WO2021253394A1 - Public land mobile network search for user equipment route selection policy rule - Google Patents

Public land mobile network search for user equipment route selection policy rule Download PDF

Info

Publication number
WO2021253394A1
WO2021253394A1 PCT/CN2020/097083 CN2020097083W WO2021253394A1 WO 2021253394 A1 WO2021253394 A1 WO 2021253394A1 CN 2020097083 W CN2020097083 W CN 2020097083W WO 2021253394 A1 WO2021253394 A1 WO 2021253394A1
Authority
WO
WIPO (PCT)
Prior art keywords
ursp
plmn
rule
ursp rule
establishment request
Prior art date
Application number
PCT/CN2020/097083
Other languages
French (fr)
Inventor
Hao Zhang
Chaofeng HUI
Fojian ZHANG
Jian Li
Yuankun ZHU
Tianya LIN
Xiuqiu XIA
Bingqing WANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/097083 priority Critical patent/WO2021253394A1/en
Publication of WO2021253394A1 publication Critical patent/WO2021253394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for searching public land mobile networks for a matching user equipment route selection policy rule.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the UE is registered in a standalone mode, a protocol data unit establishment request for an application.
  • the protocol data unit establishment request may indicate a UE route selection policy (URSP) rule for the UE.
  • the method may include determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE.
  • the method may also include transmitting a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  • a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine to transmit, to an access and mobility management function of a serving PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application.
  • the protocol data unit establishment request may indicate a URSP rule for the UE.
  • the memory and the one or more processors may be configured to determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE.
  • the memory and the one or more processors may be configured to transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to determine to transmit, to an access and mobility management function of a serving public PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application.
  • the protocol data unit establishment request may indicate a URSP rule for the UE.
  • the one or more instructions may cause the one or more processors to determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE.
  • the one or more instructions may cause the one or more processors to transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  • an apparatus for wireless communication may include means for determining to transmit, to an access and mobility management function of a serving PLMN while the apparatus is registered in a standalone mode, a protocol data unit establishment request for an application.
  • the protocol data unit establishment request may indicate a URSP rule for the apparatus.
  • the apparatus may include means for determining whether the apparatus has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the apparatus, and means for searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the apparatus.
  • the apparatus may also include means for transmitting a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the apparatus.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of using a “match all” traffic descriptor after a protocol data unit establishment rejection, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of searching public land mobile networks for a matching user equipment route selection policy rule, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with searching public land mobile networks (PLMNs) for a matching UE route selection policy (URSP) rule, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining to transmit, to an access and mobility management function of a serving PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a URSP rule for the UE, means for determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, means for searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE, means for transmitting a protocol data unit establishment request to an AMF of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of using a “match all” traffic descriptor after a protocol data unit (PDU) establishment rejection, in accordance with various aspects of the present disclosure.
  • a UE may be configured with an application protocol/processor (AP) and a modem.
  • the modem may be a dual modem (e.g., a first subscriber identity module (SIM) and a second SIM) .
  • SIM may support dual SIM dual active or dual SIM dual standby, and either SIM may be associated with a default data subscriber (DDS) subscriber registration (e.g., standalone) or a non-DDS subscriber registration (e.g., LTE) .
  • DDS data subscriber
  • the UE may be camped on a serving PLMN, which may be a home PLMN (HPLMN) or an equivalent HPLMN (EHPLMN) .
  • HPLMN home PLMN
  • EHPLMN equivalent HPLMN
  • a UE may request a UE modem to establish a PDU session with an access and mobility management function (AMF) of a 5G standalone network.
  • the request may be on behalf of an application (e.g., subscribed streaming video service) .
  • the AP may indicate a data network name (DNN) and/or an application identifier.
  • the UE may determine whether a URSP rule of a serving PLMN matches a URSP rule of the UE, as shown by reference number 310.
  • the application may request a connection with a particular DNN (DNN 1) and a particular application identifier (APP ID 1) . If the URSP rule of the serving PLMN matches the URSP rule of the UE, the UE may transmit a PDU session establishment request, on behalf of or to support the application, to the AMF of the serving PLMN, as shown by reference number 315. However, as shown by reference number 320, the UE may receive a PDU session establishment reject message (e.g., cause #68) .
  • a PDU session establishment reject message e.g., cause #68
  • the UE may select a default rule (e.g., “match all” traffic descriptor) , as shown by reference number 330.
  • a “match all” traffic descriptor may mean that any missing UE local configuration information needed for a PDU session establishment request may come from a default URSP rule, and components from the default URSP rule may enable only a basic level of service (do not support more enhanced features) .
  • the UE may transmit a PDU session establishment request message with a “match all” descriptor (default DNN) , as shown by reference number 335.
  • the UE may receive a PDU session establishment accept message, as shown by reference number 340. Accordingly, the UE may have only a basic level of service for the application, and a user of the UE may have a reduced quality of service and may not be able to fully utilize features of the application.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of searching PLMNs for a matching URSP rule, in accordance with various aspects of the present disclosure.
  • Fig. 4 shows a UE that may operate like the UE shown in Fig. 3 to establish a connection for an application.
