WO2021253591A1 - 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法 - Google Patents

一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法 Download PDF

Info

Publication number
WO2021253591A1
WO2021253591A1 PCT/CN2020/107420 CN2020107420W WO2021253591A1 WO 2021253591 A1 WO2021253591 A1 WO 2021253591A1 CN 2020107420 W CN2020107420 W CN 2020107420W WO 2021253591 A1 WO2021253591 A1 WO 2021253591A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
water volume
continuous casting
peritectic steel
center segregation
Prior art date
Application number
PCT/CN2020/107420
Other languages
English (en)
French (fr)
Inventor
刘青
韩延申
张江山
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to US17/226,019 priority Critical patent/US11192176B1/en
Publication of WO2021253591A1 publication Critical patent/WO2021253591A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to the technical field of continuous casting slab quality control, in particular to a method for improving the center segregation and surface cracks of a peritectic steel continuous casting medium-thick slab.
  • continuous casting is currently one of the most important steel casting methods in the world.
  • the solidification of continuous casting billet is a heat dissipation process, which mainly relies on three main cooling stages: primary cooling of the mold, secondary cooling of the continuous casting machine, and air radiation cooling.
  • cooling water is the most important cooling medium, and the amount of water allocated for primary cooling and secondary cooling directly affects the quality of the cast slab.
  • the primary purpose of the mold cooling water distribution is to ensure that the initial solidified billet shell has sufficient thickness when the continuous casting billet exits the mold and reduce the incidence of steel breakout accidents.
  • the main purpose of the secondary cooling of the continuous casting machine is to ensure uniform cooling of the slab, and the temperature of the surface of the continuous casting slab decreases or rises within a reasonable range, so that the strength and plasticity of the slab are controlled within a reasonable range.
  • the center segregation of continuous casting slab is a typical slab defect, which is mainly due to the difference in solubility of solute elements in the solid and liquid phases and the phenomenon of selective crystallization during the solidification of molten steel, resulting in uneven distribution of solute elements.
  • Mechanical soft reduction technology and electromagnetic stirring technology are two main auxiliary methods to improve the central segregation defect. Combining the two with the continuous casting cooling water distribution system can effectively improve the internal quality of the continuous casting slab.
  • the continuous casting cooling water distribution system is to perform forced cooling of the molten steel during the continuous casting process, which directly affects the formation of the solidification structure of the continuous casting slab, and affects the center segregation of the final continuous casting slab. Therefore, optimizing the continuous casting cooling water distribution system is an important measure to improve the center segregation of continuous casting slabs.
  • the center segregation and surface crack defects of continuous casting slab are closely related to the solidification and cooling control process of the continuous casting process. Therefore, in order to improve the quality of the continuous casting slab, when optimizing the solidification and cooling process of the continuous casting process, the two main defects of the continuous casting process should be dealt with. Carry out overall consideration. Especially in the continuous casting of peritectic steel, due to the peritectic reaction, during the solidification of molten steel, the ⁇ phase and the liquid phase react at the same time to form the austenite phase. The volume shrinkage is large, and the solidified billet shell produces greater solidification shrinkage, and the initial solidified billet The shell is not uniformly controlled due to solidification and cooling, resulting in increased crack sensitivity. Therefore, according to the solidification characteristics of peritectic steel, when optimizing and controlling the solidification and cooling process of continuous casting slab, special consideration should be given to its comprehensive influence on the center segregation and surface crack defects of continuous casting slab to improve the quality of continuous casting slab.
  • the present invention provides a method for improving the center segregation and surface cracks of the peritectic steel continuous casting medium-thick slab.
  • the peritectic steel continuous casting medium-thickness slab can be effectively improved.
  • the present invention provides a method for improving the center segregation and surface cracks of the peritectic steel continuous casting medium-thick slab. Improvement of center segregation and surface cracks of cast medium-thick slabs.
  • an implementation manner is further provided, and the content of the method includes:
  • the cooling water volume on the wide surface of the mold is 3400-3600L/min, and the cooling water volume on the narrow surface of the mold is 480-530L/min;
  • the cooling water volume on the wide side of the foot roller section is 239-298L/min, and the cooling water volume on the narrow side of the foot roller section is 61-65L/min;
  • the total cooling water volume of the fan-shaped section is 1517-2166L/min, of which the total cooling water volume of the 1-4 sections is 840-1101L/min, and the total cooling water volume of the 5-8 sections is 633-1001L/min.
  • the cooling water setting process in paragraphs 1-4 is: the cooling water volume in the lower part of the first stage is 241-318L/min, and the cooling water in the second stage is 241-318L/min
  • the cooling water volume of the arc is 84-110L/min
  • the total cooling water of the second segment outer arc is 95-126L/min
  • the total cooling water volume of the inner arc 3-4 is 75-93L/min
  • the third The total amount of cooling water for the 4 outer arcs is 99-125L/min.
  • cooling water volume at the upper part of the first stage is 246-329 L/min.
  • the above-mentioned aspects and any possible implementation manners further provide an implementation manner.
  • the process for setting the cooling water volume in stages 5-8 is: the total amount of cooling water in the arc in stages 5-6 is 140-189L/min, The cooling water volume of the 5-6 outer arc is 223-302L/min, the cooling water of the 7-8 inner arc is 97-184L/min, and the cooling water of the 7-8 outer arc is 173-326L/min.
  • an implementation manner is further provided, and the content of the method further includes:
  • the total cooling water volume of the inner arc in the 9-14th segment of the sector is 44-64L/min, and the outer arc in the 9-14th segment does not spray water.
  • an implementation manner is further provided, and the inlet temperature of the cooling water is 30-40°C.
  • an implementation manner is further provided, and the drawing speed of the peritectic steel continuous casting medium-thickness slab is 0.7-0.9 m/min.
  • an implementation manner is further provided, and the overall specific water volume of the foot roller section and the fan-shaped section is 0.89-0.94 L/Kg.
  • the present invention provides a peritectic steel continuous casting medium-thick slab, characterized in that the method for improving the center segregation and surface cracks of the peritectic steel continuous casting medium-thick slab as described above is used for casting;
  • the proportion of the central segregation of the peritectic steel continuous casting medium-thick slab within the 2.6 level reaches more than 82%, and the surface defect rate is less than 0.53%.
  • an implementation manner is further provided, and the section specification of the peritectic steel continuous casting medium-thickness slab is 250mm*1800mm.
