WO2024093246A1 - Terminal device, network device and methods for communications - Google Patents

Terminal device, network device and methods for communications Download PDF

Info

Publication number
WO2024093246A1
WO2024093246A1 PCT/CN2023/100523 CN2023100523W WO2024093246A1 WO 2024093246 A1 WO2024093246 A1 WO 2024093246A1 CN 2023100523 W CN2023100523 W CN 2023100523W WO 2024093246 A1 WO2024093246 A1 WO 2024093246A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
procedure
configuration
rrc
control
Prior art date
Application number
PCT/CN2023/100523
Other languages
French (fr)
Inventor
Xiaoying Xu
Mingzeng Dai
Lianhai WU
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2023/100523 priority Critical patent/WO2024093246A1/en
Publication of WO2024093246A1 publication Critical patent/WO2024093246A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular to terminal device, network device and methods for communications.
  • a cell may be operated in energy saving mode based on a configuration associated with NES for the cell.
  • the configuration associated with NES may comprise at least one of a cell discontinuous reception (DRX) configuration or a cell discontinuous transmission (DTX) configuration for a terminal device in radio resource control connected (RRC_CONNECTED) mode.
  • DRX cell discontinuous reception
  • DTX cell discontinuous transmission
  • RRC_CONNECTED radio resource control connected
  • the Third Generation Partnership Project (3GPP) is discussing to prohibit some uplink (UL) and downlink (DL) transmissions from the terminal device in RRC_CONNECTED mode during a non-active duration of a cell DRX and/or DTX pattern.
  • 3GPP already agreed that a terminal device in RRC_CONNECTED mode supporting NES can perform a Random Access (RA) procedure and receive System Information Blocks (SIBs) in the non-active duration of the cell DRX and/or DTX pattern to avoid impact terminal devices in RRC_IDLE and RRC_INACTIVE modes.
  • RA Random Access
  • SIBs System Information Blocks
  • resources for UL transmission are configured densely, a network device needs to frequent wake up to detect UL transmission request, which impacts power saving gain. If the resources for UL transmission are configured sparsely, it can help improve energy saving gain. However, it may introduce transmission delay which impacts transmission performance. For some cases with urgent data or signaling transmission, it may be not acceptable. Therefore, it needs to discuss how to balance the network energy saving and transmission performance of a terminal device.
  • embodiments of the present disclosure provide a solution for communications.
  • a terminal device comprising a processor and a transceiver coupled to the processor.
  • the processor is configured to: receive, via the transceiver from a network device, a first configuration associated with NES; determine a second configuration associated with a UL transmission procedure; and control the UL transmission procedure based on the first configuration and the second configuration.
  • a network device comprising a processor and a transceiver coupled to the processor.
  • the processor is configured to: transmit, via the transceiver to a terminal device, a first configuration associated with NES; and transmit, via the transceiver to the terminal device, a second configuration associated with an uplink transmission procedure.
  • a method performed by a terminal device comprises: receiving, at a terminal device from a network device, a first configuration associated with NES; determining a second configuration associated with a UL transmission procedure; and controlling the UL transmission procedure based on the first configuration and the second configuration.
  • a method performed by a network device comprises: transmitting, from a network device to a terminal device, a first configuration associated with NES; and transmitting, to the terminal device, a second configuration associated with an uplink transmission procedure.
  • a computer readable medium has instructions stored thereon. The instructions, when executed on at least one processor of a device, causing the device to perform the method of the third aspect or the fourth aspect.
  • Fig. 1 illustrates a schematic diagram of a communication network in which some embodiments of the present disclosure can be implemented
  • Fig. 2 illustrate an example of a cell DRX/DTX pattern for a cell in accordance with some embodiments of the present disclosure
  • Fig. 3 illustrates a signaling chart illustrating an example process for communications in accordance with some embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of a method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of a method implemented at a network device in accordance with other embodiments of the present disclosure.
  • Fig. 6 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an example embodiment, ” “an embodiment, ” “some embodiments, ” and the like indicate that the embodiment (s) described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment (s) . Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. For example, a first element could also be termed as a second element, and similarly, a second element could also be termed as a first element, without departing from the scope of embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms. In some examples, values, procedures, or apparatuses are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the use of an expression such as “A and/or B” can mean either “only A” or “only B” or “both A and B. ”
  • Other definitions, explicit and implicit, may be included below.
  • the term “communication network” refers to a network following any suitable communication standards, such as, New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • any suitable generation communication protocols including but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will also be future type communication technologies and systems in which the present disclosure may be embodied. It should not be seen as limiting
  • the term “network device” generally refers to a node in a communication network via which a terminal device can access the communication network and receive services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , a radio access network (RAN) node, an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , an infrastructure device for a V2X (vehicle-to-everything) communication, a transmission and reception point (TRP) , a reception point (RP) , a remote radio head (RRH) , a relay, an integrated access and backhaul (IAB) node, a low power node such as a femto BS, a pico BS, and so forth, depending on
  • terminal device generally refers to any end device that may be capable of wireless communications.
  • a terminal device may also be referred to as a communication device, a user equipment (UE) , an end user device, a subscriber station (SS) , an unmanned aerial vehicle (UAV) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) .
  • UE user equipment
  • SS subscriber station
  • UAV unmanned aerial vehicle
  • MS mobile station
  • AT access terminal
  • the terminal device may include, but is not limited to, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable terminal device, a personal digital assistant (PDA) , a portable computer, a desktop computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and playback appliance, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , a USB dongle, a smart device, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device (for example, a remote surgery device) , an industrial device (for example, a robot and/or other wireless devices operating in an industrial and/or an automated processing chain
  • Fig. 1 illustrates a schematic diagram of a communication network in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 includes a terminal device 110 and a network device 120 that can communicate with each other.
  • a serving area of the network device 120 is called as a cell 102.
  • the communication network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the cell 102 and served by the network device 120.
  • Communications in the communication network 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • the terminal device 110 may transmit data and/or signaling to the network device 120 via UL between them. Alternatively, or additionally, the terminal device 110 may receive data and/or signaling from the network device 120 via DL between them.
  • the network device 120 may transmit, to the terminal device 110 in RRC_CONNECTED mode, RRC_INACTIVE mode, or RRC_IDLE mode, at least one of a configuration for a cell DRX pattern or a configuration for a cell DTX pattern for a serving cell (such as the cell 102) .
  • Fig. 2 illustrate an example of a cell DRX/DTX pattern for a cell in accordance with some embodiments of the present disclosure.
  • a cell DRX/DTX cycle specifies periodic repetition of an active duration followed by a non-active duration.
  • the cell DRX cycle includes an active duration and a non-active duration.
  • the active duration is a duration in which a receiving device or a transmitting device is active to monitor data and/or signaling within the cell DRX cycle.
  • the active duration may also be referred to as active period or active time.
  • the non-active duration is a duration in which the receiving device or the transmitting device is in a sleep state and does not monitor data and/or signaling.
  • the non-active duration may also be referred to as non-active period or non-active time.
  • it may prohibit some UL and DL transmissions from the terminal device 110 in RRC_CONNECTED mode during the non-active duration of the cell DRX and/or DTX pattern. For example, it may prohibit UL transmissions which are based on PUSCH (e.g, configured grant) or DL transmissions which are based on PDSCH (e.g. semi-Persistent scheduling) .
  • PUSCH e.g, configured grant
  • PDSCH e.g. semi-Persistent scheduling
  • a terminal device in RRC_CONNECTED mode supporting NES can perform an RA procedure and receive SIBs in the non-active duration of the cell DRX and/or DTX pattern to avoid impact terminal devices in RRC_IDLE and RRC_INACTIVE modes.
  • PRACH physical random access channel
  • a terminal device receives, from a network device, a first configuration associated with NES.
  • the terminal device determines a second configuration associated with a UL transmission procedure.
  • the terminal device controls the UL transmission procedure based on the first configuration and the second configuration. In this way, balance of the network energy saving and transmission performance of the terminal device may be achieved.
  • Fig. 3 illustrates a signaling chart illustrating an example process 300 for communications in accordance with some embodiments of the present disclosure.
  • the process 300 may involve a receiving device and a transmitting device.
  • the process 300 will be described with reference to Fig. 1.
  • the process 300 may involve the terminal device 110 and the network device 120. It shall be noted that the process 300 may be applied to other receiving device and transmitting device than the terminal device 110 and the network device 120.
  • the process 300 may be applied to a receiving device and a transmitting device for sidelink, relay or Integrated Access Backhaul (IAB) deployment network.
  • IAB Integrated Access Backhaul
  • the terminal device 110 receives 310 a first configuration associated with NES from the network device 120.
  • the terminal device 110 may receive, from the network device 120, one of the following which comprises the first configuration: an RRC message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell (such as the cell 102) of the terminal device 110.
  • the terminal device 110 determines 320 a second configuration associated with a UL transmission procedure.
  • the second configuration may be pre-defined.
  • the terminal device 110 may receive the second configuration from the network device 120.
  • the terminal device 110 may receive, from the network device 120, one of the following which comprises the second configuration: an RRC message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • the UL transmission procedure comprises an RA procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
  • PUSCH Physical Uplink Shared Channel
  • the terminal device 110 controls 330 the UL transmission procedure based on the first configuration and the second configuration.
  • the second configuration may comprise PRACH resource configuration.
  • the terminal device 110 may determine an active duration and a non-active duration of a cell DRX pattern based on the cell DRX configuration. The terminal device 110 may determine whether the RA procedure is triggered by a first event during the non-active duration. If the RA procedure is triggered by the first event during the non-active duration, the terminal device 110 controls the RA procedure.
  • controlling the RA procedure may comprise restriction of using the RA procedure which is triggered by the first event during the non-active duration.
  • restriction restriction of using the RA procedure which is triggered by the first event during the non-active duration
  • the restriction of using the RA procedure which is triggered by the first event during the non-active duration may comprise not initiating the RA procedure till the active duration.
  • the terminal device 110 may delay initiation of the RA procedure till the active duration.
  • the second configuration may comprise an indication.
  • the indication indicates whether to control the RA procedure triggered by the first event during the non-active duration of the cell DRX pattern.
  • the indication may indicate whether to restrict using the RA procedure triggered by the first event during the non-active duration.
  • the indication may indicate whether to apply the restriction of using the RA procedure triggered by the first event during the non-active duration.
  • the indication may be configured with a BOOLEAN value. If the BOOLEAN value is set to be “TRUE” , it indicates to restrict using the RA procedure during the non-active duration. If the BOOLEAN value is set to be “FALSE” , it indicates not to restrict using the RA procedure during the non-active duration. In other words, the terminal device 110 may handle the RA procedure based on legacy behaviour.
  • the terminal device 110 may determine whether the RA procedure is triggered by the first event during the non-active duration. If the RA procedure is triggered by the first event during the non-active duration, the terminal device 110 controls the RA procedure based on the indication.
  • the terminal device 110 is in RRC_CONNECTED state.
  • RRC_CONNECTED the terminal device 110 is in RRC_CONNECTED state.
  • the first event may comprise the following event (a) : data arrival during the terminal device 110 is in RRC_CONNECTED state when UL synchronization status of the terminal device 110 is non-synchronized.
  • the data arrival may comprise DL data arrival or UL data arrival.
  • the network device 120 transmits a Physical Downlink Control Channel (PDCCH) order to trigger the terminal device 110 to initiate the RA procedure.
  • PDCCH Physical Downlink Control Channel
  • the network device 120 indicates the terminal device 110 to initiate a contention-free random access (CFRA) procedure.
  • CFRA contention-free random access
  • a PDCCH order is sent on a scheduling cell of an activated SCell of the secondary tracking area group (TAG) , preamble transmission takes place on the indicated SCell, and Random Access Response takes place on PCell.
  • TAG secondary tracking area group
  • the network device 120 indicates the terminal device 110 to initiate a contention-based random access (CBRA) procedure.
  • CBRA contention-based random access
  • CA Carrier Aggregation
  • RA procedure with 2-step RA type is only performed on PCell while contention resolution can be cross-scheduled by the PCell.
  • CA Carrier Aggregation
  • the first three steps of the CBRA procedure always occur on the PCell while contention resolution can be cross-scheduled by the PCell.
  • whether to apply the restriction may be pre-defined or separately configured by the network device 120 for event (a) .
  • event (a) it is preferred to restrict using of RACH occasions during the non-active duration in the UL data arrival case.
  • the event is triggered by a PDCCH order transmitted by the network device 120. If the PDCCH order is received, the terminal device 110 is preferred to initiate an RA procedure allowed during the non-active duration.
  • whether to restrict using of the RA procedure can be specified separately for UL data arrival and DL data arrival.
  • This restriction for UL data arrival and DL data arrival may be separately pre-defined or separately configured by the network device 120.
  • the indication indicates whether to control the RA procedure triggered by UL data arrival and/or the indication indicates whether to control the RA procedure triggered by DL data arrival.
  • the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel.
  • the at least one logical channel has lower priority.
  • the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • the first event may comprise the following event (b) : data arrival during the terminal device 110 is in RRC_CONNECTED state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
  • PUCCH Physical Uplink Control Channel
  • the terminal device 110 may delay the RA procedure till the active duration.
  • whether to apply the restriction may be pre-defined or configured by the network device 120 for event (b) .
  • the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel.
  • the at least one logical channel has lower priority.
  • the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • the first event may comprise the following event (c) : scheduling request failure.
  • whether to apply the restriction may be pre-defined or configured by the network device 120 for event (c) .
  • the indication indicates whether to control the RA procedure triggered by the scheduling request failure.
  • the specified scheduling request configuration may be configured by the network device 120.
  • the indication indicates whether to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration.
  • the specified logical channel (s) associated with the scheduling request may be configured by the network device 120.
  • the indication indicates whether to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel.
  • the specified logical channel priority may be configured by the network device 120.
  • the indication indicates whether to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
  • the first event may comprise the following event (d) : beam failure recovery (BFR) .
  • beam failure may be detected on PCell, which is also referred to as case (1) .
  • the terminal device 110 may perform at least one of the following:
  • the beam failure may be detected on SCell, which is also referred to as case (2) .
  • the terminal device 110 may perform at least one of the following:
  • the beam failure may be detected for a TRP of Serving Cell, which is also referred to as case (3) .
  • the terminal device 110 may perform at least one of the following:
  • the beam failure may be detected for both TRPs of PCell, which is also referred to as case (4) .
  • the terminal device 110 may perform at least one of the following:
  • the restriction may be applied to all of the cases (1) , (2) , (3) and (4) .
  • whether to apply the restriction may be pre-defined or configured by the network device 120 for this event.
  • the indication indicates to control the RA procedure triggered by beam failure recovery.
  • the restriction for each of cases (1) and (4) may be separately pre-defined or configured by the network device 120.
  • the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected on at least one cell.
  • the at least one cell may comprise SCell or PCell.
  • cases (1) and (4) may be more urgent compared to cases (2) and (3) .
  • the restriction may be applied to cases (2) and (3) .
  • the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected on an SCell.
  • the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected for a TRP of the serving cell.
  • the first event may comprise the following event (e) : consistent UL Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
  • LBT Listen Before Talk
  • SpCell secondary primary cell
  • consistent UL LBT failures may be detected on at least one SCell, which is also referred to as case (1) .
