WO2021251053A1 - 凝固物の製造方法 - Google Patents

凝固物の製造方法 Download PDF

Info

Publication number
WO2021251053A1
WO2021251053A1 PCT/JP2021/018139 JP2021018139W WO2021251053A1 WO 2021251053 A1 WO2021251053 A1 WO 2021251053A1 JP 2021018139 W JP2021018139 W JP 2021018139W WO 2021251053 A1 WO2021251053 A1 WO 2021251053A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
urethane resin
compound
manufactured
group
Prior art date
Application number
PCT/JP2021/018139
Other languages
English (en)
French (fr)
Inventor
智博 鉄井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202180029557.6A priority Critical patent/CN115461507B/zh
Priority to JP2021553860A priority patent/JP7070805B1/ja
Priority to EP21823115.7A priority patent/EP4166712A4/en
Publication of WO2021251053A1 publication Critical patent/WO2021251053A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3246Polyamines heterocyclic, the heteroatom being oxygen or nitrogen in the form of an amino group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/146Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the macromolecular diols used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/147Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the isocyanates used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/24Coagulated materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/24Coagulated materials
    • D06N2205/246Coagulated materials by extracting the solvent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/14Properties of the materials having chemical properties
    • D06N2209/143Inert, i.e. inert to chemical degradation, corrosion resistant
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/14Properties of the materials having chemical properties
    • D06N2209/147Stainproof, stain repellent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Definitions