  • the present invention can obtain the following technical effects: by implementing the continuous casting solidification control strategy and water distribution plan of "appropriately reduce the cooling intensity before solidification + strong cooling at the solidification end", it can simultaneously improve the center segregation of the continuous casting slab. With crack defects on the surface of the cast slab, the proportion of the center segregation of the continuous casting slab within the 2.6 level reaches more than 82%, and the surface defect rate is below 0.53%.
  • Fig. 1 is a schematic diagram of the secondary cooling section of a continuous casting machine provided by an embodiment of the present invention.
  • Secondary cooling zone 1 (foot roller section), 2-9: secondary cooling zone 2-9, (1) ⁇ (14): secondary cooling zone 1-14.
  • the purpose of the present invention is to provide a method for improving the central segregation and surface cracks of the peritectic steel continuous casting medium-thick slab, especially the peritectic steel continuous casting medium-thick slab with a cross-sectional specification of 250mm*1800mm.
  • the continuous casting solidification control strategy and water distribution plan of appropriately reducing the cooling strength + strong cooling at the solidification end can simultaneously improve the center segregation of the continuous casting slab and the surface crack defects of the cast slab.
  • the targeted peritectic steel is Q345D, Q345E or Q345qE steel, and the superheat of the peritectic steel during pouring is 20-30°C.
  • a method for improving the center segregation and surface cracks of a peritectic steel continuous casting medium-thick slab the specific steps include:
  • Step 1 Control the cooling water volume of the wide surface of the mold to 3400-3600L/min, and the cooling water volume of the narrow surface to 480-530L/min;
  • Step 2 Control the cooling water volume on the wide surface of the foot roll to 239-298L/min, and the cooling water volume on the narrow surface of the foot roll to 61-65L/min;
  • Step 3 Control the total cooling water volume of the fan-shaped section to 1517-2166L/min, where the total cooling water volume of the 1-4 section is 840-1101L/min, and the total cooling water volume of the 5-8 section is 633-1001L/min;
  • the total cooling water volume of sections 1-4 specifically includes: the cooling water volume of the lower part of section 1 is 241-318L/min, the cooling water volume of the second inner arc is 84-110L/min, and the total cooling water of the second outer arc is 95 -126L/min, the total amount of cooling water for the 3-4 inner arc is 75-93L/min, and the total amount of cooling water for the 3-4 outer arc is 99-125L/min;
  • the total cooling water for the 5-8th section Specifically: the total amount of cooling water for the 5-6 inner arc is 140-189L/min, the cooling water for the 5-6 outer arc is 223-302L/min, and the cooling water for the 7-8 inner arc is 97-184L/min ,
  • Step 4 Control the cooling water volume of the 9-14 inner arc to 44-64L/min, and the 9-14 outer arc does not spray water.
  • the pulling speed of the peritectic steel continuous casting medium-thick slab is 0.7-0.9m/min, the specific water volume of the secondary cooling zone is 0.89-0.94L/Kg, and the temperature of the cooling water inlet is controlled between 30-40°C.
  • the present invention is based on the numerical simulation of solidification heat transfer of continuous casting slab and high-temperature thermal simulation, and comprehensively optimizes the water distribution for the primary cooling of the mold and the water distribution for the secondary cooling of the continuous casting machine to simultaneously improve the center segregation of the peritectic steel continuous casting medium-thick slab.
  • the present invention effectively improves the uniformity of the initial solidified slab shell of the peritectic steel by controlling the cooling water volume on the width and narrow surface of the copper plate of the mold.
  • the amount of cooling water is greater than 530L/min, it will cause unevenness of the primary solidified slab shell at the meniscus, increase the surface thermal stress of the continuous casting slab, and significantly increase the tendency of surface cracks of the continuous casting slab. If it is less than 3400L/min, and the cooling water volume of the narrow surface is less than 480L/min, there will be a risk of leakage.
  • the cooling water volume on the wide side of the foot roll By controlling the cooling water volume on the wide side of the foot roll to 239-298L/min, and the cooling water volume on the narrow side of the foot roll to 61-65L/min, to ensure that the continuous casting slab can have sufficient strength in the foot roll section, while reducing the continuous casting slab
  • the temperature return rate of the surface prevents excessive thermal stress from causing surface cracks.
  • the cooling intensity of this area By setting the total cooling water volume of the sector 1-4 to 840-1101L/min, the cooling intensity of this area can be weakened, the surface temperature drop rate of the continuous casting slab can be reduced, and the longitudinal cooling uniformity of the continuous casting slab can be improved.
  • the equiaxed crystal ratio of the continuous casting slab can be significantly increased, and the center segregation defect of the continuous casting slab can be improved.
  • the forced cooling strategy is implemented at the solidification end of the continuous casting slab, and the total cooling water volume in the 5-8th segment of the sector is 633-1001L/min.
  • the solidified slab shell of the continuous casting slab is effectively improved Strength, reduce bulging volume, improve center segregation defects.
  • it can reduce the temperature drop rate difference between the surface and the center of the continuous casting slab, increase the volume shrinkage of the solidified slab shell on the surface of the continuous casting slab, supplement the solidification shrinkage of the center of the slab, and suppress the appearance of the center of the continuous casting slab. Holes.
  • the cavities will produce negative pressure suction, which causes the molten steel rich in solute elements to enter the center of the slab and cause center segregation. Therefore, the implementation of strong cooling at the solidification end of the continuous casting slab is beneficial to improve the center segregation defect of the continuous casting slab.
  • the total cooling water volume of the 5th-8th section is specifically controlled to be 140-189L/min for the 5-6 inner arc cooling water and 223-302L for the 5-6 outer arc cooling water.
  • the cooling water volume of the 7-8 section inner arc is 97-184L/min
  • the cooling water volume of the 7-8 section outer arc is 173-326L/min, which can ensure the high surface temperature of the continuous casting slab at the end of the 7th section of the sector
  • the upper limit temperature value of the third brittle zone makes the continuous casting billet have higher plasticity during straightening, and effectively avoids the significant increase of surface cracks caused by the larger straightening stress in the straightening section (the 8th section of the sector section).
  • the surface defect rate of the peritectic steel continuous casting slab obtained based on the technical scheme of the present invention is low. According to the experimental test results, the surface defect rate of the continuous casting slab obtained in the present invention is less than 0.53%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel grade is Q345D, the pouring temperature is 1531°C, and the drawing speed is 0.70m/min.
  • Crystallizer water volume wide surface water volume is 3500L/min, narrow surface water volume is 500L/min;
  • the second cold water volume the water volume on the wide surface of the foot roller is 239L/min, the water volume on the narrow surface of the foot roller is 61L/min, the water volume in the upper part of the segment 1 is 246L/min, the water volume in the lower part of the 1 segment is 241L/min, and the segment is 2 segments
  • the water volume of the inner arc is 84L/min
  • the water volume of the outer arc of the sector 2 is 95L/min
  • the water volume of the inner arc of the sector 3 ⁇ 4 is 75L/min
