FIG. 3 shows a schematic diagram of the Z-axis structure of a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor in an embodiment of the present invention
- FIG. 4 shows a schematic diagram of the interconnection structure of Wheatstone bridges in an embodiment of the present invention
- FIG. 5 shows a schematic cross-sectional view of the Z-axis structure of a magnetic sensor with a monolithic integrated triaxial tunneling magnetoresistance in an embodiment of the present invention
- FIG. 6 shows a schematic diagram of the film structure of the TMR magnetoresistive unit in an embodiment of the present invention
- FIG. 7 shows the first flow chart of the manufacturing method of the monolithic integrated triaxial tunneling magnetoresistance magnetic sensor in the embodiment of the present invention
- FIG. 8 shows the second flow chart of the manufacturing method of the monolithic integrated triaxial tunneling magnetoresistance magnetic sensor in the embodiment of the present invention
- FIG. 9 is a flow chart of a method for manufacturing a monolithic integrated triaxial tunneling magnetoresistance magnetic sensor in a specific application example of the present invention.
- FIG. 10 is a schematic diagram of the working principle of a magnetic sensor with monolithic integrated triaxial tunneling magnetoresistance in a specific application example of the present invention
- FIG. 11 is a schematic diagram of the magnetic field direction of the cross-sectional structure of the magnetic flux permeator in a specific application example of the present invention.
- a full-bridge and half-bridge giant magnetoresistive GMR structure is designed to realize two-axis sensing with one annealing.
- the full bridge structure is composed of four 45-degree GMR strips, which are sensitive to the direction of a single magnetic field through annealing, and the change trend of adjacent bridge arms is opposite.
- the half-bridge structure is composed of two 0-degree GMR strips and two fixed resistors, and the sensitive change of the magnetic field direction is realized through annealing.
- the combination of full bridge and half bridge structure realizes in-plane two-axis magnetic sensing through one annealing. It is understandable that it has the following shortcomings:
- the anisotropic sensor and the giant magnetoresistance effect sensor are difficult to integrate with the third axis, and need to be spliced together to realize the three-axis sensing, and the preparation process is complicated.
- this embodiment discloses a monolithic integrated triaxial tunneling magnetoresistance magnetic sensor.
- the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor includes: a substrate (not shown in the figure), a first TMR magnetoresistive unit 1, a second TMR magnetoresistive unit 2, third TMR magnetoresistive unit 3, fixed resistor 4, magnetic flux permeator 5, first full bridge circuit 6, second full bridge circuit 7, and half bridge circuit 8, in which:
- a plurality of the first TMR magnetoresistive units 1 are located on the four bridge arms of the first full-bridge circuit 6;
- the plurality of second TMR magnetoresistive units 2 are located on a pair of opposing bridge arms of the half-bridge circuit 8, and the plurality of fixed resistors 4 are located on the other pair of opposing bridge arms of the half-bridge circuit 8. ;
- a plurality of the third TMR magnetoresistive units 3 are located on the four bridge arms of the second full-bridge circuit 7, and one of the magnetic flux guides 5 is located on two adjacent ones of the second full-bridge circuit 7.
- the two adjacent bridge arms here refer to connecting the positive and negative voltages of the second full bridge circuit 7 into a line, and there are two adjacent bridges on both sides of the line. arm.
- the other magnetic flux guide 5 is located on the other two bridge arms of the second full bridge circuit 7.
- the first full bridge circuit 6, the second full bridge circuit 7 and the half bridge circuit 8 are all located on the substrate.
- the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor includes: a substrate, a first TMR magnetoresistance unit, a second TMR magnetoresistance unit, a third TMR magnetoresistance unit, a fixed resistor, and a magnetic flux
- the magnetic conductor, the first full bridge circuit, the second full bridge circuit and the half bridge circuit wherein: a plurality of first TMR magnetoresistive units are located on the four bridge arms of the first full bridge circuit; a plurality of second TMR magnetoresistive units Located on a pair of opposite bridge arms of the half bridge circuit, multiple fixed resistors are located on the other pair of opposite bridge arms of the half bridge circuit; multiple third TMR magnetoresistive units are located on the four bridge arms of the second full bridge circuit And one magnetic flux permeator is located on the two adjacent bridge arms of the second full bridge circuit, and the other magnetic flux permeator is located on the other two bridge arms of the second full bridge circuit; the first full bridge circuit, Both the second full bridge
- the first full bridge circuit 6 is located on the X axis or the Y axis of the magnetic sensor
- the half bridge circuit 8 is located on the X axis or the Y axis of the magnetic sensor
- the first full bridge The circuit 6 and the half-bridge circuit 8 are not located on the same axis
- the second full-bridge circuit 7 is located on the Z axis of the magnetic sensor.
- both the first full bridge circuit 6 and the second full bridge circuit 7 here refer to a Wheatstone full bridge circuit
- the half bridge circuit 8 refers to a Wheatstone half bridge.
- the Wheatstone bridge is a bridge circuit composed of four resistors. These four resistors are called the bridge arms of the bridge.
- the Wheatstone bridge uses the change of resistance to measure the change of physical quantity.
- the single-chip microcomputer collects the voltage across the variable resistor and then By processing, the corresponding physical quantity changes can be calculated, which is a high-precision measurement method.
- Figure 1 is a Wheatstone full bridge circuit, which is sensitive to the Y axis of the magnetic sensor (of course it can also be the X axis)
- Figure 2 is a Wheatstone half bridge circuit, which is sensitive to the X axis of the magnetic sensor (of course it can also be the Y axis) , But not coaxial with the Wheatstone full bridge circuit)
- Figure 3 shows that the Wheatstone full bridge plus magnetic flux concentrator is sensitive to the Z axis.