  • the UE may have a hierarchy of folders and files in a SIM.
  • the SIM may have a master file that is a root file, and there may be other files, referred to as elementary files (EFs) , that store settings, preferences, access conditions, or other data.
  • EFs elementary files
  • the application may request a connection, but if there is no URSP rule match with a serving PLMN, the UE may perform an enhanced search for another PLMN among one or more PLMNs that are listed in an EF that is for URSP (EF URSP ) .
  • the UE may search for a PLMN, listed in the EF URSP , that has a URSP rule that matches a URSP rule of the UE (for the application) . If the UE finds a listed PLMN with a URSP rule that matches the URSP rule for the UE, the UE may select the PLMN and transmit a PDU session establishment request to an AMF for the selected PLMN.
  • the UE may obtain data services for the application rather than dropping to a basic service indicated by a default DNN or a “match all” traffic descriptor. This will provide full, targeted, or enhanced services for an application on the UE and/or a better quality of service for the UE.
  • searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes evaluating whether a next PLMN listed in the EF URSP has a URSP rule that matches the URSP rule of the UE. For example, as shown by reference number 405, the UE may check an EF URSP to determine if a next PLMN listed in the EF URSP has a URSP rule that matches a URSP rule of the UE. The UE may determine whether a URSP rule of the next PLMN (e.g., PLMN 2 of AMF 2) matches a URSP rule of the UE, as shown by reference number 410.
  • a URSP rule of the next PLMN e.g., PLMN 2 of AMF 2
  • the UE may select a PLMN that may be considered an HPLMN or an EHPLMN.
  • a PLMN listed in the EF URSP is an HPLMN or an EHPLMN
  • the UE may refer to an EF for EHPLMN (EF EHPLMN ) .
  • An HPLMN in the EF EHPLMN may be identified from an international mobile subscriber identity module of the UE.
  • a URSP rule of a listed PLMN matches a URSP rule of the UE, the UE may select the listed PLMN (e.g., PLMN 2) and transmit a PDU session establishment request message to an AMF of the selected PLMN. For example, as shown by reference number 415, the UE may transmit a PDU session establishment request to AMF 2 of selected PLMN 2. As the URSP rules match, the UE may receive a PDU session establishment accept message, as shown by reference number 420. Note that while URSP matching is described herein as a match for a URSP rule of the UE for purposes of explanation, in some aspects, this may mean a match of a URSP rule of an application associated with the request by the UE.
  • the UE may proceed with selecting a default rule, as shown by reference numbers 335 and 340 in Fig. 3. For example, the UE may transmit a PDU session establishment request to AMF 1 of the serving PLMN, indicating a default rule (e.g., default DNN) , and the UE may receive a PDU session establishment accept message.
  • a default rule e.g., default DNN
  • URSP rules may include one or more of a single network slice selection assistance information (S-NSSAI) , an application identifier, a route selection descriptor (RSD) , a DNN, a PDU session type, a session and service continuity mode, a preferred access type, an internet protocol (IP) 3 tuple, a non-IP descriptor, and/or the like.
  • S-NSSAI single network slice selection assistance information
  • RSD route selection descriptor
  • DNN DNN
  • PDU session type a session and service continuity mode
  • IP internet protocol
  • IP internet protocol
  • non-IP descriptor a non-IP descriptor
  • the UE may transmit a PDU session establishment request with an indication of one or more aspects of a URSP rule that match one or more aspects of a URSP rule for the UE.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like) performs operations associated with searching PLMNs for a matching URSP rule.
  • the UE e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like
  • performs operations associated with searching PLMNs for a matching URSP rule e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like.
  • process 500 may include determining to transmit, to an AMF of a serving PLMN while the UE is registered in a standalone mode, a PDU establishment request for an application (block 510) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the PDU establishment request indicates a URSP rule for the UE.
  • process 500 may include determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE (block 520) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 500 may include searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE (block 530) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 500 may include transmitting a PDU establishment request to an AMF of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE (block 540) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes evaluating whether a next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE.
  • evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes evaluating whether a data network name of the next PLMN matches a data network name of the UE.
  • transmitting the PDU establishment request to the AMF of the other PLMN includes transmitting the PDU establishment request indicating the DNN of the UE.
  • evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes evaluating whether a traffic descriptor of the next PLMN matches an application identifier of the application.
  • transmitting the PDU establishment request to the AMF of the other PLMN includes transmitting the PDU establishment request indicating the application identifier of the application.
  • evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes one or more of evaluating whether a configured or allowed S-NSSAI of the next PLMN matches an S-NSSAI of the UE, or evaluating whether an RSD of the next PLMN matches an RSD of the UE.
  • searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes determining whether a next PLMN listed in the elementary file for URSP is indicated as a home PLMN or an equivalent PLMN in an elementary file for equivalent PLMN.
  • determining whether the next PLMN listed in the elementary file for URSP is indicated as a home PLMN includes identifying the home PLMN based at least in part on an international mobile subscriber identity.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software.
  • a processor is implemented in hardware, software, and/or a combination of hardware and software.
  • Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine to transmit, to an access and mobility management function (AMF) of a serving public land mobile network (PLMN), a protocol data unit (PDU) establishment request for an application. The PDU establishment request may indicate a UE route selection policy (URSP) rule for the UE. The UE may determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE. The UE may search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE, and transmit a PDU establishment request to an AMF of the other PLMN. Numerous other aspects are provided.

