WO2021253414A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2021253414A1
WO2021253414A1 PCT/CN2020/097138 CN2020097138W WO2021253414A1 WO 2021253414 A1 WO2021253414 A1 WO 2021253414A1 CN 2020097138 W CN2020097138 W CN 2020097138W WO 2021253414 A1 WO2021253414 A1 WO 2021253414A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
terminal device
random access
rnti
monitoring
Prior art date
Application number
PCT/CN2020/097138
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102071.6A priority Critical patent/CN115699909A/zh
Priority to PCT/CN2020/097138 priority patent/WO2021253414A1/zh
Priority to EP20941127.1A priority patent/EP4156583A4/en
Publication of WO2021253414A1 publication Critical patent/WO2021253414A1/zh
Priority to US18/084,185 priority patent/US20230131188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and terminal device for wireless communication.
  • the network device can configure the terminal device to wake up (DRX ON) at the time predicted by the network and monitor the Physical Downlink Control Channel (PDCCH). At the same time, the network can also configure the terminal device to sleep at the time predicted by the network (DRX). OFF), the terminal device does not monitor the PDCCH.
  • DRX ON the time predicted by the network and monitor the Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • DRX Physical Downlink Control Channel
  • the network can also configure the terminal device to sleep at the time predicted by the network (DRX). OFF), the terminal device does not monitor the PDCCH.
  • PDCCH A skipping mechanism that is, the network can instruct the terminal device to skip PDCCH monitoring for a period of time by sending dynamic signaling.
  • the UE monitors the PDCCH at the active time of DRX.
  • the terminal device receives the PDCCH skipping instruction from the network device, the terminal device should follow the PDCCH skipping instruction, and skip the PDCCH monitoring during the subsequent PDCCH skipping duration, even if the UE is DRX active during this PDCCH skipping duration time.
  • the terminal device can trigger the uplink transmission on its own so as to expect further response from the network device. For example, if the terminal device triggers Beam Failure Recovery (BFR) on the primary cell, it will initiate random access on the primary cell. Since the terminal device expects the network device to respond, there is a need to monitor the PDCCH. In this case, if the PDCCH skipping instruction of the network device is received, how the terminal device monitors the PDCCH to take into account the network response and the power saving of the terminal device is a problem that needs to be solved urgently.
  • BFR Beam Failure Recovery
  • the embodiment of the present application provides a wireless communication method and terminal device, which is beneficial to both receiving network response and power saving of the terminal device.
  • a wireless communication method sends first information to a network device, where the first information is uplink information in a random access process, and the random access process is recovered from beam failure BFR trigger; the terminal device receives the first indication information sent by the network device, the first indication information is used to instruct the terminal device to skip monitoring the physical downlink control channel PDCCH; the terminal device according to the first Indication information to determine whether to skip monitoring the PDCCH.
  • a terminal device configured to execute the foregoing first aspect or any possible implementation of the first aspect.
  • the terminal device includes a unit for executing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a terminal device in a third aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a chip is provided, which is used to implement the method in the above-mentioned first aspect or each of its implementation manners.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • the terminal device after the terminal device sends the uplink information for random access, if the PDCCH skip indication from the network device is received, the terminal device can be based on the time between sending the uplink information and receiving the PDCCH skip indication.
  • the time interval between the terminal equipment and the RTT of the signal transmission between the terminal equipment and the network equipment, and the monitoring and control of the PDCCH are beneficial to take into account the response of the receiving network and the power saving of the terminal.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 2 is a schematic block diagram of DRX according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIGS 4-6 are several examples of PDCCH monitoring according to the embodiments of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum (NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of this application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of this application can also be applied to licensed spectrum, where: Licensed spectrum can also be considered non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and a personal digital processing unit.
  • ST station
  • cellular phone a cellular phone
  • cordless phone a Session Initiation Protocol (SIP) phone
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • computing devices or other processing devices connected to wireless modems computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • land including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • First class can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device used to communicate with mobile devices, the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA It can also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB, or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and NR network
  • gNB network equipment in the PLMN network or the network equipment in the PLMN network that will evolve in the future, or the network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • the UE can perform beam failure detection (BFD) and beam failure recovery (BFR) procedures for each serving cell based on the network configuration.
  • the beam failure detection may refer to the UE detecting the beam failure on the current service state information reference signal (Channel State Information Reference Signal, CSI-RS) or synchronization signal block (Synchronization Signal Block, SSB).
  • Beam failure recovery is used by the UE to indicate a new SSB/CSI-RS to the serving cell for subsequent data transmission.
  • the Media Access Control (MAC) layer of the terminal device performs beam failure detection through the beam failure instance indication (beamFailureInstance) reported by the physical layer.
  • the radio resource control (Radio Resource Control, RRC) of the network device configures the UE with parameters for beam failure detection, for example, the maximum number of beam failure instances (beamFailureInstanceMaxCount) and the beam failure detection timer (beamFailureDetectionTimer).
  • RRC Radio Resource Control
  • candidate resources for beam failure detection such as SSB/CSI-RS resources, can also be configured respectively.
  • the UE may maintain corresponding beam failure detection operations for each serving cell.
  • the MAC layer of the UE maintains a counter for beam failure detection (BFI_COUNTER), that is, a beam failure example counter, where the initial value of BFI_COUNTER is 0.
  • BFI_COUNTER a counter for beam failure detection
  • the MAC layer receives a beam failure example indication from the physical layer, it performs the following operations:
  • the UE triggers the BFR for the SCell;
  • the serving cell is a special cell (SpCell), for example, a primary cell (PCell) or a primary and secondary cell (PSCell)
  • SpCell a special cell
  • PCell primary cell
  • PSCell primary and secondary cell
  • the UE if the beamFailureDetectionTimer times out, or the UE receives reconfiguration parameters for beam failure detection, such as one or more of SSB/CSI-RS resources, beamFailureInstanceMaxCount, and beamFailureDetectionTimer, the UE resets the counter BFI_COUNTER to 0.
  • the UE performs the following operations for the SpCell:
  • the UE If the uplink resource can carry the SCell BFR media access control control element (Media Access Control Element, MAC CE) plus the subheader, the UE generates an SCell BFR MAC CE during the MAC grouping process. Otherwise, if the uplink resource can carry a truncated (truncated) SCell BFR MAC CE plus a subheader, the UE generates a truncated SCell BFR MAC CE during the MAC grouping process.
  • Media Access Control Element Media Access Control Element
  • Case 2 The UE does not have available uplink resources for the new transmission, and the UE triggers a scheduling request (Scheduling Request, SR) for SCell beam failure recovery.
  • SR scheduling request
  • the network may configure BFR parameters for the UE through Radio Resource Control (RRC) signaling, and the BFR parameters may include at least one of the following:
  • RRC Radio Resource Control
  • Non-contention-based random access channel Random Access Channel, RACH
  • RACH Random Access Channel
  • candidateBeamRSList Candidate beam used for BFR and its corresponding RACH parameter list, namely candidateBeamRSList
  • L1-RSRP threshold for the UE to perform beam selection such as rsrp-ThresholdSSB, rsrp-ThresholdCSI-RS;
  • the UE can perform random access initialization and select random access resources.
  • the UE can select the random access type. As an example, it can be selected as follows:
  • the network configures the RACH resource based on non-contention four-step random access for beam failure recovery on the active uplink bandwidth part (Uplink Bandwidth Part, UL BWP) of the currently selected uplink carrier for the UE, the UE can select Use four-step random access based on non-competition (ie 4-step CFRA).
  • non-competition ie 4-step CFRA
  • the network configures the RACH resource based on four-step random access and the RACH resource based on two-step random access on the active UL BWP of the currently selected uplink carrier for the UE, and the UE refers to the reference signal of the downlink reference path loss
  • the received power (Reference Signal Receiving Power, RSRP) is higher than the pre-configured threshold; or if the network only configures the RACH resource based on two-step random access on the active UL BWP of the currently selected uplink carrier for the UE, the UE can choose to use Contention-based two-step random access (2-step CBRA). Otherwise, the UE chooses to use contention-based four-step random access (4-step CBRA).
  • the UE If the UE chooses to use four-step random access, the UE starts beamFailureRecoveryTimer.
  • the UE selects an SSB from candidate SSBs whose corresponding SS-RSRP is higher than rsrp-ThresholdSSB, or One CSI-RS is selected from candidate CSI-RSs whose CSI-RSRP is higher than rsrp-Threshold CSI-RS as the target reference signal.
  • the four-step random access based on contention can specifically include the following steps:
  • Step 1 The terminal device sends a random access preamble (Preamble, namely Msg 1) to the network device.
  • Preamble namely Msg 1
  • the random access preamble can also be referred to as a preamble, a preamble sequence, a random access preamble sequence, a random access preamble sequence, and so on.
  • the network configures a set of candidate SSBs for the UE, a set of random access preamble (Preamble) resources and random access opportunity (RACH Occasion, RO) resources, and the terminal device selects the SSB from the selected SSB. It is used for random selection among contention-based random access resources, and the Preamble index (PREAMBLE_INDEX) is set as the selected random access Preamble.
  • the network device can estimate the transmission delay between it and the terminal device according to the Preamble and use this to calibrate the uplink timing, and can roughly determine the size of the resource required for the terminal device to transmit Msg3.
  • Step 2 The network device sends a random access response (Random Access Response, RAR, or Msg 2) to the terminal device.
  • RAR Random Access Response
  • Msg 2 Random Access Response
  • the terminal device After the terminal device sends the Preamble to the network device, it can open a random access response window (ra-ResponseWindow), in which ra-ResponseWindow is based on the random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI) Monitor the corresponding PDCCH. If the terminal device monitors the PDCCH scrambled by the RA-RNTI, it can obtain the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the PDCCH. Wherein, the PDSCH includes the RAR corresponding to the Preamble.
  • ra-ResponseWindow a random access response window
  • ra-ResponseWindow is based on the random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI) Monitor the corresponding PDCCH.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • RA-RNTI is calculated according to the time-frequency position of the PRACH sending the Preamble. Therefore, if multiple terminal devices send the Preamble on the same RO, the corresponding RAR is multiplexed in the same RAR media access control protocol data unit (Media Access Control Protocol Data Unit, MAC PDU).
  • Media Access Control Protocol Data Unit Media Access Control Protocol Data Unit
  • the terminal If the terminal successfully receives the RA-RNTI scrambled PDCCH corresponding to the RO resource sending the preamble, and the RAR contains a random access sequence identifier (Random Access Preamble Identifier, RAPID) carried by the MAC subPDU (subPDU) and the above If the PREAMBLE_INDEX selected in Msg 1 corresponds to the PREAMBLE_INDEX, the RAR is successfully received, and the terminal can decode the timing advance command (Timing Advance Command, TAC), uplink authorization resource (UL Grant), and temporary cell RNTI (Temporary Cell Radio Network Temporary Identity, TC-). RNTI) to perform Msg 3 transmission.
  • TAC Timing Advance Command
  • UL Grant uplink authorization resource
  • TC- Temporary Cell Radio Network Temporary Identity
  • the terminal device needs to retransmit Msg 1, if the number of transmissions of the preamble exceeds the network configuration The maximum number of transmissions (preambleTransMax), the terminal device reports the random access problem to the upper layer.
  • Step 3 The terminal device sends Msg 3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR is its own RAR message. For example, the terminal device can use the preamble index to check, and after determining that it belongs to its own RAR message, it can generate Msg 3 in the RRC layer, and Send Msg 3 to the network device, which needs to carry the identification information of the terminal device, etc.
  • Msg 3 is mainly used to notify the network equipment of the random access trigger event.
  • the Msg 3 sent by the terminal device in step 3 may include different content.
  • Msg 3 may include an RRC connection request message (RRC Setup Request) generated by the RRC layer.
  • RRC Setup Request RRC Setup Request
  • Msg 3 may also carry, for example, the 5G-service temporary mobile subscriber identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) or random number of the terminal device.
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include an RRC connection re-establishment request message (RRC Reestabilshment Request) generated by the RRC layer.
  • RRC Reestabilshment Request RRC connection re-establishment request message
  • Msg 3 may also carry, for example, a Cell Radio Network Temporary Identifier (C-RNTI) and so on.
  • C-RNTI Cell Radio Network Temporary Identifier
  • Msg 3 may include an RRC handover confirmation message (RRC Handover Confirm) generated by the RRC layer, which carries the C-RNTI of the terminal device.
