WO2021251147A1 - Semiconductor light emitting device and method for manufacturing semiconductor light emitting device - Google Patents

Semiconductor light emitting device and method for manufacturing semiconductor light emitting device Download PDF

Info

Publication number
WO2021251147A1
WO2021251147A1 PCT/JP2021/020081 JP2021020081W WO2021251147A1 WO 2021251147 A1 WO2021251147 A1 WO 2021251147A1 JP 2021020081 W JP2021020081 W JP 2021020081W WO 2021251147 A1 WO2021251147 A1 WO 2021251147A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
adhesive
substrate
Prior art date
Application number
PCT/JP2021/020081
Other languages
French (fr)
Japanese (ja)
Inventor
忠宏 岡▲崎▼
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022530122A priority Critical patent/JPWO2021251147A1/ja
Publication of WO2021251147A1 publication Critical patent/WO2021251147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to a semiconductor light emitting device in which a reflective case is adhered to a substrate and a method for manufacturing the semiconductor light emitting device.
  • a semiconductor light emitting device in which a reflective case is adhered to a substrate is known.
  • the reflection case used in this type of semiconductor light emitting device reflects a part of the light emitted from the semiconductor light emitting element mounted on the substrate to emit light in a specific direction.
  • the following Patent Document 1 describes an LED module as a semiconductor light emitting device.
  • the LED module includes an LED chip as a semiconductor light emitting element, a substrate on which the LED chip is mounted, and a frame-shaped case that is stacked on the substrate and has a surrounding surface surrounding the LED chip.
  • the substrate is made of, for example, a glass epoxy resin, and the case is made of a polyphthalamide, a liquid crystal polymer, or the like.
  • the inside of the surrounding surface surrounding the LED chip in the case is filled with a sealing resin, and the LED chip is sealed with the sealing resin.
  • the case and the substrate are bonded by an adhesive layer.
  • the entire bottom surface of the case having a surrounding surface surrounding each LED chip is adhered to the main surface of the substrate on which the plurality of LED chips are mounted by an adhesive. It is formed by forming an article and dicing (cutting) this intermediate article.
  • a thermosetting adhesive is used to bond the substrate and the case, it is necessary to heat the substrate and the case in order to cure the adhesive. This heating causes the substrate and case to expand, and after the adhesive has hardened, the substrate and case shrink as the temperature drops.
  • the case made of polyphthalamide or the like has a higher coefficient of thermal expansion than the substrate made of glass epoxy resin or the like. Therefore, after the adhesive is cured, there is a problem that the difference between the shrinkage of the substrate and the shrinkage of the case tends to cause a warp that becomes convex in the direction from the case to the substrate.
  • the purpose of the present disclosure is to suppress the warp of the semiconductor light emitting device in which the reflective case is adhered to the substrate.
  • a semiconductor light emitting device that solves the above problems has a substrate, a semiconductor light emitting device mounted on the substrate, an inner wall surface surrounding the semiconductor light emitting element, and an adhesive surface facing the substrate, and is more than the substrate.
  • a reflective case having a high expansion rate and an adhesive for adhering the substrate and the reflective case are provided, and a recess is formed on the adhesive surface of the reflective case.
  • the method for manufacturing a semiconductor light emitting device that solves the above problems is a method for manufacturing a semiconductor light emitting device that adheres a substrate on which a semiconductor light emitting element is mounted and a reflective case having a higher expansion rate than the substrate with an adhesive.
  • a plurality of reflective case coupling forming steps which have an adhesive surface to which the adhesive comes into contact and a recess formed in the adhesive surface to form a reflective case coupling in which a plurality of the reflective cases are integrally formed.
  • FIG. 1 is a sectional view taken along line 2-2. Back view showing the reflective case.
  • FIG. 4 is a sectional view taken along line 5-5 of FIG.
  • the back view which shows the reflection case as a modification with respect to FIG.
  • FIG. 3 is a cross-sectional view showing a light emitting device connecting body for forming a plurality of semiconductor light emitting devices according to the second embodiment.
  • the semiconductor light emitting device 20 of the first embodiment will be described with reference to FIGS. 1 to 7.
  • the semiconductor light emitting device 20 is formed by cutting the light emitting device coupling 1 shown in FIGS. 1 and 2 in a predetermined region (the region of the alternate long and short dash line in FIG. 1).
  • the X direction in FIG. 1 will be described as forward, the Y direction as left, and the Z direction as upward.
  • the light emitting device coupling body 1 has, for example, a rectangular shape in an XY plane, and includes a plurality of semiconductor light emitting elements 6, a substrate connecting body 3, and a reflective case connecting body 7, as shown in FIGS. 1 and 2. ing.
  • the plurality of semiconductor light emitting elements 6 are, for example, light emitting diodes (LEDs) that emit visible light, and each has a pair of terminals.
  • LEDs light emitting diodes
  • the specific configuration of the semiconductor light emitting device 6 is not limited to the LED and is arbitrary.
  • the substrate connector 3 is, for example, rectangular in the XY plane, and a pair of electrodes 4A and 4B (see FIG. 4) are provided for each region corresponding to each semiconductor light emitting device 6 on the upper surface of the insulating base material.
  • the material of the base material can be, for example, glass epoxy. Glass epoxy is made by impregnating glass fibers with a liquid epoxy resin and performing a thermosetting treatment to form a plate.
  • the substrate connecting body 3 has a predetermined thickness (plate thickness), and the thickness direction of the substrate connecting body 3 is the Z direction.
  • the pair of electrodes 4A and 4B are formed of copper foil or the like and are electrically connected to the wiring (pattern of copper foil or the like) on the upper surface (front surface) and the lower surface (back surface) of the base material.
  • one electrode 4A one terminal of the semiconductor light emitting device 6 is die-bonded by a conductive member such as silver paste.
  • the other electrode 4B is wire-bonded to the other terminal of the semiconductor light emitting device 6 by a thin metal wire 15 such as a gold wire.
  • the reflective case connecting body 7 is, for example, a rectangular frame-shaped member in the XY plane, and is laminated and adhered on the substrate connecting body 3.
  • a white resin is used for the reflective case connecting body 7, and the material has a larger linear expansion coefficient (1 / K. Linear expansion coefficient) in the Y direction than the substrate connecting body 3.
  • polyphthalamide for the reflective case connector 7, for example, polyphthalamide (PPA), liquid crystal polymer (LCP), silicone resin, or the like is used.
  • PPA polyphthalamide
  • LCP liquid crystal polymer
  • silicone resin or the like
  • Polyphthalamide is a nylon-based resin and is a heat-resistant semi-crystalline engineering plastic.
  • the liquid crystal polymer may be, for example, polyester-based, polyester amide, polyazomethin or the like.
  • titanium oxide is added to the resin constituting the reflective case connecting body 7 for light reflection and heat dissipation.
  • a filler such as aluminum nitride or silica may be contained in the reflective case connecting body 7. Due to the anisotropy of the filler, the reflective case connecting body 7 has a direction in which it easily expands and contracts and a direction in which it does not easily expand and contract. In the present embodiment, due to the anisotropy of the filler, the reflective case coupling 7 has larger thermal expansion and contraction in the Y direction (first direction) than in the X direction (second direction).
  • the reflective case coupling 7 is formed with a plurality of rectangular element accommodating portions 8 accommodating each semiconductor light emitting element 6 mounted on the substrate coupling 3.
  • the element accommodating portion 8 of the present embodiment is a hole formed through the reflective case connecting body 7 in the vertical direction and surrounds each semiconductor light emitting element 6.
  • the plurality of element accommodating portions 8 are arranged side by side at intervals in the front-rear and left-right directions.
  • Each element accommodating portion 8 has an inner wall surface 8A whose diameter is expanded toward the upper side, and an opening 8B is formed in the reflective case connecting body 7 by the inner wall surface 8A as shown in FIG.
  • the size of the opening 8B (area of the XY plane) seen from the Z direction increases toward the upper side, that is, as the distance from the substrate 3A increases.
  • the inner wall surface 8A of the element accommodating portion 8 surrounds the semiconductor light emitting element 6. That is, the element accommodating portion 8 forms an accommodating space for accommodating the semiconductor light emitting element 6, and is partitioned by an inner wall surface 8A surrounding the semiconductor light emitting element 6. In this way, the element accommodating unit 8 accommodates the semiconductor light emitting element 6. The light emitted laterally from the semiconductor light emitting device 6 is reflected by the inner wall surface 8A of each element accommodating portion 8 and is irradiated upward.
  • the inner wall surface 8A has a pair of surfaces 8AA, 8AB (FIG. 2) facing each other and a pair of surfaces 8AC, 8AD (FIG. 5) extending in a direction orthogonal to the pair of surfaces 8AA, 8AB and facing each other.
  • the lower surface (bottom surface) of the reflective case connecting body 7 has an adhesive surface 9 that is overlapped with the adhesive 12 in contact with each other.
  • the adhesive surface 9 is formed so as to surround the semiconductor light emitting device 6 when viewed from the Z direction.
  • the lower end of the inner wall surface 8A and the end portion of the adhesive surface 9 near the element accommodating portion 8 are connected to each other.
  • the portion where the lower end of the inner wall surface 8A and the adhesive surface 9 are connected is an acute-angled edge 8E, and the edge 8E is an inner peripheral end of the adhesive surface 9.
  • the edge 8E corresponds to the peripheral edge of the opening 8B formed by the inner wall surface 8A.
  • the adhesive surface 9 has a flat surface 9A and a plurality of slit-shaped recesses 10.
  • a plurality of recesses 10 are arranged side by side at intervals in the left-right direction, and as shown in FIG. 3, extend linearly in the front-rear direction.
  • Each recess 10 is formed in a portion of the adhesive surface 9 other than the peripheral edge of the element accommodating portion 8, and is specifically arranged at a position having a predetermined gap from the element accommodating portion 8 on the adhesive surface 9.
  • the width and depth of each recess 10 are set to dimensions that can reduce the influence of expansion and contraction of the reflective case connecting body 7 when the temperature changes while maintaining a predetermined strength of the reflective case 7A.
  • the adhesive surface 9 is a flat surface along the X direction and the Y direction. Since the X direction and the Y direction are orthogonal to the Z direction, it can be said that "viewed from the Z direction" is “viewed from the direction perpendicular to the adhesive surface 9.” Further, in the present embodiment, the second direction (X direction) is a direction orthogonal to the first direction (Y direction) when viewed from the Z direction.
  • the recesses 10 have a plurality of recesses 10A (first recesses) provided between adjacent element accommodating portions 8 in the front-rear direction (second direction) and left-right directions (second direction).
  • (1 direction) includes a plurality of recesses 10B (second recesses) provided between adjacent element accommodating portions 8.
  • the recess group 10A and the recess group 10B are arranged alternately.
  • the front-rear direction corresponds to the X direction
  • the left-right direction corresponds to the Y direction.
  • each recess group 10A is composed of a plurality of first recesses 11A.
  • the plurality of first recesses 11A are arranged at intervals in the left-right direction while being aligned with each other in the front-rear direction. More specifically, the plurality of first recesses 11A are arranged at equal pitches in the left-right direction. The lengths of the first recesses 11A in the front-rear direction are equal to each other.
  • each recess group 10B is arranged between the element accommodating portions 8 adjacent to each other in the left-right direction.
  • each recess group 10B is composed of a plurality of second recesses 11B.
  • the plurality of second recesses 11B are arranged so as to be aligned with each other in the front-rear direction and spaced apart from each other in the left-right direction. More specifically, the plurality of second recesses 11B are arranged at equal pitches in the left-right direction. In this embodiment, the pitch of the plurality of second recesses 11B is equal to the pitch of the plurality of first recesses 11A.
  • the pitch of the plurality of first recesses 11A and the pitch of the plurality of second recesses 11B can be arbitrarily changed.
  • the pitches of the plurality of first recesses 11A and the pitches of the plurality of second recesses 11B may be different from each other.
  • each second recess 11B in the front-rear direction is longer than the length of each first recess 11A in the front-rear direction.
  • Each recess group 10B is formed so as to straddle a plurality of element accommodating portions 8 when viewed from the left and right directions.
  • each of the second recesses 11B is formed over the entire front-rear direction of the adhesive surface 9.
  • FIG. 3 shows a region 20A in which the reflective case 7A is formed by the alternate long and short dash line.
  • a part of the recess 10 is formed in the region 20A where the reflective case 7A is formed.