- the direction of the TMR magnetoresistive unit of the Wheatstone full-bridge circuit can be changed from 0 degrees to 90 degrees, preferably a 45-degree structure, and a half-bridge structure of 0 degrees; the out-of-plane uniaxial TMR design is a Wheatstone bridge plus Flux permeator structure.
- FIG. 4 The interconnection structure of the TMR magnetoresistive unit of the Wheatstone bridge is shown in Figure 4.
- two adjacent magnetic tunnel junctions MTJ
- MTJ magnetic tunnel junctions
- Fig. 5 is a cross-sectional view of the Z-axis flux permeator of the Wheatstone bridge (the cross-sectional view along the line aa' in Fig. 3).
- the material of the fixed resistor includes one or more of Ta, Pt, Gr, and Al.
- the material of the magnetic flux guide includes one or more of NiFe soft magnetic, NiFeCr soft magnetic, and CoAl-based soft magnetic.
- the materials of the respective interconnections and wires of the first full bridge circuit, the second full bridge circuit, and the half bridge circuit include one or more of Ta, Cr, Al, Au, and Ti.
- the magnetoresistive film stack of the TMR magnetoresistive unit includes an antiferromagnetic layer, an artificial antiferromagnetic layer, a spacer layer (non-magnetic interlayer), and a ferromagnetic free layer (sensing layer);
- the shape of the resistance unit is an ellipse, and the length-to-width axis ratio of the ellipse is in the range of 3-10 (that is, the ratio of the major axis to the minor axis of the ellipse is in the range of 3-10).
- each of the bridge arm films of the first full bridge circuit 6, the second full bridge circuit 7 and the half bridge circuit 8 adopts a TMR film structure, which is formed by connecting TMR films in series. See FIG. 6, preferably,
- the magnetoresistive film stack of the TMR magnetoresistive unit further includes a substrate, a seed layer, and a covering layer. The stacking sequence of each layer is as shown in the figure. The wide axis ratio ranges from 3 to 10.
- this embodiment also discloses a manufacturing method of a monolithic integrated triaxial tunneling magnetoresistance magnetic sensor. As shown in Figure 7, in this embodiment, the method includes:
- Step 100 Use a magnetron sputtering apparatus to grow the magnetoresistive film of the TMR magnetoresistive unit.
- Step 200 Apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit in the positive direction of the X axis.
- the prepared device is annealed at 270 degrees with a 5T field in the x direction, kept for one hour to reduce the magnetic field to 0, and 500 Oe is applied in the reverse X-axis direction for 15 minutes to reduce the magnetic field to zero, and then slowly cooled to Room temperature.
- Step 300 Apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit along the X axis in the reverse direction.
- step 200 the X-axis is reversed by applying a magnetic field annealing, so that the angle of the magnetic pinning layer can be changed from 0 degrees to 90 degrees.
- Step 400 Set the X-axis, Y-axis and Z-axis of the magnetic sensor on a single substrate.
- the preparation method of the monolithic integrated triaxial tunneling magnetoresistance magnetic sensor specifically includes: using a magnetron sputtering apparatus to grow the magnetoresistive film of the TMR magnetoresistive unit; A full-bridge circuit, a second full-bridge circuit, and a half-bridge circuit are annealed with a magnetic field; then, the first full-bridge circuit, a second full-bridge circuit, and a half-bridge circuit are annealed with a magnetic field in the reverse direction of the X-axis, and are applied on a single substrate The X-axis, Y-axis and Z-axis of the magnetic sensor are set on it.
- the manufacturing method of the monolithic integrated triaxial tunneling magnetoresistance magnetic sensor further includes:
- Step 500 Growing a soft magnetic material with a predetermined thickness on the outer surface of the flux permeator.
- the soft magnetic material includes one or more of NiFe soft magnetic, NiFeCr soft magnetic and CoAl-based soft magnetic; the magnetic flux guide is in-plane connected.
- the preset thickness in step 500 is 0.8 micrometers to 1.2 micrometers.
- the present invention provides a specific application example of a method for manufacturing a monolithic integrated triaxial tunneling magnetoresistance magnetic sensor.
- the specific application example specifically includes the following content, see FIG. 9.
- step S1 sequentially needs to go through processes such as ultraviolet exposure, etching TMR strips and interconnection lines, ultraviolet exposure, etching bottom interconnection lines, ultraviolet exposure, evaporation SiN protection, ultraviolet exposure, and evaporation top electrode.
- the Z-axis adopts a Wheatstone bridge and a magnetic flux permeator structure.
- a soft magnetic material of about 1 micron such as NiFe, NiFeCr, etc.
- the out-of-plane magnetic field is introduced into the plane. Measure the size of the out-of-plane magnetic field.
- the first full-bridge circuit, the second full-bridge circuit, and the half-bridge circuit are subjected to magnetic field annealing along the positive direction of the X-axis, and the range is 1-50000 Oe.
- the first full-bridge circuit, the second full-bridge circuit, and the half-bridge circuit are subjected to magnetic field annealing along the X axis in the reverse direction, and the range is 1-50000 Oe.
- the soft magnetic material includes one or more of NiFe soft magnetic, NiFeCr soft magnetic, and CoAl-based soft magnetic; the magnetic flux guide is in-plane connected, and the preset thickness is 0.8 micrometers to 1.2 micrometers.
- the sensor is sensitive to the Y-axis magnetic field, but not sensitive to the X-axis magnetic field, so that the Y-axis magnetic field can be measured.
- the magnetic pinning direction is biased toward the short axis direction.
- the changing trend of R1, R2, R3, R4 with the magnetic field is shown in the curve in Figure 10.
- the Wheatstone half-bridge structure is not sensitive to the Y-axis magnetic field.