  • the water volume of the outer arc of the sector 3 ⁇ 4 is 99L/min.
  • the arc water volume of the segment 5-6 is 140L/min
  • the outer arc water volume of the segment 5-6 is 223L/min
  • the inner arc water volume of the segment 7-8 is 97L/min
  • the outer arc of the segment 7-8 The water volume is 173L/min; the water volume of the inner arc in the segment 9-14 is 44L/min, and the outer arc is no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard grading test.
  • the center segregation ratio was 82% within the 2.6 level, and the surface defect rate of the continuous casting slab was 0.53%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel grade is Q345E, the pouring temperature is 1531°C, and the drawing speed is 0.80m/min.
  • Crystallizer water volume wide surface water volume is 3500L/min, narrow surface water volume is 500L/min;
  • Second cold water volume the water volume of the wide surface of the foot roller is 273L/min, the water volume of the narrow surface of the foot roller is 61L/min, the water volume of the upper part of the segment 1 is 294L/min, the water volume of the lower part of the 1 segment is 280L/min, and the segment is 2
  • the water volume of the inner arc is 96L/min
  • the water volume of the outer arc of the sector 2 is 110L/min
  • the water volume of the inner arc of the sector 3 ⁇ 4 is 81L/min
  • the water volume of the outer arc of the sector 3 ⁇ 4 is 108L/min.
  • the internal arc water volume of the sector 5-6 is 167L/min
  • the external arc water volume of the sector 5-6 is 270L/min
  • the internal arc water volume of the sector 7-8 is 139L/min
  • the sector 7-8 external arc The water volume is 247L/min; the water volume of the inner arc in the segment 9-14 is 52L/min, and the outer arc is no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard grading test.
  • the center segregation ratio was 85% within the 2.6 level, and the surface defect rate of the continuous casting slab was 0.48%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel grade is Q345D, the pouring temperature is 1531°C, and the pulling speed is 0.90m/min.
  • Crystallizer water volume wide surface water volume is 3500L/min, narrow surface water volume is 500L/min;
  • the second cold water volume the water volume on the wide surface of the foot roller is 298L/min, the water volume on the narrow surface of the foot roller is 65L/min, the water volume of the upper part of the segment 1 is 329L/min, the water volume of the lower part of the 1 segment is 318L/min, and the water volume of the segment 2 is
  • the water volume of the inner arc is 110L/min
  • the water volume of the outer arc of the segment 2 is 126L/min
  • the water volume of the inner arc of the segment 3 ⁇ 4 is 93L/min
  • the water volume of the outer arc of the segment 3 ⁇ 4 is 125L/min.
  • the arc water volume of the inner arc in the 5 to 6 segments is 189L/min
  • the arc water volume in the outer arc of the segment 5 to 6 is 302L/min
  • the arc water volume in the segment 7 to 8 is 184L/min
  • the outer arc water volume of the segment 7 to 8 is 326L/min
  • the water volume of the inner arc in the 9-14 segments of the sector is 64L/min
  • the outer arc has no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard grading test.
  • the center segregation ratio was 83% within the 2.6 level, and the surface defect rate of the continuous casting slab was 0.46%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel grade is Q345D, the pouring temperature is 1531°C, and the drawing speed is 0.70m/min.
  • Crystallizer water volume wide surface water volume is 4100L/min, narrow surface water volume is 570L/min;
  • the second cold water volume the water volume on the wide surface of the foot roller is 239L/min, the water volume on the narrow surface of the foot roller is 61L/min, the water volume in the upper part of the segment 1 is 246L/min, the water volume in the lower part of the 1 segment is 241L/min, and the segment is 2 segments
  • the water volume of the inner arc is 84L/min
  • the water volume of the outer arc of the sector 2 is 95L/min
  • the water volume of the inner arc of the sector 3 ⁇ 4 is 75L/min
  • the water volume of the outer arc of the sector 3 ⁇ 4 is 99L/min.
  • the arc water volume of the segment 5-6 is 140L/min
  • the outer arc water volume of the segment 5-6 is 223L/min
  • the inner arc water volume of the segment 7-8 is 97L/min
  • the outer arc of the segment 7-8 The water volume is 173L/min; the water volume of the inner arc in the segment 9-14 is 44L/min, and the outer arc is no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard grading test.
  • the center segregation ratio was 70% within the 2.6 level, and the surface defect rate of the continuous casting slab was 1.8%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel type is Q345D, the pouring temperature is 1531°C, and the drawing speed is 0.80m/min.
  • Crystallizer water volume wide surface water volume is 3500L/min, narrow surface water volume is 500L/min;
  • Second cold water volume the water volume of the wide surface of the foot roller is 261L/min, the water volume of the narrow surface of the foot roller is 51L/min, the water volume of the upper part of the segment 1 is 294L/min, the water volume of the lower part of the 1 segment is 312L/min, and the segment 2 is The inner arc water volume is 107L/min, the fan-shaped segment 2 outer arc water volume is 122L/min, the fan-shaped segment 3 ⁇ 4 segment inner arc water volume is 90L/min, and the fan-shaped segment 3 ⁇ 4 segment outer arc water volume is 120L/min.
  • the internal arc water volume of the sector 5 ⁇ 6 is 112L/min
  • the sector 5 ⁇ 6 external arc water volume is 280L/min
  • the sector 7 ⁇ 8 internal arc water volume is 92L/min
  • the sector 7 ⁇ 8 external arc water volume is 164L/min
  • the water volume of the inner arc in the segment 9-14 is 52L/min
  • the outer arc is no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard grading test.
  • the center segregation ratio was 46.2% within the 2.6 level, and the surface defect rate of the continuous casting slab was 2.2%.
  • the method of the present invention is adopted for the medium-thickness continuous casting slab of 250mm*1800mm peritectic steel, the steel type is Q345qE, the pouring temperature is 1531°C, and the drawing speed is 0.90m/min.
  • Crystallizer water volume wide surface water volume is 3500L/min, narrow surface water volume is 500L/min;
  • Second cold water volume the water volume on the wide surface of the foot roller is 248L/min, the water volume on the narrow surface of the foot roller is 54L/min, the water volume of the upper part of the segment 1 is 329L/min, the water volume of the lower part of the 1 segment is 353L/min, and the water volume of the segment 2 is The water volume of the inner arc is 122L/min, the water volume of the outer arc of the sector 2 is 140L/min, the water volume of the inner arc of the sector 3 ⁇ 4 is 103L/min, and the water volume of the outer arc of the sector 3 ⁇ 4 is 139L/min.
  • the arc water volume of the inner arc of 5-6 segments is 126L/min
  • the arc water volume of the outer arc of the segment 5-6 is 202L/min
  • the arc water volume of the inner arc of the segment 7-8 is 122L/min
  • the outer arc water volume of the segment 7-8 is 217L/min
  • the water volume of the inner arc of the segment 9-14 is 64L/min
  • the outer arc is no water.
  • the low-magnification inspection center segregation of the continuous casting slab was tested by the Mannesmann standard rating.
  • the center segregation rate was 44.7% within the 2.6 level, and the surface defect rate of the continuous casting slab was 1.9%.
  • Table 1 is the data table of each sub-section of the second cold zone. It contains the length of each section and the distance from the meniscus, which are currently used equipment parameters of the second cold zone.
  • the cooling water volume in each embodiment and comparative example of the present invention is also based on The parameters in this table are based. When the corresponding length and distance change greatly, the cooling water volume of each section in each embodiment and comparative example of the present invention also needs to change accordingly.

