WO2021253153A1 - 控制设备、能量转换系统、能量转换方法以及存储介质 - Google Patents

控制设备、能量转换系统、能量转换方法以及存储介质 Download PDF

Info

Publication number
WO2021253153A1
WO2021253153A1 PCT/CN2020/096062 CN2020096062W WO2021253153A1 WO 2021253153 A1 WO2021253153 A1 WO 2021253153A1 CN 2020096062 W CN2020096062 W CN 2020096062W WO 2021253153 A1 WO2021253153 A1 WO 2021253153A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energy conversion
circuit
conversion device
energy
Prior art date
Application number
PCT/CN2020/096062
Other languages
English (en)
French (fr)
Inventor
李盟
但志敏
侯贻真
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2020/096062 priority Critical patent/WO2021253153A1/zh
Priority to CN202080005765.8A priority patent/CN114080743A/zh
Priority to JP2022550017A priority patent/JP7330389B2/ja
Priority to US15/733,803 priority patent/US11296525B2/en
Priority to KR1020227017276A priority patent/KR102569430B1/ko
Priority to EP20808273.5A priority patent/EP3958428B1/en
Publication of WO2021253153A1 publication Critical patent/WO2021253153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a control device, an energy conversion system, an energy conversion method, and a storage medium.
  • the energy storage device of an electric vehicle is an on-board battery system, which can be a battery pack, battery pack or battery cell.
  • the energy storage device can release the electric energy of the battery pack through an energy conversion device to provide electrical energy for electrical appliances or feed power to the grid.
  • the battery pack can be charged by an energy conversion device.
  • the energy conversion device obtains the output power of the energy storage device from the DC bus of the electric vehicle.
  • the energy storage device cannot know the state of the external device. If the DC bus is directly closed If the corresponding relay is discharged to the outside, there will be a short circuit of the energy storage device of the electric vehicle due to the short circuit of the external device.
  • a technical problem to be solved by the present disclosure is to provide a control device, an energy conversion system, an energy conversion method, and a storage medium.
  • a control device including: a detection unit configured to detect a first voltage between a positive electrode of an energy storage device and a first end of the energy conversion device, a negative electrode of the energy storage device, and energy The second voltage between the second end of the conversion device and the third voltage between the positive electrode and the negative electrode of the energy storage device; the processing unit is configured to calculate and convert the energy according to the first voltage, the second voltage, and the third voltage The corresponding resistance value; when the resistance value is greater than the resistance threshold, the energy storage device is controlled to supply power to the electrical equipment through the energy conversion device.
  • the processing unit is further configured to prohibit the energy storage device from supplying power to the electrical equipment through the energy conversion device when the resistance value is less than or equal to the resistance threshold value.
  • the energy storage device is connected to the energy conversion device through the first connection line, and a switch component is provided in the first connection line; the processing unit is further configured to close the switch component if the resistance is greater than the resistance threshold, so that the first A connection line is in a closed state; if the resistance value is less than or equal to the resistance threshold, the switch assembly is turned off, so that the first connection line is in a disconnected state.
  • the detection unit includes: a fault detection circuit connected to the first connection line; when the first connection line is in a disconnected state, the first connection line and the fault detection circuit form an energy storage device and an energy conversion device.
  • the processing unit is further configured to calculate the resistance value according to the first voltage, the second voltage and the third voltage detected by the fault detection circuit and the resistance information of the fault detection circuit.
  • the first connection line includes: a first line for connecting the positive electrode of the energy storage device and the first end of the energy conversion device, and a first line for connecting the negative electrode of the energy storage device and the second end of the energy conversion device.
  • the switch assembly includes a first switch unit and a second switch unit respectively arranged on the first circuit and the second circuit
  • the fault detection circuit includes: a first sampling circuit and a second circuit respectively connected to the first circuit and the second circuit The second sampling circuit and the third sampling circuit; when the first switching unit and the second switching unit are in an off state, the first sampling circuit, the second sampling circuit, and the third sampling circuit detect the first voltage, the second voltage, and the The third voltage.
  • connection point between the first end of the first sampling circuit and the first line is between the first switch unit and the energy conversion device, and the connection point between the second end and the second line is between the second switch unit and the storage.
  • the first sampling circuit is configured to collect the first sampling voltage through the first sampling point set in the first sampling circuit; the connection point between the first end of the second sampling circuit and the first line is located in the first switch The connection point between the second end and the second circuit between the unit and the energy storage device is located between the second switch unit and the energy conversion device; the second sampling circuit is configured to pass through a second sampling point set in the second sampling circuit Collect the second sampling voltage; the connection point between the first end of the third sampling circuit and the first circuit is between the first switch unit and the energy storage device, and the connection point between the second end and the second circuit is between the second switch unit and the storage device The third sampling circuit is configured to collect a third sampling voltage through a third sampling point set in the third sampling circuit; the processing unit is also configured to be based on the first sampling voltage and the resistance information
  • the first current collecting circuit is configured to collect a first detected current value corresponding to the current transmitted through the first connection line; the processing unit is further configured to obtain the first detected current value after the control switch component is closed.
  • the current value, the second detected current value corresponding to the current of the input or output energy conversion device; under the condition that the absolute value of the difference between the first detected current value and the second detected current value is less than the preset current difference threshold, The control switch assembly is in the closed state.
  • an energy conversion system including: an energy conversion device, an energy storage device, and any one of the aforementioned control devices.
  • the energy conversion device includes: a second current collecting unit configured to collect a second detected current value corresponding to the current input or output to the energy conversion device; and the communication module is configured to convert the second detected current The value is sent to the processing unit of the control device.
  • the energy conversion device includes: a second connection line, an auxiliary power supply module, and a current limiting circuit; the second connection line is configured to receive electrical energy input by the energy storage device or output electrical energy to the energy storage device; and the current limiting circuit is provided In the second connection line, it is used to limit the current transmitted on the second connection line, so that the limited current is input to the auxiliary power supply module to supply power to the energy conversion device.
  • the current-limiting circuit includes: a current-limiting resistor and a third switch unit; the third switch unit is connected in parallel with the current-limiting resistor, and when the energy conversion device is in the working state, the energy conversion device closes the third switch unit for Short-circuit the current-limiting resistor.
  • an energy conversion method is provided, which is applied to an energy conversion system.
  • the energy conversion system includes: an energy conversion device, an energy storage device, and a control device.
  • the control device includes a detection unit and a processing unit; a detection unit, Used to detect the first voltage between the positive electrode of the energy storage device and the first terminal of the energy conversion device, the second voltage between the negative electrode of the energy storage device and the second terminal of the energy conversion device, and the positive and negative electrodes of the energy storage device
  • the energy conversion method is executed in the processing unit, including: calculating the resistance value corresponding to the energy conversion device according to the first voltage, the second voltage and the third voltage; when the resistance value is greater than the resistance threshold, controlling The energy storage device supplies power to the electrical equipment through the energy conversion equipment.
  • the energy storage device when the resistance value is less than or equal to the resistance threshold value, the energy storage device is prohibited from supplying power to the electrical equipment through the energy conversion device.
  • the energy storage device is connected to the energy conversion device through the first connection line, and a switch component is arranged in the first connection line; when the resistance is greater than the resistance threshold, controlling the energy storage device to supply power to the electrical equipment through the energy conversion device includes : When the resistance is greater than the resistance threshold, the switch assembly is closed so that the first connection line is in a closed state; when the resistance is less than or equal to the resistance threshold, prohibiting the energy storage device from supplying power to the electrical equipment through the energy conversion device includes: When the value is less than or equal to the resistance threshold, the switch component is turned off to make the first connection line in a disconnected state.
  • the detection unit includes: a fault detection circuit connected to the first connection line; when the first connection line is in a disconnected state, the first connection line and the fault detection circuit form an energy storage device and an energy conversion device.
  • Calculating the resistance value corresponding to the energy conversion device according to the first voltage, the second voltage and the third voltage includes: according to the first voltage, the second voltage and the third voltage detected by the fault detection circuit and the fault detection circuit Calculate the resistance value based on the resistance information.
  • the first connection line includes: a first line connecting the anode of the energy storage device and the first end of the energy conversion device, and a second line connecting the anode of the energy storage device and the second end of the energy conversion device; a switch;
  • the component includes a first switch unit and a second switch unit respectively arranged on the first line and the second line;
  • the fault detection circuit includes: a first sampling circuit, a second sampling circuit, and a first sampling circuit respectively connected to the first line and the second line.
  • the third sampling circuit; the energy conversion method further includes:
  • the first voltage is calculated according to the first sampling voltage collected by the first sampling circuit and the resistance information of the first sampling circuit
  • the second voltage collected by the second sampling circuit is calculated.
  • the second voltage is calculated based on the sampling voltage and the resistance information of the second sampling circuit
  • the third voltage is calculated according to the third sampling voltage collected by the third sampling circuit and the resistance information of the third sampling circuit.
  • control device further includes: a first current collection circuit configured to collect a first detected current value corresponding to the current transmitted through the first connection line;
  • energy conversion method further includes: after the control switch assembly is closed , Acquire the first detected current value and the second detected current value corresponding to the input energy conversion device or the current output by the energy conversion device; when the absolute value of the difference between the first detected current value and the second detected current value is less than the preset Under the condition of the current difference threshold, the control switch component is in a closed state.
  • the energy conversion device includes a second connection line, an auxiliary power supply module, and a current limiting circuit; the second connection line is configured to receive electrical energy input by the energy storage device or output electrical energy to the energy storage device; the current limiting circuit is provided at In the second connection line; the current limiting circuit limits the current passing through the second connection line, so that the limited current is input to the auxiliary power supply module for supplying power to the energy conversion device.
  • the current-limiting circuit includes: a current-limiting resistor and a third switch unit; the third switch unit is connected in parallel with the current-limiting resistor; the method includes: when the energy conversion device is in a working state, the energy conversion device closes the third switch unit , Used to short-circuit the current-limiting resistor.
  • a computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to execute any of the foregoing energy conversion methods.
  • the control device, energy conversion system, energy conversion method, and storage medium of the present disclosure detect the voltage between the energy storage device and the energy conversion device and between the positive electrode and the negative electrode of the energy storage device, and calculate the resistance corresponding to the energy conversion device based on the voltage. According to the resistance value, it controls whether the energy storage device supplies power to the electrical equipment through the energy conversion device; it can avoid the short-circuit problem of the energy storage device due to the short-circuit fault of the external device, protect the energy storage device, and can pass the energy storage device Compare with the input or output current value of the energy conversion equipment to further confirm whether the energy conversion device and circuit are faulty, and improve the safety and reliability.
  • Fig. 1 is a first structural schematic diagram of some embodiments of a control device of the present disclosure
  • FIG. 2 is a schematic diagram of a second structure of some embodiments of the control device of the present disclosure.
  • Fig. 3 is a third structural schematic diagram of some embodiments of the control device of the present disclosure.
  • FIG. 4 is a schematic diagram of a first structure of a fault detection circuit in some embodiments of the control device of the present disclosure
  • FIG. 5A is a second structural schematic diagram of a fault detection circuit in some embodiments of the control device of the present disclosure
  • FIG. 5B is a third structural schematic diagram of a fault detection circuit in some embodiments of the control device of the present disclosure
  • Fig. 6 is a first structural schematic diagram of some embodiments of the energy conversion system of the present disclosure.
  • FIG. 7 is a schematic diagram of a second structure of some embodiments of the energy conversion system of the present disclosure.
  • FIG. 8 is a third structural schematic diagram of some embodiments of the energy conversion system of the present disclosure.
