WO2021253363A1 - 一种磁-声联合臭氧催化氧化系统及方法 - Google Patents

一种磁-声联合臭氧催化氧化系统及方法 Download PDF

Info

Publication number
WO2021253363A1
WO2021253363A1 PCT/CN2020/096914 CN2020096914W WO2021253363A1 WO 2021253363 A1 WO2021253363 A1 WO 2021253363A1 CN 2020096914 W CN2020096914 W CN 2020096914W WO 2021253363 A1 WO2021253363 A1 WO 2021253363A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
pipe
water
catalyst
reaction cylinder
Prior art date
Application number
PCT/CN2020/096914
Other languages
English (en)
French (fr)
Inventor
周碧波
蔡健明
汪丽红
Original Assignee
中清信益环境(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中清信益环境(南京)有限公司 filed Critical 中清信益环境(南京)有限公司
Publication of WO2021253363A1 publication Critical patent/WO2021253363A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Definitions

  • the invention relates to the field of sewage treatment, in particular to a magnetic-acoustic combined ozone catalytic oxidation system and method.
  • the solid catalyst flows upward together with the gas-liquid mixture under the effect of suspension, thereby increasing the contact time of the gas-liquid-solid three-phase (for example, the patent document with the application number 201510440580.0);
  • the above-mentioned prior art has the following technical problems to varying degrees: first, the contact time between the gas-liquid mixture and the solid catalyst is relatively short, and the catalytic oxidation depth is not enough; second, after a period of reaction, the surface of the support with the catalyst will generate organic If the membrane is not treated in time, it will reduce the service life of the catalyst and increase the production cost.
  • the patent document with the application number 201410356624.7 improves on the traditional ozone catalytic oxidation device, and designs an improved reaction device.
  • the device divides the reaction into three areas through a flow guide tube, changes the flow direction of ozone and water, and drives
  • the catalyst is in a circulating fluidized state, thereby increasing the porosity of the catalyst layer and increasing the contact time of the organic wastewater on the catalyst.
  • the prior art has the following disadvantages: the cost of the device is relatively high, the activated carbon is easy to block the pipeline during the flow process, the activated carbon is widely dispersed in the three areas, and the cleaning difficulty is increased during deactivation and renewal.
  • the present invention provides a magnetic-acoustic combined enhanced ozone catalytic oxidation system and method.
  • the magnetic field, acoustic energy converter, sand lifting, sand washing system, and pressurized dissolved air system are used in the magnetic field.
  • the pollutants in the sewage are arranged in an orderly manner, the regeneration of the catalyst is accelerated, and the utilization rate of ozone is improved.
  • the present invention achieves the above technical objectives through the following technical means.
  • a magnetic-acoustic combined ozone catalytic oxidation system comprising a water inlet pipe, a water distribution system, a return water collection system, a sand lift pipe and a reaction cylinder; the lower part of the reaction cylinder is a conical structure;
  • the water distribution system and the return water collection system are arranged in parallel in the reaction cylinder, and the water distribution system is arranged below the return water collection system;
  • the reaction cylinder is also provided with a sand lifting pipe, which runs from top to bottom Through the backflow water collection system and extend to the bottom of the water distribution system;
  • the upper end of the sand lifting pipe is arranged in the separator,
  • the lower end of the sand lifting pipe is provided with a cone-shaped second sand guide cone, and the cone-shaped second sand guide cone and
  • the cone structure below the reaction cylinder forms a space A, and there is a certain gap between the cone-shaped second sand guide pile and the reaction cylinder.
  • the catalyst in the catalyst packing layer enters the space A through the gap; the space A is provided with an inlet The gas pipe, the high-pressure gas enters the space A through the air inlet pipe, so that the space A forms a "vacuum", thereby sucking the catalyst filler particles in the sand guide cone into the sand lifter; the catalyst particles that restore activity are removed from the separator and the sand lifter.
  • the gap falls into the catalyst packing layer.
  • the middle section of the sand lifting pipe is provided with a first sand guide pile, and an acoustic energy converter is provided between the first sand guide pile and the second sand guide pile.
  • a magnetic ring is arranged around the inner wall of the reaction cylinder.
  • the return water collection system is connected with a return pipe, and the return pipe is connected with the water inlet of the vortex water pump.
  • the water inlet end of the vortex water pump is also connected to the output pipe of the ozone generator at the same time.
  • the vortex water pump mixes and pressurizes the reflux water and ozone in the reaction cylinder, it is injected into the water inlet pipe of the reaction cylinder through the water outlet pipe of the vortex water pump.