  • the present invention relates to a method for producing a coagulated product.
  • Urethane resin is widely used in the manufacture of synthetic leather (including artificial leather), coating agents, adhesives, gloves, clothing, etc. due to its mechanical strength and good texture.
  • solvent-based urethane resins containing N, N-dimethylformamide (DMF) have been the mainstream.
  • DMF N, N-dimethylformamide
  • urethane resin aqueous dispersion in which urethane resin is dispersed in water has begun to be used for the above-mentioned applications.
  • the urethane resin aqueous dispersion unlike the conventional solvent-based urethane resin, when the fiber base material is impregnated, the filling state inside the fiber base material is not porous, and the urethane resin is used in the drying process. There is a drawback that the texture is inferior due to non-uniformity due to segregation (migration) on the surface of the fiber base material.
  • a low-viscosity urethane resin aqueous dispersion is impregnated with urethane resin at minute fiber intervals, and a urethane resin is uniformly solidified to impart heat-sensitive coagulability.
  • Urethane resin aqueous dispersion has been developed (see, for example, Patent Document 1). However, it has been pointed out that in the urethane resin aqueous dispersion, the viscosity of the urethane resin liquid temporarily decreases during heat-sensitive solidification, and the urethane resin adheres and restrains at the entanglement points of the fibers, resulting in poor texture of the processed product. there were.
  • An object to be solved by the present invention is to provide a method for producing a coagulated product having excellent texture, alkali resistance, and dyeing resistance.
  • the present invention is characterized in that a fiber base material is impregnated with an aqueous dispersion of a urethane resin (X) made from a compound (a1) having a nonionic group as a raw material, and then immersed in a coagulant (Y). It provides a method for producing a solidified product.
  • a urethane resin made from a compound (a1) having a nonionic group as a raw material
  • a coagulated product having excellent texture, alkali resistance, and dyeing resistance can be obtained.
  • a fiber base material is impregnated with an aqueous dispersion of a urethane resin (X) made from a compound (a1) having a nonionic group, and then immersed in a coagulant (Y). It is something that makes you.
  • the fiber base material examples include polyester fiber, polyethylene fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, linen, silk, wool, glass fiber, and carbon fiber.
  • Fiber base materials such as non-woven fabrics, woven fabrics, and knitted fabrics made of these blended fibers; the non-woven fabric impregnated with a resin such as polyurethane resin; the non-woven fabric further provided with a porous layer; thermoplastic urethane (TPU) And the like can be used.
  • the urethane resin (X) it is essential to use a so-called nonionic urethane resin made from the compound (a1) having a nonionic group.
  • the urethane resin (X) preferably does not contain a cationic group and an anionic group, whereby a solidified product having even better alkali resistance and dyeing resistance can be obtained.
  • Examples of the compound (a1) having a nonionic group include a compound having an oxyethylene structure, for example, polyethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, and polyethylene glycol dimethyl ether.
  • a polyether polyol having an oxyethylene structure such as the above can be used. These compounds may be used alone or in combination of two or more. Among these, from the group consisting of polyethylene glycol, polyoxyethylene polyoxypropylene glycol, and polyethylene glycol dimethyl ether, from the viewpoint that hydrophilicity can be controlled more easily and more excellent alkali resistance and stain resistance can be obtained. It is preferable to use one or more selected compounds, and polyethylene glycol is particularly preferable.
  • the number average molecular weight of the compound (a1) having a nonionic group is in the range of 200 to 10,000 from the viewpoint of obtaining even more excellent alkali resistance, dyeing resistance, emulsifying property, and water dispersion stability. It is preferably in the range of 300 to 3,000, more preferably in the range of 300 to 2,000.
  • the number average molecular weight of the compound (a1) having a nonionic group is a value measured by a gel permeation column chromatography (GPC) method.
  • the urethane resin (X) is composed of the compound (a1) having a nonionic group from the viewpoint of obtaining even more excellent alkali resistance, stain resistance, emulsifying property, and water dispersion stability.
  • the total mass of the raw materials is preferably 5% by mass or less, more preferably 4% by mass or less, further preferably 0.25 to 3.5% by mass, and particularly preferably 0.5 to 3% by mass. ..
  • urethane resin (X) specifically, for example, a reaction product of a compound (a1) having a nonionic group, a chain extender (a2), a polyol (a3), and a polyisocyanate (a4) is used. be able to.
  • chain extender (a2) one having a molecular weight of less than 500 (preferably in the range of 50 to 450) can be used, and specifically, ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, and diamine.
  • the chain can be easily extended even at a relatively low temperature of 30 ° C. or lower, energy consumption during the reaction can be suppressed, and even more excellent mechanical strength due to the introduction of a urea group.
  • a chain extender having an amino group hereinafter abbreviated as "amine-based chain extender”
  • the urethane resin (X) is made high.
  • an amine-based chain extender having a molecular weight in the range of 30 to 250 from the viewpoint of obtaining even better emulsifying property and water dispersion stability even after solid differentiation.
  • the molecular weight indicates an average value thereof, and the average value may be included in the range of the preferable molecular weight.
  • the ratio of the chain extender (a2) used further excellent mechanical strength, film-forming property, texture, peel strength, emulsifying property, and water dispersion stability can be obtained, and the urethane resin (X) is highly solid. From the viewpoint of further facilitating differentiation, the range of 0.1 to 30% by mass is more preferable, and the range of 0.5 to 10% by mass is particularly preferable, based on the total mass of the raw materials constituting the urethane resin (X).
  • polystyrene resin for example, a polyether polyol other than the compound (a1) having a nonionic group, a polyester polyol, a polyacrylic polyol, a polycarbonate polyol, a polybutadiene polyol, or the like can be used. These polyols may be used alone or in combination of two or more.
  • the number average molecular weight of the polyol (a3) is preferably in the range of 500 to 100,000, more preferably in the range of 800 to 10,000, from the viewpoint of the mechanical strength of the obtained film.
  • the number average molecular weight of the polyol (a3) indicates a value measured by a gel permeation column chromatography (GPC) method.
  • the proportion of the polyol (a3) used is more preferably in the range of 40 to 90% by mass, more preferably 50 to 90% by mass, based on the total mass of the raw materials constituting the urethane resin (X), from the viewpoint of obtaining even better mechanical strength.
  • the range of 80% by mass is particularly preferable.
  • polyisocyanate (a4) examples include aromatic polyisocyanates such as phenylenediocyanate, toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, naphthalenedi isocyanate, polymethylene polyphenyl polyisocyanate, and carbodiimidated diphenylmethane polyisocyanate; hexamethylene diisocyanate, An aliphatic polyisocyanate such as lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dimerate diisocyanate, norbornene diisocyanate, or alicyclic polyisocyanate can be used. These polyisocyanates may be used alone or in combination of two
  • the proportion of the polyisocyanate (a4) used is more preferably in the range of 5 to 40% by mass based on the total mass of the raw materials constituting the urethane resin (X) from the viewpoint of obtaining even more excellent mechanical strength.
  • the range of ⁇ 35% by mass is particularly preferable.
  • the average particle size of the urethane resin (X) is preferably in the range of 0.01 to 1 ⁇ m from the viewpoint of obtaining even better texture, water dispersion stability, and film-forming property.
  • the range of 05 to 0.9 ⁇ m is more preferable.
  • the method for measuring the average particle size of the urethane resin (X) will be described in Examples described later.
  • the compound (a1) having a nonionic group, the polyol (a3), and the polyisocyanate (a4) are reacted in a solvent-free manner to form an isocyanate.
  • a urethane prepolymer (i) having a group is obtained (hereinafter, abbreviated as "prepolymer step"), and then the urethane prepolymer (i) is dispersed in the water (hereinafter, abbreviated as "emulsification step”). ), Then it is preferable to have a step of reacting the chain extender (a2) to obtain a urethane resin (X) (hereinafter, abbreviated as "chain extension step”).
  • the prepolymer step is performed without solvent.
  • an organic solvent such as methyl ethyl ketone or acetone
  • a solvent removal step of distilling off the organic solvent after the emulsification step is required, and actual production is required. It took several days of production at the site.
  • it is difficult to completely distill off the organic solvent in the solvent removal step and in many cases, some organic solvent remains, and it is difficult to completely cope with the environment.
  • the production method according to the present invention by performing the prepolymer step without a solvent, a urethane resin aqueous dispersion completely containing no organic solvent can be obtained, and the production step thereof can also be labor-saving. It is possible.
  • the molar ratio of the total hydroxyl group of the compound (a1) having a nonionic group and the hydroxyl group of the polyol (a3) to the isocyanate group of the polyisocyanate (a4) [isocyanate group / (hydroxyl group). )] Is in the range of 1.1 to 3 from the viewpoint of obtaining even more excellent surface smoothness, film forming property, texture, peeling strength, alkali resistance, dyeing resistance, and mechanical strength. Is preferable, and the range of 1.2 to 2 is more preferable.
  • the reaction of the prepolymer step may be carried out at 50 to 120 ° C. for 1 to 10 hours, for example.
  • the prepolymer step is a reaction kettle equipped with a stirring blade; a kneader, a continuous kneader, a taper roll, a single-screw extruder, a twin-screw extruder, a triaxial extruder, a universal mixer, a plast mill, a bodyda type kneader, etc. Kneading machine; TK homomixer, fill mix, Ebara milder, Claire mix, Ultra Turlux, Cavitron, biomixer, etc. Rotary dispersion mixer; Ultrasonic disperser; Inline mixer, etc. without moving parts, fluid This can be done by using a device or the like that can mix according to its own flow.
  • the emulsification step is preferably carried out at a temperature at which water does not evaporate.
  • the emulsification step may be carried out in the range of 10 to 90 ° C., and the emulsification step can be carried out using the same equipment as the prepolymer step. .. Among them, it is preferable to use a kneader, and a twin-screw extruder is more preferable, because a urethane resin aqueous dispersion having a high urethane resin content can be easily obtained.
  • the viscosity of the prepolymer before the emulsification step at 100 ° C. is preferably in the range of 100 to 100,000,000 mPa ⁇ s, preferably from 1,000 to 100,000 mPa ⁇ s, from the viewpoint of obtaining even more excellent texture and durability.
  • the range of 1,000,000 mPa ⁇ s is preferable.