  • RRC Handover Confirm RRC handover confirmation message
  • Msg 3 may also carry information such as a Buffer Status Report (BSR).
  • BSR Buffer Status Report
  • Msg 3 may at least include the C-RNTI of the terminal device.
  • Step 4 The network device sends a contention resolution (contention resolution) message to the terminal device, that is, Msg 4.
  • the terminal device After sending Msg3, the terminal device can start the random access contention resolution timer (ra-ContentionResolutionTimer), and receive Msg4 from the network device during the operation of ra-ContentionResolutionTimer. If the terminal device correctly receives the Msg 4, the contention resolution (Contention Resolution) is completed.
  • ra-ContentionResolutionTimer random access contention resolution timer
  • the network device Since the terminal device in step 3 can carry its own unique identifier in Msg 3, the network device will carry the unique identifier of the terminal device in Msg4 in the contention resolution mechanism to specify the terminal device that wins the competition. The other terminal devices that did not win in the contention resolution will re-initiate random access.
  • the terminal device carries the C-RNTI in Msg 3, if the terminal device monitors the PDCCH scrambled by the C-RNTI, it is considered that the contention is resolved.
  • the Msg3 includes a Physical Uplink Shared Channel (PUSCH), and the C-RNTI is carried in the PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • the two-step random access based on contention may include the following steps:
  • Step 1 The terminal sends MsgA to the network, and MsgA transmits Msg1+Msg3 for four-step random access;
  • Step 2 The network sends MsgB to the terminal, and MsgB transmits Msg2+Msg4 for four-step random access.
  • MsgA After the terminal sends MsgA, a receiving window of MsgB is opened, and MsgB is monitored and received in the receiving window.
  • the MsgB may include MSGB-RNTI scrambled PDCCH and C-RNTI scrambled PDCCH.
  • the UE may consider that the conflict resolution is successful when receiving the PDCCH scrambled by the C-RNTI.
  • the first two steps in the four-step random access based on non-competition and the four-step random access based on contention are similar.
  • the difference is that the preamble sequence sent by the terminal device in step 1 is a dedicated preamble sequence. Therefore, the network When the device receives the dedicated preamble sequence, it can recognize the UE. Therefore, the subsequent steps 3 and 4 may not be required to complete the access process.
  • the UE can start ra-ResponseWindow at the first PDCCH monitoring opportunity after sending Msg1, and restore the search space identifier ( recoverySearchSpaceId) monitors the PDCCH scrambled by the C-RNTI on the PDCCH search space corresponding to the recoverySearchSpaceId).
  • recoverySearchSpaceId restore the search space identifier
  • the UE can start the ra-ResponseWindow at the next PDCCH monitoring opportunity after sending Msg1, and monitor the RA-RNTI scrambled PDCCH on the SpCell during the operation of the ra-ResponseWindow .
  • the UE can start MSGB-ResponseWindow at the first PDCCH monitoring opportunity after sending MsgA, and simultaneously monitor MSGB-RNTI scrambling on SpCell during MSGB-ResponseWindow operation PDCCH and C-RNTI scrambled PDCCH.
  • the concept of DRX is proposed for the purpose of saving power for the terminal.
  • the network device can configure the terminal device to wake up at the time predicted by the network (DRX ON) and monitor the PDSCH, and the network can also configure the terminal device to sleep at the time predicted by the network (DRX OFF), that is, the terminal device does not need to monitor the PDCCH. Therefore, if the network device 120 has data to be transmitted to the terminal device 110, the network device 120 can schedule the terminal device 110 during the DRX ON time of the terminal device 110. During the DRC OFF time, the radio frequency is turned off, which can reduce The terminal consumes power.
  • the DRX cycle configured by the network device for the terminal device is composed of an active period (On Duration) and a dormant period (Opportunity for DRX).
  • On Duration an active period
  • Opportunity for DRX a dormant period
  • RRC CONNECTED RRC connected state
  • the terminal device monitors and receives the PDCCH; the terminal device does not monitor the PDCCH during the sleep period to reduce power consumption.
  • the terminal device in the dormant period in the embodiment of the present application does not receive the PDCCH, but can receive data from other physical channels.
  • the embodiment of the present invention does not make a specific limitation.
  • the terminal device may receive a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), acknowledgment/non-acknowledgement (ACK/NACK), and so on.
  • PDSCH Physical Downlink Shared Channel
  • ACK/NACK acknowledgment/non-acknowledgement
  • SPS Semi-Persistent Scheduling
  • the terminal device can receive periodically configured PDSCH data.
  • radio resource control may be used to configure a DRX function for a Media Access Control (MAC) entity to control the behavior of terminal devices to monitor PDCCH. That is, each MAC entity can correspond to a DRX configuration.
  • the DRX configuration can include at least one of the following:
  • DRX Duration Timer (drx-onDurationTimer): The duration of the terminal device waking up at the beginning of a DRX Cycle.
  • DRX slot offset (drx-SlotOffset): the time delay for the terminal device to start drx-onDurationTimer.
  • DRX inactivity timer (drx-InactivityTimer): When the terminal device receives a PDCCH indicating uplink initial transmission or downlink initial transmission, the terminal device continues to monitor the duration of the PDCCH.
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL): the longest duration for the terminal device to monitor the PDCCH indicating downlink retransmission scheduling.
  • drx-RetransmissionTimerDL the longest duration for the terminal device to monitor the PDCCH indicating downlink retransmission scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to a drx-RetransmissionTimerDL.
  • DRX uplink retransmission timer (drx-RetransmissionTimerUL): the longest duration of the terminal device monitoring the PDCCH indicating the uplink retransmission scheduling.
  • drx-RetransmissionTimerUL the longest duration of the terminal device monitoring the PDCCH indicating the uplink retransmission scheduling.
  • Each uplink HARQ process corresponds to a drx-RetransmissionTimerUL.
  • Long DRX cycle start offset (drx-LongCycleStartOffset): used to configure the long DRX cycle and the subframe offset at which the long DRX cycle and the short DRX cycle start.
  • Short DRX cycle (drx-ShortCycle): Short DRX cycle, optional configuration.
  • Short cycle timer (drx-ShortCycleTimer): The duration of the terminal device in a short DRX cycle (and not receiving any PDCCH), which is an optional configuration.
  • DRX Hybrid Automatic Repeat Request (HARQ) Round Trip Time (RTT) Timer (drx-HARQ-RTT-TimerDL): The terminal device expects to receive the PDCCH indicating the downlink scheduling at least waiting time.
  • RTT Round Trip Time
  • drx-HARQ-RTT-TimerDL The terminal device expects to receive the PDCCH indicating the downlink scheduling at least waiting time.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to a drx-HARQ-RTT-TimerDL.
  • DRX Uplink Hybrid Automatic Repeat Request Hybrid Automatic Repeat Request, HARQ
  • RTT Round Trip Time
  • drx-HARQ-RTT-TimerUL The terminal device expects to receive the PDCCH indicating the uplink scheduling at least Waiting time, each uplink HARQ process corresponds to a drx-HARQ-RTT-TimerUL.
  • DRX Active Time includes the following situations:
  • drx-onDurationTimer Any one of drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and random access contention resolution timer (ra-ContentionResolutionTimer) is running;
  • the terminal device sends an SR on PUCCH and is in a Pending state
  • the terminal device has not received an initial transmission indicated by the PDCCH scrambled by the C-RNTI after successfully receiving the random access response.
  • the terminal device uses a long DRX cycle if the drx-InactivityTimer times out and/or the terminal device receives a DRX command media access control control element (DRX Media Access Control Command Control Element, DRX Command MAC CE), the terminal device uses a long DRX cycle if the drx-InactivityTimer times out and/or the terminal device receives a DRX command media access control control element (DRX Media Access Control Command Control Element, DRX Command MAC CE), the terminal device uses a long DRX cycle .
  • DRX command media access control control element DRX Media Access Control Command Control Element, DRX Command MAC CE
  • the terminal device uses the short DRX cycle.
  • the terminal device may determine the time to start drx-onDurationTimer according to whether it is currently in a long DRX cycle or a short DRX cycle.
  • modulo means modulo operation.
  • the terminal device may start drx-onDurationTimer at a time after drx-SlotOffset slots from the beginning of the current subframe.
  • the conditions for starting or restarting drx-InactivityTimer include but are not limited to:
  • the terminal device If the terminal device receives a PDCCH indicating downlink or uplink initial transmission, the terminal device starts or restarts the drx-InactivityTimer.
  • the conditions for starting and stopping drx-RetransmissionTimerDL include but are not limited to:
  • the terminal device When the terminal device receives a PDCCH indicating downlink transmission, or when the terminal device receives a MAC PDU on the configured downlink authorized resource, the terminal device stops the drx-RetransmissionTimerDL corresponding to the HARQ process. After completing the transmission of the HARQ process feedback for this downlink transmission, the terminal device may start the drx-HARQ-RTT-TimerDL corresponding to the HARQ process.
  • the terminal device If the timer drx-HARQ-RTT-TimerDL corresponding to a certain HARQ of the terminal device times out, and the downlink data transmitted using this HARQ process is not successfully decoded, the terminal device starts the drx-RetransmissionTimerDL corresponding to this HARQ process.
  • the conditions for starting and stopping drx-RetransmissionTimerUL include but are not limited to:
  • the terminal device When the terminal device receives a PDCCH indicating uplink transmission, or when the terminal device sends a MAC protocol data unit (Protocol Data Unit, PDU) on the configured uplink authorized resource, the terminal device stops the drx-RetransmissionTimerUL corresponding to the HARQ process. The terminal device starts the drx-HARQ-RTT-TimerUL corresponding to the HARQ process after completing the first repetition of this PUSCH.
  • PDU Network Data Unit
  • the terminal device If the timer drx-HARQ-RTT-TimerUL corresponding to a certain HARQ of the terminal device times out, the terminal device starts the drx-RetransmissionTimerUL corresponding to this HARQ process.
  • the UE monitors the PDCCH at the DRX active time.
  • the UE should follow the PDCCH skipping instruction, that is, skip the PDCCH monitoring during the subsequent PDCCH skipping duration, even if the UE is in the DRX active time during this PDCCH skipping duration.
  • the network equipment controls whether the terminal equipment skips PDCCH monitoring based on the downlink service requirements of the UE and the uplink service requirements previously reported by the UE through the Buffer Status Report (BSR). For example, when the network believes that the UE has no uplink and downlink data transmission requirements for a period of time in the future, the network may instruct the UE to skip PDCCH monitoring during this period of time to achieve the purpose of saving power for the UE.
  • BSR Buffer Status Report
  • the UE can trigger uplink transmission on its own and expect a further response from the network. For example, the UE triggers a BFR for a certain serving cell. If the serving cell is a SpCell, the UE will initiate random access on the SpCell. In this case, since the UE expects a response from the network, the UE has a demand for PDCCH monitoring.
  • the network can learn the scheduling requirements of the UE only after it receives the UE’s uplink information and can correctly identify the UE.
  • the network Before the network receives the UE’s uplink transmission or recognizes the UE’s identity, the network The scheduling requirements of the UE cannot be known.
  • the network sends a PDCCH skipping indication to the UE before receiving the Msg 1 sent by the UE.
  • the UE From the perspective of the UE, the UE first sends Msg 1 to enter the state of monitoring the PDCCH. During this period, if The UE receives the PDCCH skipping instruction from the network. In this case, how the UE monitors the PDCCH to take into account the response of the network and the UE's power saving is an urgent problem to be solved.
  • this application provides a PDCCH monitoring solution, which can perform PDCCH according to the relationship between the time interval between the terminal sending uplink information and receiving the PDCCH skipping indication and the round-trip transmission time RTT between the terminal device and the network device
  • the monitoring is beneficial to take into account the response of the receiving network and the power saving of the UE.
  • FIG. 3 is a schematic interaction diagram of a wireless communication method 200 provided by an embodiment of this application.
  • the method 200 may be executed by the terminal device in the communication system shown in FIG. 1.
  • the method 200 may include at least part of the following content:
  • the terminal device sends first information to the network device, where the first information is uplink information in a random access process, and the random access process is triggered by a beam failure recovery BFR;
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to instruct the terminal device to skip monitoring the physical downlink control channel PDCCH;
  • S230 The terminal device determines whether to skip monitoring the PDCCH according to the first indication information.