  • the separator is arranged at a position above the inside of the reaction cylinder, and a drainage weir groove is arranged in the separator, and the drainage weir groove is in communication with the slag discharge pipe.
  • a shaftless spiral is arranged in the sand lifting pipe.
  • the ultrasonic generator is connected to the sound energy converter through a wire; the ultrasonic generator is arranged on the outside of the reaction cylinder and emits a frequency of 30-40 Hz.
  • the method of the magnetic-acoustic combined ozone catalytic oxidation system includes the following steps:
  • Step 1 The sewage in the water inlet pipe is mixed with the high-pressure dissolved gas water discharged from the vortex pump, and then sprayed from the water distribution system into the catalyst packing layer for purification treatment;
  • Step 2 Part of the purified water is discharged from the drainage weir, and part of the purified water enters the return pipe through the return water collection system, and is pressurized in the vortex pump with ozone to form high-pressure dissolved gas water into the inlet pipe;
  • Step 3 Under the action of gravity, the catalyst filler enters between the first sand guide cone and the second sand guide cone through the gap between the first sand guide cone and the reaction cylinder, and the covering on the surface of the catalyst filler becomes loose under the action of ultrasonic waves , Peeling; Ultrasonic wave is provided by sound energy converter;
  • Step 4 The high-speed airflow under the second sand guide cone drives the catalyst filler into the sand lift pipe, and the "negative pressure" under the second sand guide cone will remove the catalyst between the first sand guide cone and the second sand guide cone.
  • the filler and the surface covering fallen off by the filler are sucked into the bottom space A of the second sand guide cone through the gap between the second sand guide cone and the reaction cylinder;
  • Step 5 Under the combined action of gas and liquid, the catalyst filler in the sand lifter rubs vigorously with the gas and liquid, and collisions occur between the filler particles and between the filler and the shaftless spiral, and the suspended matter covering the surface of the filler is further cleaned. And rise to the separator with the water flow and air flow;
  • Step 6 The catalyst packing to be further cleaned falls into the catalyst packing layer from the gap between the separator and the sand lift pipe, and a new cycle is started.
  • step 6 the air bubbles in the separator adhere to the surface of the suspended solids, enter the slag discharge weir, and are discharged through the slag discharge pipe.
  • the present invention is a magnetic-acoustic combined ozone catalytic oxidation system.
  • the acoustic energy converter, the sand lifting, sand washing system and the pressurized dissolved air system under the action of the magnetic field, the pollutants in the sewage are Arrange in order to accelerate the regeneration of the catalyst and improve the utilization rate of ozone.
  • the catalyst packing layer traps particulate matter in the process of sewage purification tank, and the surface is covered by suspended solids and gradually loses catalytic activity.
  • the catalyst filler enters the space A through the gap between the reaction cylinder and the first sand guide cone, and the suspended matter attached to the surface of the catalyst particles is peeled off from the catalyst filler by the acoustic energy converter to restore the catalyst activity.
  • the catalyst particles are lifted.
  • the sand pipe enters and rotates upward in the hollow sand lifting pipe, and the repeated action of the gas-liquid mixed water further cleans the suspended matter on the surface of the catalytic particles, thereby reactivating the catalyst.
  • the ozone and return water are pressurized by the vortex pump to form high-pressure dissolved gas water, which is injected into the water inlet pipe of the reaction cylinder, and released into the filler layer through the water distributor to form nano-ozone bubbles, which increases the contact of ozone with sewage and pollutants. Area, improve the oxidation efficiency, reduce the dosage of ozone, thereby reducing the production cost.
  • a shaftless spiral is arranged inside the sand lifting pipe, so that on the one hand, the contact area between the catalyst particles and the inner wall of the sand lifting pipe is increased, and on the other hand, the stroke of the catalyst particles in the sand lifting pipe is increased, so that the catalyst particles Surface suspended matter can be removed more efficiently.
  • Fig. 1 is a schematic diagram of the overall structure according to an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection.
  • integrally connected it can be a mechanical connection or an electrical connection
  • it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • a magneto-acoustic combined ozone catalytic oxidation system including a water inlet pipe 1, a water distribution system 2, a return water collection system 6, a sand extraction pipe 15 and a reaction cylinder 23;
  • the bottom of the reaction cylinder 23 is a conical structure; the water distribution system 2 and the return water collection system 6 are arranged in parallel in the reaction cylinder 23, and the water distribution system 2 is arranged below the return water collection system 6; the reaction cylinder 23
  • There is a cone-shaped second sand guide cone 13 the cone-shaped second sand guide cone 13 and the cone structure below the reaction cylinder 23 form a space A, and the cone
  • the middle section of the sand lifting pipe 15 is provided with a first sand guide pile 11, and an acoustic energy converter 12 is provided between the first sand guide pile 11 and the second sand guide pile 13.