  • FIG. 9 is a schematic flowchart of some embodiments of the energy conversion method of the present disclosure.
  • FIG. 10 is a schematic flowchart of other embodiments of the energy conversion method of the present disclosure.
  • FIG. 11 is a schematic flowchart of abnormality determination in some embodiments of the energy conversion method of the present disclosure.
  • the present disclosure provides a control device 10 including a detection unit 11 and a processing unit 12.
  • the energy storage device 20 may be an on-board battery system, etc., for example, the energy storage device 20 is an on-board power battery system of an electric vehicle.
  • the on-board power battery system of an electric vehicle includes a battery pack, battery pack, or battery cell, etc., and the battery pack may be a lithium battery pack Wait.
  • the energy conversion device 30 may be an energy conversion device that supports two-way charging and discharging, and performs conversion processing on the electrical energy input or output from the energy storage device 20, such as voltage transformation and current transformation processing.
  • the energy conversion device 30 may be a portable energy conversion device or the like, and the energy conversion device 30 itself does not contain electrical energy.
  • the power grid can charge the energy storage device 20 through the energy conversion device 30, or the energy storage device 20 can provide electrical energy to the electrical equipment 40 through the energy conversion device 30, or the electrical energy of the energy storage device 20 can be fed back to the grid through the energy conversion device 30,
  • the electrical equipment 40 may be various household appliances and the like.
  • the detection unit 11 may include a variety of detection circuits for detecting the first voltage between the positive electrode of the energy storage device 20 and the first end of the energy conversion device 30, the negative electrode of the energy storage device 20 and the second end of the energy conversion device 30 Between the second voltage and the third voltage between the positive electrode of the energy storage device 20 and the negative electrode of the energy storage device 20.
  • the processing unit 12 may be implemented as an independent component, and may also be integrated with a BMS (Battery Management System), or integrated with the energy conversion device 30.
  • the processing unit 12 calculates the resistance value corresponding to the energy conversion device 30 according to the first voltage, the second voltage, and the third voltage.
  • the processing unit 12 controls the energy storage device 20 to supply power to the electrical equipment 40 through the energy conversion device 30; when the resistance is greater than the resistance threshold, the processing unit 12 can also control the energy storage device 20 to pass the energy conversion device 30 Energy conversion to the grid, including the grid charging the energy storage device 20 through the energy conversion device 30, or the energy storage device 20 feeding power to the grid through the energy conversion device 30; when the resistance is less than or equal to the resistance threshold, the processing unit 12 prohibits The energy storage device 20 supplies power to the electrical equipment 40 through the energy conversion device 30, and the processing unit 12 may also prohibit the energy storage device 20 from performing energy conversion with the grid through the energy conversion device 30.
  • the resistance threshold is a threshold set for judging whether the energy conversion device 30 has a short circuit, and the size of the resistance threshold can be selected according to the specific types of the energy conversion device 30 and the electrical equipment 40.
  • the energy storage device 20 is connected to the energy conversion device 30 through a first connection line 21, and a switch assembly 22 is provided in the first connection line 21.
  • the first connection line 21 may be an energy storage device. 20 DC bus and so on.
  • the processing unit 12 controls the switch assembly 22 to close, and controls the energy storage device 20 to supply power to the electrical equipment 40 through the energy conversion device 30.
  • the processing unit 12 controls the switch assembly 22 to disconnect, so that the energy storage device 20 is disconnected from the energy conversion device 30, and can control the entire vehicle
  • the device sends out an alarm message prohibiting charging and discharging, prompting the user to perform corresponding processing, which can effectively protect the energy storage device 20 and avoid the short circuit of the energy storage device 20 due to the short circuit of the external device.
  • the detection unit 11 includes a fault detection circuit 111, and the fault detection circuit 111 is connected to the first connection line 21.
  • the processing unit 12 controls the switch assembly 22 to be disconnected.
  • the first connection line 21 is in a disconnected state
  • the first connection line 21 and the fault detection circuit 111 form a connection circuit between the energy storage device 20 and the energy conversion device 30.
  • the fault detection circuit 111 detects the first voltage, the second voltage, and the third voltage.
  • the processing unit 12 calculates the resistance value corresponding to the energy conversion device 30 according to the first voltage, the second voltage and the third voltage detected by the fault detection circuit 111 and the resistance information corresponding to the fault detection circuit 111, and controls the switch according to the resistance value
  • the switching operation of the component 22 is used to control the energy storage device 20 to be disconnected or connected to the energy conversion device 30.
  • the energy storage device 20 is an on-board battery system of an electric vehicle, and the energy storage device 20 provides electrical energy to external electrical equipment 40 through the energy conversion device 30 or feeds the electrical energy back to the grid, and can also be charged through the energy conversion device 30.
  • the processing unit 12 controls the switch assembly 22 in the first connection line 21 to be in a disconnected state
  • the fault detection circuit 111 detects the first voltage, the second voltage, and The third voltage.
  • the processing unit 12 calculates the resistance value corresponding to the energy conversion device 30 according to the first voltage, the second voltage, and the third voltage, and the resistance information corresponding to the fault detection circuit 111.
  • the processing unit 12 determines whether there is a short circuit in the energy conversion device 30 by determining whether the resistance value is greater than a preset resistance threshold value.
  • the processing unit 12 controls the switch assembly 22 to disconnect; if the energy conversion device 30 does not have a short-circuit condition, the processing unit 12 controls the switch assembly 22 to communicate, so that the energy storage device 20 and the energy conversion device 30 are connected. Connected, the energy storage device 20 is discharged or charged through the energy conversion device 30.
  • the control device of the present disclosure can provide a connection line between the energy storage device and the energy conversion device through the fault detection circuit and the first connection line when the energy storage device is connected to the energy conversion device and the first connection line is in a disconnected state,
  • the electrical energy of the energy storage device and the fault detection circuit can be used to obtain the resistance value corresponding to the energy conversion device, and the energy storage device is controlled to be disconnected or connected with the energy conversion device according to the resistance value, which can avoid the short-circuit failure of the external device causing energy storage
  • the device has a short circuit problem, which can protect the energy storage device and improve the safety and reliability of the charging and discharging of the energy storage device; moreover, the fault detection circuit is directly connected to the first connection line, no additional detection device is required, and the connection to the energy storage device is avoided In the case of energy conversion equipment, the use of an external detection device for detection operations brings problems such as inconvenience in operation and potential safety hazards.
  • the first connection line 21 includes a first line 211 for connecting the positive electrode of the energy storage device 20 and the first end of the energy conversion device 30, and a first line 211 for connecting the energy storage device 20 The negative electrode and the second line 212 of the second end of the energy conversion device 30.
  • the switch assembly 22 includes a first switch unit 221 and a second switch unit 222 respectively arranged on the first circuit 211 and the second circuit 212.
  • the first switch unit 221 and the second switch unit 222 may be various electric switches, relays, and the like.
  • the fault detection circuit 111 is connected to the first line 211 and the second line 212 respectively.
  • the control unit 12 controls the opening or closing of the first switch unit 221 and the second switch unit 222.
  • the fault detection circuit 111 includes a first sampling circuit 1110, a second sampling circuit 1111, and a third sampling circuit 1112.
  • the first sampling circuit 1110, the second sampling circuit 1111, and the third sampling circuit 1112 detect the first voltage, the second voltage, and the third voltage, respectively.
  • connection point between the first end of the first sampling circuit 1110 and the first line 211 is located between the first switch unit 221 and the energy conversion device 30, and the connection point between the second end and the second line 212 is located between the second switch unit 222 and the storage.
  • the processing unit 12 calculates the first voltage based on the first sampling voltage and the resistance information of the first sampling circuit 1110.
  • connection point between the first end of the second sampling circuit 1111 and the first line 211 is located between the first switch unit 221 and the energy storage device 20, and the connection point between the second end and the second line 212 is located between the second switch unit 222 and the energy storage device 20.
  • the second sampling voltage is collected through the second sampling point set in the second sampling circuit 1111; the processing unit 12 calculates the second voltage based on the second sampling voltage and the resistance information of the second sampling circuit 1111.
  • connection point between the first end of the third sampling circuit 1112 and the first line 211 is located between the first switch unit 221 and the energy storage device 20, and the connection point between the second end and the second line 212 is located between the second switch unit 222 and the storage device 20.
  • the third sampling voltage is collected through the third sampling point set in the third sampling circuit 1112; the processing unit 12 calculates the third voltage based on the third sampling voltage and the resistance information of the third sampling circuit 1112.
  • the first switch unit is S1
  • the second switch unit is S2.
  • the first sampling circuit 1110 includes resistors R11 and R12
  • the second sampling circuit 1111 includes resistors R21 and R22
  • the third sampling circuit 1112 includes resistors R31 and R32.
  • the resistance values of the resistors in the first sampling circuit 1110, the second sampling circuit 1111, and the third sampling circuit 1112 are relatively large, generally ranging from 0.1 megaohm to 10 megaohm.
  • the first sampling point is ADC1, and the first sampling voltage is U1; the second sampling point is ADC2, and the second sampling voltage is U2; the third sampling point is ADC3, and the third sampling voltage is U3.
  • the impedance corresponding to the energy conversion device 30 is R3, which can be obtained by calculation.
  • the outside of the first switch unit S1 refers to the side of the first switch unit S1 close to the energy conversion device 30, and the inside of the first switch unit S1 refers to the side of the first switch unit S1 close to the energy storage device 20;
  • the second switch unit The outer side of S2 refers to the side of the second switch unit S2 close to the energy conversion device 30;
  • the inner side of the second switch unit S2 refers to the side of the second switch unit S2 close to the energy storage device 20.
  • Ubat1 is the voltage between the outside of the first switching unit S1 and the negative electrode of the energy storage device 20
  • Ubat2 is the voltage between the outside of the second switching unit S2 and the positive electrode of the energy storage device
  • Ubat3 is the positive and negative electrodes of the energy storage device 20
  • Ubat4 is the voltage across the energy conversion device 30.
  • Ubat4 Ubat3-Ubat2-Ubat1 (1-4);
  • the processing unit 12 can calculate the value of R3 according to formula (1-6). If the value of R3 is less than or equal to the preset resistance threshold, it is judged that the energy conversion device 30 is short-circuited, and S1 and S2 are controlled to be disconnected; if R3 If it is greater than the preset resistance threshold, it is judged that the energy conversion device 30 is normal, and the processing unit 12 controls S1 and S2 to close, so that the energy storage device 20 outputs electrical energy to the energy conversion device 30.
  • the processing unit 12 can calculate the first voltage, the second voltage and the third voltage based on the fault detection circuit 111 and calculate the resistance value corresponding to the energy conversion device based on the first voltage, the second voltage and the third voltage to determine whether the energy conversion device is If there is a fault, the processing unit 12 can also determine whether the switch in the loop is abnormal based on the voltage collected by the fault detection circuit. For example, Ubat1 can be compared with Ubat3. If the difference between the two is less than the preset voltage threshold, it is determined that S1 is stuck, Ubat2 Compared with Ubat3, if the difference between the two is less than the preset voltage threshold, then it is judged that S2 is stuck.
  • the first sampling circuit, the second sampling circuit, and the third sampling circuit in the fault detection circuit 111 may be implemented in multiple ways. Those skilled in the art should understand that the first sampling circuit, the second sampling circuit, and the third sampling circuit can be set by setting the reference ground point, and all of the above-mentioned first voltage, second voltage and third voltage can be obtained.
  • the processing unit 12 calculates the resistance value corresponding to the energy conversion device 30 according to the first voltage, the second voltage, and the third voltage, and the resistance information corresponding to the fault detection circuit 111.
  • the first sampling circuit 1110 of the fault detection circuit 111 includes resistors R13, R14, and R15
  • the second sampling circuit 1111 includes resistors R23, R24, and R25
  • the third sampling circuit 1112 includes resistors R33 and R34.
  • the resistance values of the resistors in the first sampling circuit 1110, the second sampling circuit 1111, and the third sampling circuit 1112 are relatively large, generally ranging from 0.1 megaohm to 10 megaohm.
  • the first sampling point is ADC4, and the first sampling voltage is U4; the second sampling point is ADC5, and the second sampling voltage is U5; the third sampling point is ADC6, and the third sampling voltage is U6. Based on the same principle, the above-mentioned first voltage, second voltage, and third voltage can be obtained.
  • the resistance information corresponding to the three sampling circuit 1112 calculates the resistance value corresponding to the energy conversion device 30.
  • the control device of the present disclosure may further include a first current collecting circuit 13, and the first current collecting circuit 13 may have multiple types, for example, a collecting circuit including a Hall current sensor, etc. .