  • the plurality of regions 20A are all the same size. More specifically, as shown in FIG. 3, a part of the plurality of recesses 10A is formed in the region 20A where the reflection case 7A is formed.
  • the recess 10 may be formed outside the region where the reflective case 7A is formed. More specifically, as shown in FIG. 6, the plurality of recesses 10A and the plurality of recesses 10B may each be formed outside the region 20A in which the reflection case 7A is formed.
  • the distance between the recesses 10A and the recesses 10B adjacent to each other in the left-right direction is the same as the pitch of the plurality of first recesses 11A (the pitch of the plurality of second recesses 11B). Is.
  • the distance between the recesses 10A and the recesses 10B adjacent to each other in the left-right direction can be reduced by reducing the number of the plurality of first recesses 11A. It may be larger than the pitch of 11A (the pitch of the plurality of second recesses 11B).
  • an adhesive 12 (adhesive layer) is arranged between the substrate connecting body 3 and the reflective case connecting body 7.
  • the adhesive 12 is formed over the entire circumference of the adhesive surface 9 so as to surround each semiconductor light emitting element 6 and each element accommodating portion 8 when viewed from the Z direction.
  • the adhesive 12 is formed on the entire surface of the adhesive surface 9, but the present invention is not limited to this, and the adhesive surface 9 may be provided with a region in which the adhesive 12 is not partially formed.
  • a liquid or film-like adhesive can be used, and for example, an epoxy-based, polyimide-based, or silicone-based adhesive can be used.
  • the adhesive 12 includes a filling portion 12A that penetrates into the recess 10 of the reflective case connector 7.
  • the adhesive 12 has a portion that has entered the recess 10 and a portion that is interposed between the adhesive surface 9 and the substrate 3A.
  • a plurality of semiconductor light emitting devices 20 are formed by cutting the light emitting device coupling body 1 in a predetermined region by, for example, rotation of a circular blade or dicing D (see FIG. 2) by irradiation with a laser beam.
  • the semiconductor light emitting device 20 is overlapped with a substrate 3A cut from the substrate connecting body 3, one semiconductor light emitting element 6 mounted on the substrate 3A, and a reflective case 3A. It is provided with a reflective case 7A cut out from the connecting body 7.
  • the substrate 3A includes electrodes 4A and 4B.
  • the substrate 3A has a predetermined thickness (plate thickness), and the thickness direction of the substrate 3A is the Z direction.
  • the substrate 3A and the reflective case 7A are bonded with an adhesive 12.
  • the reflective case 7A is provided with an element accommodating portion 8 having an inner wall surface 8A, an adhesive surface 9, and a recess 10 recessed with respect to the adhesive surface 9. These configurations have already been described.
  • the element accommodating portion 8 of the reflective case 7A is filled with a sealing resin 13 that transmits light.
  • the sealing resin 13 is a transparent or translucent resin material having transparency to the light emitted by the semiconductor light emitting element 6, and is, for example, an epoxy resin, a silicone resin, an acrylic resin, a polyvinyl resin, or the like.
  • the encapsulating resin 13 is a diffuser that diffuses light from the semiconductor light emitting element 6, a phosphor that is excited by the light from the semiconductor light emitting element 6 and emits light having a wavelength different from the wavelength of the light from the semiconductor light emitting element 6, and the like. May be included.
  • the method for manufacturing the semiconductor light emitting device 20 includes, for example, a reflection case connecting body forming step, an bonding step, and a cutting step. Further, the manufacturing method of the semiconductor light emitting device 20 includes a semiconductor light emitting element mounting process. In this embodiment, the semiconductor light emitting device mounting step, the reflective case connecting body forming step, the bonding step, and the cutting step are carried out in this order. Hereinafter, details of each step will be described.
  • Each terminal of the plurality of semiconductor light emitting elements 6 is bonded to the corresponding electrodes 4A and 4B with respect to the substrate connector 3 in which the plurality of substrates 3A are integrally connected.
  • a resin such as polyphthalamide is injected into a mold (not shown), the resin is cured, and then the resin is taken out from the mold.
  • a convex portion for forming the concave portion 10 of the reflective case 7A is formed in the mold.
  • the recess 10 is formed when the reflective case connecting body 7 in which the plurality of reflective cases 7A are integrally connected is formed.
  • the formation of the concave portion 10 is not limited to this, and the concave portion 10 may be formed by irradiating the adhesive surface 9 with a laser beam after forming the reflective case connecting body 7.
  • the adhesive 12 is applied to the lower surface (adhesive surface 9) of the reflective case connecting body 7.
  • the adhesive 12 is applied to the region where the reflective case connecting body 7 overlaps (the region other than each element accommodating portion 8).
  • the lower surface of the reflective case connecting body 7 and the upper surface of the substrate connecting body 3 are bonded together with the adhesive 12 sandwiched between them (FIG. 1).
  • the adhesive 12 enters the concave portion 10 of the reflective case connecting body 7, and the filling portion 12A of the adhesive 12 is filled in the concave portion 10 (FIG. 2).
  • the light emitting device connecting body 1 is heated to a predetermined temperature, and the adhesive 12 is thermoset. After that, when the liquid sealing resin 13 is injected into each element accommodating portion 8 of the reflective case coupling 7 and cured, the semiconductor light emitting element 6 in the element accommodating portion 8 is covered with the encapsulating resin 13. Become.
  • the concave portion 10 of the reflective case connector 7 makes the reflective case connector 7 flat.
  • the area of the adhesive surface 9 is smaller than that in the case where the recess 10 is not provided.
  • the semiconductor light emitting device 20 has a substrate 3A, a semiconductor light emitting element 6 mounted on the substrate 3A, an inner wall surface 8A surrounding the semiconductor light emitting element 6, and an adhesive surface 9 facing the substrate 3A.
  • a reflective case 7A having a higher expansion rate than 3A and an adhesive 12 for adhering the substrate 3A and the reflective case 7A are provided, and a recess 10 is formed on the adhesive surface 9 of the reflective case 7A.
  • the concave portion 10 is formed on the adhesive surface 9 in contact with the adhesive 12 in the reflective case 7A, the area of the region where the expansion and contraction of the reflective case 7A near the adhesive surface 9 occurs is the concave portion. It is reduced by 10 minutes. As a result, the influence of the shrinkage of the reflective case 7A, which has a higher expansion rate than the substrate 3A, on the substrate 3A and the adhesive 12 is suppressed. Therefore, the substrate 3A and the reflective case 7A are expanded and contracted from the reflective case 7A to the substrate. It is possible to suppress the warp that becomes convex in the direction toward 3A.
  • the recess 10 extends in a slit shape on the adhesive surface 9. In this way, the slit-shaped recess 10 can suppress the influence of expansion and contraction of the reflective case 7A in the direction in which the recess 10 intersects the extending direction. Further, the recess 10 can be easily formed in the reflective case 7A.
  • the expansion coefficient in the first direction (Y direction) along the adhesive surface 9 is the second direction (X direction) along the adhesive surface 9 and orthogonal to the first direction. It is larger than the coefficient of expansion to, and the recess 10 extends in the second direction.
  • the reflective case 7A contains a filler, and the expansion coefficient in the first direction is larger than the expansion rate in the second direction due to the anisotropy of the filler.
  • the concave portion 10 expands the reflective case 7A in the first direction. , The influence of shrinkage can be suppressed.
  • the second direction (X direction) is a direction orthogonal to the first direction (Y direction).
  • At least a part of the adhesive 12 is contained in the recess 10.
  • the adhesive 12 in the recess 10 increases the adhesive area between the adhesive 12 and the reflective case 7A, so that the adhesive strength between the substrate 3A and the reflective case 7A can be increased.
  • the periphery of the opening 8B formed by the inner wall surface 8A of the adhesive surface 9 is in contact with the adhesive 12 over the entire circumference. By doing so, it is possible to increase the adhesive strength between the substrate 3A and the reflective case 7A around the opening 8B formed by the inner wall surface 8A of the adhesive surface 9.
  • the recess 10 is formed in a portion of the adhesive surface 9 other than the peripheral portion of the opening 8B formed by the inner wall surface 8A. By doing so, it is possible to suppress a decrease in adhesive strength due to the formation of the recess 10 in the peripheral edge portion of the opening 8B formed by the inner wall surface 8A.
  • the method for manufacturing the semiconductor light emitting device 20 is a method for manufacturing the semiconductor light emitting device 20 in which the substrate 3A on which the semiconductor light emitting element 6 is mounted and the reflective case 7A having a higher expansion rate than the substrate 3A are bonded with an adhesive 12.
  • a reflective case connector having an adhesive surface 9 with which the adhesive 12 comes into contact and a recess 10 formed in the adhesive surface 9 to form a reflective case connector 7 in which a plurality of reflective cases 7A are integrally formed.
  • a cutting step of forming the reflective case 7A and the substrate 3A to which the adhesive 12 is adhered by cutting the body 7 and the substrate connecting body 3 is provided.
  • the concave portion 10 is formed on the adhesive surface 9 in contact with the adhesive 12 in the reflective case connecting body 7 formed in the reflective case connecting body forming step. Therefore, the area of the region where the expansion and contraction of the reflective case connecting body 7 bonded to the substrate connecting body 3 in the bonding step near the bonding surface 9 occurs is reduced by the amount of the recess 10. As a result, the influence on the substrate 3A and the adhesive 12 due to the shrinkage of the reflective case coupling 7 having a higher expansion coefficient than the substrate coupling 3 is suppressed. Therefore, with respect to the substrate 3A and the reflective case 7A, it is possible to suppress the warp that becomes convex in the direction from the reflective case 7A to the substrate 3A after expansion and contraction.
  • the second embodiment will be described with reference to FIG.
  • the inner wall surface 8A of the element accommodating portion 8 of the reflection case 7A of the first embodiment has an enlarged diameter upward, but the inner wall surface 31A of the element accommodating portion 31 of the reflection case 30A of the second embodiment is as shown in FIG.
  • the cross section of the XY plane orthogonal to the Z direction has the same shape for the entire length in the Z direction (axial direction of the element accommodating portion 31).
  • the same configurations as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the element accommodating portion 31 has a rectangular through hole and has a constant shape and size in the Z direction.
  • the inner wall surface 31A of the element accommodating portion 31 has an angle orthogonal to the upper surface (plate surface) of the substrate 3A.
  • the extending direction of the recess 10 of each of the above embodiments is a second direction (X direction) orthogonal to the first direction (Y direction) in which expansion and contraction of the reflective case 7A are likely to occur.
  • the extending direction of the recess 10 may be such that the intersecting direction other than orthogonal to the first direction (Y direction) is the second direction, and the recess extends in this second direction.
  • the recess 10 of each of the above embodiments has a shape that extends linearly in a slit shape, but the present invention is not limited to this.
  • it may be a circular shape, a polygonal shape, or a concave portion extending in a curved shape.
  • the shape in the cross-sectional view obtained by cutting the recess 10 in a plane along the Z direction and the extending direction of the recess 10 (X direction in each embodiment) is not limited to a rectangular shape and can be arbitrarily changed. ..
  • the shape of the recess 10 in the cross-sectional view may be V-shaped, semicircular, polygonal, or the like.
  • a part of the recesses 10A may be omitted from the plurality of recesses 10A arranged apart from each other in the front-rear direction. -In each of the above embodiments, a part of the recesses 10A may be omitted from the plurality of recesses 10A arranged apart from each other in the left-right direction.
  • a part of the recesses 10B may be omitted from the plurality of recesses 10B arranged apart from each other in the left-right direction.
  • one of the plurality of recesses 10A and the plurality of recesses 10B may be omitted.
  • a part of the second recess 11B of the plurality of recess groups 10B may be formed in the region of the reflective case connecting body 7 where the reflective case 7A is formed.
  • the plurality of second recesses 11B of the plurality of recesses 10B may be arranged apart from each other in the front-rear direction. In this case, the lengths of the plurality of second recesses 11B in the front-rear direction can be arbitrarily changed.
  • the adhesive 12 is configured to be filled in the recess 10, but the present invention is not limited to this, and a gap may be formed in the recess 10 in which the adhesive 12 is not contained.
  • the recess 10 is configured to suppress expansion and contraction of the reflective cases 7A and 30A during thermal curing of the adhesive, but the present invention is not limited to this.
  • the recess 10 may be used to suppress expansion and contraction of the sealing resin 13 during heating.