  • reaction cylinder 23 is surrounded by a magnetic ring.
  • the return water collection system 6 is connected with a return pipe 7, and the return pipe 7 is filled with ozone.
  • the return pipe 7 is connected to the water inlet end of the vortex water pump 9.
  • the vortex water pump 9 mixes water and ozone generated in the ozone generator 8 to form high-pressure dissolved gas water, which is injected into the reaction tube 23 ⁇ 1 ⁇ The inlet pipe 1.
  • the separator 20 is arranged at a position above the inside of the reaction cylinder 23, and a drainage weir 17 is provided in the separator 20, and the drainage weir 17 is in communication with the slag discharge pipe 18.
  • the sand lifting pipe 15 is a hollow spiral pipe.
  • the ultrasonic generator 25 is connected to the sound energy converter 12 through a wire; the ultrasonic generator 25 is arranged on the outside of the reaction cylinder 23 and emits a frequency of 30-40 Hz.
  • the method of the magnetic-acoustic combined ozone catalytic oxidation system includes the following steps:
  • Step 1 After the sewage in the water inlet pipe 1 is mixed with high-pressure dissolved gas water, it is sprayed from the water distribution system 2 into the catalyst packing layer 3 for purification treatment;
  • Step 2 Part of the purified water is discharged, and part of it enters the return pipe 7 through the return water collection system 6 and pressurizes with ozone in the vortex water pump 9 to form high-pressure dissolved gas water and inject into the water inlet pipe 1;
  • Step 3 Under the action of gravity, the catalyst filler enters between the first sand guide cone 11 and the second sand guide cone 13 through the gap between the first sand guide cone 11 and the reaction cylinder 23, and interacts with high-pressure gas under the action of ultrasound. Under the action of, the covering on the surface of the catalyst filler becomes loose and peeled off; the ultrasonic wave is provided by the acoustic energy converter 12;
  • Step 4 The high-speed airflow under the second sand guide cone 13 drives the catalyst filler into the sand lift pipe 15, and forms a vacuum below the second sand guide cone 13, and between the first sand guide cone 11 and the second sand guide cone 13 The catalyst filler and the fallen off surface cover are sucked into the bottom space A of the second sand guide cone 13 through the gap between the second sand guide cone 13 and the reaction cylinder 23;
  • Step 5 Under the combined action of gas and liquid, the suspended matter covered on the surface of the catalyst filler in the sand lifting pipe 15 is further cleaned and rises to the separator 20;
  • Step 6 The catalyst packing to be further cleaned falls into the catalyst packing layer 3 from the gap between the separator 20 and the sand lift pipe 15, and a new cycle is started.
  • step 6 the air bubbles in the separator 20 adhere to the surface of the suspended matter, enter the slag discharge weir 7 and are discharged through the slag discharge pipe 18.
  • the sewage from the water inlet pipe 1 and the gas-liquid mixed water returned from the return pipe 7 are merged into the water distribution system 2 and are purified in the catalyst packing layer 3.
  • the purified sewage enters the water outlet weir 4 and is discharged through the drain pipe 5.
  • the suspended matter trapped in the sewage purification process enters the cone of the reaction cylinder 23 through the gap between the sand guide cone 11 and the reaction cylinder 23.
  • the catalyst filler particles The surface covering and the filler are peeled off to restore the catalyst activity.
  • a magnetic ring 22 is set on the inner wall of the reaction cylinder 23.
  • the ozone from the ozone generator 8 and the reflux water are mixed by the vortex water pump 9.
  • the pressure gauge 10 behind the vortex water pump 9 is used to display the pressure after the pump.
  • the pressure after the pump is required to be above 0.5Mpa.
  • the ultrasonic generator 25 is externally mounted, and the emitted frequency is 30-40hz.
  • the inductance coefficient of the magnetic ring 22 is not less than 60.0L/N 2 , the relative permeability is 10 ⁇ o, and the exterior is coated with epoxy coating.
  • the top plate 19 of the reaction cylinder is used to support the reactor 20, the first support plate 21 and the second support plate 22 are used to support the sand extraction pipe 15 and the slag discharge pipe 18, respectively, and the support frame 16 is used to support the lower end of the reaction cylinder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种磁-声联合臭氧催化氧化系统及方法,涉及污水处理领域,一种磁-声联合臭氧催化氧化系统,包括进水管、布水系统、回流集水系统、提砂管和反应筒;所述反应筒下方为锥形结构;本发明提供了一种磁-声联合强化臭氧催化氧化系统的工作方法,通过磁场、声能转换器和提砂、洗砂系统及加压溶气系统,从而使污水中的污染物有序排列,加速催化剂再生,提高臭氧的利用率。

Description

一种磁-声联合臭氧催化氧化系统及方法 技术领域
本发明涉及污水处理领域,尤其涉及到一种磁-声联合臭氧催化氧化系统及方法。
背景技术
随着我国经济社会的进步,城镇化建设和工业发展导致工业废水和生活污水的排放逐渐增多,并对水体的污染也日趋严重,尤其工业废水排放中,部分含有难降解有机物(B/C小于0.3,或含有有毒物质,难以进行生化处理)不能采用或即便采用生化处理工艺也难以达标排放,必须采用物理化学手段对难降解废水进行预处理或深度处理,提高废水可生化性或进行最终达标排放。
针对臭氧催化氧化系统,目前大多数系统和方法集中在提高催化剂活性、改变气液流向或者改善装置属性来提高臭氧利用率,增加反应效率。而系统性的利用装置和工艺有机结合提高臭氧利用率和处理效率的相关报道较少。
申请人检索到的背景技术包括:
1、通过改变气液流向,由气液顺流改成气液逆流来增加气液混合体和固体催化剂的接触时间(如申请号为200820181029.4的专利文献);
2、通过增加浮动组件,使得固体催化剂在悬浮作用下与气液混合体共同向上流动,从而增加气液固三相的接触时间(如申请号为201510440580.0的专利文献);
3、通过在塔内设有内筒,增加隔档从而增加气液固三相在塔中折流次数和流动时间,实现延长催化氧化时间的目的(如申请号201410775077.6的专利文献);
上述现有技术不同程度存在着以下技术问题:一是气液混合体与固体催化剂的接触时间相对较短,催化氧化深度不够;二是经过一段时间的反应,附有催化剂的载体表面会生成有机膜,如果不及时处理会减少催化剂的使用寿命,提高生产成本。
4、申请号为201410356624.7的专利文献针对传统臭氧催化氧化装置进行了改进,设计了一种改进反应装置,该装置通过导流筒将反应区分为三个区域,改变臭氧和水的流向,并带动催化剂处于循环流化状态,从而增加了催化剂层的空隙率,增加了有机废水在催化剂上的接触时间。
该现有技术存在以下缺点:装置成本较高,活性炭在流动过程中容易堵塞管路,活性炭在三个区域内分散广,在失活换新时增加了清理难度。
发明内容
针对现有技术中存在的不足,本发明提供了一种磁-声联合强化臭氧催化氧化系统及方法,通过磁场、声能转换器和提砂、洗砂系统及加压溶气系统,在磁场的作用下,从而使污水中的污染物有序排列,加速催化剂再生,提高臭氧的利用率。
本发明是通过以下技术手段实现上述技术目的的。
一种磁-声联合臭氧催化氧化系统,包括进水管、布水系统、回流集水系统、提砂管和反应筒;所述反应筒下方为锥形结构;
所述布水系统和回流集水系统平行设置在反应筒内,且布水系统设置在回流集水系统的下方;所述反应筒内还设置有提砂管,提砂管从上到下穿过回流集水系统并延伸至布水系统的下方;所述提砂管上端设置在分离器内,提砂管下端设置有锥形的第二导砂锥,锥形的第二导砂锥与反应筒下方的锥形结构组成一个空间A,且锥形的第二导砂堆与反应筒之间有一定的间隙,催化剂填料层内的催化剂通过间隙进入空间A内;空间A内设置有进气管,高压气体通过进气管进入空间A内,使得空间A形成“真空”,从而将导砂锥内的催化剂填料颗粒吸进提砂管;恢复活性的催化剂颗粒从分离器和提砂管之间的缝隙落入到催化剂填料层内。
进一步的,所述提砂管中间段设置有第一导砂堆,第一导砂堆和第二导砂堆之间设置有声能转换器。
进一步的,所述反应筒内壁环绕设置有磁环。
进一步的,所述回流集水系统连接有回流管,回流管与旋涡式水泵的进水口相连。
进一步的,所述旋涡式水泵的进水端同时还与臭氧发生器输出管相连。
进一步的,所述旋涡式水泵将反应筒内回流水和臭氧混合加压后,通过旋涡式水泵出水管注入到反应筒的进水管。
进一步的,所述分离器设置在反应筒内部上方位置处,且分离器内设置有排水堰槽,排水堰槽与排渣管连通。
进一步的,所述提砂管内设置无轴螺旋。
进一步的,超声波发生器通过导线与声能转换器连接;所述超声波发生器设置在反应筒外侧,所发出的频率为30~40hz。
磁-声联合臭氧催化氧化系统的方法,包括如下步骤:
步骤一:进水管内的污水与旋涡式水泵排出的高压溶气水混合后,由布水系统喷出进入催化剂填料层中被净化处理;
步骤二:净化后的水一部分排水堰排放,一部分通过回流集水系统进入回流管,与臭氧在旋 涡式水泵内加压后,形成高压溶气水注入进水管;
步骤三:在重力作用下,催化剂填料通过第一导砂锥与反应筒之间的缝隙进第一导砂锥与第二导砂锥之间,在超声波的作用下催化剂填料表面的覆盖物松散、剥离;超声波由声能转换器提供;
步骤四:第二导砂锥下方的高速气流带动催化剂填料进入提砂管,并在第二导砂锥下方的“负压”,将第一导砂锥和第二导砂锥之间的催化剂填料和填料脱落的表面覆盖物,通过第二导砂锥与反应筒之间的缝隙吸入第二导砂锥底部空间A;
步骤五:在气体和液体的共同作用下,提砂管内的催化剂填料与气体、液体剧烈摩擦,填料颗粒之间、填料与无轴螺旋之间产生碰撞,填料表面覆盖的悬浮物进一步被清洗,并随水流、气流上升至分离器;
步骤六:被进一步清洗的催化剂填料从分离器和提砂管之间的缝隙落入催化剂填料层,开始新的循环。
步骤六)中,分离器内的气泡黏附在悬浮物表面,进入排渣堰槽,通过排渣管排出。
有益效果:
1.本发明一种磁-声联合臭氧催化氧化系统,通过磁场、声能转换器和提砂、洗砂系统及加压溶气系统,在磁场的作用下,从而使污水中的污染物有序排列,加速催化剂再生,提高臭氧的利用率。
2.催化剂填料层在污水净化池过程中截留颗粒物质,表面被悬浮物覆盖,渐渐失去催化活性。催化剂填料在重力作用下通过反应筒和第一导砂锥之间的缝隙进入空间A,通过声能转换器对附着在催化剂颗粒表面的悬浮物与催化剂填料剥离,恢复催化剂活性,催化剂颗粒经提砂管进入,在中空的提砂管内旋转上行,经气液混合水的反复作用,从而进一步将催化颗粒表层的悬浮物清洗干净,从而使得催化剂恢复活性。
3.臭氧和回流水经漩涡式水泵加压形成高压溶气水,注入反应筒的进水管,通过布水器释放在填料层中,形成纳米臭氧气泡,增加了臭氧与污水、污染物的接触面积,提高氧化效率,减少臭氧投加量,从而降低了生产成本。
4.本发明中提砂管内部设置无轴螺旋,这样一方面增加了催化剂颗粒与提砂管内壁的接触面积,另一方面也增加了催化剂颗粒在提砂管内的行程,从而使的催化剂颗粒表面悬浮物能更高效的被除去。
5.在不降低整体工艺处理量的情况下,通过设置回流管的技术措施提高了催化剂的 处理能力和效率,提高了臭氧利用率。
附图说明
图1为根据本发明实施例的整体结构示意图。
附图标记:
1-进水管;2-布水系统;3-催化剂填料层;4-出水堰槽;5-排水管;6-回流集水系统;7-回流管;8-臭氧发生器;9-旋涡式水泵;10-压力表;11-第一导砂锥;12-声能转换器;13-第二导砂锥;14-进气管;15-提砂管;16-支撑架;17-排水堰槽;18-排渣管;19-反应筒顶板;20-反应器;21-第一支撑板;22-磁环;23-反应筒;24-第二支撑板;25-超声波发生器;27-出气管。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面首先结合附图具体描述根据本发明实施例的一种磁-声联合臭氧催化氧化系统,包括进水管1、布水系统2、回流集水系统6、提砂管15和反应筒23;所述反应筒23下方为锥形结构;所述布水系统2和回流集水系统6平行设置 在反应筒23内,且布水系统2设置在回流集水系统6的下方;所述反应筒23内还设置有提砂管15,提砂管15穿过布水系统6并延伸至回流集水系统6的下方;所述提砂管15上端设置在分离器20内,提砂管15下端设置有锥形的第二导砂锥13,锥形的第二导砂锥13与反应筒23下方的锥形结构组成一个空间A,且锥形的第二导砂堆13与反应筒23之间有一定的间隙,催化剂填料层3内的催化剂通过间隙进入空间A内;空间A内设置有进气管14,高压气体通过进气管14进入空间A内,使得空间A形成“真空”,从而将导砂锥13内的催化剂填料颗粒吸进提砂管15;恢复活性的催化剂颗粒从分离器20和提砂管15之间的缝隙落入到催化剂填料层3内。
进一步的,所述提砂管15中间段设置有第一导砂堆11,第一导砂堆11和第二导砂堆13之间设置有声能转换器12。
进一步的,所述反应筒23内壁环绕设置有磁环。
进一步的,所述回流集水系统6连接有回流管7,回流管7通有臭氧。
进一步的,所述回流管7与旋涡式水泵9的进水端相连,所述旋涡式水泵9将水和臭氧发生器8内产生的臭氧混合后,形成高压溶气水,注入导反应筒23的进水管1。
进一步的,所述分离器20设置在反应筒23内部上方位置处,且分离器20内设置有排水堰槽17,排水堰槽17与排渣管18连通。
进一步的,所述提砂管15为中空的螺旋管。
进一步的,超声波发生器25通过导线与声能转换器12连接;所述超声波发生器25设置在反应筒23外侧,所发出的频率为30~40hz。
磁-声联合臭氧催化氧化系统的方法,包括如下步骤:
步骤一:进水管1内的污水与高压溶气水混合后,由布水系统2喷出进入催化剂填料层3中被净化处理;
步骤二:净化后的水一部分排放,一部分通过回流集水系统6进入回流管7,与臭氧在旋涡式水泵9内加压后,形成高压溶气水注入进水管1;
步骤三:在重力作用下,催化剂填料通过第一导砂锥11与反应筒23之间的缝隙进第一导砂锥11与第二导砂锥13之间,在超声波的作用下和高压气体的作用下,催化剂填料表面的覆盖物松散、剥离;超声波由声能转换器12提供;
步骤四:第二导砂锥13下方的高速气流带动催化剂填料进入提砂管15,并在第二导砂锥13下方形成真空,将第一导砂锥11和第二导砂锥13之间的催化剂填料和脱落的表面覆盖,通过第二导砂锥13与反应筒23之间的缝隙吸入第二导砂锥13底部空间A;
步骤五:在气体和液体的共同作用下,提砂管15内的催化剂填料表面覆盖的悬浮物进一步被清洗,并上升至分离器20;
步骤六:被进一步清洗的催化剂填料从分离器20和提砂管15之间的缝隙落入催化剂填料层3,开始新的循环。
进一步的,步骤六中,分离器20内的气泡黏附在悬浮物表面,进入排渣堰槽7,通过排渣管18排出。
工作过程:
来自进水管1的污水与来自回流管7回流的气液混合水汇合后进入布水系统2,在催化剂填料层3中被净化处理。净化后的污水进入出水堰槽4,通过排水管5排放。
污水净化过程中截留的悬浮物,随着填料层下移,通过导砂锥11和反应筒23之间的缝隙进入反应筒23的锥斗,在声能转换器12的作用下,催化剂填料颗粒表面的覆盖物与填料剥离,恢复催化剂活性。通过高压空气通过进气管14,在反应筒23下部的锥斗进入导砂锥13,在导砂锥13和反应筒23下部的锥斗之间形成“真空”,将导砂锥13外的催化剂填料颗粒吸进提砂管15,水、气和催化剂填料颗粒与提砂管15内的无轴螺旋多次碰撞、冲刷,进一步清洗催化剂填料表面覆盖的悬浮物。在分离器20内,气泡黏附在悬浮物表面,进入排渣堰槽17,通过排渣管18排出。恢复活性的催化剂从分离器20和提砂管15之间的缝隙落入到填料层,开始新的循环。
为了增强处理效果,反应筒23内壁设置了磁环22,来自臭氧发生器8的臭氧和回流水通过旋涡式水泵9进行混合,旋涡式水泵9后面的压力表10用于显示泵后压力,系统要求泵后压力0.5Mpa以上。
超声波发生器25外置,所发出的频率为30~40hz。
磁环22电感系数不低于60.0L/N 2,相对磁导率10μo,外部涂环氧涂层。
反应筒顶板19用于支撑反应器20,第一支撑板21和第二支撑板22分别用来支撑提砂管15和排渣管18,支撑架16用来支撑反应筒下端。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性 的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种磁-声联合臭氧催化氧化系统,其特征在于,包括布水系统(2)、回流集水系统(6)、提砂管(15)和反应筒(23);所述反应筒(23)下方为锥形结构;
    所述布水系统(2)和回流集水系统(6)平行设置在反应筒(23)内,且布水系统(2)设置在回流集水系统(6)的下方;所述反应筒(23)内还设置有提砂管(15),提砂管(15)穿过布水系统(6)并延伸至回流集水系统(6)的下方;所述提砂管(15)上端设置在分离器(20)内,提砂管(15)下端设置有锥形的第二导砂锥(13),锥形的第二导砂锥(13)与反应筒(23)下方组成一个空间A,且锥形的第二导砂堆(13)与反应筒(23)之间有一定的间隙,催化剂填料层(3)内的催化剂颗粒通过间隙进入空间A内;空间A内设置有进气管(14),高压气体通过进气管(14)进入空间A内,使得高速气流附近局部形成“真空”,从而将空间A内的催化剂颗粒吸进提砂管(15);表面清洗洁净的催化剂颗粒从分离器(20)和提砂管(15)之间的缝隙落入到催化剂填料层(3)。
  2. 根据权利要求1所述的磁-声联合臭氧催化氧化系统,其特征在于,所述提砂管(15)中间段设置有第一导砂堆(11),第一导砂堆(11)和第二导砂堆(13)之间设置有声能转换器(12)。
  3. 根据权利要求1所述的磁-声联合臭氧催化氧化系统,其特征在于,所述反应筒(23)内壁环绕设置有磁环。
  4. 根据权利要求1所述的磁-声联合臭氧催化氧化系统,其特征在于,所述回流集水系统(6)连接有回流管(7),回流管(7)末端通有臭氧。
  5. 根据权利要求4所述的磁-声联合臭氧催化氧化系统,其特征在于,所述回流管(7)与旋涡式水泵(9)的进水管相连,所述旋涡式水泵(9)将回流水和臭氧发生器(8)内产生的臭氧混合后,形成高压溶气水注入反应筒进水管(1)。
  6. 根据权利要求1所述的磁-声联合臭氧催化氧化系统,其特征在于,所述分离器(20)设置在反应筒(23)内部上方位置处,且分离器(20)内设置有排水堰槽(17),排水堰槽(17)与排渣管(18)连通。
  7. 根据权利要求1所述的磁-声联合臭氧催化氧化系统,其特征在于,所述提砂管(15)内设置无轴螺旋。
  8. 根据权利要求2所述的磁-声联合臭氧催化氧化系统,其特征在于,超声波发生器(25)通过导线与声能转换器(12)连接;所述超声波发生器(25)设置在反应筒(23)外侧,超声波发生器(25)所发出的频率为30~40hz。
  9. 根据权利要求1-8任一项所述的磁-声联合臭氧催化氧化系统的方法,其特征在于,包括 如下步骤:
    步骤一:进水管(1)内的污水与旋涡式水泵(9)排出的高压溶气水混合后,由布水系统(2)喷出进入催化剂填料层(3)中被净化处理;
    步骤二:净化后的水一部分排水堰(4)排放,一部分通过回流集水系统(6)进入回流管(7),与臭氧在旋涡式水泵(9)内加压后,形成高压溶气水注入进水管(1);
    步骤三:在重力作用下,催化剂填料通过第一导砂锥(11)与反应筒(23)之间的缝隙进第一导砂锥(11)与第二导砂锥(13)之间,在超声波的作用下催化剂填料表面的覆盖物松散、剥离;超声波由声能转换器(12)提供;
    步骤四:第二导砂锥(13)下方的高速气流带动催化剂填料进入提砂管(15),并在第二导砂锥(13)下方的“负压”,将第一导砂锥(11)和第二导砂锥(13)之间的催化剂填料和填料脱落的表面覆盖物,通过第二导砂锥(13)与反应筒(23)之间的缝隙吸入第二导砂锥(13)底部空间A;
    步骤五:在气体和液体的共同作用下,提砂管(15)内的催化剂填料与气体、液体剧烈摩擦,填料颗粒之间、填料与无轴螺旋之间产生碰撞,填料表面覆盖的悬浮物进一步被清洗,并随水流、气流上升至分离器(20);
    步骤六:被进一步清洗的催化剂填料从分离器(20)和提砂管(15)之间的缝隙落入催化剂填料层(3),开始新的循环。
  10. 根据权利要求9所述的磁-声联合臭氧催化氧化系统的方法,其特征在于,步骤六)中,分离器(20)内的气泡黏附在悬浮物表面,进入排渣堰槽(17),通过排渣管(18)排出。
PCT/CN2020/096914 2020-06-17 2020-06-19 一种磁-声联合臭氧催化氧化系统及方法 WO2021253363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010552114.2A CN111704308A (zh) 2020-06-17 2020-06-17 一种磁-声联合臭氧催化氧化系统及方法
CN202010552114.2 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021253363A1 true WO2021253363A1 (zh) 2021-12-23

Family

ID=72540550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096914 WO2021253363A1 (zh) 2020-06-17 2020-06-19 一种磁-声联合臭氧催化氧化系统及方法

Country Status (2)

Country Link
CN (1) CN111704308A (zh)
WO (1) WO2021253363A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262043A (zh) * 2021-12-29 2022-04-01 威海丰泰新材料科技股份有限公司 一种高效气液共混污水处理方法及装置
CN118287031A (zh) * 2024-06-03 2024-07-05 淮北师范大学 一种臭氧消除催化剂制备装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026335A1 (en) * 2002-08-12 2004-02-12 Fields William M. Multi-stage photo-catalytic oxidation fluid treatment system
CN201501818U (zh) * 2009-09-11 2010-06-09 曹成 催化氧化高效过滤器
CN104986849A (zh) * 2015-08-06 2015-10-21 北京化工大学 一种臭氧非均相催化氧化移动床反应器及其处理难降解废水的方法
CN204897513U (zh) * 2015-08-06 2015-12-23 北京化工大学 一种臭氧非均相催化氧化移动床反应器
CN205294899U (zh) * 2015-12-28 2016-06-08 南京神克隆科技有限公司 一种skl-三相催化氧化反应器
CN207227103U (zh) * 2017-08-24 2018-04-13 北京北华中清环境工程技术有限公司 一种臭氧催化氧化反应器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026335A1 (en) * 2002-08-12 2004-02-12 Fields William M. Multi-stage photo-catalytic oxidation fluid treatment system
CN201501818U (zh) * 2009-09-11 2010-06-09 曹成 催化氧化高效过滤器
CN104986849A (zh) * 2015-08-06 2015-10-21 北京化工大学 一种臭氧非均相催化氧化移动床反应器及其处理难降解废水的方法
CN204897513U (zh) * 2015-08-06 2015-12-23 北京化工大学 一种臭氧非均相催化氧化移动床反应器
CN205294899U (zh) * 2015-12-28 2016-06-08 南京神克隆科技有限公司 一种skl-三相催化氧化反应器
CN207227103U (zh) * 2017-08-24 2018-04-13 北京北华中清环境工程技术有限公司 一种臭氧催化氧化反应器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262043A (zh) * 2021-12-29 2022-04-01 威海丰泰新材料科技股份有限公司 一种高效气液共混污水处理方法及装置
CN114262043B (zh) * 2021-12-29 2024-02-09 威海丰泰新材料科技股份有限公司 一种高效气液共混污水处理方法及装置
CN118287031A (zh) * 2024-06-03 2024-07-05 淮北师范大学 一种臭氧消除催化剂制备装置及其制备方法

Also Published As

Publication number Publication date
CN111704308A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021253363A1 (zh) 一种磁-声联合臭氧催化氧化系统及方法
CN201634530U (zh) 一种光催化氧化、超声波技术及膜分离技术耦合装置
CN102180556A (zh) 一种吸附再生-光催化高级氧化水处理设备
CN109110866A (zh) 一种光催化氧化分解的污水处理系统
CN104163544A (zh) 一种生态塘出水深度处理的方法和装置
CN201572547U (zh) 一种消泡装置
CN207891125U (zh) 一种厌氧反应器
CN114146453B (zh) 一种基于聚集诱导破乳的含油废水处理方法和装置
CN108101281A (zh) 一种催化陶瓷膜反应器
CN101497014B (zh) 新型光催化臭氧化流化床反应装置及水处理方法
CN104150656B (zh) 纳米曝气凝聚-搅拌絮凝净化生物处理污水的装置和方法
CN104176877B (zh) 一种三层滴滤池深度处理畜禽废水的装置和方法
CN108275773B (zh) 一种处理工业废水的缺氧流化床装置
CN210481127U (zh) 一种集合移动床与固定床生物膜的污水生化处理装置
CN202482135U (zh) 一种循环自清洗载体生物过滤反应器
CN212924714U (zh) 一种磁-声联合臭氧催化氧化系统
JP4966995B2 (ja) 排ガス処理装置
CN206887106U (zh) 生物发酵法污水处理系统
CN201092539Y (zh) 超声三维流化床反应器
CN207525100U (zh) 一种圆筒式一体化污水处理设备
CN206142977U (zh) 超声波紫外线联合废水处理装置
CN201501818U (zh) 催化氧化高效过滤器
CN101786690A (zh) 一种用于水处理的径向超声协同光催化反应装置
CN114618840A (zh) 一种适用于油管清洗的超声-化学一体化处理装置与方法
CN202576035U (zh) 一种内环流式超声协同光催化氧化膜处理废水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941280

Country of ref document: EP

Kind code of ref document: A1