  • the first current collecting circuit 13 may be arranged in the first line 211 or the second line 212, and collect the first detected current value corresponding to the current transmitted through the first line 211 or the second line 212.
  • the processing unit 12 controls the first switch unit 221 and the second switch unit 222 to close, obtains the first detected current value collected by the first current collecting circuit 13, and obtains the input energy conversion device 30 or the current output by the energy conversion device 30.
  • the second detection current value determine whether an abnormality occurs based on the first detection current value and the second detection current value, and perform corresponding operations.
  • the processing unit 12 determines that there is an abnormality. For example, under the condition that the absolute value of the difference between the first detection current value and the second detection current value is greater than a preset difference threshold, the processing unit 12 determines that the charging or discharging is abnormal and performs corresponding operations.
  • the difference threshold can be set according to specific application scenarios, and the difference threshold can be a value close to zero.
  • the processing unit 12 controls the first switch unit 221 and the second switch unit 222 to close, it is determined whether the absolute value of the difference between the first detection current value and the second detection current value is greater than the difference threshold; if the absolute value is less than or equal to Difference threshold, the first detection current value and the second detection current value are basically the same, and the working state is normal; if the absolute value is greater than the difference threshold, the difference between the first detection current value and the second detection current value Larger, the working status is abnormal.
  • the operation corresponding to the abnormal state can be to issue an alarm message to notify the user to check the collection circuit, device, etc. that collect the first detection current value and the second detection current value, etc., which can be achieved through the current collection of the first current collection circuit 13
  • the proofreading of the collection circuit and device, etc. to further confirm whether the energy conversion device and the circuit are faulty, so as to improve the reliability.
  • the present disclosure provides an energy conversion system, including an energy storage device 20, an energy conversion device 30, and the control device 10 in any of the above embodiments.
  • the energy conversion device 30 includes a second connection line 31, a second current collection unit 32 and a communication module 33.
  • the second connection line 31 is connected to the first connection line 21, and the second connection line 31 receives the electric energy output by the energy storage device 20 through the first connection line 21, or outputs the electric energy of the grid etc. to the energy storage device through the first connection line 21 20.
  • the second current collecting unit 32 is configured to collect a second detected current value corresponding to the current input or output from the energy conversion device 30.
  • the second current collecting unit 32 may be arranged in the second connecting line 31 to collect the second detected current value.
  • the second current collection unit 32 may have multiple types, for example, a collection circuit including a Hall current sensor.
  • the communication module 33 obtains the second detected current value collected by the second current collecting unit 32 and sends the second detected current value to the processing unit 12 of the control device 10.
  • the communication module 33 can communicate with the processing unit 12 in a variety of ways, such as CAN bus communication.
  • the energy conversion device 30 includes an auxiliary power supply module 35 and a current limiting circuit 34.
  • the energy conversion device 30 itself does not have electrical energy, and external electrical energy needs to be obtained to supply power to the energy conversion device 30 to make the energy conversion device 30 work.
  • the current-limiting circuit 34 is arranged in the second connection line 31, and the current-limiting circuit 34 limits the current input through the second connection line 31, so that the current after the current limit is input to the auxiliary power supply module 35, which is the communication module 33, etc. Power is supplied to make the energy conversion device 30 work.
  • the current limiting by the current limiting circuit 34 can avoid the short circuit problem of the energy storage device 20 caused by the short circuit of external devices such as the energy conversion device 30.
  • the current limiting circuit includes a current limiting resistor R4.
  • the second connection line 31 includes a third line 311 and a fourth line 312 for communicating with the positive electrode and the negative electrode of the energy storage device 30 respectively, and a current limiting resistor R4 is provided in the third line 311.
  • the energy conversion device 30 includes a third switch unit S3 connected in parallel with the current limiting resistor R4.
  • the current limiting circuit R4 limits the current input to the auxiliary power supply module 35, which can reduce the current input to the auxiliary power supply module 35, and can prevent excessive current from converting energy when the power supply starts. Damage to various parts of the device 30 plays a protective role. After the energy conversion device 30 is in the working state, the third switch unit S3 is closed to short-circuit the current limiting resistor R4 to reduce the electric energy consumed by R4.
  • the energy conversion device 30 further includes a control module 36, a power module 37 and a main power supply module 38.
  • the main power supply module 38 and the auxiliary power supply module 35 do not carry electric energy by themselves, and use externally input electric energy to supply power to the energy conversion device 30.
  • the power module 37 performs conversion processing on the current input by the energy storage device 20 and provides it to the electrical equipment 40, or the power module 37 performs conversion processing on the current input by the external network and provides it to the energy storage device 20.
  • the control module 36 is used to control the power module 37 and the like, and the control module 36 may be integrated with the communication module 33.
  • the processing unit 12 determines that the resistance value corresponding to the energy conversion device 30 is greater than the resistance threshold value, which is a safe value, it directly closes S1 and S2, and R4 limits the current input to the auxiliary power supply module 35; for the auxiliary power supply module 35, it The working voltage range is: Umin-Umax. If the maximum working current of the auxiliary power supply module 35 is I1, the selection of R4 has the following requirements:
  • P is the maximum heating power that the resistor R4 can withstand
  • Ubatmin is the lowest voltage that the energy storage device 20 (battery pack) can support the discharge mode.
  • R4 should be under the conditions of formula (1-9), The larger the selected resistance value, the better.
  • the first current collection circuit includes a Hall current sensor 131
  • the second current collection unit includes a Hall current sensor 321.
  • the communication module 33 sends the second detection current value collected by the Hall current sensor 321 to the processing unit 12 through a communication method such as a CAN bus.
  • the processing unit 12 obtains the first detection current value collected by the Hall current sensor 131, and receives the second detection current value sent by the communication module 33. When the absolute value of the difference between the first detected current value and the second detected current value is greater than the preset difference threshold, the processing unit 12 determines that an abnormality has occurred and sends an alarm message to prompt the user to verify the energy conversion device 30 and the energy storage
  • the working state of the device 20 can realize the calibration of the collection circuit, the device, etc., and further confirm whether there is an abnormality in the charging and discharging circuit, thereby improving the reliability.
  • the present disclosure provides an energy conversion method, which is applied to the energy conversion system of any of the above embodiments.
  • the energy conversion system includes an energy conversion device, an energy storage device, and a control device.
  • the control device includes a detection unit and a processing device.
  • the detection unit is used to detect the first voltage between the positive electrode of the energy storage device and the first end of the energy conversion device, the second voltage between the negative electrode of the energy storage device and the second end of the energy conversion device, and the positive electrode of the energy storage device and The third voltage between the negative electrodes of the energy storage device; the energy conversion method is executed in the processing unit.
  • FIG. 9 is a schematic flowchart of some embodiments of the energy conversion method of the present disclosure, as shown in FIG. 9:
  • Step 901 Calculate the resistance value corresponding to the energy conversion device according to the first voltage, the second voltage and the third voltage.
  • Step 902 When the resistance value is greater than the resistance threshold value, control the energy storage device to supply power to the electrical equipment through the energy conversion device.
  • FIG. 10 is a schematic flowchart of other embodiments of the energy conversion method of the present disclosure, as shown in FIG. 10:
  • Step 1001 Calculate the resistance value corresponding to the energy conversion device according to the first voltage, the second voltage and the third voltage.
  • Step 1002 Determine whether the resistance value is greater than the resistance threshold value, if yes, go to step 1003, if not, go to step 1004.
  • Step 1003 Control the energy storage device to supply power to the electrical equipment through the energy conversion equipment. It may also include controlling the energy storage device to perform energy conversion with the grid through the energy conversion device.
  • Step 1004 Prohibit the energy storage device to supply power to the electrical equipment through the energy conversion device. It may also include prohibiting the energy storage device from performing energy conversion with the grid through the energy conversion device.
  • the energy storage device is connected to the energy conversion device through the first connection line, and a switch assembly is arranged in the first connection line.
  • the processing unit also executes: when the resistance is greater than the resistance threshold, the switch component is closed to make the first connection line in a closed state; when the resistance is less than or equal to the resistance threshold, the switch component is turned off to make the first connection line In a disconnected state.
  • the detection unit includes a fault detection circuit, which is connected to the first connection line; when the first connection line is in a disconnected state, the first connection line and the fault detection circuit form a connection circuit between the energy storage device and the energy conversion device
  • the processing unit also executes: calculating the resistance value according to the first voltage, the second voltage and the third voltage detected by the fault detection circuit and the resistance information of the fault detection circuit.
  • the first connection line includes a first line connecting the positive electrode of the energy storage device and the first end of the energy conversion device, and a second line connecting the positive electrode of the energy storage device and the second end of the energy conversion device;
  • the switch assembly includes the first lines respectively , The first switch unit and the second switch unit on the second line;
  • the fault detection circuit includes: a first sampling circuit, a second sampling circuit, and a third sampling circuit connected to the first line and the second line respectively;
  • the processing unit is also Execution: When the first switch unit and the second switch unit are in an off state, calculate the first voltage according to the first sampling voltage collected by the first sampling circuit and the resistance information of the first sampling circuit, and calculate the first voltage according to the second sampling circuit The second sampling voltage and the resistance information of the second sampling circuit calculate the second voltage, and the third voltage is calculated according to the third sampling voltage collected by the third sampling circuit and the resistance information of the third sampling circuit.
  • the control device further includes a first current collection circuit configured to collect a first detected current value corresponding to the current transmitted through the first connection line.
  • FIG. 11 is a schematic diagram of the abnormality determination process of some embodiments of the energy conversion method of the present disclosure, as shown in FIG. 11:
  • Step 1101 After the control switch assembly is closed, obtain the first detected current value and the second detected current value corresponding to the input energy conversion device or the current output by the energy conversion device.
  • Step 1102 under the condition that the absolute value of the difference between the first detection current value and the second detection current value is less than a preset current difference threshold, control the switch component to be in a closed state.
  • the energy conversion device includes a second connection line, an auxiliary power supply module, and a current limiting circuit; the second connection line is configured to receive electrical energy input by the energy storage device or output electrical energy to the energy storage device; the current limiting circuit is provided at In the second connection line; the current limiting circuit limits the current passing through the second connection line, so that the limited current is input to the auxiliary power supply module for supplying power to the energy conversion device.
  • the current-limiting circuit includes a current-limiting resistor and a third switch unit, and the third switch unit is connected in parallel with the current-limiting resistor.
  • the energy conversion device closes the third switch unit to short-circuit the current limiting resistor.
  • the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores computer instructions, and the instructions are executed by a processor as the energy conversion method in any of the above embodiments.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the control device, the energy conversion system, the energy conversion method, and the storage medium in the above embodiments detect the voltage between the energy storage device and the energy conversion device and between the positive electrode and the negative electrode of the energy storage device, and correspond to the energy conversion device based on the voltage calculation According to the resistance value, whether the energy storage device supplies power to the electrical equipment through the energy conversion device is controlled according to the resistance value; it can avoid the short-circuit problem of the energy storage device due to the short-circuit fault of the external device, and can protect the energy storage device.
  • the comparison of the input or output current value of the energy device and the energy conversion equipment can further confirm whether the energy conversion device and circuit are faulty, improve safety and reliability, and improve user experience.
  • the method and system of the present disclosure may be implemented in many ways.
  • the method and system of the present disclosure can be implemented by software, hardware, firmware or any combination of software, hardware, and firmware.
  • the above-mentioned order of the steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above, unless specifically stated otherwise.
  • the present disclosure can also be implemented as programs recorded in a recording medium, and these programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Abstract