Abstract

一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,该方法包括:结晶器宽面冷却水量3400-3600L/min,窄面冷却水量480-530L/min;足辊段宽面冷却水量239-298L/min,窄面冷却水量61-65L/min,扇形段总冷却水量1517-2166L/min,其中,第1-4段总冷却水量840-1101L/min,第5-8段总冷却水量为633-1001L/min。该方法通过降低凝固前段冷却强度并加强凝固末段冷却强度,实现对包晶钢连铸中厚板坯中心偏析与表面裂纹的改善。

Description

一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法 【技术领域】
本发明涉及连铸坯质量控制技术领域,尤其涉及一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法。
【背景技术】
连铸作为钢铁生产流程中十分重要的环节,为目前世界上最主要的钢铸造方法之一。连铸坯凝固是散热过程,主要依靠结晶器一次冷却、连铸机二次冷却以及空气辐射冷却三个主要的冷却阶段。其中,冷却水是最主要的冷却介质,一次冷却配水量与二次冷却配水量直接影响铸坯质量。在连铸坯生产过程中,结晶器一次冷却配水量主要目的是,连铸坯出结晶器时,保证初始凝固坯壳具有足够的厚度,降低漏钢事故发生率。连铸机二次冷却主要目的是,保证铸坯均匀冷却,连铸坯表面温度降低或升高的速度处于合理范围内,使铸坯强度和塑性控制在合理的范围内。
连铸坯中心偏析是一种典型的铸坯缺陷,主要由于钢液凝固过程中,溶质元素在固、液相中的溶解度差异以及存在选分结晶现象,出现溶质元素分布不均的现象。机械轻压下技术与电磁搅拌技术是两种主要改善中心偏析缺陷的辅助手段,二者与连铸冷却配水制度相结合,可有效地改善连铸坯内部质量。连铸冷却配水制度是对钢水在连铸过程中进行强制冷却,直接影响着连铸坯凝固组织的形成,影响最终连铸坯的中心偏析。故而,优化调控连铸冷却配水制度是改善连铸坯中心偏析的一项重要措施。
连铸板坯表面裂纹是连铸过程中的常见缺陷类别,严重影响轧材质 量。在连铸过程中,表面裂纹一般源于结晶器一次冷却阶段,并且在连铸二次冷却阶段进行扩展,最终显现于轧材表面。连铸过程中,钢水经历结晶器的一次冷却及之后的连铸二次冷却过程,这两个区域的冷却方式影响着连铸坯壳的强度与塑性,对连铸坯表面裂纹会产生重要影响。
连铸板坯中心偏析与表面裂纹缺陷均与连铸过程凝固冷却控制工艺密切相关,所以,为了提高连铸坯质量,在优化连铸过程凝固冷却工艺时,应对连铸过程的两种主要缺陷进行统筹考虑。特别是连铸包晶钢时,由于包晶反应,在钢水凝固过程中,δ相和液相同时反应生成奥氏体相,体积收缩大,凝固坯壳产生较大的凝固收缩,初始凝固坯壳因凝固冷却控制的不均匀,致使裂纹敏感性增大。所以,针对包晶钢的凝固特点,优化调控连铸板坯凝固冷却工艺时,应特别考虑其对连铸坯中心偏析与表面裂纹缺陷的综合影响,以提高连铸坯质量。
因此,有必要研究一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法来应对现有技术的不足,以解决或减轻上述一个或多个问题。
【发明内容】
有鉴于此,本发明提供了一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,通过调整凝固前段和凝固后端的冷却强度,能够有效改善包晶钢连铸中厚板坯的中心偏析与铸坯表面裂纹缺陷。
一方面,本发明提供一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,通过降低凝固前段冷却强度并加强凝固末段冷却强度,实现对包晶钢连铸中厚板坯中心偏析与表面裂纹的改善。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法的内容包括:
1)、结晶器宽面的冷却水量为3400-3600L/min,结晶器窄面的冷却 水量为480-530L/min;
2)足辊段宽面的冷却水量为239-298L/min,足辊段窄面的冷却水量为61-65L/min;
3)扇形段的总冷却水量为1517-2166L/min,其中,第1-4段的总冷却水量为840-1101L/min,第5-8段总冷却水量为633-1001L/min。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,第1-4段的冷却水设置工艺为:第1段下部的冷却水量为241-318L/min,第2段内弧的冷却水量为84-110L/min,第2段外弧的冷却水总量为95-126L/min,第3-4段内弧的冷却水总量为75-93L/min,第3-4段外弧的冷却水总量为99-125L/min。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,第1段上部的冷却水量为246-329L/min。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,第5-8段冷却水量的设置工艺为:第5-6段内弧冷却水总量为140-189L/min,第5-6段外弧的冷却水量为223-302L/min,第7-8段内弧冷却水量为97-184L/min,第7-8段外弧的冷却水量为173-326L/min。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法的内容还包括:
4)扇形段第9-14段内弧总冷却水量为44-64L/min,第9-14段外弧不喷水。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,冷却水的入水口温度为30-40℃。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述包晶钢连铸中厚板坯的拉速为0.7-0.9m/min。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式, 所述足辊段和所述扇形段的整体比水量为0.89-0.94L/Kg。