- the TMR bridge is linear to the x-axis magnetic field, and the fixed magnetic resistance does not change with the external field, which can realize the X-axis magnetic field measurement.
- the Wheatstone full bridge structure is added with a magnetic concentrator (flux permeator) to introduce the Z-direction magnetic field into the plane.
- the cross-sectional structure is shown in Figure 11.
- the magnetic flux is along the left side, and R2 Along the right, the adjacent change curve of the Wheatstone bridge is formed opposite, which can realize the Z-axis magnetic field test.
- the monolithic integrated three-axis tunneling magnetoresistance magnetic sensor includes: a substrate, a first TMR magnetoresistance unit, a second TMR magnetoresistance unit, a third TMR magnetoresistance unit, a fixed resistor, and a magnetic flux
- the magnetic conductor, the first full bridge circuit, the second full bridge circuit and the half bridge circuit wherein: a plurality of first TMR magnetoresistive units are located on the four bridge arms of the first full bridge circuit; a plurality of second TMR magnetoresistive units Located on a pair of opposite bridge arms of the half bridge circuit, multiple fixed resistors are located on the other pair of opposite bridge arms of the half bridge circuit; multiple third TMR magnetoresistive units are located on the four bridge arms of the second full bridge circuit And one magnetic flux permeator is located on the two adjacent bridge arms of the second full bridge circuit, and the other magnetic flux permeator is located on the other two bridge arms of the second full bridge circuit; the first full bridge circuit, Both the second full bridge
- the embodiment of the present invention also provides a method for manufacturing a monolithic integrated three-axis tunneling magnetoresistance magnetic sensor, which specifically includes: using a magnetron sputtering apparatus to grow a magnetoresistive film of a TMR magnetoresistive unit; and positively along the X axis Apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit; then, apply a magnetic field annealing to the first full bridge circuit, the second full bridge circuit, and the half bridge circuit in the reverse direction of the X axis, and
- the X-axis, Y-axis and Z-axis of the magnetic sensor are arranged on a single substrate.
- the present invention utilizes the structural design of TMR, adds a magnetic flux permeator, and finally realizes one-time annealing, integrated three-axis sensor and three-axis TMR sensor on a single substrate. Purpose. It has the advantages of simple process, high integration, and ability to accurately measure the three-axis magnetic field.
- the embodiments of the present invention can be provided as a method, a system, or a computer program product. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法。该传感器包括:衬底、第一TMR磁阻单元(1)、第二TMR磁阻单元(2)、第三TMR磁阻单元(3)、固定电阻(4)、磁通导磁器(5)、第一全桥电路(6)、第二全桥电路(7)以及半桥电路(8),其中:多个第一TMR磁阻单元(1)位于第一全桥电路(6)的四个桥臂上;多个第二TMR磁阻单元(2)位于半桥电路(8)的一对相对的桥臂上,多个固定电阻(4)位于半桥电路(8)的另一对相对的桥臂上;多个第三TMR磁阻单元(3)位于第二全桥电路(7)的四个桥臂上;第一全桥电路(6)、第二全桥电路(7)以及半桥电路(8)均位于衬底上。由此,在单一衬底中一次集成磁传感器的三轴,降低了成本,大幅度提高了器件的精度。