Abstract

A semiconductor light emitting device (20) comprises: a substrate (3A); a semiconductor light emitting element (6) mounted on the substrate (3A); a reflecting case (7A) having an inner wall surface (8A) surrounding the semiconductor light emitting element (6) and an adhesive surface (9) opposing the substrate (3A), the reflecting case (7A) having an expansion rate higher than that of the substrate (3A); and an adhesive agent (12) adhering the substrate (3A) and the reflecting case (7A) to each other. The adhesive surface (9) of the reflecting case (7A) has a recess (10) formed therein.

Description

半導体発光装置及び半導体発光装置の製造方法Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
 本開示は、基板に反射ケースが接着された半導体発光装置及び半導体発光装置の製造方法に関する。 The present disclosure relates to a semiconductor light emitting device in which a reflective case is adhered to a substrate and a method for manufacturing the semiconductor light emitting device.
 従来、基板に反射ケースが接着された半導体発光装置が知られている。この種の半導体発光装置に用いられる反射ケースは、基板に実装された半導体発光素子からの出射光の一部を反射することで特定方向に光を出射させている。 Conventionally, a semiconductor light emitting device in which a reflective case is adhered to a substrate is known. The reflection case used in this type of semiconductor light emitting device reflects a part of the light emitted from the semiconductor light emitting element mounted on the substrate to emit light in a specific direction.
 下記特許文献1には、半導体発光装置としてのLEDモジュールについて記載されている。LEDモジュールは、半導体発光素子としてのLEDチップと、LEDチップが実装される基板と、基板に重ねられ、LEDチップを囲む包囲面を有する枠状のケースとを備える。基板は、例えばガラスエポキシ樹脂からなり、ケースは、ポリフタルアミド、液晶ポリマ等からなる。ケースにおけるLEDチップを囲む包囲面の内側には、封止樹脂が充填され、LEDチップは封止樹脂により封止される。ケースと基板とは、接着層により接着されている。 The following Patent Document 1 describes an LED module as a semiconductor light emitting device. The LED module includes an LED chip as a semiconductor light emitting element, a substrate on which the LED chip is mounted, and a frame-shaped case that is stacked on the substrate and has a surrounding surface surrounding the LED chip. The substrate is made of, for example, a glass epoxy resin, and the case is made of a polyphthalamide, a liquid crystal polymer, or the like. The inside of the surrounding surface surrounding the LED chip in the case is filled with a sealing resin, and the LED chip is sealed with the sealing resin. The case and the substrate are bonded by an adhesive layer.
特開2013-26510号公報Japanese Unexamined Patent Publication No. 2013-26510
 ところで、上記のLEDモジュールは、複数の基板を形成するために複数のLEDチップが搭載された基板の主面に、各LEDチップを囲む包囲面を有するケースの底面全体を接着剤により接着した中間品を形成し、この中間品をダイシング(切断)して形成される。基板とケースとの接着に熱硬化性の接着剤を用いる場合には、接着剤を硬化させるために、基板及びケースを加熱する必要がある。この加熱により、基板及びケースは膨張し、接着剤の硬化後に温度低下に伴って基板及びケースは収縮する。 By the way, in the above LED module, in order to form a plurality of substrates, the entire bottom surface of the case having a surrounding surface surrounding each LED chip is adhered to the main surface of the substrate on which the plurality of LED chips are mounted by an adhesive. It is formed by forming an article and dicing (cutting) this intermediate article. When a thermosetting adhesive is used to bond the substrate and the case, it is necessary to heat the substrate and the case in order to cure the adhesive. This heating causes the substrate and case to expand, and after the adhesive has hardened, the substrate and case shrink as the temperature drops.
 ここで、一般に、ポリフタルアミド等からなるケースは、ガラスエポキシ樹脂等からなる基板よりも熱膨張率が高い。そのため、接着剤の硬化後において、基板の収縮とケースの収縮との差により、ケースから基板に向かう方向において凸となるような反りが発生しやすいという問題がある。 Here, in general, the case made of polyphthalamide or the like has a higher coefficient of thermal expansion than the substrate made of glass epoxy resin or the like. Therefore, after the adhesive is cured, there is a problem that the difference between the shrinkage of the substrate and the shrinkage of the case tends to cause a warp that becomes convex in the direction from the case to the substrate.
 本開示の目的は、基板に反射ケースが接着された半導体発光装置の反りを抑制することにある。 The purpose of the present disclosure is to suppress the warp of the semiconductor light emitting device in which the reflective case is adhered to the substrate.
 上記課題を解決する半導体発光装置は、基板と、前記基板上に実装された半導体発光素子と、前記半導体発光素子を取り囲む内壁面と前記基板と対向する接着面とを有し且つ前記基板よりも膨張率が高い反射ケースと、前記基板と前記反射ケースとを接着する接着剤と、を備え、前記反射ケースの前記接着面には、凹部が形成されている。 A semiconductor light emitting device that solves the above problems has a substrate, a semiconductor light emitting device mounted on the substrate, an inner wall surface surrounding the semiconductor light emitting element, and an adhesive surface facing the substrate, and is more than the substrate. A reflective case having a high expansion rate and an adhesive for adhering the substrate and the reflective case are provided, and a recess is formed on the adhesive surface of the reflective case.
 本構成によれば、反射ケースにおける接着剤が接触する接着面には凹部が形成されているため、反射ケースにおける接着面寄りの膨張、収縮を生じる領域の面積が凹部の分だけ小さくなる。これにより、基板よりも膨張率が高い反射ケースの収縮による基板及び接着剤への影響が抑制されるため、基板及びケースについて、膨張、収縮後のケースから基板に向かう方向において凸となる反りを抑制することができる。 According to this configuration, since a recess is formed on the adhesive surface of the reflective case to which the adhesive comes into contact, the area of the region where expansion and contraction of the reflective case near the adhesive surface occurs is reduced by the amount of the recess. As a result, the influence of the shrinkage of the reflective case, which has a higher expansion coefficient than the substrate, on the substrate and the adhesive is suppressed. It can be suppressed.
 上記課題を解決する半導体発光装置の製造方法は、半導体発光素子が実装された基板と前記基板よりも膨張率が高い反射ケースとを接着剤で接着する半導体発光装置の製造方法であって、前記接着剤が接触する接着面と、前記接着面に形成された凹部とを有し、複数の前記反射ケースが一体に形成された反射ケース連結体を形成する反射ケース連結体形成工程と、複数の前記基板が一体に形成された基板連結体と、前記反射ケース連結体形成工程で形成された前記反射ケース連結体とを接着剤で接着する接着工程と、前記反射ケース連結体および前記基板連結体を切断することによって、前記接着剤が接着された前記反射ケースおよび前記基板を形成する切断工程と、を備える。 The method for manufacturing a semiconductor light emitting device that solves the above problems is a method for manufacturing a semiconductor light emitting device that adheres a substrate on which a semiconductor light emitting element is mounted and a reflective case having a higher expansion rate than the substrate with an adhesive. A plurality of reflective case coupling forming steps, which have an adhesive surface to which the adhesive comes into contact and a recess formed in the adhesive surface to form a reflective case coupling in which a plurality of the reflective cases are integrally formed. An adhesive step of adhering a substrate connecting body on which the substrate is integrally formed and the reflective case connecting body formed in the reflective case connecting body forming step with an adhesive, and the reflective case connecting body and the substrate connecting body. It comprises a cutting step of forming the reflective case and the substrate to which the adhesive is adhered by cutting.
 本構成によれば、反射ケースにおける接着剤が接触する接着面には凹部が形成されているため、反射ケースにおける接着面寄りの膨張、収縮を生じる領域の面積が凹部の分だけ小さくなる。これにより、基板よりも膨張率が高い反射ケースの収縮による基板及び接着剤への影響が抑制されるため、基板及びケースについて、膨張、収縮後のケースから基板に向かう方向において凸となる反りを抑制することができる。 According to this configuration, since a recess is formed on the adhesive surface of the reflective case to which the adhesive comes into contact, the area of the region where expansion and contraction of the reflective case near the adhesive surface occurs is reduced by the amount of the recess. As a result, the influence of the shrinkage of the reflective case, which has a higher expansion coefficient than the substrate, on the substrate and the adhesive is suppressed. It can be suppressed.
 本開示によれば、基板に反射ケースが接着された半導体発光装置の反りを抑制することが可能になる。 According to the present disclosure, it is possible to suppress the warp of the semiconductor light emitting device in which the reflective case is adhered to the substrate.
実施形態1の半導体発光装置を複数形成するための発光装置連結体の一部を省略して示す斜視図。The perspective view which omits a part of the light emitting device connecting body for forming a plurality of semiconductor light emitting devices of Embodiment 1. FIG. 図1の2-2線断面図。FIG. 1 is a sectional view taken along line 2-2. 反射ケースを示す裏面図。Back view showing the reflective case. 半導体発光装置を示す斜視図。The perspective view which shows the semiconductor light emitting device. 図4の5-5線断面図。FIG. 4 is a sectional view taken along line 5-5 of FIG. 図3に対して変更例としての反射ケースを示す裏面図。The back view which shows the reflection case as a modification with respect to FIG. 図3に対して変更例としての反射ケースを示す裏面図。The back view which shows the reflection case as a modification with respect to FIG. 実施形態2の半導体発光装置を複数形成するための発光装置連結体を示す断面図。FIG. 3 is a cross-sectional view showing a light emitting device connecting body for forming a plurality of semiconductor light emitting devices according to the second embodiment.
 (実施形態1)
 実施形態1の半導体発光装置20について図1~図7を参照しつつ説明する。半導体発光装置20は、図1,図2に示す発光装置連結体1を所定の領域(図1の一点鎖線の領域)で切断することにより形成される。以下では、図1のX方向を前方、Y方向を左方、Z方向を上方として説明する。
(Embodiment 1)
The semiconductor light emitting device 20 of the first embodiment will be described with reference to FIGS. 1 to 7. The semiconductor light emitting device 20 is formed by cutting the light emitting device coupling 1 shown in FIGS. 1 and 2 in a predetermined region (the region of the alternate long and short dash line in FIG. 1). Hereinafter, the X direction in FIG. 1 will be described as forward, the Y direction as left, and the Z direction as upward.
 発光装置連結体1は、例えばXY平面において長方形状であって、図1,図2に示すように、複数の半導体発光素子6と、基板連結体3と、反射ケース連結体7と、を備えている。 The light emitting device coupling body 1 has, for example, a rectangular shape in an XY plane, and includes a plurality of semiconductor light emitting elements 6, a substrate connecting body 3, and a reflective case connecting body 7, as shown in FIGS. 1 and 2. ing.
 複数の半導体発光素子6は、例えば可視光を発光する発光ダイオード(LED)とされ、それぞれ一対の端子を有する。ただし、半導体発光素子6の具体的な構成は、LEDに限られず任意である。 The plurality of semiconductor light emitting elements 6 are, for example, light emitting diodes (LEDs) that emit visible light, and each has a pair of terminals. However, the specific configuration of the semiconductor light emitting device 6 is not limited to the LED and is arbitrary.
 基板連結体3は、例えばXY平面において長方形状であって、絶縁性の基材の上面における各半導体発光素子6に対応する領域ごとに一対の電極4A,4B(図4参照)が設けられている。基材の材料は、例えばガラスエポキシとすることができる。ガラスエポキシは、ガラス繊維に液体のエポキシ樹脂をしみ込ませ、熱硬化処理を施して板状にしたものである。基板連結体3は、所定の厚み(板厚)を有しており、基板連結体3の厚さ方向は、Z方向とされる。 The substrate connector 3 is, for example, rectangular in the XY plane, and a pair of electrodes 4A and 4B (see FIG. 4) are provided for each region corresponding to each semiconductor light emitting device 6 on the upper surface of the insulating base material. There is. The material of the base material can be, for example, glass epoxy. Glass epoxy is made by impregnating glass fibers with a liquid epoxy resin and performing a thermosetting treatment to form a plate. The substrate connecting body 3 has a predetermined thickness (plate thickness), and the thickness direction of the substrate connecting body 3 is the Z direction.
 一対の電極4A,4Bは、銅箔等で形成され、基材の上面(表面)及び下面(裏面)の配線(銅箔等のパターン)に電気的に接続されている。一方の電極4Aは、半導体発光素子6の一方の端子が銀ペーストのような導電性部材によってダイボンディングされる。他方の電極4Bは、半導体発光素子6の他方の端子に対して、金線のような金属細線15によってワイヤボンディングされる。 The pair of electrodes 4A and 4B are formed of copper foil or the like and are electrically connected to the wiring (pattern of copper foil or the like) on the upper surface (front surface) and the lower surface (back surface) of the base material. In one electrode 4A, one terminal of the semiconductor light emitting device 6 is die-bonded by a conductive member such as silver paste. The other electrode 4B is wire-bonded to the other terminal of the semiconductor light emitting device 6 by a thin metal wire 15 such as a gold wire.
 反射ケース連結体7は、例えばXY平面において長方形状の枠状の部材であり、基板連結体3の上に重ねられて接着される。反射ケース連結体7は、例えば白色の樹脂が用いられ、基板連結体3よりもY方向の線膨張率(1/K。線膨張係数)が大きい材質とされている。具体的には、反射ケース連結体7は、例えば、ポリフタルアミド(PPA)、液晶ポリマ(LCP)、シリコーン樹脂等が用いられる。ポリフタルアミドは、ナイロン系の樹脂であり、耐熱性を有する半結晶性のエンジニアリングプラスチックである。液晶ポリマとしては、例えばポリエステル系、ポリエステルアミド、ポリアゾメチン等とすることができる。 The reflective case connecting body 7 is, for example, a rectangular frame-shaped member in the XY plane, and is laminated and adhered on the substrate connecting body 3. For example, a white resin is used for the reflective case connecting body 7, and the material has a larger linear expansion coefficient (1 / K. Linear expansion coefficient) in the Y direction than the substrate connecting body 3. Specifically, for the reflective case connector 7, for example, polyphthalamide (PPA), liquid crystal polymer (LCP), silicone resin, or the like is used. Polyphthalamide is a nylon-based resin and is a heat-resistant semi-crystalline engineering plastic. The liquid crystal polymer may be, for example, polyester-based, polyester amide, polyazomethin or the like.
 本実施形態では、反射ケース連結体7を構成する樹脂には、光の反射および放熱のために酸化チタン(フィラー)が添加されている。なお、酸化チタンに限られず、窒化アルミニウム、シリカ等のフィラーを反射ケース連結体7に含有させてもよい。フィラーの異方性により、反射ケース連結体7には膨張、収縮しやすい方向、膨張、収縮しにくい方向が生じる。本実施形態では、フィラーの異方性により、反射ケース連結体7はX方向(第2の方向)よりもY方向(第1の方向)の熱膨張、熱収縮が大きくなっている。 In the present embodiment, titanium oxide (filler) is added to the resin constituting the reflective case connecting body 7 for light reflection and heat dissipation. Not limited to titanium oxide, a filler such as aluminum nitride or silica may be contained in the reflective case connecting body 7. Due to the anisotropy of the filler, the reflective case connecting body 7 has a direction in which it easily expands and contracts and a direction in which it does not easily expand and contract. In the present embodiment, due to the anisotropy of the filler, the reflective case coupling 7 has larger thermal expansion and contraction in the Y direction (first direction) than in the X direction (second direction).
 反射ケース連結体7は、基板連結体3に実装された各半導体発光素子6を収容する複数の長方形状の素子収容部8が形成されている。本実施形態の素子収容部8は、反射ケース連結体7に対して上下方向に貫通形成され、各半導体発光素子6を包囲する孔である。複数の素子収容部8は、前後左右に間隔を空けて並んで配置されている。各素子収容部8は、上方側に向けて拡径された内壁面8Aを有し、反射ケース連結体7には、図2に示すように、内壁面8Aによって開口8Bが形成されている。Z方向から見た開口8Bの大きさ(XY平面の面積)は、上方側に向けて、すなわち基板3Aから離れるに従って大きくなる。素子収容部8の内壁面8Aは、半導体発光素子6を取り囲んでいる。つまり、素子収容部8は、半導体発光素子6を収容する収容空間を形成しており、半導体発光素子6を取り囲む内壁面8Aによって区画形成されている。このように、素子収容部8は、半導体発光素子6を収容する。半導体発光素子6から横方向に発せられた光は、各素子収容部8の内壁面8Aで反射して、上方側に向けて照射される。 The reflective case coupling 7 is formed with a plurality of rectangular element accommodating portions 8 accommodating each semiconductor light emitting element 6 mounted on the substrate coupling 3. The element accommodating portion 8 of the present embodiment is a hole formed through the reflective case connecting body 7 in the vertical direction and surrounds each semiconductor light emitting element 6. The plurality of element accommodating portions 8 are arranged side by side at intervals in the front-rear and left-right directions. Each element accommodating portion 8 has an inner wall surface 8A whose diameter is expanded toward the upper side, and an opening 8B is formed in the reflective case connecting body 7 by the inner wall surface 8A as shown in FIG. The size of the opening 8B (area of the XY plane) seen from the Z direction increases toward the upper side, that is, as the distance from the substrate 3A increases. The inner wall surface 8A of the element accommodating portion 8 surrounds the semiconductor light emitting element 6. That is, the element accommodating portion 8 forms an accommodating space for accommodating the semiconductor light emitting element 6, and is partitioned by an inner wall surface 8A surrounding the semiconductor light emitting element 6. In this way, the element accommodating unit 8 accommodates the semiconductor light emitting element 6. The light emitted laterally from the semiconductor light emitting device 6 is reflected by the inner wall surface 8A of each element accommodating portion 8 and is irradiated upward.
 内壁面8Aは、互いに対向する一対の面8AA,8AB(図2)と、一対の面8AA,8ABに直交する方向に延び、互いに対向する一対の面8AC,8AD(図5)とを有する。 The inner wall surface 8A has a pair of surfaces 8AA, 8AB (FIG. 2) facing each other and a pair of surfaces 8AC, 8AD (FIG. 5) extending in a direction orthogonal to the pair of surfaces 8AA, 8AB and facing each other.
 反射ケース連結体7の下面(底面)は、接着剤12が接触した状態で重ねられる接着面9を有する。接着面9は、Z方向から見て半導体発光素子6を取り囲むように形成されている。内壁面8Aの下端と接着面9における素子収容部8寄りの端部とは繋がっている。詳細には、内壁面8Aの下端と接着面9とが繋がる部分は鋭角のエッジ8Eとされ、エッジ8Eは、接着面9における内周端とされている。エッジ8Eは、内壁面8Aによって形成された開口8Bの周縁部に対応する。接着面9は、図2に示すように、平坦面9Aとスリット状の複数の凹部10とを有する。複数の凹部10が左右方向に間隔を空けて並んで配置され、図3に示すように、前後方向に直線状に延びている。各凹部10は、接着面9における素子収容部8の周縁部以外の部分に形成されており、詳細には接着面9における素子収容部8から所定の隙間を空けた位置に配置されている。各凹部10の幅及び深さは、反射ケース7Aの所定の強度を維持しつつ、温度が変化した際における反射ケース連結体7の膨張や収縮の影響を小さくできる寸法に設定される。 The lower surface (bottom surface) of the reflective case connecting body 7 has an adhesive surface 9 that is overlapped with the adhesive 12 in contact with each other. The adhesive surface 9 is formed so as to surround the semiconductor light emitting device 6 when viewed from the Z direction. The lower end of the inner wall surface 8A and the end portion of the adhesive surface 9 near the element accommodating portion 8 are connected to each other. Specifically, the portion where the lower end of the inner wall surface 8A and the adhesive surface 9 are connected is an acute-angled edge 8E, and the edge 8E is an inner peripheral end of the adhesive surface 9. The edge 8E corresponds to the peripheral edge of the opening 8B formed by the inner wall surface 8A. As shown in FIG. 2, the adhesive surface 9 has a flat surface 9A and a plurality of slit-shaped recesses 10. A plurality of recesses 10 are arranged side by side at intervals in the left-right direction, and as shown in FIG. 3, extend linearly in the front-rear direction. Each recess 10 is formed in a portion of the adhesive surface 9 other than the peripheral edge of the element accommodating portion 8, and is specifically arranged at a position having a predetermined gap from the element accommodating portion 8 on the adhesive surface 9. The width and depth of each recess 10 are set to dimensions that can reduce the influence of expansion and contraction of the reflective case connecting body 7 when the temperature changes while maintaining a predetermined strength of the reflective case 7A.
 本実施形態では、接着面9は、X方向及びY方向に沿う平坦面である。X方向及びY方向はZ方向と直交する方向であるため、「Z方向から視て」とは「接着面9に対して垂直な方向から視て」ともいえる。また、本実施形態では、Z方向から視て、第2の方向(X方向)は、第1の方向(Y方向)と直交する方向である。 In the present embodiment, the adhesive surface 9 is a flat surface along the X direction and the Y direction. Since the X direction and the Y direction are orthogonal to the Z direction, it can be said that "viewed from the Z direction" is "viewed from the direction perpendicular to the adhesive surface 9." Further, in the present embodiment, the second direction (X direction) is a direction orthogonal to the first direction (Y direction) when viewed from the Z direction.
 凹部10は、図3に示すように、前後方向(第2の方向)において隣り合う素子収容部8の間に設けられた複数の凹部群10A(第1の凹部群)と、左右方向(第1の方向)において隣り合う素子収容部8の間に設けられた複数の凹部群10B(第2の凹部群)と、を含む。左右方向において、凹部群10Aと凹部群10Bとは交互に配置されている。本実施形態では、前後方向はX方向に対応しており、左右方向はY方向に対応している。 As shown in FIG. 3, the recesses 10 have a plurality of recesses 10A (first recesses) provided between adjacent element accommodating portions 8 in the front-rear direction (second direction) and left-right directions (second direction). (1 direction) includes a plurality of recesses 10B (second recesses) provided between adjacent element accommodating portions 8. In the left-right direction, the recess group 10A and the recess group 10B are arranged alternately. In the present embodiment, the front-rear direction corresponds to the X direction, and the left-right direction corresponds to the Y direction.
 複数の凹部群10Aは、前後方向において互いに揃った状態で左右方向に間隔を空けて並んで配置されている。本実施形態では、各凹部群10Aは、複数の第1の凹部11Aからなる。複数の第1の凹部11Aは、前後方向において互いに揃った状態で左右方向に間隔を空けて配置されている。より詳細には、複数の第1の凹部11Aは、左右方向において等ピッチで配置されている。各第1の凹部11Aの前後方向の長さは互いに等しい。 The plurality of recesses 10A are arranged side by side at intervals in the left-right direction while being aligned with each other in the front-rear direction. In the present embodiment, each recess group 10A is composed of a plurality of first recesses 11A. The plurality of first recesses 11A are arranged at intervals in the left-right direction while being aligned with each other in the front-rear direction. More specifically, the plurality of first recesses 11A are arranged at equal pitches in the left-right direction. The lengths of the first recesses 11A in the front-rear direction are equal to each other.
 各凹部群10Bは、左右方向において隣り合う素子収容部8の間に配置されている。本実施形態では、各凹部群10Bは、複数の第2の凹部11Bからなる。複数の第2の凹部11Bは、前後方向において互いに揃った状態で左右方向に間隔を空けて配置されている。より詳細には、複数の第2の凹部11Bは、左右方向において等ピッチで配置されている。本実施形態では、複数の第2の凹部11Bのピッチは、複数の第1の凹部11Aのピッチと等しい。 Each recess group 10B is arranged between the element accommodating portions 8 adjacent to each other in the left-right direction. In the present embodiment, each recess group 10B is composed of a plurality of second recesses 11B. The plurality of second recesses 11B are arranged so as to be aligned with each other in the front-rear direction and spaced apart from each other in the left-right direction. More specifically, the plurality of second recesses 11B are arranged at equal pitches in the left-right direction. In this embodiment, the pitch of the plurality of second recesses 11B is equal to the pitch of the plurality of first recesses 11A.
 なお、複数の第1の凹部11Aのピッチおよび複数の第2の凹部11Bのピッチはそれぞれ任意に変更可能である。一例では、複数の第1の凹部11Aのピッチと複数の第2の凹部11Bのピッチとが互いに異なってもよい。 The pitch of the plurality of first recesses 11A and the pitch of the plurality of second recesses 11B can be arbitrarily changed. In one example, the pitches of the plurality of first recesses 11A and the pitches of the plurality of second recesses 11B may be different from each other.
 各第2の凹部11Bの前後方向の長さは、各第1の凹部11Aの前後方向の長さよりも長い。各凹部群10Bは、左右方向から視て、複数の素子収容部8を跨ぐように形成されている。本実施形態では、各第2の凹部11Bは、接着面9の前後方向の全体にわたり形成されている。 The length of each second recess 11B in the front-rear direction is longer than the length of each first recess 11A in the front-rear direction. Each recess group 10B is formed so as to straddle a plurality of element accommodating portions 8 when viewed from the left and right directions. In the present embodiment, each of the second recesses 11B is formed over the entire front-rear direction of the adhesive surface 9.
 図3では、一点鎖線によって反射ケース7Aが形成される領域20Aが示されている。凹部10の一部は、反射ケース7Aが形成される領域20A内に形成されている。複数の領域20Aは共に同じ大きさとされる。より詳細には、図3に示すように、複数の凹部群10Aの一部は、反射ケース7Aが形成される領域20A内に形成されている。他の一例として、凹部10は、反射ケース7Aが形成される領域外に形成されてもよい。より詳細には、図6に示すように、複数の凹部群10Aおよび複数の凹部群10Bはそれぞれ、反射ケース7Aが形成される領域20A外に形成されているようにしてもよい。 FIG. 3 shows a region 20A in which the reflective case 7A is formed by the alternate long and short dash line. A part of the recess 10 is formed in the region 20A where the reflective case 7A is formed. The plurality of regions 20A are all the same size. More specifically, as shown in FIG. 3, a part of the plurality of recesses 10A is formed in the region 20A where the reflection case 7A is formed. As another example, the recess 10 may be formed outside the region where the reflective case 7A is formed. More specifically, as shown in FIG. 6, the plurality of recesses 10A and the plurality of recesses 10B may each be formed outside the region 20A in which the reflection case 7A is formed.
 本実施形態では、図3に示すとおり、左右方向において隣り合う凹部群10Aと凹部群10Bとの間隔は、複数の第1の凹部11Aのピッチ(複数の第2の凹部11Bのピッチ)と同一である。他の一例として、図7に示すように、複数の第1の凹部11Aの本数を少なくすることで、左右方向において隣り合う凹部群10Aと凹部群10Bとの間隔を、複数の第1の凹部11Aのピッチ(複数の第2の凹部11Bのピッチ)よりも大きくしてもよい。 In the present embodiment, as shown in FIG. 3, the distance between the recesses 10A and the recesses 10B adjacent to each other in the left-right direction is the same as the pitch of the plurality of first recesses 11A (the pitch of the plurality of second recesses 11B). Is. As another example, as shown in FIG. 7, by reducing the number of the plurality of first recesses 11A, the distance between the recesses 10A and the recesses 10B adjacent to each other in the left-right direction can be reduced by reducing the number of the plurality of first recesses 11A. It may be larger than the pitch of 11A (the pitch of the plurality of second recesses 11B).