本公开提供了一种控制设备、能量转换系统、能量转换方法以及存储介质,涉及电池技术领域,其中的控制设备包括:检测单元检测储能装置的正极与能量转换设备的第一端之间的第一电压、储能装置的负极与能量转换设备的第二端之间的第二电压和储能装置的正极与负极之间的第三电压;处理单元根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值;当阻值大于电阻阈值时,控制储能装置通过能量转换设备向电器设备供电。本公开的设备、系统、方法以及存储介质,能够解决由于外部装置的短路故障而导致储能装置出现短路的问题,提高安全性和可靠性。

Description

控制设备、能量转换系统、能量转换方法以及存储介质 技术领域
本公开涉及电池技术领域,尤其涉及一种控制设备、能量转换系统、能量转换方法以及存储介质。
背景技术
随着电动汽车技术的飞速发展,电池的能量密度提高,汽车可行驶的里程数增加,越来越多的电动汽车参与储能的应用,参与电网的调度,起到“削峰填谷”的作用,并能对车主进行差价补贴,降低购车成本,推动电动汽车的发展,更好地保护环境。电动汽车的储能装置是车载电池系统,可以是电池包、电池组或电芯,储能装置可以通过能量转换设备将电池包的电能释放出来,为电器提供电能,或者向电网馈电,也可以通过能量转换设备为电池包进行充电。当储能装置通过能量转换设备为电器提供电能时,能量转换设备从电动汽车的直流母线上获取储能装置的输出电能,但是,储能装置无法获知外部装置的状态,如果直接闭合直流母线上的相应继电器并向外放电,则会有因为外部装置短路而导致电动汽车的储能装置短路的问题。
发明内容
有鉴于此,本公开要解决的一个技术问题是提供一种控制设备、能量转换系统、能量转换方法以及存储介质。
根据本公开的第一方面,提供一种控制设备,包括:检测单元,被配置为检测储能装置的正极与能量转换设备的第一端之间的第一电压、储能装置的负极与能量转换设备的第二端之间的第二电压和储能装置的正极与负极之间的第三电压;处理单元,被配置为根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值;当阻值大于电阻阈值时,控制储能装置通过能量转换设备向电器设备供电。
在一些实施例中,处理单元还被配置为当阻值小于或等于电阻阈值时,禁止储能装置通过能量转换设备向电器设备供电。
在一些实施例中,储能装置通过第一连接线路连接能量转换设备,在第一连接线路中设置开关组件;处理单元还被配置为如果阻值大于电阻阈值,则闭合开关组件,以使第一连接线路处于闭合状态;如果阻值小于或等于电阻阈值,则关断开关组件, 以使第一连接线路处于断开状态。
在一些实施例中,检测单元包括:故障检测电路,与第一连接线路连接;在第一连接线路处于断开的状态下,第一连接线路和故障检测电路形成储能装置和能量转换设备之间的连接电路;处理单元还被配置为根据故障检测电路检测的第一电压、第二电压和第三电压以及故障检测电路的电阻信息计算阻值。
在一些实施例中,第一连接线路包括:用于连接储能装置的正极和能量转换设备的第一端的第一线路、用于连接储能装置的负极和能量转换设备的第二端的第二线路;开关组件包括分别设置在第一线路、第二线路上的第一开关单元、第二开关单元;故障检测电路包括:分别与第一线路和第二线路连接的第一采样电路、第二采样电路和第三采样电路;在第一开关单元和第二开关单元处于断开的状态下,第一采样电路、第二采样电路和第三采样电路分别检测第一电压、第二电压和第三电压。
在一些实施例中,第一采样电路的第一端与第一线路的连接点位于第一开关单元与能量转换设备之间,第二端与第二线路的连接点位于第二开关单元和储能装置之间;第一采样电路被配置为通过设置在第一采样电路中的第一采样点采集第一采样电压;第二采样电路的第一端与第一线路的连接点位于第一开关单元与储能装置之间,第二端与第二线路的连接点位于第二开关单元与能量转换设备之间;第二采样电路被配置为通过设置在第二采样电路中的第二采样点采集第二采样电压;第三采样电路的第一端与第一线路的连接点位于第一开关单元与储能装置之间,第二端与第二线路的连接点位于第二开关单元与储能装置之间;第三采样电路被配置为通过设置在第三采样电路中的第三采样点采集第三采样电压;处理单元还被配置为基于第一采样电压和第一采样电路的电阻信息计算第一电压、基于第二采样电压和第二采样电路的电阻信息计算第二电压以及基于第三采样电压和第三采样电路的电阻信息计算第三电压。
在一些实施例中,第一电流采集电路,被配置为采集与通过第一连接线路传输的电流对应的第一检测电流值;处理单元还被配置为在控制开关组件闭合后,获取第一检测电流值、与输入或输出能量转换设备的电流相对应的第二检测电流值;在第一检测电流值和第二检测电流值之差的绝对值小于预设的电流差值阈值的条件下,控制开关组件处于闭合状态。
根据本公开的第二方面,提供一种能量转换系统,包括:能量转换设备、储能装置、前述任意一种控制设备。
在一些实施例中,能量转换设备包括:第二电流采集单元,被配置为采集与输入 或输出能量转换设备的电流相对应的第二检测电流值;通信模块,被配置为将第二检测电流值发送到控制设备的处理单元。
在一些实施例中,能量转换设备包括:第二连接线路、辅助供电模块和限流电路;第二连接线路被配置为接收储能装置输入的电能或向储能装置输出电能;限流电路设置在第二连接线路中,用于对第二连接线路上传输的电流进行限流,以使被限流后的电流输入辅助供电模块,用以为能量转换设备进行供电。
在一些实施例中,限流电路包括:限流电阻和第三开关单元;第三开关单元与限流电阻并联,在能量转换设备处于工作状态时,能量转换设备闭合第三开关单元,用以对限流电阻进行短路。
根据本公开的第三方面,提供一种能量转换方法,应用于能量转换系统中,能量转换系统包括:能量转换设备、储能装置和控制设备,控制设备包括检测单元和处理单元;检测单元,用于检测储能装置的正极与能量转换设备的第一端之间的第一电压、储能装置的负极与能量转换设备的第二端之间的第二电压和储能装置的正极与负极之间的第三电压;能量转换方法执行于处理单元中,包括:根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值;当阻值大于电阻阈值时,控制储能装置通过能量转换设备向电器设备供电。
在一些实施例中,当阻值小于或等于电阻阈值时,禁止储能装置通过能量转换设备向电器设备供电。
在一些实施例中,储能装置通过第一连接线路连接能量转换设备,在第一连接线路中设置开关组件;当阻值大于电阻阈值时,控制储能装置通过能量转换设备向电器设备供电包括:当阻值大于电阻阈值时,则闭合开关组件,以使第一连接线路处于闭合状态;当阻值小于或等于电阻阈值时,禁止储能装置通过能量转换设备向电器设备供电包括:当阻值小于或等于电阻阈值时,则关断开关组件,以使第一连接线路处于断开状态。
在一些实施例中,检测单元包括:故障检测电路,与第一连接线路连接;在第一连接线路处于断开的状态下,第一连接线路和故障检测电路形成储能装置和能量转换设备之间的连接电路;根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值包括:根据故障检测电路检测的第一电压、第二电压和第三电压以及故障检测电路的电阻信息计算阻值。
在一些实施例中,第一连接线路包括:连接储能装置的正极和能量转换设备的第 一端的第一线路、连接储能装置的正极和能量转换设备的第二端的第二线路;开关组件包括分别设置在第一线路、第二线路上的第一开关单元、第二开关单元;故障检测电路包括:分别与第一线路和第二线路连接的第一采样电路、第二采样电路和第三采样电路;能量转换方法还包括:
在第一开关单元和第二开关单元处于断开的状态下,根据第一采样电路采集的第一采样电压和第一采样电路的电阻信息计算第一电压、根据第二采样电路采集的第二采样电压和第二采样电路的电阻信息计算第二电压,以及根据第三采样电路采集的第三采样电压和第三采样电路的电阻信息计算第三电压。
在一些实施例中,控制设备还包括:第一电流采集电路,被配置为采集与通过第一连接线路传输的电流对应的第一检测电流值;能量转换方法还包括:在控制开关组件闭合后,获取第一检测电流值、与输入能量转换设备或能量转换设备输出的电流相对应的第二检测电流值;在第一检测电流值和第二检测电流值之差的绝对值小于预设的电流差值阈值的条件下,控制开关组件处于闭合状态。
在一些实施例中,能量转换设备包括第二连接线路、辅助供电模块和限流电路;第二连接线路被配置为接收储能装置输入的电能或向储能装置输出电能;限流电路设置在第二连接线路中;限流电路对通过第二连接线路上的电流进行限流,以使被限流后的电流输入辅助供电模块,用以为能量转换设备进行供电。
在一些实施例中,限流电路包括:限流电阻和第三开关单元;第三开关单元与限流电阻并联;方法包括:在能量转换设备处于工作状态时,能量转换设备闭合第三开关单元,用以对限流电阻进行短路。
根据本公开的第四方面,提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行前述任意一种能量转换方法。
本公开的控制设备、能量转换系统、能量转换方法以及存储介质,检测储能装置与能量转换设备之间以及储能装置的正极与负极之间的电压,基于电压计算与能量转换设备对应的阻值,根据阻值控制储能装置是否通过能量转换设备向电器设备供电;能够避免由于外部装置的短路故障而导致储能装置出现短路的问题,可以保护储能装置,并可以通过对储能装置和能量转换设备输入或输出的电流值的比较,进一步确认能量转换装置和电路是否存在故障,提高安全性和可靠性。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的控制设备的一些实施例的第一结构示意图;
图2为本公开的控制设备的一些实施例的第二结构示意图;
图3为本公开的控制设备的一些实施例的第三结构示意图;
图4为本公开的控制设备的一些实施例中的故障检测电路的第一结构示意图;
图5A为本公开的控制设备的一些实施例中的故障检测电路的第二结构示意图,图5B为本公开的控制设备的一些实施例中的故障检测电路的第三结构示意图;
图6为本公开的能量转换系统的一些实施例的第一结构示意图;
图7为本公开的能量转换系统的一些实施例的第二结构示意图;
图8为本公开的能量转换系统的一些实施例的第三结构示意图;
图9为本公开的能量转换方法的一些实施例的流程示意图;
图10为本公开的能量转换方法的另一些实施例的流程示意图;
图11为本公开的能量转换方法的一些实施例中的异常判断的流程示意图。
具体实施方式