Description
本发明涉及磁性电子器件设计与制备技术领域,特别是与CMOS兼容的磁性电子领域的传感器的设计与制备技术,尤其涉及一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法。
磁传感器广泛用于现代工业和电子产品中以感应磁场强度来测量电流、位置、方向等物理参数。在很多领域中都有着广泛的应用,比如机电自动控制、生物检测和航天工业等。在现有技术中,有许多不同类型的传感器用于测量磁场和其他参数,例如采用霍尔(Hall)元件,各向异性磁电阻(AMR)元件或巨磁电阻(GMR)元件为敏感元件的磁传感器。其中霍尔效应、各向异性磁阻效应早已成熟,巨磁电阻也在硬盘磁头上得到广泛应用。隧穿磁电阻(TMR,Tunnel Magnetoresistance,隧穿磁阻)元件则是近年来开始工业应用的新型磁电阻效应传感器,其利用的是磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的AMR元件和GMR元件具有更大的电阻变化率。AMR元件、GMR元件的MR比分别为3%、12%左右,而TMR元件甚至达到400%。随着人工智能、无人驾驶等高新技术的发展,对传感器精度的要求也越来越高,在高端应用领域已出现被TMR传感器取代的趋势。
TMR是由磁隧道结(MTJ,Magnetic tunneling junction,磁隧道结)结构产生,一般为铁磁层/非磁绝缘层/铁磁层(FM/I/FM)的三明治结构。饱和磁化时,两铁磁层的磁化方向互相平行,而通常两铁磁层的矫顽力不同,因此反向磁化时,矫顽力小的铁磁层磁化矢量首先翻转,使得两铁磁层的磁化方向变成反平行。电子从一个磁性层隧穿到另一个磁性层的隧穿几率与两磁性层的磁化方向有关。
为了消除温度影响,磁传感器一般要做成四个桥臂的惠斯通桥结构,相邻两桥臂随外磁场的变化是相反的。相对地,现有技术中存在以下劣势:首先各向异性传感器和巨磁阻材料的磁阻率比隧穿磁电阻TMR低,所以精度比TMR精度低。其次,各向异性传感器和巨磁阻效应传感器对于第三轴难以集成在一起,需要拼接在一起实现三轴传感,制备工艺复杂。另外,目前现有的TMR传感器无法在一片衬底上集成三轴传感,同样是靠拼接实现惠斯通桥设计,以达到三轴传感。
发明内容
本发明所提供的单片集成的三轴隧穿磁电阻磁传感器及其制备方法,在单一衬底中且一次集成磁传感器的三轴,减化了工艺,降低了成本,大幅度提高了器件的精度。
为了达到以上目的,本发明一方面公开了一种单片集成三轴隧穿磁电阻的磁传感器,包括:
衬底、第一TMR磁阻单元、第二TMR磁阻单元、第三TMR磁阻单元、固定电阻、磁通导磁器、第一全桥电路、第二全桥电路以及半桥电路,其中:
多个所述第一TMR磁阻单元位于所述第一全桥电路的四个桥臂上;
多个所述第二TMR磁阻单元位于所述半桥电路的一对相对的桥臂上,多个所述固定电阻位于所述半桥电路的另一对相对的桥臂上;
多个所述第三TMR磁阻单元位于所述第二全桥电路的四个桥臂上,且一所述磁通导磁器位于所述第二全桥电路的相邻的两个桥臂上,另一所述磁通导磁器位于所述第二全桥电路的另外两个桥臂上;
所述第一全桥电路、第二全桥电路以及半桥电路均位于所述衬底上。
一实施例中,所述第一全桥电路位于所述磁传感器的X轴或者Y轴,所述半桥电路位于所述磁传感器的X轴或者Y轴,且所述第一全桥电路与所述半桥电路不位于同一轴向上;
所述第二全桥电路位于所述磁传感器的Z轴上。
一实施例中,所述固定电阻的材料包括Ta、Pt、Gr以及Al的一种或多种。
一实施例中,所述磁通导磁器的材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种。
一实施例中,所述第一全桥电路、第二全桥电路以及半桥电路各自的互连线以及导线的材料包括Ta、Cr、Al、Au以及Ti的一种或多种。
一实施例中,所述TMR磁阻单元的磁阻膜堆包括反铁磁层、人工反铁磁层、间隔层以及铁磁自由层;
所述TMR磁阻单元形状为一椭圆形,所述椭圆形的长宽轴比范围为3~10。
本发明还公开了如上所述的单片集成三轴隧穿磁电阻的磁传感器的制备方法,该方法包括:
采用磁控溅射仪生长TMR磁阻单元的磁阻膜;
沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火;
沿X轴反向对所述第一全桥电路、第二全桥电路以及半桥电路加磁场退火,以及
在单一衬底上设置所述磁传感器的X轴、Y轴以及Z轴。
一实施例中,磁钉扎层角度范围为0至90度。
一实施例中,单片集成的三轴隧穿磁电阻磁传感器的制备方法还包括:在磁通导磁器外表生长预设厚度的软磁材料,所述软磁材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种;所述磁通导磁器为面内连通形。
一实施例中,所述预设厚度为0.8微米至1.2微米。
本发明实施例所提供的单片集成三轴隧穿磁电阻的磁传感器包括:衬底、第一TMR磁阻单元、第二TMR磁阻单元、第三TMR磁阻单元、固定电阻、磁通导磁器、第一全桥电路、第二全桥电路以及半桥电路,其中:多个第一TMR磁阻单元位于第一全桥电路的四个桥臂上;多个第二TMR磁阻单元位于半桥电路的一对相对的桥臂上,多个固定电阻位于半桥电路的另一对相对的桥臂上;多个第三TMR磁阻单元位于第二全桥电路的四个桥臂上,且一磁通导磁器位于第二全桥电路的相邻的两个桥臂上,另一磁通导磁器位于第二全桥电路的另外两个桥臂上;第一全桥电路、第二全桥电路以及半桥电路均位于衬底上。另外,本发明实施例还提供一种单片集成三轴隧穿磁电阻的磁传感器的制备方法,具体包括:采用磁控溅射仪生长TMR磁阻单元的磁阻膜;以及沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火;接着,沿X轴反向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火,并在单一衬底上设置磁传感器的X轴、Y轴以及Z轴。本发明单片集成三轴TMR传感器,且一次集成三轴,减化了工艺,降低了成本,大幅度提高了器件的精度。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的惠斯通全桥结构示意图;
图2示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的惠斯通半桥结构示意图;
图3示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的Z轴结构示意图;
图4示出本发明实施例中惠斯通桥互联结构示意图;
图5示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的Z轴结构剖面示意图;