 図2に示すように、基板連結体3と反射ケース連結体7との間には接着剤12(接着剤層)が配されている。接着剤12は、Z方向から見て各半導体発光素子6及び各素子収容部8を囲むように接着面9の全周に亘って形成されている。本実施形態では、接着剤12は、接着面9の全面に形成されているが、これに限られず、接着面9には部分的に接着剤12が形成されない領域を設けてもよい。接着剤12としては、液状やフィルム状の接着剤を用いることができ、例えばエポキシ系、ポリイミド系やシリコーン系等の接着剤とすることができる。接着剤12は、反射ケース連結体7の凹部10内に入り込む充填部12Aを備える。即ち、接着剤12は、凹部10内に入り込んでいる部分と、接着面9と基板3Aとの間に介在している部分と、を有している。発光装置連結体1は、例えば円形刃の回転やレーザ光の照射によるダイシングD(図2参照)によって所定の領域で切断することにより、複数の半導体発光装置20(図4)が形成される。 As shown in FIG. 2, an adhesive 12 (adhesive layer) is arranged between the substrate connecting body 3 and the reflective case connecting body 7. The adhesive 12 is formed over the entire circumference of the adhesive surface 9 so as to surround each semiconductor light emitting element 6 and each element accommodating portion 8 when viewed from the Z direction. In the present embodiment, the adhesive 12 is formed on the entire surface of the adhesive surface 9, but the present invention is not limited to this, and the adhesive surface 9 may be provided with a region in which the adhesive 12 is not partially formed. As the adhesive 12, a liquid or film-like adhesive can be used, and for example, an epoxy-based, polyimide-based, or silicone-based adhesive can be used. The adhesive 12 includes a filling portion 12A that penetrates into the recess 10 of the reflective case connector 7. That is, the adhesive 12 has a portion that has entered the recess 10 and a portion that is interposed between the adhesive surface 9 and the substrate 3A. A plurality of semiconductor light emitting devices 20 (FIG. 4) are formed by cutting the light emitting device coupling body 1 in a predetermined region by, for example, rotation of a circular blade or dicing D (see FIG. 2) by irradiation with a laser beam.
 半導体発光装置20は、図4,図5に示すように、基板連結体3から切り取られた基板3Aと、基板3Aに実装される一つの半導体発光素子6と、基板3Aに重ねられ、反射ケース連結体7から切り取られた反射ケース7Aとを備えている。基板3Aは、電極4A,4Bを備える。基板3Aは所定の厚み(板厚)を有しており、基板3Aの厚さ方向は、Z方向とされる。基板3Aと反射ケース7Aとの間は接着剤12で接着されている。 As shown in FIGS. 4 and 5, the semiconductor light emitting device 20 is overlapped with a substrate 3A cut from the substrate connecting body 3, one semiconductor light emitting element 6 mounted on the substrate 3A, and a reflective case 3A. It is provided with a reflective case 7A cut out from the connecting body 7. The substrate 3A includes electrodes 4A and 4B. The substrate 3A has a predetermined thickness (plate thickness), and the thickness direction of the substrate 3A is the Z direction. The substrate 3A and the reflective case 7A are bonded with an adhesive 12.
 反射ケース7Aには、内壁面8Aを有する素子収容部8と、接着面9と、接着面9に対して窪んだ凹部10と、を備えている。これらの構成については既に説明したとおりである。 The reflective case 7A is provided with an element accommodating portion 8 having an inner wall surface 8A, an adhesive surface 9, and a recess 10 recessed with respect to the adhesive surface 9. These configurations have already been described.
 反射ケース7Aの素子収容部8内には、光を透過する封止樹脂13が充填されている。封止樹脂13は、半導体発光素子6が出射する光に対する透光性を有する透明又は半透明の樹脂材料であり、例えばエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリビニル系樹脂等とされる。封止樹脂13は、半導体発光素子6からの光を拡散する拡散材、半導体発光素子6からの光によって励起されて半導体発光素子6からの光の波長と異なる波長の光を発する蛍光体、等を含むものであってもよい。 The element accommodating portion 8 of the reflective case 7A is filled with a sealing resin 13 that transmits light. The sealing resin 13 is a transparent or translucent resin material having transparency to the light emitted by the semiconductor light emitting element 6, and is, for example, an epoxy resin, a silicone resin, an acrylic resin, a polyvinyl resin, or the like. The encapsulating resin 13 is a diffuser that diffuses light from the semiconductor light emitting element 6, a phosphor that is excited by the light from the semiconductor light emitting element 6 and emits light having a wavelength different from the wavelength of the light from the semiconductor light emitting element 6, and the like. May be included.
 半導体発光装置20の製造方法について説明する。
 半導体発光装置20の製造方法は、たとえば反射ケース連結体形成工程と、接着工程と、切断工程と、を備える。また半導体発光装置20の製造方法は、半導体発光素子実装工程を備える。本実施形態では、半導体発光素子実装工程、反射ケース連結体形成工程、接着工程および切断工程の順に実施される。以下、各工程の詳細について説明する。
A method of manufacturing the semiconductor light emitting device 20 will be described.
The method for manufacturing the semiconductor light emitting device 20 includes, for example, a reflection case connecting body forming step, an bonding step, and a cutting step. Further, the manufacturing method of the semiconductor light emitting device 20 includes a semiconductor light emitting element mounting process. In this embodiment, the semiconductor light emitting device mounting step, the reflective case connecting body forming step, the bonding step, and the cutting step are carried out in this order. Hereinafter, details of each step will be described.
 (半導体発光素子実装工程)
 複数の基板3Aが一体に連なる基板連結体3に対し、複数の半導体発光素子6の各端子を対応する電極4A,4Bにボンディングする。
(Semiconductor light emitting device mounting process)
Each terminal of the plurality of semiconductor light emitting elements 6 is bonded to the corresponding electrodes 4A and 4B with respect to the substrate connector 3 in which the plurality of substrates 3A are integrally connected.
 (反射ケース連結体形成工程)
 また、図示しない金型内に、ポリフタルアミド等の樹脂を注入し、樹脂を硬化させた後に金型から取り出す。本実施形態では、金型内には、反射ケース7Aの凹部10を形成するための凸部が形成されている。これにより、複数の反射ケース7Aが一体に連なる反射ケース連結体7が形成される際に、凹部10が形成される。なお、凹部10の形成はこれに限られず、反射ケース連結体7を形成した後に、レーザ光を接着面9に照射して凹部10を形成してもよい。
(Reflective case connecting body forming process)
Further, a resin such as polyphthalamide is injected into a mold (not shown), the resin is cured, and then the resin is taken out from the mold. In the present embodiment, a convex portion for forming the concave portion 10 of the reflective case 7A is formed in the mold. As a result, the recess 10 is formed when the reflective case connecting body 7 in which the plurality of reflective cases 7A are integrally connected is formed. The formation of the concave portion 10 is not limited to this, and the concave portion 10 may be formed by irradiating the adhesive surface 9 with a laser beam after forming the reflective case connecting body 7.
 (接着工程)
 次に、反射ケース連結体7の下面(接着面9)に接着剤12を塗布する。なお、基板連結体3の上面に接着剤を塗布する場合には、反射ケース連結体7が重なる領域(各素子収容部8以外の領域)に接着剤12を塗布する。そして、反射ケース連結体7の下面と基板連結体3の上面とを接着剤12を挟んだ状態で貼り合わせる(図1)。このとき、反射ケース連結体7の凹部10内に接着剤12が進入し、凹部10内に接着剤12の充填部12Aが充填される(図2)。次に、発光装置連結体1を所定温度まで加熱し、接着剤12を熱硬化させる。その後、反射ケース連結体7の各素子収容部8に、液状の封止樹脂13を注入して硬化させると、素子収容部8内の半導体発光素子6が封止樹脂13で覆われた状態となる。
(Adhesion process)
Next, the adhesive 12 is applied to the lower surface (adhesive surface 9) of the reflective case connecting body 7. When the adhesive is applied to the upper surface of the substrate connecting body 3, the adhesive 12 is applied to the region where the reflective case connecting body 7 overlaps (the region other than each element accommodating portion 8). Then, the lower surface of the reflective case connecting body 7 and the upper surface of the substrate connecting body 3 are bonded together with the adhesive 12 sandwiched between them (FIG. 1). At this time, the adhesive 12 enters the concave portion 10 of the reflective case connecting body 7, and the filling portion 12A of the adhesive 12 is filled in the concave portion 10 (FIG. 2). Next, the light emitting device connecting body 1 is heated to a predetermined temperature, and the adhesive 12 is thermoset. After that, when the liquid sealing resin 13 is injected into each element accommodating portion 8 of the reflective case coupling 7 and cured, the semiconductor light emitting element 6 in the element accommodating portion 8 is covered with the encapsulating resin 13. Become.
 (切断工程)
 次に、図3の領域20AをダイシングDにより取り出す。これにより、凹部10を有する半導体発光装置20(図4参照)が形成される。なお、領域20A内に凹部10が含まれない場合(図6)には、凹部10を有さない半導体発光装置20が形成される。
(Cutting process)
Next, the region 20A of FIG. 3 is taken out by dicing D. As a result, the semiconductor light emitting device 20 (see FIG. 4) having the recess 10 is formed. When the recess 10 is not included in the region 20A (FIG. 6), the semiconductor light emitting device 20 having no recess 10 is formed.
 本実施形態の半導体発光装置20の作用について説明する。
 基板3Aと反射ケース7Aとが接着された状態で反射ケース連結体7が加熱された場合であっても、反射ケース連結体7(反射ケース7A)の凹部10により、反射ケース連結体7の平坦な接着面9の面積が、凹部10がない場合と比較して小さくなる。これにより、加熱の際における反射ケース連結体7の膨張による影響を抑制することができる。また、加熱を停止し、温度低下に伴って接着剤が硬化しても、凹部10がない場合と比較して、反射ケース連結体7の収縮による影響を抑制することができる。
The operation of the semiconductor light emitting device 20 of the present embodiment will be described.
Even when the reflective case connector 7 is heated while the substrate 3A and the reflective case 7A are adhered to each other, the concave portion 10 of the reflective case connector 7 (reflection case 7A) makes the reflective case connector 7 flat. The area of the adhesive surface 9 is smaller than that in the case where the recess 10 is not provided. Thereby, the influence of the expansion of the reflective case connecting body 7 at the time of heating can be suppressed. Further, even if the heating is stopped and the adhesive is cured as the temperature is lowered, the influence of the shrinkage of the reflective case connecting body 7 can be suppressed as compared with the case where the recess 10 is not provided.
 本実施形態によれば以下の効果を奏する。
 (1)半導体発光装置20は、基板3Aと、基板3A上に実装された半導体発光素子6と、半導体発光素子6を取り囲む内壁面8Aと基板3Aと対向する接着面9とを有し且つ基板3Aよりも膨張率が高い反射ケース7Aと、基板3Aと反射ケース7Aとを接着する接着剤12と、を備え、反射ケース7Aの接着面9には、凹部10が形成されている。
According to this embodiment, the following effects are obtained.
(1) The semiconductor light emitting device 20 has a substrate 3A, a semiconductor light emitting element 6 mounted on the substrate 3A, an inner wall surface 8A surrounding the semiconductor light emitting element 6, and an adhesive surface 9 facing the substrate 3A. A reflective case 7A having a higher expansion rate than 3A and an adhesive 12 for adhering the substrate 3A and the reflective case 7A are provided, and a recess 10 is formed on the adhesive surface 9 of the reflective case 7A.
 本実施形態によれば、反射ケース7Aにおける接着剤12が接触する接着面9には凹部10が形成されているため、反射ケース7Aにおける接着面9寄りの膨張、収縮を生じる領域の面積が凹部10の分だけ小さくなる。これにより、基板3Aよりも膨張率が高い反射ケース7Aの収縮による基板3A及び接着剤12への影響が抑制されるため、基板3A及び反射ケース7Aについて、膨張、収縮後の反射ケース7Aから基板3Aに向かう方向において凸となる反りを抑制することができる。 According to the present embodiment, since the concave portion 10 is formed on the adhesive surface 9 in contact with the adhesive 12 in the reflective case 7A, the area of the region where the expansion and contraction of the reflective case 7A near the adhesive surface 9 occurs is the concave portion. It is reduced by 10 minutes. As a result, the influence of the shrinkage of the reflective case 7A, which has a higher expansion rate than the substrate 3A, on the substrate 3A and the adhesive 12 is suppressed. Therefore, the substrate 3A and the reflective case 7A are expanded and contracted from the reflective case 7A to the substrate. It is possible to suppress the warp that becomes convex in the direction toward 3A.
 (2)凹部10は、接着面9上でスリット状に延びている。
 このようにすれば、スリット状に延びる凹部10により、凹部10が延びる方向と交差する方向への反射ケース7Aの膨張、収縮による影響を抑制することができる。また、反射ケース7Aへの凹部10の形成を容易に行うことができる。
(2) The recess 10 extends in a slit shape on the adhesive surface 9.
In this way, the slit-shaped recess 10 can suppress the influence of expansion and contraction of the reflective case 7A in the direction in which the recess 10 intersects the extending direction. Further, the recess 10 can be easily formed in the reflective case 7A.
 (3)反射ケース7Aのうち、接着面9に沿う第1の方向(Y方向)の膨張率は、接着面9に沿い、かつ、第1の方向と直交する第2の方向(X方向)への膨張率よりも大きくなっており、凹部10は、第2の方向に延びている。 (3) Of the reflective case 7A, the expansion coefficient in the first direction (Y direction) along the adhesive surface 9 is the second direction (X direction) along the adhesive surface 9 and orthogonal to the first direction. It is larger than the coefficient of expansion to, and the recess 10 extends in the second direction.