下面参照附图对本公开进行更全面的描述,其中说明本公开的示例性实施例。下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。下面结合各个图和实施例对本公开的技术方案进行多方面的描述。
下文中的“第一”、“第二”等仅用于描述上的区别,并没有其他特殊的含义。
在一些实施例中,如图1所示,本公开提供一种控制设备10,包括检测单元11和处理单元12。储能装置20可以为车载电池系统等,例如储能装置20为电动汽车的车载动力电池系统,电动汽车的车载动力电池系统包括电池包,电池组或电芯等,电池包可以为锂电池包等。
能量转换设备30可以为支持双向充放电的能量转换设备,对输入或输出储能装置20的电能进行转换处理,例如进行变压、变流处理等。能量转换设备30可以为便 携式的能量转换设备等,能量转换设备30本身不带有电能。电网通过能量转换设备30可以为储能装置20充电,也可以使储能装置20通过能量转换设备30为电器设备40提供电能,或者将储能装置20的电能通过能量转换设备30反馈回电网,电器设备40可以为多种家用电器等。
检测单元11可以包括多种检测电路,用于检测储能装置20的正极与能量转换设备30的第一端之间的第一电压、储能装置20的负极与能量转换设备30的第二端之间的第二电压和储能装置20的正极与储能装置20的负极之间的第三电压。
处理单元12可以实现为独立部件,也可以与BMS(Battery Management System电池管理系统)集成,或者与能量转换设备30集成在一起。处理单元12根据第一电压、第二电压和第三电压计算与能量转换设备30相对应的阻值。当阻值大于电阻阈值时,处理单元12控制储能装置20通过能量转换设备30向电器设备40供电;当阻值大于电阻阈值时,处理单元12也可以控制储能装置20通过能量转换设备30向与电网进行能量转换,包括电网通过能量转换设备30向储能装置20充电,或储能装置20通过能量转换设备30向电网馈电;当阻值小于或等于电阻阈值时,处理单元12禁止储能装置20通过能量转换设备30向电器设备40供电,处理单元12也可以禁止储能装置20通过能量转换设备30向与电网进行能量转换。
电阻阈值为用于判断能量转换设备30是否出现短路而设置的一个阈值,电阻阈值的大小可以根据能量转换设备30以及电器设备40的具体类型进行选取。
在一些实施例中,如图2所示,储能装置20通过第一连接线路21连接能量转换设备30,在第一连接线路21中设置开关组件22,第一连接线路21可以为储能装置20的直流母线等。
在与能量转换设备30相对应的阻值大于电阻阈值的条件下,处理单元12控制开关组件22闭合,控制储能装置20通过能量转换设备30向电器设备40供电。
在与能量转换设备30相对应的阻值小于或等于电阻阈值的条件下,处理单元12控制开关组件22断开,以使储能装置20与能量转换设备30断开,并可以向整车控制器发出禁止充放电的告警信息,提示用户进行相应的处理,能够有效保护储能装置20,避免由于外部装置的短路而导致储能装置20的短路。
在一些实施例中,检测单元11包括故障检测电路111,故障检测电路111与第一连接线路21连接。处理单元12控制开关组件22断开,在第一连接线路21处于断开的状态下,第一连接线路21和故障检测电路111形成储能装置20和能量转换设备30 之间的连接电路,通过故障检测电路111检测第一电压、第二电压和第三电压。
处理单元12根据通过故障检测电路111检测的第一电压、第二电压和第三电压,以及与故障检测电路111相对应的电阻信息计算与能量转换设备30对应的阻值,根据阻值控制开关组件22的切换操作,用以控制储能装置20与能量转换设备30断开或连通。
例如,储能装置20为电动汽车的车载电池系统,储能装置20通过能量转换设备30向外部的电器设备40提供电能或者将电能反馈回电网,也可以通过能量转换设备30进行充电。在能量转换设备30与第一连接线路21连接的状态下,并且处理单元12控制第一连接线路21中的开关组件22处于断开状态,通过故障检测电路111检测第一电压、第二电压和第三电压。
处理单元12根据第一电压、第二电压和第三电压,以及与故障检测电路111相对应的电阻信息计算与能量转换设备30对应的阻值。处理单元12通过判断阻值是否大于预设的电阻阈值,确定能量转换设备30是否存在短路情况。
如果能量转换设备30存在短路情况,则处理单元12控制开关组件22断开;如果能量转换设备30不存在短路情况,则处理单元12控制开关组件22连通,使储能装置20与能量转换设备30连通,储能装置20通过能量转换设备30进行放电或充电。
本公开的控制设备,能够在储能装置与能量转换设备连接并且第一连接线路处于断开状态时,通过故障检测电路以及第一连接线路在储能装置与能量转换设备之间提供连接线路,利用储能装置的电能以及故障检测电路能够得到与能量转换设备相对应的阻值,根据阻值控制储能装置与能量转换设备断开或连通,能够避免由于外部装置的短路故障而导致储能装置出现短路的问题,可以保护储能装置,提高储能装置充放电的安全性和可靠性;并且,故障检测电路直接连接于第一连接线路,无需额外的检测装置,避免在储能装置连接能量转换设备的情况下,使用外部检测装置进行检测作业,所带来的操作不方便以及产生的安全隐患等问题。
在一些实施例中,如图3所示,第一连接线路21包括用于连接储能装置20的正极和能量转换设备30的第一端的第一线路211、用于连接储能装置20的负极和能量转换设备30的第二端的第二线路212。开关组件22包括分别设置在第一线路211、第二线路上212中的第一开关单元221、第二开关单元222。第一开关单元221和第二开关单元222可以为多种电动开关、继电器等。故障检测电路111分别与第一线路211和第二线路212连接。控制单元12控制第一开关单元221和第二开关单元222的打 开或关闭。
在一些实施例中,如图4所示,故障检测电路111包括第一采样电路1110、第二采样电路1111和第三采样电路1112。在第一开关单元221和第二开关单元222处于断开的状态下,第一采样电路1110、第二采样电路1111和第三采样电路1112分别检测第一电压、第二电压和第三电压。
第一采样电路1110的第一端与第一线路211的连接点位于第一开关单元221与能量转换设备30之间,第二端与第二线路212的连接点位于第二开关单元222和储能装置20之间,通过设置在第一采样电路1110中的第一采样点采集第一采样电压。处理单元12基于第一采样电压和第一采样电路1110的电阻信息计算第一电压。
第二采样电路1111的第一端与第一线路211的连接点位于第一开关单元221与储能装置20之间,第二端与第二线路212的连接点位于第二开关单元222与能量转换设备30之间,通过设置在第二采样电路1111中的第二采样点采集第二采样电压;处理单元12基于第二采样电压和第二采样电路1111的电阻信息计算第二电压。
第三采样电路1112的第一端与第一线路211的连接点位于第一开关单元221与储能装置20之间,第二端与第二线路212的连接点位于第二开关单元222与储能装置20之间,通过设置在第三采样电路1112中的第三采样点采集第三采样电压;处理单元12基于第三采样电压和第三采样电路1112的电阻信息计算第三电压。
在一些实施例中,如图5A所示,第一开关单元为S1,第二开关单元为S2。第一采样电路1110包括电阻R11和R12,第二采样电路1111包括电阻R21和R22,第三采样电路1112包括电阻R31和R32。第一采样电路1110、第二采样电路1111和第三采样电路1112中的电阻阻值均较大,一般有0.1兆欧-10兆欧。
第一采样点为ADC1,第一采样电压为U1;第二采样点为ADC2,第二采样电压为U2;第三采样点为ADC3,第三采样电压为U3。与能量转换设备30对应的阻抗为R3,通过计算可以获得。
第一开关单元S1的外侧是指第一开关单元S1靠近能量转换设备30的一侧,第一开关单元S1的内侧是指第一开关单元S1靠近储能装置20的一侧;第二开关单元S2的外侧是指第二开关单元S2靠近能量转换设备30的一侧;第二开关单元S2的内侧是指第二开关单元S2靠近储能装置20的一侧。Ubat1为第一开关单元S1的外侧与储能装置20负极之间的电压,Ubat2为第二开关单元S2的外侧与储能装置20正极之间的电压,Ubat3为储能装置20的正极和负极之间的电压,Ubat4为能量转换设备30 两端的电压,具体计算公式如下:
Figure PCTCN2020096062-appb-000001
Figure PCTCN2020096062-appb-000002
Figure PCTCN2020096062-appb-000003
Ubat4=Ubat3-Ubat2-Ubat1         (1-4);
Figure PCTCN2020096062-appb-000004
通过联立公式(1-1)、(1-2)、(1-3)、(1-4)、(1-5)可得:
Figure PCTCN2020096062-appb-000005
处理单元12根据公式(1-6)可以计算R3的值,如果R3的值小于或等于预设的电阻阈值,则判断能量转换设备30出现短路情况,控制S1和S2为断开状态;如果R3大于预设的电阻阈值,则判断能量转换设备30正常,处理单元12控制S1和S2闭合,以使储能装置20向能量转换设备30输出电能。
处理单元12基于故障检测电路111可以计算第一电压,第二电压和第三电压并根据第一电压,第二电压和第三电压计算与能量转换设备对应的阻值,以判断能量转换设备是否存在故障,处理单元12还可以基于故障检测电路采集的电压以判断回路中的开关是否存在异常,例如可以通过Ubat1与Ubat3比较,如果两者差值小于预设电压阈值,则判断S1粘连,Ubat2与Ubat3比较如果两者差值小于预设电压阈值,则判断S2粘连。
在一些实施例中,故障检测电路111中第一采样电路、第二采样电路和第三采样电路可以有多种实现方式。本领域技术人员应当可以理解,可以通过设置参考接地点的方式设置第一采样电路,第二采样电路和第三采样电路,均可以获得上述第一电压,第二电压和第三电压。处理单元12根据第一电压、第二电压和第三电压,以及与故障检测电路111相对应的电阻信息计算与能量转换设备30对应的阻值。
例如,如图5B所示,故障检测电路111的第一采样电路1110包括电阻R13、R14和R15,第二采样电路1111包括电阻R23、R24和R25,第三采样电路1112包括电阻R33和R34。第一采样电路1110、第二采样电路1111和第三采样电路1112中的电阻阻值均较大,一般有0.1兆欧-10兆欧。第一采样点为ADC4,第一采样电压为U4;第二采样点为ADC5,第二采样电压为U5;第三采样点为ADC6,第三采样电压为U6。基于 相同的原理能够获得上述第一电压、第二电压和第三电压,处理单元12根据第一电压、第二电压和第三电压,以及与第一采样电路1110、第二采样电路1111和第三采样电路1112相对应的电阻信息计算与能量转换设备30对应的阻值。