Description

PUBLIC LAND MOBILE NETWORK SEARCH FOR USER EQUIPMENT ROUTE SELECTION POLICY RULE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for searching public land mobile networks for a matching user equipment route selection policy rule.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the UE is registered in a standalone mode, a protocol data unit establishment request for an application. The protocol data unit establishment request may indicate a UE route selection policy (URSP) rule for the UE. The method may include determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE. The method may also include transmitting a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
In some aspects, a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine to transmit, to an access and mobility management function of a serving PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application. The  protocol data unit establishment request may indicate a URSP rule for the UE. The memory and the one or more processors may be configured to determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE. The memory and the one or more processors may be configured to transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to determine to transmit, to an access and mobility management function of a serving public PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application. The protocol data unit establishment request may indicate a URSP rule for the UE. The one or more instructions may cause the one or more processors to determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, and search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE. The one or more instructions may cause the one or more processors to transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
In some aspects, an apparatus for wireless communication may include means for determining to transmit, to an access and mobility management function of a serving PLMN while the apparatus is registered in a standalone mode, a protocol data unit establishment request for an application. The protocol data unit establishment request may indicate a URSP rule for the apparatus. The apparatus may include means for determining whether the apparatus has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the apparatus, and means for searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the apparatus. The apparatus may also include means for transmitting a protocol data unit  establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the apparatus.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of using a “match all” traffic descriptor after a protocol data unit establishment rejection, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of searching public land mobile networks for a matching user equipment route selection policy rule, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location  tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base  station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information  and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory  242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-5.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with searching public land mobile networks (PLMNs) for a matching UE route selection policy (URSP) rule, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining to transmit, to an access and mobility management function of a serving PLMN while the UE is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a URSP rule for the UE, means for determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, means for searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE, means for transmitting a protocol data unit establishment request to an AMF of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of using a “match all” traffic descriptor after a protocol data unit (PDU) establishment rejection, in accordance with various aspects of the present disclosure. A UE may be configured with an application protocol/processor (AP) and a modem. In some aspects, the modem may be a dual modem (e.g., a first subscriber identity module (SIM) and a second SIM) . Either SIM may support dual SIM dual active or dual SIM dual standby, and either SIM may be associated with a default data subscriber (DDS) subscriber registration (e.g., standalone) or a non-DDS subscriber registration (e.g., LTE) . The UE may be camped on a serving PLMN, which may be a home PLMN (HPLMN) or an equivalent HPLMN (EHPLMN) .
As shown by reference number 305, a UE may request a UE modem to establish a PDU session with an access and mobility management function (AMF) of a 5G standalone network. The request may be on behalf of an application (e.g., subscribed streaming video service) . The AP may indicate a data network name (DNN) and/or an application identifier.
The UE may determine whether a URSP rule of a serving PLMN matches a URSP rule of the UE, as shown by reference number 310. For example, the application may request a connection with a particular DNN (DNN 1) and a particular application identifier (APP ID 1) . If the URSP rule of the serving PLMN matches the URSP rule of the UE, the UE may transmit a PDU session establishment request, on behalf of or to support the application, to the AMF of the serving PLMN, as shown by reference number 315. However, as shown by reference number 320, the UE may receive a PDU session establishment reject message (e.g., cause #68) . If there is no URSP rule match, as shown by reference number 325, the UE may select a default rule (e.g., “match all” traffic descriptor) , as shown by reference number 330. A “match all” traffic descriptor may mean that any missing UE local configuration information needed for a PDU session establishment request may come from a default URSP rule, and components from the default URSP rule may enable only a basic level of service (do not support more enhanced features) . The UE may transmit a PDU session establishment request message with a “match all” descriptor (default DNN) , as shown by reference number 335. The UE may receive a PDU session establishment accept message, as shown by reference number 340. Accordingly, the UE may have only a basic level of service for  the application, and a user of the UE may have a reduced quality of service and may not be able to fully utilize features of the application.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of searching PLMNs for a matching URSP rule, in accordance with various aspects of the present disclosure. Fig. 4 shows a UE that may operate like the UE shown in Fig. 3 to establish a connection for an application. In some aspects, the UE may have a hierarchy of folders and files in a SIM. The SIM may have a master file that is a root file, and there may be other files, referred to as elementary files (EFs) , that store settings, preferences, access conditions, or other data.