  • the embodiments of the present application can be applied to random access scenarios triggered by BFR, or can also be applied to random access scenarios triggered by other reasons, such as handover, or SR failure, etc. , This application does not limit this.
  • the first information may be uplink information in a random access process.
  • the random access process may be random access based on contention, or random access based on non-competition.
  • the random access process may be a four-step random access. Or it can be a two-step random access, and this application is not limited to this.
  • the random access procedure is triggered by BFR.
  • the random access process may also be triggered by other reasons, for example, SR failure, etc.
  • the present application is not limited to this.
  • the BFR may be the BFR on the Spcell of the terminal device, and the Spcell may be a primary cell (Scell), or a primary and secondary cell (PScell), or the BFR may also be other
  • Scell primary cell
  • PScell primary and secondary cell
  • the BFR that triggers random access is described below by taking the BFR on the Spcell as an example, but the application is not limited to this.
  • the first information may also be other uplink transmissions triggered by the terminal device, or other uplink transmissions that the network device cannot predict.
  • the first information may be a scheduling request.
  • the SR is in a waiting state, that is, the terminal device is in a state of waiting for the network to respond to the SR.
  • the first information may be information sent on a Configured Grant (CG) resource, and this uplink transmission is configured to require feedback from the network, for example, the hybrid automatic repeat request HARQ corresponding to the CG resource The process is configured to start HARQ feedback, or the HARQ feedback of the HARQ process corresponding to the CG resource is not cancelled. In these cases, the terminal device expects the network device to respond after sending the first information, so the terminal device has a need to monitor the PDCCH.
  • CG Configured Grant
  • the first information is the uplink information in the random access process caused by the BFR as an example for description, but the application is not limited to this.
  • the first information includes message 3 (namely Msg3) in a contention-based four-step random access process, where the Msg3 contains a unique identifier corresponding to the terminal device, for example, a cell wireless network Temporary identification C-RNTI. That is, when the network device receives the Msg3, the terminal device can be identified through the unique identifier of the terminal device, so that the scheduling requirement of the terminal device can be learned.
  • Msg3 contains a unique identifier corresponding to the terminal device, for example, a cell wireless network Temporary identification C-RNTI.
  • the first information includes a message A (namely MsgA) in a contention-based two-step random access process, wherein the MsgA includes a preamble sequence (namely Msg1) and a unique corresponding to the terminal device Identifier, for example, C-RNTI.
  • the C-RNTI is carried in the PUSCH. That is, when the network device receives the MsgA, the terminal device can be identified through the unique identifier of the terminal device, so that the scheduling requirement of the terminal device can be learned.
  • the first information includes a preamble sequence (ie, Msg1) in a non-contention-based four-step random access process.
  • Msg1 is a dedicated preamble sequence, and the network device can identify the terminal device based on the Msg1, thereby being able to learn the scheduling requirements of the terminal device.
  • the network device may send the first instruction information, or PDCCH skipping instruction, to the terminal device to instruct the terminal The device skips monitoring the PDCCH.
  • the first indication information may be used to indicate a PDCCH skipping duration (PDCCH skipping duration) and/or a set of target serving cells for skipping monitoring of the PDCCH. That is, the network device instructs the terminal device to skip monitoring the PDCCH within the PDCCH skipping duration after receiving the first indication information.
  • PDCCH skipping duration PDCCH skipping duration
  • the terminal device may skip monitoring the PDCCH according to the first indication information.
  • the terminal device may determine, according to the first indication information, to skip monitoring at least the PDCCH that is not used for the BFR. For example, it is possible to skip monitoring the PDCCH not used for BFR, and monitor the PDCCH used for BFR at the same time. In this way, it is beneficial to ensure the smooth progress of the BFR process, and at the same time, the power saving requirements of the terminal can be taken into account.
  • the terminal device may also skip monitoring all PDCCHs according to the first indication information.
  • the PDCCH used for BFR may refer to the PDCCH used to carry BFR related information, and different application scenarios are different, which will be described in detail in the specific embodiments below, and will not be repeated here.
  • skipping PDCCH monitoring according to the first indication information may refer to skipping PDCCH monitoring during the PDCCH skipping duration according to the first indication information, and whether to monitor the PDCCH in other time periods , Can be determined by network instructions, DRX configuration, whether the terminal equipment has scheduling requirements and other factors, which are not limited in this application.
  • the terminal device monitors the PDCCH according to the time interval and the first duration between the terminal device sending the first information and the terminal device receiving the first indication information control.
  • the first duration is determined according to a round trip time RTT of signal transmission between the terminal device and the network device.
  • the RTT is determined according to the timing advance TA indicated by the network device.
  • the first duration may be the TA corresponding to the terminal device.
  • the RTT is determined according to the duration of the DRX uplink hybrid automatic repeat request round-trip transmission time timer (drx-HARQ-RTT-TimerUL) configured by the network device.
  • the first duration may be the duration of the drx-HARQ-RTT-TimerUL.
  • the RTT is determined according to the duration of the DRX uplink hybrid automatic repeat request round-trip transmission time timer (drx-HARQ-RTT-TimerUL) and the RTT offset configured by the network device.
  • the RTT offset may be an offset relative to the duration of drx-HARQ-RTT-TimerUL, that is, the duration of the drx-HARQ-RTT-TimerUL can be understood as a reference duration, or in other words, a standard duration.
  • the first duration may be the sum of the duration of the drx-HARQ-RTT-TimerUL and the RTT offset.
  • different terminal devices may correspond to their respective RTT offsets.
  • the RTT is determined according to the location information and ephemeris information of the terminal device.
  • the terminal device may perform PDCCH monitoring in the following manner according to the time interval between sending the first information and receiving the first indication information and the first time length:
  • the terminal device does not skip monitoring the PDCCH
  • the terminal device skips monitoring the PDCCH.
  • the first indication information issued by the network device may not consider the scheduling requirements of the terminal device. In this case, the terminal device may ignore the indication of the first indication information and continue to monitor the PDCCH, which is beneficial to receiving the network response in time. , So as to ensure the smooth progress of BFR.
  • the terminal device If the time interval is greater than the first length of time, the terminal device considers that the network device can receive the first information sent by the terminal device, and if the network device still issues the ignoring the scheduling request of the terminal device
  • the first indication information can be considered that the network has failed to receive data, or the terminal device has not been recognized. In this case, the terminal device can skip monitoring the PDCCH according to the indication of the first indication information, which is beneficial to the power saving of the terminal .
  • the terminal device skips monitoring the PDCCH, the terminal device does not monitor the PDCCH, the terminal device stops monitoring the PDCCH, and the terminal device according to (or in other words, follows) the The instructions of the first instruction information can be used interchangeably in this application document.
  • the terminal device does not skip monitoring the PDCCH, the terminal device continues to monitor the PDCCH, the terminal device monitors the PDCCH, and the terminal device ignores the indication of the first indication information, which can be mutually exchanged in this application file. For replacement use, this application is not limited to this.
  • the operation of the terminal device to ignore the PDCCH skipping indication may be for all PDCCH search spaces of the terminal device, or may only be for the PDCCH search space used for BFR, for example,
  • the PDCCH search space corresponding to the PDCCH search space identifier (recoverySearchSpaceId) of the BFR is used, and this application is not limited to this.
  • Scenario 1 Four-step random access based on non-competition
  • the terminal device receives the RRC configuration information of the network device, and the RRC configuration information is used to configure BFR parameters for the SpCell.
  • the BFR parameter may include at least one of the BFR parameters in the foregoing embodiment, which is not repeated here for brevity.
  • the terminal device when it triggers BFR for Spcell and chooses to use non-contention-based four-step random access, it can send Msg1 on the corresponding RACH resource based on the selected target reference signal, such as SSB or CSI-RS, and start Open the RAR window, and monitor the RNTI scrambled by the C-RNTI during the operation of the RAR window.
  • the selected target reference signal such as SSB or CSI-RS
  • the network device can recognize the terminal device after receiving the Msg1 of the terminal device, and then may give a corresponding response, where the Msg1 is a dedicated preamble sequence.
  • the terminal device After sending Msg1, if the terminal device receives the PDCCH skipping instruction sent by the network device, as an example, the terminal device can perform the following PDCCH monitoring operation according to the time interval and the first time period between sending Msg1 to receiving the PDCCH skipping instruction :
  • the terminal device can ignore the PDCCH skipping instruction, that is, continue to monitor the C-RNTI scrambled RNTI during the operation of the RAR window.
  • the terminal device may stop the RAR window. That is, the terminal device may stop monitoring the PDCCH scrambled by the C-RNTI, or may stop monitoring all PDCCHs.
  • the terminal device may consider that this random access response reception fails. If the number of transmissions of Msg1 does not exceed the maximum number of transmissions configured by the network (preambleTransMax), the terminal device can retransmit Msg 1, and if the number of transmissions of Msg1 exceeds the maximum number of transmissions configured by the network (preambleTransMax), the terminal device reports the occurrence to the higher layer Random access problem.
  • the PDCCH used for BFR may refer to the PDCCH scrambled by C-RNTI.
  • the UE triggers BFR at time T1 and sends Msg1 at time T2.
  • the UE receives the PDCCH skipping indication from the network device at time T3, where the time interval between time T2 and time T3 is less than the first time period,
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T2 and the time T3 and the first duration. Since the time interval between the time T2 and the time T3 is less than the first time length, the UE can ignore the PDCCH skipping indication and continue to monitor the PDCCH scrambled by the C-RNTI, thereby being able to receive the network response in time to ensure BFR The progress went smoothly.
  • the UE receives the PDCCH skipping indication of the network device at time T4, where the time interval between time T2 and time T4 is greater than the first time period,
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T2 and the time T4 and the first duration. Since the time interval between the time T2 and the time T4 is greater than the first time length, the UE may stop the RAR window, that is, stop monitoring the PDCCH scrambled by the C-RNTI.
  • the terminal device can retransmit Msg1.
  • Scenario 2 Four-step random access based on competition
  • the terminal device receives the RRC configuration information of the network device, and the RRC configuration information is used to configure the BFR parameters for the SpCell.
  • the BFR parameter may include at least one of the BFR parameters in the foregoing embodiment, which is not repeated here for brevity.
  • the network device can recognize the terminal device only after receiving the Msg3 of the terminal device, and then learn the scheduling requirements of the terminal device.
  • the terminal device can send Msg1 on the corresponding RACH resource based on the selected target reference signal, such as SSB or CSI-RS, and start Open the RAR window and monitor the RNTI scrambled by RA-RNTI during the operation of the RAR window.
  • target reference signal such as SSB or CSI-RS
  • the terminal device can skip monitoring the PDCCH not used for BFR, for example, the PDCCH scrambled by C-RNTI, according to the PDCCH skipping instruction, and continue Monitor PDCCH used for BFR, such as PDCCH scrambled by RA-RNTI.
  • Msg3 can be sent to the network device, and the random access contention resolution timer (ra-ContentionResolutionTimer) can be started, and during the operation of ra-ContentionResolutionTimer, the Msg4 of the network device can be received.
  • the terminal device may perform the following PDCCH monitoring according to the time interval and the first duration between sending Msg3 to receiving the PDCCH skipping instruction operate:
  • the terminal device can ignore the PDCCH skipping indication, that is, continue to monitor the C-RNTI scrambled RNTI and TC-RNTI scrambled during the operation of ra-ContentionResolutionTimer PDCCH.
  • the terminal device may skip monitoring the PDCCH scrambled by the C-RNTI and continue to monitor the PDCCH scrambled by the TC-RNTI according to the PDCCH skipping instruction.
  • the PDCCH used for BFR may include the PDCCH scrambled by RA-RNTI and the PDCCH scrambled by TC-RNTI.
  • the UE triggers BFR at time T1 and sends Msg1 at time T2.
  • the UE receives the PDCCH skipping indication of the network device at time T3.
  • the UE may not monitor the PDCCH scrambled by the C-RNTI within the PDCCH skipping duration according to the PDCCH skipping instruction, and continue to monitor the PDCCH scrambled by the RA-RNTI.
  • Receive Msg2 sent by the network device at time T4 send Msg3 to the network device at time T5, and start ra-ContentionResolutionTimer.
  • the UE receives the PDCCH skipping indication of the network device at time T6.