另一方面,本发明提供一种包晶钢连铸中厚板坯,其特征在于,采用如上任一所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法进行铸造;所述包晶钢连铸中厚板坯的中心偏析在2.6级以内的比例达到82%以上,表面缺陷率在0.53%以下。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述包晶钢连铸中厚板坯的断面规格为250mm*1800mm。
与现有技术相比,本发明可以获得包括以下技术效果:通过实施“凝固前段适当降低冷却强度+凝固末端强冷”的连铸凝固控制策略和配水方案,可同时改善连铸板坯中心偏析与铸坯表面裂纹缺陷,使得连铸坯中心偏析在2.6级以内的比例达到82%以上,表面缺陷率在0.53%以下。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一个实施例提供的连铸机二冷段分区示意图。
其中,图中:
1:二冷1区(足辊段),2~9:二冷2~9区,(1)~(14):二冷1~14段。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本发明的目的在于提供一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,特别是断面规格为250mm*1800mm的包晶钢连铸中厚板坯,通过实施“凝固前段适当降低冷却强度+凝固末端强冷”的连铸凝固控制策略和配水方案,可同时改善连铸板坯中心偏析与铸坯表面裂纹缺陷。针对的包晶钢为Q345D、Q345E或Q345qE钢,包晶钢浇注时的过热度为20~30℃。
一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,具体步骤包括:
步骤1、控制结晶器宽面的冷却水量为3400-3600L/min,且窄面的冷却水量为480-530L/min;
步骤2、控制足辊宽面的冷却水量为239-298L/min,且足辊窄面的冷却水量为61-65L/min;
步骤3、控制扇形段的总冷却水量为1517-2166L/min,其中,第1-4段的总冷却水量为840-1101L/min,第5-8段总冷却水量为633-1001L/min;第1-4段的总冷却水量具体包括:1段下部的冷却水量为241-318L/min,2段内弧的冷却水量为84-110L/min,2段外弧的 冷却水总量为95-126L/min,3-4段内弧的冷却水总量为75-93L/min,3-4段外弧的冷却水总量为99-125L/min;第5-8段的总冷却水量具体包括:5-6段内弧冷却水总量为140-189L/min,5-6段外弧的冷却水量为223-302L/min,7-8段内弧冷却水量为97-184L/min,7-8段外弧的冷却水量为173-326L/min。第1-4段的总冷却水量还包括:1段上部的冷却水量为246-329L/min。
步骤4、控制9-14段内弧冷却水量为44-64L/min,9-14段外弧不喷水。
包晶钢连铸中厚板坯的拉速为0.7-0.9m/min,二冷区的比水量为0.89-0.94L/Kg,冷却水的入水口温度控制在30-40℃之间。
本发明基于连铸板坯凝固传热数值模拟与高温热模拟研究,综合优化结晶器一次冷却配水量与连铸机二次冷却配水量以达到同时改善包晶钢连铸中厚板坯中心偏析与表面裂纹缺陷的目的。
本发明通过控制结晶器铜板宽、窄面的冷却水量,有效改善包晶钢初始凝固坯壳均匀性,根据本发明的技术方案,当结晶器宽面的冷却水量大于3600L/min、窄面的冷却水量大于530L/min时会引起的弯月面处初生凝固坯壳不均匀,增加连铸板坯表面热应力,使连铸坯表面裂纹发生倾向显著提高,而当结晶器宽面的冷却水量小于3400L/min,窄面的冷却水量小于480L/min时会产生漏钢风险。通过控制足辊宽面的冷却水量为239-298L/min,足辊窄面的冷却水量为61-65L/min,确保连铸坯在足辊段能够有足够的强度,同时降低连铸板坯表面的回温速率,避免产生过大的热应力诱发表面裂纹。通过将扇形段1-4段的总冷却水量为840-1101L/min,可减弱该区域的冷却强度,降低连铸坯表面温降速率,改善连铸坯纵向冷却均匀性。同时,由于结晶器、足辊和扇形段冷却水量的合理配置,可以显著提高连铸板坯等轴晶率,改善连铸坯中 心偏析缺陷。
在连铸板坯凝固末端实施强冷策略,将扇形段第5-8段总冷却水量为633-1001L/min,通过增加连铸板坯表面温降速率,有效提高连铸板坯凝固坯壳强度,减少鼓肚量,改善中心偏析缺陷。同时,相对于现有技术可减小连铸坯表面和中心温降速率差距,提高连铸板坯表面凝固坯壳体积收缩量,补充铸坯中心的凝固收缩量,抑制连铸板坯中心出现空穴。空穴会产生负压抽吸作用,使富集溶质元素的钢液进入铸坯中心而导致中心偏析,所以对连铸板坯凝固末端实施强冷有利于改善连铸坯中心偏析缺陷。
基于前述控制策略同时将所述第5-8段的总冷却水量具体控制为5-6段内弧冷却水总量为140-189L/min,5-6段外弧的冷却水量为223-302L/min,7-8段内弧冷却水量为97-184L/min,7-8段外弧的冷却水量为173-326L/min时,可确保扇形段7段末处连铸板坯表面温度高于第三脆性区上限温度值,使连铸坯矫直时具有较高的塑性,进而有效避免在矫直段(扇形段第8段)由于矫直应力较大造成的表面裂纹显著增加。
相对于现有技术,本发明的技术方案具有如下有益效果:
1)基于本发明的技术方案得到的包晶钢连铸坯中心偏析比例低,根据实验检测结果,本发明得到的连铸坯中心偏析在2.6级以内的比例达到82%以上;
2)基于本发明的技术方案得到的包晶钢连铸坯表面缺陷率低,根据实验检测结果,本发明得到的连铸坯表面缺陷率在0.53%以下。
实施例1:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种为Q345D,浇注温度为1531℃,拉速为0.70m/min。
1)结晶器水量:宽面水量为3500L/min,窄面水量为500L/min;