  • the urethane prepolymer (i) is increased in molecular weight by the reaction between the isocyanate group of the urethane prepolymer (i) and the chain extender (a1) to obtain a urethane resin (X). It is a process.
  • the temperature in the chain extension step is preferably 50 ° C. or lower from the viewpoint of productivity.
  • the molar ratio [(hydroxyl group and amino group) / isocyanate group] of the isocyanate group of the urethane prepolymer (i) and the total of the hydroxyl groups and amino groups of the chain extender (a1) in the chain extension step Is preferably in the range of 0.8 to 1.1, preferably in the range of 0.9 to 1, from the viewpoint of obtaining even more excellent alkali resistance, dyeing resistance, film-forming property, and mechanical strength. Is more preferable.
  • the chain extension step can be performed using the same equipment as the prepolymer step.
  • the content of the urethane resin (X) in the urethane resin aqueous dispersion used in the present invention is preferably in the range of 50 to 80% by mass at the time of its production.
  • the high solid content of the so-called urethane resin (X) in the aqueous dispersion improves the dryness of the urethane resin aqueous dispersion, resulting in even better texture, resin dropout resistance, alkali resistance, and Staining resistance can be obtained.
  • it may be further diluted with water.
  • ion-exchanged water distilled water, or the like can be used. These waters may be used alone or in combination of two or more.
  • the urethane resin water dispersion used in the present invention contains the urethane resin (X) and the water as essential components, but may contain other additives as necessary.
  • the other additives include emulsifiers, cross-linking agents, neutralizers, thickeners, urethanization catalysts, fillers, pigments, dyes, flame retardants, leveling agents, blocking inhibitors, film forming aids, and foaming agents. Agents and the like can be used. These additives may be used alone or in combination of two or more. These additives are appropriately determined depending on the purpose for which the foamed sheet is used.
  • the urethane resin aqueous dispersion used in the present invention does not contain an organic solvent in the manufacturing process thereof, but it is permissible to contain an organic solvent as the additive. Among these, it is preferable to use an emulsifier in order to obtain even more excellent emulsifying property and water dispersion stability.
  • emulsifier examples include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyethylene / polypropylene copolymer; sodium oleate.
  • nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyethylene / polypropylene copolymer; sodium oleate.
  • Anionic emulsifiers such as fatty acid salts such as, alkyl sulphate ester salts, alkylbenzene sulphonates, alkyl sulfosuccinates, naphthalence sulphonates, polyoxyethylene alkyl sulphates, alkan sulphonate sodium salts, alkyl diphenyl ether sulphonic acid sodium salts, etc.
  • a cationic emulsifier such as an alkylamine salt, an alkyltrimethylammonium salt, or an alkyldimethylbenzylammonium salt can be used. These emulsifiers may be used alone or in combination of two or more. Among these, it is preferable to use an anionic emulsifier from the viewpoint that the resin can be further cut off from the urethane resin to the fiber base material.
  • the coagulant (Y) coagulates the urethane resin (X), and for example, a metal compound (Y1), an acid compound (Y2), a non-metal compound (Y3) other than the acid compound (Y2), and the like. Can be used.
  • metal compound (Y1) for example, monovalent metal compounds such as calcium chloride, magnesium acetate and sodium chloride; and polyvalent metal compounds such as calcium nitrate, zinc nitrate, zinc chloride and aluminum sulfate may be used. can. These compounds may be used alone or in combination of two or more.
  • Examples of the acid compound (Y2) include succinic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid and phthalic acid.
  • Isophthalic acid, terephthalic acid, tartrate acid, succinic acid, aconitic acid, glutamic acid, aspartic acid and the like can be used. These acids may be used alone or in combination of two or more.
  • non-metal compound (Y3) examples include ammonium chloride, tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, tetrahexylammonium chloride, tetraoctylammonium chloride, tetraphenylammonium chloride, and chloride.
  • coagulant (Y) a monovalent metal compound and / or ammonium inorganic acid is preferable, and sodium chloride is preferable, among the above-mentioned ones, from the viewpoint of obtaining further excellent coagulation property and dyeing resistance. , And / or ammonium sulfate is more preferred.
  • the coagulant (Y) can be used as a coagulation bath, and the content of the coagulant (Y) in the coagulation bath is preferably in the range of 1 to 30% by mass, preferably in the range of 5 to 20% by mass. Is more preferable.
  • the fiber base material is impregnated with an aqueous dispersion of a urethane resin (X) made from a compound (a1) having a nonionic group, and then the coagulant (Y) is used. It is intended to be immersed in.
  • a urethane resin made from a compound (a1) having a nonionic group
  • the fiber base material is directly placed in a tank storing the aqueous urethane resin aqueous dispersion, and then an excess is used with a mangle or the like. There is a way to squeeze things.
  • the impregnation time is, for example, in the range of 1 to 30 minutes.
  • the impregnated base material is taken out and further immersed in a coagulation bath containing the coagulant (Y) to solidify the urethane resin (X), and the coagulated material adheres to the surface or the inside of the fiber base material.
  • a fiber substrate is obtained.
  • the impregnation / solidification time at this time is, for example, in the range of 1 to 30 minutes.
  • the fiber base material having a coagulated product of urethane resin can be immersed in running water for, for example, 10 minutes to 2 hours after the coagulation, to wash and remove unnecessary coagulant.
  • a coagulated product having excellent texture, alkali resistance, and dyeing resistance can be obtained.
  • urethane prepolymer A1 The viscosity of the obtained urethane prepolymer A1 was 7,280 mPa ⁇ s.
  • A1 heated to 70 ° C, 20% by mass aqueous solution of sodium dodecylbenzenesulfonate as an emulsifier (“Neogen S-20F” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and a twin-screw extruder (TEM-18SS: manufactured by Toshiba Machine Co., Ltd.). The emulsion was obtained by supplying and mixing at the same time.
  • the flow rate of each of the feed solutions was A 1: 10 kg / hour, the emulsifier aqueous solution: 2.0 kg / hour, water: 6.5 kg / hour, and the operating conditions of the twin-screw extruder were 50 ° C. and 260 rpm.
  • an aqueous diluted solution of piperazine hereinafter abbreviated as "PP" having an amino group content corresponding to 95% of the NCO group was added to extend the chain, and finally the non-volatile content was 50% by mass.
  • % Urethane resin aqueous dispersion (1) was obtained.
  • the emulsion was obtained by supplying and mixing at the same time.
  • the flow rates of each of the feed solutions were A2: 10 kg / hour, emulsifier aqueous solution: 2.0 kg / hour, water: 0.1 kg / hour, and the operating conditions of the twin-screw extruder were 50 ° C. and 260 rpm.
  • IPDA isophorone diamine
  • TEM-18SS manufactured by Toshiba Machinery Co., Ltd.
  • the flow rate of each supply liquid is A5: 10 kg / hour, emulsifier aqueous solution S-20F: 1.3 kg / hour, emulsifier L-64: 0.3 kg / hour, water: 2.4 kg / hour, and the operating conditions of the twin-screw extruder are It was 50 ° C. and 260 rpm.
  • an aqueous diluted solution of ethylenediamine (hereinafter abbreviated as "EA") having an amino group content corresponding to 95% of the NCO group was added to extend the chain, and finally the content of the non-volatile content was 60% by mass.
  • EA ethylenediamine
  • the emulsion was obtained by supplying and mixing at the same time.
  • the flow rate of each of the feed solutions was A 1: 10 kg / hour, the emulsifier aqueous solution: 2.0 kg / hour, water: 6.5 kg / hour, and the operating conditions of the twin-screw extruder were 50 ° C. and 260 rpm.
  • Examples 1 to 3 Ion-exchanged water was added to 1,000 parts by mass of each of the obtained urethane resin water dispersions (1) to (3) to adjust the solid content to 30% by mass, and further, a thickener (manufactured by Borchers). 10 parts by mass of "Borchi Gel L75N” was added, and a mechanical mixer was stirred at 2,000 rpm to prepare a mixed solution. Next, the polyester fiber non-woven fabric (with a grain of 250 g / m 2 ) was impregnated into the compounding solution, and then an unnecessary compounding solution was squeezed out using a rubber roller mangle so that the impregnation amount was 200%.
  • the nonwoven fabric containing the compounding solution was immersed in a coagulation bath (hereinafter abbreviated as "NaCl") of a 5 mass% sodium chloride aqueous solution at 25 ° C. for 3 minutes to coagulate the urethane resin. Further, while pouring water on the processed cloth after solidification, it was squeezed with a rubber roller mangle 10 times and washed with water. Finally, it was dried in a hot air dryer at 120 ° C. for 30 minutes to obtain a fiber substrate having a coagulated product.
  • a coagulation bath hereinafter abbreviated as "NaCl”
  • Example 4 to 5 Ion-exchanged water was added to 1,000 parts by mass of each of the obtained urethane resin water dispersions (4) to (5) to adjust the solid content to 30% by mass, and further, a thickener (manufactured by Borchers). 10 parts by mass of "Borchi Gel L75N" was added, and a mechanical mixer was stirred at 2,000 rpm to prepare a mixed solution. Next, the polyester fiber non-woven fabric (with a grain of 250 g / m 2 ) was impregnated into the compounding solution, and then an unnecessary compounding solution was squeezed out using a rubber roller mangle so that the impregnation amount was 200%.
  • the nonwoven fabric containing the compounding solution was immersed in a coagulation bath (hereinafter abbreviated as "ammonium sulfate”) of a 5% by mass ammonium sulfate aqueous solution at 25 ° C. for 3 minutes to solidify the urethane resin. Further, while pouring water on the processed cloth after solidification, it was squeezed with a rubber roller mangle 10 times and washed with water. Finally, it was dried in a hot air dryer at 120 ° C. for 30 minutes to obtain a fiber substrate having a coagulated product.
  • a coagulation bath hereinafter abbreviated as "ammonium sulfate”
  • the number average molecular weights of the polyols and the like used in the synthetic example and the comparative synthetic example show the values obtained by measuring under the following conditions by the gel permeation column chromatography (GPC) method.
  • Measuring device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series and used. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4% by mass) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • the processed cloth having the coagulated product obtained by the production method of the present invention had excellent texture, alkali resistance, and dyeing resistance as in Examples 1 to 4.
  • Comparative Example 1 was a mode in which heat-sensitive coagulation was performed without using the coagulant (Y), but the texture, alkali resistance, and dyeing resistance were poor.
  • Comparative Example 2 is an embodiment in which a urethane resin having a nonionic group (a1) as a raw material is used instead of the urethane resin (X) and is coagulated with a coagulant (Y), but has stain resistance. Was defective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明は、繊維基材に、ノニオン性基を有する化合物(a1)を原料としたウレタン樹脂(X)の水分散体を含浸させ、次いで、凝固剤(Y)に浸漬させることを特徴とする凝固物の製造方法を提供するものである。前記ノニオン性基を有する化合物(a1)の使用率は、ウレタン樹脂(X)を構成する原料の合計質量中5質量%以下であることが好ましい。前記凝固剤(Y)は、金属化合物(Y1)、酸化合物(Y2)、及び、前記酸化合物(Y2)以外の非金属合物(Y3)からなる群より選ばれる1種以上であることが好ましい。本発明の製造方法によれば、風合い、耐アルカリ性、及び、耐染色性に優れる凝固物が得られる。