  • the time interval between the time T5 and the time T6 is less than the first time period
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T5 and the time T6 and the first time length. Since the time interval between the time T5 and the time T6 is less than the first time length, the UE can ignore the PDCCH skipping indication and continue to monitor the PDCCH scrambled by the C-RNTI and the PDCCH scrambled by the TC-RNTI.
  • the UE receives the PDCCH skipping indication of the network device at time T7.
  • the time interval between the time T5 and the time T7 is greater than the first time period
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T5 and the time T7 and the first time length. Since the time interval between the time T5 and the time T7 is greater than the first time length, the UE may not monitor the C-RNTI scrambled PDCCH during the PDCCH skipping duration according to the PDCCH skipping indication, and continue to monitor the TC-RNTI plus Scrambled PDCCH.
  • the UE receives the TC-RNTI scrambled PDCCH to indicate the retransmission of Msg3, where the PDCCH includes an uplink grant (UL grant) for retransmission of Msg3.
  • the PDCCH includes an uplink grant (UL grant) for retransmission of Msg3.
  • the UE retransmits Msg3 and restarts ra-ContentionResolutionTimer.
  • the UE receives Msg4, stops ra-ContentionResolutionTimer, and the random access is completed.
  • Scenario 3 Two-step random access based on contention
  • the terminal device receives the RRC configuration information of the network device, and the RRC configuration information is used to configure the BFR parameter for the SpCell.
  • the BFR parameter may include at least one of the BFR parameters in the foregoing embodiment, which is not repeated here for brevity.
  • the terminal device when it triggers BFR for Spcell and chooses to use contention-based two-step random access, it can send MsgA on the corresponding RACH resource based on the selected target reference signal, such as SSB or CSI-RS, and start to open
  • the MsgB receiving window (msgB-ResponseWindow) monitors the MSGB-RNTI scrambled PDCCH and the C-RNTI scrambled PDCCH during the operation of the msgB-ResponseWindow.
  • the network device can recognize the terminal device after receiving the MsgA of the terminal device, and then may give a corresponding response.
  • the terminal device After sending the MsgA, if the terminal device receives the PDCCH skipping instruction sent by the network device, as an example, the terminal device may perform the following PDCCH monitoring operation according to the time interval and the first duration between sending the MsgA to receiving the PDCCH skipping instruction :
  • the terminal device can ignore the PDCCH skipping indication, that is, continue to monitor the MSGB-RNTI scrambled PDCCH and C-RNTI scramble during the operation of msgB-ResponseWindow PDCCH.
  • the terminal device may skip monitoring the PDCCH scrambled by the C-RNTI on the PDCCH skipping duration according to the PDCCH skipping instruction, and continue to monitor the PDCCH scrambled by the MSGB-RNTI.
  • the PDCCH used for BFR may include the PDCCH scrambled by MSGB-RNTI.
  • the UE triggers BFR at time T1 and sends MsgA at time T2.
  • the UE receives the PDCCH skipping indication of the network device at time T3.
  • the time interval between the time T2 and the time T3 is less than the first time length
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T2 and the time T3 and the first duration. Since the time interval between the time T2 and the time T3 is less than the first time length, the UE can ignore the PDCCH skipping indication and continue to monitor the PDCCH scrambled by the C-RNTI and the PDCCH scrambled by the MSGB-RNTI.
  • the UE receives the PDCCH skipping indication of the network device at time T4.
  • the time interval between the time T2 and the time T4 is greater than the first time length
  • the UE may perform PDCCH monitoring control according to the relationship between the time interval between the time T2 and the time T4 and the first duration. Since the time interval between the time T2 and the time T4 is greater than the first time length, the UE may skip monitoring the PDCCH scrambled by the C-RNTI, and continue to monitor the PDCCH scrambled by the MSGB-RNTI.
  • the terminal device may be based on whether the uplink information is sent until the PDCCH skip indication is received.
  • the time interval between the terminal equipment and the RTT of the signal transmission between the terminal equipment and the network equipment, and the monitoring and control of the PDCCH are beneficial to take into account the response of the receiving network and the power saving of the terminal.
  • FIG. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to send first information to a network device, where the first information is uplink information in a random access process, and the random access process is triggered by a beam failure recovery BFR; and
  • the processing unit 420 is configured to determine whether to skip monitoring the PDCCH according to the first indication information.
  • the processing unit 420 is further configured to: determine whether to skip according to the time interval and the first time length between the terminal device sending the first information and the terminal device receiving the first indication information. Monitoring the PDCCH, where the first duration is determined according to the round-trip time RTT of signal transmission between the terminal device and the network device.
  • the RTT is determined according to at least one of the following:
  • the time advance TA indicated by the network device is the time advance TA indicated by the network device.
  • the processing unit 420 is specifically configured to:
  • time interval is greater than the first duration, it is determined to skip monitoring the PDCCH.
  • the communication unit 410 is further configured to:
  • the monitoring at least the PDCCH used for BFR includes:
  • the skipping monitoring at least the PDCCH that is not used for BFR includes:
  • the PDCCH used for BFR includes at least one of the following:
  • the cell wireless network temporarily identifies the PDCCH scrambled by the C-RNTI
  • the wireless network of the temporary cell temporarily identifies the PDCCH scrambled by the TC-RNTI.
  • the communication unit 410 is further configured to:
  • the PDCCH is monitored on the PDCCH search space used for the BFR.
  • the first information includes a preamble sequence in a non-contention-based four-step random access process.
  • the communication unit 410 is further configured to:
  • the first information includes message 3 in a contention-based four-step random access process, where the message 3 includes the cell radio network temporary identification C corresponding to the terminal device. -RNTI.
  • the communication unit 410 is further configured to:
  • the first information includes message 1 in a contention-based four-step random access procedure.
  • the processing unit 420 is further configured to:
  • the first indication information it is determined to skip monitoring the C-RNTI scrambled PDCCH during the PDCCH skip period indicated by the first indication information, and continue to monitor the random access radio network temporary identification RA-RNTI scrambled PDCCH.
  • the first information includes a message A in a contention-based two-step random access process, where the message A includes a preamble sequence and a physical uplink shared channel PUSCH, and the PUSCH contains the corresponding terminal equipment C-RNTI.
  • the communication unit 410 is configured to:
  • the network device is a network device corresponding to a primary cell or a primary and secondary cell of the terminal device.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are used to implement FIGS. 3 to 6 respectively.
  • the corresponding process of the terminal device in the method 200 shown is not repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 8 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 9 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 9 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和终端设备,有利于兼顾BFR的进行和终端的省电,该方法包括:终端设备向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH。

Description

无线通信的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和终端设备。
背景技术
为了终端省电的目的,提出了非连续接收(Discontinuous Reception,DRX)的概念。具体的,网络设备可以配置终端设备在网络预知的时间醒来(DRX ON),监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),同时网络也可以配置终端设备在网络预知的时间睡眠(DRX OFF),终端设备不监听PDCCH。
在第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)版本17(Rel-17)中,对连接态的终端设备在配置DRX情况下的节能方案进行进一步的研究,一种方式是引入PDCCH跳过(skipping)机制,即网络可以通过发送动态信令指示终端设备跳过一段时间的PDCCH监听。对于配置了DRX的终端设备,UE在DRX激活时间(active time)监听PDCCH。当终端设备收到网络设备的PDCCH skipping指示时,终端设备应该遵循PDCCH skipping指示,在随后的PDCCH跳过期间(skipping duration)跳过PDCCH的监听,即使UE在这段PDCCH skipping duration内处于DRX active time。
但是,在一些场景下,终端设备可以自行触发上行传输从而期待网络设备有进一步的响应。比如,终端设备在主小区上触发了波束失败恢复(Beam Failure Recovery,BFR),则会在该主小区上发起随机接入,由于终端设备期待网络设备进行响应从而有了监听PDCCH的需求,此情况下,如果接收到网络设备的PDCCH skipping指示,终端设备如何进行PDCCH的监听以兼顾接收网络响应和终端设备的省电是一项急需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和终端设备,有利于兼顾接收网络响应和终端设备的省电。
第一方面,提供了一种无线通信的方法,终端设备向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,在终端设备发送用于随机接入的上行信息之后,若接收到网络设备的PDCCH跳过指示,所述终端设备可以根据发送所述上行信息到接收所述PDCCH跳过指示之间的时间间隔和所述终端设备和网络设备之间的信号传输的RTT,进行PDCCH的监听控制,有利于兼顾接收网络的响应和终端的省电。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是本申请实施例的DRX的示意性框图。
图3是本申请实施例提供的一种无线通信的方法的示意性图。
图4-图6是根据本申请实施例的PDCCH监听的几种示例。
图7是本申请实施例提供的一种终端设备的示意性框图。
图8是本申请另一实施例提供的一种通信设备的示意性框图。
图9是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实 施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如, 频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在通信系统中,UE可以基于网络配置针对每个服务小区执行波束失败检测(Beam Failure Detect,BFD)和波束失败恢复(Beam Failure Recovery,BFR)过程。其中,波束失败检测可以指UE在当前服务的状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或同步信号块(Synchronization Signal Block,SSB)上检测到波束失败。波束失败恢复用于UE向服务小区指示一个新的SSB/CSI-RS,以用于后续的数据传输。
具体地,终端设备的媒体接入控制(Media Access Control,MAC)层通过对物理层上报的波束失败示例指示(beamFailureInstance)进行波束失败检测。网络设备的无线资源控制(Radio Resource Control,RRC)给UE配置用于波束失败检测的参数,例如,波束失败示例最大数(beamFailureInstanceMaxCount)和波束失败检测定时器(beamFailureDetectionTimer)。针对UE的每个服务小区还可以分别配置用于波束失败检测的候选资源,例如SSB/CSI-RS资源。
可选地,UE可以针对每个服务小区分别维护对应的波束失败检测操作。
具体地,针对每个服务小区,UE的MAC层维护用于波束失败检测的计数器(BFI_COUNTER)即波束失败示例计数器,其中,BFI_COUNTER初始值为0。
如果MAC层接收到来自物理层的波束失败示例指示,则执行如下操作:
1、启动或重启beamFailureDetectionTimer;
2、将计数器BFI_COUNTER累加1;
3、如果BFI_COUNTER大于或者等于beamFailureInstanceMaxCount,则:
3.1、如果该服务小区为辅小区(SCell),则UE触发针对该SCell的BFR;
3.2、如果该服务小区为特殊小区(SpCell),例如,主小区(PCell),或者主辅小区(PSCell),则UE在SpCell发起随机接入过程。
进一步的,如果beamFailureDetectionTimer超时,或者UE接收到针对用于波束失败检测的重配置参数,例如SSB/CSI-RS资源、beamFailureInstanceMaxCount和beamFailureDetectionTimer中的一个或多个,则UE将计数器BFI_COUNTER重置为0。
如果UE在SpCell上触发了BFR,且随机接入成功,则对于该SpCell,UE执行如下操作:
1、将计数器BFI_COUNTER重置为0;
2、停止beamFailureRecoveryTimer;
3、认为波束失败恢复过程成功完成。
如果UE至少触发了一个针对SCell的BFR并且该BFR还没有被取消,则
情况1:如果UE有可用于新传的上行资源,则
如果该上行资源可以承载SCell BFR媒体接入控制控制元素(Media Access Control Control Element,MAC CE)加上子头,则UE在MAC组包过程中生成一个SCell BFR MAC CE。否则,如果该上行资源可以承载缩短的(truncated)SCell BFR MAC CE加上子头,则UE在MAC组包过程中生成一个truncated SCell BFR MAC CE。
情况2:UE没有可用于新传的上行资源,则UE触发用于SCell波束失败恢复的调度请求(Scheduling Request,SR)。
在一些实施例中,为了支持BFR过程,网络可以通过无线资源控制(Radio Resource Control,RRC)信令给UE配置BFR参数,所述BFR参数可以包括如下中的至少一项:
用于波束失败恢复的基于非竞争的随机接入信道(Random Access Channel,RACH)资源,即rach-ConfigBFR;
用于BFR的候选波束及其对应的RACH参数列表,即candidateBeamRSList;
用于UE进行波束选择的L1-RSRP门限,例如rsrp-ThresholdSSB,rsrp-ThresholdCSI-RS;
用于控制BFR过程中UE使用基于非竞争随机接入的最大时长的波束失败恢复定时器,即beamFailureRecoveryTimer。
若要发起随机接入过程,UE可以进行随机接入初始化,以及进行随机接入资源的选择。
在随机接入初始化阶段,UE可以选择随机接入类型,作为示例,可以按照如下方式选择:
若网络为UE在当前选择的上行载波的激活上行带宽部分(Uplink Band width Part,UL BWP)上配置了用于波束失败恢复的基于非竞争的四步随机接入的RACH资源,则UE可以选择使用基于非竞争的四步随机接入(即4-step CFRA)。
否则,若网络为UE在当前选择的上行载波的激活UL BWP上同时配置了基于四步随机接入的RACH资源和基于两步随机接入的RACH资源,并且UE针对下行参考路损的参考信号接收功率(Reference Signal Receiving Power,RSRP)高于预配置门限;或者如果网络为UE在当前选择的上行载波的激活UL BWP上只配置了基于两步随机接入的RACH资源,则UE可以选择使用基于竞争的两步随机接入(2-step CBRA)。否则,UE选择使用基于竞争的四步随机接入(4-step CBRA)。
如果UE选择使用四步的随机接入,则UE启动beamFailureRecoveryTimer。
随机接入RACH资源选择:
对于基于非竞争的四步随机接入(4-step CFRA)
如果beamFailureRecoveryTimer正在运行或者网络没有配置beamFailureRecoveryTimer,并且网络配置了用于BFR的基于非竞争的RACH资源,并且网络配置的用于BFR的候选波束中至少存在一个SSB对应的SS-RSRP高于网络配置的rsrp-ThresholdSSB,或者至少存在一个CSI-RS对应的CSI-RSRP高于网络配置的rsrp-ThresholdCSI-RS,则UE从对应的SS-RSRP高于rsrp-ThresholdSSB的候选SSB中选择一个SSB,或者从对应的CSI-RSRP高于rsrp-ThresholdCSI-RS的候选CSI-RS中选择一个CSI-RS,作为目标参考信号。
对于基于竞争的四步随机接入。如果至少存在一个对应的SS-RSRP高于网络配置的rsrp-ThresholdSSB的SSB,则选择一个对应的SS-RSRP高于rsrp-ThresholdSSB的SSB;否则,任意选择一个SSB。
对于基于竞争的两步随机接入。如果至少存在一个对应的SS-RSRP高于网络配置的msgA-RSRP-ThresholdSSB的SSB,则选择一个对应的SS-RSRP高于msgA-RSRP-ThresholdSSB的SSB作为目标参考信号;否则,任意选择一个SSB作为目标参考信号。
进一步使用所述目标参考信号发起随机接入过程。
以下,对这三种随机接入过程的具体步骤进行说明。
基于竞争的四步随机接入,具体可以包括如下步骤:
步骤1,终端设备向网络设备发送随机接入前导码(Preamble,即Msg 1)。
其中,随机接入前导码也可以称为前导码、前导序列,随机接入前导码序列、随机接入前导序列等。
可选地,在一些实施例中,网络给UE配置一组候选SSB,一组随机接入前导码(Preamble)资源和随机接入时机(RACH Occasion,RO)资源,终端设备从选定的SSB中用于基于竞争的随机接入资源中进行随机选择,将Preamble索引(PREAMBLE_INDEX)设置为选定的随机接入Preamble。网络设备可以根据Preamble估计其与终端设备之间的传输时延并以此校准上行定时(timing),以及可以大体确定终端设备传输Msg 3所需要的资源大小。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即Msg 2)。
终端设备向网络设备发送Preamble后,可以开启一个随机接入响应窗口(ra-ResponseWindow),在该ra-ResponseWindow内根据随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)监听对应的PDCCH。若终端设备监听到RA-RNTI加扰的PDCCH后,可以获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。其中,该PDSCH中包括Preamble对应的RAR。
可选地,RA-RNTI根据发送Preamble的PRACH的时频位置计算得到,因此如果多个终端设备在同一个RO上发送Preamble,则对应的RAR复用在同一个RAR媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU)中。
若终端成功接收到与发送Preamble的RO资源对应的RA-RNTI加扰的PDCCH,并且RAR中包含一个MAC子PDU(subPDU)所携带的随机访问序列标识符(Random Access Preamble Identifier,RAPID)与上述Msg 1中选择的PREAMBLE_INDEX相对应,则RAR接收成功,终端可解码得到定时提前命令(Timing Advance Command,TAC),上行授权资源(UL Grant)和临时小区RNTI(Temporary Cell Radio Network Temporary Identity,TC-RNTI),进行Msg 3的传输。
若在ra-ResponseWindow运行期间没有接收到与发送Preamble的RO资源对应的RA-RNTI加扰的PDCCH,或接收到了RA-RNTI加扰的PDCCH,但RAR中不包含与PREAMBLE_INDEX对应的MAC subPDU,上述两种情况出现时则认为RAR接收失败,此时,若Preamble的传输次数没有超 过网络配置的最大传输次数(preambleTransMax),终端设备需要对Msg 1进行重传,若Preamble的传输次数超过了网络配置的最大传输次数(preambleTransMax),终端设备向上层上报随机接入问题。
步骤3,终端设备发送Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,可以在RRC层产生Msg 3,并向网络设备发送Msg 3,其中需要携带终端设备的标识信息等。
其中,Msg 3主要用于通知网络设备该随机接入的触发事件。针对不同的随机接入触发事件,终端设备在步骤3中发送的Msg 3可以包括不同的内容。
例如,对于初始接入的场景,Msg 3可以包括RRC层生成的RRC连接请求消息(RRC Setup Request)。此外,Msg 3还可以携带例如终端设备的5G-服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于RRC连接重建场景,Msg 3可以包括RRC层生成的RRC连接重建请求消息(RRC Reestabilshment Request)。此外,Msg 3还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等。
又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换确认消息(RRC Handover Confirm),其携带终端设备的C-RNTI。此外,Msg 3还可携带例如缓冲状态报告(Buffer Status Report,BSR)等信息。对于其它触发事件例如上/下行数据到达的场景,Msg 3至少可以包括终端设备的C-RNTI。
步骤4,网络设备向终端设备发送冲突解决(contention resolution)消息,即Msg 4。
终端设备在发送Msg3之后,可以开启随机接入竞争解决定时器(ra-ContentionResolutionTimer),并在ra-ContentionResolutionTimer运行期间,接收网络设备的Msg4。若终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。
由于步骤3中的终端设备可以在Msg 3中携带自己唯一的标识,从而网络设备在竞争解决机制中,会在Msg4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
例如,如果终端设备在Msg 3携带了C-RNTI,若终端设备监听到C-RNTI加扰的PDCCH,则认为竞争解决。
可选地,所述Msg3包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH),所述C-RNTI携带在所述PUSCH中。
基于竞争的两步随机接入,与基于竞争的四步随机接入过程相比,可以提高时延,同时也能降低信令开销。基于竞争的两步随机接入可以包括如下步骤:
步骤1,终端向网络发送MsgA,MsgA传输四步随机接入的Msg1+Msg3;
步骤2,网络给终端发送MsgB,MsgB传输四步随机接入的Msg2+Msg4。终端发送MsgA之后,开启一个MsgB的接收窗,在该接收窗内监测并接收MsgB。
可选地,所述MsgB可以包括MSGB-RNTI加扰的PDCCH和C-RNTI加扰的PDCCH。