2)二冷水量:足辊宽面水量为239L/min,足辊窄面水量为61L/min,扇形段1段上部水量为246L/min,1段下部水量为241L/min,扇形段2段内弧水量为84L/min,扇形段2段外弧水量为95L/min,扇形段3~4段内弧水量为75L/min,扇形段3~4段外弧水量为99L/min。扇形段5~6段内弧水量为140L/min,扇形段5~6段外弧水量为223L/min,扇形段7~8段内弧水量为97L/min,扇形段7~8段外弧水量为173L/min;扇形段9~14段内弧水量为44L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为82%,连铸坯表面缺陷率为0.53%。
实施例2:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种为Q345E,浇注温度为1531℃,拉速为0.80m/min。
1)结晶器水量:宽面水量为3500L/min,窄面水量为500L/min;
2)二冷水量:足辊宽面水量为273L/min,足辊窄面水量为61L/min,扇形段1段上部水量为294L/min,1段下部水量为280L/min,扇形段2段内弧水量为96L/min,扇形段2段外弧水量为110L/min,扇形段3~4段内弧水量为81L/min,扇形段3~4段外弧水量为108L/min。扇形段5~6段内弧水量为167L/min,扇形段5~6段外弧水量为270L/min,扇形段7~8段内弧水量为139L/min,扇形段7~8段外弧水量为247L/min;扇形段9~14段内弧水量为52L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为85%,连铸坯表面缺陷率为0.48%。
实施例3:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种 为Q345D,浇注温度为1531℃,拉速为0.90m/min。
1)结晶器水量:宽面水量为3500L/min,窄面水量为500L/min;
2)二冷水量:足辊宽面水量为298L/min,足辊窄面水量为65L/min,扇形段1段上部水量为329L/min,1段下部水量为318L/min,扇形段2段内弧水量为110L/min,扇形段2段外弧水量为126L/min,扇形段3~4段内弧水量为93L/min,扇形段3~4段外弧水量为125L/min,扇形段5~6段内弧水量为189L/min,扇形段5~6段外弧水量为302L/min,扇形段7~8段内弧水量为184L/min,扇形段7~8段外弧水量为326L/min;扇形段9~14段内弧水量为64L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为83%,连铸坯表面缺陷率为0.46%。
对比例1:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种为Q345D,浇注温度为1531℃,拉速为0.70m/min。
1)结晶器水量:宽面水量为4100L/min,窄面水量为570L/min;
2)二冷水量:足辊宽面水量为239L/min,足辊窄面水量为61L/min,扇形段1段上部水量为246L/min,1段下部水量为241L/min,扇形段2段内弧水量为84L/min,扇形段2段外弧水量为95L/min,扇形段3~4段内弧水量为75L/min,扇形段3~4段外弧水量为99L/min。扇形段5~6段内弧水量为140L/min,扇形段5~6段外弧水量为223L/min,扇形段7~8段内弧水量为97L/min,扇形段7~8段外弧水量为173L/min;扇形段9~14段内弧水量为44L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为70%,连铸坯表面缺陷率为1.8%。
对比例2:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种为Q345D,浇注温度为1531℃,拉速为0.80m/min。
1)结晶器水量:宽面水量为3500L/min,窄面水量为500L/min;
2)二冷水量:足辊宽面水量为261L/min,足辊窄面水量为51L/min,扇形段1段上部水量为294L/min,1段下部水量为312L/min,扇形段2段内弧水量为107L/min,扇形段2段外弧水量为122L/min,扇形段3~4段内弧水量为90L/min,扇形段3~4段外弧水量为120L/min。扇形段5~6段内弧水量为112L/min,扇形段5~6段外弧水量为280L/min,扇形段7~8段内弧水量为92L/min,扇形段7~8段外弧水量为164L/min;扇形段9~14段内弧水量为52L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为46.2%,连铸坯表面缺陷率为2.2%。
对比例3:
对250mm*1800mm包晶钢中厚连铸板坯采用了本发明方法,钢种为Q345qE,浇注温度为1531℃,拉速为0.90m/min。
1)结晶器水量:宽面水量为3500L/min,窄面水量为500L/min;
2)二冷水量:足辊宽面水量为248L/min,足辊窄面水量为54L/min,扇形段1段上部水量为329L/min,1段下部水量为353L/min,扇形段2段内弧水量为122L/min,扇形段2段外弧水量为140L/min,扇形段3~4段内弧水量为103L/min,扇形段3~4段外弧水量为139L/min,扇形段5~6段内弧水量为126L/min,扇形段5~6段外弧水量为202L/min,扇形段7~8段内弧水量为122L/min,扇形段7~8段外弧水量为217L/min;扇形段9~14段内弧水量为64L/min,外弧无水。
该连铸板坯低倍检验中心偏析经采用曼内斯曼标准评级检测,中心偏析在2.6级以内比例为44.7%,连铸坯表面缺陷率为1.9%。
表1二冷区各分区分段数据表
Figure PCTCN2020107420-appb-000001
表1是二冷区各分区分段数据表,内有各段的长度以及距弯月面距离,为目前惯用的二冷区设备参数,本发明各实施例和对比例中的冷却水量也是以该表格内的参数为基础的,当对应的长度和距离发生较大变化时,本发明各实施例和对比例中各段的冷却水量也需相应的发生变化。
以上对本申请实施例所提供的一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申 请所附权利要求书的保护范围内。