在一些实施例中,如图3所示,本公开的控制设备还可以包括第一电流采集电路13,第一电流采集电路13可以有多种,例如为包含有霍尔电流传感器的采集电路等。第一电流采集电路13可以设置在第一线路211或第二线路212中,采集与通过第一线路211或第二线路212传输的电流相对应的第一检测电流值。
处理单元12在控制第一开关单元221和第二开关单元222闭合后,获取第一电流采集电路13采集的第一检测电流值,并获取与输入能量转换设备30或能量转换设备30输出的电流相对应的第二检测电流值,基于第一检测电流值和第二检测电流值判断是否出现异常并执行相应的操作。
判断出现异常可以有多种方法。例如,处理单元12在第一检测电流值和第二检测电流值之差的绝对值大于预设的差值阈值的条件下,判断充电或放电出现异常并执行相应的操作。差值阈值可以根据具体的应用场景进行设置,差值阈值可以为接近0的值。
例如,在处理单元12控制第一开关单元221和第二开关单元222闭合后,判断第一检测电流值和第二检测电流值之差的绝对值是否大于差值阈值;如果绝对值小于或等于差值阈值,则第一检测电流值和第二检测电流值基本相同,工作状态为正常状态;如果绝对值大于差值阈值,则第一检测电流值和第二检测电流值之间的差值较大,工作状态为异常状态。
与异常状态相应的操作可以为发出告警信息,通知用户对于采集第一检测电流值和第二检测电流值的采集电路、装置等进行检查等,通过第一电流采集电路13的电流采集,可以实现对采集电路、装置等的校对,进一步确认能量转换装置和电路是否存在故障,从而提高可靠性。
如图6所示,本公开提供一种能量转换系统,包括储能装置20、能量转换设备30以及如上任一实施例中的控制设备10。
在一些实施例中,如图7所示,能量转换设备30包括第二连接线路31、第二电流采集单元32和通信模块33。第二连接线路31与第一连接线路21连接,第二连接线路31接收储能装置20通过第一连接线路21输出的电能,或将电网等的电能通过第一连接线路21输出至储能装置20。
第二电流采集单元32用于采集与输入或输出能量转换设备30的电流相对应的第二检测电流值。第二电流采集单元32可以设置在第二连接线路31中,采集第二检测电流值。第二电流采集单元32可以有多种,例如为包括霍尔电流传感器的采集电路等。通信模块33获取第二电流采集单元32采集的第二检测电流值,将第二检测电流值发送到控制设备10的处理单元12。通信模块33可以采用多种方式与处理单元12进行通信,例如采用CAN总线通信等。
能量转换设备30包括辅助供电模块35和限流电路34。能量转换设备30本身不具有电能,需要获取外部电能为能量转换设备30进行供电,使能量转换设备30工作。限流电路34设置在第二连接线路31中,限流电路34对通过第二连接线路31输入的电流进行限流,以使被限流后的电流输入辅助供电模块35,为通信模块33等进行供电,使能量转换设备30工作。通过限流电路34进行限流,可以避免由于能量转换设备30等外部设备短路带来的储能装置20短路的问题。
在一些实施例中,如图8所示,限流电路包括限流电阻R4。第二连接线路31包括用于分别与储能装置30的正极、负极连通的第三线路311和第四线路312,在第三线路311中设置有限流电阻R4。能量转换设备30包括与限流电阻R4并联的第三开关单元S3。
在处理单元12控制S1和S2闭合时,限流电路R4对输入辅助供电模块35的电流进行限流,可以降低输入辅助供电模块35的电流,能够在供电开始时,避免过大电流对于能量转换设备30的各部件的损害,起到保护作用。在能量转换设备30处于工作状态后,闭合第三开关单元S3,用以对限流电阻R4进行短路,减少R4消耗的电能。
能量转换设备30还包括控制模块36、功率模块37和主电源模块38。主电源模块38与辅助供电模块35自身都不带有电能,使用外部输入的电能为能量转换设备30供电。功率模块37对储能装置20输入的电流进行转换处理并提供给电器设备40,或者功率模块37对外网输入的电流进行转换处理并提供给储能装置20。控制模块36用于对功率模块37等进行控制,控制模块36可以与通信模块33集成在一起。
当处理单元12判断与能量转换设备30对应的阻值大于电阻阈值,即为安全值时,直接闭合S1和S2,R4对输入辅助供电模块35的电流进行限流;对于辅助供电模块35,其工作电压范围为:Umin-Umax,如果辅助供电模块35的最大工作电流为I1,则对于R4的选择有如下要求:
Ubatmin-I1*R4>Umin      (1-7);
Figure PCTCN2020096062-appb-000006
通过联立公式(1-7)和(1-8),可以计算得到:
Figure PCTCN2020096062-appb-000007
其中,P为电阻R4能承受的最大发热功率,Ubatmin为储能装置20(电池包)能支持放电模式的最低电压,对于安全性而言,R4应在公式(1-9)的条件下,选取的电阻值越大越好。
在辅助供电模块35处于工作状态后,闭合S3,使控制模块36以及功率模块37工作。第一电流采集电路包括霍尔电流传感器131,第二电流采集单元包括霍尔电流传感器321。通信模块33通过CAN总线等通信方式将霍尔电流传感器321采集的第二检测电流值发送到处理单元12。
处理单元12获取霍尔电流传感器131采集的第一检测电流值,并接收通信模块33发送的第二检测电流值。处理单元12在第一检测电流值和第二检测电流值之差的绝对值大于预设的差值阈值的条件下,判断出现异常并发送告警信息,提示用户校验能量转换设备30和储能装置20的工作状态,可以实现对采集电路、装置等的校对,进一步确认充放电电路是否存在异常,从而提高可靠性。
在一个实施例中,本公开提供一种能量转换方法,应用于如上任一实施例的能量转换系统中,能量转换系统包括能量转换设备、储能装置和控制设备,控制设备包括检测单元和处理单元;检测单元用于检测储能装置的正极与能量转换设备的第一端之间的第一电压、储能装置的负极与能量转换设备的第二端的第二电压和储能装置的正极与储能装置的负极之间的第三电压;能量转换方法执行于处理单元中。图9为本公开的能量转换方法的一些实施例的流程示意图,如图9所示:
步骤901,根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值。
步骤902,当阻值大于电阻阈值时,控制储能装置通过能量转换设备向电器设备供电。
图10为本公开的能量转换方法的另一些实施例的流程示意图,如图10所示:
步骤1001,根据第一电压、第二电压和第三电压计算与能量转换设备相对应的阻值。
步骤1002,判断阻值是否大于电阻阈值,如果是,进入步骤1003,如果否,则进入步骤1004。
步骤1003,控制储能装置通过能量转换设备向电器设备供电。还可以包括控制储能装置通过能量转换设备与电网进行能量转换。
步骤1004,禁止储能装置通过能量转换设备向电器设备供电。还可以包括禁止储能装置通过能量转换设备与电网进行能量转换。
储能装置通过第一连接线路连接能量转换设备,在第一连接线路中设置开关组件。处理单元还执行:当阻值大于电阻阈值时,则闭合开关组件,以使第一连接线路处于闭合状态;当阻值小于或等于电阻阈值时,则关断开关组件,以使第一连接线路处于断开状态。
检测单元包括故障检测电路,故障检测电路与第一连接线路连接;在第一连接线路处于断开的状态下,第一连接线路和故障检测电路形成储能装置和能量转换设备之间的连接电路;处理单元还执行:根据故障检测电路检测的第一电压、第二电压和第三电压以及故障检测电路的电阻信息计算阻值。
第一连接线路包括连接储能装置的正极和能量转换设备的第一端第一线路、连接储能装置的正极和能量转换设备的第二端的第二线路;开关组件包括分别设置在第一线路、第二线路上的第一开关单元、第二开关单元;故障检测电路包括:分别与第一线路和第二线路连接的第一采样电路、第二采样电路和第三采样电路;处理单元还执行:在第一开关单元和第二开关单元处于断开的状态下,根据第一采样电路采集的第一采样电压和第一采样电路的电阻信息计算第一电压、根据第二采样电路采集的第二采样电压和第二采样电路的电阻信息计算第二电压,以及根据第三采样电路采集的第三采样电压和第三采样电路的电阻信息计算第三电压。
控制设备还包括第一电流采集电路,被配置为采集与通过第一连接线路传输的电流对应的第一检测电流值。图11为本公开的能量转换方法的一些实施例的异常判断的流程示意图,如图11所示:
步骤1101,在控制开关组件闭合后,获取第一检测电流值、与输入能量转换设备或能量转换设备输出的电流相对应的第二检测电流值。
步骤1102,在第一检测电流值和第二检测电流值之差的绝对值小于预设的电流差值阈值的条件下,控制开关组件处于闭合状态。
在一些实施例中,能量转换设备包括第二连接线路、辅助供电模块和限流电路; 第二连接线路被配置为接收储能装置输入的电能或向储能装置输出电能;限流电路设置在第二连接线路中;限流电路对通过第二连接线路上的电流进行限流,以使被限流后的电流输入辅助供电模块,用以为能量转换设备进行供电。
限流电路包括限流电阻和第三开关单元,第三开关单元与限流电阻并联。在能量转换设备处于工作状态时,能量转换设备闭合第三开关单元,用以对限流电阻进行短路。
在一个实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行如上任一实施例中的能量转换方法。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
上述实施例中的控制设备、能量转换系统、能量转换方法以及存储介质,检测储能装置与能量转换设备之间以及储能装置的正极与负极之间的电压,基于电压计算与能量转换设备对应的阻值,根据阻值控制储能装置是否通过能量转换设备向电器设备供电;能够避免由于外部装置的短路故障而导致储能装置出现短路的问题,可以保护储能装置,并可以通过对储能装置和能量转换设备输入或输出的电流值的比较,进一步确认能量转换装置和电路是否存在故障,提高安全性和可靠性,可以提高用户的使用感受度。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆 盖存储用于执行根据本公开的方法的程序的记录介质。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (20)