对于基于竞争的两步随机接入,UE可以在接收到C-RNTI加扰的PDCCH的情况下,认为冲突解决成功。
基于非竞争的四步随机接入和基于竞争的四步随机接入过程中的前两步相似,区别在于:终端设备在步骤1中发送的前导序列为专用(Dedicated)前导序列,因此,网络设备在接收到该专用前导序 列时,即可识别UE,因此,可以不需要后续的步骤3和步骤4,即可完成接入过程。
可选地,对于基于非竞争的四步随机接入,UE可以在发送完Msg1之后的第一个PDCCH监听时机启动ra-ResponseWindow,并在ra-ResponseWindow运行期间在SpCell上的恢复搜索空间标识(recoverySearchSpaceId)对应的PDCCH搜索空间上监听C-RNTI加扰的PDCCH。
可选地,对于基于竞争的四步随机接入,UE可以在发送完Msg1之后的下一个PDCCH监听时机启动ra-ResponseWindow,并在ra-ResponseWindow运行期间在SpCell上监听RA-RNTI加扰的PDCCH。
可选地,对于基于竞争的两步随机接入,UE可以在发送完MsgA之后的第一个PDCCH监听时机启动MSGB-ResponseWindow,并在MSGB-ResponseWindow运行期间在SpCell上同时监听MSGB-RNTI加扰的PDCCH和C-RNTI加扰的PDCCH。
在一些场景中,为了终端省电的目的,提出了DRX的概念。具体的,网络设备可以配置终端设备在网络预知的时间醒来(DRX ON),监听PDSCH,同时网络也可以配置终端设备在网络预知的时间睡眠(DRX OFF),即,终端设备不用监听PDCCH。由此,如果网络设备120有数据要传给终端设备110,网路设备120可以在终端设备110处于DRX ON的时间内调度所述终端设备110,而DRC OFF时间内,由于射频关闭,可以减少终端耗电。
如图2所述,网络设备为终端设备配置的DRX cycle由激活期(On Duration)和休眠期(Opportunity for DRX)组成,在RRC连接态(RRC CONNECTED)模式下,如果终端设备配置了DRX功能,在On Duration时间内,终端设备监听并接收PDCCH;终端设备在休眠期内不监听PDCCH以减少功耗。
应理解,本申请实施例中的处于休眠期的终端设备不接收PDCCH,但是可以接收来自其它物理信道的数据。本发明实施例不作具体限定。例如,该终端设备可以接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、确认/非确认(ACK/NACK)等。又例如,在半永久性调度(Semi-Persistent Scheduling,SPS)中,该终端设备可以接收周期性配置的PDSCH数据。
在一些实施例中,可以通过无线资源控制(Radio Resource Control,RRC)为媒体介入控制(Media Access Control,MAC)实体(entity)配置DRX功能,用于控制终端设备监听PDCCH的行为。即每个MAC实体可以对应一个DRX配置,可选的,DRX配置可以包括如下中的至少一种:
DRX持续定时器(drx-onDurationTimer):在一个DRX Cycle的开始终端设备醒来的持续时间。
DRX时隙偏移(drx-SlotOffset):终端设备启动drx-onDurationTimer的时延。
DRX非激活定时器(drx-InactivityTimer):当终端设备收到一个指示上行初传或者下行初传的PDCCH后,终端设备继续监听PDCCH的持续时间。
DRX下行重传定时器(drx-RetransmissionTimerDL):终端设备监听指示下行重传调度的PDCCH的最长持续时间。除广播HARQ进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimerDL。
DRX上行重传定时器(drx-RetransmissionTimerUL):终端设备监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个drx-RetransmissionTimerUL。
长DRX周期开始偏移(drx-LongCycleStartOffset):用于配置长DRX周期,以及长DRX周期和短DRX周期开始的子帧偏移。
短DRX周期(drx-ShortCycle):短DRX周期,为可选配置。
短周期定时器(drx-ShortCycleTimer):终端设备处于短DRX周期(并且没有接收到任何PDCCH)的持续时间,为可选配置。
DRX下行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip  Time,RTT)定时器(drx-HARQ-RTT-TimerDL):终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间。除广播HARQ进程之外的每个下行HARQ进程对应一个drx-HARQ-RTT-TimerDL。
DRX上行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)往返传输时间(Round Trip Time,RTT)定时器(drx-HARQ-RTT-TimerUL):终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个drx-HARQ-RTT-TimerUL。
如果终端设备配置了DRX,则终端设备需要在DRX激活时间(Active Time)监听PDCCH。DRX Active Time包括如下几种情况:
drx-onDurationTimer,drx-InactivityTimer,drx-RetransmissionTimerDL,drx-RetransmissionTimerUL以及随机接入竞争决议定时器(ra-ContentionResolutionTimer)中的任何一个定时器正在运行;
终端设备在PUCCH上发送了SR并处于等待(Pending)状态;
在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到C-RNTI加扰的PDCCH指示的一次初始传输。
在一些实施例中,若drx-InactivityTimer超时和/或终端设备收到一个DRX命令媒体接入控制控制元素(DRX Media Access Control Command Control Element,DRX Command MAC CE),所述终端设备使用长DRX周期。
在一些实施例中,若drx-ShortCycleTimer超时和/或终端设备收到一个long DRX command MAC CE,所述终端设备使用短DRX周期。
在一些实施例中,所述终端设备可以根据当前是处于长DRX周期还是短DRX周期,来决定启动drx-onDurationTimer的时间。
例如,如果使用的是短DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle)。
又例如,如果使用的是长DRX周期,并且当前子帧满足[(SFN×10)+子帧号]modulo(drx-LongCycle)=drx-StartOffset。
其中,modulo表示取模运算。
在一些实施例中,所述终端设备可以在当前子帧开始的drx-SlotOffset个slot之后的时刻启动drx-onDurationTimer。
在一些实施例中,启动或重启drx-InactivityTimer的条件包括但不限于:
如果终端设备接收到一个指示下行或者上行初始传输的PDCCH,则终端设备启动或者重启drx-InactivityTimer。
在一些实施例中,启动和停止drx-RetransmissionTimerDL的条件包括但不限于:
当所述终端设备接收到一个指示下行传输的PDCCH,或者当终端设备在配置的下行授权资源上接收到一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerDL。所述终端设备在完成针对这次下行传输的HARQ进程反馈的传输之后,可以启动该HARQ进程对应的drx-HARQ-RTT-TimerDL。
如果终端设备的某个HARQ对应的定时器drx-HARQ-RTT-TimerDL超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端设备启动这个HARQ进程对应的drx-RetransmissionTimerDL。
在一些实施例中,启动和停止drx-RetransmissionTimerUL的条件包括但不限于:
当终端设备接收到一个指示上行传输的PDCCH,或者当终端设备在配置的上行授权资源上发送 一个MAC协议数据单元(Protocol Data Unit,PDU),则终端设备停止该HARQ进程对应的drx-RetransmissionTimerUL。终端设备在完成这次PUSCH的第一次重复传输(repetition)之后启动该HARQ进程对应的drx-HARQ-RTT-TimerUL。
如果终端设备的某个HARQ对应的定时器drx-HARQ-RTT-TimerUL超时,则终端设备启动这个HARQ进程对应的drx-RetransmissionTimerUL。
在3GPP Rel-17中,对连接态UE在配置DRX情况下的节能方案进行了进一步的研究,包括减少UE盲检PDCCH的方案,其中一种方式是引入PDCCH skipping机制,即网络可以通过发送动态信令指示UE跳过一段时间的PDCCH监听。
对于配置了DRX的UE,UE在DRX active time监听PDCCH。当UE收到PDCCH skipping指示时,UE应该遵循PDCCH skipping指示,即在随后的PDCCH skipping duration内跳过PDCCH的监听,即使UE在这段PDCCH skipping duration内处于DRX active time。
一般情况下,网络设备会基于UE的下行业务需求以及UE之前通过缓存状态报告(Buffer Status Report,BSR)上报的上行业务需求等控制终端设备是否跳过PDCCH的监听。例如,当网络认为该UE在未来一段时间没有上下行数据传输需求的情况下,网络可以指示UE在这段时间内跳过PDCCH的监听以达到UE省电的目的。
但是在一些场景中,UE可以自行触发上行传输从而期待网络有进一步的响应。比如:UE针对某个服务小区触发了BFR,若这个服务小区是SpCell,则UE会在SpCell上发起随机接入。这种情况下,由于UE期待网络的响应,从而使UE有了PDCCH监听的需求。
从网络的角度来看,网络只有在收到UE的上行信息并且能够正确识别该UE之后才可以获知该UE的调度需求,而网络在收到UE的上行传输之前或者在识别UE身份之前,网络不能获知该UE的调度需求。例如,在一种场景中,网络在收到UE发送的Msg 1之前向UE发送了PDCCH skipping指示,从UE的角度来看,UE先发送了Msg 1从而进入监听PDCCH的状态,在此期间若UE收到了来自网络的PDCCH skipping指示,这种情况下,UE如何进行PDCCH的监听以兼顾接收网络的响应和UE省电是一项急需解决的问题。
有鉴于此,本申请提供了一种PDCCH监听方案,能够根据终端发送上行信息和接收PDCCH skipping指示之间的时间间隔和终端设备和网络设备之间的往返传输时间RTT之间的关系,进行PDCCH的监听,有利于兼顾接收网络的响应和UE省电。
图3为本申请实施例提供的一种无线通信的方法200的示意性交互图。该方法200可以由图1所示的通信系统中的终端设备执行,如图3所示,该方法200可以包括如下至少部分内容:
S210,终端设备向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;
S220,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;
S230,所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH。
可选地,本申请实施例可以应用于由BFR触发的随机接入场景,或者也可以应用于由其他原因触发的随机接入场景,例如,切换(handover),或者SR失败(SR failure)等,本申请对此不作限定。
可选地,所述第一信息可以是随机接入过程中的上行信息。
可选地,所述随机接入过程可以是基于竞争的随机接入,或者也可以是基于非竞争的随机接入,从另一方面来讲,所述随机接入过程可以是四步随机接入,或者也可以是两步随机接入,本申请并不 限于此。
可选地,所述随机接入过程是由BFR触发的。或者,所述随机接入过程也可以是由其他原因触发的,例如,SR failure等,本申请并不限于此。
可选地,所述BFR可以是所述终端设备的Spcell上的BFR,所述Spcell可以为主小区(Scell),或者也可以是主辅小区(PScell),或者所述BFR也可以是其他可以触发随机接入的BFR,以下,以Spcell上的BFR为例进行说明,但本申请并不限于此。
需要说明的是,在本申请实施例中,所述第一信息也可以是所述终端设备触发的其他上行传输,或者,网络设备不能预知的其他上行传输。例如,所述第一信息可以为调度请求,在接收到所述第一指示信息时,所述SR处于等待状态,即终端设备处于等待网络响应SR的状态。又例如,所述第一信息可以为配置授权(Configured Grant,CG)资源上发送的信息,并且此次上行传输被配置为需要网络进行反馈,例如所述CG资源对应的混合自动重传请求HARQ进程被配置为启动HARQ反馈,或者所述CG资源对应的HARQ进程的HARQ反馈没有被取消。在这些情况下,所述终端设备在发送第一信息之后均期待网络设备进行响应,所以终端设备有了监听PDCCH的需求。
以下,以所述第一信息为BFR引起的随机接入过程中的上行信息为例进行说明,但本申请并不限于此。
作为一个实施例,所述第一信息包括基于竞争的四步随机接入过程中的消息3(即Msg3),其中,所述Msg3中包含所述终端设备对应的唯一标识,例如,小区无线网络临时标识C-RNTI。即网络设备在接收到Msg3的情况下,可以通过终端设备的唯一标识识别出终端设备,从而能够获知终端设备的调度需求。
作为另一个实施例,所述第一信息包括基于竞争的两步随机接入过程中的消息A(即MsgA),其中,所述MsgA包括前导序列(即Msg1)和所述终端设备对应的唯一标识,例如,C-RNTI。可选地,所述C-RNTI携带在PUSCH中。即网络设备在接收到MsgA的情况下,可以通过终端设备的唯一标识识别出终端设备,从而能够获知终端设备的调度需求。
作为再一个实施例,所述第一信息包括基于非竞争的四步随机接入过程中的前导序列(即Msg1)。此实施例中,所述Msg1是专用的前导序列,所述网络设备可以基于该Msg1即可识别出终端设备,从而能够获知终端设备的调度需求。
在终端设备发送所述第一信息之后,由于网络设备并不知道终端设备的此次上行传输,故所述网络设备可能给终端设备发送第一指示信息,或称PDCCH skipping指示,指示所述终端设备跳过监听PDCCH。
可选地,在一些实施例中,所述第一指示信息可以用于指示PDCCH跳过期间(PDCCH skipping duration)和/或执行跳过监听PDCCH的目标服务小区集合。即网络设备指示所述终端设备在接收到所述第一指示信息之后的PDCCH skipping duration内跳过监听PDCCH。
此情况下,作为一个实施例,所述终端设备可以根据所述第一指示信息,跳过监听PDCCH。
作为一个示例,所述终端设备可以根据所述第一指示信息,确定至少跳过监听不用于BFR的PDCCH。例如,可以只跳过监听不用于BFR的PDCCH,同时监听用于BFR的PDCCH,采用此方式,有利于保证BFR过程的顺利进行,同时可以兼顾终端的省电需求。又例如,所述终端设备也可以根据所述第一指示信息跳过监听所有的PDCCH。其中,用于BFR的PDCCH可以指用于携带BFR相关信息的PDCCH,对于不同的应用场景有所区别,在下文中的具体实施例中进行详细说明,这里不作赘述。
应理解,在本申请实施例中,根据所述第一指示信息跳过PDCCH监听可以指根据所述第一指示 信息在所述PDCCH skipping duration内跳过PDCCH监听,在其他时间段内是否监听PDCCH,可以网络的指示,DRX配置,终端设备是否有调度需求等因素确定,本申请对此不作限定。
在本申请另一些实施例中,所述终端设备根据所述终端设备发送所述第一信息到所述终端设备接收所述第一指示信息之间的时间间隔和第一时长,进行PDCCH的监听控制。
可选地,所述第一时长根据所述终端设备与所述网络设备之间信号传输的往返时间RTT确定。
作为一个示例,所述RTT根据网络设备指示的时间提前量TA确定,例如,所述第一时长可以为所述终端设备对应的TA。
作为另一示例,所述RTT根据网络设备配置的DRX上行混合自动重传请求往返传输时间定时器(drx-HARQ-RTT-TimerUL)的时长确定。例如,所述第一时长可以为所述drx-HARQ-RTT-TimerUL的时长。
作为又一示例,所述RTT根据网络设备配置的DRX上行混合自动重传请求往返传输时间定时器(drx-HARQ-RTT-TimerUL)的时长和RTT偏移确定。其中,所述RTT偏移可以是相对于drx-HARQ-RTT-TimerUL的时长的偏移,即所述drx-HARQ-RTT-TimerUL的时长可以理解为参考时长,或者说,标准时长。例如,所述第一时长可以为所述drx-HARQ-RTT-TimerUL的时长和所述RTT偏移之和。
可选地,不同的终端设备可以对应各自的RTT偏移。
作为再一示例,所述RTT根据所述终端设备的位置信息和星历信息确定。
在本申请一些实施例中,所述终端设备可以根据发送所述第一信息和接收所述第一指示信息之间的时间间隔和所述第一时长,按照如下方式进行PDCCH监听:
若所述终端设备发送所述第一信息到接收所述第一指示信息之间的时间间隔小于或等于所述第一时长,所述终端设备不跳过监听PDCCH;