Claims (10)

  1. 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,所述方法的内容包括:
    1)、结晶器宽面的冷却水量为3400-3600L/min,结晶器窄面的冷却水量为480-530L/min;
    2)足辊段宽面的冷却水量为239-298L/min,足辊段窄面的冷却水量为61-65L/min;
    3)扇形段的总冷却水量为1517-2166L/min,其中,第1-4段的总冷却水量为840-1101L/min,第5-8段总冷却水量为633-1001L/min。
  2. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,第1-4段的冷却水设置工艺为:第1段下部的冷却水量为241-318L/min,第2段内弧的冷却水量为84-110L/min,第2段外弧的冷却水总量为95-126L/min,第3-4段内弧的冷却水总量为75-93L/min,第3-4段外弧的冷却水总量为99-125L/min。
  3. 根据权利要求2所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,第1段上部的冷却水量为246-329L/min。
  4. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,第5-8段冷却水量的设置工艺为:第5-6段内弧冷却水总量为140-189L/min,第5-6段外弧的冷却水量为223-302L/min,第7-8段内弧冷却水量为97-184L/min,第7-8段外弧的冷却水量为173-326L/min。
  5. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,所述方法的内容还包括:
    4)扇形段第9-14段内弧总冷却水量为44-64L/min,第9-14段外弧不喷水。
  6. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,冷却水的入水口温度为30-40℃。
  7. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,所述包晶钢连铸中厚板坯的拉速为0.7-0.9m/min。
  8. 根据权利要求1所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法,其特征在于,所述足辊段和所述扇形段的整体比水量为0.89-0.94L/Kg。
  9. 一种包晶钢连铸中厚板坯,其特征在于,采用如权利要求1-8任一所述的改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法进行铸造;所述包晶钢连铸中厚板坯的中心偏析在2.6级以内的比例达到82%以上,表面缺陷率在0.53%以下。
  10. 根据权利要求9所述的包晶钢连铸中厚板坯,其特征在于,所述包晶钢连铸中厚板坯的断面规格为250mm*1800mm。
PCT/CN2020/107420 2020-06-17 2020-08-06 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法 WO2021253591A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/226,019 US11192176B1 (en) 2020-06-17 2021-04-08 Method for improving center segregation and surface crack of continuous casting medium thick slab of peritectic steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010554045.9 2020-06-17
CN202010554045.9A CN111774546B (zh) 2020-06-17 2020-06-17 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,019 Continuation-In-Part US11192176B1 (en) 2020-06-17 2021-04-08 Method for improving center segregation and surface crack of continuous casting medium thick slab of peritectic steel

Publications (1)

Publication Number Publication Date
WO2021253591A1 true WO2021253591A1 (zh) 2021-12-23

Family

ID=72756935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107420 WO2021253591A1 (zh) 2020-06-17 2020-08-06 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法

Country Status (3)