  • the terminal device 110 reports this to the corresponding network device via MAC CE on a different serving cell than the at least one SCell where the failures were detected.
  • consistent UL LBT failures may be detected on at least one SpCell, which is also referred to as case (2) .
  • the terminal device 110 switches to another UL bandwidth part (BWP) with configured RACH resources on that cell, initiates RACH, and reports the failure via MAC CE.
  • BWP UL bandwidth part
  • consistent UL LBT failures may be detected on all the UL BWPs with configured RACH resources, which is also referred to as case (3) . If consistent UL LBT failures are detected on all the UL BWPs with configured RACH resources, the terminal device 110 declares secondary cell group (SCG) radio link failure (RLF) and reports the failure to the main node (MN) via SCGFailureInformation.
  • SCG secondary cell group
  • RLF radio link failure
  • the UL LBT failures may be detected on all the UL BWP (s) with configured RACH resources, which is also referred to as case (4) . If the UL LBT failures are detected on all the UL BWP (s) with configured RACH resources, the terminal device 110 declares RLF.
  • the restriction may be applied to all of the cases (1) , (2) , (3) and (4) .
  • whether to apply the restriction may be pre-defined or configured by the network device 120 for this event.
  • the indication indicates to control the RA procedure triggered by consistent UL LBT failures on SpCell.
  • the restriction for each of cases (1) and (4) may be separately pre-defined or configured by the network device 120.
  • the indication indicates to control the RA procedure triggered by consistent UL LBT failures on at least one cell.
  • the at least one cell may comprise SCell, PSCell, Spcell or Pcell.
  • the first event may comprise the following event (f) : positioning purpose during the terminal device 110 is in RRC_CONNECTED state requiring the RA procedure, for example, when timing advance is needed for positioning of the terminal device 110.
  • event (f) is not urgent.
  • the restriction may be applied to event (f) .
  • whether to apply this restriction can be pre-defined or configured by the network device 120 for this event.
  • the indication indicates whether to control the RA procedure triggered by the positioning purpose during the terminal device 110 is in RRC_CONNECTED state requiring the RA procedure.
  • the first event may comprise the following event (g) : request for other system information (SI) .
  • other SI may comprise at least one of the following:
  • SIB3 which contains information about the serving frequency and intra-frequency neighbouring cells relevant for cell re-selection (including cell re-selection parameters common for a frequency as well as cell specific re-selection parameters) ;
  • - SIB4 which contains information about other NR frequencies and inter-frequency neighbouring cells relevant for cell re-selection (including cell re-selection parameters common for a frequency as well as cell specific re-selection parameters) , which can also be used for NR idle/inactive measurements;
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • CMAS Commercial Mobile Alert System
  • SIB18 which contains information related to the Group IDs for Network selection (GINs) associated with SNPNs listed in SIB1.
  • other SI may further comprise at least one of the following:
  • other SI may further comprise the following:
  • other SI may further comprise at least one of the following:
  • whether to apply the restriction may be pre-defined or separately configured by the network device 120 for event (g) .
  • the indication indicates to control the RA procedure triggered by request for other SI.
  • whether to apply the restriction may be pre-defined or separately configured by the network device 120 for request for each SIB.
  • At least one of SIB6, SIB7 or SIB8 may be identified as urgent, and most of other SI is not urgent.
  • at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18 may be not urgent.
  • the restriction may be applied to at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18.
  • the indication indicates to control the RA procedure triggered by request for at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18.
  • the first event may comprise the following event (h) : RRC Connection Re-establishment procedure.
  • the terminal device 110 initiates the RA procedure when one of the following conditions is met:
  • event (h) related to RLF of MCG is urgent and event (h) related to RLF of SCG is not so urgent.
  • the restriction may be pre-defined or separately configured by the network device 120 for event (h) .
  • whether to apply the restriction for at least one of the above conditions may be separately pre-defined or separately configured by the network device 120.
  • the first event may comprise the following event (i) : request by RRC upon synchronous reconfiguration (such as handover) .
  • event (i) is more urgent. It is not preferred to apply the restriction to event (i) .
  • whether to apply the restriction for event (i) may be pre-defined or configured by the network device 120.
  • the first event may comprise the following event (j) : to establish time alignment for a secondary TAG;
  • the network device 120 transmits the PDCCH order to trigger the terminal device 110 to initiate the RA procedure.
  • event (j) is more urgent due to the event is triggered by PDCCH order transmitted by the network device 120.
  • whether to apply the restriction for event (j) may be pre-defined or configured by the network device 120.
  • the terminal device 110 may be allowed to initiate the RA procedure during a non-active duration of a cell DRX pattern. However, if the terminal device 110 initiates the RA procedure during the non-active duration, the terminal device 110 restricts using at least one PRACH occasion, at least one RA preamble or at least one RA type during the non-active duration for the RA triggered by the first event.
  • the restriction of using the RA procedure which is triggered by the first event during the non-active duration may comprise restriction of using at least one index of RACH configuration, one PRACH occasion, at least one RA preamble or at least one RA type during the non-active duration for the RA triggered by the first event.
  • the second configuration may further comprise uplink transmission resource, e.g., RACH resource or PUSCH resource.
  • uplink transmission resource e.g., RACH resource or PUSCH resource.
  • the second configuration may further comprise an indication.
  • the indication is used to indicate that the terminal device 110 does not use (or select) at least one PRACH occasion during the non-active duration of the cell DRX pattern only for RA procedure trigged by the first event. That is to say, the terminal device 110 can use (or select) the at least one PRACH occasion only during the active duration of the cell DRX pattern for RA procedure trigged by the first event.
  • the at least one PRACH occasion may comprise at least one of the following:
  • the second configuration may further comprise an indication.
  • the indication is used to indicate that the terminal device 110 does not use at least one RA preamble (e.g., contention-free preamble) only during the non-active duration of the cell DRX pattern for RA procedure trigged by the first event. That is to say, the terminal device 110 can use the at least one RA preamble only during the active duration of the cell DRX pattern for RA procedure trigged by the first event.
  • at least one RA preamble e.g., contention-free preamble
  • the second configuration may further comprise an indication.
  • the indication is used to indicate that the terminal device 110 does not use at least one RA type only during the non-active duration of the cell DRX pattern for RA procedure trigged by the first event. That is to say, the terminal device 110 can use the at least one RA type only during the active duration of the cell DRX pattern for RA procedure trigged by the first event.
  • the at least one RA type may comprise at least one of the following: 2 step RA type, or 4 step RA type.
  • the indication may be configured with a BOOLEAN value. If the BOOLEAN value is set to be “TRUE” , it indicates to restrict using the at least one RA type during the non-active duration. If the BOOLEAN value is set to be “FALSE” , it indicates not to restrict using the at least one RA type during the non-active duration. In other words, the terminal device 110 may handle the RA procedure based on legacy behaviour.
  • the terminal device 110 Upon receiving the second configuration comprising the indication, the terminal device 110 restricts using the RA procedure during the non-active duration of the cell DRX pattern based on the second configuration when initiating the RA procedure.
  • the terminal device 110 selects an allowed RA type, at least one allowed PRACH occasion and at least one RA preamble during the non-active duration of the cell DRX pattern based on the second configuration.
  • the terminal device 110 may delay the initiation of the RA procedure.
  • the terminal device 110 may perform at least one of the following:
  • the terminal device 110 only selects or uses at least one allowed PRACH occasion during the non-active duration of the cell DRX pattern.
  • the at least one allowed PRACH occasion includes at least one of the following:
  • the terminal device 110 is in RRC_IDLE state.
  • the first event may comprise an initial access from the RRC_IDLE state.
  • the RRCSetupRequest message may be used to request the establishment of an RRC connection.
  • the terminal device 110 provides an establishment cause for the RRCSetupRequest in accordance with the information received from upper layers.
  • the EstablishmentCause comprises at least one of the following ⁇ emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess ⁇ , where “mt” represents mobile terminated, “mo” represents mobile originated, “SMS” represents Short Message Service, “mps” represents Multimedia Priority Service, “mcs” represents Mission Critical Service.
  • the restriction for each of the above establishment causes may be separately pre-defined or separately configured by the network device 120.
  • the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection.
  • the first establishment cause may comprise at least one of the following ⁇ emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess ⁇ .
  • the terminal device 110 determines that an establishment cause of an RRC connection is the first establishment cause, the terminal device 110 controls the RA procedure. For example, if the terminal device 110 determines that an establishment cause of an RRC connection is the first establishment cause, the terminal device 110 may not initiate the RA procedure.
  • the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a Quality of Service (QoS) priority level or 5G QoS identifier (5QI) which indicates the standardized or pre-configured 5QI as specified in TS 23.501.
  • QoS Quality of Service
  • 5QI 5G QoS identifier
  • the terminal device 110 may control the RA procedure based on the QoS priority.
  • the terminal device 110 may determine whether the QoS priority is lower than a priority threshold. If the QoS priority is lower than a priority threshold, the terminal device 110 may control the RA procedure. For example, if the QoS priority is lower than a priority threshold, the terminal device 110 may not initiate the RA procedure.
  • the priority threshold may be pre-defined or configure by the network device 120.
  • the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS identifier which indicates the standardized or pre-configured 5QI as specified in TS 23.501.
  • the terminal device 110 may control the RA procedure based on the 5QI.
  • the terminal device 110 may determine whether the 5QI belongs to that to be controlled using the RA procedure. For example, if the 5QI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
  • the 5QI (s) may be pre-defined or configure by the network device 120.
  • the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS Flow Identifier (QFI) which identifies a QoS flow within a PDU Session as specified in TS 23.501.
  • QFI QoS Flow Identifier
  • the terminal device 110 may control the RA procedure based on the QFI.
  • the terminal device 110 may determine whether the QFI belongs to that to be controlled using the RA procedure. For example, if the QFI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
  • the QFI (s) may be pre-defined or configure by the network device 120.
  • the terminal device 110 is in RRC_INACTIVE state.
  • RRC_INACTIVE state some embodiments of the first event for RRC_INACTIVE state will be described.
  • the first event may comprise the following event (k) : RRC connection resume procedure from RRC_INACTIVE state.
  • the purpose of the RRC connection resume procedure from the RRC_INACTIVE state is to resume a suspended RRC connection and perform a radio access network (RAN) Notification Area (RNA) update.
  • RAN radio access network
  • RNA Notification Area
  • the terminal device 110 provides a resume cause for an RRC connection resume request as provided by the upper layers to the network device 120.
  • the resume cause for the RRC connection resume request is also referred to as RRC connection resume cause or resume cause.
  • the resume cause includes at least one of the following: ⁇ emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, rna-Update, mps-PriorityAccess, mcs-PriorityAccess, mt-SDT ⁇
  • some of the above resume causes are considered as more urgent.
  • at least one of the following resume causes are considered as more urgent: emergency, highPriorityAccess, mo-VoiceCall, or mo-VideoCall.
  • some of the above resume causes are considered as not urgent.
  • at least one of the following resume causes are considered as not urgent: mt-SDT, rna-Upadate, or mo-SMS.
  • the restriction for each of the above resume causes may be separately pre-defined or separately configured by the network device 120.
  • the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause.
  • the first RRC connection resume cause may comprise at least one of the following: ⁇ emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, rna-Update, mps-PriorityAccess, mcs-PriorityAccess, mt-SDT ⁇ .
  • the terminal device 110 may control the RA procedure. For example, if the terminal device 110 determines that an RRC connection resume cause is the first RRC connection resume cause, the terminal device 110 may not initiate the RA procedure.
  • the RRC connection resume cause is mo-Data
  • the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS priority level, 5QI or QFI.
  • the terminal device 110 may control the RA procedure based on the QoS priority level, 5QI or QFI.
  • the terminal device 110 may determine whether the QoS priority is lower than a priority threshold. If the QoS priority is lower than a priority threshold, the terminal device 110 may control the RA procedure. For example, if the QoS priority is lower than a priority threshold, the terminal device 110 may not initiate the RA procedure.
  • the priority threshold may be pre-defined or configure by the network device 120.
  • the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS identifier which indicates the standardized or pre-configured 5QI as specified in TS 23.501.
  • the terminal device 110 may control the RA procedure based on the 5QI.
  • the terminal device 110 may determine whether the 5QI belongs to that to be controlled using the RA procedure. For example, if the 5QI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
  • the 5QI (s) may be pre-defined or configure by the network device 120.
  • the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS Flow Identifier which identifies a QoS flow within a PDU Session as specified in TS 23.501.
  • the terminal device 110 may control the RA procedure based on the QFI.
  • the terminal device 110 may determine whether the QFI belongs to that to be controlled using the RA procedure. For example, if the QFI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
  • the QFI (s) may be pre-defined or configure by the network device 120.
  • the first event may comprise the following event (l) : request for other SI.
  • event (g) may be applied to event (l) . Details of such embodiments are omitted for brevity.
  • the first event may comprise the following event (m) : small data transmission (SDT) in the RRC_INACTIVE state.
  • the urgent data transmission will not be configured as SDT in RRC_INACTIVE state. Therefore, it is preferred to apply the restriction to event (m) .
  • the indication indicates to control the UL transmission procedure triggered by SDT.
  • the restriction for each case may be separately pre-defined in specification or separately configured by the network device 120 for at least one logical channel allowed for SDT in RRC INACTVE state.
  • the indication indicates to control the UL transmission procedure triggered by SDT associated with at least one logical channel.
  • the network device 120 may configure the restriction separately for UL SDT and DL SDT to the terminal device 110.
  • the restriction for UL SDT and DL SDT may be separately pre-defined in specification or separately configured by the network device 120 for at least for in RRC INACTVE state.
  • the indication indicates to control the UL transmission procedure triggered by UL SDT or the indication indicates to control the UL transmission procedure triggered by DL SDT.
  • the network device 120 may configure the restriction separately for SDT over RACH or SDT over CG to the terminal device 110.
  • SDT is a procedure allowing data and/or signalling transmission while remaining in RRC_INACTIVE state (i.e., without transitioning to RRC_CONNECTED state) .
  • SDT is enabled on a radio bearer basis and is initiated by the terminal device 110 only if less than a configured amount of UL data awaits transmission across all radio bearers for which SDT is enabled, the DL Reference Signal Receiving Power (RSRP) is above a configured threshold, and a valid SDT resource is available.
  • SDT procedure may be initiated with either a transmission over RACH (configured via system information) or over Type 1 Configured Grant (CG) resources (configured via dedicated signalling in RRCRelease message) .
  • RACH Configured via system information
  • CG Type 1 Configured Grant
  • the terminal device 110 sends an RRCResumeRequest as well as UL SDT data and/or UL SDT signalling to the network.
  • the network After the SDT transmission is completed, the network generates and sends RRCRelease message including the Suspend indication to the terminal device 110 to switch the terminal device 110 back to RRC_INACTIVE.
  • the network can schedule subsequent UL and DL transmissions using dynamic UL grants and DL assignments after the completion of the RA procedure.
  • the UE can perform autonomous retransmission of the initial transmission if the UE does not receive confirmation from the network (dynamic UL grant or DL assignment) before a configured timer expires as specified in clause 5.27.1 of TS 38.321 [6] .
  • the network can schedule subsequent UL transmissions using dynamic grants or they can take place on the following CG resource occasions.
  • the DL transmissions are scheduled using dynamic assignments.
  • the UE can initiate subsequent UL transmission only after reception of confirmation (dynamic UL grant or DL assignment) for the initial PUSCH transmission from the network. For subsequent UL transmission, the UE cannot initiate re-transmission over a CG resource.
  • the above-mentioned handling of the RA-SDT procedure may be applied.
  • the above-mentioned handling of the CG-SDT procedure may be applied.
  • the terminal device 110 may continue the SDT until end of the SDT regardless of the non-active duration of the cell DRX pattern. For example, the terminal device 110 may continue the SDT if T319a is running. For example, the terminal device 110 may continue the SDT until end of the SDT. For example, if the terminal device 110 may continue the subsequent transmission SDT using dynamic UL grants and/or DL assignments until end of the SDT.
  • the terminal device 110 may continue the RA procedure until the (successful) completion of the RA procedure regardless of the non-active duration of the cell DRX the terminal device 110 may pattern. For example, during the Random-Access Response window, the terminal device 110 may monitor PDCCH for the Radom Access Response. For example, if the ra-ContentionResolutionTimer is running, the terminal device 110 may monitor PDCCH for the contention resolution. For example, if the msgB-ResponseWindow is running, the terminal device 110 may monitor PDCCH for the MsgB.
  • the terminal device 110 may transmit the Msg3 even if the grant in the RAR occurs in the CELL DRX non-active time. For example, if the msgB-ResponseWindow is running, the terminal device 110 may monitor PDCCH for the MsgB. Then the terminal device may suspend the subsequent transmissions.
  • the NW terminates the SDT procedure by sending RRC release message to UE even if there is available/remaining data of SDT to be transmitted at UE. This can help avoid the potential failure of the SDT procedure due to the T319a expiration.
  • the terminal device 110 may suspend the SDT during the non-active duration of the cell DRX pattern and continue the SDT during the active duration of the cell DRX pattern. For example, the terminal device 110 suspends the SDT until the active duration of the cell DRX pattern.
  • the network device 120 may further configure another T319a or another value of T319a which is separate from legacy T319a of legacy SDT. For example, the network device 120 configures two T319a or two values for a T319 for the terminal device 110.
  • the terminal device 110 uses new T319a for the SDT procedure if the cell DRX and/or cell DTX status is activated.
  • the terminal device 110 does not continue the SDT procedure till the active duration of the cell DRX pattern.
  • the restriction for each case may be separately pre-defined or separately configured by the network device 120 for at least one logical channel allowed for SDT over CG resources in RRC INACTVE state.
  • the indication indicates to control the PUSCH transmission procedure triggered by SDT over CG resources associated with at least one logical channel.
  • the network device 120 may configure the restriction separately for UL transmission over CG resources trigged by UL SDT or DL SDT to the terminal device 110.
  • the indication indicates to control the PUSCH transmission procedure triggered by UL transmission over CG resources triggered by UL SDT or the indication indicates to control the procedure of UL transmission over CG resources triggered by DL SDT.
  • the terminal device 110 may be allowed to initiate the SDT procedure during the non-active duration of the cell DRX pattern. If the terminal device 110 initiates the SDT procedure during the non-active duration of the cell DRX pattern, the terminal device 110 does not use at least one CG occasion during the non-active duration of the cell DRX pattern.
  • the terminal device 110 may be allowed to initiate the retransmission for SDT procedure during the non-active duration of the cell DRX pattern. For example, if the terminal device 110 initiates the SDT procedure during the active duration of the cell DRX pattern and the configuredGrantTimer for the corresponding HARQ process related to SDT is running, the terminal device 110 may monitor the PDCCH for the scheduling retransmission during the CELL DRX non-active time. If the terminal device received the UL grant, UE may continue the SDT procedure by using the UL grant.
  • the terminal device 110 may continue the SDT until end of the SDT (e.g. receiving the RRC Release message from NW) regardless of the non-active duration of the cell DRX pattern. For example, the terminal device 110 may continue the subsequent SDT for retransmission or initial transmission (without CCCH message) using dynamic grants if T319a is running. For example, the terminal device 110 may continue the SDT using subsequent CG resource occasions if T319a is running.
  • the terminal device 110 may continue the retransmission over a CG for the initial CG-SDT with CCCH message until the (successful) reception of confirmation for the initial PUSCH transmission with CCCH message from the network regardless of the non-active duration of the cell DRX pattern. For example, if the cg-SDT-RetransmissionTimer for the corresponding HARQ process relate to the SDT is running, the terminal device 110 may continue the retransmission over a CG for the CG-SDT with CCCH message.
  • the terminal device 110 may monitor the PDCCH for the retransmission over a CG for the CG-SDT with CCCH message.
  • the terminal device may suspend the subsequent transmissions (without CCCH message) over the following CG resource occasions.
  • the terminal may continue the SDT during the active duration of the cell DRX pattern.
  • the NW terminates the SDT procedure by sending RRC release message to UE even if there is available/remaining data of SDT to be transmitted at UE. This can help avoid the potential failure of the SDT procedure due to the T319a expiration.
  • the terminal device 110 may suspend the SDT during the non-active duration of the cell DRX pattern and continue the SDT during the active duration of the cell DRX pattern. For example, the terminal device 110 suspends the SDT over CG resources until the active duration of the cell DRX pattern.
  • the network device 120 may further configure another T319a or another value of T319a which is separate from legacy T319a of legacy SDT. For example, the network device 120 configures two T319a or two values for a T319 for the terminal device 110.
  • the terminal device 110 uses new T319a for the SDT procedure over CG resources if the cell DRX configuration is activated.
  • the terminal device 110 may store the second configuration in Access Stratum (AS) context.
  • the second configuration may include the SDT configuration, e.g., the CG-SDT resource or RA-SDT resource.
  • the terminal device 110 upon receiving the first configuration from the network device 120, the terminal device 110 may store the first configuration in Access Stratum (AS) context.
  • the first configuration may include the CELL DRX and/or CELL DTX configuration.
  • the terminal device 110 may receive, from the network device 120, an RRC message which comprises the second configuration and/or the first configuration.
  • the network device 120 initiates an RRC connection release procedure to transit the terminal device 110 in RRC_CONNECTED state to RRC_IDLE state; or to transit the terminal device 110 in RRC_CONNECTED state to RRC_INACTIVE state only if SRB2 and at least one DRB, multicast MRB, IAB or SRB2, is setup in RRC_CONNECTED state; or to transit the terminal device 110 in RRC_INACTIVE state back to RRC_INACTIVE state when the terminal device 110 tries to resume; or to transit the terminal device 110 in RRC_INACTIVE state to RRC_IDLE state when the terminal device 110 tries to resume.
  • the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern based on the second configuration and/or the first configuration when initiating the UL transmission procedure.
  • the network device 120 when the network device 120 initiates the RRC connection release procedure to transit the terminal device 110 in RRC_CONNECTED state to RRC_INACTIVE state, the network device 120 may transmit the second configuration and/or the first configuration through an RRC release message to the terminal device 110.
  • the terminal device 110 may receive the RRC release message comprising the second configuration and/or the first configuration in a first cell.
  • the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern.
  • the terminal device 110 moves out of the first cell, the second configuration and/or the first configuration is not valid, i.e., the terminal device 110 does not control the UL transmission procedure based on the second configuration and/or the first configuration.
  • the terminal device 110 may receive the RRC release message comprising the second configuration and/or the first configuration in a first RNA.
  • the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern.
  • the configurations of the serving cells in the RNA is identical to each other.
  • the second configuration and/or the first configuration may be not valid.
  • the terminal device 110 may receive, from the network device 120, an SIB message which comprises the second configuration and/or the first configuration.
  • the terminal device 110 uses the second configuration and/or the first configuration of the serving cell in the SIB message.
  • the terminal device 110 if the terminal device 110 receives the second configuration and/or the first configuration in a dedicated RRC message (e.g., RRC release message) , the terminal device 110 uses the second configuration and/or the first configuration in the dedicated RRC message instead of the second configuration and/or the first configuration in the SIB message.
  • a dedicated RRC message e.g., RRC release message
  • the terminal device 110 controls the RA procedure triggered by the first event based on a cell DRX activation status and/or a cell DTX activation status configured by the network device 120. If the terminal device 110 determines that the cell DRX status or the cell DTX status is activated, the terminal device 110 controls the RA procedure triggered by the first event. For example, if the terminal device 110 determines that the cell DRX status is activated, the terminal device 110 does not use the RA procedure triggered by the first event during a non-active duration of a cell DRX pattern.
  • the terminal device 110 determines that the cell DRX configuration or the cell DTX status is deactivated, the terminal device 110 uses the RA procedure triggered by the first event. For example, if the terminal device 110 determines that the cell DRX status is deactivated, the terminal device 110 uses the RA procedure triggered by the first event during the non-active duration of the cell DRX pattern.
  • Fig. 4 illustrates a flowchart of a method 400 implemented at a terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the terminal device 110 with reference to Fig. 1.
  • the terminal device 110 receives, from a network device, a first configuration associated with NES.
  • the terminal device 110 determines a second configuration associated with an uplink transmission procedure.
  • the terminal device 110 controls the uplink transmission procedure based on the first configuration and the second configuration.
  • the uplink transmission procedure comprises an RA procedure or PUSCH transmission procedure.
  • the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell of the terminal device.
  • the second configuration comprises PRACH resource configuration.
  • controlling the RA procedure comprises: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by a first event during the non-active duration, controlling the RA procedure.
  • the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
  • controlling the RA procedure comprises: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by the first event during the non-active duration, controlling the RA procedure based on the indication.
  • controlling the RA procedure comprises: delaying initiation of the RA procedure till the active duration.
  • the indication indicates to use at least one PRACH occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration; and controlling the RA procedure comprises: determining, based on the indication, the at least one PRACH occasion, the at least one RA preamble or the at least one RA type for the RA procedure during the non-active duration.
  • the first event comprises data arrival during the terminal device is in RRC connected state when uplink synchronization status of the terminal device is non-synchronized.
  • the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
  • the first event comprises data arrival during the terminal device is in RRC connected state when there are no PUCCH resources for scheduling request available.
  • the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • the first event comprises scheduling request failure.
  • the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
  • the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
  • the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
  • LBT Listen Before Talk
  • the first event comprises positioning purpose during the terminal device is in RRC connected state requiring the RA procedure.
  • the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
  • the terminal device is in RRC idle state
  • the first event comprises an initial access from the RRC idle state
  • the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection; and controlling the RA procedure comprises: based on determining that an establishment cause of an RRC connection is the first establishment cause, controlling the RA procedure.
  • the establishment cause is mobile originated data
  • the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority
  • controlling the RA procedure comprises: controlling the RA procedure based on the QoS priority.
  • the terminal device is in RRC inactive state
  • the first event comprises an RRC connection resume procedure from the RRC inactive state
  • the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause; and controlling the RA procedure comprises: based on determining that an RRC connection resume cause is the first RRC connection resume cause, controlling the RA procedure.
  • the RRC connection resume cause is mobile originated data
  • the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority
  • controlling the RA procedure comprises: controlling the RA procedure based on the QoS priority.
  • the terminal device is in RRC inactive state
  • the first event comprises small data transmission in the RRC inactive state
  • the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
  • the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
  • controlling the RA procedure comprises: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure.
  • controlling the RA procedure comprises: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure based on the indication.
  • determining the second configuration comprises receiving, via the transceiver from the network device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • Fig. 5 illustrates a flowchart of a method 500 implemented at a network device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the network device 120 with reference to Fig. 1.
  • the network device 120 transmits, to a terminal device, a first configuration associated with NES.
  • the network device 120 transmits, to the terminal device, a second configuration associated with an uplink transmission procedure.
  • the uplink transmission procedure comprises an RA procedure or PUSCH transmission procedure.
  • the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell of the terminal device.
  • the second configuration comprises PRACH resource configuration.
  • the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
  • the indication indicates to use at least one PRACH occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration.
  • the first event comprises data arrival during the terminal device is in RRC connected state when uplink synchronization status of the terminal device is non-synchronized.
  • the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
  • the first event comprises data arrival during the terminal device is in RRC connected state when there are no PUCCH resources for scheduling request available.
  • the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • the first event comprises scheduling request failure.
  • the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
  • the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
  • the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
  • LBT Listen Before Talk
  • the first event comprises positioning purpose during the terminal device is in RRC connected state requiring the RA procedure.
  • the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
  • the terminal device is in RRC idle state
  • the first event comprises an initial access from the RRC idle state
  • the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection.
  • the establishment cause is mobile originated data
  • the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority.
  • the terminal device is in RRC inactive state
  • the first event comprises an RRC connection resume procedure from the RRC inactive state
  • the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause.
  • the RRC connection resume cause is mobile originated data
  • the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority.
  • the terminal device is in RRC inactive state
  • the first event comprises small data transmission in the RRC inactive state
  • the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
  • the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
  • transmitting the second configuration comprises: transmitting, via the transceiver to the terminal device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • Fig. 6 illustrates a simplified block diagram of an apparatus 600 that is suitable for implementing embodiments of the present disclosure.
  • the apparatus 600 can be considered as a further example implementation of the terminal device 110 or the network device 120 as shown in Fig. 1. Accordingly, the apparatus 600 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
  • the apparatus 600 includes a processor 610, a memory 620 coupled to the processor 610, a suitable transmitter (TX) and receiver (RX) 640 coupled to the processor 610, and a communication interface coupled to the TX/RX 640.
  • the memory 610 stores at least a part of a program 630.
  • the TX/RX 640 is for bidirectional communications.
  • the TX/RX 640 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this disclosure may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 630 is assumed to include program instructions that, when executed by the associated processor 610, enable the apparatus 600 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 to 4.
  • the embodiments herein may be implemented by computer software executable by the processor 610 of the apparatus 600, or by hardware, or by a combination of software and hardware.
  • the processor 610 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 610 and memory 620 may form processing means 650 adapted to implement various embodiments of the present disclosure.
  • the memory 620 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 620 is shown in the apparatus 600, there may be several physically distinct memory modules in the apparatus 600.
  • the processor 610 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the apparatus 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: receive, via the transceiver from a network device, a first configuration associated with Network Energy Saving (NES) ; determine a second configuration associated with an uplink transmission procedure; and control the uplink transmission procedure based on the first configuration and the second configuration.
  • NES Network Energy Saving
  • the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
  • RA Random Access
  • PUSCH Physical Uplink Shared Channel
  • Clause 3 The terminal device of clause 1, wherein the first configuration comprises a cell Discontinuous Reception (DRX) configuration or a cell Discontinuous Transmission (DTX) configuration for a serving cell of the terminal device.
  • DRX cell Discontinuous Reception
  • DTX cell Discontinuous Transmission
  • Clause 4 The terminal device of clause 3, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
  • PRACH Physical Random Access Channel
  • Clause 5 The terminal device of clause 4, wherein the terminal device is caused to control the RA procedure by: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by a first event during the non-active duration, controlling the RA procedure.
  • Clause 6 The terminal device of clause 3, wherein the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
  • Clause 7 The terminal device of clause 6, wherein the terminal device is caused to control the RA procedure by: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by the first event during the non-active duration, controlling the RA procedure based on the indication.
  • Clause 8 The terminal device of clause 5 or clause 7, wherein the terminal device is caused to control the RA procedure by delaying initiation of the RA procedure till the active duration.
  • Clause 9 The terminal device of clause 5 or clause 6, wherein: the indication indicates to use at least one Physical Random Access Channel (PRACH) occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration; and the terminal device is caused to control the RA procedure by: determining, based on the indication, the at least one PRACH occasion, the at least one RA preamble or the at least one RA type for the RA procedure during the non-active duration.
  • PRACH Physical Random Access Channel
  • Clause 10 The terminal device of clause 5 or clause 6, wherein the first event comprises data arrival during the terminal device is in radio resource control (RRC) connected state when uplink synchronization status of the terminal device is non-synchronized.
  • RRC radio resource control
  • Clause 11 The terminal device of clause 10, wherein the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
  • Clause 12 The terminal device of clause 5 or clause 6, wherein the first event comprises data arrival during the terminal device is in Radio Resource Control (RRC) connected state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
  • RRC Radio Resource Control
  • PUCCH Physical Uplink Control Channel
  • Clause 13 The terminal device of clause 10 or 12, wherein the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • Clause 14 The terminal device of clause 5 or clause 6, wherein the first event comprises scheduling request failure.
  • Clause 15 The terminal device of clause 14, wherein the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
  • Clause 16 The terminal device of clause 5 or clause 6, wherein the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
  • Clause 17 The terminal device of clause 5 or clause 6, wherein the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
  • LBT Listen Before Talk
  • SpCell secondary primary cell
  • Clause 18 The terminal device of clause 5 or clause 6, wherein the first event comprises positioning purpose during the terminal device is in Radio Resource Control (RRC) connected state requiring the RA procedure.
  • RRC Radio Resource Control
  • Clause 19 The terminal device of clause 5 or clause 6, wherein the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
  • Clause 20 The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) idle state, and the first event comprises an initial access from the RRC idle state.
  • RRC Radio Resource Control
  • Clause 21 The terminal device of clause 20, wherein the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection; and the terminal device is caused to control the RA procedure by: based on determining that an establishment cause of an RRC connection is the first establishment cause, controlling the RA procedure.
  • Clause 22 The terminal device of clause 21, wherein the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority; and the terminal device is caused to control the RA procedure by controlling the RA procedure based on the QoS priority.
  • QoS Quality of Service
  • Clause 23 The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
  • RRC Radio Resource Control
  • Clause 24 The terminal device of clause 23, wherein the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause; and the terminal device is caused to control the RA procedure by: based on determining that an RRC connection resume cause is the first RRC connection resume cause, controlling the RA procedure.
  • Clause 25 The terminal device of clause 24, wherein the RRC connection resume cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority; and the terminal device is caused to control the RA procedure by controlling the RA procedure based on the QoS priority.
  • QoS Quality of Service
  • Clause 26 The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises small data transmission in the RRC inactive state.
  • RRC Radio Resource Control
  • Clause 27 The terminal device of clause 26, wherein the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
  • Clause 28 The terminal device of clause 26, wherein the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
  • Clause 29 The terminal device of clause 5, wherein the terminal device is caused to control the RA procedure by: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure.
  • Clause 30 The terminal device of clause 5 or clause 6, wherein the terminal device is caused to control the RA procedure by: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure based on the indication.
  • Clause 31 The terminal device of clause 1, wherein the terminal device is caused to determine the second configuration by: receiving, via the transceiver from the network device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • a network device comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: transmit, via the transceiver to a terminal device, a first configuration associated with Network Energy Saving (NES) ; and transmit, via the transceiver to the terminal device, a second configuration associated with an uplink transmission procedure.
  • NES Network Energy Saving
  • the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
  • RA Random Access
  • PUSCH Physical Uplink Shared Channel
  • Clause 34 The network device of clause 32, wherein the first configuration comprises a cell Discontinuous Reception (DRX) configuration or a cell Discontinuous Transmission (DTX) configuration for a serving cell of the terminal device.
  • DRX cell Discontinuous Reception
  • DTX cell Discontinuous Transmission
  • Clause 35 The network device of clause 32, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
  • PRACH Physical Random Access Channel
  • Clause 36 The network device of clause 32, wherein the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
  • Clause 37 The network device of clause 36, wherein the indication indicates to use at least one Physical Random Access Channel (PRACH) occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration.
  • PRACH Physical Random Access Channel
  • Clause 38 The network device of clause 36, wherein the first event comprises data arrival during the terminal device is in radio resource control (RRC) connected state when uplink synchronization status of the terminal device is non-synchronized.
  • RRC radio resource control
  • Clause 39 The network device of clause 38, wherein the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
  • Clause 40 The network device of clause 36, wherein the first event comprises data arrival during the terminal device is in Radio Resource Control (RRC) connected state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
  • RRC Radio Resource Control
  • PUCCH Physical Uplink Control Channel
  • Clause 41 The network device of clause 38 or 40, wherein the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
  • Clause 42 The network device of clause 36, wherein the first event comprises scheduling request failure.
  • Clause 43 The network device of clause 42, wherein the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
  • Clause 44 The network device of clause 37, wherein the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
  • Clause 45 The network device of clause 37, wherein the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
  • LBT Listen Before Talk
  • Clause 46 The network device of clause 37, wherein the first event comprises positioning purpose during the terminal device is in Radio Resource Control (RRC) connected state requiring the RA procedure.
  • RRC Radio Resource Control
  • Clause 47 The network device of clause 37, wherein the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
  • Clause 48 The network device of clause 37, wherein the terminal device is in Radio Resource Control (RRC) idle state, and the first event comprises an initial access from the RRC idle state.
  • RRC Radio Resource Control
  • Clause 49 The network device of clause 48, wherein the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection.
  • Clause 50 The network device of clause 49, wherein the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority.
  • QoS Quality of Service
  • Clause 51 The network device of clause 37, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
  • RRC Radio Resource Control
  • Clause 52 The network device of clause 51, wherein the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause.
  • Clause 53 The network device of clause 52, wherein the RRC connection resume cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority.
  • QoS Quality of Service
  • Clause 54 The network device of clause 37, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises small data transmission in the RRC inactive state.
  • RRC Radio Resource Control
  • Clause 55 The network device of clause 54, wherein the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
  • Clause 56 The network device of clause 54, wherein the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
  • Clause 57 The network device of clause 32, wherein the network device is caused to transmit the second configuration by transmitting, via the transceiver to the terminal device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to a solution for communications. In one aspect of the solution, a terminal device receives, from a network device, a first configuration associated with NES. The terminal device determines a second configuration associated with a UL transmission procedure. In turn, the terminal device controls the UL transmission procedure based on the first configuration and the second configuration.

Description

TERMINAL DEVICE, NETWORK DEVICE AND METHODS FOR COMMUNICATIONS FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular to terminal device, network device and methods for communications.
BACKGROUND
Network energy saving (NES) technology is going to be supported in Release 18. According to the NES technology, a cell may be operated in energy saving mode based on a configuration associated with NES for the cell. For example, the configuration associated with NES may comprise at least one of a cell discontinuous reception (DRX) configuration or a cell discontinuous transmission (DTX) configuration for a terminal device in radio resource control connected (RRC_CONNECTED) mode.
For network energy saving gain, the Third Generation Partnership Project (3GPP) is discussing to prohibit some uplink (UL) and downlink (DL) transmissions from the terminal device in RRC_CONNECTED mode during a non-active duration of a cell DRX and/or DTX pattern. In addition, 3GPP already agreed that a terminal device in RRC_CONNECTED mode supporting NES can perform a Random Access (RA) procedure and receive System Information Blocks (SIBs) in the non-active duration of the cell DRX and/or DTX pattern to avoid impact terminal devices in RRC_IDLE and RRC_INACTIVE modes.
If resources for UL transmission are configured densely, a network device needs to frequent wake up to detect UL transmission request, which impacts power saving gain. If the resources for UL transmission are configured sparsely, it can help improve energy saving gain. However, it may introduce transmission delay which impacts transmission performance. For some cases with urgent data or signaling transmission, it may be not acceptable. Therefore, it needs to discuss how to balance the network energy saving and transmission performance of a terminal device.
SUMMARY
In general, embodiments of the present disclosure provide a solution for  communications.
In a first aspect, there is provided a terminal device. The terminal device comprises a processor and a transceiver coupled to the processor. The processor is configured to: receive, via the transceiver from a network device, a first configuration associated with NES; determine a second configuration associated with a UL transmission procedure; and control the UL transmission procedure based on the first configuration and the second configuration.
In a second aspect, there is provided a network device. The network device comprises a processor and a transceiver coupled to the processor. The processor is configured to: transmit, via the transceiver to a terminal device, a first configuration associated with NES; and transmit, via the transceiver to the terminal device, a second configuration associated with an uplink transmission procedure.
In a third aspect, there is provided a method performed by a terminal device. The method comprises: receiving, at a terminal device from a network device, a first configuration associated with NES; determining a second configuration associated with a UL transmission procedure; and controlling the UL transmission procedure based on the first configuration and the second configuration.
In a fourth aspect, there is provided a method performed by a network device. The method comprises: transmitting, from a network device to a terminal device, a first configuration associated with NES; and transmitting, to the terminal device, a second configuration associated with an uplink transmission procedure.
In a fifth aspect, there is provided a computer readable medium. The computer readable medium has instructions stored thereon. The instructions, when executed on at least one processor of a device, causing the device to perform the method of the third aspect or the fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments will now be described with reference to the accompanying drawings in which:
Fig. 1 illustrates a schematic diagram of a communication network in which some  embodiments of the present disclosure can be implemented;
Fig. 2 illustrate an example of a cell DRX/DTX pattern for a cell in accordance with some embodiments of the present disclosure;
Fig. 3 illustrates a signaling chart illustrating an example process for communications in accordance with some embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of a method implemented at a terminal device in accordance with some embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of a method implemented at a network device in accordance with other embodiments of the present disclosure; and
Fig. 6 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar elements.
DETAILED DESCRIPTION
Principles of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below. In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an example embodiment, ” “an embodiment, ” “some embodiments, ” and the like indicate that the embodiment (s) described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment (s) . Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” or the like may be used herein to describe various elements, these elements should not be limited by these  terms. These terms are only used to distinguish one element from another element. For example, a first element could also be termed as a second element, and similarly, a second element could also be termed as a first element, without departing from the scope of embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms. In some examples, values, procedures, or apparatuses are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including, ” when used herein, specify the presence of stated features, elements, components and/or the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. For example, the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The use of an expression such as “A and/or B” can mean either “only A” or “only B” or “both A and B. ” Other definitions, explicit and implicit, may be included below.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as, New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , and so on. Further, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid  development in communications, there will also be future type communication technologies and systems in which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned systems.
As used herein, the term “network device” generally refers to a node in a communication network via which a terminal device can access the communication network and receive services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , a radio access network (RAN) node, an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , an infrastructure device for a V2X (vehicle-to-everything) communication, a transmission and reception point (TRP) , a reception point (RP) , a remote radio head (RRH) , a relay, an integrated access and backhaul (IAB) node, a low power node such as a femto BS, a pico BS, and so forth, depending on the applied terminology and technology.
As used herein, the term “terminal device” generally refers to any end device that may be capable of wireless communications. By way of example rather than a limitation, a terminal device may also be referred to as a communication device, a user equipment (UE) , an end user device, a subscriber station (SS) , an unmanned aerial vehicle (UAV) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) . The terminal device may include, but is not limited to, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable terminal device, a personal digital assistant (PDA) , a portable computer, a desktop computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and playback appliance, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , a USB dongle, a smart device, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device (for example, a remote surgery device) , an industrial device (for example, a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms: “terminal device, ” “communication device, ” “terminal, ” “user equipment” and “UE, ” may be used interchangeably.
Fig. 1 illustrates a schematic diagram of a communication network in which some  embodiments of the present disclosure can be implemented. The communication network 100 includes a terminal device 110 and a network device 120 that can communicate with each other. A serving area of the network device 120 is called as a cell 102.
It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The communication network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the cell 102 and served by the network device 120.
Communications in the communication network 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
In the communication network 100, the terminal device 110 may transmit data and/or signaling to the network device 120 via UL between them. Alternatively, or additionally, the terminal device 110 may receive data and/or signaling from the network device 120 via DL between them.
In some embodiments, in order to support NES, the network device 120 may transmit, to the terminal device 110 in RRC_CONNECTED mode, RRC_INACTIVE mode, or RRC_IDLE mode, at least one of a configuration for a cell DRX pattern or a configuration for a cell DTX pattern for a serving cell (such as the cell 102) .
Fig. 2 illustrate an example of a cell DRX/DTX pattern for a cell in accordance with some embodiments of the present disclosure. As shown in Fig. 2, a cell DRX/DTX  cycle specifies periodic repetition of an active duration followed by a non-active duration. The cell DRX cycle includes an active duration and a non-active duration. The active duration is a duration in which a receiving device or a transmitting device is active to monitor data and/or signaling within the cell DRX cycle. The active duration may also be referred to as active period or active time. The non-active duration is a duration in which the receiving device or the transmitting device is in a sleep state and does not monitor data and/or signaling. The non-active duration may also be referred to as non-active period or non-active time.
As described above, for network energy saving gain, it may prohibit some UL and DL transmissions from the terminal device 110 in RRC_CONNECTED mode during the non-active duration of the cell DRX and/or DTX pattern. For example, it may prohibit UL transmissions which are based on PUSCH (e.g, configured grant) or DL transmissions which are based on PDSCH (e.g. semi-Persistent scheduling) .
Currently, 3GPP already agreed that a terminal device in RRC_CONNECTED mode supporting NES can perform an RA procedure and receive SIBs in the non-active duration of the cell DRX and/or DTX pattern to avoid impact terminal devices in RRC_IDLE and RRC_INACTIVE modes.
It can be seen from the RA configurations in Table 6.3.3.2-3 and 6.3.3.2-4 in TS 38.211, if physical random access channel (PRACH) resources are configured densely for a terminal device in RRC_CONNECTED mode, a network device needs to wake up to detect UL RA request, which impacts power saving gain. If the PRACH resources are configured sparsely, it can help improve energy saving gain. However, it may introduce transmission delay which impact transmission performance. For some cases with urgent data or signaling transmission, it may be not acceptable. Therefore, it needs to discuss how to balance the network energy saving and transmission performance of a terminal device.
In view of the above, embodiments of the present disclosure provide a solution for communications. In the solution, a terminal device receives, from a network device, a first configuration associated with NES. The terminal device determines a second configuration associated with a UL transmission procedure. In turn, the terminal device controls the UL transmission procedure based on the first configuration and the second configuration. In this way, balance of the network energy saving and transmission performance of the terminal device may be achieved.
Hereinafter, principle of the present disclosure will be described with reference to Figs. 3 to 6.
Fig. 3 illustrates a signaling chart illustrating an example process 300 for communications in accordance with some embodiments of the present disclosure. The process 300 may involve a receiving device and a transmitting device. For the purpose of discussion, the process 300 will be described with reference to Fig. 1. The process 300 may involve the terminal device 110 and the network device 120. It shall be noted that the process 300 may be applied to other receiving device and transmitting device than the terminal device 110 and the network device 120. For example, the process 300 may be applied to a receiving device and a transmitting device for sidelink, relay or Integrated Access Backhaul (IAB) deployment network.
As shown in Fig. 3, the terminal device 110 receives 310 a first configuration associated with NES from the network device 120.
In some embodiments, the terminal device 110 may receive, from the network device 120, one of the following which comprises the first configuration: an RRC message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
In some embodiments, the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell (such as the cell 102) of the terminal device 110.
The terminal device 110 determines 320 a second configuration associated with a UL transmission procedure.
In some embodiments, the second configuration may be pre-defined.
Alternatively, in some embodiments, the terminal device 110 may receive the second configuration from the network device 120.
In some embodiments, the terminal device 110 may receive, from the network device 120, one of the following which comprises the second configuration: an RRC message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
In some embodiments, the UL transmission procedure comprises an RA procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
In turn, the terminal device 110 controls 330 the UL transmission procedure based on the first configuration and the second configuration.
With the process 300, balance of the network energy saving and transmission performance of a terminal device may be achieved.
In some embodiments, the second configuration may comprise PRACH resource configuration. In such embodiments, the terminal device 110 may determine an active duration and a non-active duration of a cell DRX pattern based on the cell DRX  configuration. The terminal device 110 may determine whether the RA procedure is triggered by a first event during the non-active duration. If the RA procedure is triggered by the first event during the non-active duration, the terminal device 110 controls the RA procedure.
In some embodiments, controlling the RA procedure may comprise restriction of using the RA procedure which is triggered by the first event during the non-active duration. Hereinafter, for brevity, “restriction of using the RA procedure which is triggered by the first event during the non-active duration” is also referred to as “the restriction” .
In some embodiments, the restriction of using the RA procedure which is triggered by the first event during the non-active duration may comprise not initiating the RA procedure till the active duration. In other words, the terminal device 110 may delay initiation of the RA procedure till the active duration.
Alternatively, in some embodiments, the second configuration may comprise an indication. The indication indicates whether to control the RA procedure triggered by the first event during the non-active duration of the cell DRX pattern. For example, the indication may indicate whether to restrict using the RA procedure triggered by the first event during the non-active duration. In other words, the indication may indicate whether to apply the restriction of using the RA procedure triggered by the first event during the non-active duration.
In some embodiments, the indication may be configured with a BOOLEAN value. If the BOOLEAN value is set to be “TRUE” , it indicates to restrict using the RA procedure during the non-active duration. If the BOOLEAN value is set to be “FALSE” , it indicates not to restrict using the RA procedure during the non-active duration. In other words, the terminal device 110 may handle the RA procedure based on legacy behaviour.
In some embodiments, the terminal device 110 may determine whether the RA procedure is triggered by the first event during the non-active duration. If the RA procedure is triggered by the first event during the non-active duration, the terminal device 110 controls the RA procedure based on the indication.
In some embodiments, the terminal device 110 is in RRC_CONNECTED state. Hereinafter, some embodiments of the first event for RRC_CONNECTED state will be described.
Event (a)
In some embodiments, the first event may comprise the following event (a) : data  arrival during the terminal device 110 is in RRC_CONNECTED state when UL synchronization status of the terminal device 110 is non-synchronized. The data arrival may comprise DL data arrival or UL data arrival.
In some embodiments, for DL data arrival case, the network device 120 transmits a Physical Downlink Control Channel (PDCCH) order to trigger the terminal device 110 to initiate the RA procedure.
In some embodiments, the network device 120 indicates the terminal device 110 to initiate a contention-free random access (CFRA) procedure. For example, a PDCCH order is sent on a scheduling cell of an activated SCell of the secondary tracking area group (TAG) , preamble transmission takes place on the indicated SCell, and Random Access Response takes place on PCell.
Alternatively, in some embodiments, the network device 120 indicates the terminal device 110 to initiate a contention-based random access (CBRA) procedure. When Carrier Aggregation (CA) is configured, RA procedure with 2-step RA type is only performed on PCell while contention resolution can be cross-scheduled by the PCell. When CA is configured, for RA procedure with 4-step RA type, the first three steps of the CBRA procedure always occur on the PCell while contention resolution can be cross-scheduled by the PCell.
In some embodiments, whether to apply the restriction may be pre-defined or separately configured by the network device 120 for event (a) .
For event (a) , it is preferred to restrict using of RACH occasions during the non-active duration in the UL data arrival case. For DL data arrival case, the event is triggered by a PDCCH order transmitted by the network device 120. If the PDCCH order is received, the terminal device 110 is preferred to initiate an RA procedure allowed during the non-active duration.
Therefore, in some embodiments, whether to restrict using of the RA procedure can be specified separately for UL data arrival and DL data arrival. This restriction for UL data arrival and DL data arrival may be separately pre-defined or separately configured by the network device 120. For example, the indication indicates whether to control the RA procedure triggered by UL data arrival and/or the indication indicates whether to control the RA procedure triggered by DL data arrival.
In some embodiments, for event (a) , we can specify which logical channel (s) of the arrival data to apply the restriction. For example, the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel. The at  least one logical channel has lower priority. Alternatively, the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
Event (b)
In some embodiments, the first event may comprise the following event (b) : data arrival during the terminal device 110 is in RRC_CONNECTED state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
If the logical channel priority of the data may be lower or the data is not latency sensitive, the terminal device 110 may delay the RA procedure till the active duration.
In some embodiments, whether to apply the restriction may be pre-defined or configured by the network device 120 for event (b) .
In some embodiments, for event (b) , we can specify which logical channel (s) of the arrival data to apply the restriction. For example, the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel. The at least one logical channel has lower priority. Alternatively, the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
Event (c)
In some embodiments, the first event may comprise the following event (c) : scheduling request failure.
In some embodiments, whether to apply the restriction may be pre-defined or configured by the network device 120 for event (c) . For example, the indication indicates whether to control the RA procedure triggered by the scheduling request failure.
In some embodiments, the specified scheduling request configuration may be configured by the network device 120. For example, the indication indicates whether to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration.
Alternatively, the specified logical channel (s) associated with the scheduling request may be configured by the network device 120. For example, the indication indicates whether to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel.
Alternatively, the specified logical channel priority may be configured by the network device 120. For example, the indication indicates whether to control the RA  procedure triggered by the scheduling request failure associated with a logical channel priority.
Event (d)
In some embodiments, the first event may comprise the following event (d) : beam failure recovery (BFR) .
In some embodiments, beam failure may be detected on PCell, which is also referred to as case (1) . After beam failure is detected on PCell, the the terminal device 110 may perform at least one of the following:
- triggering beam failure recovery by initiating an RA procedure on the PCell;
- selecting a suitable beam to perform beam failure recovery (if the network device 120 has provided dedicated RA resources for certain beams, those will be prioritized by the the terminal device 110) .
- including an indication of a beam failure on PCell in a BFR MAC CE if the RA procedure involves CBRA.
Upon completion of the RA procedure, beam failure recovery for PCell is considered complete.
In some embodiments, the beam failure may be detected on SCell, which is also referred to as case (2) . After beam failure is detected on an SCell, the terminal device 110 may perform at least one of the following:
- triggering beam failure recovery by initiating a transmission of a BFR MAC CE for this SCell;
- selecting a suitable beam for this SCell (if available) and indicates it along with the information about the beam failure in the BFR MAC CE.
Upon reception of a PDCCH indicating an uplink grant for a new transmission for the Hybrid Automatic Repeat Request (HARQ) process used for the transmission of the BFR MAC CE, beam failure recovery for this SCell is considered complete.
In some embodiments, the beam failure may be detected for a TRP of Serving Cell, which is also referred to as case (3) . After beam failure is detected for a TRP of Serving Cell, the terminal device 110 may perform at least one of the following:
- triggering beam failure recovery by initiating a transmission of a BFR MAC CE for this TRP;
- selecting a suitable beam for this TRP (if available) and indicates whether the suitable (new) beam is found or not along with the information about the beam  failure in the BFR MAC CE for this TRP.
Upon reception of a PDCCH indicating an uplink grant for a new transmission for the HARQ process used for the transmission of the BFR MAC CE for this TRP, beam failure recovery for this TRP is considered complete.
In some embodiments, the beam failure may be detected for both TRPs of PCell, which is also referred to as case (4) . After beam failure is detected for both TRPs of PCell, the terminal device 110 may perform at least one of the following:
- triggering beam failure recovery by initiating an RA procedure on the PCell;
- selecting a suitable beam for each failed TRP (if available) and indicates whether the suitable (new) beam is found or not along with the information about the beam failure in the BFR MAC CE for each failed TRP.
Upon completion of the RA procedure, beam failure recovery for both TRPs of PCell is considered complete.
In some embodiments, the restriction may be applied to all of the cases (1) , (2) , (3) and (4) . In some embodiments, whether to apply the restriction may be pre-defined or configured by the network device 120 for this event. For example, the indication indicates to control the RA procedure triggered by beam failure recovery.
In some embodiments, the restriction for each of cases (1) and (4) may be separately pre-defined or configured by the network device 120. In such embodiments, the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected on at least one cell. For example, the at least one cell may comprise SCell or PCell.
In some embodiments, cases (1) and (4) may be more urgent compared to cases (2) and (3) . Thus, the restriction may be applied to cases (2) and (3) . For example, the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected on an SCell. Alternatively, the indication indicates to control the RA procedure triggered by recovery of beam failure which is detected for a TRP of the serving cell.
Event (e)
In some embodiments, the first event may comprise the following event (e) : consistent UL Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
In some embodiments, consistent UL LBT failures may be detected on at least one SCell, which is also referred to as case (1) . When consistent UL LBT failures are detected  on at least one SCell, the terminal device 110 reports this to the corresponding network device via MAC CE on a different serving cell than the at least one SCell where the failures were detected.
In some embodiments, consistent UL LBT failures may be detected on at least one SpCell, which is also referred to as case (2) . When consistent UL LBT failures are detected on SpCell, the terminal device 110 switches to another UL bandwidth part (BWP) with configured RACH resources on that cell, initiates RACH, and reports the failure via MAC CE.
In some embodiments, for primary secondary cell (PSCell) , consistent UL LBT failures may be detected on all the UL BWPs with configured RACH resources, which is also referred to as case (3) . If consistent UL LBT failures are detected on all the UL BWPs with configured RACH resources, the terminal device 110 declares secondary cell group (SCG) radio link failure (RLF) and reports the failure to the main node (MN) via SCGFailureInformation.
In some embodiments, for PCell, the UL LBT failures may be detected on all the UL BWP (s) with configured RACH resources, which is also referred to as case (4) . If the UL LBT failures are detected on all the UL BWP (s) with configured RACH resources, the terminal device 110 declares RLF.
In some embodiments, the restriction may be applied to all of the cases (1) , (2) , (3) and (4) . In some embodiments, whether to apply the restriction may be pre-defined or configured by the network device 120 for this event. For example, the indication indicates to control the RA procedure triggered by consistent UL LBT failures on SpCell.
In some embodiments, the restriction for each of cases (1) and (4) may be separately pre-defined or configured by the network device 120. In such embodiments, the indication indicates to control the RA procedure triggered by consistent UL LBT failures on at least one cell. For example, the at least one cell may comprise SCell, PSCell, Spcell or Pcell.
Event (f)
In some embodiments, the first event may comprise the following event (f) : positioning purpose during the terminal device 110 is in RRC_CONNECTED state requiring the RA procedure, for example, when timing advance is needed for positioning of the terminal device 110.
In general, event (f) is not urgent. The restriction may be applied to event (f) . In  some embodiments, whether to apply this restriction can be pre-defined or configured by the network device 120 for this event. For example, the indication indicates whether to control the RA procedure triggered by the positioning purpose during the terminal device 110 is in RRC_CONNECTED state requiring the RA procedure.
Event (g)
In some embodiments, the first event may comprise the following event (g) : request for other system information (SI) .
In some embodiments, other SI may comprise at least one of the following:
- SIB2 which contains cell re-selection information, mainly related to the serving cell;
- SIB3 which contains information about the serving frequency and intra-frequency neighbouring cells relevant for cell re-selection (including cell re-selection parameters common for a frequency as well as cell specific re-selection parameters) ;
- SIB4 which contains information about other NR frequencies and inter-frequency neighbouring cells relevant for cell re-selection (including cell re-selection parameters common for a frequency as well as cell specific re-selection parameters) , which can also be used for NR idle/inactive measurements;
- SIB5 which contains information about Evolved Universal Terrestrial Radio Access (E-UTRA) frequencies and E-UTRA neighbouring cells relevant for cell re-selection (including cell re-selection parameters common for a frequency as well as cell specific re-selection parameters) ;
- SIB6 which contains an Earthquake and Tsunami Warning System (ETWS) primary notification;
- SIB7 which contains an ETWS secondary notification;
- SIB8 which contains a Commercial Mobile Alert System (CMAS) warning notification;
- SIB9 which contains information related to GPS time and Coordinated Universal Time (UTC) ;
- SIB10 which contains the Human-Readable Network Names (HRNN) of the NPNs listed in SIB1;
- SIB11 which contains information related to idle/inactive measurements;
- SIB15 which contains information related to disaster roaming;
- SIB17 which contains information related to TRS configuration for the terminal device 110s in RRC_IDLE/RRC_INACTIVE;
- SIBpos which contains positioning assistance data as defined in TS 37.355 [43] and TS 38.331 [12] ;
- SIB18 which contains information related to the Group IDs for Network selection (GINs) associated with SNPNs listed in SIB1.
In some embodiments, for sidelink, other SI may further comprise at least one of the following:
- SIB12 which contains information related to NR sidelink communication;
- SIB13 which contains information related to SystemInformationBlockType21 for V2X sidelink communication as specified in TS 36.331 clause 5.2.2.28 [29] ;
- SIB14 which contains information related to SystemInformationBlockType26 for V2X sidelink communication as specified in TS 36.331 clause 5.2.2.33 [29] .
In some embodiments, for non-terrestrial network, other SI may further comprise the following:
- SIB19 which contains NTN-specific parameters for serving cell and/or neighbour cells as defined in TS 38.331 [12] .
In some embodiments, for MBS broadcast, other SI may further comprise at least one of the following:
- SIB20 which contains of MCCH configuration;
- SIB21 which contains information related to service continuity for MBS broadcast reception.
In some embodiments, whether to apply the restriction may be pre-defined or separately configured by the network device 120 for event (g) . For example, the indication indicates to control the RA procedure triggered by request for other SI.
In some embodiments, whether to apply the restriction may be pre-defined or separately configured by the network device 120 for request for each SIB.
In some embodiments, for event (g) , at least one of SIB6, SIB7 or SIB8 may be identified as urgent, and most of other SI is not urgent. For example, at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18 may be not urgent. Thus, the restriction may be applied to at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18. For example, the indication  indicates to control the RA procedure triggered by request for at least one of SIB9, SIB10, SIB17, SIBpos, or SIB18.
Event (h)
In some embodiments, the first event may comprise the following event (h) : RRC Connection Re-establishment procedure.