Description

凝固物の製造方法
 本発明は、凝固物の製造方法に関する。
 ウレタン樹脂は、その機械的強度や風合いの良さから、合成皮革(人工皮革含む。)、コーティング剤、接着剤、手袋、衣料等の製造に広く利用されている。前記ウレタン樹脂は、これまでN,N-ジメチルホルムアミド(DMF)を含有する溶剤系のウレタン樹脂が主流であった。しかしながら、欧州でのDMF規制、中国や台湾でのVOC排出規制の強化、大手アパレルメーカーによるDMF規制などを背景に、弱溶剤化、水系化、無溶剤化等による環境調和策が求められている。
 このような環境下、ウレタン樹脂を水中に分散させたウレタン樹脂水分散体(ポリウレタンディスパージョン)は、上記用途に利用され始めている。しかしながら、前記ウレタン樹脂水分散体では、従来の溶剤系ウレタン樹脂と異なり、繊維基材へ含浸させた場合に、繊維基材内部への充填状態が多孔ではないことや、乾燥工程でウレタン樹脂が繊維基材の表面に偏析する(マイグレーション)ことにより、不均一で風合いが劣るとの欠点があった。
 また、上記の用途において脱溶剤化する方法としては、微小な繊維間隔にウレタン樹脂を含浸させるため、低粘度のウレタン樹脂水分散体や、ウレタン樹脂を均一に凝固させるため、感熱凝固性を付与したウレタン樹脂水分散体が開発されている(例えば、特許文献1を参照。)。しかしながら、係るウレタン樹脂水分散体では、ウレタン樹脂液の粘度が感熱凝固の最中に一旦低下し、繊維の交絡点にウレタン樹脂が付着拘束するため、加工品の風合いが不良となるとの指摘があった。そのため、特殊な海島構造繊維不織布での加工が必要であり、含浸加工後に繊維海部分のアルカリ溶解抽出工程が必要となるが、アルカリ抽出工程は抽出条件が加工量・使用繊維でマチマチであるため抽出不十分となりやすく、実生産ラインでは風合い不良や残留海部による染色不良の問題が発生するとの指摘があった。
特開2016-84463号公報
 本発明が解決しようとする課題は、風合い、耐アルカリ性、及び、耐染色性に優れる凝固物を製造する方法を提供することである。
 本発明は、繊維基材に、ノニオン性基を有する化合物(a1)を原料としたウレタン樹脂(X)の水分散体を含浸させ、次いで、凝固剤(Y)に浸漬させることを特徴とする凝固物の製造方法を提供するものである。
 本発明の製造方法によれば、風合い、耐アルカリ性、及び、耐染色性に優れる凝固物が得られる。
 本発明の凝固物の製造方法は、繊維基材に、ノニオン性基を有する化合物(a1)を原料としたウレタン樹脂(X)の水分散体を含浸させ、次いで、凝固剤(Y)に浸漬させるものである。
 前記繊維基材としては、例えば、例えば、ポリエステル繊維、ポリエチレン繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、グラスファイバー、炭素繊維、それらの混紡繊維等による不織布、織布、編み物等の繊維基材;前記不織布にポリウレタン樹脂等の樹脂を含浸させたもの;前記不織布に更に多孔質層を設けたもの;熱可塑性ウレタン(TPU)等の樹脂基材などを用いることができる。
 本発明においては、前記ウレタン樹脂(X)としては、ノニオン性基を有する化合物(a1)を原料とした、いわゆるノニオン性ウレタン樹脂を用いることが必須である。前記ウレタン樹脂(X)としては、カチオン性基およびアニオン性基を含まないことが好ましく、これによりより一層優れた耐アルカリ性、及び、耐染色性を有する凝固物を得ることができる。
 前記ノニオン性基を有する化合物(a1)としては、例えば、オキシエチレン構造を有する化合物が挙げられ、例えば、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール、ポリエチレングリコールジメチルエーテル等のオキシエチレン構造を有するポリエーテルポリオールを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、より簡便に親水性を制御できとともに、より一層優れた耐アルカリ性および耐染色性が得られる点から、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、及び、ポリエチレングリコールジメチルエーテルからなる群より選ばれる1種以上の化合物を用いることが好ましく、ポリエチレングリコールが特に好ましい。
 前記ノニオン性基を有する化合物(a1)の数平均分子量としては、より一層優れた耐アルカリ性、耐染色性、乳化性、及び、水分散安定性が得られる点から、200~10,000の範囲であることが好ましく、300~3,000の範囲がより好ましく、300~2,000の範囲であることがより好ましい。なお、前記ノニオン性基を有する化合物(a1)の数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により測定した値を示す。
 前記ノニオン性基を有する化合物(a1)の使用割合としては、より一層優れた耐アルカリ性、耐染色性、乳化性、及び、水分散安定性が得られる点から、ウレタン樹脂(X)を構成する原料の合計質量中5質量%以下であることが好ましく、4質量%以下がより好ましく、0.25~3.5質量%の範囲が更に好ましく、0.5~3質量%の範囲が特に好ましい。
 前記ウレタン樹脂(X)としては、具体的には、例えば、ノニオン性基を有する化合物(a1)、鎖伸長剤(a2)、ポリオール(a3)、及び、ポリイソシアネート(a4)の反応物を用いることができる。
 前記鎖伸長剤(a2)としては、分子量が500未満(好ましくは50~450の範囲)のものを用いることができ、具体的には、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール、ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、トリメチロールプロパン等の水酸基を有する鎖伸長剤;エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン、ヒドラジン等のアミノ基を有する鎖伸長剤などを用いることができる。これらの鎖伸長剤は単独で用いても2種以上を併用してもよい。なお、前記鎖伸長剤(a2)の分子量は、化学式から算出される値を示す。
 前記鎖伸長剤(a2)としては、30℃以下の比較的低い温度下でも容易に鎖伸長でき、反応時のエネルギー消費を抑制できる点、及び、ウレア基導入によるより一層優れた機械的強度、造膜性、風合い、及び、剥離強度が得られる点から、アミノ基を有する鎖伸長剤(以下「アミン系鎖伸長剤」と略記する。)を用いることが好ましく、ウレタン樹脂(X)を高固形分化しても、より一層優れた乳化性、及び、水分散安定性が得られる点から、分子量が30~250の範囲のアミン系鎖伸長剤を用いることがより好ましい。なお、前記鎖伸長剤として2種類以上を併用する場合には、前記分子量はその平均値を示し、平均値が前記好ましい分子量の範囲に包含されればよい。
 前記鎖伸長剤(a2)の使用割合としては、より一層優れた機械的強度、造膜性、風合い、剥離強度、乳化性、水分散安定性が得られる点、ウレタン樹脂(X)の高固形分化がより一層容易となる点から、ウレタン樹脂(X)を構成する原料の合計質量中0.1~30質量%の範囲が更に好ましく、0.5~10質量%の範囲が特に好ましい。
 前記ポリオール(a3)としては、例えば、前記ノニオン性基を有する化合物(a1)以外のポリエーテルポリオール、ポリエステルポリオール、ポリアクリルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。
 前記ポリオール(a3)の数平均分子量としては、得られる皮膜の機械的強度の点から、500~100,000の範囲であることが好ましく、800~10,000の範囲であることがより好ましい。なお、前記ポリオール(a3)の数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により測定した値を示す。
 前記ポリオール(a3)の使用割合としては、より一層優れた機械的強度が得られる点から、ウレタン樹脂(X)を構成する原料の合計質量中40~90質量%の範囲が更に好ましく、50~80質量%の範囲が特に好ましい。
 前記ポリイソシアネート(a4)としては、例えば、フェニレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、カルボジイミド化ジフェニルメタンポリイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等の脂肪族ポリイソシアネート又は脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは、単独で用いても2種以上を併用してもよい。