  1. 一种控制设备,包括:
    检测单元,被配置为检测储能装置的正极与能量转换设备的第一端之间的第一电压、所述储能装置的负极与所述能量转换设备的第二端之间的第二电压和所述储能装置的正极与负极之间的第三电压;
    处理单元,被配置为根据所述第一电压、所述第二电压和所述第三电压计算与所述能量转换设备相对应的阻值;当所述阻值大于电阻阈值时,控制所述储能装置通过所述能量转换设备向电器设备供电。
  2. 如权利要求1所述的控制设备,其中,
    所述处理单元还被配置为当所述阻值小于或等于所述电阻阈值时,禁止所述储能装置通过所述能量转换设备向所述电器设备供电。
  3. 如权利要求1或2所述的控制设备,其中,所述储能装置通过第一连接线路连接所述能量转换设备,在所述第一连接线路中设置开关组件;
    所述处理单元还被配置为:如果所述阻值大于所述电阻阈值,则闭合所述开关组件,以使所述第一连接线路处于闭合状态;如果所述阻值小于或等于所述电阻阈值,则关断所述开关组件,以使所述第一连接线路处于断开状态。
  4. 如权利要求3所述的控制设备,其中,
    所述检测单元包括:故障检测电路,与所述第一连接线路连接;在所述第一连接线路处于断开的状态下,所述第一连接线路和所述故障检测电路形成所述储能装置和所述能量转换设备之间的连接电路;
    所述处理单元还被配置为根据所述故障检测电路检测的所述第一电压、所述第二电压和所述第三电压以及所述故障检测电路的电阻信息计算所述阻值。
  5. 如权利要求4所述的控制设备,其中,
    所述第一连接线路包括:用于连接所述储能装置的正极和所述能量转换设备的第一端的第一线路、用于连接所述储能装置的负极和所述能量转换设备的第二端的第二线路;所述开关组件包括分别设置在所述第一线路、所述第二线路上的第一开关单元、第二开关单元;
    所述故障检测电路包括:分别与所述第一线路和所述第二线路连接的第一采样电路、第二采样电路和第三采样电路;在所述第一开关单元和所述第二开关单元处于断 开的状态下,所述第一采样电路、所述第二采样电路和所述第三采样电路分别检测所述第一电压、所述第二电压和所述第三电压。
  6. 如权利要求5所述的控制设备,其中,
    所述第一采样电路的第一端与所述第一线路的连接点位于所述第一开关单元与所述能量转换设备之间,第二端与所述第二线路的连接点位于所述第二开关单元和所述储能装置之间;所述第一采样电路被配置为通过设置在所述第一采样电路中的第一采样点采集第一采样电压;
    所述第二采样电路的第一端与所述第一线路的连接点位于所述第一开关单元与所述储能装置之间,第二端与所述第二线路的连接点位于所述第二开关单元与所述能量转换设备之间;所述第二采样电路被配置为通过设置在所述第二采样电路中的第二采样点采集第二采样电压;
    所述第三采样电路的第一端与所述第一线路的连接点位于所述第一开关单元与所述储能装置之间,第二端与所述第二线路的连接点位于所述第二开关单元与所述储能装置之间;所述第三采样电路被配置为通过设置在所述第三采样电路中的第三采样点采集第三采样电压;
    所述处理单元还被配置为基于所述第一采样电压和所述第一采样电路的电阻信息计算所述第一电压、基于所述第二采样电压和所述第二采样电路的电阻信息计算所述第二电压以及基于所述第三采样电压和所述第三采样电路的电阻信息计算所述第三电压。
  7. 如权利要求3-6任一项所述的控制设备,还包括:
    第一电流采集电路,被配置为采集与通过所述第一连接线路传输的电流对应的第一检测电流值;
    所述处理单元还被配置为:在控制所述开关组件闭合后,获取所述第一检测电流值、与输入或输出所述能量转换设备的电流相对应的第二检测电流值;在所述第一检测电流值和所述第二检测电流值之差的绝对值小于预设的电流差值阈值的条件下,控制所述开关组件处于闭合状态。
  8. 一种能量转换系统,包括:
    能量转换设备、储能装置、如权利要求1至7任一项所述的控制设备。
  9. 如权利要求8所述的能量转换系统,其中,所述能量转换设备包括:
    第二电流采集单元,被配置为采集与输入或输出所述能量转换设备的电流相对应 的第二检测电流值;
    通信模块,被配置为将所述第二检测电流值发送到所述控制设备的处理单元。
  10. 如权利要求8或9所述的能量转换系统,其中,所述能量转换设备包括:第二连接线路、辅助供电模块和限流电路;
    所述第二连接线路被配置为接收所述储能装置输入的电能或向所述储能装置输出电能;
    所述限流电路设置在所述第二连接线路中,用于对所述第二连接线路上传输的电流进行限流,以使被限流后的电流输入所述辅助供电模块,用以为所述能量转换设备进行供电。
  11. 如权利要求10所述的能量转换系统,其中,所述限流电路包括:限流电阻和第三开关单元;所述第三开关单元与所述限流电阻并联,在所述能量转换设备处于工作状态时,所述能量转换设备闭合所述第三开关单元,用以对所述限流电阻进行短路。
  12. 一种能量转换方法,应用于能量转换系统中,所述能量转换系统包括:能量转换设备、储能装置和控制设备,所述控制设备包括检测单元和处理单元;检测单元用于检测所述储能装置的正极与所述能量转换设备的第一端之间的第一电压、所述储能装置的负极与所述能量转换设备的第二端之间的第二电压和所述储能装置的正极与负极之间的第三电压;所述能量转换方法执行于所述处理单元中,包括:
    根据所述第一电压、所述第二电压和所述第三电压计算与所述能量转换设备相对应的阻值;
    当所述阻值大于电阻阈值时,控制所述储能装置通过所述能量转换设备向电器设备供电。
  13. 如权利要求12所述的方法,还包括:
    当所述阻值小于或等于所述电阻阈值时,禁止所述储能装置通过所述能量转换设备向所述电器设备供电。
  14. 如权利要求12或13所述的方法,其中,所述储能装置通过第一连接线路连接所述能量转换设备,在所述第一连接线路中设置开关组件;所述当所述阻值大于电阻阈值时,控制所述储能装置通过所述能量转换设备向电器设备供电包括:
    当所述阻值大于电阻阈值时,则闭合所述开关组件,以使所述第一连接线路处于闭合状态;
    所述当所述阻值小于或等于所述电阻阈值时,禁止所述储能装置通过所述能量转 换设备向所述电器设备供电包括:
    当所述阻值小于或等于所述电阻阈值时,则关断所述开关组件,以使所述第一连接线路处于断开状态。
  15. 如权利要求14所述的方法,其中,所述检测单元包括:故障检测电路,与所述第一连接线路连接;在所述第一连接线路处于断开的状态下,所述第一连接线路和所述故障检测电路形成所述储能装置和所述能量转换设备之间的连接电路;所述根据所述第一电压、所述第二电压和所述第三电压计算与所述能量转换设备相对应的阻值包括:
    根据所述故障检测电路检测的所述第一电压、所述第二电压和所述第三电压以及所述故障检测电路的电阻信息计算所述阻值。
  16. 如权利要求15所述的方法,其中,所述第一连接线路包括:连接所述储能装置的正极和所述能量转换设备的第一端的第一线路、连接所述储能装置的正极和所述能量转换设备的第二端的第二线路;所述开关组件包括分别设置在所述第一线路、所述第二线路上的第一开关单元、第二开关单元;所述故障检测电路包括分别与所述第一线路和所述第二线路连接的第一采样电路、第二采样电路和第三采样电路;所述方法还包括:
    在所述第一开关单元和所述第二开关单元处于断开的状态下,根据所述第一采样电路采集的第一采样电压和所述第一采样电路的电阻信息计算所述第一电压、根据所述第二采样电路采集的第二采样电压和所述第二采样电路的电阻信息计算所述第二电压,以及根据所述第三采样电路采集的第三采样电压和所述第三采样电路的电阻信息计算所述第三电压。
  17. 如权利要求14-16任一项所述的方法,其中,所述控制设备还包括:第一电流采集电路,被配置为采集与通过所述第一连接线路传输的电流对应的第一检测电流值;所述方法还包括:
    在控制所述开关组件闭合后,获取所述第一检测电流值、与输入所述能量转换设备或所述能量转换设备输出的电流相对应的第二检测电流值;
    在所述第一检测电流值和所述第二检测电流值之差的绝对值小于预设的电流差值阈值的条件下,控制所述开关组件处于闭合状态。
  18. 如权利要求14-17任一项所述的方法,其中,所述能量转换设备包括第二连接线路、辅助供电模块和限流电路;所述第二连接线路被配置为接收所述储能装置输 入的电能或向所述储能装置输出电能;所述限流电路设置在所述第二连接线路中;
    所述限流电路对通过所述第二连接线路上的电流进行限流,以使被限流后的电流输入所述辅助供电模块,用以为所述能量转换设备进行供电。
  19. 如权利要求18所述的方法,其中,所述限流电路包括:限流电阻和第三开关单元;所述第三开关单元与所述限流电阻并联;所述方法包括:
    在所述能量转换设备处于工作状态时,所述能量转换设备闭合所述第三开关单元,用以对所述限流电阻进行短路。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求12至19中任一项所述的方法。
PCT/CN2020/096062 2020-06-15 2020-06-15 控制设备、能量转换系统、能量转换方法以及存储介质 WO2021253153A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/096062 WO2021253153A1 (zh) 2020-06-15 2020-06-15 控制设备、能量转换系统、能量转换方法以及存储介质
CN202080005765.8A CN114080743A (zh) 2020-06-15 2020-06-15 控制设备、能量转换系统、能量转换方法以及存储介质
JP2022550017A JP7330389B2 (ja) 2020-06-15 2020-06-15 制御装置、エネルギー変換システム、エネルギー変換方法、及び記憶媒体
US15/733,803 US11296525B2 (en) 2020-06-15 2020-06-15 Control device, energy conversion system, energy conversion method and storage medium
KR1020227017276A KR102569430B1 (ko) 2020-06-15 2020-06-15 제어 장치, 에너지 변환 시스템, 에너지 변환 방법 및 저장 매체
EP20808273.5A EP3958428B1 (en) 2020-06-15 2020-06-15 Control device, energy converting system, energy converting method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096062 WO2021253153A1 (zh) 2020-06-15 2020-06-15 控制设备、能量转换系统、能量转换方法以及存储介质