According to various aspects described herein, the application may request a connection, but if there is no URSP rule match with a serving PLMN, the UE may perform an enhanced search for another PLMN among one or more PLMNs that are listed in an EF that is for URSP (EF URSP) . The UE may search for a PLMN, listed in the EF URSP, that has a URSP rule that matches a URSP rule of the UE (for the application) . If the UE finds a listed PLMN with a URSP rule that matches the URSP rule for the UE, the UE may select the PLMN and transmit a PDU session establishment request to an AMF for the selected PLMN. As a result, the UE may obtain data services for the application rather than dropping to a basic service indicated by a default DNN or a “match all” traffic descriptor. This will provide full, targeted, or enhanced services for an application on the UE and/or a better quality of service for the UE.
In some aspects, searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes evaluating whether a next PLMN listed in the EF URSP has a URSP rule that matches the URSP rule of the UE. For example, as shown by reference number 405, the UE may check an EF URSP to determine if a next PLMN listed in the EF URSP has a URSP rule that matches a URSP rule of the UE. The UE may determine whether a URSP rule of the next PLMN (e.g., PLMN 2 of AMF 2) matches a URSP rule of the UE, as shown by reference number 410. In some aspects, the UE may select a PLMN that may be considered an HPLMN or an EHPLMN. To determine whether a PLMN listed in the EF URSP is an HPLMN or an EHPLMN, the UE may refer to an EF for EHPLMN (EF EHPLMN) . An HPLMN in the EF EHPLMN may be identified from an international mobile subscriber identity module of the UE.
If a URSP rule of a listed PLMN matches a URSP rule of the UE, the UE may select the listed PLMN (e.g., PLMN 2) and transmit a PDU session establishment request message to an AMF of the selected PLMN. For example, as shown by reference number 415, the UE may transmit a PDU session establishment request to AMF 2 of selected PLMN 2. As the URSP rules match, the UE may receive a PDU session establishment accept message, as shown by reference number 420. Note that while URSP matching is described herein as a match for a URSP rule of the UE for purposes of explanation, in some aspects, this may mean a match of a URSP rule of an application associated with the request by the UE.
If no PLMN with a matching URSP rule is found, the UE may proceed with selecting a default rule, as shown by reference numbers 335 and 340 in Fig. 3. For example, the UE may transmit a PDU session establishment request to AMF 1 of the serving PLMN, indicating a default rule (e.g., default DNN) , and the UE may receive a PDU session establishment accept message.
In some aspects, URSP rules may include one or more of a single network slice selection assistance information (S-NSSAI) , an application identifier, a route selection descriptor (RSD) , a DNN, a PDU session type, a session and service continuity mode, a preferred access type, an internet protocol (IP) 3 tuple, a non-IP descriptor, and/or the like. A URSP rule match may include matching one aspect of a URSP rule, or multiple aspects of a URSP rule.
In some aspects, the UE may transmit a PDU session establishment request with an indication of one or more aspects of a URSP rule that match one or more aspects of a URSP rule for the UE.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 500 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like) performs operations associated with searching PLMNs for a matching URSP rule.
As shown in Fig. 5, in some aspects, process 500 may include determining to transmit, to an AMF of a serving PLMN while the UE is registered in a standalone mode, a PDU establishment request for an application (block 510) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280,  memory 282, and/or the like) may determine to transmit, to an AMF of a serving PLMN while the UE is registered in a standalone mode, a PDU establishment request for an application, as described above. In some aspects, the PDU establishment request indicates a URSP rule for the UE.
As further shown in Fig. 5, in some aspects, process 500 may include determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE (block 520) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE (block 530) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting a PDU establishment request to an AMF of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE (block 540) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may transmit a PDU establishment request to an AMF of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes evaluating whether a next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE.
In a second aspect, alone or in combination with the first aspect, evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that  matches the URSP rule of the UE includes evaluating whether a data network name of the next PLMN matches a data network name of the UE.
In a third aspect, alone or in combination with one or more of the first and second aspects, transmitting the PDU establishment request to the AMF of the other PLMN includes transmitting the PDU establishment request indicating the DNN of the UE.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes evaluating whether a traffic descriptor of the next PLMN matches an application identifier of the application.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, transmitting the PDU establishment request to the AMF of the other PLMN includes transmitting the PDU establishment request indicating the application identifier of the application.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes one or more of evaluating whether a configured or allowed S-NSSAI of the next PLMN matches an S-NSSAI of the UE, or evaluating whether an RSD of the next PLMN matches an RSD of the UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes determining whether a next PLMN listed in the elementary file for URSP is indicated as a home PLMN or an equivalent PLMN in an elementary file for equivalent PLMN.
In an eighth aspect, alone or in combination with one or more of the first through sixth aspects, determining whether the next PLMN listed in the elementary file for URSP is indicated as a home PLMN includes identifying the home PLMN based at least in part on an international mobile subscriber identity.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, software, and/or a combination of hardware and software. Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, software, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any  combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (12)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the UE is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a UE route selection policy (URSP) rule for the UE;
    determining whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE;
    searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE; and
    transmitting a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  2. The method of claim 1, wherein searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes evaluating whether a next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE.
  3. The method of claim 2, wherein evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes evaluating whether a data network name of the next PLMN matches a data network name of the UE.
  4. The method of claim 3, wherein transmitting the protocol data unit establishment request to the access and mobility management function of the other PLMN includes transmitting the protocol data unit establishment request indicating the data network name of the UE.
  5. The method of claim 2, wherein evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE  includes evaluating whether a traffic descriptor of the next PLMN matches an application identifier of the application.
  6. The method of claim 5, wherein transmitting the protocol data unit establishment request to the access and mobility management function of the other PLMN includes transmitting the protocol data unit establishment request indicating the application identifier of the application.
  7. The method of claim 2, wherein evaluating whether the next PLMN listed in the elementary file for URSP has a URSP rule that matches the URSP rule of the UE includes one or more of:
    evaluating whether a configured or allowed single network slice assistance information (S-NSSAI) of the next PLMN matches an S-NSSAI of the UE; or
    evaluating whether a route selection descriptor of the next PLMN matches a route selection descriptor of the UE.
  8. The method of claim 1, wherein searching for another PLMN with a URSP rule that matches the URSP rule of the UE includes determining whether a next PLMN listed in the elementary file for URSP is indicated as a home PLMN or an equivalent PLMN in an elementary file for equivalent PLMN.
  9. The method of claim 8, wherein determining whether the next PLMN listed in the elementary file for URSP is indicated as a home PLMN includes identifying the home PLMN based at least in part on an international mobile subscriber identity.
  10. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the UE is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a UE route selection policy (URSP) rule for the UE;
    determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE;
    search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE; and
    transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  11. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the UE is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a UE route selection policy (URSP) rule for the UE;
    determine whether the UE has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the UE;
    search for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the UE; and
    transmit a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the UE.
  12. An apparatus for wireless communication, comprising:
    means for determining to transmit, to an access and mobility management function of a serving public land mobile network (PLMN) while the apparatus is registered in a standalone mode, a protocol data unit establishment request for an application, the protocol data unit establishment request to indicate a user equipment route selection policy (URSP) rule for the apparatus;
    means for determining whether the apparatus has an elementary file for URSP based at least in part on determining that a URSP rule of the serving PLMN does not match the URSP rule for the apparatus;
    means for searching for another PLMN, listed in the elementary file for URSP, with a URSP rule that matches the URSP rule of the apparatus; and
    means for transmitting a protocol data unit establishment request to an access and mobility management function of the other PLMN based at least in part on the URSP rule of the other PLMN matching the URSP rule of the apparatus.
PCT/CN2020/097083 2020-06-19 2020-06-19 Public land mobile network search for user equipment route selection policy rule WO2021253394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097083 WO2021253394A1 (en) 2020-06-19 2020-06-19 Public land mobile network search for user equipment route selection policy rule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097083 WO2021253394A1 (en) 2020-06-19 2020-06-19 Public land mobile network search for user equipment route selection policy rule

Publications (1)

Publication Number Publication Date
WO2021253394A1 true WO2021253394A1 (en) 2021-12-23

Family

ID=79268957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097083 WO2021253394A1 (en) 2020-06-19 2020-06-19 Public land mobile network search for user equipment route selection policy rule

Country Status (1)

Country Link
WO (1) WO2021253394A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278619A (en) * 2018-03-13 2019-09-24 华为技术有限公司 A kind of method and apparatus of PDU session establishment
EP3547747A1 (en) * 2018-04-01 2019-10-02 Industrial Technology Research Institute Method of distributing uplink data flow between different access networks in 5g communication system and user equipment using the same
WO2019190166A1 (en) * 2018-03-29 2019-10-03 엘지전자 주식회사 Method, user equipment, and network node for performing pdu session establishment procedure for ladn
WO2020030180A1 (en) * 2018-08-10 2020-02-13 Mediatek Inc. Enhanced ue route selection policy (ursp) rule matching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278619A (en) * 2018-03-13 2019-09-24 华为技术有限公司 A kind of method and apparatus of PDU session establishment
WO2019190166A1 (en) * 2018-03-29 2019-10-03 엘지전자 주식회사 Method, user equipment, and network node for performing pdu session establishment procedure for ladn
EP3547747A1 (en) * 2018-04-01 2019-10-02 Industrial Technology Research Institute Method of distributing uplink data flow between different access networks in 5g communication system and user equipment using the same
WO2020030180A1 (en) * 2018-08-10 2020-02-13 Mediatek Inc. Enhanced ue route selection policy (ursp) rule matching

Similar Documents

Publication Publication Date Title
EP3718344B1 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
WO2021067030A1 (en) Standalone non-public network access
WO2021243690A1 (en) Public land mobile network search after protocol data unit rejection
WO2021011174A1 (en) Quasi co-location related priority rules for multi-downlink control information based multi-transmission/reception point
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
US11071152B2 (en) Access barring and radio resource control connection in new radio to long-term evolution voice fallback
WO2021138753A1 (en) Techniques for indicating a multi-subscriber identity module capability of a device to a network
WO2021154450A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021253394A1 (en) Public land mobile network search for user equipment route selection policy rule
WO2021237683A1 (en) Resolution of radio link failure due to user equipment capability
WO2021243689A1 (en) Recovery from radio link failure
WO2021212395A1 (en) Restoration of data connectivity after data call failure in non-standalone network
WO2021232331A1 (en) Restoration of new radio data service for dual subscriber identity modules
WO2021232179A1 (en) Restoration of vehicle to everything service
WO2021223202A1 (en) Restoration of data service with dual subscriber identity modules
WO2022036663A1 (en) Network slicing registration using requested nssai and quality of service assistance message
WO2021232330A1 (en) Restoration of new radio data service for dual subscriber identity modules
WO2021232327A1 (en) Uplink management for uplink split data radio bearer configuration
WO2021203346A1 (en) New radio data connectivity from non-standalone network
WO2021237685A1 (en) Resolution of new radio registration failure
WO2021237690A1 (en) Restoration of data service in a standalone network
WO2021138826A1 (en) Cell selection according to support for a radio access technology
WO2022056701A1 (en) Optimized protocol data unit session establishment procedure
WO2022041239A1 (en) Techniques for selecting cells using network slice selection assistance information
WO2021237684A1 (en) Resolution of new radio registration failure for dual subscriber identity modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941090

Country of ref document: EP

Kind code of ref document: A1