 前記ポリイソシアネート(a4)の使用割合としては、より一層優れた機械的強度が得られる点から、ウレタン樹脂(X)を構成する原料の合計質量中5~40質量%の範囲が更に好ましく、10~35質量%の範囲が特に好ましい。
 前記ウレタン樹脂(X)の平均粒子径としては、より一層優れた風合い、水分散安定性、及び、造膜性が得られる点から、0.01~1μmの範囲であることが好ましく、0.05~0.9μmの範囲がより好ましい。なお、前記ウレタン樹脂(X)の平均粒子径の測定方法は、後述する実施例にて記載する。
 次に、本発明で用いるウレタン樹脂水分散体の製造方法について説明する。
 本発明で用いるウレタン樹脂水分散体の製造方法としては、前記ノニオン性基を有する化合物(a1)、前記ポリオール(a3)、及び、前記ポリイソシアネート(a4)を無溶媒下で反応させて、イソシアネート基を有するウレタンプレポリマー(i)を得(以下、「プレポリマー工程」と略記する。)、次いで、ウレタンプレポリマー(i)を前記水に分散させ(以下、「乳化工程」と略記する。)、その後、前記鎖伸長剤(a2)を反応させてウレタン樹脂(X)を得る工程(以下、「鎖伸長工程」と略記する。)を有することが好ましい。
 前記プレポリマー工程は、無溶媒下で行うことが重要である。従来技術では、プレポリマー工程の際に、メチルエチルケトン、アセトン等の有機溶媒中で行うことが一般的であったが、乳化工程後に前記有機溶剤を留去する脱溶剤工程が必要であり、実生産現場では数日の生産日数を要していた。また、前記脱溶剤工程で完全に有機溶剤を留去することも困難であり、若干の有機溶剤を残存しているケースが多く、環境対応に完全に対応することは困難であった。一方、本発明に係る製造方法では、前記プレポリマー工程を無溶媒下で行うことにより、有機溶剤を完全に含まないウレタン樹脂水分散体が得られ、かつ、その生産工程も省力化することが可能である。
 前記プレポリマー工程における、前記ノニオン性基を有する化合物(a1)、及び前記ポリオール(a3)が有する水酸基の合計と、前記ポリイソシアネート(a4)が有するイソシアネート基とのモル比[イソシアネート基/(水酸基)]としては、より一層優れた表面平滑性、造膜性、風合い、剥離強度、耐アルカリ性、耐染色性、及び、機械的強度が得られる点から、1.1~3の範囲であることが好ましく、1.2~2の範囲がより好ましい。
 前記プレポリマー工程の反応は、例えば、50~120℃で1~10時間行うことが挙げられる。
 前記プレポリマー工程は、撹拌翼を備えた反応釜;ニーダー、コンテイニアスニーダー、テーパーロール、単軸押出機、二軸押出機、三軸押出機、万能混合機、プラストミル、ボデーダ型混練機等の混練機;TKホモミキサー、フィルミックス、エバラマイルダー、クレアミックス、ウルトラターラックス、キャビトロン、バイオミキサー等の回転式分散混合機;超音波式分散装置;インラインミキサー等の可動部がなく、流体自身の流れによって混合できる装置などを使用することにより行うことができる。
 前記乳化工程は、水が蒸発しない温度下で行うことが好ましく、例えば、10~90℃の範囲が挙げられる、前記乳化工程は、前記プレポリマー工程と同様の設備を使用して行うことができる。その中でも、ウレタン樹脂の含有率が高いウレタン樹脂水分散体が簡便に得られる点から、混練機を使用することが好ましく、二軸押出機がより好ましい。
 また、前記乳化工程前の前記プレポリマーの100℃における粘度としては、より一層優れた風合い、耐久性が得られる点から、100~100,00,000mPa・sの範囲が好ましく、1,000~1,000,000mPa・sの範囲が好ましい。なお、前記プレポリマーの粘度は、ANTON-PAAR社製「MCR302」を使用して、軸;パラレルプレート治具(d=0.94mm)、周波数;1Hzの条件で測定した値を示す。
 前記鎖伸長工程は、前記ウレタンプレポリマー(i)が有するイソシアネート基と、前記鎖伸長剤(a1)との反応により、ウレタンプレポリマー(i)を高分子量化させ、ウレタン樹脂(X)を得る工程である。前記鎖伸長工程の際の温度としては、生産性の点から、50℃以下で行うことが好ましい。
 前記鎖伸長工程における、前記ウレタンプレポリマー(i)が有するイソシアネート基と、前記鎖伸長剤(a1)が有する水酸基及びアミノ基の合計とのモル比[(水酸基及びアミノ基)/イソシアネート基]としては、より一層優れた耐アルカリ性、耐染色性、造膜性、及び、機械的強度が得られる点から、0.8~1.1の範囲であることが好ましく、0.9~1の範囲がより好ましい。
 前記鎖伸長工程は、前記プレポリマー工程と同様の設備を使用して行うことができる。
 本発明で用いるウレタン樹脂水分散体中における前記ウレタン樹脂(X)の含有率としては、その製造時には50~80質量%の範囲であることが好ましい。このように、水分散体中のいわゆるウレタン樹脂(X)固形分が高いことにより、ウレタン樹脂水分散体の乾燥性が向上するため、より一層優れた風合い、耐樹脂脱落、耐アルカリ性、及び、耐染色性を得ることができる。ただし、製造後は、更に水に希釈してもよい。
 本発明で用いる水としては、イオン交換水、蒸留水等を用いることができる。これらの水は単独で用いても2種以上を併用してもよい。
 本発明で用いるウレタン樹脂水分散体は、前記ウレタン樹脂(X)、及び、前記水を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。
 前記その他の添加剤としては、例えば、乳化剤、架橋剤、中和剤、増粘剤、ウレタン化触媒、充填剤、顔料、染料、難燃剤、レベリング剤、ブロッキング防止剤、成膜助剤、発泡剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。これらの添加剤は発泡シートが使用される目的に応じて適宜決定される。なお、本発明で用いるウレタン樹脂水分散体は、その製造工程において、有機溶剤を含まないものであるが、前記添加剤として、有機溶剤が含まれることは許容される。これらの中でも、より一層優れた乳化性、及び、水分散安定性を得るうえで、乳化剤を用いることが好ましい。
 前記乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリエチレン・ポリプロピレン共重合体等のノニオン性乳化剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、ナフタレンスルフォン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルフォネートナトリウム塩、アルキルジフェニルエーテルスルフォン酸ナトリウム塩等のアニオン性乳化剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン性乳化剤などを用いることができる。これらの乳化剤は単独で用いても2種以上を併用してもよい。これらの中でも、ウレタン樹脂の繊維基材への樹脂脱落をより一層停電できる点から、アニオン性乳化剤を用いることが好ましい。
 前記乳化剤の使用量としては、より一層優れた樹脂脱落の低減、耐アルカリ性、及び、耐染色性が得られる点から、ウレタン樹脂(X)(=固形分)100質量部に対し、7質量部以下であることが好ましく、0~5質量%の範囲がより好ましい。
 前記凝固剤(Y)は、ウレタン樹脂(X)を凝固するものであり、例えば、金属化合物(Y1)、酸化合物(Y2)、前記酸化合物(Y2)以外の非金属化合物(Y3)などを用いることができる。
 前記金属化合物(Y1)としては、例えば、塩化カルシウム、酢酸マグネシウム、塩化ナトリウム等の一価の金属化合物;硝酸カルシウム、硝酸亜鉛、塩化亜鉛、硫酸アルミニウム等の多価の金属化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。
 前記酸化合物(Y2)としては、例えば、コハク酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、酒石酸、クエン酸、アコニット酸、グルタミン酸、アスパラギン酸等を用いることができる。これらの酸は単独で用いても2種以上を併用してもよい。
 前記非金属化合物(Y3)としては、例えば、塩化アンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラプロピルアンモニウム、塩化テトラブチルアンモニウム、塩化テトラヘキシルアンモニウム、塩化テトラオクチルアンモニウム、塩化テトラフェニルアンモニウム、塩化トリエチルメチルアンモニウム、塩化トリエチルヘキシルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリオクチルブチルアンモニウム、塩化トリオクチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリフェニルイソブチルアンモニウム、塩化トリフェニルベンジルアンモニウム、臭化アンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、臭化テトラヘキシルアンモニウム、臭化テトラオクチルアンモニウム、臭化テトラフェニルアンモニウム、臭化トリエチルメチルアンモニウム、臭化トリエチルヘキシルアンモニウム、臭化トリオクチルメチルアンモニウム、臭化トリオクチルブチルアンモニウム、臭化トリオクチルベンジルアンモニウム、臭化トリメチルベンジルアンモニウム、臭化トリブチルベンジルアンモニウム、臭化トリフェニルイソブチルアンモニウム、臭化トリフェニルベンジルアンモニウム、ヨウ化アンモニウム、ヨウ化テトラメチルアンモニウム、ヨウ化テトラエチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラヘキシルアンモニウム、ヨウ化テトラオクチルアンモニウム、ヨウ化テトラフェニルアンモニウム、ヨウ化トリエチルメチルアンモニウム、ヨウ化トリエチルヘキシルアンモニウム、ヨウ化トリオクチルメチルアンモニウム、ヨウ化トリオクチルブチルアンモニウム、ヨウ化トリオクチルベンジルアンモニウム、ヨウ化トリメチルベンジルアンモニウム、ヨウ化トリブチルベンジルアンモニウム、ヨウ化トリフェニルイソブチルアンモニウム、ヨウ化トリフェニルベンジルアンモニウム等のハロゲン化アンモニウム;塩酸アンモニウム、リン酸アンモニウム、ホウ酸アンモニウム、フッ化水素酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、ケイ酸アンモニウム、リン酸アンモニウム等の無機酸アンモニウム:ギ酸アンモニウム、酢酸アンモニウム、プロピオン酸アンモニウム、リンゴ酸アンモニウム、スルファミン酸アンモニウム等の有機酸アンモニウム;塩化テトラフェニルホスホニウム、ヨウ化テトラフェニルホスホニウム、臭化テトラメチルホスホニウム、塩化テトラブチルホスホニウム、臭化テトラブチルホスホニウム、ヨウ化テトラブチルホスホニウム等の無機酸ホスホニウム;酢酸テトラブチルホスホニウム等の有機酸ホスホニウム;エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、2-メチル-2-ブタノール、1-ヘキサノール、2-ヘキサノール、シクロヘキサノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール等のアルコール溶媒などを用いることができる。これらの非金属凝固剤は単独で用いても2種以上を併用してもよい。
 前記凝固剤(Y)としては、前記したものの中でも、より一層優れた凝固性、及び、耐染色性が得られる点から、一価の金属化合物、及び/又は、無機酸アンモニウムが好ましく、塩化ナトリウム、及び/又は、硫酸アンモニウムがより好ましい。
 前記凝固剤(Y)は凝固浴として用いることができ、前記凝固浴中の前記凝固剤(Y)のの含有量としては、1~30質量%の範囲が好ましく、5~20質量%の範囲がより好ましい。
 次に、本発明の凝固物の製造方法について説明する。
 本発明の凝固物の製造方法は、前記繊維基材に、ノニオン性基を有する化合物(a1)を原料としたウレタン樹脂(X)の水分散体を含浸させ、次いで、前記凝固剤(Y)に浸漬させるものである。
 前記繊維基材に、前記水性ウレタン樹脂水分散体中を含浸する方法としては、例えば、前記繊維基材を、前記水性ウレタン樹脂水分散体を貯留した槽に直接入れ、その後マングル等で余分なものを絞る方法が挙げられる。前記含浸時間としては、例えば、1~30分の範囲である。
 次いで、この含浸基材を取り出し、更に前記凝固剤(Y)を含む凝固浴に浸漬することで、ウレタン樹脂(X)が凝固され、繊維基材の表面や内部に凝固物が付着した状態の繊維基材が得られる。この際の含浸・凝固時間としては、例えば1~30分の範囲である。
 ウレタン樹脂の凝固物を有する繊維基材は、必要に応じて、前記凝固後に例えば10分~2時間の間流水に浸し、不要な凝固剤を洗浄除去することができる。
 以上、本発明の製造方法によれば、風合い、耐アルカリ性、及び、耐染色性に優れる凝固物が得られる。
 以下、実施例を用いて、本発明をより詳細に説明する。
[合成例1]
 オクチル酸第一錫0.1質量部の存在下、ポリエーテルポリオール(三菱化学株式会社製「PTMG2000」、数平均分子量;2,000、以下「PTMG2000」と略記する。)1,000質量部と、ポリエチレングリコール(日油株式会社製「PEG600」、数平均分子量;600、以下「PEG」と略記する。)38質量部と、ジシクロヘキシルメタンジイソシアネート(以下、「HMDI」と略記する。)262質量部とをNCO%が2.8質量%に達するまで100℃で反応させてウレタンプレポリマーA1を得た。得られたウレタンプレポリマーA1の粘度は、7,280mPa・sであった。
 70℃に加熱したA1と、乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS-20F」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA1:10kg/時、乳化剤水溶液:2.0kg/時、水:6.5kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のピペラジン(以下、「PP」と略記する。)の水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が50質量%のウレタン樹脂水分散体(1)を得た。
[合成例2]
 オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部、PEG600を19質量部、HMDIを262質量部を混合し、NCO%が3.1質量%に達するまで100℃で反応させてウレタンプレポリマーA2を得た。得られたウレタンプレポリマーA2の粘度は、7,280mPa・sであった。
 70℃に加熱したA2と、乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS-20F」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA2:10kg/時、乳化剤水溶液:2.0kg/時、水:0.1kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のイソホロンジアミン(以下、「IPDA」と略記する。)の水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が60質量%のウレタン樹脂水分散体(2)を得た。
[合成例3]
 オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部、PEGを18質量部、HMDIを262質量部を混合し、NCO%が3.1質量%に達するまで100℃で反応させてウレタンプレポリマーA3を得た。得られたウレタンプレポリマーA3の粘度は、7,280mPa・sであった。
 70℃に加熱したA3と、乳化剤としてポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プロロニックL-64」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA3:10kg/時、乳化剤:0.5kg/時、水:5.8kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のIPDAの水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が50質量%のウレタン樹脂水分散体(3)を得た。
[合成例4]
 オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部、PEGを18質量部、HMDIを262質量部を混合し、NCO%が3.1質量%に達するまで100℃で反応させてウレタンプレポリマーA4を得た。得られたウレタンプレポリマーA4の粘度は、7,280mPa・sであった。
 70℃に加熱したA4と、乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS-20F」)、ポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プロロニックL-64」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA5:10kg/時、乳化剤水溶液S-20F:1.3kg/時、乳化剤L-64:0.3kg/時、水:2.4kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のエチレンジアミン(以下「EA」と略記する。)の水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が60質量%のウレタン樹脂水分散体(4)を得た。
[合成例5]
 オクチル酸第一錫0.1質量部の存在下、ポリカーボネートジオールポリオール(宇部興産株式会社製「ETERNACOLL UH-200」、数平均分子量;2,000)1,000質量部と、PEG38質量部と、HMDI262質量部とをNCO%が2.8質量%に達するまで100℃で反応させてウレタンプレポリマーA5を得た。得られたウレタンプレポリマーA5の粘度は、29,000mPa・sであった。
 70℃に加熱したA5と、乳化剤としてドデシルベンゼンスルホン酸ナトリウム20質量%水溶液(第一工業製薬株式会社製「ネオゲンS-20F」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA1:10kg/時、乳化剤水溶液:2.0kg/時、水:6.5kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のPPの水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が50質量%のウレタン樹脂水分散体(5)を得た。
[比較合成例1]
 オクチル酸第一錫0.1質量部の存在下、PTMG2000を1,000質量部、ジメチロールプロピオン酸(以下「DMPA」と略記する。)を18質量部、HMDIを262質量部を混合し、NCO%が2.4質量%に達するまで100℃で反応させてウレタンプレポリマーB1を得た。得られたウレタンプレポリマーB1の粘度は、949,000mPa・sであった。
 70℃に加熱したB1と、中和剤としてトリエチルアミン、乳化剤としてポリプロピレンポリエチレン共重合体(株式会社ADEKA製「プロロニックL-64」)、水を二軸押出機(TEM-18SS:東芝機械製)に同時に供給、混合することで乳化液を得た。供給液それぞれの流量はA5:10kg/時、中和剤:0.1kg/時、乳化剤L-64:0.3kg/時、水:8.5kg/時、二軸押出機運転条件は50℃、260rpmであった。
 その後、直ちにNCO基の95%に相当するアミノ基含量のピペラジン(以下「PP」と略記する。)の水希釈液を添加して鎖伸長させ、最終的に不揮発分の含有率が50質量%のウレタン樹脂水分散体(R1)を得た。
[実施例1~3]
 得られたウレタン樹脂水分散体(1)~(3)それぞれ1,000質量部に、イオン交換水を加え、固形分が30質量%となるように調整し、さらに増粘剤(Borchers社製「Borchi Gel L75N」10質量部を加え、メカニカルミキサーを2,000rpmにて攪拌した配合液を作製した。
 次いで、ポリエステル繊維不織布(目付250g/m)を前記配合液に含浸させた後、ゴムローラーマングルを用いて含浸量が200%となるように不要な配合液を搾り取った。次いで、配合液を含ませた不織布を25℃の5質量%塩化ナトリウム水溶液の凝固浴(以下「NaCl」と略記する。)に3分間浸漬させて、ウレタン樹脂を凝固させた。更に凝固後の加工布に水をかけ流しながら、ゴムローラーマングルで10回絞り水洗した。最後に、120℃の熱風乾燥機にて30分乾燥させて凝固物を有する繊維基材を得た。
[実施例4~5]
 得られたウレタン樹脂水分散体(4)~(5)それぞれ1,000質量部に、イオン交換水を加え、固形分が30質量%となるように調整し、さらに増粘剤(Borchers社製「Borchi Gel L75N」10質量部を加え、メカニカルミキサーを2,000rpmにて攪拌した配合液を作製した。
 次いで、ポリエステル繊維不織布(目付250g/m)を前記配合液に含浸させた後、ゴムローラーマングルを用いて含浸量が200%となるように不要な配合液を搾り取った。次いで、配合液を含ませた不織布を25℃の5質量%の硫酸アンモニウム水溶液の凝固浴(以下「硫酸アンモニウム」と略記する。)に3分間浸漬させて、ウレタン樹脂を凝固させた。更に凝固後の加工布に水をかけ流しながら、ゴムローラーマングルで10回絞り水洗した。最後に、120℃の熱風乾燥機にて30分乾燥させて凝固物を有する繊維基材を得た。
[比較例1]
 得られたウレタン樹脂水分散体(1)1,000質量部に、イオン交換水を加え、固形分が30質量%となるように調整し、さらに増粘剤(Borchers社製「Borchi Gel L75N」10質量部を加え、メカニカルミキサーを2,000rpmにて攪拌した配合液を作製した。
 次いで、ポリエステル繊維不織布(目付250g/m)を前記配合液に含浸させた後、120℃の熱風乾燥機にて30分加熱乾燥することにより感熱凝固させた繊維基材を得た。
[比較例2]
 得られたウレタン樹脂水分散体(R1)1,000質量部に、実施例1~4と同様にイオン交換水を加え、固形分が30質量%となるように調整し、さらに架橋剤(日清紡ケミカル社製「カルボジライトV-02-L2」)50質量部、増粘剤(Borchers社製「Borchi Gel L75N」)10質量部を加え、メカニカルミキサーを2,000rpmにて攪拌した配合液を作製した。
 次いで、実施例1~4と同様の加工を実施し、凝固物を有する繊維基材を得た。
[数平均分子量等の測定方法]
 合成例及び比較合成例で用いたポリオール等の数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により、下記の条件で測定し得られた値を示す。
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
[ウレタン樹脂(X)の平均粒子径の測定方法]
 実施例及び比較例で得られたウレタン樹脂水分散体をレーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製「LA-910」)を使用して、分散液として水を使用し、相対屈折率=1.10、粒子径基準が面積の時の平均粒子径を測定した。
[風合いの評価方法]
 得られた加工布を触感により以下のように評価した。
 「A」;腰感、充実感ともに特に優れている。
 「B」;腰感があり、充実感も感じられる。
 「C」;腰感、充実感にやや劣る。
 「D」;腰感、充実感が全く感じられない。
[耐アルカリ性の評価方法]
 攪拌翼を有するSUS製セパラブルフラスコに1質量%水酸化ナトリウム水溶液を入れ、95℃に加熱した。フラスコ内に加工布を入れ、30分、50rpmで攪拌した。その後、含浸加工布を取り出し、加工布に水をかけ流しながら、ゴムローラーマングルで10回絞り水洗した。最後に、120℃の熱風乾燥機にて30分乾燥させた繊維基材を触感により評価した。
 「A」;腰感、充実感ともに特に優れている。
 「B」;腰感があり、充実感も感じられる。
 「C」;腰感、充実感にやや劣る。
 「D」;腰感、充実感が全く感じられない。
[耐染色性の評価方法]
 PTFE製耐圧容器中に5質量%かつpH4.5の0.5M酢酸ナトリウム緩衝液と前記[耐アルカリ性の評価方法]の試験後の加工布を入れ、120℃で24時間加熱した。その後、取り出した加工布に水をかけ流しながら、ゴムローラーマングルで10回絞り水洗した。最後に、120℃の熱風乾燥機にて30分乾燥させた繊維基材を触感により評価した。
 「A」;腰感、充実感ともに特に優れている。
 「B」;腰感があり、充実感も感じられる。
 「C」;腰感、充実感にやや劣る。
 「D」;腰感、充実感が全く感じられない。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法により得られた凝固物を有する加工布は、実施例1~4の通り、優れた風合い、耐アルカリ性、および耐染色性を有することが分かった。
 一方、比較例1は、凝固剤(Y)を用いずに、感熱凝固した態様であるが、風合い、耐アルカリ性、および耐染色性が不良であった。比較例2は、ウレタン樹脂(X)の代わりに、ノニオン性基を有する化合物(a1)を原料としないウレタン樹脂を用い、凝固剤(Y)により凝固している態様であるが、耐染色性が不良であった。

Claims (3)

  1. 繊維基材に、ノニオン性基を有する化合物(a1)を原料としたウレタン樹脂(X)の水分散体を含浸させ、次いで、凝固剤(Y)に浸漬させることを特徴とする凝固物の製造方法。
  2. 前記ノニオン性基を有する化合物(a1)の使用率が、ウレタン樹脂(X)を構成する原料の合計質量中5質量%以下である請求項1記載の凝固物の製造方法。
  3. 前記凝固剤(Y)が、金属化合物(Y1)、酸化合物(Y2)、及び、前記酸化合物(Y2)以外の非金属化合物(Y3)からなる群より選ばれる1種以上である請求項1又は2記載の凝固物の製造方法。
PCT/JP2021/018139 2020-06-11 2021-05-13 凝固物の製造方法 WO2021251053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180029557.6A CN115461507B (zh) 2020-06-11 2021-05-13 凝固物的制造方法
JP2021553860A JP7070805B1 (ja) 2020-06-11 2021-05-13 凝固物の製造方法
EP21823115.7A EP4166712A4 (en) 2020-06-11 2021-05-13 METHOD FOR PRODUCING COAGULATED MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101603 2020-06-11
JP2020-101603 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251053A1 true WO2021251053A1 (ja) 2021-12-16

Family

ID=78845966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018139 WO2021251053A1 (ja) 2020-06-11 2021-05-13 凝固物の製造方法

Country Status (5)

Country Link
EP (1) EP4166712A4 (ja)
JP (1) JP7070805B1 (ja)
CN (1) CN115461507B (ja)
TW (1) TW202200866A (ja)
WO (1) WO2021251053A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905929A (en) * 1973-03-23 1975-09-16 Bayer Ag Aqueous dispersions of polyurethane having side chain polyoxyethylene units
US3920598A (en) * 1973-03-23 1975-11-18 Bayer Ag Non-ionic polyurethane dispersions having side chains of polyoxyethylene
JPH06316877A (ja) * 1993-04-30 1994-11-15 Asahi Chem Ind Co Ltd 柔軟な耐摩耗性良好な人工皮革の製造方法
JP2006511727A (ja) * 2002-12-20 2006-04-06 ダウ グローバル テクノロジーズ インコーポレイティド 合成皮革を製造するための方法及びそれから製造した合成皮革
WO2013065608A1 (ja) * 2011-10-31 2013-05-10 東レ株式会社 シート状物およびその製造方法
WO2017221455A1 (ja) * 2016-06-20 2017-12-28 Dic株式会社 凝固物の製造方法
WO2018186141A1 (ja) * 2017-04-04 2018-10-11 Dic株式会社 多孔体の製造方法
WO2018186142A1 (ja) * 2017-04-04 2018-10-11 Dic株式会社 多孔体、手袋、及び、合成皮革の製造方法
WO2019087795A1 (ja) * 2017-11-01 2019-05-09 Dic株式会社 凝固物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121460B2 (ja) * 1992-11-25 2000-12-25 株式会社クラレ 皮革様シート状物
NO20001902L (no) * 1999-04-14 2000-10-16 Dow Chemical Co Polyuretanfilmer og dispersjoner for fremstilling derav
WO2013110606A1 (en) * 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Polyurethane dispersions for coating textiles
JP5858314B2 (ja) * 2013-09-06 2016-02-10 Dic株式会社 皮革様シート
JP6146546B1 (ja) * 2015-07-14 2017-06-14 Dic株式会社 凝固物の製造方法
CN106543406B (zh) * 2016-11-04 2020-03-03 万华化学集团股份有限公司 一种水性聚氨酯分散体浆料及其用于制备湿法贝斯的方法
CN112823173B (zh) * 2018-10-08 2023-06-23 陶氏环球技术有限责任公司 用于人造皮革应用的含水聚氨酯分散体
EP3910024A4 (en) * 2019-02-25 2022-03-23 DIC Corporation AQUEOUS URETHANE RESIN DISPERSION, LEATHER SHEET AND LEATHER SHEET PRODUCTION METHOD

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905929A (en) * 1973-03-23 1975-09-16 Bayer Ag Aqueous dispersions of polyurethane having side chain polyoxyethylene units
US3920598A (en) * 1973-03-23 1975-11-18 Bayer Ag Non-ionic polyurethane dispersions having side chains of polyoxyethylene
JPH06316877A (ja) * 1993-04-30 1994-11-15 Asahi Chem Ind Co Ltd 柔軟な耐摩耗性良好な人工皮革の製造方法
JP2006511727A (ja) * 2002-12-20 2006-04-06 ダウ グローバル テクノロジーズ インコーポレイティド 合成皮革を製造するための方法及びそれから製造した合成皮革
WO2013065608A1 (ja) * 2011-10-31 2013-05-10 東レ株式会社 シート状物およびその製造方法
WO2017221455A1 (ja) * 2016-06-20 2017-12-28 Dic株式会社 凝固物の製造方法
WO2018186141A1 (ja) * 2017-04-04 2018-10-11 Dic株式会社 多孔体の製造方法
WO2018186142A1 (ja) * 2017-04-04 2018-10-11 Dic株式会社 多孔体、手袋、及び、合成皮革の製造方法
WO2019087795A1 (ja) * 2017-11-01 2019-05-09 Dic株式会社 凝固物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166712A4 *

Also Published As

Publication number Publication date
TW202200866A (zh) 2022-01-01
JP7070805B1 (ja) 2022-05-18
JPWO2021251053A1 (ja) 2021-12-16
CN115461507A (zh) 2022-12-09
EP4166712A4 (en) 2024-05-15
CN115461507B (zh) 2024-03-19
EP4166712A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
JP6950834B2 (ja) ウレタン樹脂水分散体、皮革シート、及び、皮革シートの製造方法
TW202003617A (zh) 聚胺酯樹脂水分散體及其製造方法、塗料、膜構成體、構造物
JP6981575B2 (ja) 発泡シート、及び、合成皮革
JP5133178B2 (ja) ポリウレタン樹脂水分散体の製造方法
TW201708390A (zh) 凝固物之製造方法
JP2010254755A (ja) ポリウレタン樹脂水分散体
JP7070805B1 (ja) 凝固物の製造方法
JP6981576B2 (ja) 繊維基材、及び、人工皮革
JP5670099B2 (ja) 皮革様シートの製造方法
JP6897883B2 (ja) ウレタン樹脂水分散体、皮膜、積層体、及び、ウレタン樹脂水分散体の製造方法
WO2017221455A1 (ja) 凝固物の製造方法
JP6146546B1 (ja) 凝固物の製造方法
JP6573144B1 (ja) 凝固物の製造方法
JP7505651B2 (ja) ウレタン樹脂組成物、及び、積層体
JP6183577B1 (ja) 凝固物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021553860

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21823115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021823115

Country of ref document: EP

Effective date: 20230111