图6示出本发明实施例中TMR磁阻单元的膜层结构示意图;
图7示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的制备方法的流程图一;
图8示出本发明实施例中单片集成三轴隧穿磁电阻的磁传感器的制备方法的流程图二;
图9为本发明的具体应用实例中单片集成三轴隧穿磁电阻的磁传感器的制备方法的流程图;
图10为本发明的具体应用实例中单片集成三轴隧穿磁电阻的磁传感器的工作原理示意图;
图11为本发明的具体应用实例中磁通导磁器剖面结构磁场方向示意图。
符号说明:
1 第一TMR磁阻单元
2 第二TMR磁阻单元
3 第三TMR磁阻单元
4 固定电阻
5 磁通导磁器
6 第一全桥电路
7 第二全桥电路
8 半桥电路
9 Ta电极
10 金电极
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。在此公开的实施例,其特定的结构细节和功能细节仅是表示描述特定实施例的目的,因此,可以有许多可选择的形式来实施本发明,且本发明不应该被理解为仅仅局限于在此提出的示例实施例,而是应该覆盖落入本发明范围内的所有变化、等价物和可替换物。 在实际制造过程中,各个步骤的工艺选择、顺序排列等视具体情况确定,且均包含于本发明公开的范围之内。
目前,在已公开的相关技术中,设计了一种全桥和半桥巨磁阻GMR结构,实现了一次退火两轴传感。全桥结构为四个45度的GMR条组成,通过退火实现随单一磁场方向敏感,相邻桥臂变化趋势相反。半桥结构为两个0度的GMR条外加两个固定电阻组成,通过退火实现磁场方向敏感变化。全桥和半桥结构组合,通过一次退火实现了面内两轴磁传感,可以理解的是,其具有以下缺点:
1)各向异性传感器和巨磁阻材料的磁阻率比隧穿磁电阻TMR低,所以精度比TMR精度低。
2)各向异性传感器和巨磁阻效应传感器对于第三轴难以集成在一起,需要拼接在一起实现三轴传感,制备工艺复杂。
3)目前现有的TMR传感器无法在一片衬底上集成三轴传感,同样是靠拼接实现惠斯通桥设计,达到三轴传感。
为了解决以上问题的至少之一,根据本发明的一个方面,本实施例公开了一种单片集成三轴隧穿磁电阻的磁传感器。
在本实施例中,如图1至图3所示,所述单片集成三轴隧穿磁电阻的磁传感器包括:衬底(图中未出示)、第一TMR磁阻单元1、第二TMR磁阻单元2、第三TMR磁阻单元3、固定电阻4、磁通导磁器5、第一全桥电路6、第二全桥电路7以及半桥电路8,其中:
多个所述第一TMR磁阻单元1位于所述第一全桥电路6的四个桥臂上;
多个所述第二TMR磁阻单元2位于所述半桥电路8的一对相对的桥臂上,所述多个固定电阻4位于所述半桥电路8的另一对相对的桥臂上;
多个所述第三TMR磁阻单元3位于所述第二全桥电路7的四个桥臂上,且一所述磁通导磁器5位于所述第二全桥电路7的相邻的两个桥臂上,需要说明的是,这里的相邻的两个桥臂是指将第二全桥电路7的正电压以及负电压连接成线,该线两侧各有两个相邻的桥臂。另一所述磁通导磁器5位于所述第二全桥电路7的另外两个桥臂上。
所述第一全桥电路6、第二全桥电路7以及半桥电路8均位于所述衬底上。
本发明实施例所提供的单片集成三轴隧穿磁电阻的磁传感器包括:衬底、第一TMR磁阻单元、第二TMR磁阻单元、第三TMR磁阻单元、固定电阻、磁通导磁器、第一全桥电路、第二全桥电路以及半桥电路,其中:多个第一TMR磁阻单元位于第一全桥电 路的四个桥臂上;多个第二TMR磁阻单元位于半桥电路的一对相对的桥臂上,多个固定电阻位于半桥电路的另一对相对的桥臂上;多个第三TMR磁阻单元位于第二全桥电路的四个桥臂上,且一磁通导磁器位于第二全桥电路的相邻的两个桥臂上,另一磁通导磁器位于第二全桥电路的另外两个桥臂上;第一全桥电路、第二全桥电路以及半桥电路均位于衬底上。本发明单片集成三轴TMR传感器,且一次集成三轴,减化了工艺,降低了成本,大幅度提高了器件的精度。
一实施例中,所述第一全桥电路6位于所述磁传感器的X轴或者Y轴,所述半桥电路8位于所述磁传感器的X轴或者Y轴,且所述第一全桥电路6与所述半桥电路8不位于同一轴向上;所述第二全桥电路7位于所述磁传感器的Z轴上。
可以理解的是,这里的第一全桥电路6以及第二全桥电路7均是指惠斯通全桥电路,同样地,半桥电路8是指惠斯通半桥。惠斯通电桥是由四个电阻组成的电桥电路,这四个电阻分别叫做电桥的桥臂,惠斯通电桥利用电阻的变化来测量物理量的变化,单片机采集可变电阻两端的电压然后处理,就可以计算出相应的物理量的变化,是一种高精度的测量方式。图1为惠斯通全桥电路,对磁传感器的Y轴敏感(当然也可以是X轴),图2为惠斯通半桥电路,对磁传感器的X轴敏感(当然也可以是Y轴,但不与惠斯通全桥电路同轴),图3为惠斯通全桥加磁通聚集器对Z轴敏感。
一实施例中,惠斯通全桥电路TMR磁阻单元方向可在0度到90度变化,优选为45度结构,半桥为0度结构;面外单轴TMR设计为惠斯通桥加磁通导磁器结构。
惠斯通桥的TMR磁阻单元互连结构如图4所示,在图4中,两个相邻的磁隧道结(MTJ)底部通过Ta电极9连接,顶部各自通过金电极10与周围的磁隧道结连接。图5是惠斯通桥Z轴磁通导磁器的剖面图(图3中沿aa’线的剖面图)。
一实施例中,所述固定电阻的材料包括Ta、Pt、Gr以及Al的一种或多种。
一实施例中,所述磁通导磁器的材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种。
一实施例中,所述第一全桥电路、第二全桥电路以及半桥电路各自的互连线以及导线的材料包括Ta、Cr、Al、Au以及Ti的一种或多种。
一实施例中,所述TMR磁阻单元的磁阻膜堆包括反铁磁层、人工反铁磁层、间隔层(非磁性间层)以及铁磁自由层(感应层);所述TMR磁阻单元形状为一椭圆形,所述椭圆形的长宽轴比范围为3~10(即该椭圆形的长轴与短轴之比的范围为3~10)。
可以理解的是,第一全桥电路6、第二全桥电路7以及半桥电路8的每个桥臂薄膜都采用TMR薄膜结构,其由TMR薄膜串联而成,参见图6,优选地,TMR磁阻单元的磁阻膜堆包括还包括,衬底、种子层以及覆盖层,各层叠加顺序如图所示,且所述TMR磁阻单元形状为一椭圆形,所述椭圆形的长宽轴比范围为3~10。
基于相同原理,本实施例还公开了一种单片集成三轴隧穿磁电阻的磁传感器的制备方法。如图7所示,本实施例中,所述方法包括:
步骤100:采用磁控溅射仪生长TMR磁阻单元的磁阻膜。
步骤200:沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火。
优选地,将制备的器件沿x方向加5T场270度退火,保温一小时,将磁场降为0,反向X轴方向加场500Oe,保温15分钟,将磁场降为零,然后缓慢降温至室温。
步骤300:沿X轴反向对所述第一全桥电路、第二全桥电路以及半桥电路加磁场退火。
在步骤200的基础上,再X轴反向加磁场退火,使磁钉扎层角度可以从0度到90度变化。
步骤400:在单一衬底上设置所述磁传感器的X轴、Y轴以及Z轴。