Country Link
CN (1) CN111774546B (zh)
LU (1) LU102759B1 (zh)
WO (1) WO2021253591A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020266B (zh) * 2021-02-26 2023-03-10 日照钢铁控股集团有限公司 一种薄板坯连铸连轧产线生产45Mn热轧卷板方法
CN114653913B (zh) * 2022-03-28 2023-10-17 山东钢铁集团日照有限公司 一种改善同辊径板坯连铸机包晶钢液面波动的方法
CN115090848A (zh) * 2022-06-15 2022-09-23 河钢乐亭钢铁有限公司 防止连铸过程铸坯弯曲变形的工艺方法
CN117644189B (zh) * 2024-01-30 2024-04-05 北京科技大学 一种采用离散小波变换监测连铸过程中铸坯鼓肚的方法
CN117840394B (zh) * 2024-03-07 2024-05-03 江苏省沙钢钢铁研究院有限公司 一种高质量铸坯及其连铸浇注方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153062A2 (en) * 1984-02-10 1985-08-28 Nippon Steel Corporation Method for mitigating solidification segregation of steel
JPH01170551A (ja) * 1987-12-24 1989-07-05 Nkk Corp 鋼の連続鋳造用鋳型
CN1117412A (zh) * 1994-05-30 1996-02-28 丹尼利机械厂联合股票公司 包晶体钢连铸法
CN101992282A (zh) * 2009-08-17 2011-03-30 攀钢集团攀枝花钢铁研究院有限公司 一种连铸方法
CN102744383A (zh) * 2012-07-30 2012-10-24 首钢总公司 一种含Nb亚包晶钢连铸坯、其制造方法及专用连铸机
CN107838390A (zh) * 2017-10-27 2018-03-27 舞阳钢铁有限责任公司 一种可改善大断面包晶钢连铸坯质量的方法
CN108672666A (zh) * 2018-05-24 2018-10-19 江苏省沙钢钢铁研究院有限公司 改善圆坯弹簧钢60Si2CrVAT中心偏析的连铸方法
CN109261922A (zh) * 2018-10-26 2019-01-25 中国重型机械研究院股份公司 一种凝固末端大压下连铸机的控制方法及生产工艺
CN109940140A (zh) * 2019-05-05 2019-06-28 马鞍山钢铁股份有限公司 一种提高亚包晶钢铸坯中心偏析质量的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100467164C (zh) * 2007-05-15 2009-03-11 武汉钢铁(集团)公司 一种防止连铸包晶钢结晶器液面波动的方法
CN103215496A (zh) * 2013-04-26 2013-07-24 内蒙古包钢钢联股份有限公司 一种含硼包晶钢的生产方法
KR101757548B1 (ko) * 2015-10-21 2017-07-12 현대제철 주식회사 포정강의 슬라브 제조 방법
CN106929753A (zh) * 2017-04-14 2017-07-07 邢台钢铁有限责任公司 一种马氏体包晶不锈钢2Cr13连铸坯及其生产方法
CN107891132B (zh) * 2017-10-26 2020-05-15 首钢京唐钢铁联合有限责任公司 一种亚包晶钢板坯连铸方法
CN107866538B (zh) * 2017-11-24 2020-06-19 南京钢铁股份有限公司 一种含钒含氮微合金化包晶钢的方坯连铸生产方法
CN108160964B (zh) * 2017-12-26 2019-12-31 首钢集团有限公司 一种含磷钢板坯连铸的方法
CN108823492B (zh) * 2018-06-15 2020-07-03 甘肃酒钢集团宏兴钢铁股份有限公司 一种csp薄板连铸机生产高合金高强度包晶钢的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153062A2 (en) * 1984-02-10 1985-08-28 Nippon Steel Corporation Method for mitigating solidification segregation of steel
JPH01170551A (ja) * 1987-12-24 1989-07-05 Nkk Corp 鋼の連続鋳造用鋳型
CN1117412A (zh) * 1994-05-30 1996-02-28 丹尼利机械厂联合股票公司 包晶体钢连铸法
CN101992282A (zh) * 2009-08-17 2011-03-30 攀钢集团攀枝花钢铁研究院有限公司 一种连铸方法
CN102744383A (zh) * 2012-07-30 2012-10-24 首钢总公司 一种含Nb亚包晶钢连铸坯、其制造方法及专用连铸机
CN107838390A (zh) * 2017-10-27 2018-03-27 舞阳钢铁有限责任公司 一种可改善大断面包晶钢连铸坯质量的方法
CN108672666A (zh) * 2018-05-24 2018-10-19 江苏省沙钢钢铁研究院有限公司 改善圆坯弹簧钢60Si2CrVAT中心偏析的连铸方法
CN109261922A (zh) * 2018-10-26 2019-01-25 中国重型机械研究院股份公司 一种凝固末端大压下连铸机的控制方法及生产工艺
CN109940140A (zh) * 2019-05-05 2019-06-28 马鞍山钢铁股份有限公司 一种提高亚包晶钢铸坯中心偏析质量的方法

Also Published As

Publication number Publication date
CN111774546A (zh) 2020-10-16
CN111774546B (zh) 2021-03-30
LU102759B1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2021253591A1 (zh) 一种改善包晶钢连铸中厚板坯中心偏析与表面裂纹的方法
CN102615491B (zh) 铜材的加工方法
CN104942252A (zh) 一种改善重轨钢大方坯内部质量的方法
CN108300913A (zh) 一种5356铝合金焊杆的连铸连轧生产工艺
CN113102714B (zh) 一种控制包晶钢板坯角部裂纹的连铸冷却方法
CN102848135A (zh) 一种厚度方向性能均匀特厚钢板的生产方法
WO2024037063A1 (zh) 高碳钢盘条及其生产方法
WO2019184731A1 (zh) 一种控制连铸过程中铸坯凝固组织结构的方法及其控制装置
CN106435303B (zh) 一种高强度、高韧性稀土铝合金材料及其制备方法
CN103993209A (zh) 稀土Sc微合金化的Al-Mg-Si-Cu合金及其制备方法
CN106917050B (zh) 一种耐蚀螺纹钢筋的连铸方法
CN109317628A (zh) Yq450nqr1乙字钢大方坯角部裂纹控制方法
US11192176B1 (en) Method for improving center segregation and surface crack of continuous casting medium thick slab of peritectic steel
CN112247093A (zh) 一种供直轧使用的连铸坯的制作方法
CN110052588B (zh) 一种微合金钢铸坯角部横裂纹控制工艺及结晶器
JPS62275556A (ja) 連続鋳造方法
CN109332619A (zh) Yq450nqr1乙字钢大方坯坯壳质量控制方法
CN101234412A (zh) 一种低偏析大型钢锭制造方法
CN114130976A (zh) 一种车轴钢大圆坯中心致密性的提升方法
CN113333707B (zh) 一种r10米弧连铸机无夹持段浇注矩形坯的方法
CN114752831A (zh) 一种高强度耐蚀铝合金及其制备方法和应用
CN113843402A (zh) 一种齿轮钢超大断面圆坯内部凝固组织的控制方法
CN105603302A (zh) 350mm直径的34CrMo圆管钢坯及其冶炼方法
LU501677B1 (en) Continuous casting cooling method for controlling corner cracks of peritectic steel slab
CN109382490A (zh) Yq450nqr1乙字钢大方坯表面质量控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941154

Country of ref document: EP

Kind code of ref document: A1