In some embodiments, the terminal device 110 initiates the RA procedure when one of the following conditions is met:
- upon detecting radio link failure of the master cell group (MCG) and T316 is not configured; or
- upon detecting radio link failure of the MCG while SCG transmission is suspended; or
- upon detecting radio link failure of the MCG while PSCell change or PSCell addition is ongoing; or
- upon re-configuration with sync failure of the MCG; or
- upon mobility from NR failure; or
- upon integrity check failure indication from lower layers concerning signaling radio bearer (SRB) 1 or SRB2; or
- upon an RRC connection reconfiguration failure; or
- upon detecting radio link failure for the SCG while MCG transmission is suspended; or
- upon reconfiguration with sync failure of the SCG while MCG transmission is suspended; or
- upon SCG change failure while MCG transmission is suspended in accordance; or
- upon SCG configuration failure while MCG transmission is suspended; or
- upon integrity check failure indication from SCG lower layers concerning SRB3 while MCG is suspended; or
- upon T316 expiry.
In some embodiments, event (h) related to RLF of MCG is urgent and event (h) related to RLF of SCG is not so urgent. The restriction may be pre-defined or separately configured by the network device 120 for event (h) .
In some embodiments, for flexibility, whether to apply the restriction for at least one of the above conditions may be separately pre-defined or separately configured by the  network device 120.
Event (i)
In some embodiments, the first event may comprise the following event (i) : request by RRC upon synchronous reconfiguration (such as handover) .
In some embodiments, event (i) is more urgent. It is not preferred to apply the restriction to event (i) .
In some embodiments, for flexibility, whether to apply the restriction for event (i) may be pre-defined or configured by the network device 120.
Event (j)
In some embodiments, the first event may comprise the following event (j) : to establish time alignment for a secondary TAG;
Similar to event (a) , the network device 120 transmits the PDCCH order to trigger the terminal device 110 to initiate the RA procedure.
In some embodiments, event (j) is more urgent due to the event is triggered by PDCCH order transmitted by the network device 120. Thus, it is not preferred to apply the restriction.
In some embodiments, for flexibility, whether to apply the restriction for event (j) may be pre-defined or configured by the network device 120.
In some embodiments, the terminal device 110 may be allowed to initiate the RA procedure during a non-active duration of a cell DRX pattern. However, if the terminal device 110 initiates the RA procedure during the non-active duration, the terminal device 110 restricts using at least one PRACH occasion, at least one RA preamble or at least one RA type during the non-active duration for the RA triggered by the first event. In other words, the restriction of using the RA procedure which is triggered by the first event during the non-active duration may comprise restriction of using at least one index of RACH configuration, one PRACH occasion, at least one RA preamble or at least one RA type during the non-active duration for the RA triggered by the first event.
For example, the second configuration may further comprise uplink transmission resource, e.g., RACH resource or PUSCH resource.
For example, the second configuration may further comprise an indication. The indication is used to indicate that the terminal device 110 does not use (or select) at least one PRACH occasion during the non-active duration of the cell DRX pattern only for RA  procedure trigged by the first event. That is to say, the terminal device 110 can use (or select) the at least one PRACH occasion only during the active duration of the cell DRX pattern for RA procedure trigged by the first event. The at least one PRACH occasion may comprise at least one of the following:
- contention-free based PRACH occasion,
- contention-based PRACH occasion, or
- PRACH occasion which is not overlapped with a PRACH occasion configured in SIB.
For another example, the second configuration may further comprise an indication. The indication is used to indicate that the terminal device 110 does not use at least one RA preamble (e.g., contention-free preamble) only during the non-active duration of the cell DRX pattern for RA procedure trigged by the first event. That is to say, the terminal device 110 can use the at least one RA preamble only during the active duration of the cell DRX pattern for RA procedure trigged by the first event.
For a further example, the second configuration may further comprise an indication. The indication is used to indicate that the terminal device 110 does not use at least one RA type only during the non-active duration of the cell DRX pattern for RA procedure trigged by the first event. That is to say, the terminal device 110 can use the at least one RA type only during the active duration of the cell DRX pattern for RA procedure trigged by the first event. The at least one RA type may comprise at least one of the following: 2 step RA type, or 4 step RA type.
In some embodiments, the indication may be configured with a BOOLEAN value. If the BOOLEAN value is set to be “TRUE” , it indicates to restrict using the at least one RA type during the non-active duration. If the BOOLEAN value is set to be “FALSE” , it indicates not to restrict using the at least one RA type during the non-active duration. In other words, the terminal device 110 may handle the RA procedure based on legacy behaviour.
Upon receiving the second configuration comprising the indication, the terminal device 110 restricts using the RA procedure during the non-active duration of the cell DRX pattern based on the second configuration when initiating the RA procedure.
For example, the terminal device 110 selects an allowed RA type, at least one allowed PRACH occasion and at least one RA preamble during the non-active duration of the cell DRX pattern based on the second configuration.
For example, if the indication indicates to restrict using the RA procedure during  the non-active duration of the cell DRX pattern according to the second configuration when RA procedure is triggered by the first event, the terminal device 110 may delay the initiation of the RA procedure. Alternatively, the terminal device 110 may perform at least one of the following:
- selecting an allowed RA type;
- selecting at least one allowed PRACH occasion;
- selecting at least one allowed RA preamble; or
- selecting at least one allowed RACH configuration index.
For example, the terminal device 110 only selects or uses at least one allowed PRACH occasion during the non-active duration of the cell DRX pattern. The at least one allowed PRACH occasion includes at least one of the following:
- contention-free based PRACH occasion,
- contention-based PRACH occasion, or
- PRACH occasion which is overlapped with a PRACH occasion configured in SIB.
In some embodiments, the terminal device 110 is in RRC_IDLE state. In such embodiments, the first event may comprise an initial access from the RRC_IDLE state.
In embodiments where the first event comprises the initial access from the RRC_IDLE state, the RRCSetupRequest message may be used to request the establishment of an RRC connection. The terminal device 110 provides an establishment cause for the RRCSetupRequest in accordance with the information received from upper layers. The EstablishmentCause comprises at least one of the following {emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess} , where “mt” represents mobile terminated, “mo” represents mobile originated, “SMS” represents Short Message Service, “mps” represents Multimedia Priority Service, “mcs” represents Mission Critical Service.
In some embodiments, the restriction for each of the above establishment causes may be separately pre-defined or separately configured by the network device 120. For example, the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection. For example, the first establishment cause may comprise at least one of the following {emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess} .
If the terminal device 110 determines that an establishment cause of an RRC  connection is the first establishment cause, the terminal device 110 controls the RA procedure. For example, if the terminal device 110 determines that an establishment cause of an RRC connection is the first establishment cause, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a Quality of Service (QoS) priority level or 5G QoS identifier (5QI) which indicates the standardized or pre-configured 5QI as specified in TS 23.501. In such embodiments, the terminal device 110 may control the RA procedure based on the QoS priority.
In some embodiments, the terminal device 110 may determine whether the QoS priority is lower than a priority threshold. If the QoS priority is lower than a priority threshold, the terminal device 110 may control the RA procedure. For example, if the QoS priority is lower than a priority threshold, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the priority threshold may be pre-defined or configure by the network device 120.
In some embodiments, the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS identifier which indicates the standardized or pre-configured 5QI as specified in TS 23.501. In such embodiments, the terminal device 110 may control the RA procedure based on the 5QI.
In some embodiments, the terminal device 110 may determine whether the 5QI belongs to that to be controlled using the RA procedure. For example, if the 5QI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the 5QI (s) may be pre-defined or configure by the network device 120.
In some embodiments, the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS Flow Identifier (QFI) which identifies a QoS flow within a PDU Session as specified in TS 23.501. In such embodiments, the terminal device 110 may control the RA procedure based on the QFI.
In some embodiments, the terminal device 110 may determine whether the QFI belongs to that to be controlled using the RA procedure. For example, if the QFI belongs to  that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the QFI (s) may be pre-defined or configure by the network device 120.
In some embodiments, the terminal device 110 is in RRC_INACTIVE state. Hereinafter, some embodiments of the first event for RRC_INACTIVE state will be described.
Event (k)
In some embodiments, the first event may comprise the following event (k) : RRC connection resume procedure from RRC_INACTIVE state.
In some embodiments, the purpose of the RRC connection resume procedure from the RRC_INACTIVE state is to resume a suspended RRC connection and perform a radio access network (RAN) Notification Area (RNA) update.
In some embodiments, the terminal device 110 provides a resume cause for an RRC connection resume request as provided by the upper layers to the network device 120. The resume cause for the RRC connection resume request is also referred to as RRC connection resume cause or resume cause. The resume cause includes at least one of the following: {emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, rna-Update, mps-PriorityAccess, mcs-PriorityAccess, mt-SDT}
In some embodiments, some of the above resume causes are considered as more urgent. For example, at least one of the following resume causes are considered as more urgent: emergency, highPriorityAccess, mo-VoiceCall, or mo-VideoCall.
In some embodiments, some of the above resume causes are considered as not urgent. For example, at least one of the following resume causes are considered as not urgent: mt-SDT, rna-Upadate, or mo-SMS.
In some embodiments, the restriction for each of the above resume causes may be separately pre-defined or separately configured by the network device 120. For example, the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause. For example, the first RRC connection resume cause may comprise at least one of the following: {emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, rna-Update, mps-PriorityAccess, mcs-PriorityAccess, mt-SDT} .
If the terminal device 110 determines that an RRC connection resume cause is the first RRC connection resume cause, the terminal device 110 may control the RA procedure. For example, if the terminal device 110 determines that an RRC connection resume cause is the first RRC connection resume cause, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the RRC connection resume cause is mo-Data, and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS priority level, 5QI or QFI. In such embodiments, the terminal device 110 may control the RA procedure based on the QoS priority level, 5QI or QFI.
In some embodiments, the terminal device 110 may determine whether the QoS priority is lower than a priority threshold. If the QoS priority is lower than a priority threshold, the terminal device 110 may control the RA procedure. For example, if the QoS priority is lower than a priority threshold, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the priority threshold may be pre-defined or configure by the network device 120.
In some embodiments, the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS identifier which indicates the standardized or pre-configured 5QI as specified in TS 23.501. In such embodiments, the terminal device 110 may control the RA procedure based on the 5QI.
In some embodiments, the terminal device 110 may determine whether the 5QI belongs to that to be controlled using the RA procedure. For example, if the 5QI belongs to that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the 5QI (s) may be pre-defined or configure by the network device 120.
In some embodiments, the establishment cause is mo-Data and the indication indicates to control the RA procedure triggered by the mo-Data associated with a QoS Flow Identifier which identifies a QoS flow within a PDU Session as specified in TS 23.501. In such embodiments, the terminal device 110 may control the RA procedure based on the QFI.
In some embodiments, the terminal device 110 may determine whether the QFI belongs to that to be controlled using the RA procedure. For example, if the QFI belongs to  that to be controlled using the RA procedure, the terminal device 110 may not initiate the RA procedure.
In some embodiments, the QFI (s) may be pre-defined or configure by the network device 120.
Event (l)
In some embodiments, the first event may comprise the following event (l) : request for other SI. Embodiments of event (g) may be applied to event (l) . Details of such embodiments are omitted for brevity.
Event (m)
In some embodiments, the first event may comprise the following event (m) : small data transmission (SDT) in the RRC_INACTIVE state.
In general, the urgent data transmission will not be configured as SDT in RRC_INACTIVE state. Therefore, it is preferred to apply the restriction to event (m) . For example, the indication indicates to control the UL transmission procedure triggered by SDT.
In some embodiments, for flexibility, the restriction for each case may be separately pre-defined in specification or separately configured by the network device 120 for at least one logical channel allowed for SDT in RRC INACTVE state. For example, the indication indicates to control the UL transmission procedure triggered by SDT associated with at least one logical channel.
In some embodiments, the network device 120 may configure the restriction separately for UL SDT and DL SDT to the terminal device 110. For flexibility, the restriction for UL SDT and DL SDT may be separately pre-defined in specification or separately configured by the network device 120 for at least for in RRC INACTVE state. For example, the indication indicates to control the UL transmission procedure triggered by UL SDT or the indication indicates to control the UL transmission procedure triggered by DL SDT.
In some embodiments, the network device 120 may configure the restriction separately for SDT over RACH or SDT over CG to the terminal device 110.
Hereinafter, some embodiments of SDT in RRC INACTIVE state will be described.
In some embodiments, SDT is a procedure allowing data and/or signalling  transmission while remaining in RRC_INACTIVE state (i.e., without transitioning to RRC_CONNECTED state) . SDT is enabled on a radio bearer basis and is initiated by the terminal device 110 only if less than a configured amount of UL data awaits transmission across all radio bearers for which SDT is enabled, the DL Reference Signal Receiving Power (RSRP) is above a configured threshold, and a valid SDT resource is available. SDT procedure may be initiated with either a transmission over RACH (configured via system information) or over Type 1 Configured Grant (CG) resources (configured via dedicated signalling in RRCRelease message) . In general, during the SDT procedure, the terminal device 110 sends an RRCResumeRequest as well as UL SDT data and/or UL SDT signalling to the network. After the SDT transmission is completed, the network generates and sends RRCRelease message including the Suspend indication to the terminal device 110 to switch the terminal device 110 back to RRC_INACTIVE. When using RACH resources, the network can schedule subsequent UL and DL transmissions using dynamic UL grants and DL assignments after the completion of the RA procedure. When using CG resources for initial SDT transmission, the UE can perform autonomous retransmission of the initial transmission if the UE does not receive confirmation from the network (dynamic UL grant or DL assignment) before a configured timer expires as specified in clause 5.27.1 of TS 38.321 [6] . when using CG resources, the network can schedule subsequent UL transmissions using dynamic grants or they can take place on the following CG resource occasions. The DL transmissions are scheduled using dynamic assignments. The UE can initiate subsequent UL transmission only after reception of confirmation (dynamic UL grant or DL assignment) for the initial PUSCH transmission from the network. For subsequent UL transmission, the UE cannot initiate re-transmission over a CG resource.
In embodiments where SDT is initiated with a transmission with CCCH message over RACH, the above-mentioned handling of the RA-SDT procedure may be applied. In embodiments where SDT is initiated with a transmission with CCCH message over CG, the above-mentioned handling of the CG-SDT procedure may be applied.
In some embodiments, if the terminal device 110 has initiated the SDT over RACH with CCCH message during an active duration of a cell DRX pattern, the terminal device 110 may continue the SDT until end of the SDT regardless of the non-active duration of the cell DRX pattern. For example, the terminal device 110 may continue the SDT if T319a is running. For example, the terminal device 110 may continue the SDT until end of the SDT. For example, if the terminal device 110 may continue the subsequent transmission SDT using dynamic UL grants and/or DL assignments until end of the SDT.
In some embodiments, if the terminal device 110 has initiated the SDT with CCCH message over RACH during an active duration of a cell DRX pattern, the terminal device 110 may continue the RA procedure until the (successful) completion of the RA procedure regardless of the non-active duration of the cell DRX the terminal device 110 may pattern. For example, during the Random-Access Response window, the terminal device 110 may monitor PDCCH for the Radom Access Response. For example, if the ra-ContentionResolutionTimer is running, the terminal device 110 may monitor PDCCH for the contention resolution. For example, if the msgB-ResponseWindow is running, the terminal device 110 may monitor PDCCH for the MsgB. For example, if the terminal has received the RAR in CELL DRX active time, the terminal device 110 may transmit the Msg3 even if the grant in the RAR occurs in the CELL DRX non-active time. For example, if the msgB-ResponseWindow is running, the terminal device 110 may monitor PDCCH for the MsgB. Then the terminal device may suspend the subsequent transmissions. One possibility is, the NW terminates the SDT procedure by sending RRC release message to UE even if there is available/remaining data of SDT to be transmitted at UE. This can help avoid the potential failure of the SDT procedure due to the T319a expiration.
Alternatively, in some embodiments, if the terminal device 110 has initiated the SDT with CCCH message over RACH or over CG in the active duration of the cell DRX pattern, the terminal device 110 may suspend the SDT during the non-active duration of the cell DRX pattern and continue the SDT during the active duration of the cell DRX pattern. For example, the terminal device 110 suspends the SDT until the active duration of the cell DRX pattern. The network device 120 may further configure another T319a or another value of T319a which is separate from legacy T319a of legacy SDT. For example, the network device 120 configures two T319a or two values for a T319 for the terminal device 110. The terminal device 110 uses new T319a for the SDT procedure if the cell DRX and/or cell DTX status is activated.
In embodiments where SDT is initiated with a transmission with CCCH message over CG resources, the terminal device 110 does not continue the SDT procedure till the active duration of the cell DRX pattern. In some embodiments, for flexibility, the restriction for each case may be separately pre-defined or separately configured by the network device 120 for at least one logical channel allowed for SDT over CG resources in RRC INACTVE state. For example, the indication indicates to control the PUSCH transmission procedure triggered by SDT over CG resources associated with at least one logical channel. In some embodiments, the network device 120 may configure the restriction separately for UL  transmission over CG resources trigged by UL SDT or DL SDT to the terminal device 110. For example, the indication indicates to control the PUSCH transmission procedure triggered by UL transmission over CG resources triggered by UL SDT or the indication indicates to control the procedure of UL transmission over CG resources triggered by DL SDT.
In embodiments where SDT is initiated with a transmission with CCCH message over CG resources, the terminal device 110 may be allowed to initiate the SDT procedure during the non-active duration of the cell DRX pattern. If the terminal device 110 initiates the SDT procedure during the non-active duration of the cell DRX pattern, the terminal device 110 does not use at least one CG occasion during the non-active duration of the cell DRX pattern.
In embodiments where SDT is initiated with a transmission with CCCH message over CG resources, the terminal device 110 may be allowed to initiate the retransmission for SDT procedure during the non-active duration of the cell DRX pattern. For example, if the terminal device 110 initiates the SDT procedure during the active duration of the cell DRX pattern and the configuredGrantTimer for the corresponding HARQ process related to SDT is running, the terminal device 110 may monitor the PDCCH for the scheduling retransmission during the CELL DRX non-active time. If the terminal device received the UL grant, UE may continue the SDT procedure by using the UL grant.
In some embodiments, if the terminal device 110 has performed the SDT procedure with CCCH message over CG resources during the active duration of the cell DRX pattern, the terminal device 110 may continue the SDT until end of the SDT (e.g. receiving the RRC Release message from NW) regardless of the non-active duration of the cell DRX pattern. For example, the terminal device 110 may continue the subsequent SDT for retransmission or initial transmission (without CCCH message) using dynamic grants if T319a is running. For example, the terminal device 110 may continue the SDT using subsequent CG resource occasions if T319a is running.
In some embodiments, if the terminal device 110 has performed the SDT with CCCH message over CG during an active duration of a cell DRX pattern, the terminal device 110 may continue the retransmission over a CG for the initial CG-SDT with CCCH message until the (successful) reception of confirmation for the initial PUSCH transmission with CCCH message from the network regardless of the non-active duration of the cell DRX pattern. For example, if the cg-SDT-RetransmissionTimer for the corresponding HARQ process relate to the SDT is running, the terminal device 110 may continue the  retransmission over a CG for the CG-SDT with CCCH message. For example, if the cg-SDT-RetransmissionTimer for the corresponding HARQ process relate to the SDT is running, the terminal device 110 may monitor the PDCCH for the retransmission over a CG for the CG-SDT with CCCH message.
In some embodiments, the terminal device may suspend the subsequent transmissions (without CCCH message) over the following CG resource occasions. The terminal may continue the SDT during the active duration of the cell DRX pattern. One possibility is, the NW terminates the SDT procedure by sending RRC release message to UE even if there is available/remaining data of SDT to be transmitted at UE. This can help avoid the potential failure of the SDT procedure due to the T319a expiration.
Alternatively, in some embodiments, if the terminal device 110 has initiated the SDT over CG resources during the active duration of the cell DRX pattern, the terminal device 110 may suspend the SDT during the non-active duration of the cell DRX pattern and continue the SDT during the active duration of the cell DRX pattern. For example, the terminal device 110 suspends the SDT over CG resources until the active duration of the cell DRX pattern. The network device 120 may further configure another T319a or another value of T319a which is separate from legacy T319a of legacy SDT. For example, the network device 120 configures two T319a or two values for a T319 for the terminal device 110. The terminal device 110 uses new T319a for the SDT procedure over CG resources if the cell DRX configuration is activated.
In embodiments where the terminal device 110 is in RRC_INACTIVE state or enters RRC_INACTIVE state from RRC_CONNECTED, upon receiving the second configuration from the network device 120, the terminal device 110 may store the second configuration in Access Stratum (AS) context. The second configuration may include the SDT configuration, e.g., the CG-SDT resource or RA-SDT resource.
In embodiments where the terminal device 110 is in RRC_INACTIVE state or enters RRC_INACTIVE state from RRC_CONNECTED, upon receiving the first configuration from the network device 120, the terminal device 110 may store the first configuration in Access Stratum (AS) context. The first configuration may include the CELL DRX and/or CELL DTX configuration.
In embodiments where the terminal device 110 is in RRC_INACTIVE state, the terminal device 110 may receive, from the network device 120, an RRC message which comprises the second configuration and/or the first configuration.
In some embodiments, the network device 120 initiates an RRC connection release  procedure to transit the terminal device 110 in RRC_CONNECTED state to RRC_IDLE state; or to transit the terminal device 110 in RRC_CONNECTED state to RRC_INACTIVE state only if SRB2 and at least one DRB, multicast MRB, IAB or SRB2, is setup in RRC_CONNECTED state; or to transit the terminal device 110 in RRC_INACTIVE state back to RRC_INACTIVE state when the terminal device 110 tries to resume; or to transit the terminal device 110 in RRC_INACTIVE state to RRC_IDLE state when the terminal device 110 tries to resume.
If receiving the second configuration and/or the first configuration, the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern based on the second configuration and/or the first configuration when initiating the UL transmission procedure.
In some embodiments, when the network device 120 initiates the RRC connection release procedure to transit the terminal device 110 in RRC_CONNECTED state to RRC_INACTIVE state, the network device 120 may transmit the second configuration and/or the first configuration through an RRC release message to the terminal device 110.
In some embodiments, the terminal device 110 may receive the RRC release message comprising the second configuration and/or the first configuration in a first cell. When the terminal device 110 is in the first cell, the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern. When the terminal device 110 moves out of the first cell, the second configuration and/or the first configuration is not valid, i.e., the terminal device 110 does not control the UL transmission procedure based on the second configuration and/or the first configuration.
In some embodiments, the terminal device 110 may receive the RRC release message comprising the second configuration and/or the first configuration in a first RNA. When the terminal device 110 is in the first RNA, the terminal device 110 controls the UL transmission procedure during the non-active duration of the cell DRX pattern. Here, it is assumed that the configurations of the serving cells in the RNA is identical to each other. When the terminal device 110 moves out of the first RNA, the second configuration and/or the first configuration may be not valid.
Alternatively, in embodiments where the terminal device 110 is in RRC_INACTIVE state, the terminal device 110 may receive, from the network device 120, an SIB message which comprises the second configuration and/or the first configuration.
In some embodiments, if the terminal device 110 does not receive the second configuration and/or the first configuration in a dedicated RRC message, the terminal  device 110 uses the second configuration and/or the first configuration of the serving cell in the SIB message.
Alternatively, in some embodiments, if the terminal device 110 receives the second configuration and/or the first configuration in a dedicated RRC message (e.g., RRC release message) , the terminal device 110 uses the second configuration and/or the first configuration in the dedicated RRC message instead of the second configuration and/or the first configuration in the SIB message.
In some embodiment, the terminal device 110 controls the RA procedure triggered by the first event based on a cell DRX activation status and/or a cell DTX activation status configured by the network device 120. If the terminal device 110 determines that the cell DRX status or the cell DTX status is activated, the terminal device 110 controls the RA procedure triggered by the first event. For example, if the terminal device 110 determines that the cell DRX status is activated, the terminal device 110 does not use the RA procedure triggered by the first event during a non-active duration of a cell DRX pattern.
On the other hand, if the terminal device 110 determines that the cell DRX configuration or the cell DTX status is deactivated, the terminal device 110 uses the RA procedure triggered by the first event. For example, if the terminal device 110 determines that the cell DRX status is deactivated, the terminal device 110 uses the RA procedure triggered by the first event during the non-active duration of the cell DRX pattern.
Fig. 4 illustrates a flowchart of a method 400 implemented at a terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the terminal device 110 with reference to Fig. 1.
At block 410, the terminal device 110 receives, from a network device, a first configuration associated with NES.
At block 420, the terminal device 110 determines a second configuration associated with an uplink transmission procedure.
At block 430, the terminal device 110 controls the uplink transmission procedure based on the first configuration and the second configuration.
In some embodiments, the uplink transmission procedure comprises an RA procedure or PUSCH transmission procedure.
In some embodiments, the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell of the terminal device.
In some embodiments, the second configuration comprises PRACH resource  configuration.
In some embodiments, controlling the RA procedure comprises: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by a first event during the non-active duration, controlling the RA procedure.
In some embodiments, the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
In some embodiments, controlling the RA procedure comprises: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by the first event during the non-active duration, controlling the RA procedure based on the indication.
In some embodiments, controlling the RA procedure comprises: delaying initiation of the RA procedure till the active duration.
In some embodiments, the indication indicates to use at least one PRACH occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration; and controlling the RA procedure comprises: determining, based on the indication, the at least one PRACH occasion, the at least one RA preamble or the at least one RA type for the RA procedure during the non-active duration.
In some embodiments, the first event comprises data arrival during the terminal device is in RRC connected state when uplink synchronization status of the terminal device is non-synchronized.
In some embodiments, the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
In some embodiments, the first event comprises data arrival during the terminal device is in RRC connected state when there are no PUCCH resources for scheduling request available.
In some embodiments, the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
In some embodiments, the first event comprises scheduling request failure.
In some embodiments, the indication indicates to control the RA procedure  triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
In some embodiments, the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
In some embodiments, the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
In some embodiments, the first event comprises positioning purpose during the terminal device is in RRC connected state requiring the RA procedure.
In some embodiments, the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
In some embodiments, the terminal device is in RRC idle state, and the first event comprises an initial access from the RRC idle state.
In some embodiments, the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection; and controlling the RA procedure comprises: based on determining that an establishment cause of an RRC connection is the first establishment cause, controlling the RA procedure.
In some embodiments, the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority; and controlling the RA procedure comprises: controlling the RA procedure based on the QoS priority.
In some embodiments, the terminal device is in RRC inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
In some embodiments, the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause; and controlling the RA procedure comprises: based on determining that an RRC connection resume cause is the first RRC connection resume cause, controlling the RA procedure.
In some embodiments, the RRC connection resume cause is mobile originated data,  and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority; and controlling the RA procedure comprises: controlling the RA procedure based on the QoS priority.
In some embodiments, the terminal device is in RRC inactive state, and the first event comprises small data transmission in the RRC inactive state.
In some embodiments, the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
In some embodiments, the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
In some embodiments, controlling the RA procedure comprises: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure.
In some embodiments, controlling the RA procedure comprises: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure based on the indication.
In some embodiments, determining the second configuration comprises receiving, via the transceiver from the network device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
Fig. 5 illustrates a flowchart of a method 500 implemented at a network device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the network device 120 with reference to Fig. 1.
At block 510, the network device 120 transmits, to a terminal device, a first configuration associated with NES.
At block 520, the network device 120 transmits, to the terminal device, a second configuration associated with an uplink transmission procedure.
In some embodiments, the uplink transmission procedure comprises an RA procedure or PUSCH transmission procedure.
In some embodiments, the first configuration comprises a cell DRX configuration or a cell DTX configuration for a serving cell of the terminal device.
In some embodiments, the second configuration comprises PRACH resource  configuration.
In some embodiments, the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
In some embodiments, the indication indicates to use at least one PRACH occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration.
In some embodiments, the first event comprises data arrival during the terminal device is in RRC connected state when uplink synchronization status of the terminal device is non-synchronized.
In some embodiments, the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
In some embodiments, the first event comprises data arrival during the terminal device is in RRC connected state when there are no PUCCH resources for scheduling request available.
In some embodiments, the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
In some embodiments, the first event comprises scheduling request failure.
In some embodiments, the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
In some embodiments, the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
In some embodiments, the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
In some embodiments, the first event comprises positioning purpose during the terminal device is in RRC connected state requiring the RA procedure.
In some embodiments, the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
In some embodiments, the terminal device is in RRC idle state, and the first event comprises an initial access from the RRC idle state.
In some embodiments, the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection.
In some embodiments, the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority.
In some embodiments, the terminal device is in RRC inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
In some embodiments, the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause.
In some embodiments, the RRC connection resume cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a QoSpriority.
In some embodiments, the terminal device is in RRC inactive state, and the first event comprises small data transmission in the RRC inactive state.
In some embodiments, the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
In some embodiments, the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
In some embodiments, transmitting the second configuration comprises: transmitting, via the transceiver to the terminal device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
Fig. 6 illustrates a simplified block diagram of an apparatus 600 that is suitable for implementing embodiments of the present disclosure. The apparatus 600 can be considered  as a further example implementation of the terminal device 110 or the network device 120 as shown in Fig. 1. Accordingly, the apparatus 600 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
As shown, the apparatus 600 includes a processor 610, a memory 620 coupled to the processor 610, a suitable transmitter (TX) and receiver (RX) 640 coupled to the processor 610, and a communication interface coupled to the TX/RX 640. The memory 610 stores at least a part of a program 630. The TX/RX 640 is for bidirectional communications. The TX/RX 640 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this disclosure may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 630 is assumed to include program instructions that, when executed by the associated processor 610, enable the apparatus 600 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 to 4. The embodiments herein may be implemented by computer software executable by the processor 610 of the apparatus 600, or by hardware, or by a combination of software and hardware. The processor 610 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 610 and memory 620 may form processing means 650 adapted to implement various embodiments of the present disclosure.
The memory 620 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 620 is shown in the apparatus 600, there may be several physically distinct memory modules in the apparatus 600. The processor 610 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore  processor architecture, as non-limiting examples. The apparatus 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In summary, embodiments of the present disclosure provide the following solutions.
Clause 1. A terminal device, comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: receive, via the transceiver from a network device, a first configuration associated with Network Energy Saving (NES) ; determine a second configuration associated with an uplink transmission procedure; and control the uplink transmission procedure based on the first configuration and the second configuration.
Clause 2. The terminal device of clause 1, wherein the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
Clause 3. The terminal device of clause 1, wherein the first configuration comprises a cell Discontinuous Reception (DRX) configuration or a cell Discontinuous Transmission (DTX) configuration for a serving cell of the terminal device.
Clause 4. The terminal device of clause 3, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
Clause 5. The terminal device of clause 4, wherein the terminal device is caused to control the RA procedure by: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by a first event during the non-active duration, controlling the RA procedure.
Clause 6. The terminal device of clause 3, wherein the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
Clause 7. The terminal device of clause 6, wherein the terminal device is caused to control the RA procedure by: determining an active duration and the non-active duration of the cell DRX pattern based on the cell DRX configuration; and based on determining that the RA procedure is triggered by the first event during the non-active duration, controlling  the RA procedure based on the indication.
Clause 8. The terminal device of clause 5 or clause 7, wherein the terminal device is caused to control the RA procedure by delaying initiation of the RA procedure till the active duration.
Clause 9. The terminal device of clause 5 or clause 6, wherein: the indication indicates to use at least one Physical Random Access Channel (PRACH) occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration; and the terminal device is caused to control the RA procedure by: determining, based on the indication, the at least one PRACH occasion, the at least one RA preamble or the at least one RA type for the RA procedure during the non-active duration.
Clause 10. The terminal device of clause 5 or clause 6, wherein the first event comprises data arrival during the terminal device is in radio resource control (RRC) connected state when uplink synchronization status of the terminal device is non-synchronized.
Clause 11. The terminal device of clause 10, wherein the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
Clause 12. The terminal device of clause 5 or clause 6, wherein the first event comprises data arrival during the terminal device is in Radio Resource Control (RRC) connected state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
Clause 13. The terminal device of clause 10 or 12, wherein the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
Clause 14. The terminal device of clause 5 or clause 6, wherein the first event comprises scheduling request failure.
Clause 15. The terminal device of clause 14, wherein the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the  indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
Clause 16. The terminal device of clause 5 or clause 6, wherein the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
Clause 17. The terminal device of clause 5 or clause 6, wherein the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
Clause 18. The terminal device of clause 5 or clause 6, wherein the first event comprises positioning purpose during the terminal device is in Radio Resource Control (RRC) connected state requiring the RA procedure.
Clause 19. The terminal device of clause 5 or clause 6, wherein the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
Clause 20. The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) idle state, and the first event comprises an initial access from the RRC idle state.
Clause 21. The terminal device of clause 20, wherein the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection; and the terminal device is caused to control the RA procedure by: based on determining that an establishment cause of an RRC connection is the first establishment cause, controlling the RA procedure.
Clause 22. The terminal device of clause 21, wherein the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority; and the terminal device is caused to control the RA procedure by controlling the RA procedure based on the QoS priority.
Clause 23. The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
Clause 24. The terminal device of clause 23, wherein the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause; and the terminal device is caused to control the RA procedure by: based on determining that an RRC connection resume cause is the first RRC connection resume cause, controlling the RA procedure.
Clause 25. The terminal device of clause 24, wherein the RRC connection resume cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority; and the terminal device is caused to control the RA procedure by controlling the RA procedure based on the QoS priority.
Clause 26. The terminal device of clause 5 or clause 6, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises small data transmission in the RRC inactive state.
Clause 27. The terminal device of clause 26, wherein the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
Clause 28. The terminal device of clause 26, wherein the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
Clause 29. The terminal device of clause 5, wherein the terminal device is caused to control the RA procedure by: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure.
Clause 30. The terminal device of clause 5 or clause 6, wherein the terminal device is caused to control the RA procedure by: based on determining that the cell DRX configuration or the cell DTX configuration is activated, controlling the RA procedure based on the indication.
Clause 31. The terminal device of clause 1, wherein the terminal device is caused to determine the second configuration by: receiving, via the transceiver from the network device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
Clause 32. A network device, comprising: a processor; and a transceiver coupled to the processor, wherein the processor is configured to: transmit, via the transceiver to a terminal device, a first configuration associated with Network Energy Saving (NES) ; and transmit, via the transceiver to the terminal device, a second configuration associated with an uplink transmission procedure.
Clause 33. The network device of clause 32, wherein the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
Clause 34. The network device of clause 32, wherein the first configuration comprises a cell Discontinuous Reception (DRX) configuration or a cell Discontinuous Transmission (DTX) configuration for a serving cell of the terminal device.
Clause 35. The network device of clause 32, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
Clause 36. The network device of clause 32, wherein the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell DRX pattern.
Clause 37. The network device of clause 36, wherein the indication indicates to use at least one Physical Random Access Channel (PRACH) occasion, at least one RA preamble or at least one RA type for the RA procedure during the non-active duration.
Clause 38. The network device of clause 36, wherein the first event comprises data arrival during the terminal device is in radio resource control (RRC) connected state when uplink synchronization status of the terminal device is non-synchronized.
Clause 39. The network device of clause 38, wherein the indication indicates to control the RA procedure triggered by uplink data arrival; or the indication indicates to control the RA procedure triggered by downlink data arrival.
Clause 40. The network device of clause 36, wherein the first event comprises data arrival during the terminal device is in Radio Resource Control (RRC) connected state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
Clause 41. The network device of clause 38 or 40, wherein the indication indicates to control the RA procedure triggered by the data arrival associated with at least one logical  channel; or the indication indicates to control the RA procedure triggered by the data arrival associated with a logical channel priority.
Clause 42. The network device of clause 36, wherein the first event comprises scheduling request failure.
Clause 43. The network device of clause 42, wherein the indication indicates to control the RA procedure triggered by the scheduling request failure associated with at least one logical channel; the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a scheduling request configuration; or the indication indicates to control the RA procedure triggered by the scheduling request failure associated with a logical channel priority.
Clause 44. The network device of clause 37, wherein the first event comprises recovery of beam failure which is detected on at least one cell; or the first event comprises recovery of beam failure which is detected for a transmission point of the serving cell.
Clause 45. The network device of clause 37, wherein the first event comprises consistent uplink Listen Before Talk (LBT) failures on secondary primary cell (SpCell) .
Clause 46. The network device of clause 37, wherein the first event comprises positioning purpose during the terminal device is in Radio Resource Control (RRC) connected state requiring the RA procedure.
Clause 47. The network device of clause 37, wherein the first event comprises request for other system information than system information block 6, system information block 7 or system information block 8.
Clause 48. The network device of clause 37, wherein the terminal device is in Radio Resource Control (RRC) idle state, and the first event comprises an initial access from the RRC idle state.
Clause 49. The network device of clause 48, wherein the indication indicates to control the RA procedure triggered by the initial access associated with a first establishment cause of an RRC connection.
Clause 50. The network device of clause 49, wherein the establishment cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority.
Clause 51. The network device of clause 37, wherein the terminal device is in  Radio Resource Control (RRC) inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
Clause 52. The network device of clause 51, wherein the indication indicates to control the RA procedure triggered by the RRC connection resume procedure associated with a first RRC connection resume cause.
Clause 53. The network device of clause 52, wherein the RRC connection resume cause is mobile originated data, and the indication indicates to control the RA procedure triggered by the mobile originated data associated with a Quality of Service (QoS) priority.
Clause 54. The network device of clause 37, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises small data transmission in the RRC inactive state.
Clause 55. The network device of clause 54, wherein the indication indicates to control the RA procedure triggered by the small data transmission associated with at least one logical channel.
Clause 56. The network device of clause 54, wherein the indication indicates to control the RA procedure triggered by uplink small data transmission in the RRC inactive state; or the indication indicates to control the RA procedure triggered by downlink small data transmission in the RRC inactive state.
Clause 57. The network device of clause 32, wherein the network device is caused to transmit the second configuration by transmitting, via the transceiver to the terminal device, one of the following which comprising the second configuration: a radio resource control message, System Information Block, Layer 2 signalling, or Layer 1 signalling.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or  in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (15)

  1. A terminal device, comprising:
    a processor; and
    a transceiver coupled to the processor,
    wherein the processor is configured to:
    receive, via the transceiver from a network device, a first configuration associated with Network Energy Saving (NES) ;
    determine a second configuration associated with an uplink transmission procedure; and
    control the uplink transmission procedure based on the first configuration and the second configuration.
  2. The terminal device of claim 1, wherein the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
  3. The terminal device of claim 1, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
  4. The terminal device of claim 1, wherein the first configuration comprises a cell Discontinuous Reception (DRX) configuration; and
    the terminal device is caused to control the RA procedure by:
    determining an active duration and a non-active duration of a cell DRX pattern based on the cell DRX configuration; and
    based on determining that the RA procedure is triggered by a first event during the non-active duration, controlling the RA procedure.
  5. The terminal device of claim 1, wherein the second configuration comprises an indication, the indication indicating whether to control the RA procedure triggered by a first event during a non-active duration of a cell Discontinuous Reception (DRX) pattern.
  6. The terminal device of claim 5, wherein the terminal device is caused to control  the RA procedure by:
    determining an active duration and the non-active duration of the cell DRX pattern based on a cell DRX configuration; and
    based on determining that the RA procedure is triggered by the first event during the non-active duration, controlling the RA procedure based on the indication.
  7. The terminal device of claim 4 or claim 6, wherein the terminal device is caused to control the RA procedure by:
    delaying initiation of the RA procedure till the active duration.
  8. The terminal device of claim 4 or claim 5, wherein the first event comprises data arrival during the terminal device is in Radio Resource Control (RRC) connected state when there are no Physical Uplink Control Channel (PUCCH) resources for scheduling request available.
  9. The terminal device of claim 4 or claim 5, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises an RRC connection resume procedure from the RRC inactive state.
  10. The terminal device of claim 4 or claim 5, wherein the terminal device is in Radio Resource Control (RRC) inactive state, and the first event comprises small data transmission in the RRC inactive state.
  11. The terminal device of claim 4, wherein the terminal device is caused to control the RA procedure by:
    based on determining that the cell DRX configuration or a cell DTX configuration is activated, controlling the RA procedure.
  12. The terminal device of claim 1, wherein the terminal device is caused to determine the second configuration by:
    receiving, via the transceiver from the network device, one of the following which comprising the second configuration:
    a radio resource control message,
    System Information Block,
    Layer 2 signalling, or
    Layer 1 signalling.
  13. A network device, comprising:
    a processor; and
    a transceiver coupled to the processor,
    wherein the processor is configured to:
    transmit, via the transceiver to a terminal device, a first configuration associated with Network Energy Saving (NES) ; and
    transmit, via the transceiver to the terminal device, a second configuration associated with an uplink transmission procedure.
  14. The network device of claim 13, wherein the uplink transmission procedure comprises a Random Access (RA) procedure or Physical Uplink Shared Channel (PUSCH) transmission procedure.
  15. The network device of claim 13, wherein the second configuration comprises Physical Random Access Channel (PRACH) resource configuration.
PCT/CN2023/100523 2023-06-15 2023-06-15 Terminal device, network device and methods for communications WO2024093246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100523 WO2024093246A1 (en) 2023-06-15 2023-06-15 Terminal device, network device and methods for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100523 WO2024093246A1 (en) 2023-06-15 2023-06-15 Terminal device, network device and methods for communications

Publications (1)

Publication Number Publication Date
WO2024093246A1 true WO2024093246A1 (en) 2024-05-10

Family

ID=90929596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100523 WO2024093246A1 (en) 2023-06-15 2023-06-15 Terminal device, network device and methods for communications

Country Status (1)

Country Link
WO (1) WO2024093246A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584467A (en) * 2019-09-27 2021-03-30 大唐移动通信设备有限公司 Energy-saving signal sending method, beam information reporting method, equipment and terminal
CN113545135A (en) * 2019-09-23 2021-10-22 Oppo广东移动通信有限公司 WUS monitoring method, information sending method and equipment
CN114071509A (en) * 2020-08-03 2022-02-18 华为技术有限公司 Method and device for indicating data transmission
CN114071804A (en) * 2020-07-31 2022-02-18 联发科技(新加坡)私人有限公司 Connectionless data transmission method in non-active state and user equipment
CN114762449A (en) * 2020-02-12 2022-07-15 Oppo广东移动通信有限公司 Method, device, terminal and storage medium for reporting channel state information
US20220369417A1 (en) * 2019-07-04 2022-11-17 Lg Electronics Inc. Ue operation method related to sidelink drx in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220369417A1 (en) * 2019-07-04 2022-11-17 Lg Electronics Inc. Ue operation method related to sidelink drx in wireless communication system
CN113545135A (en) * 2019-09-23 2021-10-22 Oppo广东移动通信有限公司 WUS monitoring method, information sending method and equipment
CN112584467A (en) * 2019-09-27 2021-03-30 大唐移动通信设备有限公司 Energy-saving signal sending method, beam information reporting method, equipment and terminal
CN114762449A (en) * 2020-02-12 2022-07-15 Oppo广东移动通信有限公司 Method, device, terminal and storage medium for reporting channel state information
CN114071804A (en) * 2020-07-31 2022-02-18 联发科技(新加坡)私人有限公司 Connectionless data transmission method in non-active state and user equipment
CN114071509A (en) * 2020-08-03 2022-02-18 华为技术有限公司 Method and device for indicating data transmission

Similar Documents

Publication Publication Date Title
EP3659383B1 (en) Methods, terminal and base station for handling a bandwidth part inactivity timer in wireless communication system
EP3791671B1 (en) Method and wireless communication system for handling timer operation
US9491778B2 (en) Method and device for obtaining secondary timing advance
US9414341B2 (en) Radio station, radio terminal, and synchronization timer control method in radio communication system
CN110945957A (en) Method and apparatus for performing random access procedure
US20230131188A1 (en) Wireless communication method and terminal device
US20160242092A1 (en) Methods and Apparatus for Small Cell Change
FI129385B (en) Determination of contention resolution timer
WO2022073237A1 (en) Mobility for small data transmission procedure
CN111246591B (en) Information transmission method, device and related equipment
US20220279395A1 (en) Early data transmission for dual connectivity or carrier aggregation
EP4175397A1 (en) Scheduling request and random access triggering for sdt
WO2024093246A1 (en) Terminal device, network device and methods for communications
WO2021102837A1 (en) Methods, devices, and medium for communication
WO2021087918A1 (en) Contention resolution in random access procedure
WO2020000429A1 (en) Uplink skipping during random access procedure
EP4128972A1 (en) Method, device and computer storage medium of communication
WO2023159648A1 (en) Small data transmission
WO2024093212A1 (en) Terminal device, network device and methods for communications
WO2024093244A1 (en) Devices and methods of communication
WO2023108476A1 (en) Communication method and apparatus
WO2023092282A1 (en) Methods and apparatuses of a mro mechanism for ul coverage enhancement and network slicing procedures
US20230209614A1 (en) Random access method and device, terminal, and storage medium
WO2024093181A1 (en) Terminal device, network device and methods for communications
CN113228786B (en) MSG3 transmission in unlicensed frequency bands