本发明实施例所提供的单片集成三轴隧穿磁电阻的磁传感器的制备方法,具体包括:采用磁控溅射仪生长TMR磁阻单元的磁阻膜;以及沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火;接着,沿X轴反向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火,并在单一衬底上设置磁传感器的X轴、Y轴以及Z轴。
一实施例中,参见图8,单片集成三轴隧穿磁电阻的磁传感器的制备方法还包括:
步骤500:在磁通导磁器外表生长预设厚度的软磁材料。
所述软磁材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种;所述磁通导磁器为面内连通形。优选地,步骤500中的预设厚度为0.8微米至1.2微米。
为进一步地说明本方案,本发明提供单片集成三轴隧穿磁电阻的磁传感器的制备方法的具体应用实例,该具体应用实例具体包括如下内容,参见图9。
S1:微加工制备三轴器件。
具体地,步骤S1依次需要经过紫外曝光、刻蚀TMR条与互联线、紫外曝光、刻蚀底互联线、紫外曝光、蒸镀SiN保护、紫外曝光以及蒸镀顶电极等工艺。
S2:采用磁控溅射仪生长TMR磁阻单元的磁阻膜。
具体地,Z轴采用惠斯通桥加磁通导磁器结构,在惠斯通桥做完以后,生长1微米左右的软磁材料,如NiFe、NiFeCr等,将面外磁场导入面内,以测量面外磁场大小。
S3:沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火。
具体地,沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火,范围在1-50000Oe。
S4:沿X轴反向对所述第一全桥电路、第二全桥电路以及半桥电路加磁场退火。
具体地,沿X轴反向对所述第一全桥电路、第二全桥电路以及半桥电路加磁场退火,范围在1-50000Oe。
S5:在磁通导磁器外表生长预设厚度的软磁材料。
所述软磁材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种;所述磁通导磁器为面内连通形,所述预设厚度为0.8微米至1.2微米。
参见图10,本具体应用实例的单片集成三轴隧穿磁电阻的磁传感器的工作原理为:
(1)针对图1,该传感器对Y轴磁场敏感,对X轴磁场不敏感,即可实现Y轴的磁场测量。首先沿X轴加大场退火,再沿-X轴(X轴反方向)小场退火后,磁钉扎方向偏向于短轴方向。R1、R2、R3、R4随磁场变化趋势如图10曲线所示。
(2)针对图2,惠斯通半桥结构,对Y轴磁场不敏感,TMR桥对x轴磁场变化呈线性,固定磁阻随外场不变化,可实现对X轴磁场测量。
(3)针对图3,惠斯通全桥结构,加入聚磁器(磁通导磁器),将Z方向磁场导入面内,剖面结构如图11所示,对于R1桥臂磁通沿左边,R2沿右边,形成惠斯通桥相邻变化曲线相反,可实现对Z轴磁场测试。
本发明实施例所提供的单片集成三轴隧穿磁电阻的磁传感器包括:衬底、第一TMR磁阻单元、第二TMR磁阻单元、第三TMR磁阻单元、固定电阻、磁通导磁器、第一全桥电路、第二全桥电路以及半桥电路,其中:多个第一TMR磁阻单元位于第一全桥电路的四个桥臂上;多个第二TMR磁阻单元位于半桥电路的一对相对的桥臂上,多个固定电阻位于半桥电路的另一对相对的桥臂上;多个第三TMR磁阻单元位于第二全桥电路的四个桥臂上,且一磁通导磁器位于第二全桥电路的相邻的两个桥臂上,另一磁通导磁器位于第二全桥电路的另外两个桥臂上;第一全桥电路、第二全桥电路以及半桥电路均位于衬底上。另外,本发明实施例还提供一种单片集成三轴隧穿磁电阻的磁传感器的制备方法,具体包括:采用磁控溅射仪生长TMR磁阻单元的磁阻膜;以及沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火;接着,沿X轴反向对第一全 桥电路、第二全桥电路以及半桥电路加磁场退火,并在单一衬底上设置磁传感器的X轴、Y轴以及Z轴。本发明在惠斯通半桥和全桥结构的基础上,利用TMR的结构设计,加入磁通导磁器,最终在一片衬底上实现了一次退火、集成三轴传感器以及三轴TMR传感的目的。具有工艺简单,集成度高,能够精确测量三轴磁场的优点。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于硬件+程序类实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
虽然本申请提供了如实施例或流程图的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或客户端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
- 一种单片集成三轴隧穿磁电阻的磁传感器,其特征在于,包括:衬底、第一TMR磁阻单元、第二TMR磁阻单元、第三TMR磁阻单元、固定电阻、磁通导磁器、第一全桥电路、第二全桥电路以及半桥电路,其中:多个所述第一TMR磁阻单元位于所述第一全桥电路的四个桥臂上;多个所述第二TMR磁阻单元位于所述半桥电路的一对相对的桥臂上,多个所述固定电阻位于所述半桥电路的另一对相对的桥臂上;多个所述第三TMR磁阻单元位于所述第二全桥电路的四个桥臂上,且一所述磁通导磁器位于所述第二全桥电路的相邻的两个桥臂上,另一所述磁通导磁器位于所述第二全桥电路的另外两个桥臂上;所述第一全桥电路、第二全桥电路以及半桥电路均位于所述衬底上。
- 根据权利要求1所述的磁传感器,其特征在于,所述第一全桥电路位于所述磁传感器的X轴或者Y轴,所述半桥电路位于所述磁传感器的X轴或者Y轴,且所述第一全桥电路与所述半桥电路不位于同一轴向上;所述第二全桥电路位于所述磁传感器的Z轴上。
- 根据权利要求1所述的磁传感器,其特征在于,固定电阻的材料包括Ta、Pt、Gr以及Al的一种或多种。
- 根据权利要求1所述的磁传感器,其特征在于,所述磁通导磁器的材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种。
- 根据权利要求1所述的磁传感器,其特征在于,所述第一全桥电路、第二全桥电路以及半桥电路各自的互连线以及导线的材料包括Cr、Al、Au以及Ti的一种或多种。
- 根据权利要求1所述的磁传感器,其特征在于,所述TMR磁阻单元的磁阻膜堆包括反铁磁层、人工反铁磁层、间隔层以及铁磁自由层;所述TMR磁阻单元形状为一椭圆形,所述椭圆形的长宽轴比范围为3~10。
- 一种制备权利要求1-6任一项所述的单片集成三轴隧穿磁电阻的磁传感器的方法,其特征在于,包括:采用磁控溅射仪生长TMR磁阻单元的磁阻膜;沿X轴正向对第一全桥电路、第二全桥电路以及半桥电路加磁场退火;沿X轴反向对所述第一全桥电路、第二全桥电路以及半桥电路加磁场退火,以及在单一衬底上设置所述磁传感器的X轴、Y轴以及Z轴。
- 根据权利要求7所述的方法,其特征在于,磁钉扎层角度范围为0至90度。