若所述时间间隔大于所述第一时长,所述终端设备跳过监听PDCCH。
由于终端设备和网络设备之间存在传输时延,在发送所述第一信息后的所述第一时长内,可以认为网络设备还没有接收到终端设备发送的所述第一信息,因此,所述网络设备下发所述第一指示信息可能没有考虑终端设备的调度需求,此情况下,所述终端设备可以忽略所述第一指示信息的指示,继续监听PDCCH,有利于及时接收网络的响应,从而保证BFR的顺利进行。
若所述时间间隔大于所述第一时长,终端设备认为网络设备能够接收到终端设备发送的所述第一信息,如果所述网络设备依然下发了忽略所述终端设备的调度请求的所述第一指示信息,可以认为网络接收数据失败,或者未识别出终端设备等,此情况下,所述终端设备可以根据所述第一指示信息的指示,跳过监听PDCCH,有利于终端的省电。
需要说明的是,在本申请实施例中,所述终端设备跳过监听PDCCH,所述终端设备不监听PDCCH,所述终端设备停止监听PDCCH,所述终端设备根据(或者说,遵循)所述第一指示信息的指示,在本申请文件中可被互换替换使用。类似地,所述终端设备不跳过监听PDCCH,所述终端设备继续监听PDCCH,所述终端设备监听PDCCH,所述终端设备忽略所述第一指示信息的指示,在本申请文件中可被互换替换使用,本申请并不限于此。
可选地,在本申请实施例中,所述终端设备忽略所述PDCCH skipping指示的操作可以是针对所述终端设备的所有PDCCH搜索空间,或者也可以只针对用于BFR的PDCCH搜索空间,例如用于BFR的PDCCH搜索空间标识(recoverySearchSpaceId)对应的PDCCH搜索空间,本申请并不限于此。
以下,结合前述实施例中的三种随机接入场景,说明PDCCH监听的具体实现方式。
场景一:基于非竞争的四步随机接入
在该场景一中,终端设备接收网络设备的RRC配置信息,所述RRC配置信息用于配置针对SpCell的BFR参数。可选地,所述BFR参数可以包括前述实施例中的BFR参数中的至少一项,为了简洁,这里不再赘述。
进一步地,终端设备针对Spcell触发BFR,并且选择采用基于非竞争的四步随机接入时,可以基于选择的目标参考信号,例如SSB或CSI-RS,在对应的RACH资源上发送Msg1,并启动开启RAR窗口(RAR window),在RAR window运行期间监听C-RNTI加扰的RNTI。
在此场景一中,网络设备在接收到终端设备的Msg1之后即可识别出终端设备,进而可能给出相应的响应,其中,所述Msg1为专用的前导序列。
在发送Msg1后,若终端设备接收到网络设备发送的PDCCH skipping指示,作为一个示例,所述终端设备可以根据发送Msg1到接收PDCCH skipping指示之间的时间间隔和第一时长,执行如下PDCCH监听操作:
1、若所述时间间隔不超过所述第一时长,所述终端设备可以忽略所述PDCCH skipping指示,即继续在RAR window运行期间监听C-RNTI加扰的RNTI。
2、若所述时间间隔超过所述第一时长,所述终端设备可以停止RAR window。即所述终端设备可以停止监听C-RNTI加扰的PDCCH,或者也可以停止监听所有的PDCCH。
在停止RAR window的情况下,所述终端设备可以认为本次随机接入响应接收失败。若Msg1的传输次数没有超过网络配置的最大传输次数(preambleTransMax),终端设备可以对Msg 1进行重传,若Msg1的传输次数超过了网络配置的最大传输次数(preambleTransMax),终端设备向高层上报出现随机接入问题。
在该场景一中,用于BFR的PDCCH可以指C-RNTI加扰的PDCCH。
结合图4中的具体示例,说明场景一的具体实现。
如图4所示,UE在T1时刻触发BFR,在T2时刻发送Msg1。
在一种情况中,所述UE在T3时刻接收到网络设备的PDCCH skipping指示,其中,所述T2时刻和T3时刻之间的时间间隔小于所述第一时长,
进一步地,所述UE可以根据所述T2时刻和T3时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T2时刻和T3时刻之间的时间间隔小于所述第一时长,故所述UE可以忽略PDCCH skipping指示,继续监听C-RNTI加扰的PDCCH,从而能够及时接收网络的响应,保证BFR的顺利进行。
在另一种情况中,所述UE在T4时刻接收到网络设备的PDCCH skipping指示,其中,所述T2时刻和T4时刻之间的时间间隔大于所述第一时长,
进一步地,所述UE可以根据所述T2时刻和T4时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T2时刻和T4时刻之间的时间间隔大于所述第一时长,故所述UE可以停止RAR window,即停止监听C-RNTI加扰的PDCCH。
若Msg1的传输次数没有超过最大传输次数,终端设备可以对Msg 1进行重传。
场景二:基于竞争的四步随机接入
在该场景二中,终端设备接收网络设备的RRC配置信息,所述RRC配置信息用于配置针对SpCell的BFR参数。可选地,所述BFR参数可以包括前述实施例中的BFR参数中的至少一项,为了简洁,这里不再赘述。
在此场景二中,网络设备在接收到终端设备的Msg3之后才可识别出终端设备,进而获知终端设 备的调度需求。
若终端设备针对Spcell触发BFR,并且选择采用基于竞争的四步随机接入,所述终端设备可以基于选择的目标参考信号,例如SSB或CSI-RS,在对应的RACH资源上发送Msg1,并启动开启RAR窗口(RAR window),在RAR window运行期间监听RA-RNTI加扰的RNTI。
若在RAR window运行期间,所述终端设备接收到网络设备的PDCCH skipping指示,所述终端设备可以根据PDCCH skipping指示,跳过监听不用于BFR的PDCCH,例如,C-RNTI加扰的PDCCH,继续监听用于BFR的PDCCH,例如RA-RNTI加扰的PDCCH。
进一步地,在接收到网络设备的RAR的情况下,可以向所述网络设备发送Msg3,并启动随机接入竞争解决定时器(ra-ContentionResolutionTimer),在ra-ContentionResolutionTimer运行期间,接收网络设备的Msg4。在发送Msg3之后,若所述终端设备接收到网络设备的PDCCH skipping指示,作为一个示例,所述终端设备可以根据发送Msg3到接收PDCCH skipping指示之间的时间间隔和第一时长,执行如下PDCCH监听操作:
1、若所述时间间隔不超过所述第一时长,所述终端设备可以忽略所述PDCCH skipping指示,即继续在ra-ContentionResolutionTimer运行期间监听C-RNTI加扰的RNTI,以及TC-RNTI加扰的PDCCH。
2、若所述时间间隔超过所述第一时长,所述终端设备可以根据PDCCH skipping指示,跳过监听C-RNTI加扰的PDCCH,继续监听TC-RNTI加扰的PDCCH。
在该场景二中,用于BFR的PDCCH可以包括RA-RNTI加扰的PDCCH和TC-RNTI加扰的PDCCH。
结合图5中的具体示例,说明场景二的具体实现。
如图5所示,UE在T1时刻触发BFR,在T2时刻发送Msg1。
在一种情况中,所述UE在T3时刻接收到网络设备的PDCCH skipping指示。
所述UE可以根据PDCCH skipping指示在PDCCH skipping duration内不监听C-RNTI加扰的PDCCH,继续监听RA-RNTI加扰的PDCCH。
在T4时刻接收到网络设备发送的Msg2,在T5时刻向网络设备发送Msg3,并开启ra-ContentionResolutionTimer。
之后,在一种情况下,所述UE在T6时刻接收到网络设备的PDCCH skipping指示。其中,所述T5时刻和T6时刻之间的时间间隔小于所述第一时长,
进一步地,所述UE可以根据所述T5时刻和T6时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T5时刻和T6时刻之间的时间间隔小于所述第一时长,故所述UE可以忽略PDCCH skipping指示,继续监听C-RNTI加扰的PDCCH,以及TC-RNTI加扰的PDCCH。
在另一种情况中,所述UE在T7时刻接收到网络设备的PDCCH skipping指示。其中,所述T5时刻和T7时刻之间的时间间隔大于所述第一时长,
进一步地,所述UE可以根据所述T5时刻和T7时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T5时刻和T7时刻之间的时间间隔大于所述第一时长,故所述UE可以根据PDCCH skipping指示在PDCCH skipping duration内不监听C-RNTI加扰的PDCCH,继续监听TC-RNTI加扰的PDCCH。
在T8时刻,UE接收到TC-RNTI加扰的PDCCH指示Msg3的重传,其中PDCCH包括用于重传Msg3的上行授权(UL grant)。
在T9时刻,所述UE重传Msg3,并重启ra-ContentionResolutionTimer。
在T10时刻,UE接收到Msg4,停止ra-ContentionResolutionTimer,随机接入完成。
场景三:基于竞争的两步随机接入
在该场景三中,终端设备接收网络设备的RRC配置信息,所述RRC配置信息用于配置针对SpCell的BFR参数。可选地,所述BFR参数可以包括前述实施例中的BFR参数中的至少一项,为了简洁,这里不再赘述。
进一步地,终端设备针对Spcell触发BFR,并且选择采用基于竞争的两步随机接入时,可以基于选择的目标参考信号,例如SSB或CSI-RS,在对应的RACH资源上发送MsgA,并启动开启MsgB接收窗口(msgB-ResponseWindow),在msgB-ResponseWindow运行期间监听MSGB-RNTI加扰的PDCCH,以及C-RNTI加扰的PDCCH。
在此场景三中,网络设备在接收到终端设备的MsgA之后即可识别出终端设备,进而可能给出相应的响应。
在发送MsgA之后,若终端设备接收到网络设备发送的PDCCH skipping指示,作为一个示例,所述终端设备可以根据发送MsgA到接收PDCCH skipping指示之间的时间间隔和第一时长,执行如下PDCCH监听操作:
1、若所述时间间隔不超过所述第一时长,所述终端设备可以忽略所述PDCCH skipping指示,即继续在msgB-ResponseWindow运行期间监听MSGB-RNTI加扰的PDCCH,以及C-RNTI加扰的PDCCH。
2、若所述时间间隔超过所述第一时长,所述终端设备可以根据PDCCH skipping指示在PDCCH skipping duration跳过监听C-RNTI加扰的PDCCH,并继续监听MSGB-RNTI加扰的PDCCH。
在该场景三中,用于BFR的PDCCH可以包括MSGB-RNTI加扰的PDCCH。
结合图6中的具体示例,说明场景三的具体实现。
如图6所示,UE在T1时刻触发BFR,在T2时刻发送MsgA。
在一种情况中,所述UE在T3时刻接收到网络设备的PDCCH skipping指示。其中,所述T2时刻和T3时刻之间的时间间隔小于所述第一时长,
进一步地,所述UE可以根据所述T2时刻和T3时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T2时刻和T3时刻之间的时间间隔小于所述第一时长,故所述UE可以忽略PDCCH skipping指示,继续监听C-RNTI加扰的PDCCH以及MSGB-RNTI加扰的PDCCH。
在另一种情况中,所述UE在T4时刻接收到网络设备的PDCCH skipping指示。其中,所述T2时刻和T4时刻之间的时间间隔大于所述第一时长
进一步地,所述UE可以根据所述T2时刻和T4时刻之间的时间间隔和所述第一时长的关系,进行PDCCH监听控制。由于所述T2时刻和T4时刻之间的时间间隔大于所述第一时长,故所述UE可以跳过监听C-RNTI加扰的PDCCH,并继续监听MSGB-RNTI加扰的PDCCH。
在本申请实施例中,在遵循PDCCH skipping指示的情况下,跳过监听不用于BFR的PDCCH,并继续监听用于BFR的PDCCH,有利于保证BFR的顺利进行,同时又可以兼顾终端的省电需求。
综合上述实施例,在终端设备发送用于随机接入的上行信息之后,若接收到网络设备的PDCCH跳过指示,所述终端设备可以根据发送所述上行信息到接收所述PDCCH跳过指示之间的时间间隔和所述终端设备和网络设备之间的信号传输的RTT,进行PDCCH的监听控制,有利于兼顾接收网络的响应和终端的省电。
上文结合图3至图6,详细描述了本申请的方法实施例,下文结合图7至图9,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备400的示意性框图。如图7所示,该终端设备400包括:
通信单元410,用于向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;以及
接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;
处理单元420,用于根据所述第一指示信息,确定是否跳过监听PDCCH。
可选地,所述处理单元420还用于:根据所述终端设备发送所述第一信息到所述终端设备接收所述第一指示信息之间的时间间隔和第一时长,确定是否跳过监听PDCCH,其中,所述第一时长根据所述终端设备与所述网络设备之间信号传输的往返时间RTT确定。
可选地,在一些实施例中,所述RTT根据以下中的至少一项确定:
非连续接收DRX上行混合自动重传请求往返时间定时器的时长;
DRX上行混合自动重传请求往返时间定时器的时长和RTT偏移;
所述终端设备的位置信息和星历信息;
所述网络设备指示的时间提前量TA。
可选地,在一些实施例中,所述处理单元420具体用于:
若所述时间间隔小于或等于所述第一时长,确定不跳过监听PDCCH;或者
若所述时间间隔大于所述第一时长,确定跳过监听PDCCH。
可选地,在一些实施例中,所述通信单元410还用于:
若确定不跳过监听PDCCH,至少监听用于BFR的PDCCH;或者
若确定跳过监听PDCCH,至少跳过监听不用于BFR的PDCCH。
可选地,在一些实施例中,所述至少监听用于BFR的PDCCH,包括:
只监听用于BFR的PDCCH,跳过监听不用于BFR的PDCCH;或者
监听所有的PDCCH。
可选地,在一些实施例中,所述至少跳过监听不用于BFR的PDCCH,包括:
只跳过监听不用于BFR的PDCCH,继续监听用于BFR的PDCCH;或者跳过监听所有的PDCCH。
可选地,在一些实施例中,所述用于BFR的PDCCH包括以下中的至少一种:
小区无线网络临时标识C-RNTI加扰的PDCCH;
随机接入无线网络临时标识RA-RNTI加扰的PDCCH;
消息B无线网络临时标识MSGB-RNTI加扰的PDCCH;
临时小区无线网络临时标识TC-RNTI加扰的PDCCH。
可选地,在一些实施例中,所述通信单元410还用于:
若确定不跳过监听PDCCH,在所有的PDCCH搜索空间上均监听PDCCH;或
若确定不跳过监听PDCCH,在用于BFR的PDCCH搜索空间上监听PDCCH。
可选地,在一些实施例中,所述第一信息包括基于非竞争的四步随机接入过程中的前导序列。
可选地,在一些实施例中,所述通信单元410还用于:
若确定不跳过监听PDCCH,在所述随机接入响应RAR的接收窗口内,监听C-RNTI加扰的PDCCH;或者
若确定跳过监听PDCCH,关闭随机接入响应RAR的接收窗口。
可选地,在一些实施例中,所述第一信息包括基于竞争的四步随机接入过程中的消息3,其中,所述消息3中包含所述终端设备对应的小区无线网络临时标识C-RNTI。
可选地,在一些实施例中,所述通信单元410还用于:
若确定不跳过监听PDCCH,在随机接入竞争解决定时器运行期间,监听C-RNTI以及临时小区无线网络临时标识TC-RNTI加扰的PDCCH;或者
若确定跳过监听PDCCH,在随机接入竞争解决定时器运行期间,跳过监听C-RNTI加扰的PDCCH,并继续监听TC-RNTI加扰的PDCCH。
可选地,在一些实施例中,所述第一信息包括基于竞争的四步随机接入过程中的消息1。
可选地,在一些实施例中,所述处理单元420还用于:
根据所述第一指示信息,确定在所述第一指示信息所指示的PDCCH跳过期间跳过监听C-RNTI加扰的PDCCH,并继续监听随机接入无线网络临时标识RA-RNTI加扰的PDCCH。
可选地,所述第一信息包括基于竞争的两步随机接入过程中的消息A,其中,所述消息A包括前导序列和物理上行共享信道PUSCH,所述PUSCH中包含所述终端设备对应的C-RNTI。
可选地,在一些实施例中,所述通信单元410用于:
若确定不跳过监听PDCCH,在消息B的接收窗口内,监听C-RNTI加扰的PDCCH以及消息B无线网络临时标识MSGB-RNTI加扰的PDCCH;或者
若确定跳过监听PDCCH,在消息B的接收窗口内,跳过监听C-RNTI加扰的PDCCH,并继续监听MSGB-RNTI加扰的PDCCH。
可选地,在一些实施例中,所述网络设备为所述终端设备的主小区或主辅小区对应的网络设备。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3至图6所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备600示意性结构图。图8所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图8所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机 程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (24)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;
    所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH,包括:
    所述终端设备根据所述终端设备发送所述第一信息到所述终端设备接收所述第一指示信息之间的时间间隔和第一时长,确定是否跳过监听PDCCH,其中,所述第一时长根据所述终端设备与所述网络设备之间信号传输的往返时间RTT确定。
  3. 根据权利要求2所述的方法,其特征在于,所述RTT根据以下中的至少一项确定:
    非连续接收DRX上行混合自动重传请求往返时间定时器的时长;
    DRX上行混合自动重传请求往返时间定时器的时长和RTT偏移;
    所述终端设备的位置信息和星历信息;
    所述网络设备指示的时间提前量TA。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端设备根据所述终端设备发送所述第一信息到所述终端设备接收所述第一指示信息之间的时间间隔和第一时长,确定是否跳过监听PDCCH,包括:
    若所述时间间隔小于或等于所述第一时长,所述终端设备确定不跳过监听PDCCH;或者
    若所述时间间隔大于所述第一时长,所述终端设备确定跳过监听PDCCH。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    若确定不跳过监听PDCCH,所述终端设备至少监听用于BFR的PDCCH;或者
    若确定跳过监听PDCCH,所述终端设备至少跳过监听不用于BFR的PDCCH。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备至少监听用于BFR的PDCCH,包括:
    所述终端设备只监听用于BFR的PDCCH,跳过监听不用于BFR的PDCCH;或者
    所述终端设备监听所有的PDCCH。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端设备至少跳过监听不用于BFR的PDCCH,包括:
    所述终端设备只跳过监听不用于BFR的PDCCH,继续监听用于BFR的PDCCH;或者
    所述终端设备跳过监听所有的PDCCH。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述用于BFR的PDCCH包括以下中的至少一种:
    小区无线网络临时标识C-RNTI加扰的PDCCH;
    随机接入无线网络临时标识RA-RNTI加扰的PDCCH;
    消息B无线网络临时标识MSGB-RNTI加扰的PDCCH;
    临时小区无线网络临时标识TC-RNTI加扰的PDCCH。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    若确定不跳过监听PDCCH,所述终端设备在所有的PDCCH搜索空间上均监听PDCCH;或
    若确定不跳过监听PDCCH,所述终端设备在用于BFR的PDCCH搜索空间上监听PDCCH。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一信息包括基于非竞争的四步随机接入过程中的前导序列。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若确定不跳过监听PDCCH,所述终端设备在所述随机接入响应RAR的接收窗口内,监听C-RNTI加扰的PDCCH;或者
    若确定跳过监听PDCCH,所述终端设备关闭RAR的接收窗口。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述第一信息包括基于竞争的四步随机接入过程中的消息3,其中,所述消息3中包含所述终端设备对应的小区无线网络临时标识C-RNTI。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    若确定不跳过监听PDCCH,所述终端设备在随机接入竞争解决定时器运行期间,监听C-RNTI以及临时小区无线网络临时标识TC-RNTI加扰的PDCCH;或者
    若确定跳过监听PDCCH,所述终端设备在随机接入竞争解决定时器运行期间,跳过监听C-RNTI加扰的PDCCH,并继续监听TC-RNTI加扰的PDCCH。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一信息包括基于竞争的四步随机接入过程中的消息1。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备根据所述第一指示信息,确定是否跳过监听PDCCH,包括:
    所述终端设备根据所述第一指示信息,确定在所述第一指示信息所指示的PDCCH跳过期间跳过监听C-RNTI加扰的PDCCH,并继续监听随机接入无线网络临时标识RA-RNTI加扰的PDCCH。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一信息包括基于竞争的两步随机接入过程中的消息A,其中,所述消息A包括前导序列和物理上行共享信道PUSCH,所述PUSCH中包含所述终端设备对应的C-RNTI。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    若确定不跳过监听PDCCH,所述终端设备在消息B的接收窗口内,监听C-RNTI加扰的PDCCH以及消息B无线网络临时标识MSGB-RNTI加扰的PDCCH;或者
    若确定跳过监听PDCCH,所述终端设备在消息B的接收窗口内,跳过监听C-RNTI加扰的PDCCH,并继续监听MSGB-RNTI加扰的PDCCH。
  18. 根据权利要求1-17中任一项所述的方法,所述网络设备为所述终端设备的主小区或主辅小区对应的网络设备。
  19. 一种终端设备,其特征在于,包括:
    通信单元,用于向网络设备发送第一信息,其中,所述第一信息为随机接入过程中的上行信息,所述随机接入过程由波束失败恢复BFR触发;以及
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备跳过监听物理下行控制信道PDCCH;
    处理单元,用于根据所述第一指示信息,确定是否跳过监听PDCCH。
  20. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方 法。
  21. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
  24. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2020/097138 2020-06-19 2020-06-19 无线通信的方法和终端设备 WO2021253414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080102071.6A CN115699909A (zh) 2020-06-19 2020-06-19 无线通信的方法和终端设备
PCT/CN2020/097138 WO2021253414A1 (zh) 2020-06-19 2020-06-19 无线通信的方法和终端设备
EP20941127.1A EP4156583A4 (en) 2020-06-19 2020-06-19 WIRELESS COMMUNICATION METHOD AND TERMINAL DEVICE
US18/084,185 US20230131188A1 (en) 2020-06-19 2022-12-19 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097138 WO2021253414A1 (zh) 2020-06-19 2020-06-19 无线通信的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/084,185 Continuation US20230131188A1 (en) 2020-06-19 2022-12-19 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2021253414A1 true WO2021253414A1 (zh) 2021-12-23

Family

ID=79268977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097138 WO2021253414A1 (zh) 2020-06-19 2020-06-19 无线通信的方法和终端设备

Country Status (4)

Country Link
US (1) US20230131188A1 (zh)
EP (1) EP4156583A4 (zh)
CN (1) CN115699909A (zh)
WO (1) WO2021253414A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132924A1 (en) * 2022-01-10 2023-07-13 Qualcomm Incorporated Ran procedures for supporting adaptive pdcch monitoring
WO2024026789A1 (zh) * 2022-08-04 2024-02-08 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
WO2024060243A1 (en) * 2022-09-23 2024-03-28 Nokia Shanghai Bell Co., Ltd. Conditional skipping monitoring of downlink control channel
WO2024078772A1 (en) * 2022-10-10 2024-04-18 Nokia Technologies Oy Control of random access response monitoring for wireless networks

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116458213A (zh) * 2020-10-15 2023-07-18 苹果公司 触发活动模式ue功率节省的系统和方法
US20230121399A1 (en) * 2021-10-15 2023-04-20 Qualcomm Incorporated Techniques for beam failure detection and recovery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100179A1 (en) * 2018-09-21 2020-03-26 Comcast Cable Communications, Llc Activation and Deactivation of Power Saving Operation
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信系统中监测终端的控制信号的方法及其终端
CN111052839A (zh) * 2017-08-31 2020-04-21 中兴通讯股份有限公司 连接不连续接收中的波束恢复

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052839A (zh) * 2017-08-31 2020-04-21 中兴通讯股份有限公司 连接不连续接收中的波束恢复
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信系统中监测终端的控制信号的方法及其终端
US20200100179A1 (en) * 2018-09-21 2020-03-26 Comcast Cable Communications, Llc Activation and Deactivation of Power Saving Operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "RAN2 Impacts of PDCCH based WUS", 3GPP DRAFT; R2-1905666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 2 May 2019 (2019-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051710022 *
See also references of EP4156583A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132924A1 (en) * 2022-01-10 2023-07-13 Qualcomm Incorporated Ran procedures for supporting adaptive pdcch monitoring
WO2024026789A1 (zh) * 2022-08-04 2024-02-08 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
WO2024060243A1 (en) * 2022-09-23 2024-03-28 Nokia Shanghai Bell Co., Ltd. Conditional skipping monitoring of downlink control channel
WO2024078772A1 (en) * 2022-10-10 2024-04-18 Nokia Technologies Oy Control of random access response monitoring for wireless networks

Also Published As

Publication number Publication date
CN115699909A (zh) 2023-02-03
EP4156583A1 (en) 2023-03-29
US20230131188A1 (en) 2023-04-27
EP4156583A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2021253414A1 (zh) 无线通信的方法和终端设备
EP3791671B1 (en) Method and wireless communication system for handling timer operation
WO2021253412A1 (zh) 无线通信的方法和终端设备
CN113260089B (zh) 利用多个不连续接收组对活动时间的确定
US20230224091A1 (en) Wireless communication method and device
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
WO2020199014A1 (zh) 随机接入响应的接收方法、装置和通信系统
US11849418B2 (en) Wireless communication method, terminal device, and network device
US20230119565A1 (en) Physical downlink control channel (pdcch) monitoring method and apparatus
WO2021077343A1 (zh) 无线通信方法和终端设备
US20240023095A1 (en) Method for transmitting data channel, terminal device and network device
WO2022027238A1 (zh) 无线通信的方法、终端设备和网络设备
US20230239961A1 (en) Sidelink transmission method and terminal
US20230129426A1 (en) Wireless communication method and terminal device
CN114071509A (zh) 一种指示数据传输的方法、装置
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2020020352A1 (zh) 随机接入方法、终端设备和网络设备
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备
WO2023133885A1 (zh) 无线通信的方法和终端设备
WO2022247578A1 (zh) 一种数据传输方法及通信装置
WO2024040598A1 (zh) 无线通信的方法和终端设备
WO2024093246A1 (en) Terminal device, network device and methods for communications
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2023133839A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020941127

Country of ref document: EP

Effective date: 20221220

NENP Non-entry into the national phase

Ref country code: DE