 このようにすれば、反射ケース7Aの膨張、収縮が生じやすい第1の方向について膨張、収縮による影響を抑制することができる。
 (4)反射ケース7Aは、フィラーを含み、フィラーの異方性により、第1の方向の膨張率は、第2の方向への膨張率よりも大きくなっている。
By doing so, it is possible to suppress the influence of expansion and contraction in the first direction in which expansion and contraction of the reflective case 7A are likely to occur.
(4) The reflective case 7A contains a filler, and the expansion coefficient in the first direction is larger than the expansion rate in the second direction due to the anisotropy of the filler.
 このようにすれば、フィラーの異方性により、第1の方向への膨張、収縮が生じやすい反射ケース7Aを用いる場合であっても、凹部10により第1の方向への反射ケース7Aの膨張、収縮による影響を抑制することができる。 By doing so, even when the reflective case 7A is used, which tends to expand and contract in the first direction due to the anisotropy of the filler, the concave portion 10 expands the reflective case 7A in the first direction. , The influence of shrinkage can be suppressed.
 (5)第2の方向(X方向)は、第1の方向(Y方向)に対して直交する方向である。
 このようにすれば、反射ケース7Aの膨張、収縮が生じやすい第1の方向に対して直交する方向に延びる凹部10により、反射ケース7Aの膨張、収縮による影響を抑制することができる。
(5) The second direction (X direction) is a direction orthogonal to the first direction (Y direction).
By doing so, the influence of the expansion and contraction of the reflection case 7A can be suppressed by the recess 10 extending in the direction orthogonal to the first direction in which the expansion and contraction of the reflection case 7A are likely to occur.
 (6)接着剤12の少なくとも一部は、凹部10内に入っている。
 このようにすれば、凹部10内の接着剤12により、接着剤12と反射ケース7Aとの接着面積が大きくなるため、基板3Aと反射ケース7Aとの間の接着強度を高めることができる。
(6) At least a part of the adhesive 12 is contained in the recess 10.
By doing so, the adhesive 12 in the recess 10 increases the adhesive area between the adhesive 12 and the reflective case 7A, so that the adhesive strength between the substrate 3A and the reflective case 7A can be increased.
 (7)反射ケース7Aは、接着面9のうち内壁面8Aが構成する開口8Bの周囲が全周に亘って接着剤12と接触している。
 このようにすれば、接着面9のうち内壁面8Aが構成する開口8Bの周囲における基板3Aと反射ケース7Aとの間の接着強度を高めることができる。
(7) In the reflective case 7A, the periphery of the opening 8B formed by the inner wall surface 8A of the adhesive surface 9 is in contact with the adhesive 12 over the entire circumference.
By doing so, it is possible to increase the adhesive strength between the substrate 3A and the reflective case 7A around the opening 8B formed by the inner wall surface 8A of the adhesive surface 9.
 (8)凹部10は、接着面9のうち内壁面8Aが構成する開口8Bの周縁部以外の部分に形成されている。
 このようにすれば、内壁面8Aが構成する開口8Bの周縁部に凹部10が形成されることによる接着強度の低下を抑制することができる。
(8) The recess 10 is formed in a portion of the adhesive surface 9 other than the peripheral portion of the opening 8B formed by the inner wall surface 8A.
By doing so, it is possible to suppress a decrease in adhesive strength due to the formation of the recess 10 in the peripheral edge portion of the opening 8B formed by the inner wall surface 8A.
 (9)半導体発光装置20の製造方法は、半導体発光素子6が実装された基板3Aと基板3Aよりも膨張率が高い反射ケース7Aとを接着剤12で接着する半導体発光装置20の製造方法であり、接着剤12が接触する接着面9と、接着面9に形成された凹部10とを有し、複数の反射ケース7Aが一体に形成された反射ケース連結体7を形成する反射ケース連結体形成工程と、複数の基板3Aが一体に形成された基板連結体3と、反射ケース連結体形成工程で形成された反射ケース連結体7とを接着剤12で接着する接着工程と、反射ケース連結体7および基板連結体3を切断することによって、接着剤12が接着された反射ケース7Aおよび基板3Aを形成する切断工程と、を備える。 (9) The method for manufacturing the semiconductor light emitting device 20 is a method for manufacturing the semiconductor light emitting device 20 in which the substrate 3A on which the semiconductor light emitting element 6 is mounted and the reflective case 7A having a higher expansion rate than the substrate 3A are bonded with an adhesive 12. A reflective case connector having an adhesive surface 9 with which the adhesive 12 comes into contact and a recess 10 formed in the adhesive surface 9 to form a reflective case connector 7 in which a plurality of reflective cases 7A are integrally formed. The forming step, the bonding step of adhering the substrate connecting body 3 in which a plurality of substrates 3A are integrally formed, and the reflective case connecting body 7 formed in the reflective case connecting body forming step with the adhesive 12, and the reflective case connecting. A cutting step of forming the reflective case 7A and the substrate 3A to which the adhesive 12 is adhered by cutting the body 7 and the substrate connecting body 3 is provided.
 本実施形態によれば、反射ケース連結体形成工程で形成された反射ケース連結体7における接着剤12が接触する接着面9には凹部10が形成されている。そのため、接着工程で基板連結体3と接着された反射ケース連結体7における接着面9寄りの膨張、収縮を生じる領域の面積が凹部10の分だけ小さくなる。これにより、基板連結体3よりも膨張率が高い反射ケース連結体7の収縮による基板3A及び接着剤12への影響が抑制される。よって、基板3A及び反射ケース7Aについて、膨張、収縮後の反射ケース7Aから基板3Aに向かう方向において凸となる反りを抑制することができる。 According to the present embodiment, the concave portion 10 is formed on the adhesive surface 9 in contact with the adhesive 12 in the reflective case connecting body 7 formed in the reflective case connecting body forming step. Therefore, the area of the region where the expansion and contraction of the reflective case connecting body 7 bonded to the substrate connecting body 3 in the bonding step near the bonding surface 9 occurs is reduced by the amount of the recess 10. As a result, the influence on the substrate 3A and the adhesive 12 due to the shrinkage of the reflective case coupling 7 having a higher expansion coefficient than the substrate coupling 3 is suppressed. Therefore, with respect to the substrate 3A and the reflective case 7A, it is possible to suppress the warp that becomes convex in the direction from the reflective case 7A to the substrate 3A after expansion and contraction.
 (実施形態2)
 実施形態2について、図8を参照しつつ説明する。実施形態1の反射ケース7Aの素子収容部8の内壁面8Aは、上方側に拡径されていたが、実施形態2の反射ケース30Aの素子収容部31の内壁面31Aは、図8示すように、Z方向(素子収容部31の軸方向)の全長について、Z方向と直交するXY平面の断面が同一形状とされている。以下では、実施形態1と同一の構成については同一の符号を付けて説明を省略する。
(Embodiment 2)
The second embodiment will be described with reference to FIG. The inner wall surface 8A of the element accommodating portion 8 of the reflection case 7A of the first embodiment has an enlarged diameter upward, but the inner wall surface 31A of the element accommodating portion 31 of the reflection case 30A of the second embodiment is as shown in FIG. In addition, the cross section of the XY plane orthogonal to the Z direction has the same shape for the entire length in the Z direction (axial direction of the element accommodating portion 31). Hereinafter, the same configurations as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 素子収容部31は、長方形状の貫通孔を有し、Z方向について一定の形状及び大きさとされている。素子収容部31の内壁面31Aは、基板3Aの上面(板面)に対して直交する角度となっている。 The element accommodating portion 31 has a rectangular through hole and has a constant shape and size in the Z direction. The inner wall surface 31A of the element accommodating portion 31 has an angle orthogonal to the upper surface (plate surface) of the substrate 3A.
 (変更例)
 本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。その一例は、上記実施形態の構成の一部を置換、変更、もしくは、省略した形態、または上記実施形態に新たな構成を付加した形態である。具体的には、例えば、以下のように変更して実施することができる。
(Change example)
The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range. One example thereof is a form in which a part of the configuration of the above embodiment is replaced, changed, or omitted, or a new configuration is added to the above embodiment. Specifically, for example, it can be changed and implemented as follows.
 ・上記各実施形態の凹部10の延びる方向は、反射ケース7Aの膨張、収縮が生じやすい第1の方向(Y方向)に対して直交する第2の方向(X方向)としたが、これに限られない。凹部10の延びる方向は、第1の方向(Y方向)に対して直交以外の交差する方向を第2の方向とし、この第2の方向に凹部が延びる構成としてもよい。 The extending direction of the recess 10 of each of the above embodiments is a second direction (X direction) orthogonal to the first direction (Y direction) in which expansion and contraction of the reflective case 7A are likely to occur. Not limited. The extending direction of the recess 10 may be such that the intersecting direction other than orthogonal to the first direction (Y direction) is the second direction, and the recess extends in this second direction.
 ・上記各実施形態の凹部10は、スリット状に直線的に延びる形状としたが、これに限られない。例えば、円形状、多角形状、曲線状に延びる凹部としてもよい。
 ・上記各実施形態において、Z方向および凹部10の延びる方向(各実施形態ではX方向)に沿う平面で凹部10を切った断面視における形状は、矩形状に限られず、任意に変更可能である。一例では、上記断面視における凹部10の形状は、V字状、半円状、多角形状などであってもよい。
-The recess 10 of each of the above embodiments has a shape that extends linearly in a slit shape, but the present invention is not limited to this. For example, it may be a circular shape, a polygonal shape, or a concave portion extending in a curved shape.
In each of the above embodiments, the shape in the cross-sectional view obtained by cutting the recess 10 in a plane along the Z direction and the extending direction of the recess 10 (X direction in each embodiment) is not limited to a rectangular shape and can be arbitrarily changed. .. In one example, the shape of the recess 10 in the cross-sectional view may be V-shaped, semicircular, polygonal, or the like.
 ・上記各実施形態において、前後方向において離間して配置された複数の凹部群10Aのうち一部の凹部群10Aを省略してもよい。
 ・上記各実施形態において、左右方向において離間して配置された複数の凹部群10Aのうち一部の凹部群10Aを省略してもよい。
-In each of the above embodiments, a part of the recesses 10A may be omitted from the plurality of recesses 10A arranged apart from each other in the front-rear direction.
-In each of the above embodiments, a part of the recesses 10A may be omitted from the plurality of recesses 10A arranged apart from each other in the left-right direction.
 ・上記各実施形態において、左右方向において離間して配置された複数の凹部群10Bのうち一部の凹部群10Bを省略してもよい。
 ・上記各実施形態において、複数の凹部群10Aおよび複数の凹部群10Bのうち一方を省略してもよい。
-In each of the above embodiments, a part of the recesses 10B may be omitted from the plurality of recesses 10B arranged apart from each other in the left-right direction.
-In each of the above embodiments, one of the plurality of recesses 10A and the plurality of recesses 10B may be omitted.
 ・上記各実施形態において、複数の凹部群10Bのうち一部の第2の凹部11Bが反射ケース連結体7のうち反射ケース7Aが形成される領域内に形成されてもよい。
 ・上記各実施形態において、複数の凹部群10Bの複数の第2の凹部11Bは、前後方向において互いに離間して配置されてもよい。この場合、複数の第2の凹部11Bの前後方向の長さはそれぞれ任意に変更可能である。
-In each of the above embodiments, a part of the second recess 11B of the plurality of recess groups 10B may be formed in the region of the reflective case connecting body 7 where the reflective case 7A is formed.
-In each of the above embodiments, the plurality of second recesses 11B of the plurality of recesses 10B may be arranged apart from each other in the front-rear direction. In this case, the lengths of the plurality of second recesses 11B in the front-rear direction can be arbitrarily changed.
 ・接着剤12は凹部10内に充填されている構成としたが、これに限られず、凹部10内に接着剤12が入っていない隙間が形成されていてもよい。
 ・上記各実施形態では、凹部10により、接着剤の熱硬化の際における反射ケース7A,30Aの膨張、収縮を抑制する構成としたが、これに限られない。例えば、熱硬化性の封止樹脂13を用いて素子収容部8を封止する場合には、凹部10により、封止樹脂13の加熱の際における膨張、収縮を抑制するようにしてもよい。
The adhesive 12 is configured to be filled in the recess 10, but the present invention is not limited to this, and a gap may be formed in the recess 10 in which the adhesive 12 is not contained.
-In each of the above embodiments, the recess 10 is configured to suppress expansion and contraction of the reflective cases 7A and 30A during thermal curing of the adhesive, but the present invention is not limited to this. For example, when the element accommodating portion 8 is sealed using the thermosetting sealing resin 13, the recess 10 may be used to suppress expansion and contraction of the sealing resin 13 during heating.
 1…発光装置連結体
 3…基板連結体
 3A…基板
 6…半導体発光素子
 7…反射ケース連結体
 7A,30A…反射ケース
 8,31…素子収容部
 8A,31A…内壁面
 8B…開口
 9…接着面
 10…凹部
 10A,10B…凹部群
 11A…第1の凹部
 11B…第2の凹部
 12…接着剤
 20…半導体発光装置
 20A…領域
1 ... Light emitting device connecting body 3 ... Board connecting body 3A ... Substrate 6 ... Semiconductor light emitting element 7 ... Reflecting case connecting body 7A, 30A ... Reflecting case 8, 31 ... Element accommodating part 8A, 31A ... Inner wall surface 8B ... Opening 9 ... Adhesive Surface 10 ... Recesses 10A, 10B ... Recesses group 11A ... First recess 11B ... Second recess 12 ... Adhesive 20 ... Semiconductor light emitting device 20A ... Region

Claims (17)

  1.  基板と、
     前記基板上に実装された半導体発光素子と、
     前記半導体発光素子を取り囲む内壁面と前記基板と対向する接着面とを有し且つ前記基板よりも膨張率が高い反射ケースと、
     前記基板と前記反射ケースとを接着する接着剤と、
    を備え、
     前記反射ケースの前記接着面には、凹部が形成されている、半導体発光装置。
    With the board
    The semiconductor light emitting device mounted on the substrate and
    A reflective case having an inner wall surface surrounding the semiconductor light emitting device and an adhesive surface facing the substrate and having a higher expansion coefficient than the substrate.
    An adhesive that adheres the substrate to the reflective case,
    Equipped with
    A semiconductor light emitting device in which a recess is formed on the adhesive surface of the reflective case.
  2.  前記凹部は、スリット状に延びている請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the recess extends like a slit.
  3.  前記反射ケースのうち、前記接着面に沿う第1の方向の膨張率は、前記接着面に沿い、かつ、前記第1の方向と直交する第2の方向への膨張率よりも大きくなっており、
     前記凹部は、前記第2の方向に延びている請求項2に記載の半導体発光装置。
    Of the reflective cases, the expansion coefficient in the first direction along the adhesive surface is larger than the expansion coefficient in the second direction along the adhesive surface and orthogonal to the first direction. ,
    The semiconductor light emitting device according to claim 2, wherein the recess extends in the second direction.
  4.  前記反射ケースは、フィラーを含み、前記フィラーの異方性により、前記第1の方向の膨張率は、前記第2の方向への膨張率よりも大きくなっている請求項3に記載の半導体発光装置。 The semiconductor light emission according to claim 3, wherein the reflective case contains a filler, and the expansion coefficient in the first direction is larger than the expansion coefficient in the second direction due to the anisotropy of the filler. Device.
  5.  前記接着剤の少なくとも一部は、前記凹部内に入っている請求項1から請求項4のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 4, wherein at least a part of the adhesive is contained in the recess.
  6.  前記接着面は、前記基板の厚さ方向から見て前記半導体発光素子を囲むように形成されており、
     前記接着剤は、前記基板の厚さ方向から見て前記半導体発光素子を囲むように前記接着面の全周に亘って設けられている請求項1から請求項5のいずれか一項に記載の半導体発光装置。
    The adhesive surface is formed so as to surround the semiconductor light emitting device when viewed from the thickness direction of the substrate.
    The one according to any one of claims 1 to 5, wherein the adhesive is provided over the entire circumference of the adhesive surface so as to surround the semiconductor light emitting element when viewed from the thickness direction of the substrate. Semiconductor light emitting device.
  7.  前記凹部は、前記接着面のうち前記内壁面が構成する開口の周縁部以外の部分に形成されている請求項1から請求項6のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 6, wherein the recess is formed in a portion of the adhesive surface other than the peripheral edge of the opening formed by the inner wall surface.
  8.  前記内壁面は、前記基板から離れるに従って前記内壁面が構成する開口が大きくなるように傾斜している請求項1から請求項7のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 7, wherein the inner wall surface is inclined so that the opening formed by the inner wall surface becomes larger as the distance from the substrate increases.
  9.  半導体発光素子が実装された基板と前記基板よりも膨張率が高い反射ケースとを接着剤で接着する半導体発光装置の製造方法であって、
     前記接着剤が接触する接着面と、前記接着面に形成された凹部とを有し、複数の前記反射ケースが一体に形成された反射ケース連結体を形成する反射ケース連結体形成工程と、
     複数の前記基板が一体に形成された基板連結体と、前記反射ケース連結体形成工程で形成された前記反射ケース連結体とを接着剤で接着する接着工程と、
     前記反射ケース連結体および前記基板連結体を切断することによって、前記接着剤が接着された前記反射ケースおよび前記基板を形成する切断工程と、を備える半導体発光装置の製造方法。
    It is a method of manufacturing a semiconductor light emitting device that adheres a substrate on which a semiconductor light emitting element is mounted and a reflective case having a higher expansion rate than the substrate with an adhesive.
    A reflection case connecting body forming step of forming a reflective case connecting body having an adhesive surface to which the adhesive comes into contact and a concave portion formed on the adhesive surface, and a plurality of the reflective cases integrally formed.
    An adhesive step of adhering a substrate connecting body in which a plurality of the substrates are integrally formed and the reflective case connecting body formed in the reflective case connecting body forming step with an adhesive.
    A method for manufacturing a semiconductor light emitting device, comprising a cutting step of forming the reflective case and the substrate to which the adhesive is adhered by cutting the reflective case connecting body and the substrate connecting body.
  10.  前記凹部は、前記接着面上でスリット状に延びている請求項9に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 9, wherein the recess extends like a slit on the adhesive surface.
  11.  前記反射ケースのうち、前記接着面に沿う第1の方向の膨張率は、前記接着面に沿い、かつ、前記第1の方向と直交する第2の方向への膨張率よりも大きくなっており、
     前記凹部は、前記第2の方向に延びている請求項10に記載の半導体発光装置の製造方法。
    Of the reflective cases, the expansion coefficient in the first direction along the adhesive surface is larger than the expansion coefficient in the second direction along the adhesive surface and orthogonal to the first direction. ,
    The method for manufacturing a semiconductor light emitting device according to claim 10, wherein the recess extends in the second direction.
  12.  前記反射ケースは、フィラーを含み、前記フィラーの異方性により、前記第1の方向の膨張率は、前記第2の方向への膨張率よりも大きくなっている請求項11に記載の半導体発光装置の製造方法。 The semiconductor light emission according to claim 11, wherein the reflective case contains a filler, and the expansion coefficient in the first direction is larger than the expansion coefficient in the second direction due to the anisotropy of the filler. How to make the device.
  13.  前記反射ケース連結体は、前記第1の方向および前記第2の方向において互いに間隔を空けて形成された複数の素子収容部を有し、
     各前記素子収容部には、前記半導体発光素子が収容されており、
     前記凹部は、前記第2の方向において隣り合う前記素子収容部の間に形成された第1の凹部群と、前記第1の方向において隣り合う前記素子収容部の間に形成された第2の凹部群と、を有している請求項11または請求項12に記載の半導体発光装置の製造方法。
    The reflective case coupling has a plurality of element accommodating portions formed at intervals from each other in the first direction and the second direction.
    The semiconductor light emitting device is housed in each of the element accommodating portions.
    The recess is a second group of recesses formed between the element accommodating portions adjacent to each other in the second direction and a second recess formed between the element accommodating portions adjacent to each other in the first direction. The method for manufacturing a semiconductor light emitting device according to claim 11 or 12, further comprising a recess group.
  14.  前記第1の凹部群は、前記反射ケース連結体のうち前記反射ケースが形成される領域外に形成されている請求項13に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 13, wherein the first recess group is formed outside the region where the reflection case is formed in the reflection case connecting body.
  15.  前記第1の凹部群の一部は、前記反射ケース連結体のうち前記反射ケースが形成される領域内に形成されている請求項13に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 13, wherein a part of the first recess group is formed in a region of the reflective case connecting body in which the reflective case is formed.
  16.  前記第2の凹部群は、前記反射ケース連結体のうち前記反射ケースが形成される領域外に形成されている請求項13から請求項15のいずれか一項に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to any one of claims 13 to 15, wherein the second recess group is formed outside the region of the reflective case coupling in which the reflective case is formed. ..
  17.  前記接着剤は、前記凹部内に入っている請求項10から請求項16のいずれか一項に記載の半導体発光装置の製造方法。 The method for manufacturing a semiconductor light emitting device according to any one of claims 10 to 16, wherein the adhesive is contained in the recess.
PCT/JP2021/020081 2020-06-09 2021-05-26 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device WO2021251147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530122A JPWO2021251147A1 (en) 2020-06-09 2021-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020100136 2020-06-09
JP2020-100136 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251147A1 true WO2021251147A1 (en) 2021-12-16

Family

ID=78846008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020081 WO2021251147A1 (en) 2020-06-09 2021-05-26 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JPWO2021251147A1 (en)
WO (1) WO2021251147A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173271A (en) * 2005-12-19 2007-07-05 Sumitomo Metal Electronics Devices Inc Package for housing light emitting device
JP2009038215A (en) * 2007-08-01 2009-02-19 Nippon Carbide Ind Co Inc Package for storing light emitting element and light emitting device
JP2013026510A (en) * 2011-07-22 2013-02-04 Rohm Co Ltd Led module and mounting structure of the same
JP2013172154A (en) * 2012-02-21 2013-09-02 Lg Innotek Co Ltd Light-emitting element, manufacturing method therefor, and illumination system including the same
JP2016122823A (en) * 2014-12-25 2016-07-07 日亜化学工業株式会社 Package, light-emitting device, and manufacturing methods therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173271A (en) * 2005-12-19 2007-07-05 Sumitomo Metal Electronics Devices Inc Package for housing light emitting device
JP2009038215A (en) * 2007-08-01 2009-02-19 Nippon Carbide Ind Co Inc Package for storing light emitting element and light emitting device
JP2013026510A (en) * 2011-07-22 2013-02-04 Rohm Co Ltd Led module and mounting structure of the same
JP2013172154A (en) * 2012-02-21 2013-09-02 Lg Innotek Co Ltd Light-emitting element, manufacturing method therefor, and illumination system including the same
JP2016122823A (en) * 2014-12-25 2016-07-07 日亜化学工業株式会社 Package, light-emitting device, and manufacturing methods therefor

Also Published As

Publication number Publication date
JPWO2021251147A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5396215B2 (en) Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and liquid crystal display device
JP5302117B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE MOUNTING BOARD
JP6564206B2 (en) Light emitting device
KR102129647B1 (en) Optoelectronic lighting module, optoelectronic lighting device, and motor vehicle headlamp
JP5277085B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5405731B2 (en) Light source module
JP2002094122A (en) Light source and its manufacturing method
WO2012036281A1 (en) Semiconductor light-emitting device, method for producing same, and display device
KR20090003378A (en) Light emitting diode package
JP5940799B2 (en) Electronic component mounting package, electronic component package, and manufacturing method thereof
KR20130058721A (en) Surface-mountable optoelectronic component and method for producing a surface-mountable optoelectronic component
WO2017209149A1 (en) Light-emitting device
US20160190397A1 (en) Led package structure and the manufacturing method of the same
JP2008103401A (en) Package for upper/lower electrode type light emitting diode, and its manufacturing method
JP2014060343A (en) Method of manufacturing light-emitting diode, light-emitting diode
JP2009080978A (en) Illuminating apparatus
WO2021251147A1 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
TW201344994A (en) Semiconductor laser chip package with encapsulated recess molded on substrate and method for forming same
KR100809816B1 (en) Lead frame , light emitting device package using the same and fabricating method thereof
JP5227135B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6447580B2 (en) Light emitting device
JP6322334B2 (en) Optoelectronic component manufacturing method and optoelectronic component
TW201637162A (en) Lead frame and method of manufacturing a chip package and method of fabricating on optoelectronic
CN111025441B (en) Optical component, method for manufacturing the same, and light-emitting device
KR20180105012A (en) Light emitting diode package for automobile exterior

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821611

Country of ref document: EP

Kind code of ref document: A1