- 根据权利要求7所述的方法,其特征在于,还包括:在磁通导磁器外表生长预设厚度的软磁材料,所述软磁材料包括NiFe软磁、NiFeCr软磁以及CoAl基软磁的一种或多种;所述磁通导磁器为面内连通形。
- 根据权利要求9所述的方法,其特征在于,所述预设厚度为0.8微米至1.2微米。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010542080.9A CN111596239B (zh) | 2020-06-15 | 2020-06-15 | 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法 |
CN202010542080.9 | 2020-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021253600A1 true WO2021253600A1 (zh) | 2021-12-23 |
Family
ID=72179599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/109088 WO2021253600A1 (zh) | 2020-06-15 | 2020-08-14 | 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111596239B (zh) |
WO (1) | WO2021253600A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825826A (zh) * | 2022-12-22 | 2023-03-21 | 南方电网数字电网研究院有限公司 | 一种三轴全桥电路变换式线性磁场传感器 |
CN116224190A (zh) * | 2023-05-06 | 2023-06-06 | 江苏多维科技有限公司 | 一种消除磁通聚集元件制造误差的磁传感器 |
CN117054936A (zh) * | 2023-10-12 | 2023-11-14 | 江苏多维科技有限公司 | 一种梯度传感器 |
CN117858608A (zh) * | 2023-12-22 | 2024-04-09 | 珠海多创科技有限公司 | 一种磁阻元件及其制备方法、磁阻传感器 |
CN117872235A (zh) * | 2024-03-12 | 2024-04-12 | 江苏多维科技有限公司 | 一种z轴磁场传感器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113030804B (zh) * | 2021-03-01 | 2022-12-23 | 歌尔微电子股份有限公司 | 传感器和电子设备 |
CN113466759B (zh) * | 2021-06-30 | 2023-06-13 | 山东大学 | 单、双轴磁阻磁场传感器和制作方法 |
CN113866690B (zh) * | 2021-12-01 | 2022-10-11 | 北京芯可鉴科技有限公司 | 三轴隧穿磁电阻传感器及其制备方法、使用方法 |
CN114509593B (zh) * | 2021-12-31 | 2024-11-26 | 歌尔微电子股份有限公司 | 电流传感器、电子设备和检测装置 |
CN115728681B (zh) * | 2022-11-15 | 2023-09-12 | 南方电网数字电网研究院有限公司 | 磁场传感器及其测试方法、装置、制备方法和计算机设备 |
CN116953336B (zh) * | 2023-09-21 | 2024-01-19 | 北京智芯微电子科技有限公司 | 电流传感器芯片、制作方法和电路 |
CN119471506A (zh) * | 2024-11-08 | 2025-02-18 | 珠海多创科技有限公司 | 磁阻元件及传感设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102918413A (zh) * | 2010-03-31 | 2013-02-06 | 艾沃思宾技术公司 | 单芯片三轴磁场传感器的工艺集成 |
CN103323795A (zh) * | 2013-06-21 | 2013-09-25 | 中国人民解放军国防科学技术大学 | 一体式三轴磁传感器 |
CN103887428A (zh) * | 2012-12-21 | 2014-06-25 | 磁感科技香港有限公司 | 一种磁传感装置的制备工艺 |
CN103885005A (zh) * | 2012-12-21 | 2014-06-25 | 磁感科技香港有限公司 | 磁传感装置及其磁感应方法 |
CN103913709A (zh) * | 2014-03-28 | 2014-07-09 | 江苏多维科技有限公司 | 一种单芯片三轴磁场传感器及其制备方法 |
CN104183696A (zh) * | 2013-05-20 | 2014-12-03 | 上海矽睿科技有限公司 | 一种磁传感装置的制备工艺 |
CN104459576A (zh) * | 2013-09-24 | 2015-03-25 | 上海矽睿科技有限公司 | 磁传感装置及其磁感应方法、磁传感装置的制备工艺 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452319B (zh) * | 2012-01-09 | 2014-09-11 | Voltafield Technology Corp | 磁阻感測元件 |
CN103901363B (zh) * | 2013-09-10 | 2017-03-15 | 江苏多维科技有限公司 | 一种单芯片z轴线性磁电阻传感器 |
CN108431620B (zh) * | 2015-12-28 | 2021-04-09 | 柯尼卡美能达株式会社 | 磁性传感器、传感器单元、磁性检测装置、以及磁性测量装置 |
JP6330896B1 (ja) * | 2016-12-20 | 2018-05-30 | Tdk株式会社 | 3軸磁気センサ及びその製造方法 |
CN108919147B (zh) * | 2018-06-22 | 2021-02-09 | 钱正洪 | 一种三轴磁场传感器 |
US11009562B2 (en) * | 2018-08-03 | 2021-05-18 | Isentek Inc. | Magnetic field sensing apparatus |
CN111044951B (zh) * | 2019-11-27 | 2022-06-24 | 北京航空航天大学青岛研究院 | 三轴磁场传感器及其制造方法 |
-
2020
- 2020-06-15 CN CN202010542080.9A patent/CN111596239B/zh not_active Expired - Fee Related
- 2020-08-14 WO PCT/CN2020/109088 patent/WO2021253600A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102918413A (zh) * | 2010-03-31 | 2013-02-06 | 艾沃思宾技术公司 | 单芯片三轴磁场传感器的工艺集成 |
CN103887428A (zh) * | 2012-12-21 | 2014-06-25 | 磁感科技香港有限公司 | 一种磁传感装置的制备工艺 |
CN103885005A (zh) * | 2012-12-21 | 2014-06-25 | 磁感科技香港有限公司 | 磁传感装置及其磁感应方法 |
CN104183696A (zh) * | 2013-05-20 | 2014-12-03 | 上海矽睿科技有限公司 | 一种磁传感装置的制备工艺 |
CN103323795A (zh) * | 2013-06-21 | 2013-09-25 | 中国人民解放军国防科学技术大学 | 一体式三轴磁传感器 |
CN104459576A (zh) * | 2013-09-24 | 2015-03-25 | 上海矽睿科技有限公司 | 磁传感装置及其磁感应方法、磁传感装置的制备工艺 |
CN103913709A (zh) * | 2014-03-28 | 2014-07-09 | 江苏多维科技有限公司 | 一种单芯片三轴磁场传感器及其制备方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825826A (zh) * | 2022-12-22 | 2023-03-21 | 南方电网数字电网研究院有限公司 | 一种三轴全桥电路变换式线性磁场传感器 |
CN115825826B (zh) * | 2022-12-22 | 2023-09-15 | 南方电网数字电网研究院有限公司 | 一种三轴全桥电路变换式线性磁场传感器 |
CN116224190A (zh) * | 2023-05-06 | 2023-06-06 | 江苏多维科技有限公司 | 一种消除磁通聚集元件制造误差的磁传感器 |
CN116224190B (zh) * | 2023-05-06 | 2023-09-05 | 江苏多维科技有限公司 | 一种消除磁通聚集元件制造误差的磁传感器 |
CN117054936A (zh) * | 2023-10-12 | 2023-11-14 | 江苏多维科技有限公司 | 一种梯度传感器 |
CN117054936B (zh) * | 2023-10-12 | 2024-01-12 | 江苏多维科技有限公司 | 一种梯度传感器 |
CN117858608A (zh) * | 2023-12-22 | 2024-04-09 | 珠海多创科技有限公司 | 一种磁阻元件及其制备方法、磁阻传感器 |
CN117872235A (zh) * | 2024-03-12 | 2024-04-12 | 江苏多维科技有限公司 | 一种z轴磁场传感器 |
CN117872235B (zh) * | 2024-03-12 | 2024-05-31 | 江苏多维科技有限公司 | 一种z轴磁场传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN111596239A (zh) | 2020-08-28 |
CN111596239B (zh) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021253600A1 (zh) | 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法 | |
JP4361077B2 (ja) | 磁気センサおよびその製造方法 | |
EP3223028B1 (en) | Multiple axis magnetic sensor | |
JP6984792B2 (ja) | 磁気センサ、磁気センサアレイ、磁場分布測定装置、および位置特定装置 | |
US8786278B2 (en) | Three-dimensional magnetic field sensor and method of producing same | |
EP3229035B1 (en) | Magnetic field sensor with permanent magnet biasing | |
US20040212360A1 (en) | Magnetic sensor and method of producing the same | |
JP7188775B2 (ja) | シングル・チップ二軸磁気抵抗角度センサ | |
WO2014094526A1 (zh) | 磁传感装置及其磁感应方法 | |
JP2006098088A (ja) | 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法 | |
US11009562B2 (en) | Magnetic field sensing apparatus | |
US20090315554A1 (en) | Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device | |
EP3236276B1 (en) | Magnetic field sensor with multiple axis sense capability | |
US11002806B2 (en) | Magnetic field detection device | |
KR101233662B1 (ko) | 유연 박막 자기저항 센서 및 그 제조 방법 | |
US9778324B2 (en) | Yoke configuration to reduce high offset in X-, Y-, and Z-magnetic sensors | |
CN106483479A (zh) | 单电桥磁场传感器 | |
JP2019174438A (ja) | 磁気検出装置 | |
JP4940565B2 (ja) | 磁気センサの製造方法 | |
CN115856731B (zh) | 磁场传感器及电压测量方法 | |
CN113196079B (zh) | 具有包括两个自由层的一个tmr叠堆的磁传感器阵列 | |
CN118311484B (zh) | 一种磁阻元件、磁阻传感器及其制造方法 | |
JP2007064692A (ja) | 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20941156 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20941156 Country of ref document: EP Kind code of ref document: A1 |