Publications (1)

Publication Number Publication Date
WO2021253153A1 true WO2021253153A1 (zh) 2021-12-23

Family

ID=78826028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096062 WO2021253153A1 (zh) 2020-06-15 2020-06-15 控制设备、能量转换系统、能量转换方法以及存储介质

Country Status (6)

Country Link
US (1) US11296525B2 (zh)
EP (1) EP3958428B1 (zh)
JP (1) JP7330389B2 (zh)
KR (1) KR102569430B1 (zh)
CN (1) CN114080743A (zh)
WO (1) WO2021253153A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123965A (ja) * 2021-02-15 2022-08-25 本田技研工業株式会社 電力供給回路
US11791641B2 (en) * 2021-11-17 2023-10-17 GM Global Technology Operations LLC High-voltage component protection during vehicle recharging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026577A (zh) * 2010-09-27 2013-04-03 三菱电机株式会社 放电系统及电动车辆
JP2013121256A (ja) * 2011-12-07 2013-06-17 Toyota Motor Corp 電力変換装置
CN103633708A (zh) * 2013-12-10 2014-03-12 周树林 内循环发电装置及电动车

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075311B1 (en) 2005-04-28 2006-07-11 Yazaki Corporation Insulation detecting device for non-grounded power source
JP5113741B2 (ja) * 2006-04-13 2013-01-09 パナソニック株式会社 電池パックおよびその断線検知方法
DE102009060662A1 (de) 2009-12-22 2011-07-14 Robert Bosch GmbH, 70469 Einrichtung und Verfahren zum Testen der Versorgung eines elektrischen Verbrauchers
JP2014020914A (ja) * 2012-07-18 2014-02-03 Keihin Corp 漏電検出装置
CN104518534A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种电路保护方法及装置、充电设备
WO2015075821A1 (ja) * 2013-11-22 2015-05-28 三菱電機株式会社 絶縁検出器及び電気機器
JP6433305B2 (ja) 2014-04-09 2018-12-05 矢崎総業株式会社 非接地電源の絶縁検出装置及び絶縁検出方法
KR102042756B1 (ko) * 2016-10-10 2019-11-08 주식회사 엘지화학 진단 장치 및 이를 포함하는 전원 시스템
KR102256095B1 (ko) * 2017-11-29 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
CN110736912B (zh) * 2018-07-20 2021-06-08 宁德时代新能源科技股份有限公司 电路故障的检测方法和采样检测电路
DE102018217116B3 (de) 2018-10-08 2020-03-12 Volkswagen Aktiengesellschaft Hochvoltsystem und Verfahren zur Überwachung von Isolationsfehlern in einem Hochvoltsystem
KR102244141B1 (ko) * 2018-10-12 2021-04-22 주식회사 엘지화학 배터리 관리 장치 및 방법
CN110470983A (zh) 2019-08-29 2019-11-19 恒大新能源科技集团有限公司 继电器的故障检测系统及其检测方法
CN110912085A (zh) * 2019-12-03 2020-03-24 广州小鹏汽车科技有限公司 一种短路故障保护电路及方法、车辆、存储介质
CN110764022A (zh) * 2019-12-05 2020-02-07 杭州协能科技股份有限公司 绝缘设备接地线故障的诊断电路及诊断方法
CN111060791B (zh) * 2019-12-30 2022-05-03 华人运通(江苏)技术有限公司 绝缘故障检测方法、装置、电动汽车、终端设备及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026577A (zh) * 2010-09-27 2013-04-03 三菱电机株式会社 放电系统及电动车辆
JP2013121256A (ja) * 2011-12-07 2013-06-17 Toyota Motor Corp 電力変換装置
CN103633708A (zh) * 2013-12-10 2014-03-12 周树林 内循环发电装置及电动车

Also Published As

Publication number Publication date
EP3958428A4 (en) 2022-02-23
JP2023504310A (ja) 2023-02-02
CN114080743A (zh) 2022-02-22
KR20220099550A (ko) 2022-07-13
US20210391736A1 (en) 2021-12-16
JP7330389B2 (ja) 2023-08-21
EP3958428A1 (en) 2022-02-23
US11296525B2 (en) 2022-04-05
KR102569430B1 (ko) 2023-08-22
EP3958428B1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP6833984B2 (ja) バッテリ、端末、および充電システム
US9829529B2 (en) Power supply apparatus
TWI751229B (zh) 控制裝置、控制系統、蓄電裝置以及電腦可讀取媒體
AU2011346099B2 (en) Power supply device
US9373973B2 (en) Apparatus, system, and method of preventing battery rack damage by measuring current
CN106611885B (zh) 异常判定装置
CN105429226A (zh) 大容量充放电电池管理系统
WO2021253153A1 (zh) 控制设备、能量转换系统、能量转换方法以及存储介质
JP2015154711A (ja) バッテリー管理システム
CN105051552A (zh) 电压传感器的故障检测装置
KR20130015652A (ko) 이차 전지의 과전류 보호 장치, 보호 방법 및 전지 팩
KR20190130901A (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치 및 방법
CN104704697A (zh) 车载用蓄电装置及该车载用蓄电装置的控制方法
CN105811495A (zh) 车用锂电池的安全保护装置
JP5422810B2 (ja) 予備電源システム及び予備電源システム保護方法
JP6087675B2 (ja) 電池モジュール
JP2019514340A (ja) 電圧分配を用いたヒューズ診断装置および方法
CN110336357A (zh) 一种新型锂电池保护板
CN106299180B (zh) 电动工具和电池包的组合
CN202374016U (zh) 应急电源
KR20130089365A (ko) 배터리 팩의 고장 진단 방법 및 장치, 이를 이용한 전력 릴레이 어셈블리
JP2007166747A (ja) 組電池および組電池の充電方法
JP6606996B2 (ja) 電池システム、二次電池の電池監視装置および二次電池の監視方法
EP2916138B1 (en) Battery pack test system and method for testing said battery pack
US20210075243A1 (en) Battery pack, charging system, and method for controlling charging of battery pack

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020808273

Country of ref document: EP

Effective date: 20201127

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017276

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022550017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE